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ABSTRACT

Models of asset pricing generally assume that the variables which
characterize the state of the economy are observable. For example, the Capital

Asset Pricing Model (CAPM) of Sharpe, Lintner and Mossin, Merton's Intertemporal

Asset Pricing Model and Ross's Arbitrage Pricing Theory establish relations

between distributional parameters of the rates of return on assets and rates of

return on 'Veil diversified " portfolios.
However, the distributional properties of asset prices that are relevant

for portfolio decisions are in general not observable, and therefore must be

estimated. As discussed, for example, in Herton (1980), the problem of

estimating expected returns is particularly difficult and estimation errors are

likely to be substantial. In this light, it is reasonable to question whether
the assumption of observability of expected returns and other relevant state

variables causes significant mis-specification in equilibrium models of asset
prices.

This paper has two objectives. The first is the derivation of optimal
estimators for the unobservable expected instantaneous returns using
observations of past realized returns. The second is the analysis of the optimal
portfolio decisions and the characteristics of general equilibrium in which
these optimal estimators are used. The main result establishes the separability
of the estimation and investment decision problems for general utility
functions. Agents derive the conditional distribution of future returns and then

select their optimal portfolio using the derived expected returns. The
estimators of expected returns are in general not consistent, i.e. the

estimation error does not tend to disappear asymptotically (in contrast with the

case considered by Merton (1980)). The effects of the estimation error,

therefore, cannot be ignored even if realized returns are observed continuously
over an infinite time period.





INTRODUCTION

In his seminal papers, Merton (1971), (1973) characterizes the

equilibrium expected return on assets and the optimal portfolio demand in an

intertemporal capital asset pricing model. Cox, Ingersoll and Ross (1978) extend

the analysis to a general equilibrium framework where financial claims prices

are derived endogeneously. These analyses, as does the original Sharpe-Lintner-

Mossin CAPM, make the assumption that the expected return on investment is known

with certainty.

Merton (1980) argues that the expected return on the aggregate market

portfolio is unlikely to be constant over time and that even the optimal

estimator of this expected return does not yield precise inferences when the

observation interval is finite. It is thus unrealistic to assume that the mean

return on investment is a known function of observable state variables. Instead,

the mean return can only be estimated with error using the observable

instantaneous realized returns on investment .

The estimation of expected returns on investment is a prerequisite for

tests of the CAPM and practical applications of the theory. It also raises

important theoretical issues. When the true expected returns are not observable,

the usual dynamic programming rules for portfolio optimization are not

applicable. When selecting their optimal portfolio, investors have to take into

account the fact that they have only estimates of the true expected returns and

that variations in the estimators will be caused by the variations in the

underlying state variables as well as by fluctuations in the estimation error.

Since investors form their portfolios using estimators, the characteristics of

equilibrium itself depend on the properties of these estimators. Equilibrium

In real markets, other price series reflect information not contained in past
realized returns. In the stylized models of Merton (1971), (1973), Cox,

Ingersoll and Ross (1978) and in the analysis here, it is assumed that past
realized returns contain all available information.



levels of investments, the term structure of interest rates and contingent

claims prices will all be functions of the "perceived" (or estimated) state

variables. :?a

The analysis here is intended to improve upon the modest state of our ''''.'.

current knowledge regarding portfolio choice and general equilibrium under r

incomplete information. With the exception of Klein and Bawa (1976), (1977), :,

Williams (1977), Feldman (1983) and De Temple (1984), the heuristic approach in

previous research has been to assume implicitly that the portfolio choice
f^^j

problem can be solved in two steps: parameters are first estimated and then

portfolios are chosen conditional on these parameters estimates. This separation

of the estimation and optimization steps is optimal when a property which Simon

2
(1956) and Theil (1964) termed "certainty equivalence" applies . In this case,

the state variables can be replaced in the optimization problem by their

certainty equivalent values (i.e. the least square estimators). In a discrete

time framework, the certainty equivalence applies if the objective function is

quadratic and the process is a linear function of unobservable state variables.

In this case, the state variables can be replaced in the optimization problem by

their certainty equivalent values (i.e. the least square estimators).

The separation theorem, which is the main result of this paper,

establishes that the properties of the certainty equivalence principle can be

obtained in continuous time without restrictions on the utility function.

Moreover, it is shown that the conditional estimates of expected returns are

governed by a system of differential equations similar to the one which

characterizes the variations of the true expected returns. This result implies

that the dynamic programming methodology of Cox, Ingersoll and Ross (1978) can

be generalized to analyze the properties of general equilibrium when the state

variables are not observable.

2
It has been widely used in macroeconomic theory, Lucas and Sargent (1981)

provide a survey and several examples.



Except in the log atility case, it is shown that the level of investment

and the term stmctnre of interest rates depend npon future variations of the

derived investment opportunity set, which arise from randomness in both the true

opportunity set and the estimation error. This contrasts with De Temple's (1984)

analysis within a general equilibrium framework in which the existence and form

of asset prices as functions of estimated state variables are assumed rather

than derived, and in which agents ignore information in realized returns when

making investment decisions. My results are more general than those of Feldman

(1983) who studies a general equilibrium with one unobservable state variable

and the effect of estimation error on the term stmctnre in that general

equilibrium, but does not develop the implications for the estimation of expected

returns. Feldman assumes logarithmic preferences; unfortunately, this is

precisely the case where the non-observability of state variables won't affect

real investments, portfolio decisions and the term structure of interest rates.

In the analysis to follow, I relax the fundamental assumption of

observability of the variables that characterize the state of the economy. In

the model, the investment opportunity set is determined by a finite number of

random variables. Instantaneous expected returns on physical investment vary

stochastically over time. I first consider the problem of inferring expected

returns from observed instantaneous returns on investment. Tools of non-linear

filtering theory are introduced to solve this difficult estimation problem. The

optimal estimators for the expected returns are generalizations of continuous

time Kalman filters. Unlike the case of lognormal returns, I show that the

precision of the estimators does not necessarily increase with time. Economic

intuition supports this result: since expected returns vary randomly over time,

past observations will not necessarily contain enough information to assess

perfectly the path of the expected returns. Imperfect information is thus shown



to be not jast a transitory problem. The optimal inference process and the

portfolio choice decision are shown to be separable: that is, agents can

optimally derive the conditional distribution of future returns and then select

their portfolio by replacing the unobservable expected returns with their

conditional expectations.

The paper is organized as follows:

Section I describes the continuous time economy and the structure of the

uncertainty. Section II states the inference problem and describes the logical

steps of the reasoning which leads to its solution. I then consider the simple

case of one technology and one state variable. The solution is closely related

to standard economic results and provides a useful intuition. It is rigorously

proved using the general results of section III. Section III states the non-

linear filtering results and the solution to the general inference problem. The

mathematical problem was solved by Liptser and Shiryayev (1978) and the proofs

are therefore not presented. This introduction to the use of non-linear

filtering theory for economic analysis is brief but self-contained. The power of

the technique and its applicability to a broad range of economic problems

warrant its extensive development in that section. However, the reader is

alerted that section III is not necessary for the understanding of the

substantive economic argument.

Section IV contains the main result of separability and establishes the

general equilibrium conditions. The results are contrasted with the conclusions

of prior research.

Finally, the conclusion summarizes the implications for general

3
equilibrium and further research currently underway. A later companion paper

will develop these issues.

3
Continuous Time Production Economies under Incomplete Information II:

Contingent Claims Prices . (forthcoming)



I The Economy

Tlie economy described here is similar to the one considered by Cox,

Ingersoll and Ross (1978) with the fundamental difference that the expected

returns on the risky technologies are not observable. There is a finite nomber

of physical production technologies. The instantaneous expected returns on

investments are stochastic and not observable. In order to establish the

statistical inference results, the structure of uncertainty is formally defined

in mathematical terms (section I-l) . However, the assumptions on the investment

opportunity set and on agents' preferences are standard in continuous time

general equilibrium analysis.

I-O Notations

I generally adopt the following notations: capital letters for

matrices, B(t) and J,(t) for example, and lower case characters for scalars and

vectors, a and r for example .There are. however, some exceptions motivated by
c:irf-.i:.

custom: W and J denote wealth and the indirect utility function (both scalars).

Partial derivatives are denoted by subscripts: J_. and the transpose of a

matrix by the letter t: B (t).



I-l Stmctore of the nncertaintv

The time span of the continuous time economy is [0,T1 (i.e. agents

maximize their expected utility function over the time intezval [O.T]). The

uncertainty in the economy is generated by the Brownian motion 1 . At each point

in time, the state of the economy is characterized by the path of X previous to

that instant: (X , O^x^t} . All the possible paths of X constitute the set of

possible events and investors have a common probability measure on that set.

Let (Q,F,P) be a complete probability space, i.e. each element id of Q

denotes a complete description of the economic environment (a "state of

nature"). Agents are endowed with a common probability measure P. We assume that

there is defined on the probability space (Q,F,P) a s+n-dimensional Brownian

motion X={X ,0<.t^T}, its components, without loss of generality, assumed to be

independent. .-:r

Let FT be the sigma algebra generated by IX , Oit^t)

.

Assume that FZ = F and that FT is augmented by all P-negligible sets

for all t in [O.T].



1-2 Investment opportunities

There is a single physical good, the numeraire, which may be allocated to

consumption or investment. Physical production consists of s technologies. The

"" ^transformation of an investment of a vector q of the good in the s technologies

follows the system of stochastic differential equations:

dq = I n^ dt + I I(t)dZ (1-2.1)

The vector of instantaneous expected rates of return, \i , on the

r
production process is governed by the process:

d[i = [ a(t) + A(t)|i ] dt + B (t) dZ + B (t) dT (1-2.2)
z y

'^'^ Where I is an s*s diagonal matrix whose ith element is the ith component

of q(t). ^(t) is a bounded , non stochastic, s*s matrix function of t.

^(t)^ (t), the variance-covariance matrix of physical rates of return is

positive definite for all t in [0,T1. a(t), A(t), B (t) and B (t) are
z y

Respectively a bounded s vector, two s*s matrices and an s*n matrix, all of

which are functions of time. The vector of independent Brownian motions Z has

as components the first s components of X . The last n components of X form a

vector denoted by Y .

Physical production is subject to two different sources of uncertainty.

The first one, Z, affects current output dq and also future expected returns |ji .

The second one, T, affects only future production through its effect on future

expected returns. For example, in the context of a wheat economy a new virus

affecting wheat reduces current output but also future expected output. In

contrast, the discovery of a fertilizer does not modify current output but

increases expectations of future output.
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Agents can observe instantaneous returns on investments dq and are

assumed to know the deterministic functions of time ^(t), a(t), A(t), B (t) and
z

B (t). However they are not able to observe the random process (i . Consequently,

the Brownian motion vectors Z and T are not observable.

In addition to direct investment in the risky technologies, agents can

trade continuously in contingent claims (which are not formally introduced here)

and borrow or lend risklessly at the instantaneous rate r. The instantaneous

riskless rate r is not specified at this point because it will be endogeneously

determined in equilibrium. Agents can continuously invest any amount in the s

technologies (i.e. there are no problems of indivisibilities), there are no

4
restrictions on borrowing and lending.

Markets are competitive and agents behave as price takers. Trading takes

place continuously at equilibrium prices only, with no adjustment or transaction

costs.

4
The physical production technologies have constant returns to scale. There is

thus no incentive to create firms to pool resources. If these existed, however,
agents' investment decisions would be unaffected.
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&^s ' 1-3 Agents

.T " -

There is a fixed number of individuals, identical in their preferences

and endowments. Agents are endowed with a common probability measure and agree

on the characterization of the stochastic processes governing the economy.

' ' : Agents are characterized by their initial wealth W- and their preferences

^f They seek to maximize their expected lifetime time-additive utility of

Yii9,f?n sumption conditional on all available information as of date t (i.e. the

, rates of return on investment observed in the past):

-.1

{
J

u[c(s),s] ds I F^ }

subject to their budget constraint, where u is an increasing, concave,

twice differentiable von Neuman-Morgenstern utility function and c(t) is the

consumption rate selected at date t.

See section IV for the technical conditions imposed on c(t)

7 a^ . r
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II The inference process

.. -a
Introdnct ion

This section presents the derivation of the conditional distribution of

future returns and establishes its important properties. An example is used to

illustrate the results and the similarities with standard least square

estimation problems.

II-l The conditional distribution '^

•

Agents seek to extract (or "filter") information on future expected

instantaneous returns from their observation of past returns. At time 0, they ^•

view the distribution of ^l as a Gaussian distribution with mean vector m and

variance-covariance matrix V . As time evolves agents continuously update their .'I

beliefs . I will assume that agents are rational, i.e. they derive the optimal

estimator using all available information. The theorems of section III, due to 'fc

Liptser and Shiryayev (1978) are continuous time results. They are essentially a

generalization of the theory of filters due to Kalman and Bucy (1961). I present

here the important steps of the derivation implicitly assuming discrete . y

infinitesimal observation intervals. The results hold only in continuous time

but the reasoning in discrete time is perhaps more intuitive.

Over the infinitesimal interval [0,dt], agents observe the realized , ^

returns on investments which are correlated with the change in the expected
'. c.

•

returns, dji. These two vectors are (instantly) Gaussian. The distribution of a

The estimation process is thus a continuous Bayesian updating of beliefs.
Agents' prior belief is that the distribution of the expected return at time

zero, \i , is Gaussian. As is shown below, this assumption leads to a Gaussian
conditional distribution for ji at any time t, 0<_t<^T.
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Gaussian vector conditional on a correlated Gaussian vector is Gaussian. The

derivation of the conditional distribution is, therefore, a classic statistics

problem and standard econometric analysis can be used to interpret the results

in the one dimension case treated in II-2.

Although the random variables q and ]i are not Gaussian, the distribution

7
of \i conditional on q is Gaussian (Theorem 1) . Hence the expectations vector

and the variance-covariance matrix characterize the distribution. The

conditional moments at date t+dt are equal to the conditional moments at date t

plus the instantaneous change (or revision) occasioned by the observation of q

over the (infinitesimal) period [t,t-i-dt]. The instantaneous changes in the

estimated expected returns vector, dm, and in the variance-covariance matrix,

dV, are given by the following equations (Theorem 2):

dm= [a(t) + A(t)m^] dt + [B(t)I*(t) + V(t)] [I(t)I* (t )
]"*

[I'^'dq - m^dt]

(II-l.l)

dV = {A(t)V^ + V A*(t) + B (t)B*(t) + B (t)B*(t)l dt
t t z z y z

- {[B(t)I^t) + V^l • [I(t)I*^(t)l"^ [B(t)I*(t) + V^]} dt (II-1.2)

\i is a diffusion process and V is a deterministic function of time. Equation

II-1.2 is a multidimensional differential equation of the Ricatti type.

These expressions are analogous to the classic statistics case where the

first terms are the unconditional moments and the second terms result from the

inference process. The analogy is discussed in detail in section II-2.

7
This result stems from the structural form of d^i and dq. It holds for the wider
class of processes considered in section III. Basically, the coefficients J_, a,

A, B and B of equations 1-2.1 and 1-2.2 may depend on q as well as on time.
The crucial assumption is the linear dependence of dq and d(i on \i and the fact
that the variance-covariance matrices do not depend on )i.
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The first tero of equation II-l.l is the instantaneous change in the

expected returns vector conditional on realized returns previous to t. The
c

second term represents the amount by which the estimate of the mean is changed

by a "surprise" in output. The current dq contains information on the expected

return at date t, ]i , and on the change in the expected return d|i.

The evolution of the variance-covariance matrix through time (II-1.2) is

determined by two factors. The first term corresponds to the uncertainty

concerning the deterministic part of the variation d|i resulting from uncertainty

about the current value )i . The second term reflects the information accrual and

actually reduces the variance-covariance matrix . In general, the variance-

covariance matrix V does not converge to zero as the observation interval tends

to [0,»]. In the particular case of stationary coefficients (section II-l) , it

is shown that the variance tends to a non-zero limit. The estimation error

persists through time and affects equilibrium levels of investment in both the

short term and the long term.

The assumption that the variance-covariance matrix of investment returns

evolves deterministically while expected investment returns are stochastic might

appear to be very specialized. If both expected returns and covariances change

stochastically over time, a major added problem is one of identification.

However, if enough is specified about joint movements in expected returns and

covariances for identification, the analysis here can be extended to take

account of the estimation of both parameters. An alternative approach is that

taken in Gennotte and Marsh (1984) where we posit variance movements to be a

g
The uncertainties on past and future expected returns are thus correlated.

Consider the case where the same set of state variables Z determines the '-

variations of \i and q. If at any instant expected returns are known for certain,
agents can deduce from the realized returns the exact expected returns in the
infinitesimal periods following and preceding t. They are thus able to determine
expected returns at any point in time. More generally, fluctuations in the
variance of the expected returns estimators are intertemporally related.
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deterministic function of the investment level (i.e. as in Cox's (1975) constant

elasticity of variance model for stock prices). Equilibrium theory is then used

to specify the relation between the shifts in expected returns on equity claims

in these investments and the variance changes.

The innovation process Z' is defined as the normalized deviation of the return

from its conditional mean:

dZ'= 2(t) [I~*dq - m^ dtl (II-1.3)

'and Z'p =

bit .?•

Substituting dq with its expression in 1-2.1, dZ' is given by:

_i
dZ'= I(t) [|i^ - m^] dt + dZ

ifi.r-ij-

Z' is a Brownian vector: dZ' is Gaussian with a zero mean vector and a variance-

covariance matrix per unit time equal to the identity matrix; and the increments

dZ' are uncorrelated. The Brownian vector Z is not observable, the innovation

process Z', however, is derived from observable processes and thus observable.

Substituting dZ' for dZ, the return over the next infinitesimal period becomes:

'^
dq = I m^ dt + I I(t) dZ' (II-1.4)

q t q

Hence, the paths of m and Z' uniquely determine the path of q.

The path of the conditional expectation m is generated by the path of the

innovation process Z':

dm = [a(t) + A(t)m^l dt + [B(t)I*(t) + V(t)] I*"''(t) dZ'
f

.

Intuitively, the information contained in the path of Z' is equivalent to the

information contained in the path of q. Formally, the information structure

generated by {q^, Z' , 0<s<t} is equivalent to the information structure
s

generated by {q , 0<s<t} (Theorem 3).
s

The crucial step now follows in a straightforward fashion. Since Z' is a

Brownian motion, it contains no information on the future variations of q and m.
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The distribution of the variations dm depend on the conditional variance-

covariance matrix V . V is a deterministic function of time (II-1.2), the

distribution of the instantaneous change dm is thus characterized by the state

vector m . The distribution of dm and the conditional distribution of the

instantaneous return I dq. are therefore fully characterized by the
q t

current value m . In other words, the distribution of the change in the

opportunity set perceived by investors over the next infinitesimal period is

perfectly determined by m . Investors do not have to remember past returns to

9
form their expectations of future returns. Hence, the system [q ,m ] is Markov ,

i.e. q^ and m determine the probability distribution of q and m over the next

infinitesimal interval [t,t+dt].

9 "^
'

A stochastic process {X , 0^s<T} is a Markov process if and only if the
probability of its future evolution depends only on its present value and not on
past history.
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II-2 An example in dimension one.

To illustrate the results, consider an economy with a single technology

which returns are determined by a single state variable z. The instantaneous

return on investment and the expected return at date t are given by:

dq = q |i dt + q o dz (II-2.1)

c d|i = a ji dt + b dz (II-2.2)

where a and b are constant scalars and o is a strictly positive constant

The expectation and variance of ]i conditional on observing realized returns are

respectively m and v . The distribution of |i at time zero is assumed to be

Gaussian with mean m^ and variance v.. The changes in the conditional

expectation are given by:

dm = a m dt + ( b + I) i [ da - m dt ] dz (II-2.3)
a a a

The innovation process z' is defined by:

z'q =

and dz' = i [ '^l - m dt]

a q

Substituting in II-2.1 and II-2.3, dq and dm are rewritten as:

The derivation of the conditional moments is rigourously the same if the
coefficients a, a and b are deterministic functions of q and t. The case of an
Omstein-Uhlenbeck process for \x. belongs to that class. But the Ricatti equation
which characterizes v is solved explicitly only in the constant coefficients
case

.
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dq = q m dt + q a dz' (II-2.4)

dm = a m dt + (b + I) dz' (II-2.5)

Equation II-2.3 can be interpreted as:

d» = d[E (u )] + Cov<dq'^^dt^
f
^1 - m dt

]
(II-2.6)

^ *
Var(dq) q ^

II-2.6 has the same form as the nsual inference equation for Gaussian variables

and m is also the Least Squares Estimator. The first term is the ex-ante change

in the conditional expectation (i.e. before observing the current dq) . The

second is the innovation in the instantaneous return multiplied by the ratio of

the covariance of the two variables and the variance of the signal dq. This

ratio is similar to the beta of regression equations . We see that if the

innovation is positive and if the correlation between |i and dq is positive,

agents will adjust their expectation upward.

The conditional variance v is determined by v^ and dv:

dv =
[ (2 av + b') - [b + I]*] dt (II-2.7)

V is thus a predictable function of time.

Equation II-2.7 can be interpreted as:

dv = d[Var (. )] - [Cov(dq.,x^^^^) ]»

^ ^ Var(dq)

This equation is also similar to th'e usual inference equation for the

It can be graphically interpreted as the projection coefficient of ji on dq.
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i'

conditional variance. The first term is the ex-ante increment in the conditional

variance corresponding to the nnobservable variation of (i from t to t+dt. The

second term is always negative and represents the reduction in variance due to

the information dq. The variance decreases if the new information is precise

enough to outweigh the additional noise due to the variation of \i, d\i

.

Equation II-2.7 is of the well-known Riccati type of differential equations. It

can be rewritten as:

dt
^"^

CT* v(v-2w)

2

Where w is defined as: w = ao - bcr.

Integrating with v given yields:

V o*
V = if w=0

and

r = 2w [ 1 - ^

]
if wjtO

1 + 1 V exp(2wt)
2w-v^ a*

If w is negative, the limit of v as t tends to infinity is zero. If w is

positive, the limit is 2w. The graphs of figure 1 show that if the initial

variance v- is larger than 2w, the variance decreases uniformly.

The precision, defined as the inverse of the variance, does not necessarily

increase with time and the estimator m is not consistent in general. If |i_ is

perfectly known (i.e. V =0) , the uncertainty on \i disappears completely.

In a more general case where the coefficients depend on time, if \i becomes a

constant from time t on (i.e. a=b=0) equations II. 2. 3 and II-2.7 show that the

estimator \i still fluctuates but its variance decreases uniformely. There is no
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nncertaijity on d(i and the information accruals on \l allow agents to refine

their estimator of expected returns. Indeed, this is the case considered by

Herton (1980), his discrete time estimator and the continnous time one derived

here are consistent , i.e. they converge to the true value as the observation

interval [0,T] tends to infinity.
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III Concepts of non-linear filtering

III-O Introdnction

This section presents some fundamental results of non-linear filtering

lA »* A

theory applicable to economic analysis. It is not, strictly speaking, necessairy

to the understanding of the analysis. This introduction to filtering theory has

not appeared before in the substantive context of the financial economics

literature (Krishnan (1984) provides an introduction illustrated by examples

from physics). The power of its results make it a useful tool for economic

analysis. Section II presents the logical steps of the reasoning in a more

intuitive fashion.

Three important results of non-linear filtering are used to reformulate

the investment decision problem in terms of observable variables. The extensive

proofs can be found in Liptser and Shiryayev (1978). However the technical

conditions of application of the theorems are given in the appendix.

Results are presented here for general forms of the stochastic processes.

Application to the specific case considered in the analysis is done in sections

II and IV.

I will consider the general class of stochastic processes:

dq = [d(t,q) + D(t,q) ji^] dt + I(t.q) dZ (III-O. 1)

dji = [a(t,q) + A(t,q) ^l^] dt + B (t,q) dZ + B (t.q) dY (III-O. 2)
t z y

Dependence on t and q will be omitted in the statement of the theorems unless

specifically needed.
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III-l Conditional distribntion of the eipected retnrns

The fundamental theorem of non-linear filtering (theorem 8.1 in Liptser

•nd Shiryayev) characterizes the conditional distribution of nnobservables for a

wide class of processes. However, the equations yield the conditional moments

as functions of conditional moments of an higher order. In particular, one

fundamental difficulty is that the conditional expectation depends on the

second and third conditional moments. We thus need additional relations between

the moments to obtain a closed system.

If the random process [|i,q] is Gaussian, higher order moments are functions of

the expectation and variance. We have the classic relation:

E(^'| fJ) = 3 E(^l fJ) E(h*| fJ) - 2 [E(nl fJ)i' (III-l. 1)

^which closes the system of equations giving E(|il F^) and E(|i I F^) •

This case was first analyzed by Kalman and Bucy and later extended by Liptser

and Shiryayev to the conditionally Gaussian' case . Here, (|il F^)is not a

Gaussian system but:

,,.,., fj (X) =P( ^^<xl fJ),

the conditional probability distribution, is Gaussian: as is proved by Theorem

1. Consequently III-l. 1 closes the system of equations on the conditional

moments. The Gaussian property also implies that the distribution is

characterized by its first two moments.

. , Theorem 1

Let conditions A-1 to A-7 of the appendix be verified and, with probability one,

let the conditional distribution:
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fj(x) = PCfijjixl q^} be (P a.s.) Gaussian, Ndn^.V^), where m^ = E(^Q| fJ) and

the matrix V = EIChq-hIq) (jIq-iDq)^ I F^ } is snch that Tr V^ < « (P a.s.). Then

a random process [(i<q] verifying (III-O.l) and (III-0.2) is conditionally

Gaussian, i.e. for any t., 0<t-<t ,< . .

.

.<t <t, the conditional distribution:
J * n

f^d^.x., .. .,x ) = P(|i_ix-, .. . .|i ix I F^ } is (P a.s.) Gaussian.tU'*' n uu nnc

III-2 Conditional moments

Theorem 2 gives the conditional expectations vector and variance-

covariance matrix of the expected return (i. Since the conditional distribution

is Gaussian, it is fully characterized by the first two moments.

Theorem 2

Let conditions A-1 to A-10 be verified, then the vector m = E(|i |F^ ) and the

matrix V(t) = E{(^ -m ) (pi -m ) I F^ } are unique, continuous, F^-measurable

for any t, solutions of the system of equations:

dm = [a + A m ] dt + [B X*^ + V D* ] [J 1^ ]~* [dq - (d + D m^) dt]

and

dV = {A V + V A^ + B bW B B* - [B I^ + V D*^ ] [X 2*^ ]"^ [B I^ + V D* ] } dt
y y z z z z

with initial conditions m^ = E (|i»l F ) and

V^=E i(^^-.^)i,^-n^)' I fJ}.

If in this case the matrix V is positive definite, then the matrices V , 0£t£T,

will have the same property.

The random vector \i is thus a diffusion process which variations reflect the

fluctuations of the signal q . V is a deterministic matrix valued function of
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time and of the investment levels q.

The filtering is called "non-linear" becanse the estimator is a non-linear

function of the observations q^.
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III-3 The innovation process

Theorem 2 gives the conditional moments of ^ which characterize the

Gaussian distribution. In this section, I reformulate the stochastic processes

of interest in terms of the innovation process Z' . Z' is an observable

standard Brownian motion constructed from dq and m .

Theorem 3 states that the sigma algebra F%' , generated by

Z' and Qnt is equivalent to F* , the sigma algebra generated by q {0<s<t} •tut s

That is, all the information observed by agents can be summarized into the

observation of the innovation process Z' and the initial value of q, q^. Since

Z' is a Brownian motion, its path does not contain information on the future

exc ept for the value it implies for the state variables \i , V and q ,

Define Z' as follows:

dZ' = I~* [ dq - (d + D m) dt ] and 2*^=0

dZ' is the normalized deviation of dq from its conditional expectation at date

t. The stochastic processes of interest q , m and V are easily expressed in

terms of Z' :

dq = [d + D (1 ] dt + X dZ'

dm = [a + A m ] dt + [B I*+ V D*] (7^)"* dZ'

dV = {A V + V A^+ B B^+ B B^- [B J^+ V D*] [X
7*^]"^ [B I^+ V D^]} dtzzyy ~

(system III-3.1)

Theorem 3

Let functionals a(t,q), A(t,q), B (t.q), B (t.q), d(t,q), D(t,q), Z(t.q)
z y

satisfy A-4

,
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Let also V . a(t,q), A(t.q), B (t.q), B (t.q), d(t,q), D(t,q) and (II*)Tt.q)

be aniformely bounded.

Then the system of equations III-3.1 has a unique strong (i.e. F 0'

measurable for each t) solution. In this case,

pq FqO,Z'^
^^^^^

The knowledge of the past history of instantaneous returns dq is equivalent to

the knowledge of the path of Z' . Since Z' is a Brownian motion, the joint

process [q. ,ni. ,V ] is Markov.

Applicability of the filtering results to the structure of uncertainty of

sections II and IV

Inspection of equation 1-2.1: dq = I ii^ dt + I y(t) dZ
..:

^ q '^t q -^

—-t -1 -1 -^t -1 -^
shows that the coefficients D(t,q)=I and (T7 )(t,q)=I (77 )(t) I

are not uniformly bounded. In particular, when one of the investment levels q.

tends to zero, the ith element of I tends to infinity. Intuition suggests to

reformulate the problem in terms of returns, i.e. to redefine the "signal" as

the log-transform Log(q ). The expectation and variance-covariance matrix of |x

conditional on knowing (dLog(q ), 0<s<t} are equal to m^ and V^°s t t

respectively. In this formulation, the conditions of Theorems 1, 2 and 3 only

t -^
imply that the coefficients: a(t), A(t), B (t), B (t) and (7Z ) (t) are

z y

bounded. Consequently Theorems 1, 2 and 3 hold for the structure of uncertainty

considered in sections II and IV provided that the coefficients satisfy mild

regularity assumptions.
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III-4 Sommary of non-linear filtering results

Let as put the results in the perspective of our problem. Under rather

mild assomptions on the stochastic processes. Theorem 1 shows that the

conditional distribution of (i knowing (the path of) q is Gaussian. This leads to

a simple solution to the fundamental filtering equations. Theorem 2

.'-ct

characterizes the moments of the distribution m and V as functions of

investments q.

The conditional expectation m of \i . knowing the past realizations of

dq. is a stochastic process. The variance-covariance of ]i conditional on the

past realizations of dq is a deterministic function of time and the investment

12
levels q . The conditional distribution being Gaussian, it is characterized by

its first two moments. Theorem 3 shows that the set of all available

information, i.e. the past realizations of dq, is equivalent to information

about the path of the innovation process, Z', and the initial value of q, q^..

Since Z' is a Brownian motion, its past values contain no information on its

future values. Hence, all the available information is equivalent to the

knowledge of the current values q , m and V . The probability distribution of

the variations of q, m and V over the next infinitesimal instant [t,t+dt] are

uniquely determined by the present values q , m and V . That is, the system

[q ,m ,V ] is Markov.

12
"

The condition|l variance matrix V is equal to the unconditional mean squared
error E[(n -m ) ] (as proved by Liptser and Shiryayev)

.
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o;

IV Separability

IV-0 Introdnction

The fundamental results of section II and III are twofold. First, the

conditional distribution of the vector of instantaneous rates of return on

investment conditional on knowing past realizations is Gaussian. Second, the

conditional distribution of future returns on investment is determined by the

level of investments q and the conditional moments at date t, m and V ;

consequently the system [q. , m , V ] is Markov.

The investment decision problem can now be restated in the usual

framework of dynamic programming. A priori, all past observations of the

instantaneous returns influence investors' perceived opportunity set and thus

define the state of the economy. In the original problem, the number of state

variables is thus potentially infinite. The analysis of sections II and III

shows that all the information is equivalent to that contained in the path of

.the innovation process Z ' . The path {Z' 0<s<t) determines the conditional
r r t S ~

moments m and V , but contains no information on the future realizations of Z'

Investors thus use available information only to infer the conditional moments

and the variables that characterize the investment opportunity set are

[q^.m^.V^].

This result is closely related to the discrete time "certainty

equivalence" principle due to Simon (1956) and Theil (1964). That principle

states that if the utility function (or more generally the objective function)

is quadratic and if the controlled process is a linear function of the

unobservable state variables, the optimization problem can be solved as if the
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state variables were known for certain to be equal to their conditional

expectation. The intuition is that, with a linear marginal utility function and

a linear dependence of the process on the state variables, the expected marginal

utility depends only on the expectation of the state variable. In the present

continuous time case, the dependence of the instantaneous returns on the state

variables is linear and the expected marginal utility is a linear function of

the first and second moments of the distributions of q and \i . Intuitively, one

is thus led to expect a separation property where only the first two conditional

moments of dq and dpi matter, and this is precisely what is shown here.

While the assumption of homogeneous agents is not required for the

inference process, it becomes necessary for the equilibrium results of section

IV-2. Because of the homogeneity of tastes, endowments and beliefs, all agents

will choose the same portfolio of assets. Agents are allowed to issue contingent

claims and borrow or lend risklessly. However, since these claims are in zero

net supply, no agent will hold them in equilibrium.

Consequently, we can restrict our attention to an economy where no

contingent claims are traded. The resulting equilibrium will be defined by the

same investment proportions and the same interest rate. If contingent claims are

introduced, they can be priced by arbitrage.

In this section, I describe the investor's decision problem and prove

that the estimation and consumption—portfolio choice steps of this problem can

be separated and solved sequentially. I then show how optimal investment choices

differ from that obtained by Cox, Ingersoll and Ross (1978).



30

IV-1 The investment decision problem

Agents seek to maximize their expected lifetime utility of consumption

subject to their budget constraints. The investment opportunity set consists of

the riskless asset and the s physical technologies as specified in section I by
.i .^ /

equations (1-2.1) and (1-2.2). Since agents are not able to observe the true

expected returns on investments, ji , they derive the expected returns

conditional on available information. The investment opportunity set at any

point in time is characterized by the conditional expected returns on
il". J

investments m and the variance-covariance matrix V . Section III shows that the

system [q .m ,V ] is Markov. Since the instantaneous returns do not depend on

the level of investment q and the variance-covariance matrix V is a
"

13
deterministic function of time , the vector m fully characterizes the

investment opportunity set perceived by investors at any date t (equations IV-

1.2,IV-I.4 and IV-1. 5).

This leads to the following result:

sir .

ns-

13
The filtering results of section III are derived for a wider class of

uncertainty structures. However, Theorem 4 does not follow in the general case.

If the distribution of returns depends on the level of investments q , the

quality of the information extracted from past realizations depends on the past

levels of investments. Agents would therefore select their optimal investments

taking into account the quality of information they generate. This information
will be used to optimize future investments. Hence, the estimation problem and

the portfolio choice are not separable. To avoid such problems in the present

analysis, I will make the assumption that agents are able to draw the same

information whether all technologies are effectively used or not.
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Separation Theorem (Theorem 4)

Assuming the structure of the uncertainty of section II and that conditions

A1-A14 hold, agents solve the investment decision problem in two stages:

•the derivation of the optimal estimator

(the conditional expectation) of expected returns.

.the choice of an optimal portfolio of assets

using estimated expected rates of return.

Agents are constrained by their individual wealth W determined by its initial

value W and the differential equation:

dW = W [o)^ l""^ dq + (1 - w^ 1) r] - c(t) dt (IV-1.1)
t q

where w denotes the vector of proportions of wealth invested in the risky

technologies and 1_ a vector with components equal to 1.

The instantaneous return on investment is given by:

dq = I m dt + I y(t) dZ' (IV-1.2)
q t q

-

The instantaneous change in the expected return m is:

dm = [a(t) + A(t)m^] dt + [B(t)y*'(t) + V^] [y^(t)]"^ dZ ' (IV-1.3)

and the change in the conditional variance V is:

dV = {A(t)V + V A^(t) + B (t)B^(t) +B (t)B^(t)) dt (IV-1.4)
t t z z y y

- {[B (t)y^t) + VI [y(t)y^t)]~' [b (t)y^t) + vj) dt
z ~ t ~ ~ z t

where the innovation process Z' is a standard Brownian motion defined as

follows

;

dZ'= y(t) [I ^dq - m dt] and Z' = (IV-1.5)~ q t

Equation (IV-1.2) is similar to equation (1-2.1):

dq = I ji^ dt + I y(t) dZ (1-2.1)
q t q
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The expected return \i is replaced by its conditional expectation m and the

stochastic process Z is replaced by the observable innovation process Z' . If

fi is perfectly known the variance-covariance matrix of the returns, (i , is ^ *

the same as the conditional variance, Var(I dql F^) in IV-1.2. Rewriting
q t

—

1

[

q

IV-1.2 as follows:

dq = I m^ dt + I Eu^-m^] dt + I I(t) dZ^qt q'^tt q

we see that the uncertainty on the true expected return, I [u^-m^] dt, is
q t t

insignificant when compared to the intrinsic stochastic factor I X(t) dZ.

This is why the variance-covariance matrix of the instantaneous returns on

investments is unaffected by the estimation error. This rather surprising result

holds independently of the information-uncertainty structure assumed for the

expected returns. The estimation error, however, modifies the variance-

covariance matrix of returns on investment over any discrete time interval.

Investors concerned only with returns on investment over the next infinitesimal

interval can neglect the estimation error. Indeed, it is shown in section IV-2

that such myopic investors optimize their portfolios as if the estimated value

of the expected return were the true value.
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IV-2 Eqpilibriam conditions

Let us proceed with the second stage of the optimization; the analysis is

similar to that of Cox, Ingersoll and Ross (1978). Agents choose controls u and

c which maximize their expected lifetime utility of consumption subject to the

budget constraint (IV-1.1).

I derive here the necessary conditions for the indirect utility function

J and the optimal set of controls [c,ii>]. The indirect utility of consumption is

a function of time, the expected return m and wealth W , since V is non-

stochastic.

14
The first order conditions result from differentiating the function :

E(W,m,t) =
(>r i{J(W,m,t)} +U(c.t).
[c,(oJ

Where (^r i is the Dynkin operator associated with the controls [cu].

y
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Where !„, denotes the vector of partial derivatives of J„ with respect to the
Win W

components of m and AA denotes the variance-covariance matrix of the expected

instantaneous retnns m :

A = [ B(t) l'(t) + V(t) 1 (I*)"* (IV-2.5)

L

In addition, J verifies the equation:

. ,{ J(W,m.t) } + n(c,t) = (IV-2.6)
ic ,(|>J

The system of equations IV-2.3 and IV-2.4 yields the optimal equilibrium levels

of investments and the interest rate. The complete solution of the system is

complex even for simple utility functions. However, if we restrict our attention

to the set of technologies actually used in equilibrium (i.e. i's for which a>.> 0),

the optimal investment rule is given by:

0) = -J^ (J^W I I*)'^ (m^-rl) - (J^ W I iS"* 2 A* J^ (IV-2.7)

Where m, m , 2 tu^f^ A are to be interpreted as referring to the set of

technologies actually used.

Since there is no net supply of the riskless asset, the shares of wealth o).

invested in the risky technologies sum to one and the riskless rate is given by:

r = (1 (I iS"* 1 J^ )"^
{ J^ W + J^ 1* (I I*)"* m^ + 1 (I*)'* A* J^ } (IV-2.8)

The interest rate is thus a stochastic process, determined by the expected

instantaneous returns, wealth and time.

It was shown in section IV-1 that the estimation error does not affect the

present physical investment opportunity set. Equation IV-2-8 shows that the

interest rate is a function of the conditional variance V . Since investors are

homogeneous, they will not borrow or lend and the present investment opportunity

set is unaffected by the estimation error.
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The first term of equation IV-2.7 is the familiar demand for investment by

single period optimizers. The second term corresponds to the demand for hedging

against changes in the investment opportunity set. Substituting A, the

instantaneous "standard error" of the conditional expected returns, that second

term can be rewritten as:

(II*)"*I A*(-J^
*^'*^Wm" ^^*^~^^^^"-^WW ^^'Xm'^^^'^'X^'-^WW

^^'^^^

The second term of this equation disappears when V is equal to zero and the

first term is identical to the one obtained by Herton (1973) in his

Intertemporal Capital Asset Pricing Model, assuming perfectly known expected

returns. If investors are 'teyopic ", as in the case of logarithmic preferences ,

they have no interest in hedging against future shifts of the investment

opportunity set (i.e. J_, =0). Consequently, their investment policy does not
Wm

depend on V . They thus behave exactly as if m were the true expected return

vector. The Separation Theorem in this very specific case states that agents

completely ignore the uncertainty on the state variables.

Suppose now that only one technology, say the ith, has an uncertain expected

return. The larger the uncertainty on |i., the less agents invest in the ith

17
security . Hence, non myopic, risk-averse investors reduce their investment in

technologies with more uncertain expected return.

Klein and Bawa (1977) explicitly incorporate estimation risk into the

investment decision problem in a one period model. They show that, under some

assumptions for the uncertainty structure, the set of efficient portfolios is

identical to that given by traditional analysis but the optimal portfolio choice

differs. They conclude that risk-averse agents invest less, ceteris paribus, in

Feldman's (1983) derivation of equilibrium investment levels and of the

interest rate makes that assiunption. The implications for the term structure of

interest rates are thus utility specific.
Assuming that an increase in the conditional expected return corresponds to an

increase in future consumption, all other things equal. See Merton (1973) for a

more detailed discussion of comparative statics of this type.
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differs. They conclade that risk-averse agents invest less« ceteris paribus, in

assets with more uncertain expected returns. We reach the same conclusion here

but the continuous time framework allows us to highlight the mechanism: the

demand for hedging causes intertemporal utility maximizers to reduce their

investments in lesser known technologies but the uncertainty on production in

the next (infinitesimal) period is unaffected by the estimation risk.

bco

.

if.:.

«.t

r.t
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Conclnsions and fnture research

A summary of the main results of the analysis is followed by an outline

of the research currently underway. - > 3g

The process of estimating expected returns on investment was explicitly

integrated into a general equilibrium model of real investment under

uncertainty. Agents were assumed to have rational expectations, i.e. they use

all available information in an optimal way to form their expectations. The

optimal estimator of expected returns on investment, namely the conditional

expectation, was derived using continuous time filtering techniques. The dynamic

estimator is a diffusion process governed by a differential equation similar to

the one which characterizes the true expected returns. The estimation and the

investment decision problems exhibit separability for a wide class of '^

uncertainty structures. '^

The separation property leads to the derivation of general equilibrium

conditions using the customary dynamic programming techniques without

restrictive assumptions on agents' preferences. Uncertainty about the expected

returns affects the value of the interest rate and the level of physical

investments. Risk-averse, intertemporal utility maximizers reduce their

investments in technologies with more uncertain expected returns. High levels of

uncertainty lead to a reduced diversification of the optimal portfolios.

Finally, the effect of estimation risk on equilibrium does not disappear as the

observation interval increases without bound and agents gather more information

on the technologies.
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One line of research motivated by these results is the analysis of the

implications for general eqnilibriam of the non-observability of state

variables. It will be further developed in a later companion paper. The results

obtained by CIR (1978) will be reexamined in this more general case. In

particular they show that, in the case of a single state variable and

logarithmic preferences, the interest rate is a linear function of the state

^.variable. In the case of more general utility functions, the interest rate and

financial claim prices are functions of the derived moments of the conditional

distribution of the state variables. An important question is, therefore,

whether or not the conditional moments can be deduced from equilibrium prices.

We should not expect markets to become complete by the addition of contingent

_^. claims to the investment opportunity set. In fact, no contract with payoffs

,;; dependent on unobservable shifts in the investment opportunity set is

„ enforceable (Radner (1981)). There exists, however, a set of contingent claims

which allows agents to hedge against changes in their perceived investment

opportunity set characterized by the conditional moments of the returns

7, distribution.

'>9t;.^--^ "^^ imperfection of the estimation of the state variables adds a factor

to the variability of prices, interest rates and equilibrium investments.

Consider the case of lognormal prices: the opportunity set is constant. However

J.- ^, ..agents' perception of the investment opportunity set evolves over time as they

improve their estimate of mean returns. In this case the learning process is the

;„ only determinant of changes in the interest rate and equilibrium investments.

. .^ . . Consider now a related situation: the economy goes through a turbulent period

followed by a return to stationarity in the investment opportunity set. The

characteristics of equilibrium widely vary after the shock responding not to
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present events but to accmals of information on past events. Using the

equations derived here, I will investigate the impact of this learning process

on equilibriom. As was shown in this analysis, the conditional distribution of

returns has the same instantaneous variance as the distribution of returns

conditional on observing the true expected return. However, uncertainty on the

state variables adds to the uncertainty on future opportunity sets. In the case

of one state variable and logarithmic preferences, the CIR (1978) analysis is

easily extended. Logarithmic preferences imply myopic behaviour and precludes

demand for hedging against changes in the investment opportunity set. Therefore,

further research will focus instead on the more interesting case where investors

do not behave myopically and modify their portfolios to hedge against changes in

their derived opportunity set. Further research will make the assumption of

isoelastic preferences to study the demand for hedging in a tractable case.

-' en?
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APPENDIX

The technical assumptions of the non-linear filtering results are:

Elements of the vector functions:

d(t,x) = (d,(t,i). ...d (t.x))
1 s

a(t,x) = (a, (t.x), ...a (t.x))
1 s

and matrices:

aao-

D(t,x) = [D. .(t.x)] .
i.j s*s

T(t.x) = [I. .(t.x)] ,-
I.J s*s

A(t.x) = [A. .(t.x)] .
l.J s*s

B (t.x) = [B . .(t.x)] .
Z Zl.j s*s

B (t.x) = [B . .(t.x)] .
y yi.j s*i

s s
are assumed to be measurable nonanticipative (i.e B -measurable where B is

the a-algebra in the space of C of the continuous functions x={x . 0^r<T}

generated by the functions x . r^t) functionals on

{[O.T] •
qJ.

Bjq ,j,j*B^}, x=(i^...x^) belonging to C^

.

and verify (for any x in C-,, the space of continuous s-vector valued functions

on [O.T]. and all the admissible values for i and j):

fT fla.(t.x)l + |A..(t,i)l + (B ..(t.x))' +
JO L 1 ij zij

(B ..(t.x))* + (7. .(t.x))*l dt < « (A-1)
yij ij J

U [(d.(t.x))* + (D..(t.i))*] < » (A-2)

The matrix Z(t.i)*T (t.x) is uniformely non-singular, i.e. the elements of the

reciprocal matrix are uniformely bounded. (A-3)
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If g(t,x) denotes any element of the matrix J(t,x) then for any x and x' in

[g(t.x)-g(t.x')]* i L^
J5

Ixj-x'jl' dK(s) + L, I't'^'t'*

g'{t,x) m JJ
d+lxj') dK(s) + L, (l+lx^l*) (A-4)

a 1

where Ix I
= x, (t) + ... + x (t) and K(s) is a nondecreasing right

t * s

continnons function, O^K(s)i.l.

(T E|D..(t.q)^.(t)ldt < » (A-5)
JO ij ^ "^j

EU.(t)l < « OitiJ (A-6)

4Jo tD. .(t.q)m.(t)]'dt < »] = 1 (A-7)

|A. .(t.x)l<L Id. .(t.x)l<L (A~8)

(T E[a*(t,q)+B*. .(t.q)+B*. .(t,q)]dt < » (A-9) . ,:

JO 1 ^ zij ^ yij

E 2 ^-(0) < " (A-10) ;..,^

V

where E denotes the expectation and m.(t) = E[^.(t)l ^^^ • ^-

•^o.
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