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ABSTRACT

This paper studies the estimation of coefficients ^ in single index models

such that E(y| X)=F(a+X'^) , where the function F is misspecified or unknown. A

general connection between behavioral derivatives and covariance estimators is

established, which shows how 8 can be estimated up to scale using information

on the marginal distribution of X. A sample covariance estimator and an

instrumental variables slope coefficient vector are proposed, which are

constructed using appropriately defined score vectors of the X distribution.

The framework is illustrated using several common limited dependent variable

odels, and extended to multiple index models, including models of selection

bias and multinomial discrete choice. The asymptotic bias in the OLS

coefficients of y regressed on X are analyzed. The asymptotic distribution of

the instrumental variables estimator is established, when the X distribution

is modeled up to a finite parameterization.
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CONSISTENT ESTIMATION OF SCALED COEFFICIENTS

1 . Introduction

This paper considers the generic econometric modeling situation in which

a dependent variable y is modeled as a function of a vector of explanatory

variables X and stochastic terms, where the conditional expectation of y given

X can be written in the single index form E(y|X) = F(a+X'P). This situation

exists for many standard models of discrete choice, censoring and selection,

but is clearly not limited to such models. The question of interest is what

can be learned about the coefficients p without specific assumptions on the

distribution of unobserved stochastic terms or other functional form aspects;

in other words, when the true form of the function F is misspecified or

unknown

.

For different examples of limited dependent variables models, several

researchers have studied the conditions under which ordinary least squares

(OLS) regression coefficients and other quasi-maximum likelihood estimators

will consistently estimate p up to a scalar multiple. Ruud(1983) points out

that a sufficient condition for this property occurs when the conditional

expectation of each component of X given Z = o+X'p is linear in Z, which is

valid when X is multivariate normally distributed, for instance. Chung and

6oldberger( 1984) and Deaton and Irish(1984) point out the sufficiency of an

2
analogous condition with a more general definition of Z.

An intriguing feature of this work is that it provides special cases

where knowledge of the marginal distribution of X is very useful for

estimating behavioral effects when certain features of the true model are

unknown. The question is immediately raised as to whether more general results

of this type can be found, because as Ruud(1983) states, the above sufficient



conditions are "too restrictive to be generally applicable." Results that

apply to more general marginal distribution forms are of substantial practical

interest because, in general, the marginal distribution of X can be

empirically characterized. In this spirit, Ruud(1984) has proposed an

estimation technique based on reweightlng the data sample so that weighted X

distribution is multivariate normal.

This paper proposes an approach for studying p based on estimation of

average behavioral derivatives, and shows how information on the narginal

distribution of X can be used to estimate average derivatives. In particular,

a direct link between average derivatives and covariance estimators is

established, which shows how p can be estimated up to a scalar multiple by the

sample covariance between y and appropriately defined score vectors of the

marginal distribution of X. p is also consistently estimated up to scale by

the slope coefficients of the linear equation of y regressed on X using the

score vectors as instrumental variables.

The ratio of any two components of either the sample covariance or the

Instrumental variables coefficient vector will consistently estimate the ratio

of the corresponding components of p. These estimates may suffice for many

applications, such as judging relative marginal utilities in a discrete choice

situation. More broadly, the ratio estimates provide a consistent benchmark

for choosing specific modeling assumptions. For instance, in a binary discrete

choice situation, separate estimates of p under loglt or probit modeling

assumptions can be judged in relation to the consistent ratio estimates. This

method of assessing specification may be useful in any modeling situation

where alternative functional form or stochastic assumptions give rise to

substantively different estimates of p.

The exposition begins with notation, examples and formal assumptions in

Section 2. Section 3 establishes the connection between average derivatives



and covariance estimators. Section 4 applies the result to the estimation of p

up to scale, as well as to estimation of parameters of more general multiple

Index models. Section 5 studies the asymptotic bias of the vector of OLS

coefficients of y regressed on X, as an estimator of the true average

derivative, and as an estimator of p up to scale. Section 6 establishes the

asymptotic distribution of the proposed instrumental variables estimator, when

the distribution of X is modeled up to a finite parameterization. Section 7

contains concluding remarks and topics for future research.

2 . Notation, Examples and Basic Assumptions

Consider the situation where data is observed on a dependent variable y.

and an M-vector of explanatory variables X. for 1 = 1 N, where M > 2.

(y ,X ), i=l N represent random drawings from a distribution T which is

absolutely continuous with respect to a o-finite measure v, with Radon-Nikodym

density P(y ,X)=aT/av. P(y,X) factors as P(y ,X)=q(y |X)p(X) , where p(X) is the

density of the marginal distribution of X. The conditional density q(y|X)

represents the true behavioral econometric model, which we assume permits the

conditional expectation E(y|X) to be written in the form

(2.1) E(y|X) = F(a+X'p) = F(Z)

for some function F, where a is a constant, p=0, , . . . ,p„) ' is an M-vector of
1 M

constants, and Z is defined as Z=a+X'p. I refer to Z as an Index variable,

with (2.1) a single index model.

This framework is very general, subsuming many limited dependent

variables models, but is not restricted to such models. Before proceeding to

specific examples, it is useful to note a generic special case of (2.1).

Suppose that Z is a general index variable such that £:=Z -Z is independent of

X, then if E(y|X,£)=F (Z ) for some function F . (2.1) is implied. This



Includes many models that employ a latent variable Z =a+X'^+£, where £ is

Independent of X. Note also that this implies that behavioral variables can be

omitted from X without affecting the results, provided that the omitted

3
variables are independent of the included ones.

I now turn to some specific examples:

Exaaple 1: Binary Discrete Choice

Suppose that y represents a dichotomous random variable modeled as

y = 1 if € > -(a+X'P)

= otherwise

Here E(y| X)=F(a+X' p ) is the probability of y=] given the value of X, with the

true function F determined by the distribution of £ . If £ is distributed

2
normally with mean and variance a , then the familiar probit model results,

with F(a+X'p)=<J( (a+X'p)/o) , where <t is the cumulative normal distribution

function. Logit models, etc., can easily be Included.

Example 2 : Tobit Models

* *
Suppose that y is equal to an index Z only if Z is positive, as in the

censored toblt specification

y = a+X'p+£ if £ > -(a+X'p)

= otherwise

Alternatively, if y and X are observed only when £ > -(a+X'p), we have the

truncated tobit specification.



Example 3 : Dependent Variable Transformations

Suppose there exists a function g(y) such that the true model Is of the form

g(y) = a+X'^+^

where g(y) is invertible everywhere except for a set of measure 0. A specific

example is the familiar Box-Cox transformation where

y^^' = a+X'^+£

with y^^^ = [(y^-l)/X] for \xO, y^^^ = ln(y) for >.=0.

These examples serve to illustrate the wide spectrum of models covered by the

single index form (2.1) with general function F. and many other examples can

be found. Multiple index models are considered in Section 4.2.

We now turn to the other required assumptions. X is assumed to be

4
continuously distributed, having support fi of the following form:

M
Assumption 1: fl is a convex subset of R with nonempty interior. The

underlying measure v can be written in product form as v=v ^v , where v is
y A A

Lebegue measure on R .

Therefore, no component of X is functionally determined by other components of

X, and no two components of X are perfectly correlated.

5
Denote ft(X) as the score vector of the marginal density p(X) as:

(2.2) MX)=-^i^^

The main regularity conditions on the marginal density p(X) are



Assumption 2 : p(X) is continuously differentlable in the components of X for

all X in the Interior of Q. E(fi) and E(ASL') exist.

Assumption 3 : For XedO, where dfi is the boundary of 0, we have p(X)=0.

M
Assumption 3 allows for unbounded X's, where fi=R and dfi=0. While the

majority of the results employ Assumptions 2 and 3. the incorporation of

discrete (qualitative) explanatory variables is discussed In Section 4.2.

I will make reference to the following set of regularity conditions on a

general random variable y and its conditional expectation E(yjX)=G(X).

(y,G(X)) satisfies condition A if

Condition A : G(X) is continuously dif ferentlable for all Xefi, where Q differs

from n by a set of measure 0. E(y) , E(3G/aX) and E(fiy) exist.

The main regularity condition on the behavioral model (2.1) is contained in

Assumption 4 : a) (y,F(a+X'p)) satisfies condition A. E(dF/dZ) is nonzero.

b) (X.,X.) satifies condition A for each j=l,...,M.
J J

This completes the list of main assumptions. While somewhat formidable

technically, these assumptions are collectively very weak.

The main thrust of the paper concerns how information on the marginal

density p(X) can be used to estimate p up to scale. Consequently, the majority

of the exposition assumes that the value of il(X) at each X. is known, and

denoted fi =A(X.), i=l N. Use of empirical characterizations of p(X) is

discussed in Section 6.

Finally, sample averages are denoted via overbars as in y= Ey./N, with



the means of y and X denoted as p =E(y) and >j =E(X). Sample covariances are
y ^

denoted using S as in S = Z(A . -fl) (y . -y )/N, with population counterparts

denoted using I as in I- =Cov(il ,y) .

3 . Behavioral Derivatives and Covariance Estimators

This section presents a fundamental connection between behavioral

derivatives and covariance estimators, that is the basis of the consistency

results of Section 4. The connection is given in the following theorem, which

Is interpreted after the proof.

Theorem 1: Given Assumptions 1-3. if {y,G(X)) satisfies condition A, then

(3.1) e[||| = E(ft(X)y) = Z
Ay

Proof: Let X denote the first component of X. and apply Fubini's Theorem

(c.f. Billingsley(1979) , among others) to write E(aG/aX ) as

(3.2)
aG(X

)

ax
~ P(X) dv =

j I
^^p(X)dv^(X^)

L(X^)
o o

where X represents the other components of X. The result that

E(aG/aX )=E(ft (X)y) is implied by the validity of the following equation

^^^^
1 ^ P(>^)d^l(^) = -

1
G(X) ^dv.^(X,)

u)(X o,(XJ

since the RHS of (3.3) simplifies to

(3.4) -1 G(X) ^dv^(X^)
u.(X^)

'

|G(x)r-^^^llp(x)dv^(:

.(X^)

By inserting (3.3,4) into (3.2), E(aG(X)/aX^)=E(A (X)G(X)) is established, and



by Iterated expectation. E(ft (X)G(X) )=E(il (X)y) .

To establish (3.3), note first that the convexity of Q implies that u)(X )

is either a finite interval [a,b] (where a, b depend on X ), or an infinite
o

interval of the form [a,*), (-»,b] or (-•,«»). Supposing first that

w(X ) = [a,b]. integrate the LHS of (3.3) by parts (c.f. Bimngsley( 1979) ) as

(3.5, f
=£m p,x,a. ,x^, . - |\,x, 2|Pd.^,x^,

a 1 a 1

+ G(b.X^)p(b.X^) - G(a,X^)p(a.X^)

The latter two terms represent G(X)p(X) evaluated at boundary points, which

vanish by Assumption 3, so that (3.3) is established for ui(X )=[a,b].

For the unbounded case u)(X ) = [a,«>), note first that the existence of
o

E(y), E(aG/axj and E(ftJX)y) respectively imply the existence of E(G(X)|X ),11 o

E(aG/aX |X ) and E(A (X)G(X)|X ) (c.f. Kolmogorov( 1950) ) . Now consider the

limit of (3.5) over intervals [a,b], where b-»», rewritten as

(3.6) lim G(b.X )p(b.X ) = G(a,X )p(a,X ) + lim f ^^^^ p(X)dv,(Xj
, O O o , J oX^ 1 1
b-*«o b-»" a 1

.b

b-»<» "a ~"1
+ lim

I
G(X) ^fP dv^(X^)

= G(a,X )p(a,X ) + p (X )Erf^|x 1 - p (X )E(fl f X)G(X) I X )
o o o o L9X, oj *^o 1 ' o

so that C = lim G(b,X )p(b,X ) exists, where p (X ) is the marginal density of
o o o o

X . Now suppose that C>0. Then there exists scalars t and B such that 0<€<C
o

and for all b > B. |G(b,X )p(b,X )-C|<e. Therefore G(X ,X )p(X .X ) >

(C-£)Ir_ ,, where !,„ , is the indicator function of [B,<»). But this implies
IB,») [B,*)

that p (X )E(G(X)|X^) = ;G(X,,X^)p(X^,X^)dv.(X,) > (C-€) JI,_ „,dv (X^) = ».OO O lOiOli [D,'*j 1 o

which contradicts the existence of E(G(X)|X ). Consequently, OO is ruled out.
o

C<0 similarly contradicts the existence of E(G(X)|X ).



Since C = lim G(b,X )p(b,X ) = 0, and G(a.X )p{a.X )=0 by Assumption 3.

equation (3.3) is valid for u)(X )=La,»). Analogous arguments establish the

validity of (3.3) for u)(X )
= (-«>. a] and u)(X^) = ( -<»,») .

The second equality of (3.1); E(ft (X)y)=Cov(fl (X) ,y ) ; is true because the

mean of A (X) is 0. The proof is completed by repeating the same development

for derivatives of G(X) with respect to X^ X^^. QED

Theorem 1 is of significant theoretical interest. It says that the

average behavioral derivative E(aG/aX) can be written as the covariance

between y and a function of X; namely ft(X). The form of ft(X) does not depend

on the behavioral relation E(y|X)=G(X): Jl(X) is determined only by the

marginal density p(X) . Thus, Theorem 1 establishes a general link between

behavioral derivatives and covariance estimators, that does not depend on

7
assumptions on the form of behavior. The proof is extremely simple, based on

integration-by-parts

.

A useful intuition for Theorem 1 can be obtained from its connection to

results in aggregation theory. In particular, Theorem 1 reflects the local

aggregate effects on E(y) of translating the base density p(X). To see this

M
connection, consider the unbounded case where fi=R . Suppose that the base

density is translated by an M-vector 8; p(X) is altered to p(X-e) for all X.

The value of E(y) after this translation is given as

(3.7a) E(y|8) =
[ G(X)p(X-8)dv

By a change-of-variables, E(y|8) can also be written as

(3.7b) E(y|e) =
[ G(X+8)p(X)dv

The local aggregate effects of the translation are the derivatives

8E(y|B)/ae evaluated at 6=0. Differentiating (3.7a) under the integral sign



and evaluating at B=0 gives

(3.8a) ^^^ = j G(X)
If

dv = j G(X) ^2_2 p(x)dv =
| G(X) MX) p(X)dv

where the latter equality reflects that k.(X) equals aln p(X-e)/a8 evaluated at

8=0. Similarly, differentiating (3.7b) gives

Collecting the equalities of (3.8a,b) gives E(G(X)Jl(X) )=E(aG/3X) , which

underlies equation (3.1) of Theorem 1.

Theorem 1 thus has a simple geometric explanation. For evaluating the

mean E(y) under translation, one can average G(X) over the distribution p(X)

shifted by 8 (equation (3.7a)), or one can shift G(X) by -9 and average over

the distribution p(X) (equation (3.7b)). The local effects on E(y) can be

computed from either perspective (equations (3.8a,b)) to yield the same value.

Equation (3.1) just exhibits this equivalence.

4. Consistent Estimation of Scaled Coefficients

This section indicates how to estimate p up to scale for single index

models of the form (2.1). Section 4.1 indicates the basic approach and

proposes a covariance estimator and an instrumental variables estimator.

Section 4.2 discusses immediate extensions of the basic results and Section

4.3 gives some further remarks.

4 . 1 The Average Derivative Approach to Estimation

Begin by considering a precise empirical Implication of the single index

model form E(yjX)=F(a+X'p) . Clearly, the conditional mean of y depends only on

X through the value of X'p. By exploiting differentiability, a precise

restriction of the single index form is given as

10



^^^' ax ax LdzJ
^

Thus. aE(y|X)/3X is proportional to p, although the scale factor dF/dZ will

depend on the value of X chosen.

The basic approach in this paper is to focus on the average of the

constraint (4.1):

where Y=E(dF/dZ) exists and Is nonzero by Assumption 4. Clearly, any

consistent estimate of the average derivative E(aF/aX) is a consistent

estimator of p up to scale.

Two natural consistent estimators are suggested by Theorem 1. First

define the estimator d as the sample covariance between y. and ft.;

The second estimator is more closely related to standard regression

estimators, such as the OLS coefficients of y regressed on X. Define d as the

instrumental variables coefficients of the regression

(4.4) y.=c + X'. d + u,
1 1 i

obtained using (l,ft.') as the instrumental variable; namely

(4.5) d = (S^^)-^S^y

The consistency of d and d for vp follows immediately from Theorem 1, as in

Theorem 2 : Given Assumptions 1-4, d and d are strongly consistent estimators

of Yp. where Y=E(dF/dZ).

11



Proof: The Strong Law of Large Numbers (c.f. Rao(1973), Section 2c. 3, SLLN2)

implies that lim S ^ ^n • Theorem 1 and (4.2) imply that lim d = Yp a.s..

lim d = yP a.s. follows if lim S = I =1, an MxM identity matrix. In view

of Assumption 4b), Theorem 1 can be applied with y=X . , for each j = l M.

Carrying this out gives 1. = I. QED
AA

The two estimators d and d appear very similar, however in general they

are not first-order (iJN) equivalent. In particular,

(4.6) 4N(d - d^) = ^(S'^y. - I) cIq

Since lim d =Yp*0, and >IN(S -I) in general has a nontrivial limiting

distribution, >JN(d-d ) will not vanish as N-*". For expository purposes, I will

refer to d for the remainder of the exposition, however, all consistency

9
results can be extended to d .

The connection to the aggregate effects of translation permits a further

Interpretation of the scale factor y = E(dF/dZ). The structure of the single

index model (2.1) implies that the local aggregate effects of translation are

proportional to p, the parameters of interest. In particular, insert (4.1)

into (3.8b) , giving

,^„ JEi^ .
Ill , ^„„, . ,,

Q

This appearance of p is due to the correspondence between density translation

and the linear form of the index Z=a+X'p. To interpret Y, note that under

translation, the marginal distribution of Z is shifted by the parameter 11=9 'p,

with the mean of Z increased by t). (4.7) can be regarded as the chain rule

formula aE(y)/ae = (dE(y)/dti) (dri/aS) . where Qr\/aQ is equal to p. The scale

factor Y is equal to dE(y)/dTi, the effect on E(y) induced by a change in the

mean E(Z) of the index variable Z.

12



4. 2 Extraneous Variables and Multiple Index Models

The approach of parameter estimation via average derivatives easily

extends to more general models than those relying on a single index. In this

section I consider some immediate extensions, namely to models with extraneous

variables and multiple index models.

Begin by expanding the notation to consider two sets of explanatory

variables; an M vector X and an M vector X . distributed with density
J. J. IM M

p(X .X ). Consider first the case where X are extraneous variables, in that12 ^

the behavioral model for y implies

(4.8) E(y|X^.X2) = F(a^+X^ 'p^ .X^) = FCZ^.X^)

for some function F with constant coefficients a , p , and 2.=a +X 'P . In

this case, p is proportional to the (partial) derivative of F with respect to

X , as in

u- ^^^^^^ = II; = [ll;K
1 11

so that the average derivative is proportional to p :

•"'"I ^[i-] ' 4if-]^ = ^^

Theorems 1-3 can be applied as long as the appropriate analogues of

Assumptions 1-4 applied to X are valid. In particular, the proof of Theorem 1

will apply to individual components of X provided that no two components of

X-,X^ are perfectly correlated, and that the conditional density p (X |X )12 lie
vanishes on the boundary of X values for each value of X . Under these

J. ^

conditions, the sample covariance d =S consistently estimates V p , where

the partial score H , .=H AX, . ,X^.) is defined via^
li 1 li 2i

13



ain p(X X ) am p^(X |x )

(4.11) .^(x^.x^) = - —J^-— = -
ax)

-

Moreover, Y p is consistently estimated by the slope coefficients estimates

d of the linear equation

(4.12) y. = c, + X, .d^ + u,

.

1 1 li 1 li

obtained by instrumenting with (1,11 ')'. Thus, the extraneous variables X

are accomodated in the estimation of p by modification of the appropriate

instrumental variables, to reflect the joint distribution of X and X .

Clearly if X were distributed independently of X , then X can be ignored in
^ J. b

the estimation of p up to scale.

This extension provides an initial response as to how to accomodate

discrete explanatory variables into the analysis. If X is composed of

discrete variables, an approach based on average derivatives is not obviously

applicable to estimating effects of X . However, the coefficients of the

remaining continuous variables X can be estimated up to scale by using the

score vectors of the conditiona] density of X given the observed values of X

as instrumental variables. Consequently, while the analysis is silent on how

to estimate coefficients of discrete variables, their presence does not

prohibit the estimation of continuous variable coefficients up to scale.

Putting aside this proviso on discrete variables, I now turn to multiple

Index models. All relevant points are exhibited by two index models, so assume

that X=(X ',X ')' is composed entirely of continuous variables with M >2 and

M >2. Suppose that the behavioral model implies the following two index form

(4.13) E(y|X) = F(a^+X^'p^, V^g'Pg) =
^^2i'^2^

where Z =a +X 'p and Z =a +X 'p represent the two index variables. The
X. X. \. x^ £t £i £t Ci

14



derivative of the conditional expectation now takes the form

(4.14)
aE(y|X) ^ aF

ax ax

[1-]^

. lazj^2 .

so that the average derivative is

41 =(4.15)
1*^1

L 2^2J

where Y =E(aF/aZ ) and y =E(3F/az ) are scalar constants. Thus a consistent

estimate of the average derivative will estimate p and p up to scale,

however the scale factors Y and Y will differ in general.

Such a consistent estimate has already been established, provided that

y.F of (4.13) obeys condition A. Namely, the estimator d of (4.5) consistently

estimates E(aF/aX), so that its components corresponding to X estimate B up

to scale, and its components corresponding to X consistently estimate p up

12
to scale. The main modeling limitation of this result is that no two

components of X and X may be functionally related or perfectly correlated.

Thus the index variables Z and Z may have no common component variables, an

exclusion restriction that is required for estimating both p and p up to

13
scale using average first derivatives. The following example gives a two

index model, where Y,=l a priori.

Example 4 : Selection Bias

Suppose that the basic behavioral model is y^*^!"^^!
' Pi*^i • ^^^ ^^^^ Y- ^i ^"'^

*

X are observed only if Z =<^2^^2 '^2^^2 ^ °' *'^^^^
^^l'^2^

^^ distributed

independently of (X ,X ). This implies that

15



ElvlX^.X^.Z^ >0) = a^ + X^'p^ + ^'^l^^ -<°2 ^ ^2*^2^^

so that d will estimate the structural parameters p and the selection

parameters p up to scale, without explicit assumptions on the joint

distribution of {Z ,t ). Note that aF/aZ =1 . so that Y =1 . Thus, the

components of d corresponding to X will consistently estimate p , with no

proviso about scale.

By comparing Example 4 and the truncated tobit specification of Example 2,

there are two polar cases where selection parameters are estimated up to scale

by d, namely when the selection index Z has no variables in common with the

structural index Z . or when the selection index Z is equal to the structural

Index Z .

I close with another example, that further Illustrates how exclusion and

other parameter restrictions bear on the estimation of specific coefficients

up to scale.

Example 5: Discrete Choice Among Several Alternatives

Suppose that one is studying the choice between j=l,...,J discrete

alternatives. The attractiveness (utility) of the j alternative is modeled

as

where X is a set of option specific explanatory variables, with

X =(X ^1 j) containing no two components that are perfectly correlated.

X represents explanatory variables that are observation specific, but bear on

the attractiveness of each option. £ . is a random term, such that (£ z )

J 1 J

16



14
is distributed independently of (X ,X ). The parameters a., P, ., 5. may vary

1 <- J 1 J J

with option j.

Focus on the J alternative, and assume that y=l if J is chosen and y=0

if another alternative is chosen. Define J-1 index variables

where p .=5 -S . . Now J is chosen, or y^l , when V . < V for j = l , . . . , J-1 . This

occurs when

€. - € < Z. for all j = l J-1
J "^ J

E(y|X ,X ) is just the probability of the above event given X ,X ; or
J. ^ X 6

ElylX^.X^) = F(Z^,...,Zj_^)

where F is the cummulative distribution function of (e -€ €...-€,). For

instance, if (£ -£ € -€ J is multivariate normally distributed, F is

the multivariate normal distribution function (and this is a multinomial

probit model) .

Now, what is estimated by d=(d ' d ',d ')', partitioned according

to (X ,X ) = (X X ,X )? The coefficients d of the J^^ specific

attributes X will consistently estimate

r,ra¥ T r„r^ aF
E[IH - H^ H- ]] ^, = ^^,

iJ J J

so that d consistently estimates p up to scale. For jxJ, the coefficients

d, , of X, . will estimate
IJ IJ

-iwr) = (-[If-]] ^J = '/u

so that d. . consistently estimates 6 . up to scale. Finally, the coefficients

d of X will consistently estimate
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2 J J -^

so that d estimates a linear combination of the parameters p , j = l J-].

Consequently, the respective components of d will consistently estimate

the option specific parameter vectors p ., j = l J, up to scale values. This

occurs because X appears in each index with the same coefficients p , and
1- U J, J

for j*J, X only appears in the single index Z . p , j=l J-1, are not
^ J J ^ J

separately estimated because X appears with a different coefficient value in

each index Z . .

J

4.3 Further Remarks

4 . 3a A Note on Heteroscedastic Disturbances

As indicated in Section 2, the development applies to models where

y=f (o+X'p+£) , where z is distributed independently of X. Often it is desirable

to estimate p in situations where £ is heteroscedastic, with the distribution

of € depending on X. Estimators that are robust to heteroscedasticity of t for

specific models are given in Manskl ' s( 1975, 1985) work on maximum score

estimation and Powell ' s( 1984) work on censored least absolute deviations

estimation

.

It is easy to see in general that d will not estimate p up to scale when

the distribution of £ depends on X. In this case, the conditional expectation

E(y|X) will not be a function of a+X'p alone, depending in general on how X

alters the distribution of £ over observations. Equations (2.1) and (4.1) will

15
not hold, which breaks the relation between p and the average derivative.

The one special case where heteroscedasticity of € does not alter the

consistency of d for p up to scale is when the distribution of £ depends only

on the value of the index Z=a+X'p. Here (2.1) and (4.1) are valid, with the

development applying without modification. While this is a strong restriction.
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some models obey this restriction, such as truncated Poisson regression

models. A good survey of this and related models is given in Manski ( 1984a)

.

4.3b: The Statistical Role of the X Distribution

An interesting feature of the estimators suggested by Theorem 1 is their

explicit dependence on the density p{X) of the marginal distribution of X. In

particular, the consistency of the estimators relies on the fact that the data

X. , i=l N represents a random sample, so that the X's are not taken as

ancilllary for estimation.

This raises a rather deep statistical issue concerning the efficiency of

the estimators, which is described as follows. The overall object of

estimation is to measure the value of p up to scale. ^ is clearly a parametric

feature of the conditional distribution of y given X, and so there is no

generic necessity for knowing the marginal distribution of X. The usefulness

of the information provided by the density p(X) is more surprising than

natural, when viewed in this light.

The role of the density p(X) is built into the particular estimation

strategy employed here, namely the estimation of the average derivative

E(aF/aX) of (4.2). The value of the E(aF/aX) clearly depends on the true

marginal density p(X) - altering the marginal density will alter the average

derivative. In other words, even if the exact form of the conditional density

of y given X were known for all X values, the average E(aF/aX) could not be

consistently estimated without reference to the configuration of the X values

in a large sample.

But estimation of the average derivative does not represent the only

conceivable method of estimating p up to scale. This can be seen from equation

(4.1), which is a derivative constraint on the conditional expectation of y

given X, and does not involve the density of X. This suggests that more
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efficient estimators of ^ up to scale couJd be found, which take X as

ancilliary (i.e. which condition on the observed data values X., 1=1,..., N),

No such general, more efficient estimators are known to the author, however

the possibility of their existence warrants Investigation via future

research

.

5. Biases in Ordinary Least Squares Coefficients

The linear structure of d suggests a natural comparison with the OLS

slope coefficient vector b=(S ) S from the regression of y on X ,AA Ay J, X

17
i=l,...,N. This section uses the above development to study the asymptotic

bias in b as an estimator of the true average derivative E(aF/aX), and as an

estimator of p up to scale. The primary focus is on the role of the

distribution of X, as the formulae below are applicable regardless of the true

form of the function F of (2.1).

Begin by considering the circumstances under which k(X) is collinear with

X. If so, then b^d, which gives a robust Interpretation of b as an estimator

of p up to scale, or alternately a case where d is particularly easy to

compute. Now suppose that fi(X)=A+BX, where A is an M vector and B an MxM

matrix of constants, and denote y =E(X). Since E(JI(X))=0. A=-BE(X)=-Bjj , so
A A

that il(X)=B(X-M ) . By integrating A(X). In p(X) can be written in the form
A

In p(X)=C-(l/2)(X-M )'B(X->j ) for some constant C. Thus p(X) must be of the
A A

Multivariate normal form, with B=(X ) . Consequently b and d coincide only
AA

when X is multivariate normally distributed.

Theorem 1 appears in simple form in this case. A(X) = (Z.^y) (X-p ), so
XX X

that E{!l(X)y)=Cov(S.(X) ,y) = CZ^^)'h.. . This is clearly the a.s. limit of the
Xa xy

^ - 1 18
OLS coefficient vector b, namely b = lim b=(X.^.y.) Z^ .

XX Xy

To study the asymptotic bias of b when X is not normally distributed,

first consider the difference between the average derivative E(aF/aX) and b.
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Since E(aF/aX)=E(il(X)y) by Theorem 1,

(5.1) e[||] - b = E([(ft(X) -
(^x^'^^^'^X^^y'

^ E(R(X)y) = Cov(R(X) .y)

where R(X) s ft (X)-(I^^) "'^(X-^^) , and the last equality follows from E(R{X))=0.
XX X

Notice that R(X) can be regarded as a large sample OLS residual vector.

The OLS coefficients B of the multivariate regression equation

a(X.)=B(X^-Mj^)+R{X^) are such that lim B=(Ij^j^)" Ij^ = (i:j^j^)' a.s.. since \^=l

by the proof of Theorem 2. Thus lim R(X ) = R(X.) a.s., with R(X) interpreted

as the large sample least squares departure of ft(X) from X. In particular,

R(X)=0 for all X only if X is normally distributed.

Equation (5.1) says that b consistently estimates the average derivative

E(aF/aX) only when y is uncorrelated with the least squares difference R(X)

between ft(X) and X. Thus, unless X is normally distributed, b will

consistently estimate the average derivative E{aF/aX) only in certain model-

specific cases. To consider the role of the true model in this property,

refine equation (5.1) as follows. Since R(X) is a least squares residual, R(X)

is uncorrelated with X. Therefore y can be replaced in (5.1) by the large

sample residual ?=(y-M )-(X->i )'b from the OLS regression of y on X, as in
y X

(5.2) e[||] - b = Cov(R(X),y) = Cov(R(X),^)

There are two natural polar cases under which b will estimate the average

derivative E(aF/aX); first when R(X)=0, or when X is normally distributed, and

second when E(^|X)=0, or when the true model between y and X is a linear

19
regression model. In nonlinear cases, b will estimate E(aF/aX) only if the

specific functional form assures that the OLS residual £, is uncorrelated with

R(X). Finally, note that (5.1,2) do not utilize the single index form (2.1),

so that y,F could be replaced in the above discussion by any y,G(X) obeying

condition A.
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At face value, this suggests that the conditions under which b estimates

p

up to scale may also be restricted to X normally distributed. However,

Ruud (1983.1 984 ) , Chung and Goldberger( 1984 ) and Deaton and Irish(1984) have

pointed out another sufficient condition on the distribution of X that does

not restrict X to be normally distributed. In particular, Ruud(1983a) shows

that b will consistently estimate p up to scale when E(X|Z)=G+HZ, for Z=a+X'P,

or that E(X|Z) is a linear function of Z. Chung and Goldberger{ 1984 ) and

Deaton and lrish{1984) find the same result using an analogous condition with

a generalized definition of Z. Chamberlain( 1983) has pointed out that this

condition is obeyed when the distribution of X is (elliptically) symmetric,

but not necessarily normal (see also Dempster (1969)). Consequently, equations

(5.1,2) do not suffice to characterize the asymptotic bias of b as an

estimator of p up to scale.

A bit more development yields a bias formula that explicitly displays the

role of the linearity condition. Assume first that the relationship between y

and X can be represented by y=f (o+X' p+e )=f (Z+€) for some (unknown) function f,

where z is distributed independently of X. Denote the marginal distribution of

Z=a+X'p as p (Z), the mean of Z as ^ =E(Z) and the associated log-density

derivative as A (Z)=- d In p (Z)/dZ. Define the large sample residual of ft (Z)
Li Li Li

20
regressed on Z as

(5.3) r^(Z) = k^(Z) - a~^(Z-M^)

Clearly r (Z)=0 for all Z if and only if Z is normally distributed. Finally,

define the large sample residual vector of E(X|Z) regressed on Z as

(5.4) r^(Z) = (E(X|Z)-p^) - )i(l-)x^)

2
where H=Z /o . Clearly r (Z)=0 for all Z if and only if the linearity

A^ ii X
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condition holds, or that E(XiZ)=G+HZ. The formula to be derived relates the

asymptotic bias in b to covariances between y and the residuals r (Z) and

r^(Z).

Recall that for the single index model (2.1). we have that E(8F/6X)=Yp.

where Y=E(dF/dZ)=J(dF/dZ)p (Z)dv. By applying Theorem 1. Y can be written as

Y=E(il (Z)F(Z))=Cov(Jl (Z),y). Thus, the average derivative E{aF/8X) can be
Z u

written as

(5.5) e[|^ = p cov(ft2(z). y)

To characterize the limit b=(Z ) Z^ of b. note first that

I^ =E[ (E(X|Z)-}jy)y] . This is valid because at a given value of Z. the
Xy X

conditional covariance between X-E(X|Z) and y=f(Z+€) is zero. Now

(5.6) b = (5:j^^)"^E[(E(X|Z)->ij^)y)

= E[(T^^)~^H(Z-ii^)w] + (i:jjj^)"^E(r^(Z)y)

by using (5.4). Note that by construction. ^ = (Zy ) S^^ , so that (S„ .) H
'XX' XZ' 'XX'

-1 2 2

^^Xx' ^KZ^°Z
"

^^°Z ' ^"^^''^^"S this gives

(5.7) b = p E(a^^(Z-i^^)y) + {J.^^) ^E(r^(Z)y)

= ^ Cov(o2^(Z->i2).y) + (Ij^)"^Cov(r^(Z).y)

The desired c '^s formulae is obtained by combining (5.5), (5.7) and (5.3) to

yield

(5.8) e[|£| - b = P Cov(r^(Z).y) + (Ij^j^)'^Cov(rj(Z) .y)

Equation (5.8) provides a categorization of the asymptotic bias in the

OLS estimator b vis-a-vis the X distribution underlying the data. When X is

multivariate normally distributed. Z is also normal, r (Z)=0 and r,(Z)=0 for
n 1

all Z. and b consistently estimates the average derivative E(aF/aX)=Yp. When X
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is not normally distributed but the linearity condition holds, r (Z)=0, and b

consistently estimates (Y+Cov(r (Z).y))$. The covariance term will not be zero

in general, but the asymptotic bias E(aF/aX)-b is proportional to p, to that b

still estimates p up to scale. Finally, b will not consistently estimate $ up

to scale in general if r (Z)?:0.

Thus, for a model-free interpretion of b as the average derivative

E(aF/aX), multivariate normality of the X distribution Is essential. For the

question of when b estimates p up to scale, the linearity condition

E{X|Z)=G+HZ provides a solution that Is not directly related to estimation of

21
the average derivative.

6. Distribution Theory with a Parametric Density Form

The above exposition has proposed the estimator d as an estimator of p up

to scale, that explicitly utilizes information on the marginal density p(X).

When p(X) is in the multivariate normal form, d can be computed as the OLS

slope coefficients, and scale-free inferences on the value of ^ (as discussed

22
below) can be performed with standard methods. In general, a statistical

characterization of the density p(X) will be required to impliment d. This

section establishes the asymptotic distribution of d when the density is

modeled via a finite parameterization.

Suppose that p(X)=p (X|A ), where p (X|A) denotes a parametric family,

with A an L-vector of parameters that characterize the location and shape of

p(X); means, variances, skewness, etc. The density score vector is determined

by A as Il(X)=Jl(X| A ) . Assumptions 5 and 6 of the appendix assume that a /n

consistent estimator A of A=A^ can be computed using the data X., 1=1,..., N,

as well as some regularity conditions.

Estimation now proceeds in two steps. First estimate A using A. Next
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compute d as the instrumenta] variabies estimator using the estimated

instrument

(5.1) a, = ii(X.|A)

ain p (X. (A)

i ~^"ii"' ax

as in

(5.2) d* = (S^j^)-^S^y

The strong consistency and asymptotic normality of d is established in

Theorem 3 : Given Assumptions 1-6, (a) d is a strongly consistent estimator of

~*

Yp, and (b) the limiting distribution of 'JN(d - Yp) is multivariate normal

with mean and variance-covariance matrix

(5.3) V = I„ „ + DZ„' H 5l. ,D' + DI..D'
^ ' ilu.Jlu ftu.X, Jlu,X kX

where u=(y-p )-(X-p )'Yp, fiu=Il(X)u, D=E[u(aJl(X|A )/aA)] and X is the component
y A u

of A defined in the Appendix.

Proof : (a): Define A (A)=fi (X . | A) , so that fi.(A )=ft. and ft^(A)=Jl^. To show

consistency of S* for T^ . define S (A)=Dl
.
(A) (y .-y)/N, so that S (Aq)=S

and S (A)=S? . From (A. 2a) of Assumption 6, Theorem 2 of Jennrich( 1969)
y Ay

implies that S (A) converges uniformly in A to E[ft(X|A) (y-p ) ] . Since lim A=Aq

a.s.. by Lemma 4 of Amemiya( 1973) , lim S' =lim S (A)=E[il (X| A^) (y-p )]=!.,

a.s. A similar argument (using (A2.b) of Assumption 6) shows that lim S" =i: „

"* -1
a.s., so that lim d =(!„„) I« =vp a.s.

ftX Ay

(b): Following Newey(1984). define u . =(y . -y)-(X.-X) 'Yp, and write
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(5.4) >lN(d - Yp) = (S;^)"^[—j^ij
Z A .u

A Taylor series expansion of the second term gives

rZ ft u
1 rE u [3ft(x |A )/aA]-j

(5.5) >IN(d -YP) = (S^^)
[--^-J. (S^^) [-^ -i-5 J^(A-A^).o

P^^'

The result follows from lim S" =1 =1, an identity matrix, and

plim[i:u.(aft(X. jA )/aA)/N]=D (Weak Law of Large Numbers). QED

Under the additional regularity conditions (A.2c-g) of Assumption 6 of the

appendix, a consistent estimator of the variance-covariance matrix V can be

constructed as follows. Define u. =(y . -y)-(X, -X) 'd as the estimated residual111
from equation (4.4) using d as coefficient estimates, define X..=X(X.|A) as

the estimated component of A, and define the estimator D=Eu [aft (X. | A)/3A]/N of

D. It is easy to verify that V=Z(fl .u . +DX
. ) (ft ,u . +DX

.

)
' /N is a consistent

estimator of V.

Thus when the density p(X) is modeled up to a finite parameterization,

-*
inferences on the value of Yp can be performed using d and the consistent

estimate of its variance-covariance matrix V. Of more interest are tests on

hypotheses on the value of p available from d ; namely hypotheses that are not

affected by the true value of Y. The main class of such scale-free hypotheses

are homogeneous linear restrictions of the form v'p=0, where k is an M-vector

of constants. This class Includes zero restrictions such as p.=0, equality

restrictions such as p^=p., and ratio restrictions such as e^=K .8 . for a

constant k.. Tests are possible by noting that k ' p=0 is equivalent to

K'(Yp)=0, and that K'd is asymptotically normal with mean K'(VP) and variance

26



k'Vk. In particular, under the null hypothesis that k'P=0, the Wald statistic

** 2 " 2
(K'd ) /k'Vk has a limiting X (1) distribution.

Wald statistics corresponding to joint hypothesis, of M' < M linear

homogeneous restrictions can likewise be formulated using d and V. Moreover,

if <t>0) is any homogeneous M'-vector function of p, tests of <l)O)=<t)(YP)=0 can

be formulated using the "delta method" of Billingsley{1979) and Rao(1973).

7. Concluding Remarks

This paper proposes an approach to parameter estimation based on average

behavioral derivatives, and applies the approach to the estimation of p up to

scale in single index models. The proposed estimators explicitly utilize

information on the marginal distribution of the explanatory variables in the

model. The framework is illustrated using several examples of limited

dependent variables models, and extended to multiple index models. The

asymptotic biases in OLS coefficients are characterized vis-a-vis the

distribution of explanatory variables.

There are two major advantages to the proposed estimator d. First, d is

nonparametric to the extent that it is robust to many specific functional form

and stochastic distribution assumptions. If a particular application requires

only estimates of the ratios of components of p, then d will suffice. In a

general application where different sets of assumptions give rise to different

estlnates of ^, d will provide a benchmark estimate for choosing the best

specification. Given parametric modeling of the explanatory variable

distribution, the precision of the components of d can be measured, and tests

of scale-free hypotheses on the value of p can be performed.

The other advantage of d is computational simplicity. Once the

distribution of explanatory variables is characterized, d (as well as d ) is a
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linear estimator, computed entirely from sample covariances. This suggests

that implimentation may be particularly easy and inexpensive, especially for

large data bases.

There are also two drawbacks, which suggest natural future research

topics. First, the results apply only to the estimation of coefficients of

continuous variables, but most applications to microeconomic data will require

using discrete as well as continuous explanatory variables. While the presence

of discrete variables can be accomodated in the estimation of continuous

variable coefficients, the question of how to nonparametrically estimate

coefficients of discrete variables remains open.

The second drawback involves the empirical characterization of the

explanatory variable distribution. While this distribution can in principle

always be characterized, I have only established attractive statistical

properties for d when the distribution is modeled up to a finite

parameterization, with the required score vectors computed from the estimated

distribution parameters. Of substantial practical importance is the question

of whether nonparametric estimators of the score vectors can be utilized in

the construction of d, to give a consistent estimator of yp with a

23
Straightforward asymptotic distribution theory. Thus, the results of this

paper provide further reasons for giving high priority to the application of

nonparametric techniques to econometric modeling.
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Appendix: Additional Assumptions

The following assumptions are utilized in Section 6.

Assumption 5: p (X|A) is twice dlf ferentiable in the conponents of A in an

open neighborhood of A=A . The estimator A of A=A is strongly consistent, and

can be written in the form

(A.l) A =Aq .
jj

. Op[;^J

where E(X,(X|A ))=E(X)=0, and the variance-covariance matrix E(XX')=I exists.

This assumption implies that as N-»», >rN(A-A ) has a limiting normal

distribution with mean ana variance T . If A is a sample average; say

A=Eg{X.)/N. then X=g(X)-A . If A is the maximum likelihood estimator, then

under standard conditions >^ = (I^) 9ln p(X|A )/aA, where

2 2
I = -E(a In p(X|A )/8A ) is the information matrix.

The following regularity condition is also used.

Assumption 6 : The covariance matrix of Au. and the covariance between any two

components of Siu and X exist. The mean of u( aft . (X| A )/aA ) exists for all
J U B

1 2
j=l M and C=l L. There exists measurable functions h.(y,X), h..,(X),

h^g,{X), hJj(y.X). hjgj,(X), hjg(y,X) and hjj,g(X) for all C,C'=1 L;

j,j'=l M such that

(A. 2a) |yAj(X|A)| < hj(y,X)

(A. 2b) |Xjfij,(X|A)| < hjj,(X)

(A. 2c) |Xg(X|A)Xg,(X|A)| < h^g,(X)
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(A. 2d) |yXg{XiA)ilj(X|A)| <h^j(y,X)

(A.2e) |XAg(X|A)ftj,(X|A)| < hJjj.CX)

(A.2f) |y(ail^(X|A)/aA^)| <hjg(y.X)

(A.2g) |Xj(aftj,(X|A)/aAg)| < hjj,g(X)

for all A in an open neighborhood of A=A , where E(h ) exists for j"=l,...,7,

for all «,e'
. j, j'

.

30



Notes

1. It is well known that coefficient estimates are sensitive to specific

stochastic distribution assumptions in many limited dependent variable

contexts. For instance, Heckman and Slnger(1984) illustrate the sensitivity of

estimates for duration models, and establish an approach based on

nonparametrically estimating the stochastic heterogeneity distribution.

2. See also Brillinger(1982) , Goldberger ( 1981 ) , Greene( 1981 . 1983) .

Lawley(1943) and Singh and Ullah(1985), Stewart( 1983) . among others.

3. This framework differs slightly from that of Chung and Goldberger{ 1984

)

and Deaton and Irish(1984), since those papers only require t (my notation) to

be uncorrelated with X.
M

4. The support fi is defined as the closure of the set {X€R |p(X)>0}.

5. This terminology is due to that fact that a(X) is the score vector of p

with respect to a translation parameter - see Section 3.

6. This is shown by noting that condition A is satisfied by y=G(X)=l. a

constant variable, and applying (3.3,4).

7. A similar link is used to establish the consistency of OLS estimators

for the standard linear model. Namely, the functional form assumption that

E(y|X)=G(X)=a+X'^ implies Cov{X,y)=I.^^^ , or Cov(Ij^^X,y )=p . By the same

assumption, the behavioral effects are p=aG(X)/aX=E(aG(X)/aX) . The latter

correspondence underlies the practical usefulness of the standard linear

model .

8. Stoker(1986) gives a general development of local aggregate, or

acroeconomic effects.

9. Other consistent estimators of Yp include the "product moment"

estimator d =EA.y./K, the "reduced form" OLS estimator of the slope
1 1 1 A - - A ' -1-1

coefficients of y .=c-+d X.+u . , where X =(Z^^) k^, and the weighted OLS

estimator proposed by Ruud(1984). None of these estimators are first-order

equivalent to either d or d in general.

10. This expanded notation is used in this section only.

11. X then takes on the same role as the random term € of section 2.

12. Notice that d of (4.12) consistently estimates Y p , and that the

analogous coefficients from the linear equation with X as explanatory

variables will estimate ^ p .
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13. If X. appears in both Z, and Z„ , its coefficient in d will estimate
J 12

Y 3 .+Y„6^.. Thus common variables will have coefficient estimates that are
I'^lj 2 2j

the sum of the average derivatives Induced from Z and Z .

14. The framework is subject to the "order independence" property of

Tversky(1972) ; see McFadden( 1981 ) . This can be relaxed without changing any of

the substantive points of this example by allowing the joint distribution of

{€.) to depend on X , but not X .

J 2 1

15. Note that p would be consistently estimated by d if the instrument

ft(X) were redefined as the score of the conditional distribution of X given e,

by treating z as an extraneous variable as above. However, one could never

compute these instruments, since the value of e for each data point must be

known as well as the conditional density of X given £.

16. Nonparametric regression function estimators could be used to estimate

p directly from (4.1). See Stone(1977) among many others, and Prakasa-

Rao(1983) for a survey of these methods.

17. In this section it is implicitly assumed that the population

covariance matrices >.„„ and Z., exist.
XX T(y

18. The translation interpretation of the result is also straightforward

within this context. In particular, if X is normally distributed with mean >i

A

and variance-covariance matrix Z , then Z=a+X'p is normally distributed with
AA

mean p =a+>j 'p and variance o =p'Z p. The translated density p(Xie) is
Z A ZZ XA

normal with mean jj +6 and variance-covariance matrix S , with the translated
A AA

density of Z normal with mean a+y 'p+B'P and variance o . Thus the mean of y
A ctij

under translation varies only with 6'$, so that the aggregate effects

aE(y|8)/a8 are proportional to p.

19. ^ may be heteroscedastic , so that this case includes standard

heteroscedastic linear models as well as linear models with random

coefficients, where the coefficients are distributed independently of the

Included X variables.

20. The residual interpretation of r (Z) Is established along the same
n

line as the interpretation of R(X) above.

21. For example, the linearity condition Is valid when the distribution of

X is elliptically symmetric, as in p(X)=p''[ ( 1/2) (X-m„) T„„"^(X-p^) ]=p"'(5 (X) )

.

A AA A ^

Here ft (X)=w(5 (X)Z ' (X-p^) , where w(5)= - ain p"^/a5. When u)(5)>0 for all S, d

is the weighted OLS coefficient estimator of (4.4), where the i observation

(y.,X.) is weighted by >la)(5(X.)). Note that a)(5(X.)) = l when p(X) is the

multivariate normal distribution.
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22. The variance of d is estimated using the "heteroscedasticlty

consistent" estimator of White(1980).

23. Nonparametric estimators of the score vectors can be proposed using

several methods, as surveyed by Manski( 1984b) and Prakasa-Rao{ 1983) . Gallant

and Nychka(1985) prove consistency of d when score vectors are estimated using

Hermite polynomial approximations.
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