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ABSTRACT

We prove the existence of a Nash equilibrium of a class of continuous time stopping games when

certain monotonicity conditions are satisfied.
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1 Introduction

The game theoretic extension of the optimal stopping theory in the discrete time framewori<

was initiated by Dynkin [1969] in an analysis of a class of two-person zero-sum stopping games.

The extensions of Dynkin's work include Chaput [1974], Elbakidze [1976], Neveu [1975], and

Ohtsubo [1986] in discrete time and Bensoussan and FViedman [1974], Bismut [1977, 1979],

Chaput [1974], Kiefer [1971], Krylov [1971], Lepeltier and Maingueneau [1984], and Stettner

[1982] in continuous time.

Non-zero-sum stopping games have been studied by Mamer [1986] and Ohtsubo [1986] in

discrete time and by Bensoussan and Friedman [1977], Morimoto [1986], Nagai [1987], and

Nakoulima [1981] in continuous time.

The widespread and potential use of stopping games can be found in economics, finance,

and management science. Examples include the entry and exit decisions of firms, job search,

optimal investment in research and development, and the technology transition in industries.

(See Fine and Li [1986], Mamer and McCardle [1987], Reinganum [1982] etc.) In fact, many

stochastic dynamic games in which each player's strategy is a single dichotomous decision at

each time can be formulated as a stopping time problem.

The existing literature on continuous time non-zero-sum stopping games mentioned above,

with the exception of Morimoto [1986], uses stochastic environments that have the Markov

property. Morimoto [1986] considers cyclic stopping games. The purpose of this paper is to

provide an existence theorem for Nash equilibria for a class of non-zero-sum non-cyclic stopping

games in a non-Markov environment. We basically extend the discrete time analysis of Mamer

[1987] to a continuous time setting. Some properties of a symmetric Nash equilibrium are also

characterized.

The rest of this paper is organized as follows. In Section 2 we formulate an A'-person

continuous time non-zero-sum stopping game. Reward processes are optional processes that

may be unbounded and can take the value -oo at t = +co. A martingale approach is adopted

in Section 3 to show the existence of optimal stopping policies of players under fairly general

conditions. The existence of a Nash equilibrium in games with monotone payoff structures is

proved in Section 4 by using Tarski's lattice theoretic fixed point theorem. We show in the

same section that, for a symmetric stopping game, there always exists a symmetric equilibrium

when the reward processes satisfy a monotone condition. Moreover, a symmetric equilibrium,

when it exists, must be unique when reward processes satisfy another monotone condition and

are separable in a sense to be made precise. We discuss two duopolislic exit games in Section 5
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to demonstrate the two kinds of monotonicity conditions posited in Section 4. T}ic reward

processes of these two exit games also satisfy the separability condition mentioned above.

2 The formulation

Let (n, 7, P) be a complete probability space equipped with an increasing family of sub-sigma-

field of 7 , or a filtration, F = {Jj; t G 5?+}. We shall denote the smallest sigma-field containing

{7t] t € 5R+} by Joo arid assume that F satisfies the usual conditions:

1. right continuity: 7t = Clg^^t ^>' ^^'^

2. complete: 7q contains all the P-null sets.

We interpret each w € n to be a complete description of the state of the world. The filtration

F models the way information about the true state of the world is revealed over time. In a

discrete time finite state setting, a filtration can be thought of as an event tree.

Let 5R+ denote the extended positive real line. An optional time T is a function from n into

3i+ such that

{ujeQ:T{u>) <t} e 7t yte^+,

where !R+ denotes the positive real line. An optional time T is finite if P{T < oo} = 1. An

optionaJ time T is said to be bounded if there exists a constant K G 9?+ such that P{T < K) =

1.

Let T be an optional time. The sigma-field 7t, the collection of events prior to T, consists

of all events A E 7oo such that

Af]{T<t}e7t yte^+.

A process X in this paper is a mapping X : fi x 3?+ h-> SR measurable with respect to

7®B{yi+), the product sigma-field generated by 7 and the Borel sigma-field of !R+ . A process

X is said to be adapted, if X{t) is measurable with respect to 7( V^ G 5R+. The optional

sigma-field, denoted by 0, is the sigma-field on n x 5R+ generated by adapted processes having

right-continuous paths (see, e.g., Chung and Williams [1983]). A process is optional if it is

mecisurable with respect to 0. Naturally, any adapted process with right-continuous paths is

optional. It is also known that any optional process is adapted (see, e.g., Chung and Williams

[1983]). For any process X, we write X+{t) = max[X(0,0] and A'"(0 = max[-A'(0,0]. it

is clear that X{t) = X'^{t) - X~{t). For an optional time T, we will use X{T) to denote the

random variable X{uj,T{(jj)).





2 The formulation 3

We consider an A' player s£o;)pinff yame. Players are indexed by » = 1,2,..., A'. The payoffs

of this game are described by a family of optional reward processes:

z,(u;,<;T_.);<e5R+,t= 1,2, ...,7V,

where r_, runs through all (A^ - l)-tuple of optional times. Interpret z,{uj,t;T_,) to be the

payoff that player i receives in state w when his strategy is T, and T,{u) = t, if T-, are the

strategies employed by players other than t.

Note that the value ol a reward process "at infinity" specifies the payoff to a player if he

never stops. There are at least two possibilities depending on the nature of the game. First, if

a player does not receive any reward when he never stops, we simply set 2,(w, +oc; T_,) = 0.

Second, if the value at time t of reward process represents accumulated payoffs a player receives

from time to time t if he does not stop until time t, then a natural selection of the value at

infinity is

2,(w,+oo;T_,) = limsup,_+^2,(a;, t;r_,).

For an example of the second case, see Section 5. In the above two cases, it is easily verified that

the reward processes as defined on 5R+ are optional and their values at infinity are measurable

with respect to Tea-

The following assumptions on reward processes will be made throughout this paper:

Assumption 1 For any [N - l)-tupl£ optional times r_, and any bounded optional time T,

we have E[2,{T,;T_,)] > -co. Moreover, there is a martingale^ m = {m{t);t £ 9?+} such that

"ilt^.O > z,{u,t-T-,) for all {oj,t) e fi x ^+.

Assumption 2 The reward process 2,(w,/;T_,) is upper-semi-continuous on the right and

quasi-upper-semi-continuous on the left}

Assumption 1 ensures that

-oo < sup E[z,{T;T.,)] < +oo
reT

"The process m = {m{t);t G »+} is a martingale if it is adapted to {I,;i £ !ft+}, £||m(/)|J < oo for all

t € S-)-, and £[m(t)| J,] = m(s) a.s. for all t > s. Note that since m is defined on the extended positive real line,

it is uniformly integrable. Thus E[m(T)|77.1 = m{T) a.s. for optional times t >T.
An optional process x = {z[t);t 6 S?+} is upper-semi-continuous from the right if for every optional time t

we have lim8up„_„2(T -f- l/n) < x[t) on the set {r < oo}. Similarly, an optional process z = {x{t);t 6 3? + } is

said to be quasi-upper-semi-continuous on the left if for each optional time t and any sequence of optional times

{Tn;ri = 1,2,...,} increasing to t, limsup„_^i(T„) < i(t).
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for all T_,, which we will formally state in Theorem 1, where T denotes the collection of all

optional times. The usefulness of Assumption 2 will become clear later. Note that a reward

process satisfying Assumption 1 can be unbounded from above and from below, and can take

the value — oo at t = +oo.

Given the strategy of his opponents T_,, the objective of player i is to find an optional time

T, that solves the following program:

supE[r.(T;T_,)!. (1)
TeT

If such an optional time T, exists, we will sometimes say T, is a best response to T_,-.

A Nash equilibrium of the stopping game is an TV-tuple of optional times (T,; «' = 1, 2, . .
.

, A')

such that T, solves (1) for i = 1,2,..., A^.

3 Existence of best responses

In this section we will show that there always exists a solution to (1). This solulion will

also be said to be a "best response." Our analysis closely follows that of Thompson [1971 .

In Thompson [1971], players are allowed to use only the finitely-valued optional times. Here,

however, the admissible strategy space is composed of all the optional times. Our generalization

of Thompson's analysis is quite straightforward. For completeness of this paper we shall provide

some details of this generalization.

Note that Fakeev [1970] and Maingueneau [1976/77] also analyzed optimal stopping prob-

lems by allowing non-finite optional times in a non-Markov setting. Fakeev [1970] required that

£'[sup( 2~(i;r_,)] < oo and Maingueneau [1976/77] worked with reward processes that are of

dass D, that is, random variables {z,{T\T-i);T G T} are uniformly integrable. Assumptions

1 and 2 admit processes that lie outside the framework of Fakeev [1970] and Maingueneau

[1976/77].

We proceed first with some definitions.

Definition 1 A regular supermartingale {X{t);t G !R+ } is an optional process so that for any

bounded optional time T,

E[X-{T)]<^ (2)

and for all optional times S >T, E[X{S)] is well-defined and

E[X{S)\7t] < X{T) a.s. (3)
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Remark 1 Out definition of a regular supermartingale is a generalization of Merten [1969J to

include values at infinity. Mertens /1969, Theorem l] has shown that almost all of the paths

of a regular supermartingale have right and left limits and are upper semi-continuous from the

right. The regular supermartingale defined in Definition 1 also has the same characteristics.

An optional process Y is said to lie above the optional process W , denoted by y > H', if

Y{u), t) > W{uj,t) for all (w, t) outside a subset of n x 9?+ whose projection on n is of P-measure

zero.

A regular supermartingale Y is the minimum regular supermartingale (MRS) lying above

an optional process W i( Y > W and ii X >W for any other regular supermartingale A', then

X >Y.

The following proposition shows that, for any (A'^ - l)-tuple of optional times T^,, there

exists a MRS lying above the reward process {2,(<; T_,); < 6 9?+}-

Proposition 1 For any [N — \)-tuple of optional times T_,, there exists a MRS, denoted by

{Y,{t;T-,);t G ^+} , lying above the reward process {z,{t;T-,);t G ^-, } . The MRS Y,{T-,) is

right-continuous on the set {[iu,t) G Q X 3?+ : Y,{uj,t;T-t) > 2,(0;, t; T-,)}. Moreover, fix f >

and t G 9f+, and let

7, = inf{s > t : 2.(s;T_,) > y;(s;T_.) - e}.

Then P{t, < 00} = 1 and

E\Y,{u-T.,)\Tt] =y.(t;T_.) a.s.

Proof Put

z^{t-T.,) = m^x[z,{t-T.,),-M\ V< G ^+.

The process z^[T-,) is bounded above by a martingale by Assumption 1 and is bounded below

by M. Dellacherie and Meyer [1982, Appendix I, Theorem 22] shows that there exists a MRS

Y-^{T-i) lying above 2,^(T_,). Now define

y.(<;T_.) = essinf{y,^(t;T_.);M=l,2,...}

for all < G ^+

.

We claim that Yi{T-i) is the MRS lying above z,[T-,). First, it is easy to see that }\(T-,) is

optional. Second, we show that Yf{T-,) is a regular supermartingale. Since Y,{T^,) lies above

Zi{T-i), for any bounded optional time T, E[|y,(T;T-,)|] < 00 by Assumption 1. Next let T
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and 5 be two optional times with T < S. By Assumption 1, £'[7,(5; T_,)] is strictly less than

+00. Moreover,

E[Y,{S-T_,)\Tt] < E{Y,'^{S-T_,)\Tt]

< yA^(T;T_.) as. for all N = 1,2,...

where the first inequality follows from the definition of y,(T_,) and the second inequality follows

from the fact that Y/^{T-,) is a regular supermartingale. Relation (4) implies that

E[Yi{S;T-i)\TT] < essinf r,^(T;T_.) = 7.(7; T_,) a.s.M
Thus Y,{T-i) is a regular supermartingale.

The rest of the cissertion follows from similar arguments of Lemmas 2.2 and 4.2-4.5 of

Thompson [1971]. I

Now define an optional time

r.(T_,) = inf{i e 5R+ : Y,{t;T.,) = z,{t;T^,)}.

The following is our main theorem of this section.

Theorem 1 T,(T_,) is a best response to T_, for player i. Moreover,

£[y.(0;T_,)] = sup E{z,{T-T^,)]
TeT

and E[\Y,{0;T_i)\] < oo.

Proof Fix n > and let

T„ = inf{s > : y.(s;r_.) < 2.(s;T_.) + -}.
n

By Proposition 1, ?„ is finite a.s. and

E[y,(r„;T_.)l = ^[r.(0;T_.)]. (5)

By the hypothesis that z,{T_,) is upper-semi-continuous on the right (Assumption 2), the fact

that y,(r_,) is right-continuous on the set {Yi[s;T-,) > 2,(s;T_,)} (Proposition 1), and (5) we

have

1

n

E{Y,{0-T-,)] -
n

1

^[^.(r„;T_.)] > E[Y,(t„;T-,)] -

1

> sup E\z,[T-T^,)]
TeT "
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Letting n —> oc and noting that

sup E[z,{T-T^,)] > E[z,{r„-T_,)] Vn,
TeT

we get

sup E[z,{T-T-,)] = ElY,{0-T-,)]. (6)
TeT

Moreover, Assumption 1 implies that £[|yj(0;T_,)|] < oo. These are the second and the third

assertions.

Next put t' = limnTn. The limit is well-defined since t„ is increasing in n. It is clear that

r' < T,{T_,). We have

E[Y,{T';T^,)]>E{z,{r'-T-,)] > lim E[^.(r„;T_.)]
n—OO

= £;[y,(0;T_.)]

> E[r.(7';T_.)],

where the second inequality follows from the hypothesis that 2, (T_,) is quasi-upper-semi-

continuous on the left. It then follows that

E[z,{r';T-,)] = E[Y,{t';T-,)] = E[Y,{0-T-,)\.

Recall from above that E{\Yi{0;T-,)\] < oo. Therefore it must be that z,(r';T_,) = Y,{t';T-,)

a.s. and r' = T,{T^i). By (6), it follows that T,{T-,) is a best response to T^,. This is the first

assertion. I

The following propositions give some properties of a best response which we will find useful

in Section 4.

Proposition 2 Fix T_,. Let t, be a best response for player t and let Yi{T-,) be the MRS lying

above £,(T_,). Then

y.(7.;T_.) = z.(r.;T_,) a.s., (7)

and hence

T,{T_,) < T, a.s. (8)

Proof By the fact that F,(T_,) is a regular supermartingale, r, is a best response, and V, (7"_,)

lies above 2,(T'_,), we have, almost surely,

£ly.(r.;T_,)] < E[r.(0;T_.)] = E{z,{t,;T_,)] < E\Y,{t,;T_,)],
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where the equality follows from the second assertion of Theorem 1 . Hence

E[y.(0;T_.)] = E[y.(r.;T_.)l = E[z,{t,-T.,)].

It then follows from Y,{T-i) > z,{T-i) a.s. and the last assertion of Theorem 1 that

y,(7-,;T_,) = 2,(r,;T_,) a.s.

This is (7).

By the definition oi T,{T-i), we then have T,(T_i) < t, a.s., which is (8).

I

Note that (7) says that any best response r to T-, must be the random times at which

Yi{T-t) meets 2,(r_,). Since T,{T^i) by definition is the first time that Y,{T_,) is equal to

2,(T'_,), Ti{T_i) is the minimum best response for player i, given that his opponents play T.,.

This is (8).

The following proposition shows that a best response t, chosen by player » at time continues

to be optimal at any optional time S as long as at S player » has not stopped according to r,

.

Proposition 3 Let r, be a best response to T_, and let S be an optional time. Then on the set

{'« > S) , r, is a solution to

sup E{z,{r;T_,)\rs].
t€T,t>5

Proof If the event B = {r, > 5} € Ts is of zero probability, there is nothing to prove.

Suppose therefore that B is of a strictly positive probability.

Suppose that the assertion is false. Then there exists an optional time ? > S as. such that

P[B) > 0, where

B = {<^eB: E{z,{t-T_,)\Ts] > E\z,{r,;T_,)\rs].

Define

I
T,{u) Uujen\B;

^ ^'^^
\ f[u) liujeB.

It is eaisily verified that t' is an optional time and

E{z,{t'-T^,)]> E[z,{t,-T.,)],

a contradiction to the hypothesis that r, is a best response to T_,-. Hence the assertion follows.
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4 Nash equilibria when 2;,'s have a monotone structure

In this section we will show that there exists a Nash equilibrium when the reward processes of

players satisfy certain monotone structures.

Consider the following eissumptions:

Assumption 3 There exists Q e T with P(n) = 1 and for u; e h, t, t' e ^+ and t > t'

,

Zi{ijj,t;T-i) — Zi[oj,t';T-,) is nondecreasing in T-,.

Assumption 4 There exists Q e T with P{h) - 1 and for u e Q, t, t' G ^+ and t > t'

,

Zi[LL),t,T-i) — z,[oj,t']T^t) is nonincreasing in T-i.

Assumption 5 There exists Q e 7 with P{Q) = 1 and for oj e fl, t, t' E !R+ and t > t'

,

Zi{ijj,t]T-,) - r,(w,f';T_,) is strictly decreasing in T-i.

Assumption 3 says that the longer his opponents stay in the game, the higher the "incremen-

tal" reward a player gets by staying in the game. For example, we often observe departnient

stores and hotels gather in nearby locations. Being clustered together, they can generate a

higher demand for their services such as convention business for hotels. Assumption 4 is the

converse of Assumption 3: a player's incremental reward decreases the longer his opponent stay

in the game. This is a more natural assumption for, say, oligopolists facing a fixed demand func-

tion for the industry as a whole. Assumption 5 is a strengthening of Assumption 4. Examples

of games having reward processes that satisfy Assumption 3 or 4 can be found in Section 5.

Denoting by T^ the collection of A''-tuple of optional times, we define <I> : T' >—» T' as

$(T,,...,r;v) = (T.(T_.)).'li.

By Theorem 1, "^ is well-defined. Since $ specifies best responses for players, it will sometimes

be referred to eis a reaction mapping.

For two A'^-vectors of optional times t — [ri,. . . ,Tfi) and S = (S,, . . . ,5^-), we denote by

r > 5 if r, > 5, a.s. for all i' = 1,2, . .
.

, A'^. The mapping $ is said to be monotone increasing

if for any two A^-vectors of Markov times t > S, r' = $(r) and 5' = ^{S) imply t' > S' . The

mapping $ is said to be monotone decreasing if for any two A^-vectors of Markov times r > S

,

t' = $(r) and S' = $(5) implies t' < S'

.

The following proposition shows that $ is monotone increasing under Assumption 3 and is

monotone decreasing under Assumption 4.





4 Nash equilibria when z,'s have a monotone structure 10

Proposition 4 $ is monotone increasing if Assumption S is valid and is monotone decreasing

if Assumption 4 is valid.

Proof Suppose that Assumption 3 is satisfied. Choose two A^-vectors of optional times

T > S. Let t' = $(7-) and 5' = $(5). Suppose the set

A = {.; < 5.'}

is of strictly positive mear-jre for some i. By Assumption 3 we know, almost surely,

[^.•(5,';r_.) - z.(r.';r_.)]l^ > [z.(S:;5_.) - z.(r,'; 5_.)]U.

Taking conditional expectations with respect to T^' on both sides of the above relation gives

> £;[2.(5,';r_.)-2.(r,';r_.)|^r'llA

> E[z,{Sl-S_,) - r,(r,';5_,)l.';.]U > 0,

where we have used the fact that A G Tj' (see, e.g., Dellacherie and Meyer [1978, Theorem

IV. 56]), where the inequalities follows from Proposition 3. Thus

£[2,(5,-; S_,)|.%.') = z,(t,';5_,) a.s. on the set A. (9)

Now define ct, = S,' A r' a.s. It is easily checked that a, is an optional time and cr, < S-,

Oi ^ S'- on a set of strictly positive measure. We claim that a, is a best response to 5_,. To

see this, we note that

E[z,{a,- 5_.)] = E[z,{tI- S_,)U + z.{Sl\ 5-,)^^]

= E E[z,{S[S-,)\A + z,[SlS^,)\A^Jr'

= E\z,{S[-S_i)\,

where we have used (9) and where A'^ denotes H \ >4. This is a contradiction to the fact that

S[ is the minimum best response to 5_,; see Proposition 2. Thus A must be of measure zero.

The rest of the assertion follows from similar arguments. I

The following is the first main theorem of this section:

Theorem 2 There exists a Nash equilibrium of the stopping game under Assumption S.
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Proof Suppose that Assumption 3 is satisfied. From Proposition 4, <C> is a monotone increas-

ing mapping from T^ to itself. Proposition VI.1.1 of Neveu [1975] implies that (T'^',>) is a

complete lattice. It then follows from Tarski's fixed point theorem (see Tarski [1955]) tliat there

exists a fixed point for <^. It is easily verified that the fixed point is a Nash equilibrium.

I

A stopping game is said to be symmetric if for any (A^ - l)-tuple of optional limes T_,

we have 2,(u;,t;T_,) = 2j(w,t;T_,) except on a subset of fi x !R+ whose projection to H is of

measure zero. A Nash equilibrium {Ti)f_^ is a symmetric equilibrium if T, — T, a.s. for all i,j.

Under Assumptions 3, the following theorem shows that, in a symmetric game, there always

exists a symmetric equilibrium.

Theorem 3 Suppose that Assumptions S are satisfied. Then there exists a symmetric Nash

equilibrium in a symmetric stopping game.

PROOF Let

D = {T eT^ -.T,^ T, a.s.Vi,;}

and let F be the restriction of ^ to D. Note that for each T e D, $,(T_,) = $;(T__,) a.s. for

all t,,;', where <I>, denotes the t'-th component of $. Therefore, F maps D into D. Arguments

similar to the proof of Proposition 4 show that F is monotone increasing. It is also easily

verified that D is a complete lattice. The cissertion then follows from the Tarski's fixed point

theorem. I

In the next theorem we specialize our model to the case where the number of players is

equal to two. In this case, there exists a Nash equilibrium under Assumption 4.

Theorem 4 Suppose that N = 2. Then there exists a Nash equilibrium under Assumption ^

for the stopping game.

Proof From Proposition 4, we know $ : T'^ i— T^ is monotone decreasing. Let <I>, (r_,) be

the t'-th component of ^{T). It is easily seen that $,'s are monotone decreasing. Consider the

composite mapping $i o $2 : T •—
> T. This composite mapping is monotone increasing since

$1 and $2 are monotone decreasing. It then follows from the Tarski's fixed point theorem (see

Tarski [1955]) that there exists a fixed point of the composite mapping, that is, there exists

Ti G T such that ^i{^2{Ti)) = Tj. Hence (Tj, <f>2(7'i)) is a Nash equilibrium. I

Even in the two player case, there may not exist a symmetric Nash equilibrium for a sym-

metric game under Assumption 4; for an example of nonexistence see Huang and Li [1987].
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Note that we only consider pure strategy equilibria in this paper. Our conjecture is that a

symmetric equilibrium exists for a symmetric stopping game under Assumption 4 if mixed

strategies are allowed. The following theorem, however, shows that if there exists a symmetric

Nash equilibrium for a general A'^ player symmetric game under Assumption 5 and if the reward

processes satisfy a separability property, then this equilibrium must be the unique symmetric

Nash equilibrium.

Theorem 5 Suppose that Assumption 5 is satisfied and that there exists a symmetTic Nash

equilibrium in a symmetric stopping game. Then this Nash equilibrium is the unique symmetric

equilibrium provided that reward processes satisfy the following condition of separability: If

T,S G T^~^ and t = S a.s. on a set B € ', then almost surely

Zi{u,,t;T) = z,{oj,t;S)yte^+yoje B.

Proof Let "I* be a mapping from T^ to all the subsets of T'^ that gives all the best responses

to an element of T . By Theorem 1 , this mapping is well-defined. We claim that ^ is monotone

decreasing in the sense that for two optional times t > S a.s. and r' £ '^{t) and S' G '^{S) we

have r' < S' . To see this, we suppose that the set

A = {rl > 5.'}

is of strictly positive probability for some i. By Assumption 5, we know almost surely,

(^.(r;;r_.) - 2,(5,'; r_.)) U < {z.irl^S-,) - z,iS';S.,)) 1^.

Taking conditional expectations with respect to 7^' gives

E k(r:;r-.) - 2.(5,'; r_.)l.vl Ia < E Uirl-S.,) - ^.(5.'; 5_.)j.vl U,

where we have used the fact that A £ Ts' (see Dellacherie and Meyer [1978, Theorem IV.56J).

The left side of the relation is nonnegative almost surely by Proposition 3. Hence the right side

is strictly positive and is a contradiction to Proposition 3.

Now let T' ,T' e D and T* # T' be two symmetric Nash equilibria. We will show that this

leads to contradiction by considering three cases.

Case 1: T* < T' a.s. Since T' and T' are Nash equilibria, we must have T' e *(T") and

T' e *(r'). The monotonicity of * implies that T' > T' a.s., hence T' = T' a.s.. This a

contradiction.

Case 2: T' < T' . Using the monotonicity of 'i' , we have a contradiction similar to the

previous case.
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Case 3: P{T' < T'} e (0,1). Define T = T' ^T' . Since D is a lattice, T E D. Let

f e *(T). By the monotonicity of * and the fact that T' E *(T") and T' E *{T'), we know

T > T a.s. and T > T* a.s.

Let B = {T' < T'}. By Dellacherie and Meyer [1978, Theorem IV. 56], B E It-- We have

lB^[^.(T;;T^)|/rl = lB^[^.(7;';r_.)|.Vl

< lBE[z,{f,;T^,)\7r]

= lBElz,(f,;ri.)17j-;],

where the first equality follows from the separability assumption, the inequality follows from

Proposition 3, and the second equality follows again from the separability assumption. Since

T,' is a best response to T'_^ and since T > T' , Proposition 3 implies that the above inequality

must be an equality. That is

lBE\z,{T:-T'_,)\7r] = lBE[z,{f,-T'_,)\Tr] a.s. (10)

Now we define

^ ^'^^-\
f(a;) ifuEB^,

where B'^ = Q\B. Since B E Tt- "^
^f,'^^

's easily verified that T° is a optional time (see, e.g.,

Dellacherie and Meyer [1978, Theorem IV. 53]). We claim that T° E *(T). To see this, we note

that

E[z,{T:;T^,)] = E\lBZi{T°;T.,) + lB'Z,{T°;T^,)\

= E[lBZ,iTl;T^,)+lB'Z,{f,-T_,)]

= E[1b2.(T.;T_.) + 1b^^.(T'.;T_,)!

= ^[r.(T.;T_.)],

where the third equality follows from (10). Hence we proved our claim that T° E *(T). This

implies that T° > T' a,s., by the monotonicity of *. But on the set B, T° = T' < T', a

contradiction. Therefore the set B must have a zero probability and T' > T\T' ^ T' . This is

Case 1. We thus conclude that T' = T' as. and there is a unique Nash equilibrium. I
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5 Two duopolistic exit games

In this section we will consider two continuous time duopolistic stochastic exit games. The first

satisfies Assumption 3 and thus has a Nash equilibrium by Theorem 2. In addition, if this game

is symmetric, there is a symmetric Nash equilibrium by Theorem 3. The second game satisfies

Assumption 5 and therefore has a Nash equilibrium by Theorem 4.

Let the probability space and filtration be as specified in Section 2. There are two processes

X = {X{t)]t e^+} and W = {W{t);t G ^+} adapted to F. There are two firms in the market

at the beginning of both games. These two firms are sissumed to be risk neutral and are indexed

by I = 1,2. The riskless interest rate is a constant denoted by r. A firm's problem is to find an

exit time in order to maximize the present value of its expected profits.

In the first game, let ;r,i(A'(<)) be the profit rate at time t for firm : when it is the only

firm in the market and let 7r,2(^V(<)) be the profit rate at time t for firm t when there are two

firms in the market. Suppose that |7r,j| is bounded. We interpret A' to be the industry demand

when there is only one firm in the industry and W to be that when there are two firms in the

industry. Assume that the demand is higher when there are two firms in the market. Thus it

is natural to require that t,2(V^(<)) > jr,i(X(<)) for t = 1,2. The reader can think about the

example we gave in Section 4 on department stores and hotels clustering together to generate

a higher demand. Given that its competitor exits at the optional time T, the reward process

for firm t is

z,{io,t-T) = /o'^^'^'e—V,2(Vy(a;,s))ds+/' c-";r„(X(u;,5))cf5, te^^,
(11)

Zi[u},+oo\T) = limsup(_+^ z,{uj,t\T).

This reward process is absolutely continuous on [0,+oc) and adapted and therefore optional.

It satisfies Assumptions 1, 2, and 3, and there exists a Nash equilibrium by Theorem 2. When

7rjy(-) = n2]{') for j = 1,2, this is a symmetric game and there is a symmetric Nash equilibrium

by Theorem 3.

Now consider the second game. Let ;r,j(A(<)) be the profit rate firm i receives at time t

when there are j firms in the market and when firm «' is still in the market, where j = 1,2.

Assume that |7r,j(-)| is bounded. Also interpret X[t) to be the demand. Unlike in the first

game, the total demand here is independent of the number of firms in the market. Thus it is

natural that a firm's profit is lower when it is a duopoly than when it is a monopoly. Hence we

require ;r,i(A'(<)) > n^2{X{t)).
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Given that its competitor exits at the optional time T, the reward process of firm i is

(12)

Zi{u>,+oo;T) = limsup,^^^ z,{uj,t;T).

This reward process can be verified to be optional and satisfies Assumptions 1, 2, and 5. ll

then follows from Theorem 4 that there exists a Nash equilibrium of this duopolistic exit game.

Readers interested in detailed analysis of this game and discussion on refinements of Nash

equilibria when X is a Diurtiiian motion are referred to Huang and Li [1987].

Finally, we remark that the reward processes defined in (11) and (12) satisfy the separability

condition of Theorem 5.
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