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ABSTRACT

This paper considers an inventory problem on a multi-stage, serial

system. The demand for the end item is stochastic and stationary. The

relevant costs include a fixed ordering cost and an echelon inventory

holding cost for each stage, and a backorder cost for the end item. The

objective is to find a continuous-review inventory control policy that

minimizes the expected costs. We present and analyse an approximate cost

model. This model is an extension to the traditional single-item,

continuous-review inventory model that leads to a reorder point, reorder

quantity policy. The nature of our approximation is identical to that for

the traditional single-item model. The policies that we derive are also

quite analogous to those for the single-item model,
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1. Introduction

Most multi-echelon inventory systems have significant stochastic

characteristics. Yet most of the inventory control systems in practice,

such as materials requirements planning (MRP) systems, either ignore these

stochastic elements or deal with them in an overly simplistic manner.

Furthermore in the inventory literature there is very little theory that

can be applied to these problems. In this paper we hope to make a small

step at improving this theory. We consider a simple multi-echelon system,

namely a serial system, for which we determine continuous-review control

policies. We base this analysis on an approximate cost model that is a

direct extension to the approximate cost model used for a single-item,

continuous-review inventory problem. The resulting solution is quite

analogous to that for the single-item model, that being the determination

of a reorder point and a reorder quantity. In the remainder of this

section we give a brief review of some relevant literature.

The most closely-related work is that by Clark and Scarf [ 3 ] , [ 4 ]

.

In this work, they analyse both serial and assembly systems under a periodic

review control system when the end item demand is uncertain. When a fixed

ordering cost is assumed at all stages, their solution procedure only gives

an approximate solution but does provide both upper and lower bounds on the

cost for the optimal solution. Their solution method computes the optimal

policy for each echelon separately, with successive echelons being linked

by a penalty function that represents the cost of not being able to fill a

replenishment request. Extensions to the Clark-Scarf approach are given by

Schmidt and Nahmias [12] who characterize the optimal inventory policy for

a simple assembly system and by Lambrecht et al. [8 ] who examine various

safety stock policies for multi-echelon production/inventory systems.





An integral and important aspect of the Clark-Scarf studies is the

use of echelon inventory in the control policies for the multi-echelon

system. The echelon stock for a component is defined as the inventory of

the component plus all of the inventory of downstream items that use or

require the component (e.g. subassemblies or end items). In this paper

we will rely heavily on the use of echelon stock in the control policy.

Additional analytical work on multi-echelon inventory systems has

been done by Simpson [15] and by Hanssman [7], both of whom consider very

specific cases. Simpson treats a serial system with no setup costs and

with all shortages handled exogenously. He provides an analysis for a

periodic-review, base stock control system. Hanssman extends this analysis

for the case where the customer demand level is a function of the service

level provided.

Finally there has recently been substantial effort attempting to

determine appropriate safety stock policies for MRP control systems,

(e.g. Carlson and Yano [2], [17], Meal [9 ], Miller [lO], New [ll] ,

Whybark and Williams [16], Candea [ 1 ]) This work focuses on the questions

of where to place safety stock in a complex production system and how much

safety stock is necessary to provide adequate protection. This body of

research includes both exploratory efforts at characterizing the proper

policy (e.g. Miller [10], Whyback and Williams [16], Candea [1]) as well as

detailed approaches to resolving some of the issues (e.g. Carlson and Yano

[ 2 ], [17], Meal [9]).





2. Problem Description and Assumptions

The problem of interest is to find good inventory control policies

for a multi-echelon production/inventory system with stochastic demand

under continuous review. In Section 3 we present an approximate model

for a two-stage production/inventory system. In Section 4 we show how

this analysis extends to an M-stage serial system. In Section 5 we discuss

how the model might be generalized to more realistic production/inventory

assembly systems. The basic model is a direct extension of the classical

continuous-review model for a single item with stationary, stochastic demand,

i.e. a reorder point, order quantity model (Hadley and Whitin [ 6 ], pp. 159-169)

Below we state the key assumptions describing the operating mechanics of the

system that we model.

(i) We assume primarily a pure serial production/inventory

system. In a serial system each stage has at most one

succeeding stage and at most one preceding stage , Each

stage is both an inventory control point and a production

or processing center. In Section 5 we talk briefly about

applying the model to more complex assembly systems.

(ii) Independent demand occurs only for the end item at the

final stage (item 1) . The demand process for the end

item is a stationary, stochastic process. For convenience,

we might assume that the demand over a fixed time interval

is a random variable with a normal distribution. All other

stages experience demand that is dependent upon the replen-

ishment policy for the end item.





(iii) Associated with each stage is a deterministic production

lead time. Once the production of a lot is initiated at

a stage, that lot becomes available for inventory only

after the fixed lead time. Furthermore, the entire lot

is available after the fixed lead time,

(iv) The production of a lot at a stage requires that all

components (immediately preceding stages) be available at

the start of production. Hence, the start of production

results in an immediate draw-down of the component inventories,

(v) The relevant costs at each stage are a fixed setup cost

for the production of a lot and a linear inventory holding

cost. We assume any variable production costs to be linear

in the production lot size and can be ignored,

(vi) End item demand that cannot be satisfied immediately from

inventory is backordered at a cost proportional to the

number of items backordered.

(vii) We desire inventory control policies that minimize expected

cost per unit time. We restrict attention to continuous-

review stationary policies where each stage has a reorder

point and an order quantity. Whenever the echelon inventory

at a stage drops below the stage's reorder point, the stage

initiates production of an order quantity provided that

component stock is available. We require the order quantity

at a stage to be an integral multiple of the order quantity

at the succeeding stage. This latter assumption is consistent

with the policies examined by Crowston et al. [ 5 ] and Schwarz

and Schrage [14] for an analogous deterministic lot-sizing

problem.





This set of assumptions clearly describes an idealized setting.

Yet, the assumptions are similar in spirit to those required in the

continuous-review, single-item model with stochastic demand. Alternatively,

we can view these assumptions as describing a continuous-review analog to

the system studied by Clark and Scarf [ 3 ] , [ 4 ] . The most limiting

assumption would seem to be that the production lead times are fixed; this

removes any problem complexity arising from having to plan or allocate

production capacity across the production stages. In addition, by assuming

the form of the control policies, we greatly simplify the analysis. Yet,

we assert that for the operating system described, the proposed control

policies are most reasonable. Indeed we could not conceive of any other

form of control policy. To illustrate the control policy, we discuss next

a simple, two-stage example.





3. Two Stage Example

Before illustrating the continuous-review policy with a small example,

we need first review the traditional reorder-point, reorder-quantity model

for a continuous review, single stage system (e.g. Hadley and Whitin [6]).

To do this we introduce the following notation:

Q - reorder quantity

R - reorder point

C(Q,R) - expected cost per year as a function of the

parameters Q and R

d - expected annual demand

h - holding cost per unit per year

b - backorder cost per unit

a - setup or ordering cost

f(x|£) - probability density function for lead time demand,

where I denotes the length of the lead time

Now the expected cost function is the sum of the expected setup costs,

holding costs and backorder costs. It is customary to approximate this

cost expression as follows:

00

(1) C(Q,R) = ^ + h(f + / (R-x)f(x|£)dx)
^

CO

+^ / (x-R)f(x|£)dx
R

In this expression the setup cost and backorder cost terms are exact, while

the holding cost term is approximate. The holding cost term consists of

the average cycle stock, hQ/2, and the expected safety stock.

h / (R-x) f (x| £)dx. This latter term is an approximation and represents





the expected net inventory level just prior to replenishment. The reason

for this approximation is its analytic tractability relative to an exact

expression. From the approximate cost expression, the best choice of

policy parameters is given by the simultaneous solution to the following

two expressions:

(2) Q

and

/ 2d(a + bz(R) )

(3) / f(x|!l)dx = ^

where z(R) = / (x-R) f (x
|

Jl)dx .

R

For most common settings in which the backorder cost is significantly larger

than the inventory holding cost, this solution from the approximate cost

expression is nearly optimal. In what follows for a multi-stage system, we

will use the analogous approximation for the expected holding cost as used

in (1).

Now consider a two-stage system. The notation is similar to before,

with the subscript denoting the stage: stage one is the downstream stage

and represents the end item; stage two is the upstream stage and represents

the component. We assume that the order quantities are chosen such that

Q„ = nQ^ for n being a positive integer. The reorder point for the component,

R„, applies to the echelon inventory, that being the inventory (on-hand and

on-order) at either stage two (component) or stage one (end item) . After

placing an order, stage two receives its stock replenishment after a fixed

lead time, call it £^. We assume that whenever the components are replenished,





Q units of the component are immediately forwarded for processing to end

items, regardless of the inventory status of end items. This order quantity

will arrive in the inventory for end items after £ time units. Hence, a

replenishment for components leads to a replenishment for end items, with the

total lead time for the end-item order quantity being £ + £ time units

after the initiation of the component replenishment. We call this a joint

replenishment . Normal replenishment for end items occurs whenever the

end-item inventory hits its reorder point and sufficient component inventory

is on-hand. A joint replenishment is followed by exactly n-1 normal replen-

ishments by stage one. This cycle then repeats, starting with the next

joint replenishment. We depict this behavior for n=2 in Figure 1.

To derive a cost expression for this system, we consider separately

each of the cost elements. For a given set of policy parameters, the

expected annual ordering cost is easily found to be

ad ad
(4) -^=- + -^

To derive the inventory holding cost, we first consider the echelon

inventory for components over a complete order cycle. Just prior to the

arrival of an order quantity of components, the on-hand echelon inventory

is approximated by

/ (R„-x)f(x|£ )dx

where f(x|ii ) is the probability density function for demand over £„ time

units, equal to the lead time at stage two. This expression is approximate

since shortages are treated as negative inventory. Just after the order

arrival, the on-hand echelon inventory is the above quantity plus Q„ = nQ,

.
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Figure 1: Two Stage Example
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Since we assume demand to be stationary, the expected echelon inventory

holding cost over a complete order cycle is

nQ

(5) h (-^ + / (R -x)f(x|£„)dx),

where h„ is the per unit echelon holding cost.

The derivation for stage one is quite similar, but now we must

distinguish between the types of replenishment. Consider an order cycle

at stage one. In n-1 out of n times we have a normal replenishment, and

the on-hand inventory just prior to the order arrival is

oo

/ (R -x)f(xU )dx.

In one out of n times we have a joint replenishment, and the on-hand

inventory just prior to the order arrival is approximated by

oo

/ (R -x)f(x|2, +«, )dx,

since effectively the lead time is ^-,+^2 ^^^^ ^ reorder point of R„. We

assume here that even though the reorder point R2 applies to the echelon

stock for the component, that all of this stock will have been processed to

end items by the time the replenishment of end items arrives. This will

almost certainly be true for most cases of interest. Again, the on-hand

inventory after an order arrival is the above quantity plus Q^. Hence,

the expected echelon inventory holding cost associated with stage one is

Q 0°

(6) h • C-:^ + ^^ / (R--x)f(x|£jdx
1 2 n Q 1 1

00

+ - / (R„-x)f(x|s.^+ii.)dx)
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where now h denotes the echelon holding cost for the end item. A somewhat-

more rigorous justification for this approximation is given in the appendix.

Since backorders occur only for the end items, we must distinguish

between the types of replenishment for the end item to compute the expected

backorder cost. As a consequence of a normal replenishment, the expected

backorder cost is just

b / (x-R )f (x|£ )dx.

^1

Similarly for a joint replenishment we have

oo

b / {x-R„)fix\l +<i^)dx

^2

since the replenishment is triggered at R and requires £,+£„ time units to

complete. We again make the assumption that the entire component inventory

of R„ is available to satisfy end item demand within the joint lead time.

By combining these terms in the proper proportions we get the expected

backorders per replenishment of end items. By weighting this by the annual

number of replenishments, we find the annual expected backorder cost:

oo

(7) YT ' (^^ ^ (x-R^)f(x|£.)dx
^1 " R^ 1 ^

OO

+ - / (x-R„)f (x|«,,+«,„)dx) .

n 2 '12
^2

By summing (4-7) we obtain the expected cost as a function of the

parameters, Q , R , R and n, call it C(Q, ,R^ ,R„ ,n) . This expression is

not exact due to the approximations noted above. If we assume that a value
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of n > 1 is given, then to minimize the expected cost we choose the remaining

parameters as the simultaneous solution to the following equations:

/2d(a, + ^ + bz(R ,R„,n))

CO h Q

(9) / f(x|£^)dx = -^

(h + nh )Q
(10) / f(x|jiT+a„)dx = —

,
—-'12 bd

^2

OO

where z(R, ,R„,n) = ^^^- f (x-R, ) f (x I £, )dx^2 " R^ ^ ^

00

+ - / (x-R„)f(x|£,+£„)dx.
" R2 ^ ^ ^

For the case with n=l , the problem collapses to a one-stage problem for

which the solution given by (2)-(3) is applicable (i.e. a = a + a„,

h = h + h„, £ = £ + £„) . The solution to the equations (8)-(10) can be

found via an iterative procedure that alternates between solving (8) for Q^

given R and R„ , and solving (9)-(10) for R^ and R„ given Q .

We note that the above solution is very similar to that for the

single-stage system. We can interpret the order quantity Q, as an economic

order quantity. The ordering cost has been augmented to reflect the

coordinated replenishments and the expected backorder cost per cycle. The

holding cost also reflects the coordinated replenishments. The reorder

points are found by setting their respective stockout probabilities equal

to a critical ratio. Interestingly, these critical ratios differ, with

the critical ratio (stockout probability) being larger for the component
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than for the end item. Although it is possible for R to be less than R ,

we will typically have R„ greater than R^ , as one might expect.

Determining the best choice for n is not as simple. For given values

of Q , R^ and R„ , the cost expression C(Q^ ,R-| ,R„ ,n) is unimodal in n.

Hence, for this case we can easily find the best choice for n by a simple

line search. Conceivably then, one could iterate between finding the best

choice for Q^ , R and R„ for a given value of n and finding the best choice

for n for given values of Q-. , R, and R„ . This iterative procedure will

obtain improved solutions at each step and is guaranteed to converge since

we can bound the largest possible choice for n. However, there is no

guarantee that this procedure finds the global optimal solution; rather,

this procedure would only ensure a local optimum. An alternate procedure

might be to search over possible values for n, where for each candidate value

of n the best choice for Q^ , R and R„ are determined from (8)-(10). We

conjecture that the objective value as a function of n, assuming that the

conditionally-optimal choices for Q^ , R^ and R„ are used, is unimodal in n;

hence we could perform the line search quite efficiently. We suggest as a

starting value for n to use the optimal choice for n for the deterministic

problem (Schwarz [13]).
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4. M-Stage Serial System

The analysis of the two-stage system extends directly to M-stage

serial systems for M > 2. We need define the integer variables n. to be

the relative order frequency between stage i and stage i-1, for i = 2, 3, . . . M.

Hence, the order quantity for stage i is Q. = n.Q. ^, and Q. = n.n. , ... n^O-, .

1 11-1 ^1 1 1-1 2^1

For convenience, we define r. = n.n. , ... n„ so that Q. = r.Q, and r. -,/r. is
1 1 1-1 2 ^1 1^1 1+1 1

an integer. We assume, as in the two-stage example, that the reordering policy

is a "nested" policy. That is, for any two successive stages, say k and k+1,

the lower stage orders exactly n, times for each order by the higher stage.

Furthermore, whenever stage k+1 orders, there is a joint replenishment with

stage k and all lower stages.

We now express the expected annual cost as a function of the policy

parameters. To do this we will again consider separately the three types of

costs: setup or ordering, inventory holding and backorder. The expected

annual ordering cost is now given by

(11) f • (a^ +^ + ^+ ... +^).
^1 ^ ^2 ^3 ^M

To express the expected holding cost we consider each stage separately.

For stage one (end item) the derivation is analogous to that for the two-stage

example, but more complex. There are now M types of replenishment at stage one.

A normal replenishment occurs whenever stage one reorders without any other

stage having reordered; a "two-stage" joint replenishment occurs when stage

two reorders followed by stage one reordering; a "k-stage" joint replenishment

occurs when stage k reorders and triggers subsequent reorderings by stage

k-1, k-2, ... 1. The initiation of an "M-stage" joint replenishment is a

regeneration point and we define a cycle to be the time between successive
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"M-stage" joint replenishments. A cycle entails r = n„n , . . n^ replenish-

ments by stage one. Of these r replenishments by stage one, exactly one

corresponds to an "M-stage" joint replenishment, rL,-l of the replenishments

are from "M-1 stage" joint replenishments, n^(n^_,-l) of the replenishments

are from "M-2 stage" joint replenishments, and so on. In general, there are

n,.n,, , . . . n, ,„(n, ^-,-1) = r„( ) replenishments that correspond to
M M-1 k+2 k+1 M r,

^]^+i

"k-stage" joint replenishments. Finally, there are
^j^^

• • • n (n2-l) = r^^Cl - —

)

normal replenishments at stage one. Now by repeating the arguments used in the

two-stage example and in the appendix, we approximate the inventory holding cost

for stage one (end item) by the following:

Q "

(12) h . {^ + (1 - —) / (R -x)f(x|£ )dx
^2

CO

+ (- -) f (R,-x)f(x|£ +£ )dx

+ . . .

00

M-1 M

00

+ — / (R^-x)f(x|«. + ... + £ )dx}.

'^M

The first term within the brackets is just the average cycle stock. The

remaining terms comprise the expected safety stock level, which is modeled

as a weighted average of the remaining inventory over all types of

replenishments

.

For stage k, k > 1, the derivation of the expected holding cost is

virtually identical. Due to the nested structure of the reordering decisions,
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the echelon inventory at stage k depends only on the replenishments by stage k

and by higher stages (i.e. stage k+1, ... stage M) . Indeed we can view the

stage-k echelon inventory as if it were the end-item inventory of an (M-k+1) -stage

serial system consisting of stages k, k+1, . . . M. By repeating the arguments

used for the end item, we obtain the following for the expected echelon

inventory holding cost for stage k, k = 2, 3, . . . M:

""k^l ''k
(13) h, • {~^+ (1 —) f (R,-x)f(x|^,)dx

^ ^
""k+l "

oo

+ r (-^ - -^) / (R -x)f(x|£ +£ )dx
^ ''k+l ''k+2 ''^

_

^^

+ . . .

OO

4- r^(-^ - j-) f (R^_,-x)f(xU^^ + ... + £^_^)dx
M-1 MO

""k
"

+ — / (R -x)f(xk, + ... + £-.)dx}
rj^ M k M

The interpretation of this term is identical to that given for (12)

.

To represent the expected annual backorder cost we must account for the

different types of replenishments for the end item. By extending the earlier

arguments for the two-stage example, we obtain the following expression:

oo

(14) ^ .{(1--L)
/ (x-R )f(xU )dx

^1 ^ ^1

OO

+ (- —) I (x-R )f(x|£ +£ )dx
^"2 ^"3 R2

00

+ ...+— / (x-R„) f (x
I

£-, + ... + O dx }

.

^M R^
>1 ' 1 M

def ^ z(R;n)
^1
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The term z(R;n) is defined above to be the expected backorder per replenish-

ment at stage one.

The total expected cost as a function of the policy parameters is the

sum of (11)-(14). If we assume that the {n.} values are specified, then we

minimize the expected cost by choosing the remaining parameters bythe simul-

taneous solution to the following equations:

2d(a, + ^ + —i + ... +-^ + bz(R;n))
1 r r r

(15) Q - ''

1 ? h^ + r^h^ + ... +v^h^

h Q
(16) / f(xl£^)dx = -^

^1

(h + r h + ... + r h )Q
(17) / f(xk, + £„ + ... + £,)dx = —^ 7-5

' 1 / k bd

\
for k = 2, . . . M

Equation (17) is applicable only when r > r, or equivalently n,^ > 1.

If n, ^
= 1, then the determination of R, is not relevant since stage k reorders

only whenever stage k+1 reorders. We note that the reorder points are such

that the stockout probabilities associated with each stage's replenishments

increases with the stages. Also, although typically R, < R.
, -i » it is possible

for R^ > R, ,, as we saw in the two-stage example.

We solve (15) -(17) by the iterative procedure that alternates between

determining the order quantity and determining the reorder points. Determining

the optimal choice for the {n.} values is much more difficult. It would seem

to require an enumeration over all candidate solutions, most likely by a branch-

and-bound procedure. We expect a very good starting solution for such a

procedure would be to use the optimal {n.} values from, the deterministic version

of this problem that is easily solved (Schwarz [13]).





18

5. Extensions

In this section we first present one extension for a specific two-

echelon assembly system, and then discuss the feasibility of more general

extensions

.

Consider a two-echelon, M-stage assembly system as depicted below.

Customer demand

We assume that the order quantities for the components are integral multiples

of the order quantity for end item, i.e. Q. = n.Q for n. being a positive

integer, i = 2, ... M. To develop a cost function for this system, we need

to characterize the types of joint replenishments that can occur. We define

a "stage-k" joint replenishment as a joint replenishment with the end item

in which stage k is the component with the longest replenishment lead time

amongst those components that will be simultaneously replenished. A "stage-k"

replenishment is initiated when the echelon inventory of stage k reaches its

reorder point. If component i is to be simultaneously replenished with

stage k, then it is reordered exactly I - I. time units after the order for k.

A normal replenishment occurs whenever the end item reorders without any compo-

nent having jointly reordered. Without loss of generality, we assume that

l^ > S^^ > ... > l^,.
I — i — — M

Suppose that the order frequencies {n.} are relatively prime. With a

little thought we can see that there is a regenerative cycle consisting of

n n ... n^ replenishments by the end item. Of these replenishments, exactly

n n, • • • i\4 replenishments are "stage-two" joint replenishments with an

effective lead time of I + 8, ; (n -l)n n^ ... n^ of the replenishments are

"stage-tnree" joint replenishments with a lead time of £„ + ly, and, in
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general, (n„-l) (n -1) ... (n -l)n ... ri of the replenishments are

"stage-k" joint replenishments with a lead time of I, + I , for k = 3, ... M-1.

Finally, there are (n -1) (n -1) ... (n^_^-l) "stage-M" joint replenishments

and (n^-1) (n -1) ... (n^-l) normal replenishments.

By knowing the types of joint replenishments in a regenerative cycle,

we can now apply the logic previously used to characterize both the expected

holding costs and the expected backorder cost. With this we can develop a

cost function of the policy parameters. The minimization of this cost function

results in a solution that would be quite analogous to that for a serial system,

namely (15)-(17). Once again we must assume that the order frequencies are

given, and furthermore, that they are relatively prime. If the order fre-

quencies are not relatively prime, then this approach would overstate the

number of "stage-k" joint replenishments for k > 2, and would understate the

number of normal replenishments. As a consequence, the cost function will

tend to be overstated for the range of policy parameters of interest. Never-

theless, optimization of this overstated cost function may lead to a reasonable

choice of policy parameters.

An alternative approach for the case when the order frequencies are

not relatively prime would be to explicitly enumerate the number of joint

replenishments of each type over a regenerative cycle. We could then form

a cost function that we would minimize as in the earlier cases. The dif-

ficulty with this approach is the lack of a closed-form expression for the

number of joint replenishments of a particular type.

For more complex assembly networks, the analysis soon becomes hopeless.

One possible approach is to force the network into behaving like a serial

system so that our earlier analysis could be applied. Otherwise, the key
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Issue is again to identify the types and to enumerate the occurences of

joint replenishments. In principle, we can always do this. But the task

is quite overwhelming even for networks with modest complexity. Clearly

some new ideas and insights are needed to address these problems.
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APPENDIX

In this section we provide a general justification for the approximate

expression that we use for the average echelon inventory level for any stage.

Consider a regenerative cycle in which a particular inventory (or echelon

inventory) is replenished exactly n times in each cycle. Each replenishment

quantity is equal to Q, and we assume that the demand is stationary, albeit

stochastic. Assume that just prior to the arrival of the i replenishment

in the cycle, the expected net inventory level is s
.

, i = 1, 2, ..., n.

The following illustration (n=3) may be of help:

Inventory
Level

* • •

J
^ ^ ^

time

Duration of Cycle

Now the nature of the approximation is to use these expectations (s.)

to calculate the average (echelon) inventory level over the regenerative cycle.

Given that the demand process is stationary and continuous, the average inventory

level is just the area in the n trapezoids (one for each replenishment in the

cycle) divided by the length of the regenerative cycle. In general, we state

this as
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n Q + s. + s. ,^ Q + s. - s

(Al) ( Z i^^±i i^—^) . f
i=l

where s = s^ and d is the annual demand rate. After simplification, (Al)

just reduces to

n s.

(A2) ^ + E —

For instance, in the two-stage system we have

s = / (R -x)f(x|£ +£ )dx

s. = / (R.-x) f (x| 2,, )dx for i=2,3 . . . n.

Then, (A2) is just

2 n n

as was given in Section 3. Similar derivations are possible for the average

echelon inventory levels for the M-stage serial system in Section 4.
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