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Abstract

We show that if performance measures in stochastic and dynamic scheduling problems sat-

isfy generalized conservation laws, then the feasible space of achievable performance is a

polyhedron called an extended polymatroid that generalizes the usual polymatroid^s intro-

duced by Edmonds. Optimization of a linear objective over an extended polymatroid is

solved by an adaptive greedy algorithm, which leads to an optimal solution having an in-

dexability property {indexable systems). Under a certain condition, then the indices have

a stronger decomposition property {decomposable systems). The following classical prob-

lems can be analyzed using our theory: multi-armed bandit problems, branching bandits.

multiclass queues, multiclass queues with feedback, deterministic scheduling pnDlilpnis In-

teresting consequences of our results include: ( 1) a characterization of indexable systems a-s

systems that satisfy generalized conservation laws, (2) a sufficient condition for indexable

systems to be decomposable, (3) a new linear programming proof of the decomposabilit}

property of Gittins indices in multi-armed bandit problems, (4) a unified and practical ap-

proach to sensitivity analysis of indexable systems. (-5) a new characterization of the indu'^s

of indexable systems as sums of dual variables and a new interpretation of the indices in

terms of retirement options in the context of branching bandits, (6) the first rigorous anal-

ysis of the indexability of undiscounted branching bandits, (7) a new algorithm to compute

the indices of indexable systems (in particular Gittins indices), which is as fast as the fastest

known algorithm, (8) a unification of the algorithm of Klimov for multiclass queues and

the algorithm of Gittins for multi-armed bandits as special cases of the same algorithm. (9)

closed form formulae for the performance of the optimal policy, and (10) an understanding

of the nondependence of the indices on some of the parameters of the stochastic scheduling

problem. Most importantly, our approach provides a unified treatment of several classical

problems in stochastic and dynamic scheduling and is able to address in a unified wax their

variations such as: discounted versus undiscounted cost criterion, rewards versus taxes.

preemption versus nonpreemption, discrete versus continuous time, work conserving versus

idling policies, linear versus nonlinear objective functions.



1 Introduction

In the mathematical programming tradition researchers and practitioners solve optinuza-

tion problems by defining decision variables and formulating constraints, thus describing the

feasible space of decisions, and applying algorithms for the solution of tiie underlying opti-

mization problem. For the most part, the tradition for stochastic and dynamic scheduling

problems has been, however, quite different, cis it relies primarily on dynamic prograninimg

formulations. Using ingenious but often ad hoc methods, which exploit the structure of the

particular problem, researchers and practitioners can sometimes derive insightful structural

results that lead to efficient algorithms. In their comprehensive survey of deterniiuistic

scheduling problems Lawler et. al. [23] end their paper with the following remarks: The

results in stochastic scheduling are scattered and they have been obtained through a con-

siderable and sometimes dishearting effort. In the words of Coffman, Hofri and Weiss [8].

there is great need for new mathematical techniques useful for simplifying the dernation of

the results".

Perhaps one of the most important successes in the area of stochastic scheduling in the

last twenty years is the solution of the celebrated mulit-armed bandit problem, a g>^"iiPii<-

version of which in discrete time can be described as follows:

The multi-armed bandit problem: There are A' parallel projects, indexed k = I

. .
.

, K. Project k can be in one of a finite number of states ifc. At each instant of discrete

time f = 0, I, . . . one can work on only a single project. If one works on project k- in stau-

ik(t) at time <, then one receives an immediate expected reward of R,^{t) Rewards ar.^

additive and discounted in time by a factor < i? < 1. The state ik{t) changes to if,{t + 1

1

by a Markov transition rule (which may depend on k, but not on t), while the states of ilie

projects one has not engaged remain unchanged, i.e.. ii{t+ 1) = ii{t) for / ^ k. The prnlij.-in

is how to allocate one's resources sequentially in time in order to maximize expected imal

discounted reward over an infinite horizon.

The problem has numerous applications and a rather vast literature (see Gittiiis [16]

and the references therein). It was originally solved by Gittins and Jones [14], who proved

that to each project k one could attach an index 7'^(ijt(0)< which is a function of the project

k and the current state ik{t) alone, such that the optimal action at time t is to engage the

project of largest current index. They also proved the important result that thesp iiidf^x



functions satisfy a stronger index decomposHton property: the function -; "(
) only depends

on characteristics of project k (states, rewards and transition probabihties), and not on an\

other project. These indices are now known as Gittins indices, in recognition of Gitrms con-

tribution. Since the original solution, which relied on an interchange argument, other proofs

were proposed: Whittle [36] provided a proof based on dynamic programming, subsequently

simplified by Tsitsiklis [30]. Varaiya, Walrand and Buyukkoc [33] and Weiss [35] provided

different proofs based on interchange arguments. Weber [34] outlined an intuiti\e proof.

More recently, Tsitsiklis [31] has provided a proof based on a simple inductive argument

The multi-armed bandit problem is a special case of a dynamic and stochastic job

scheduling system S- In this context, there is a set E of job types and we are interesti^d

in optimizing a function of a performance measure (rewards or taxes) under a riass of

admissible scheduling policies.

Definition 1 (Indexable Systems) We say that adynamic and stochastic jo6 scheduling

system S is indexable if the following policy is optimal: To each job type / we attach an

index, 7^. At each decision epoch select a job with the largest index.

In general the indices 7, could depend on the entire set E of job types. Consider a partition

of the set E to subsets Ek, k = 1, . . . /\ ,
which contain collections of job types and can lie

interpreted as projects consisting of several job types. In certain situations, the index of

job type i £ Ek depends only on the characteristics of the job types in Ek and not on the

entire set E of job types. Such a property is particularly useful computationally sinci^ it

enables the system to be decomposed to smaller parts and the computation of the indices

can be done independently. As we have seen the multi-armed bandit problem has this

decomposition property, which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if

for all job types i £ Ek, the index 7, ofjob type i depends only on the characteristics of the

set of job types Ek-

In addition to the multi-armed bandit problem, a variety of dynamic and stochastic

scheduling problems has been solved in the last decades by indexing rules:

1. Extensions of the usual multi-armed bandit problem such as arm-acquiring bandits

(Whittle [37], [38]) and more generally branching bandits (Weiss [35]). that include

several important problems as special cases.
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2. The multiclass queueing scheduling problem with Bernoulli feedback (Kliiiun [22].

Tcha and Pliska [29]).

3. The multiclass queueing scheduling problem without feedback (Cox and Smith [9].

Harrison [19], Kleinrock [21], Gelenbe and Mitrani [13], Shantikumar and Yao [26]).

4. Deterministic scheduling problems (Smith [27]).

An interesting distinction, which is not emphasized in the literature, is that examples

(1) and (2) above are indexable systems, but they are not in general decomposable systems.

Example (3), however, has a more refined structure. It is indexable, but not decomposable.

under discounting, while it is decomposable under the average cost criterion (the r// rule).

As already observed, the multi-armed bandit problem is an example of a decomposable

system, while example (4) above is also decomposable.

Faced with these results, one asks what is the underlying deep reason that these non-

trivial problems have very efficient solutions both theoretically as well as practically In

particular, what is the class of stochastic and dynamic scheduling problems that ar^ uidex-

able? Under what conditions, indexable systems are decomposable'' But most im]3oi-taiul_\

is there a unified way to address stochastic and dynamic scheduling problems that will lead

to a deeper understanding of their strong structural properties'' This is the set of questions

that motivates this work.

In the last decade the following approach has been proposed to address special cases

of these questions. In broad terms, researchers try to describe the feasible space of a

stochastic and dynamic scheduling problem as a polyhedron. Then, the stochastic and

dynamic scheduling problem is translated to an optimization problem over the corresponding

polyhedron, which can then be attacked by traditional mathematical programming methods.

Coffman and Mitrani [7] and Gelenbe and Mitrani [13] first showed using conservation laws

that the performance space of a multiclass queue under the average cost criterion can be

described as a polyhedron. Federgruen and Groenevelt [1 1], [12] advanced the theory further

by observing that in certain special cases of multiclciss queues, the polyhedron has a very

special structure (it is a polymatroid) that gives rise to very simple optimal policies (the c^

rule). Shantikumar and Yao [26] generalized the theory further by observing that if a system

satisfies strong conservation laws, then the underlying performance space is necessarily a

polymatroid. They also proved that, when the cost is linear on the performance, the optimal



policy is a fixed priority rule (also called head of the line priority rule; see Cobliam [6]. and

Cox and Smith [9]). Their results partially extend to some rather restricted queueing

networks, in which they assume that all the different classes of customers liave the same

routing probabilities, and the same service requirements at each station of the network (see

also [25]). Tsoucas ([32]) derived the region of achievable performance in the problem of

scheduling a multiclass nonpreemptive M/G/1 queue with Bernoulli feedback, intioduced

by Klimov ([22]). Finally, Bertsimjis et al. [2] generalize the ideas of conservation laws

to general multiclass queueing networks using potential function ideas They finil linear

and nonlinear inequalities that the feasible region satisfies. Optimization over this set of

constraints gives bounds on achievable performance.

Our goal in this paper is to propose a unified theory of conservation laws and to establish

that the very strong structural properties in the optimization of a class of stochastic and

dynamic systems that include the multi-armed bandit problem and its extensions follow from

the corresponding strong structural properties of the underlying poiyhedra that characterize

the regions of achievable performance.

By generalizing the work of Shantikumar and Yao [26] we show that if performance

measures in stochastic and dynamic scheduling problems satisfy generalized consa-i aiion

laws, then the feasible space of achievable performance is a polyhedron called an t ri^itdtd

polymatroid (see Bhattacharya ei at. [4]). Optimization of a linear objective over an ex-

tended polymatroid is solved by an adaptive greedy algorithm, which leads to an optimal

solution having an indexability property. Special cases of our theory include all tl>^ proli-

lems we have mentioned, i.e., multi-armed bandit problems, discounted and undiscountpd

branching bandits, multiclass queues, multiclass queues with feedback and deterministic

scheduhng problems. Interesting consequences of our results include;

1. A characterization of indexable systems as systems that satisfy generalized conserva-

tion laws.

2. Sufficient conditions for indexable systems to be decomposable.

3. A genuinely new, algebraic proof (based on the strong duality theory of linear pro-

gramming as opposed to dynamic programming formulations) of the decomposability

property of Gittins indices in multi-armed bandit problems.



4. A unified and practical approach to sensitivity analysis of indexable systems., based

on the well understood sensitivity analysis of linear programming

5. A new characterization of the indices of indexable systems as sums of dual variables

corresponding to the extended polymatroid that characterizes the feasible space.

6. A new interpretation of indices in the context of branching bandits as retiiement

options, thus generalizing the interpretation of Whittle [36] and Weber [34] for the

indices of the classical multi-armed bandit problem.

7. The first complete and rigorous analysis of the indexability of undiscounted branching

bandits.

8. A new algorithm to compute the indices of indexable systems (in particular G:t-

tins indices), which is as fast as the fastest known algorithm (Varaiya. \\alran(l and

Buyukkoc [33]).

9. The realization that the algorithm of Klimov for multicla.ss queues and the algorithm

of Gittins for multi-armed bandits are examples of the same algorithm.

10. Closed form formulae for the performance of the optimal policy. This also leads to an

understanding of the nondependence of the indices on some of the parameters of the

stochastic scheduling problem.

Most importantly, our approach provides a unified treatment of several classical prob-

lems in stochastic and dynamic scheduling and is able to address in a unified way their

variations such bls: discounted versus undiscounted cost criterion, rewards versus taxes.

preemption versus nonpreemption, discrete versus continuous time, work conserving \ersus

idling policies, linear versus nonlinear objective functions.

The paper is structured as follows: In Section 2 we define the notion of generalized con-

servation laws and show that if a performance vector of a stochastic and dynamic scheduling

problem satisfies generalized conservation laws, then the feasible space of this performance

vector is an extended polymatroid. Using the duality theory of linear programming we

show that linear optimization problems over extended polymatroids can be solved by an

adaptive greedy algorithm. Most importantly, we show that this optimization problem has

an indexability property. In this way, we give a characterization of indexable systems as



systems that satisfy generalized conservation laws. We also find a sufficient condition for

an indexable system to be decomposable and prove a powerful result on sensitivity analysis.

In Section 3 we study a natural generalization of the classical multi-armed bandit problem:

the branching bandit problem. We propose two different performance measures and prove

that they satisfy generalized conservation laws, and thus from the results of the previous

section their feaisible space is an extended polymatroid. We then consider different cost and

reward structures on branching bandits, corresponding to the discounted and undiscouiitpd

case, and some transform results. Section 4 contains applications of the previous sections to

various classical problems: multi-armed bandits, multi-class queueing scheduling prol)lenis

with or without feedback and deterministic scheduling problems. The final section contains

some thoughts on the field of optimization of stochastic systems.

2 Extended Polymatroids and Generalized Conservation Laws

2.1 Extended Polymatroids

Tsoucas [32] characterized the performance space of Klimov's problem (see Klimox ['22]) .i^ a

polyhedron with a special structure, not previously identified in the literature Bhattachar\ n

et at. [4] called this polyhedron an extended polymatroid and proved some interesting pro|)-

erties of it. Extended polymatroids are a central structure for the results we present in this

paper.

Let us first establish the notation we will use. Let E = {!,... ,n} be a finite set Lei j-

denote a real n-vector, with components i,, for / £ E. For S C N, let 5*^ = f \ 5. ami ki

\S\ denote the cardinality of 5. Let 2^ denote the class of all subsets of E . Let 6: 2^ — h\

be a set function, that satisfies 6(0) = 0. Let A = (.4f ),g£, scE be a matrix that satistip^

/if > 0, for i e S and A^ = 0, for i G S" . for all 5 C £"
( 1

)

Let TT = (jri, ...,7r„) be a permutation of E. For clarity of presentation, it is con\pnif^iit

to introduce the following additional notation. For an n-vector x = (x\ x„) let j- =

(i„j , . .
.

, i,r„)-^- Let us write

t. = (6({^i}).fc({Ti,7r2}),...,6({7ri,...,7r„})f.



Let An denote the following lower triangular submatrix of .4:

.../ AiV^

A.=

\Ai:
{t1 T") j{fl ^r,}

'T2
Ai'^i ^n}

Let i'(7r) be the unique solution of the linear system

tiAiV "^^x,. =fc({;r:,...,:r,}), j=l,...,n
1=1

or, in matrix notation:

Let us define the polyhedron

A^x^ = b^.

V{A, 6) = { J G 3?"
; ^ Afx, > b(S), for 5 C r }

and the polytope

(4)

B(/l,6)= {r G3f" :^-4fr, > 6(S), for S C ^ and ^.4fx, =6(f)} (J)

Note that if r G V(A,b), then it follows that r > componentwise. The following definition

is due to Bhattacharya et al. [4].

Definition 3 (Extended Polymatroid) We say that the polyhedron V(A.b) is an f r-

tended polymatrotd with base set E, if for every permutation n of E. v{tt) G V{A.h). In

this Ceise we say that the polytope B(A,b) is the base of the extended polymatroid 'P{A.Ij).

2.2 Optimization over Extended Polymatroids

Extended polymatroids are polyhedra defined by an exponential number of inequalities.

Yet, Tsoucas [32] and Bhattacharya et al. [4] presented a polynomial algorithm, based

on Klimov's algorithm (see Klimov [22]) for solving a linear programming problem over

an extended polymatroid. In this subsection we provide a new duality proof that this

algorithm solves the problem optimally. We then show that we can associate with this

linear program certain indices, related to the dual program, in such a way that the problem

hcis an indexability property. Under certain conditions, we prove that a stronger index



decomposition property holds. We also present an optimality condition specially suited for

performing sensitivity analysis.

In what follows we assume that V{A,b) is an extended polymatroid Let R £ K"^^ be a

row vector. Let us consider the following linear programming problem;

(P) max{^i2,a;, :iGe(A,6)}. (6)

Note that since B{A,b) is a polytope, this linear program has a finite optimal solution.

Therefore we may consider its dual, and this will have the same optimum value. We shall

have a dual variable y for every S C E. The dual problem is:

(D) mm{ ^ b(S)y^ : ^ Afy^ = R,. for / G E, and y- < 0, for S C E}.

SCE SBi

(7)

In order to solve (P), Bhattacharya ef al. [4] presented the following adapftie giffdy

algorithm, based on Klimov's algorithm [22]:

Algorithm ^i

Input: {R,A).

Output: (n,y,i^,S), where tt = (ttj 7r„) is a permutation of E, y = (y'^)<;cE-
'' —

(t/i,... ,f„), and S = {Si, 5„}, with 5jt = {tti, . . . ,7r/;}, for k £ E.

Step 0. Set Sn = E. Set i/„ = max{ -^ . i £ E);

pick 7r„ G argmax{ -^ : f G £ }.

5<ep i. For t = 1, ..., n- 1:

Set S„_fc = S„_fc+i \ {TTn-k+x }; set i/„_A: = max{ '^°5^'_^ —
^ ' € Sn-k )

1,

pick 7r„_t G argmax{ ^'=1 ' —^^^
: ? G Sn-k },-„_*

5<ep n. For 5 C £" set

{fj , if 5 = 6j for some j G £';

0, otherwise.



It is easy to see that the complexity of Ai, given {R, A), is 0{n'^). Note that, for certain

reward vectors, ties may occur in algorithm ^i . In the presence of ties, the permutation

7r generated depends clearly on the choice of tie-breaking rules. Howmer. we will show

that vectors f and y are uniquely determined by A\. In order to prove this point, whose

importance will be clear later, and to understand better ^i, let us introduce the following

related algorithm:

Algorithm A2

Input: {R,A).

Output: {r,y,'H.J), where I < r < n is an integer, y = {y )scE' ^ = {^1 //r} is a

partition of E, and J^ = U[_jt///, for / = 1, . . . ,
»-.

Step 1. Set k :— 1; set Jj = E\

set 6\ = max{ -jf i ^ E) and H\ = argmax{ -^ : ' G £ }

Step 2. While Jk f H^ do:

begin

Set t := fc + 1; set Jk = Jk-\ \ Hk-\\

set ek = max{ ^'"^^
"''"'

: / g Jfe } and //, = argmax{ ^'"^?
'"'''''

: ; g h ]
A, *

.4,
*

end {while}

Step 3. Set r = t;

for S C E set

^it , if S = Jfc for some k = 1 , . .
. , r;

0, otherwise.

In what follows let (7r,y, i/,5) be an output of v4i and let (r,y,Ti,J) he the output of

A2- Note that the output of algorithm ^2 is uniquely determined by its input.

The idea that algorithm A2 is just an unambiguous version of Ai is formalized in the

following result:

Proposition 1 The following relations hold between the outputs of algorithms A\ and A2:

(a) for 1=1,...,

n

{6k, i/' = \Jk\ for some k = 1, . . . , r;

(S)

0, otherwise:

=S
y



(b) y = V;

(c) n satisfies

Jk = {^i ^\J,\}. ^=1 r. (9)

ffk = {t^\j,\-\h,\+i^--,^\j,\]- t = l r- (10)

Outline of the proof

Parts (a) and (c) follow by induction arguments. Part (b) follows by (a) and the definitions

of y and y.

Remark: Proposition 1 shows that y and v are uniquely determined (and thus invariant

under different tie-breaking rules) by algorithm Ai It also reveals in (c) the structure of

the permutations tt that can be generated by ^i.

Tsoucas [32] and Bhattacharya et al. [4] proved from first principles that algorithm A\

solves linear program (P) optimally. Next we provide a new proof, using linear programming

duality theory.

Proposition 2 Let vector y and permutation rr be generated by algorithm A\ Th>.n i(t)

and y are an optimal primal-dual pair for tlte linear programs (P) and(D).

Proof

We first show that y is dual feasible. By definition of u^ in ^i , it follows that

and since 5n-i C 5„ it follows that !/„_! <

Similarly, for it = 1,. .
.

, n — 2, by definition of i^n-k it follows that

k

j=0

and since Sn-k-\ C Sn-k, it follows that fn-t-i < 0. Hence Uj < 0, for j = 1, . .
c - 1.

and by definition of y, we have y^ < 0, for 5 C t"

Moreover, for ib = 0, 1, . . . , n — 1 we have, by construction.

Hence y is dual feasible.

10



Let I = t'(7r). Since V[A,b) is an extended polymatroid, x is primal feasible. Let us

show that 1 and y satisfy complementary slackness. Assume y^ ^ 0. Then, by const riirt ion

it must he S = Sk = { ""i > , ""A.- } , for some k. And since x satisfies (3), it follows that

^Afx, = J2^i? ^'>z.^=6(5).

leS ; = 1

Hence, by strong duality i'(7r) and y are an optimal primal-dual pair, and this comph^es

the proof.

Remark: Edmonds [10] introduced a special class of polyhedra called polymatroids. and

proved the classical result that the greedy algorithm solves the linear optimization |3roblem

over a polyhedron for every linear objective function if and only if the polyhedron is a

polymatroid. Now, in the case that Af = 1, for / £ S. and S C E . ii is ea.s_\ to see

that ^1 is the greedy algorithm that sorts the /?, 's in nonincreasing order By Edmonds

result and Proposition 2 it follows that in this case B{A.b) is a polymatroid 1 h<^refore.

extended polymatroids are the natural generalizations of polymatroids. and algorithm A\

is the natural extension of the greedy algorithm.

The fact that i'(7r) and y are optimal solutions has some important consequences It :<«

well known that every extreme point of a polyhedron is the unique maLXimizer of som^ liiu- ir

objective function. Therefore, the i'(:r)'s are the only extreme points of PiA.b). Uowrr it

follows:

Theorem 1 (Characterization of Extreme Points) The set of eitremt points nfPiA.h)

is

{v(n) : n ts a permutation of E ]

.

The optimality of the adaptive greedy algorithm Ai leads naturally to the definiin^n

of certain indices, which for historical reasons, that will be clear later, we call generahz'

d

Gittins indices.

Definition 4 (Generalized Gittins Indices) Let y be the optimal dual solution y,e lu r-

ated by algorithm ^i. Let

7, = ^ /, ,-€f. (11)

S: E0S31

We say that 7i , . ,
. , 7n are the generalized Gittins indices of linear program (P).

11



Remark: Notice that by Proposition 1(a) and the definition of y, it follows that if permu-

tation n is an output of algorithm A\ then the generalized Gittins indices can be coni|iutod

as follows;

12)

13)

Let 9?_ = {ar 6 3? : I < 0}. Let 71, . . . , 7„ be the generalized Gittins indices of (P). Let

TT be a permutation of E. Let T be the following n x n lower triangular matrix:

/I ... 0\

1 1 ...

Vi 1 1/

In the next proposition and the next theorem we reveal the equivalence between some

optimality conditions for linear program (P).

Proposition 3 The following statements are equivalent:

(a) TT satisfies (9) and (10):

(b) T is an output of algorithm A\:

(c) R^A~^ £ 3J!1~ X 9?, and then the generalized Gittins indices are given by 'r — R-AZ^T:

(d) T^r, < 7t2 < •• < 7>r„.

Outline of the proof

(a) ^ (b): Proved in Proposition 1(a).

(b) ^ (c): It is clear, by construction in ^1, that

i^ = R.AZ\ 14)

Now, in the proof of Proposition 2 we showed that i^ G 3?" x 3?. Moreover, by ( 12) we get

7^ = ^^

and by (14) it follows that

7, = R,AZ'T

12



(c) => (d): By (c) we have

= 7,r-i ^r„a;' £^1-' x«,

whence the result follows.

(d) => (a): By construction of 5 in algorithm A2, the fact that y = y and the definition of

the generalized Gittins indices, it follows that

7, = ^1 + ... 4-^^, fovi£Hh, and t = 1, lo)

Also, it is easy to see that 9j < 0, for j > 2. These two facts clearly imply that t must

satisfy (10), and hence (9). which completes the proof of the proposition

Combining the result that algorithm A\ solves linear program (P) optimal!.\ with the

equivalent conditions in Proposition 3, we obtain several optimality conditions, as sliov^n

next.

Theorem 2 (Sufficient Optimality Conditions and Indexability) Aisuwe fhaf any

of the conditions (a)-(d) of Proposition 3 holds. Then i'(t) solves linear program [P) opti-

mally.

It is easy to see that conditions (a)-(d) of Proposition 3 are not, in general, necessary

optimality conditions. They are neccessary if the polytope B(A,b) is nondegenerate Some

consequences of Theorem 2 are the following:

Remarks:

1. Sensitivity analysis: Optimality condition (c) of Proposition 3 is specially vvi='ll

suited for performing sensitivity analysis Consider the following question: given a

permutation n of E, for what vectors R and matrices .4 can we guarantee that l(t)

solves problem (P) optimally? The answer is: for R and A that satisfy the condition

RkAZ^ € 3?r^ X 9?.

13



We may also zisk: for which permutations tt can we guarantee that uiw) is optimal

By Proposition 3(d), the answer now is: for permutations n that satisfy

thus providing an 0(n log n) optimality test for tt. Glazebrook [17] addressed the

problem of sensitivity analysis in stochastic scheduling problems. His results are in

the form of suboptimality bounds.

2. Explicit formulae for Gittins indices: Proposition 3(c) provides an exi:)licit for-

mula for the vector of generalized Gittins indices. The formula reveals that the indices

are piecewise linear functions of the reward vector.

3. Indexability: Optimality condition (d) of Proposition 3 shows that any permutation

that sorts the generalized Gittins indices in nonincreasing order provides an optmial

solution for problem (P). Condition (d) thus shows that this class of optimization

problems has an indexability property.

In the case that matrix A has a certain special structure, the computation of th^ indices

of (P) can be simplified. Let E be partitioned as E = U;.\_j E'^. . For ^- = 1. h'

.

let 5(^4^,6*^) be the base of an extended polymatroid; let x'' = (x|''),g£^; let (P;. ) bo the

following linear program;

{Pk) max{ Y, ^^-f •
^^ e 5(.4^6'^)}; (1(3)

let {7,- }i6E^ be the generalized Gittins indices of problem (Pk)- Assume that the follou ing

independence condition holds:

Af = Af^^" = iA'')f''^' , for f € 5 n Ek and SCE. (17)

Under condition (17) there is an easy relation between the indices of problems (P) and

(Pk), as shown in the next result.

Theorem 3 (Index Decomposition) Under condition (11), the generalized Giflins in-

dices of linear programs (P) and (Pk) satisfy

7, = 7*, forieEk and k = I K. (18)

14



Proof

Let

hi = 7*, for / G Ek and h = \ A'

Let us renumber the elements of E so that

/ij < /l2 < • < /in

Let T=:(l,...,n). Permutation tt of £ induces permutations Tr*^ of E^. for fc = 1.

that satisfy

Hence, by Proposition 3 it follows that

(IH)

(20)

/v.

(21)

7:. = /?;.( -4^*)-' T,. fort = l A-

or, equivalently,

WjT] > 7^2 1
• • ' 77r* /

r-'.4?

\

-I u-

= (/;;,, i?^... ./?:,) (22)

\ r-'.4:./

where Tk is an jE^I x \Ek\ matrix with the sani»^ structure as matrix T. for k = 1.

On the other hand, we have

/I .. 0\

•1 1 ...

T-'Ar = -1 1 ... .4^

\

/

-1 1/

.4
{1,2}

{1 "} j{l "-'} .{1 "} a{1 n-1}
\A\ '-'-A .4 --4

\

.4i^
"^

I

Now, notice that if i £ Ek, j £ E \ Ek and i < j then, by (17):

^{1 j) _ ^{1 }}<^E, _ ^{\ j-i}n£t _ ^{1 j-i}
(23)
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Hence, by (19) and (23) it follows that system (22) can be written equnalentiy as

KT-^A,^R^. (24)

Now, (20) and (24) imply that

hi - /13

R^A-' = KT-^ = G D?r^ X K, 12o)

hn-l - hn

\ /in /

and by Proposition 3 it follows that the generalized Gittins indices of problem (P) satisfy

7. = R.a;'t

Hence, by (24),

h, = 7i, for ;• € E

and this completes the proof of the theorem.

Theorem 3 implies that the fundamental reason for decomposition to hold is ( 17) An

easy and useful consequence of Theorems 2 and 3 is the following:

Corollary 1 Under the assumptions of Theorem 3, an optimal solution of problr-m {/')

can be computed by solving the K subproblems (Pk). for k = 1,. . . . K by algorithm A\ (H'd

computing their respective generalized Gittins indices.

It is important to emphasize that the index decomposition property is much stronger th u

the indexability property. We will see later that the classical multi-armed bandit prolikm

has the index decomposition property. On the other hand, we will see that Klimov's proM<>in

(see [22]) has the indexability property, but in the general case it is not decomposalik

2.3 Generalized Conservation Laws

Shantikumar and Yao [26] formalized a definition of strong conservation taw? for perfor-

mance meaisures in genera! multiclass queues, that implies a polymatroidal structure m

the performance space. We next present a more general definition of generalized foi/sfr-

vation laws in a broader context that implies an extended polymatroidal structure in tlie

performance space, which has several interesting and important implications. Consider a

16



general dynamic and stochastic job scheduling process. There are n job types, whirh we

label i E: E — {l,...,n}. We consider the class of admissible scheduling pohcit^. which

we denote U , to be the class of all nonidling, nonpreemtive and nonantiripative scheduling

policies.

Let i" be a performance measure of type i jobs under admissible policy u. for / £ E

.

We assume that r" is an expectation. Let r" be the corresponding performance \ector.

Let x^ denote the performance vector under a fixed priority rule that assigns priorities to

the job types according to the permutation n = (tti, . . . , 7r„) of E, where type n„ has the

highest priority, . .
.

, type ttx has the lowest priority.

Definition 5 (Generalized Conservation Laws) The performance vector x is said to

satisfy generalized conservation laws if there exist a function 6:2 — ')?+ such that 6(0) =

and a matrix .4 — (/if )teE,SC£ satisfying (1) such that:

(a)

6(S) = ^-4fx^ for all TT : {ti 7r|5|} = 5 and S C E: (2(5)

(b)

^Afx"^ >b(S), for all SCf" and ^^ Af x"; = b{E), for all </ G // (27)

i€S .e£

In words, a performance vector is said to satisfy generalized conservation laws if: there

exist weights Af such that the total weighted performance over all job types is una riant

under any admissible policy, and the minimum weighted performance over the job types

in any subset S C E is achieved by any fixed priority rule that gives priority to all other

types (in S'^) over types in 5. The strong conservation laws of Shantikumar and ^'ao [26]

correspond to the special case that all weights are Af = 1.

The connection between generalized conservation laws and extended polymatroids is the

following theorem:

Theorem 4 Assume that the performance vector x satisfies generalized conservation laws

(26) and (27). Then

(a) The vertices of B{A,b) are the performance vectors of the fixed priority rules, and

x" = v{ir), for every permutation t of E.

(b) The extended polymatroid base 3(A,b) is the performance space.

17



Proof

(a) By (26) it follows that x'" = v(ir). And by Theorem 1 the result follows.

(b) Let X = {x":uGi/}be the performance space. Let Bi.[A,b) be the .set of extreme

pointsof 5(yl,6). By (27) it follows that X C ^(/l, 6). By (a), -B„(,4, 6) C .V. Hence, since

X is a convex set {U contains randomized policies) we have

B{A,b) = com{B{A,b)) CX.

Hence X = B{A,b), and this completes the proof of the theorem.

As a consequence of Theorem 4, it follows by Caratheodory theorem that the perfor-

mance vector i" corresponding to an admissible policy u can be achieved by a randomization

of at most n + 1 fixed priority rules.

2.4 Optimization over systems satisfying generalized conservation laws

Let x" be a performance vector for a dynamic and stochastic job scheduling process that

satisfies generalized conservation laws (associated with .4, 6()). Suppose that we want

to find an admissible policy u that maximizes a linear reward function J2i^£ Ri-i'" This

optimal scheduling control problem can be expressed as

(ft/) max{^ /?,x," : uGi/}. (28)

By Theorem 4 this control problem can be transformed into the following linear program-

ming problem;

(P) max{^/?,z, :2:Ge(/l,6)}. (29)

The strong structural properties of extended polymatroids lead to strong structural prop-

erties in the control problem. Suppose that to each job type / we attach an index. -,
. A

policy that selects at each decision epoch a job of currently largest index will be referred to

as an index policy.

Let 7i, ..., 7„ be the generalized Gittins indices of linear program (P). As a direct

consequence of the results of Section 2.2 we show next that the control problem (Pu) is

solved by an index policy, with indices given by 71, . . . ,7n

Theorem 5 (Indexability) (a) Let i'(7r) be an optimal solution of linear program {P).

Then the fixed priority rule that assigns priorities to the job types according to permulation
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n IS optimal for the control problem (Pn);

(b) A policy that selects at each decision epoch a job of currently largest generalized C'ttins

index is optimal for the control problem.

The previous theorem implies that systems satisfying generalized conservation laws are

indexable systems.

Let us consider now a dynamic and stochastic project selection process, in which there

are K project types, labeled it = 1,...,A'. At each decision epoch a project must he

selected. A project of type k can be in one of a finite number of states u- £ Ek These

states correspond to stages in the development of the project. Clearly this process can be

interpreted as a job scheduling process, as follows: simply interpret the action of selecting

a project k in state i^ G Ek as selecting a job of type / = i^ £ \Jki-iEk' We may interpret

that each project consists of several jobs. Let us assume that this job scheduling process

satisfies generalized conservation laws associated with matrix .4 and set function b(). By

Theorem 5, the corresponding optimal control problem is solved by an index policy We

will see next that when a certain independence condition among the projects is satisfied, a

strong index decomposition property holds.

We thus assume that E is partitioned as E = [Jk=\Ek- Let x = (x,),g£j. bo the

performance vector over job types in E^ corresponding to the project selection inoMeni

obtained when projects of types other than k are ignored (i.e., they are never engaged). Let

us assume that the performance vector x satisfies generalized conservation laws associated

with matrix A'' and set function b''{), and that the independence condition ( 17) is satisfied.

Let Uk be the corresponding set of admissible policies.

Under these aissumptions, Theorem 3 applies, and together with Theorem 5(b) we get

the following result;

Theorem 6 (Index Decomposition) Under condition (17), the generalized Gitltn.'^ in-

dices ofjob types in E^ only depend on characteristics of project type k.

The previous theorem identifies a sufficient condition for the indices of an indexable

system to have a strong decomposition property. Therefore, systems that satisfy generalized

conservation laws which further satisfy (17) are decomposable systems. For such systems the

solution of problem (i^) can be obtained by solving K smaller independent subproblems.

This theorem justifies the term generalized Gittins indices. We will see in Section 4 that
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when applied to the multi-armed bandit problem, these indices reduce to the usual Gittins

indices.

Let us consider briefly the problem of optimizing a nonlinear cost function on the perfor-

mance vector. Bhattacharya et al. [4] addressed the problems of separable convex, min-max.

lexicographic and semi-separable convex optimization over an extended polymatroid. and

provided iterative algorithms for their solution. Analogously as what we did in the linear

reward case, the control problem in the Ccise of a nonlinear reward function can be reduced

to solving a nonlinear programming problem over the base of an extended polymatroid.

3 Branching Bandit Processes

Consider the following branching bandit process introduced by Weiss [35]. wiio observed that

it can model a large number of dynamic and stochastic scheduling processes. There is a

finite number of project types, labeled k — 1. , A' A type Ic project can he in one of

a finite number of states i^ £ E^. which correspond to stages in the development of tiie

project. It is convenient in what follows to combine these two indicators into a single label

i = ik, the state of a project. Let E = U^^^Ek- = {l,...,n} be the finite set of possible

states of all project types.

We associate with state i of a project a random time c, and random arrivals \, —

{!^tj)j^E- Engaging the project keeps the system busy for a duration (, (the duration of

stage i), and upon completion of the stage the project is replaced by a nonnegative integer

number of new projects N,j, in states j £ E We assume that given /', the durations and the

descendants Vi, N, are random variables with an arbitrary joint distribution, independent

of all other projects, and identically distributed for the same i. Projects are to be selected

under a nonidling, nonpreemptive and nonantinpative scheduling policy u. We shall refer

to this class of policies, which we denote //. as the class of admissible policus The decision

epochs are t = and the instants at which a project stage is completed and there is some

project present. If m, is the number of projects in state ;' present at a given time, then it

is clear that this process is a semi-Markov decision process with states m — (mj, . , lUr, )•

The model of arm-acquiring bandits (see Whittle [37], [38]) is a special case of branching

bandit process, in which the descendants .V, consist of two parts: (1) a transition of the

project engaged to a new state, and (2) external arrivals of new projects, independent of /
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or of the transition. The cliissical multi-armed bandit problem corresponds to the special

case that there are no external arrivals of projects, and the stage durations are 1.

The branching bandit process is thus a special cjise of a project selection process There-

fore, as described in Subsection 2.4, it can be interpreted as a job scheduling process En-

gaging a type i job in the job scheduling model corresponds to selecting a project of state

I in the branching bandit model. We may interpret that each project consists of se\eral

jobs. In the analysis that follows, we shall refer to a project in state / as a type i job.

In this section, we will define two different performance measures for a branching liandit

process. The first one will be appropriate for modelling a discounted reward-tax structure.

The second one will allow us to model an undiscounted tax structure. In each case we will

show that they satisfy generalized conservation laws, and that the corresponding optimal

control problem can be solved by a direct application of the results of Section 2.

Let 5 C £ be a subset of job types. We shall refer to jobs with types in 5 as 5-jobs

Assume now that at time t = there is only a single job in the system, which is of type /

Consider the sequence of successive job selections corresponding to an admissible polic\ n

that gives complete priority to 5-jobs. This sequence proceeds until all 5-jobs are exhaust, cl

for the first time, or indefinitely. Call this an (i.S) period. Let T,^ be the duration (pos>-ihl\

infinite) of an (i.S) period. It is easy to see that the distribution of T^ is indepeniliMit of

the admissible policy used, as long as it gives complete priority to 5-jobs Note thai .in

(i, 0) period is distributed as i',. It will be convenient to introduce the following addiiicuMl

notation:

Vi^k = duration of the ibth selection of a type /job; notice that the distribution of i ,j.. is

independent of ib (vi).

'''i,k = time at which the kth selection of a type i job occurs:

f, = number of times a type : job is selected (can be infinity);

{^i^k}k>i— duration of the (2,5)-period that starts with the tth selection of a type /job

type i job for the fcth time.

Qiit) = number of type i jobs in the system at time /. Q{t) denotes the vector of the

Q,{tYs. We assume Q(0) = (mj, . . .
,
m„) is known.
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ri, if

1 0, ot:

T^ = time until all S-jobs are exhausted for the first time (can be infinity); note rhat T^

is the duration of the busy period.

a type i job is being engaged at time t.

otherwise,

Aff. = inf{ A > Vtk : Hjes ^jC'"'.*^ + ^) = 1 }- for ' ^ ^' "°t^ that Af^^. is the InttM-val

between the ifcth selection of a type j job and the next selection, if any. of an Vjob

If no more jobs in 5 are selected, then Af^ = Tf^, the remaining interval of the busy

period.

A^ = inf{ t : ^,g5 Ii{t) = 1 }; note that A^ is the interval until the first job in S. if any,

is selected. If no job in S is selected, A^ = T^ , the busy period.

Proposition 4 Assume that jobs are selected in the branching bandit procfis under an ad-

missible policy. Then, for every S C E

:

(a) If the policy gives complete priority to S'^ -jobs then the busy period [O.T",^) con hi par-

titioned as follows:

[o,r^) = [o,rf)U 0^'^-^..'= + ^'^') «• p- 1- (30)

i6Sfc=l

(b) The busy period [0,T^) can be partitioned as follows:

[0,T^) = [0,Ai)\J (j[r,,,r.., + Af,) w. p. 1 (31)

iesfc=i

(c) The following inequalities hold w. p. I:

^tk<Tf.i (32)

and

A^<Tf. (33)

Proof

(a) Intuitively (30) expresses the fact that under a policy that gives complete priority to

5'^-jobs, the duration of a busy period is partitioned into (1) the initial interval in which

all jobs in S'^ are exhausted for the first time, and (2) intervals in which all jobs in 5 are

exhausted, given that after working on a job in S we clear first all jobs in S' that were

generated.
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More formally, let u be an admissible policy that gives complete priority to 5'^-.|olis. [t

is easy to see then that the intervals in the right hand side of (30) are disjoint Moreover,

the inclusion D is obvious. In order to show that (30) is indeed a partition, let us shovv the

inclusion C. Let t £ [0, T^) \ [0, 7"^'), otherwise we are done. Since u is a nonidlmg policy,

at time t some job is being engaged. Let j be the type of this job. If j € 5 then it is clear

that t G [T'j.fc. Tj.A: + Tjl) for some k, and we are done. Let us assume tiiat j £ S' . Let us

define

D = {r,,fc : ie S,k € {1 iy,},and r.,|.. <t}.

Since t > T^" € D it follows that D ^ 0. Now, since by hypothesis E[(,] > 0. for all /. it

follows that D is a finite set. Let i' 6 S and k' be such that

r,. t* = max r.

Assume that r,.jf +7",. ^. < t. Now, r,«,fc. +T,Tf.. is a decision epocii at which 5'~
is empty.

Since the policy is nonidling, it follows that at this epoch one starts working on some type /

job, with ! G 5, that is, r, j^ = ''I'.jf + ^r k- • contradicting the definition of " . ^.. Hence, it

must be t < r,. jf + 7",f\. . And by definition of D it follows that / G ['..a...
- .j,.. + T^ ;_. ).

and this completes the proof of the proposition.

(b) Equality (31) formalizes the fact that under an admissible policy the bus} period

can be decomposed into (1) the interval until tiie first job in 5 is selected. ("2) tiie disjoint

union of the intervals between selections of successive 5-jobs and (3) the interval between

the laist selection of a job in 5 and the end of the busy period. Note that if no .S-job is

selected, then i/, = 0, for i G S, and A^ = T^, thus reducing the partition to a single

interval.

(c) Let Tj^jt be the time of the fcth selection of a type i job (i G 5). Since the next selec-

tion (if any) of an 5-job can occur, at most, at the end of the (i,S^) period [r, j. . r, ;. + 7,"'
).

inequality (32) follows. On the other hand, since the time until the first selection of an

5-job, A^, can be at most the duration of the initial {i,S'^) period. (33) follows.

3.1 Discounted Branching Bandits

In this subsection we will introduce a family of performance measures for branching bandits.

{i"(Qr)}Q>o, that satisfy generalized conservation laws. They are appropriate for modelling
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a linear discounted reward-tax structure on the branching bandit process. We have already

defined the indicator

1, if a type ;' job is being engaged at time /:

0, otherwise,

and, for a given a > 0, we define

/.«) = 34)

xr(a) = E„ re-^'l,{t)dt = r E,[I,{t)]e-'"
Jo Jo

dt, i e E. (33)

3.1.1 Generalized Conservation Laws

In this section we prove that the performance measure for branching bandits defined in (3))

satisfies generalized conservation laws. Let us define

4S nso' e-oUt]

and

6a(5) = E

The main result is the following

/;
e-^'di - E

/;
e-'^'di

3(3)

[37;

Theorem 7 (Generalized Conservation Laws for Discounted Branching Bandits)

The performance vector for branching bandits J"" (a) satisfies generalized conservntion laujs

(26) and (27) associated with matrix Aq and set function bd).

Proof

Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-

ates a branching bandit process. Let us define two random vectors, (r})i^E and (r, "
),^s-

as functions of its sample path as follows:

and

r] = /
I,(t)e-^'dt = Y,

Jo
;. ^j Jr.,

rrt Jo

e-"' dt

e-^' di,

,"'^ = V e-°--.* /
'

e-^'dt, ieS.
t^x J°

(38)

(39)
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Now, we have

xr(a) = E,[r|] = E„ e-"' di

= E„

= E

f:E[e—.Mt^,]E[r%-'^'

rv,

/ e-°'c/< Eu
.Jo J

d/ (40)

(41)

Note that equality (40) holds because, since u is nonanticipative, r, j. and i
, jt are uulepen-

dent random variables. On the other hand, we have

Eu[r."''] = E. t,'""" I

"•
r /•T'r

e-^'d/ Eu
it, ^0

f-^'ty/
I

(A

= E„

= E

dt (4-J)

= -Ka^

f e-^<

^0

dt Eu
L*:=l

e-°'dt Eu Z^-
L*:=l

143)

Note that equality (42) holds because, since u is nonanticipative, r,,^ and 7","^, are indepen-

dent. Hence, by (41) and (43)

11,5
Eu[r."-^] = .4f:.xr(a). ieS,

and we obtain;

Eu

(44)

(43)

We first show that generalized conservation law (26) holds. Consider a policy t that gives

complete priority to 5'^-jobs. Applying Proposition 4 (part (a)), we obtain:

r>.k + T.^,

fi-^' dt
Jo Jo ,est=i^^.>

^0 ^-

di

65 *:=1

II.

5

r

'€5

(46)
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Hence, taking expectations and using equation (45) we obtain

I'Jo
-^'dt = E r e-^Ut + Y,Atx:{Q)

le*

or equivalently, by (37),

Y,AtzUa) = b,{S),

which proves that generalized conservation law (26) holds.

We next show that generalized conservation law (27) is satisfied. Since jobs arc selectt^d

under admissible policy u. Proposition 4 (part (b)) applies, and we can write

e-'"d< +
'•.,*+^.-/.

e-'^M/.
Jo Jo

On the other hand, we have

> EE/

Jo Jo

> r^e-^uf-f
Jo Jo

= / e--df-/

Notice that (48) follows by Proposition 4 (part (c)), (49) follows by (47), and (JU) li>

Proposition 4 (part (c)). Hence, taking expectations in (51), and applying (45) we nliiani

e-^" dt

e-'^'dt

e-^'dt

e-^'dt.

(4S)

(•JOi

(51^

r * m
> E

/
e"-"' dt

i:
r'^' df

= ba{S) {')>)

which proves that generalized conservation law (27) holds, and this completes the ptcur of

the theorem.

Hence, by the results of Subsection 2.3 we obtain:

Corollary 2 The performance space for branching bandits corresponding to the perfor-

mance vector x^{a) is the extended polymatroid base B{Aa.ba); furthermore, the verfirfs of

B{Aa,ba) are the performance vectors corresponding to the fixed priority rvles.
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3.1.2 The Discounted Reward-Tax Problem

Let us associate with a branching bandit process the following linear reward-tax stniciure;

An instantaneous reward of R, is received at the completion epoch of a type / job In

addition, a holding tax C, is incurred continuously during the interval tiiai a type /job is

in the system. Rewards and taxes are discounted in time with a discount factor a > U Lt^t

us denote

Vu,a' (m) = expected total present value of rewards received minus taxes incurred under

policy u, given that there are initially m, jobs of type i in the system, for / G E

The discounted reward-tcix problem is the following optimal control problem: find an ad-

i ft C'\
missible policy u' that maximizes I'u.o" {m) over all admissible policies u In thi.'- seotinn

we reduce the reward-tax problem to the pure rewards case (where C = 0) We also find a

I fi o\
closed formula for Vu.a' (t)) and show how to solve the problem using algoiitlini .4i

The Pure Rewards Case.

Let us introduce the transform of n,, i.e., "^,{0) — E[e"^"' ]. We then have

Vl^fHm) = E.

i6Efc=l

E[e

av.
E.

L*:= l

(53)

(54)

(55)

Notice that equality (54) holds by (41).

It is also straightforward to model the case in which rewards are received continuously

during the interval that a type i job is in the system rather than at a completion epoch.

Let Vu,a (ni) be the expected total present value of rewards. Then

K!,^-°'(^n) = E.
re

e-''^I,(t)dt X;«,xr(Q).

The Reward-Tax Problem; Reduction to the Pure Rewards Case
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We will next show how to reduce the reward-tax problem to the pure rewards case using the

following idea introduced by Bell [1] (see also Harrison [18], Stidham [2!^] and Whittle [38]

for further discussion). The expected present value of holding taxes is the same whether

they are charged continuously in time, or according to the following charging scheme At

the arrival epoch of a type « job, charge the system with an instantaneous entrance charge

of (C/a), equal to the total discounted continuous holding cost that would be inruried if

the job remained within the system forever; at the departure epoch of the job (if it ever de-

parts), credit the system with an instantaneous depariure refund of (C',/o)- thus refunding

that portion of the entrance cost corresponding to residence beyond the departure epoch.

Therefore, we can write

K^,o'^*(f") = E^[Rewards]- E, [Charges at/ = 0] +

( Eu[ Departure refunds] — Eu[ Entrance Charges] )

teE

= V<«^^'°'(m)-i:m.(C./a)

where

fl: = (C./a)-^E[A^.,](C,/a). (57)

From equation (56) it is straightforward to apply the results of Section 2 to solve the control

problem: use algorithm A\ with input {Ra,Ac^), where

> a J 1 — ^(q)

Let 7i(a), . . . ,7n(a) be the corresponding generalized Gittins indices. Then we have

Theorem 8 (Optimality and Indexability: Discounted Branching Bandits) (a) Al-

gorithm Ai provides an optimal policy for the discounted reward-tax branching bandit prob-

lem;

(b) An optimal policy is to work at each decision epoch on a project with largest inder -,(o).

The previous theorem characterizes the structure of the optima! policy. Moreover, since

in Proposition 6 below, we find closed form expressions for the matrix .4^, and tiie set
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function 6a(). we can compute not only the structure, but also the performance of the

optimal policy (optimal profit, optimal extreme point of the extended polymalroid) \ore

also that the decomposition of the indices does not hold in the general case; in other words.

the generahzed indices of the states of a type k project depend in general on characteristics

of project types other than t, i.e., branching bandits is an example of an indexable but not

decomposable system. We may also prove the following result:

Theorem 9 (Continuity of generalized Gittins indices) The generalized Giffnis in-

dices 7i(a), • •
, 7n(a) are continuous functions of the discount factor a . for a > 0.

Proof

It is easy to see that the generalized Gittins indices depend continuously on the in|iut of

algorithm ^i. Also, since the function a >—' [Rcc-^a) is continuous the result follows D

The Pure Tax Case: Minimizing Time-Dependent Expected Number in Sys-

tem

In several applications of branching bandits (for example queueing systems) one is often

interested in minimizing a weighted sum of discounted time-dependent e.\pected numl>er of

jobs in the system. Let QJ"() denote the Laplace transform of the time-dependent expected

number of type j jobs in the system under policy u, i.e.,

g;"(e)=/ E4Q,{t)\Q{0) = ni]e-^'dt. jeE m)
Jo

An interesting optimization problem is to:

The problem can be modelled as a pure tax problem as follows:

i:QQr(a) = -K<°/'(m).

J€E

and thus by making i? = 0, C, = 1 and C, = for i ^ j in (56) we obtain

.
€ f (60)

See Harrison [18] for a similar result in the context of a multiclass queue.

11 1'

29



3.1.3 Interpretation of Generalized Gittins Indices in Discounted Branching

Bandits

Consider the following modification of the branching bandits problem: We modify the

original problem by adding an additional project type, which we call 0. with only one

state/stage of infinite duration, that is, dq = oo with probability 1. A reward of Ro-

continuously discounted, is received for each unit of time that a type project is engaged.

Notice that the choice of working on project type can be interpreted as the choice of

retirement from the original problem for a pension of Ro, continuously discounted in time.

Now, the modified problem is still a branching bandits problem. Let us assume that at

time t = there are only two projects present, one of type and another in state / £ E.

We may then ask the following question: Which is the smallest value of the pension Ro

which makes the option of retirement (working on project type 0) preferable to the option

of continuation (working on the project in state i)? Let us call this (quitable snrrdider

value Ro{i)- We have then the following result

Proposition 5 The generalized Gittius indei of project state i in the original hrniicbing

bandits problem coincides with the equitable surrender value of state i. Rq(')

Proof

Let 7i , . . .
, 7n be the generalized Gittins indirps corresponding to the original branching

bandits problem. Let 7oi7ii--.7n ^^ ^^^ generalized Gittins indices for the modifit^d

problem. Let us partition the modified slate space as E = {0}U£^. It is eas\ to verifv that

the decomposition condition (17) holds. Hence Theorem 3 applies, and therefore wp jiavp

7g = flo and ^," = 7;, J€E. (61)

Now, since by Theorem 8 it is optimal to work on a project with largest current generalized

Gittins index, it follows that the surrender reward Ro which makes the options of continu-

ation and of retirement (with reward Rq) equally attractive \s Ro = 7o But by definition

R^{i) is such a breakpoint. Therefore R^(i) =
")o-

and the proof is complete. D

Whittle [36], [38] introduced the idea of a retirement option in his analysis of the multi-

armed bandit problem, and provided an interpretation of the Gittins indices as equitable

surrender values. Weber [34] also makes use of this characterization of the Gittins indices in

his intuitive proof. Here we extend this interpretation to the more general ca.se of branching
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bandits. FVom this characterization it follows that the generalized Gittins indices roiiici<le

indeed with the well known Gittins indices in the classical miilti-arnied bandit piolilem.

which justifies their name.

3.1.4 Computation of .4o and 6o( )

The results of the previous sections are structural, but do not lead to explicit compulations

of the matrix .4^ and the set function ba{) appearing in the generalized conservation laws

(26) and (27) for the branching bandit problem. Our goal in this section is to computp from

generic data the matrLx Aa and the set function 6q( ) Combined with the previous results

these computations make it possible to evaluate the performance of specific policies as well

as the optimal policy.

As generic data for the branching bandit process, we assume that the joint distribution

of Vi,{Nij)j^E is given by the transform

<i>,{e.Zi,...,Zn) = E -1
.'V.n

f62)

In addition, we have already introduced the the generating function of the marginal distri-

bution of V, (denoted G,()):

Jo
(iyi)

Finally the vector m = (mj, . .
.

, m^) of jobs initially present is given.

As we saw in the previous section the duration of an (;, S)-period, 7",^. plays a mirial

role. We will compute its moment generating function

^f(e) = E[e-^^."]. ((3 1)

For this reason we decompose the duration of an (i,5)-period as a sum of mdepeiirj.Mit

random variables as follows:
•V..;

je5 k=\

((jj)

where v,, {Tji^}k>i are independent. Therefore.

*f(e) = E

= E
jes

= <I>.(e,(*f(0))^g.,,l5c), i£E. ((3(3)
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Given 5, fixed point system (66) provides a way to compute the values of ^,- [0). for / G £'

We now have the elements to prove the following result:

Proposition 6 (Computation of Aq and 6o()) For a branching bandif process. luntriT

Ac and set function 6a() satisfy the following relations:

l-*f(a)
.4^ = ieS, S C E.

1 - ^.(a)

bais) = - n I'^Ti'')]"'' - - ni^f(^)^^ scE

Proof

Relation (67) follows directly from the definition of ^4^^ O" 'he other hand, we have

m,

(67)

(68)

.€5 fc=l

(69)

Hence,

u:
,-»(

dt



3.2 Undiscounted Branching Bandits

In this section we address branching bandits with no discounts. Clearly, in tiie case of

pure rewards the problem is trivial, since all policies have the same reward. Under a

linear undiscounted tax structure on the branching bandit process, however, the |irol)lem

becomes interesting. Indeed, since an optimal policy under the time a\erage holding cost

criterion, also minimizes the expected total holding cost in each busy penod (see Nain f / nl.

[24]), modelling and solving undiscounted branching bandits leads to the solution of several

classical queueing scheduling problems.

More importantly, our approach reveals rigorously the connections of discounted and

undiscounted problems, which, in our opinion, has not been thouroughly addressed in the

literature. To give a concrete example: after solving an indexable discounied scli^duling

problem, researchers say that the same ordering of the jobs holds for the undiscounted

problem as the discount factor q ^ 0, provided there are no ties of the corresponding

indices. It is not clear, however, what happens when there are ties.

We will introduce in this subsection a performance measure r" for a branching bandit

process that satisfies generalized conservation laws It is appropriate for modelling a lin-

ear undiscounted tax structure on the branching bandit process. We shall assume m the

following development that all the expectations that appear are finite We will show later

necessary and sufficient conditions for this assumption to hold. Using the indicator

{1,
if a type i job is being engaged at time i:

0, otherwise,

we introduced earlier, we let

-, — C.U
Jo

{t)idt i€E (72)

Let us define

and

^s_^[Tr]

where

E[i>,]

fc(5) = |E[(Tf)2]-iE[(rf )2] + 5^6.(5), (74)

.65

E[u.]E[vf] fEjTn E\iTfy]\
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3.2.1 Generalized Conservation Laws

We prove next that the performance measure for a branching bandit process defined m (7'2)

satisfies generalized conservation laws. The main result is the following:

Theorem 10 (Generalized Conservation Laws for Undiscounted Branching Bandits)

The performance vector for branching bandits r" satisfies generalized covsert atiov /aits (26)

and (27) associated with matrix A and set function b().

Proof

Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-

ates a branching bandit process. Let us define two random vectors. (fj),6£ and (r, ),e'^-

as functions of the sample path as follows;

ri = r i,(t)tdt = j2 r tdt

- H(^..in,fc + -^). / G £". 76)

and

Now, we have

ii,s \r /"
'

I , Jt,
I,

r,.k + Tr

fc= l
•''*

z." = E„[r|] = E

= E.

tdt, i£S.

lk=l

= E[v,] Eu
EW,] E[vf]

Lfc=i
2

79)

Note that equality (78) holds because, since u is nonanticipative, r,
jt
and t,.; are indepen-

dent random Ve^iables. On the other hand, we have

E„[r."'^] = E,
-..*+7,^

tdt = E„ tf
= E„

= EIT^] E
EHE[(Tf)2]

^.*+T,-V

tdt
I

I/,

lk=i

.c (T,';)\

'fc=i

+ (80)
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Note that equality (80) holds because, since policy u is nonanticipativr, t,j; and 7,""^. are

independent random variables. Hence, by (79) and (80):

.r-^ENE[rf] _ E.[r;'-^]-iEHE[(7f-)^]—EN = wn ' "' ^'^

and thus we obtain:

We will first show that generalized conservation law (26) holds. Consider a polic.\ t that

gives complete priority to 5'^-jobs. Applying Proposition 4(a), we obtain:

Jo Jo ,^sk=l''^'^

tdi

(T^m ) sr^ II. 5

2 +!:' (^3)

165

Hence, taking expectations and using equation (82) and tiie definition of /j(,s') we nlirain

Y^A^z' =b[S).

which proves that generalized conservation law (26) holds.

We next show that generalized conservation law (27) is satisfied. Let thejobs h(= selecti'd

under admissible policy u. Then, Proposition 4 (part (b)) applies, and we can vvrite

^0 Jo f^^ ^tl Jr,,,

On the other hand, we have

E^"-' = Ztj"
.G5 €>" i=l •

*

> ZE/
= / I dt - tdi

Jo Jo

idt (8o)

(86)

> / Idt - tdi. (87)
^0 Jo

Notice that (85) follows by Proposition 4 (part (c)). (86) follows by (84). and (87) by

Proposition 4 (part (c)). Hence, taking expectations in (87), and applying (82) we obtain

Y^A^z^ = E.[^r|'-^-] + ^6,(5)
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> E[ / '"tdt]-E[ /
"

tdt] + yb,{S)
Jo Jo f^s

= 6(5) {8S)

which proves that generalized conservation law (27) holds, and this completes the proof of

the theorem.

Corollary 3 The performance space for branching bandits corresponding to tbt p( rfor-

mance vector z" is the extended polymatroid base S(A,b); furthermore, the vetiufs of

B{A,b) are the performance vectors corresponding to the fixed priority rules.

3.2.2 The Undiscounted Tax Problem

Let us associate with a branching bandit process the following linear tax structure A

holding tax C, per unit time is incurred continuously during the stay of a type /job in the

system. Let us denote

Vu ' ("i) = expected total tax incurred under policy u, given that there are initiall> ni,

type I jobs in the system, for / £ E.

The tax problem is the following optimal control problem: find an admissible policy (/' thai

minimizes Vu ' (m) over all admissible policies u. In this section we find a closed forniula

for Vu ' (m) and show how to solve the problem usmg algorithm ^i For that purpi-)ve

we need some preliminary results:

Expected System Times

Let Q!"(), Ij{) and x^{-) be as in Subsection 3.1. By definition we have

Q;''(0)=/ E^[Qj{t)\Q{0) = m]di, jeE
Jo

and

i,"(0) = E„ [P lj{t) d<|Q(0) = m]
, jeE

From the above formulzis, it is clear that

1- Q'"(0) is the expected total time spent in the system by type j jobs under policy u.

2. ij(0) is the expected total time spent working on type j jobs under policy (/ Clearly.

i"(0) does not depend on the policy u. Hence, we shall write Xj(0) = Jj(0).
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Now, letting a \ on equation (60) we obtain

where

^'"^°^ =
" efi

^"""^''^^ ^ ^ ^i^'""-
*'^°^ + ''' •'' ^

^'

^^=^'- 21^5) -^(0) - E E[^u] (1 -^) -.(0)

t€£
2E[i.,

189)

(90)

and (j:")'(0) denotes the right derivative of z"(q) at a = 0, that is:

(x]f(0))' = -E„
^0

dt

Hence, we have

q:r(o) = Fi^--;-E !¥-'."+''. j^^
E[^'.]

.,£
E[r,]

(92)

Modelling and Solution of the Tax Problem

We have, bv (92),

Vl"'^\rn} = ^C.Q-"(0)
6E

= .Sl^^-^tF^l-S-- (93)

From equation (93) it is straightforward to apply the results of Section 2 to sohe the

optimal control problem: use algorithm Ai with input (R,A). where

«, =
E[v,]

(9 4)

Let 7i, . . . ,7n be the corresponding generalized Gittins indices. Then we have the ivsiilt

Theorem 11 (Optimality and Indexability: Undiscounted Branching Bandits) (a)

Algorithm A\ provides an optimal policy for the undiscounted tax branching bandit probhw

(b) An optimal policy is to work at each decision epoch on a project with largest cinrmt

index 7,.

3.2.3 Computation of A and b(-)

In this section we compute the matrix A and the set function 6() as follows. Recall that

^' - E[r.] ' '^^
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and

.65

From equation (65) we obtain, taking expectations:

E[Tf] = E[vi] + J2m.j]E{Tfl i€S. (9o)

Solving this linear system we obtain E[7^'^]. Note that the computation of Af is niurh

easier in the undiscounted case compared with the discounted case, where we had to solve

a system of nonlinear equations. Also, applying the conditional variance formula to (63) we

obtain:

Var[7;^] = Var[t;,] + (E[T/])[,5Cov[(yV.,),es)l (E[T/])^,5 +^ E[.V„] \ar[7/]. , G 5. (96)

Solving this linear system we obtain Var[T;'^] and thus E[(7^^)^]. Moreover.

E[vj] = mj+Y, E[A',;] E[i^.], j € E. (97)

Finally, from equation (69) we obtain

E[T^] = Y.m,E[Tfl (98)

and

3.2.4 Stability condition

Var[T^l = ^m,Var[rr']. (99)

t€5

We investigate in this section under what conditions, the linear systems (95) and (96) have

a positive solution for all sets S C E. In this way we can address the stability of a blanching

bandits process, in the sense that the first two moments of a busy period of a branching

bandit process are finite. Let A'' denote the matrix of E[N,j].

Theorem 12 (Stability of branching bandits) The branching bandiis process is slable

if and only if the matrix I — N is positive definite.

Proof

Suppose I — N IS positive definite. We will show the system is stable. System (95) can lie

written in vector notation as follows:

{I-N)sTs = vs, (100)
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where 7s = (£'[TJ^]),gs Solving the system using Cramer's rule and expanding the dtnor-

minant in the nominator along the column us we obtain:

where ^r are nonegative numbers (which are determinants themselves) If / — A' is positive

definite, then dei[(I - N)s] > for all 5 C £ and thus system (95) has a solution E{T,''] >

for all I £ S and S C E. Similarly, (96) can be written as

(7 - N)sxs = "S,

where 15 = {Var[Tf])t^s ^rid ug > 0. Therefore, using the same argument it follows that

if 7 — A'' is positive definite, then ror[T','-^] > 0. Hence, from (98) and (99) vve obtain that

the first two moments of the busy periods are finite, i.e . the system is stable.

Conversely, if the system is stable, we will show that I — X is positive definite Since

the system is stable for all initial vectors rn, it follows that £"[T,^] have finite nonegative

values for all i €. S and S C E. i.e., system (100) has a positive solution for all .s' C E.

We will show by mduction on \S\ that del[{I - X)s] > for all S C E For \S\ = I.

•^t-^i'] ~ detUl-N) ]
-^ ^' ^"^^'ch implies that det[{I - A'),] > 0. Assuming that the in.liirtion

hypothesis is true for \S\ — k. we use (101) to obtain;

from the induction hypothesis. Therefore, I — N is positive definite.

Note that the condition N < I {I —N positive definite) naturally generalizes the stability

condition /? < 1 in queueing systems as follows: If we interpret a queueing system as a

branching bandit then N < I translates to E[N] = p = ^E[v] < 1. since A' is the numb'^r

of customers that arrive (at a rate A) during the service time v of a customer.

3.3 Relation between Discounted and Undiscounted Tax Problem

In this subsection we study the asymptotic behaviour of the optimal policies in the dis-

counted tax problem as the discount factor a approaches 0. and its relation with the undis-

counted tax problem, that corresponds to q equal to 0. It is easy to see that, using the

notation of Subsections 31 and 3.2, that

hm 4f, =.4f, (102)
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and

lima«,,, = Um{c,-TE[N,j]Cj] ,""
'"^

o\0 ' a\ol. ^ ^ ^^ -'J 1 - *(a

pr , =«.• (103)
Eh]

Therefore, because of the structure of the generalized Gittins indices (see Proposition 3) it

follows from (102) and (103) that the generalized Gittins indices of the undiscouiited and

discounted tax problem are related as follows:

lim q-),(q) = 7,. (104)

A consequence of (104) is that a policy which is asymptotically optimal in the discountHd

tax problem for a \ will be optimal for the undiscounted problem.

4 Applications

In this section we apply the previous theory to several classical stochastic schedniing prob-

lems.

4.1 The Multi-armed Bandit Problem

The multi-armed bandit problem was defined ni the introduction.

There are K parallel projects, indexed k = I K. Project k can be in one of a finite

number of states i^ E E^- At each instant of discrete time < = 0, 1, one can work on

only a single project. If one works on project L- in state iki't) at time t then one receives

an immediate expected reward of R,^(t) Rewards are additive and discounted in tmio by a

factor /?. The state ifc(f) changes to ijt(f + 1) by a Markov transition rule (which may depend

on k, but not on t), while the states of the projects one has not engaged remain unchanged.

i.e., j/(t -I- 1) = i/(f) for / ^ k. Let P* = (p'!j),.j^Ei, be the matrix of Markov transition

probabilities corresponding to project k The problem is how to allocate one's re.tiources to

projects sequentially in time in order to maximize expected total discounted reward over

an infinite horizon. That is, if jit) denotes the state of the project engaged at time /. the

goal is to find a nonidling and nonanticipative scheduling policy u that maximizes

E.Ei' «,(,)] (103)

(=0
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We model the problem as a branching bandits problem in order to apply the rcsultj;

of the previous section. For this reason we set f~"' = J. v, = 1 We also define iiiatrix

P = (.?>})<j€E by

{p'ly if '.7 £ Ek, for some k = I,. .
.
,K\

0, otherwise.

Moreover, by (62) we obtain:

^.{o,z, -'„) = E[e—-.f
•>....^"]

= 0YI P^J'J- ^oTieEi, (106)

and, by (66)

By introducing

^f(a) = <I>.(a,(*f(a))^^,,l5^)

= /?{l-^p,j(l -*f(a))}, foriGE. (107)

j€5

1_^
1-*,(Q)

and noticing that since u, = 1, *,(a) = /?, it follows from (107) that

and by (107) and Proposition 6 we obtain

Moreover, since ^^(a) = 0,

where
1, if at time t = there is a bandit in state j\

0, otherwise.
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The structure of the matrix P = (pij) implies that

which implies that the index decomposition condition (17) holds, and therefore Theorem 3

applies, giving a new proof of Gittins theorem:

Theorem 13 (Gittins and Jones [14]) For each project k there exist indices {',}i^Ek-

depending only on characteristics of project k, such that an optimal policy is fo engage at

each time a project with largest current index.

By the results of Subsection 3. 1.3 we know that the generalized Gittins indices for this

bandit problem coincide with the usual Gittins indices. Further, by definition of generalized

Gittins indices, we obtain a characterization of Gittins indices as simis of dual variabiles, a

purely algebraic characterization. Also, note that Theorem 13 implies that the multi-armi^d

bandit problem not only has an optimal index policy, but it has an optimal index poliry

which satisfies the stronger index decomposition property, as described in Subsection 2 4

By Theorem 6, the Gittins indices can be computed by solving /\' subproblems. apjilyiiig

algorithm Ai to subproblem k, with \Ek\ job types, k = I, . .. . K It is easy to \enfv thp

following complexity result:

Proposition 7 The complexity of algorithm A\ applied to svbproblem A for cninpuliiiq ihc

Gittins indices of project k is

0(\E,f).

The algorithm proposed by Varaiya, Walrand and Buyukkoc [33] has the same time roni-

plexity as algorithm ^i. In fact, both algorithms are closely related, as we will see next

Let tf be as given by (108). Let rf be given by

rf = «, + /? J^p.^rf. ieS.

Let us now state the algorithm of Varaiya, Walrand and Buyukkoc:

Algorithm VWB:

Step 0. Pick TTn e argmax { -\rr i ^ E }\ \et g„„ = max{ -^ : i £ E }.

I t

set Jn - {:r„}.
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Step k. For it = 1 n - 1:

pick 7rn_fc e argmax { \_^u|i> ^ ' € ^V J„_i}; set <7^„_^ = { ''j^_^u{,\ ' > 6 E\J„-k}-

set y„_i = Jn_fc+1 U [nn-k]

Varaiya et al. [33] proved that gi,...,gn. as given by algorithm VWP, are the Girtiiis

indices of the multi-armed bandit problem. Let (Tr,y,u,S) be an output of algorithm A\

We state, without proof, the following relation between algorithms A\ and VWP

Proposition 8 The following relations hold: For j — 2, . . . ,n

U} i^nlUft} D ,--n .{t, 7r,] {tTj jr„}

111)

and

r<'^ ft^-'=Q, i£E. (112)

and therefore, algorithms Ai and VVVB are equivalent.

4.2 Scheduling Control of a Multiclass Queue with Bernoulli Feedback

Klimov [22] introduced the following queueing scheduling process: There is a smgl(-~ sppv.m-

and n customer types. External arrivals of type / customers form a Poisson process of rate A,

.

for I G £" = {1, . . .
, n}. Service times for type i customers are independent and ideniirally

distributed as a random variable i', with distribution function G,() When ser\ ice of a

type I customer is completed, the customer either joins the queue of type j customers, with

probability p,j (thus becoming a type _;' customer), or with probability l-XI;g£Pu lfa\*^sthe

system. The server selects the jobs according to an admissible policy u; the decision e|.-iochs

are t = (if there is initially some customer present), the epochs when a customer arrives

to find the system empty and the epochs when a customer completes service (and some

customer remziins in the system). Let us consider the following three classes of admissible

policies; U is the class of all nonidling, nonpreemptive and nonanticipative policies; Uo is

the class of all nonpreemptive and nonanticipative policies (idleness is allowed); and U^ is

the class of all nonidling and nonanticipative policies (preemption is allowed).

Klimov [22] solved, by direct methods, the associated optimal control problem over U

with a time-average holding cost criterion. Harrison [18] solved, using dynamic program-

ming, the optimal control problem over Uo with a discounted reward-cost criterion, in tiie

special case that there is no feedback. Tcha and Pliska [29] extended Harrison's results to
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the case with feedback. They also solved the control problem over U^ , in tiie case that the

service times are exponential.

The Discounted Case

Let us consider the following reward-cost structure: There is a continuous holding cost C,

per unit time for each type i customer staying in the system, and an mstantaneous re-

ward of /?, at the epoch of completion of service of a type / customer There is also an

instantaneous reward of idleness Rq at the end of an idle period. All costs and rewards are

discounted in time by a discount factor a > 0. The optimal control problem is to find an

admissible policy to schedule the server so as to maiximize the expected total discounted

reward minus holding cost over an infinite horizon. Let us denote Pu Pu^ and Pup the

optimal control problems corresponding to the classes of admissible policies U . Uq and U^

.

respectively. We will model each of these problems as a branching bandit problem \W will

also prove, applying the Index Decomposition Theorem, that m order to sohe problpiii P^^

we only need to solve problem Pu.

First, let us consider problem Py. This problem can be modelled as a branching bandit

problem with n job types, as follows: We interpret the customers as jobs The descendants

N,j of a type J job are composed of the transition of the job to another type (or outside the

system) and of the external Poisson arrivals. The transform <J>,(.) is given by

^.(a,2i. ,zn) = E[e
-av, N,i

^1 ~n J

= E (l-LPud--';))^""*"^^'^^'^''"-"^'
je£

ieE (113)

Also, by (66) and (113)

*f(a) = {l-^p.,(l-*f(a)}*,[a + ^Aj(l-^f(a))]. ieE. (114)

Let x^{a) = (ij'(a), . . . ,rj}(a))-^ denote the performance vector, as in Section 31 We know

that i"(Qf) satisfies generalized conservation laws. By Proposition 6, the corresponding

matrix Aa is given by

'^••'*- l-*.(a)'
'^^-

Let us consider now problem Fii^. In order to model the option of idleness, we modify the

previous branching bandit process by adding an idling job type , which we denote 0. Tlie
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duration of job type 0, I'o, is exponentially distributed with parameter A = A] + + A^

(since it models time until the next arrival); the .V,^, with i,j G E. are as ui the prp\ ions

case. jVqo = 0; A'o, = and ,V,o ^ for i G E It is easy to see that the corres|Mjiidiiig

transform $,(•) satisfies

^,{a,zo,zi,. . .,i„) = <J>,(q,;i ^n). ' e E

Hence, it follows that

and

*f'''"'(a) = \l/f(Q), ieE, SCE,

^o'^<°>(a)=^J°^a), SCE.

Consequently, we have, for i £ S C E that

and

-j5u{0} _ 5

-jSu{o} _ _ 3{o}
^0,0 — ' - -"'0,a

Therefore, condition (17) holds, and the Index Decomposition Theorem 6 applies \ow. we

have

E[iV.,] = p„ + A,E[i,],

and

^o(o) =
A + Q

By (56)

*^< a J 1 - *,(a)

Hence the index of the subsystem composed of job type is 70 = ^Ro The indices

7,, for J G E, are computed from algorithm ^1 applied to problem P;^ Therefore, if

7i < • • < 7i*-i < 7o < 7i* < • 7n then an optmial policy is to serve customers of types

:'*,... ,n with a fixed priority policy, giving highest priority to n, and never serve customer

types 1,...,:' — 1. That is, the optimal policy is a modified static policy, as proved by

Harrison [18] and Tcha and Pliska [29].
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The Preemptive Case

In preemption is allowed, then the decision epochs are the arrival epochs as well as the

departures epochs of customers. If the service time v, is exponential with rate /i,. for / S E.

then it is easy to model the possibility of preemption: model the process as a branching

bandit process with n job types. Job type j has a duration v, exponentially distributed with

rate /i, = /i; + A, where A = Ai + + A„. As for the descendants of a t\pe / job. there are

three cases: (1) One descendant, of type _;' with probability ^p,j (correspondmg to the case

that service of the type i customer ends before any arrival occurs and the customer moves

to queue j); (2) two descendants, one of type i and the other of type j with probability

^ (corresponding to the case that a type j customer arrives before service of the rypp /

customer is completed); and (3) no descendants, with probability ^ (1 - XI/eEPu) (<"oi"''?-

sponding to the case that service of the type i customer ends before any arrival occurs, and

the customer moves out of the system).

The Undiscounted Case: Klimov's Problem

Klimov [22] first considered the problem of optimal control of a single-server mnltirlass

queue with Bernoulli feedback, with the criterion of minimizing the time average hoMing

cost per unit time. He proved that the optimal nonidling, nonpreemptive and nonantioip-i-

tive policy is a fixed priority policy, and presented an algorithm for computing the prioriti'^s

(starting with the lowest priority type and ending with the highest priority) Tsoucas [:32]

modelled Klimov's problem as an optimization problem over an extended polymatroul using

as performance measures

L" = time average length of queue i under policy u.

Algorithm ^i applied to this problem is exactly Klimov's original algorithm. A disad\ antau,e

in this case is that priorities are computed from lowest priority to highest priority Also.

Tsoucas does not obtain closed form formulae for the right hand sides of the e.xfe'iidid

polymatroid, so it is not possible to evaluate the performance of an optimal policy Our

approach gives explicit formulae for all of the parameters of the extended polymatroid and

also explains the somewhat surprising property that the optimal priority rule does not

depend in this case on the arrival rates. The key observation is that an optimal i^oliry
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under the time average holding cost criterion also minimizes the expected total holding cost

in each busy period (see Nain et al. [24] for further discussion). Now. ue may niorUl the

first busy period of Klimov's problem as a branching bandit process with the undi.scouiU''d

tax criterion, as considered in Section 3.

Assuming that the system is stable, we apply the results of Subsection 3.2 \\t^ dt^fine

|i, = E[t',] and tf = E[Tf]. By (65) we have

tf = ^i^ + Y.^P,J + ^i^XJ)r^. i€E, (II.3)

which in vector notation becomes:

I.e.,

and

tgc = (/s^ - Ps'^.S^ - P5<:-^5c) /J^^

tf = ^is + (Ps.s^+^is^lc)tfc

After algebraic manipulations we obtain

tf = (.. +pL- (/5c - P5c,50-' M5c)
^ J''^%

- ^^'-^-'^

^,
. >es. (iri)

^ ^ det(/5c - Psc,s-= - fiS'=>^sc)

Therefore, by definition of Af in (73) we find that Af = tf^ /fi,, for ; £ S. while 6(5) is

given by (74). Now, letting

^ ^
detjlsc - Psc,s^)

det(/5c - Psc^c _p5cA^c)'

we may define Af = Af/Ks, and 6(5) = 6(5)/A's, thus eliminating the dependencp on the

arrival rates of matrix A. As for the objective function, we have by (93)

yiO,C) = J2\
^'~ ^'''''' ^'

I ^-r
- HE) Y, C,\ + X: C,h,. (117)

Hence the problem can be solved by applying algorithm Ai with input {R, A), where

and since {R, A) do not depend on the arrival rates neither does the optimal policy. Note

that as opposed to Klimov's algorithm, with this algorithm priorities are computed from
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highest to lowest. This top-down algorithm weis first proposed by Nain el al. [24]. vvlio

proved its optimality using interchange arguments. Bhattacharya ei al. [3] provided a

direct optimality proof. Nain et al. proved that the resulting optima! index rule i^ also

optimal among idling policies for general service time distributions, and among preemptive

policies when the service time distributions are exponential. It is also easy to verify these

facts using our approach (in particular, the index of the idling state is 0. whereas all other

indices are nonnegative).

Moreover, in the case that the arriving jobs are divided into K projects, where a t\pe Ic

project consists of jobs with types in a finite set Ek, jobs in Ek can only make transitions

within Ek, and E is partitioned as E = Uj^^^Ek, then it is easy to see that the Index

Decomposition Theorem 6 applies, and therefore we can decompose the problem into K

smaller subproblems.

4.3 Multiclass Queueing Systems

Shantikumar and Yao [26] showed that a large variety of multiclass queueing systems satisfy

strong conservation laws. The reader is referred to their paper for a list of particular systems

and performance measures that satisfy strong conservation laws. All their results correspond

to the special case that the performance space B{A,b) is a polymatroid

4.4 Job Scheduling Problems without Arrivals; Deterministic Scheduling

There are n jobs to be completed by a single server. Job / has a service requa-ement dis-

tributed as the random variable n,, with moment generating function ^,(). It is immediate

to model this job scheduling process as a branching bandit process in which jobs have no

descendants. Let us consider first the discounted case; For a > it is clear by definiticm

of Af,^, in (36), that ^4^^ = 1, for i £ S. Therefore the performance space of the vectors

i"(a) studied in Section 3 is a polymatroid. Consider the discounted reward-tax problem

discussed in Section 3, in which a instantaneous reward Ri is received at the completion

of job I, and a holding tax C, is incurred for each unit of time that job ; is in the system.

Rewards and taxes are discounted in time with discount factor a. By (56) it follows that

the generalized Gittins index for job i, in the problem of maximizing rewards minus taxes.
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IS

C,
T

a*,(a)
^.(-) = {«' +-}f^ (US)

'' Q J 1 - W,{a)

Let us consider now the undiscounted case in the case without rewards By definition of

Af in (73) we have Af = 1, for i ^ 5. Hence the performance space of the performance

vectors z" studied in Section 3 is also a polymatroid. Thus by equation (93) it follows that

the generalized Gittins index for job a in the undiscounted tax probleni is

7. = i^, (HO)
E[i;,]

thus providing a new polyhedral proof of the optimality of Smith's rule (see Smith [27])

In the case that there are precedence constraints among the jobs that form out-trees,

that is each job can have at most one predecessor, it is easy to see that the problem can

also be modeled as a branching bandits problem and thus solvable using the theory we have

developed in Section 3.

5 Reflections

We presented a unified treatment of several classical problems in stochastic and dynamic

scheduling using polyhedral methods that leads, we believe, to a deeper understanding of

their structural and algorithmic properties. Perhaps the most important idea we used is

to ask the question: What is the performance space of a stochastic scheduling problem'^

We believe that the approach of characterizing the feasible region of a stocha-stic scheduling

problem will lead to important new insights and methods and will bridge the artificial

gap between applied probability and mathematical optimization. Indeed, we hope that

our results will be of interest to applied probabilists, as they provide new interpretations.

proofs, cdgorithms, insights and connections to important problems in stochastic scheduling.

as well as to discrete optimizers, since they reveal a new fundamental structure (extendf^d

polymatroids) which has a genuinely applied origin.
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