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I, irtcgeduetlon

Critical Path analysis is commonly considered to be a technique for

planning and scheduling of projects. The planning phase is usually

identified with the construction of the project graph, during which time

specific decisions are made on the method of performing jobs as well as

their technological ordering. At the same time standard times are

assigned to these jobs. At the completion of the planning stage it is

possible, using the conventional CPM calculations, to schedule the

starting time of each job in the project. Unless several different plans

are evaluated in this way, or unless the technique of job crashing is

used, there is no interaction between the planning and the scheduling

phase of the usual CPM analysis.

We shall show in this paper that if an overall optimum is to be

obtained a much greater degree of interaction is essential, and shall

give methods for solving the more general problem. Thus if there are a

number of competing methods of performing some of the jobs, each method

having a different cost, a different time duration and different ,

technological dependencies, we shall include all these in the project

graph, rather than making the decisions in advance. Then in the

scheduling phase, we shall consider the effects of all alternate methods

of performing a task on the total cost of completing the project and

choose those alternatives which minimize this cost. We may apply the

same method to the control of projects being carried out. Thus decisions 1
,4

previously optimal, may be changed during the execution of the project

due to certain jobs being delayed. We call the complete problem

^'^51897
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Decision CPM, and we shall show how to set It up as a formal

mathematical problem and to solve it using various techniques.

In Section 2 a decision project graph is defined which contains

information on all jobs to be completed in a project, alternative methods

of performing some of the jobs and precedence relations between the jobs.

A simple example is presented in Section 3. Section 4 and 5 present

integer programming and heuristic techniques for solving such a graph for

the set of jobs which are to be performed and the criticality of these jobs

Finally Section 6 will briefly discuss the application of the technique

to dynamic monitoring and control of projects during their execution.

1/ The authors of references (2) and (4) have discussed networks with

decision nodes but in both cases they refer to decision nodes with

probabilistic research outcomes. In addition S. F. Elmahgraby (5)

has given a more general discussion of probabilistic decision nodes.





This section will follow in part the article [9] by Levy, Thompson,

and Wiest. Let J - {s , S_, S., ...] be a set of 1ob sets that must be

done to complete a project. Some job sets are unit sets S, = {S.^} and

other job sets have several members, S, = {S.-, S„, S_, ..•} • In order

to complete the project, some of the jobs from each job set must be

completed. Associate with each job set

(1) i

k(l) variables

(2)

having the property that

(3) d^^ -

t^l 'i

'11 •

(:

k(i)

ik(i)

if job S , , is to be performed

otherwise.

If exactly one of the jobs must be performed (this may or may not be the

case) then the mutually exclusive interdependence condition is expressed by

(4)

k(i)
Z d

ij

Many other possibilities exist, as we shall see.

I^ all job sets are unit sets (implying condition (4) holds), then all

of the jobs in the psejeee ase independent and the project reduces to

the ordinary project of the usual CPM variety. If one or more of the

job sets have more than one member, then for each such set a decision





must be made as to which job of the set is to be done. Once such a

decision is made for each job set, the result is an ordinary CPM project.

It should be noted that the decisions may be complicated by many other

kinds of conditions than (4), which may be of the mutually exclusive or

contingent kind. For instance, the following equations give examples of

such interdependencies among decisions.

(a) d + d < 1
ij mn —

(b) d < d
ij — mn

(c) d = d
ij mn

(d) d, . < d,
, + d - d., d

ij — hk mn hk mn

Finally the design problem may not always be the simple choice of one

job from each job set. For instance,

k(i)
(e)





-5-

In addifeipn ^a uh0 polat^lmMi Himevihad above there will be

precedence relations between the jobs of a decision project. Let '«'

denote a relation between pairs of jobs in J such that S « S is
ij """

defined for some pair of jobs S.., S and is read S is an
ij mn ij

immediate predecessor of S • The interpretation of this statement ismn

that all immediate predecessors of a job must be completed before that

job can be started. A decision project is the set J together with the

specified interdependencies and the relation « defined on J.

The decision project graph of a project, G, is a graph with

nodes representing jobs and a directed line segment, connecting two nodes

S.,, S if and only if S., « S holds. A path in G is a set of
ij mn ij mn '

nodes connected by immediate predecessor relations. A cycle in G is a

closed path of the form S
.

, » a, « a. « . . . « a = a, = S, ,. A
i-j -L ^ n 1 ij

project graph is acyclic if and only if it has no cycles.

Definition: S,, <S implies S. . precedes S (or alternatively
ij mn '^ ij mn ^ '

S succeeds S^,) if and only if there is a set of jobs fa,, a_ ... a Imn ij -^ * 1' 2 n-"

n > 2 such that

in other words, S,. precedes S if and only if there is a path from
ij mn

S , . to S in the decision project graph G.

Assumption 1:* The precedes relation is asymmetric, that is if

S,, < S then it is false that S < S^^ for all S_, . and S in J.
ij mn mn ij ij mn

* Note that this assumption differs from the corresponding assumption in
(9) in that the requirement of K-intransitivity is omitted. For this
reason theorem 1 of that reference does not hold in the present context.
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Deflnltion: A relation that is transitive and asymmetric is said to be

a preference relation .

Theorem* 1: If assumption 1 holds, then the predecessor relation is a

preference relation, and the graph G is acyclic.

Definition: A technologically ordered job list J* = [a^ , a . . . a ] is

obtained from a set of jobs J = [a, b, c . . .] by listing them so that

no job appears on the list until all of its predecessors have already

appeared.

Theorem* 2: Assumption 1 holds if and only if it is possible to list

the jobs in J in a technologically ordered job list J*.

In addition to these definitions and theorems from reference (9)

several additional conventions are necessary because of the fact that

some jobs may be eliminated from the decision project graph as the result

of decisions that are made. If we decide to do one of the jobs in a job

set, then all immediate predecessor relations that the job satisfies

must hold in the final graph. If we decide not to do that job, then

none of its immediate predecessor relations hold. In the decision

project graph if we decide not to do a given job, then we must remove

that job together with all edges that impinge on it from the decision

project graph to obtain the final project graph. It .ollows from this

that if any job, S ,
. has a sole immediate predecessor S , and if that

predecessor is a member of a job set, it will be necessary to create a

The proofs of these theorems are exactly as in reference (9).
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dunmy Immediate predecessor relation between S, . and a job which is

a predecessor of S . If this is not done, then it would be possible•^ mn ' r

for the path containing S,. to be broken and S would lose its

project time ordering. Similarily a dummy immediate successor relation

must be established for jobs having only one immediate successor, if

that successor is a member of a job set. In addition it may be necessary

to create a dummy relation between two jobs even if both have several

immediate predecessors and successors. If on any path, two jobs are

separated by a job which could be eliminated, and if it is desired to

maintain a technological ordering of the two jobs, a dummy immediate

predecessor relation must be established between them.

For a given project, when the jobs are technologically ordered and

all planning decisions are made designating the jobs to be performed

in each set, the normal critical path analysis may then be carried out.

The usual concepts of early start, late start, critical path etc., will

apply to this reduced graph.





3. Deciglon Projact GrophH

A graphical representation of the combined planning and scheduling

problem is shown in the decision project graphs of Figures 1 and 5. In

these graphs the circular nodes represents jobs and the triangular

nodes introduce the mutually exclusive job nodes of a job set. In

Figure 1 we have the additional interdependence of a contingent

relationship between jobs S^--, and S„„. We may include job S__ if

and only if we perform job S^^- Therefore the possible sets of

decisions are [82^^ S^^^] , {82^^ 8^2^ °^ ^^^22 ^51-^' '^^ project graphs

resulting from each of these sets of decisions are shown in Figure 2, 3

and 4 respectively. It should be noted in Figure 1 that the links

G)—^ '
®—^ "' (5)

—

'^ "' "^"^

necessary because jobs S„^ and S^. are members of job sets.

The total project cost given any set of decisions will vary with

the due date established because of overtime penalties and early finish

premiums. For example if jobs S„^ , S „ are selected the cost of

performing all jobs would be $1650. Since it would require 97 days to

finish the project, a due date of 98 days would give the project a total

cost of $1650. However given a daily penalty and premium of $150 and $25

respectively a due date of 97 would cost $1650 + 150 = $1800 and a due

date of 101 days would cost $1650 - (3)(25) = $1575. Exhibit I

illustrates how total cost changes with due date for each set of decisions.

It also indicates that the optimal decisions (as indicated by the boxes)

vary with the given due date. This example demonstrates the difficulty

of making decisions in this project without the knowledge of scheduling

information and due date.
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Decision Set

Due Date
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DECI8I0N PROJECT GRAPH - No. I

S„ A START

26

S, V200
65

51

^260 22>-^140

'52

75

21

S, )700
49 V 7

/--*-<

S
8 J FINISH

47/C^ 100
*22

52

s.t. d3^>d22

< d^ < 1 Integer

lATE PENALTY $150
EARLY PREMIUM 25

FIGURE 1
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S. /^-\L.S.

FIGURE 2
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PROJECT GRAPH I - DECISIONS S,, , S21' "52

FIGURE 3
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PROJECT GRAPH T - DECISIONS S^^, S^^

©

39 v^42

1 /•—Nl
^0

,51

ASI 7

1 / S,^\ 1

100, 100

FIGURE 4
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It is relatively simple matter to solve very small decision project

graphs by making a complete listing of alternatives. Experimental

results of this approach will be discussed in Section 5. It is clear

however that the number of possible combinations rises rapidly. For

example the decision project graph of Figure 5 has a total of 864

possible decision patterns. It has therefore been necessary to develop

other techniques to handle large problems.
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4. Decision Graph Solution by Integer Programming

Consider a job set (1) and its associated decision variables with

constraints given by (2), (3) and (4). Besides these, there may be any

of the other constraints discussed in Section 2 of this article or other

constraints showing various types of complicated interdependencies

between jobs in the project.

As in the graph of Figure 1, we associate with each job, S
ij

I „ Itime, t , and a cost, c . Also we assume a reward payment of r

dollars per day for each day under D, the required due date of the project

and a penalty payment 'p' for each day beyond D. We can now formulate

the integer programming problem of selecting the best project graph and

finding its critical path.

h k(i) - +
(5) Min E E d c - rW + pW

1=1 j=l
iJ ij F F

The first term calculates the costs of all the decision jobs that are

to be performed. It is governed by the constraints

(6) 0<d^^<l

k(i)

(7) Z d

where d is an integer, the second term is explained by the constraint

(8) Wp - W^ + Wp - D =.
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whore W Is the early start time of Finish, the last Job in the

project. If W > D then the project is not completed until after

the due date so that W_ = W_ - D and a penalty of pW_ is incurred
t i* r

in the objective function. We assume that p > r so that not both

W_ and W will be in the basis.
F F

Other constraints must hold because of precedence relationships.

For instance if S. and S are unit set jobs and S. « S we have
1 m ** 1 m

(9)

where W, is the early start time of job S.. If S is a unit-job
i

^ -
1 m

set and S,

,

is from a multi-job set and S. , « S then
ij ij m

(10) -M(l -d^^)-.W^. + t.j<W^

where M is a large enough number so that the inequality is restrictive

only if d = 1. If S is not performed (i.e., d = 0) the

inequality does not constrain the variables. Thus all paths through

jobs which are not performed will be broken.

It is now possible to set up the problem of Figure 1 as an integer

programming problem. Note that it is not necessary to include the cost

of unit set jobs in the functional or the start and decision nodes in

the precedence constraints.
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Minimize 150W^ - 2 5W„ + 260ct.j_ + 140cl^^ 4- 310d^, + lOOd,
.p ...p -""^1 '• '52 21 '"""22

Precedence

St
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As stated above^ each constraint in the precedence set represents

an immediato predecessor relationship in the original graph. The

precedence relationships could also be represented by a series of

constraints, a separate constraint being included for each path in

the original graph. For the problem of Figure 1 the precedence

constraints vould be

(1)
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Thufl the final "Reduced Path" formulation of tbe problam of

Figure 1 is written as

Minimize I50 W^ - 25 w" + 260 d^. + lifO d^.
r r pi pc

+310 dg^ + 100 d22

S.t .

Reduced Paths -M(1 - d„ ) + 96 < Wg

-M(l - d^g) + 9T ^ Wg

-M(l - dgg) + 99 £ Wg

Due Date

^8 - "f = "f = ^

Interdependenee
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5. Declsiog Graph Solution by Heuristic Techniques

The first integer progranming fonnulation of section four requires

a constraint for each link of the graph (except for the links emanating

from the start node or a decision preceded only by the start node), one

constraint for each multi-Job set plvis a final due date constraint. The

second forraxilation requires a constraint for each path. In both cases

there may be interdependence constraints as well. In very large problems

the integer programming solution technique becomes impractical because of

the resulting large nvtmber of constraints and variables. For that reason

ve have developed heuristic solution techniques for solving the problem.

The heuristic methods to be described have been designed to handle graphs

containing only the mutually exclusive type of interdependency. Furthermore,

all Jobs in a Job set S. are assumed to be bound by the same precedence

relationships and Jobs in a decision set have the following cost and time

relations. (One of the authors is presently developing heuristics for

more general cases.)

t^<..t^2^ . . .-^t^(i)

°11^ °12^ • • • ^=ik(i)

The heuristic routine contains the following steps.

(1) Technologically order the jobs.

(2) Set each decision node to the alternative having the lowest cost.

(3) Calculate the critical path.

(if) Reorder by EARLY START (also a technological ordering).

(5) Go to 7.

(6) Recalculate the critical path starting at the position in the
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ordered job list held by the decision node of step (10).

(7) Identify all decision nodes on the critical path.

(8) For all the nodes of step (7) calculate the net reduction in

total project cost achieved by substituting the more costly alternatives.

(9) If no alternative reduces overall cost, go to 12.

(10) Find the alternative that gives the maximum cost reduction and

switch the relevant decision node to that alternative.

(11) Go to step (6).

(12) Review all decision nodes that were previously changed to see

if sufficient slack has been generated to allow the reintroduction of a

longer but cheaper alternative. HALT.

Some explanation is required for several of the steps. First in (7)

it is only necessary to examine decisions on the critical path since for

decisions not on the path any reduction in job time would have no effect

on the penalty cost. Secondly, the method of calculating cost reduction

in (8) is as follows. The additional cost of switching to a more

expensive alternative is simply the difference in costs. The saving

to be made from reduced overtime penalty on increased premium is not

straightforward. The total length of the critical path is not necessarily

reduced by the same number of days as the job length is reduced since a

parallel chain might become critical if the job is reduced in length by

one or more days. It is therefore necessary to check the slack available

in all parallel chains and calculate the reduction as the smallest value

of slack found.
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In the program the maximum "shrink" or minimum "total slack" is

calculated as follows. Given the decision node S. find the slack of

all jobs S such that EARLY START. < EARLY ST/VRT < LATE FINISH. .

- mn 1
— mn —

i

Given these conditions no job selected could be a succssor or predecessor

of S and from all chains not containing S. at least one job will be

selected. Also, given that the length of the project is long compared to

the length of the longest job in a multi-job set, and that the jobs are

ordered by EARLY START time it is only necessary to examine a small

fraction of the jobs in the search for parallel jobs.

This program has been applied to two small problems: (a) the graph

of Figure 5 with eight decision nodes and (b) a seven node problem formed

by dropping decision node 29 from the graph of Figure 5. Exhibit 2

compares the results of this program with the results of a complete

1/

enumeration routine and the stopped simplex integer programming algorithm.

The heuristic technique finds the optimum for the eight node problem in

three steps. First with all the minimum cost alternatives chosen the

project ends on day 7 9 (or the artificial FINISH job begins on day 80)

and the total cost is $10,298. In the second stage job 82^ ^
is replaced

by S„_ ^ at an incremental cost $425 - 200 = $225 but since the project

now ends on day 72 the cost is reduced to $7198. Finally S^^ ^
is

replaced by S^, „ ^^ ^" incremental cost of $125. The project now ends

on day 69 and since the due date is day 70 no penalty or premium is

1_/ The complete enumeration program and the results from that program

quoted above are a contribution of J. D. Trawick.
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Incurred. This optlnium solution, with a cost of $5898 is shown in Figure 6.

Similarly the routine finds the optimum of the seven node problem with a total

time of 69 days and a cost of $5'*-73.

Number of Early Start Plans Computation
Decision Nodes Program of FINISH Examined Time (sec.)

7 Heuristic 70

7 Complete Envuneration 70

7 Integer Programming
(Reduced path form) 70

8 Heuristic 70

8 Complete Enumeration 70

8 Integer Programming
(Reduced path form) 70

Program Performance on Seven and Eight Node Problems

Exhibit 2

2

288
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DECISION PROJECT GRAPH NO. 2 - OPTIMUM SOLUTION
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Although the heuristic approach achieved the optimum plan on the two

problems tested, we do not wish to imply that it will always do so. At

present the program is being modified to improve its efficiency and to

allow it to handle other types of interdependencies. It is hoped that

with these improvements the program will handle efficiently a wide

range of planning problems.
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6. Application o£ Decision CPM

to Dynamic Monitoring and Control of Projects

In the previous sections Decision CPM has been presented as a

technique to solve combined planning and scheduling problems for

construction type projects, as originally stated. However it is clear

that such things as project crashing can be handled by the technique

if the assumption is made that there are several discrete levels of

performance possible, rather than a continuous linear relation between

job cost and job time. The assumption of discreteness is particularly

fitting in construction projects where there is a choice such as one or

two shift operation and the use of regular or quick-drying cement etc.

Furthermore the potential of the technique for project design and

job crashing has important implications for the dynamic monitoring

control of the project as we carry out the plan. Suppose that daily

information is collected concerning the status of jobs in a project

being work on. At any given time some jobs will have been finished on

time or early and others will have been delayed. Given this information

it is possible to solve again for a new optimum in the decision project

graph of the remaining problem. It is true that some earlier decisions

may be unchangeable, perhaps because of the purchase of material, but

some decision sets and many possibilities for crashing of jobs will

usually remain. Given the actual status of the project new decisions

may now be better than those previously accepted.
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An example of such a situation is given in Figure 6 which shows

the state of the project graph of Figure 5 at the beginning of day 31.

According to the original schedule jobs S^ and 82^ should have been

started. However S , ^n immediate predecessor of S„^ with a job time

of five days has been in progress only two days.

An examination of the original schedules showed that S had one

day of slack. Therefore the three day delay will lengthen the completion

date by two days and incur a penalty of $900. If the graph is solved

with the new information a switch from S to S is shown to be

desirable. For an incremental job cost of $130 one day can be removed

from the completion cost (Figure 7). The total cost of the delay is

therefore reduced to 900 - 450 +130 = $580. Thus specifying alternatives

as is done in the decision project graph allows continual adjustment of

decisions in response to operating experience.

In summary the dynamic design and control processes will operate

as follows.

(1) Collect information on

(a) tasks to be performed and alternative methods of performing

them (jobs)

(b) technological relations between jobs

(c) interdependences among decisions

(d) job times

(e) job costs

(f) job crashing methods. and costs

(g) project due date, penalty and premium
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(2) Solve problem using decision CPM for original plan

(3) Begin project

(A) At regular intervals collect information on project progress

(5) Update job cost and job time data

(6) Replace decision nodes by single jobs as decisions become

irrevocable over time

(7) At regular intervals resolve the remaining decision project

graph to see if savings are possible by the implementation of

a new plan. Go to 4

(8) Halt when project is complete.
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No.

31 [ S, V33
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38 fs^^ ,)40
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FIGURE 7
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22 39,
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39/ . A 39
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'34 601 30 ) 60

FIGURE 8
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Conclusion

The paper demonstrates the possibility that savings can be made

in the total cost of projects if the planning and scheduling problems

are solved simultaneously. For small projects the joint problem can

be solved by means of integer programming using only information that

is available to the planner and the scheduler. For larger projects

heuristic techniques show some promise of giving good solutions. It

is expected that in practice large savings can also be made from a

control system that allows continuing redesign of project plans.
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