

ms^^

Center for Information Systems Research
Massachusetts Institute of Technology

Alfred P, Sloan School of Management
50 Memorial Drive

Cambridge, Massachusetts, 02139

617 253-1000

DECISION SUPPORT SYSTEMS;

A RESEARCH PERSPECTI^'E

Peter G. W. Keen

March 1980

CISR No. 5A

Sloan m No. 1117-J

Many of the ideas expressed in this

paper belong as much to my colleagues

at the Wharton School, 1978-79, as to

myself. In particular, the concepts

of task representation were developed

by Gerry Hurst, Dick Hackathom and

myself, and extended through discus-

sions with John Henderson and Tom

Gambino. The research framework owes

much to a seminar on DSS run by Dick
Hackathorn.

CONTENTS

1. Introduction 1

2. Definitions of DSS 2

3. Case-Based Studies of DSS A

A. Middle-Out Design 6

5. "Semi-Structured" Tasks ; 7

6. DSS Redefined 9

7. Adaptive Development and Use 11

7.1 The System-User Link 14

7.2 The User-Builder Link
_ 15

7.3 The System-Builder Link 16

7. A Summary 18

8. The Task Context 18

9. Contextual Issues in DSS Development 22

10. Conclusion 26

Figures

Figure 1. An Adaptive Framework for DSS 12

Figure 2. Task Context 23

Figure 3. Organizational Issues 24

Appendices

Appendix 1. Case Studies of DSS — incomplete

Appendix 2. Examples from Case Studies — to be supplied

References

Bibliography — to be supplied

nH03\^

1. Introduction

Decision Support Systems (DSS) represent a concept of the

role of computers within the decision making process. The term has

become a rallying cry for researchers, practicioners and managers con-

cerned that Management Science and the Management Information Systems

fields have become unnecessarily narrow in focus. As with many rally-

ing cries, the term is not well-defined. For some writers, DSS simply

mean interactive systems for use by managers. For others, the key

issue is support, rather than system. They focus on understanding and

improving the decision process; a DSS is then designed using any avail-

able and suitable technology. Some researchers view DSS as a subfield

of MIS, while others regard it as an extension of Management Science

techniques. The former define Decision Support as providing managers

with access to data and the latter as giving them access to analytic

models.

Research on DSS gained momentum around 1974. Only within

the past two years has it reached a critical mass and expanded beyond

a fairly narrow circle. By 1979, almost thirty fairly detailed case

studies of DSS had been published. As the concept has become fashion-

able it has been used in looser and looser ways. Last year's article

on "interactive marketing models" is cut-and-pasted and resubmitted

with "decision support systems" sno-paked in instead. It may well be

that DSS are more important as a liberating rallying cry than as a

theoretical concept. However, the published case studies and concep-

tual proposals imply a coherent framework that makes DSS a meaningful

-1-

disclpline for both research and practice.

This paper presents a formal definition of DSS. It aims at-

answering two key questions:

(1) Is the term really necessary?

(2) If so, what are the research issues it implies?

The key argument is that the term DSS is relevant to situations where

a "final" system can be developed only through an adaptive process of

learning and evolution. The design strategy must then focus on get-

ting finished; this is very different from the Management Science and

Data Processing approaches. The research issues for DSS center around

adaptation and evolution; they include managerial learning, representa-

tion of tasks and user behavior, design architecture and strategies

for getting started.

2. Definitions of DSS

Most work on DSS adopts one of the following conceptions,

even if only implicitly:

(1) A DSS is defined in terms of the structure of

the task it addresses.

(2) DSS require a distinctive design strategy

based on evolution and "middle-out" techniques.

(3) DSS support the cognitive processes of indivi-

dual decision makers; decision research pro-

vides descriptive insights into management

problem-solving and normative theories for

defining how to improve its effectiveness.

-3-

(4) DSS reflect an implementation strategy for

making computers useful to managers; this

strategy is based on the use of skilled in-

termediates, responsive service and "human-

ized" software interfaces.

None of these conceptions necessarily implies interactive

computer systems; a DSS is defined in terms of context and use. There

is no technical conception for which one cannot readily generate coun-

terexamples. For instance, the design architecture, mode of use and

available functions of an airline reservation system are virtually the

same as those in many data-based "DSS". If a given DSS is identical

to, say, a standard interactive model, there seems no value whatsoever

in using a new label. DSS become a meaningful research topic only if

the term can be shown to be a necessary concept. In the pragmatic con-

text of information systems development and analytic techniques, call-

ing a system a DSS must lead to some actions, by the designers or users,

that would not have occurred otherwise; the actions should contribute

to the effective development of the system or its effective use.

A potential strength of the DSS movement has been that it

has at least tried to link theory and practice. It describes real

systems used in real organizations by real problem-solvers, not experi-

ments involving captive students. At the same time, since it explicitly

argues that DSS are different from traditional systems, the better

empirical work addresses conceptual issues, if only assertively. The

available studies of DSS thus often provide illustrations, extensions

or counterexamples that can be used to test and extend their authors'

conceptual assumptions.

-4-

3. Case-Based Studies of DSS

This is not a survey paper, but many of the ideas expressed

in it come from a detailed analysis of 30. articles or chapters in books

that describe particular "DSS" in detail. (Appendix 1 provides the

necessary references.) Some clear and general conclusions can be drawn

from the studies:

(1) The actual uses of the DSS are almost invari-

ably different from the intended ones; indeed,

many of the most valued and innovative uses

could not have been predicted when the system

was designed .

(2) Usage is personalized; whether a system is re-

cently operational or has been in place for

some time, there are wide variations among in-

dividuals in how they use its functions.

(3) DSS evolve; case studies frequently state that

key factors explaining successful development are

a flexible design architecture that permits

fast modification and extension and a phased

approach to implementation.

(4) The functions DSS provide are generally not

elaborate; complex systems are evolved from

simple components

.

(5) While the orthodox (academic) faith views

2
DSS as tools for individual decision makers,

users regard the concept as more relevant to

-5-

systems that support organizational processes.

They also feel they do not really use DSS for

decision making .

(6) Major benefits identified by users are flexi-

bility, improved communications (of, for example,

the logic of an analysis), insight and learning.

(7) DSS are frequently used by managers through inter-

mediaries and chauffeurs; while an interactive

computer system is essential for ease of access,

there is little interactive problem-solving.

Examples of all these points are shown in Appendix 2. They

add up to a fairly clear picture of DSS development that differs from

the orthodox faith in important details. In the first place, they

suggest that the term Decision Support System is too broad and the

cognitive focus of much of the research too narrow. Keen and Hackathorn

argue that a distinction should be made between

(a) Personal Support Systems (PSS) , for use by

individuals in tasks which involve no inter-

dependencies, so that the user can indeed

make a decision;

(b) Group Support Systems (GSS) , for tasks with

"pooled" interdependencies which thus require

substantial face-to-face discussion and com-

munication;

(c) Organizational Support Systems (OSS) , for tasks

involving "sequential" interdependencies.

-6-

A PSS may thus support a manager's own budget decision , a GSS support

the budget negotiation , and an OSS support the organizational budget

process .

Several writers have been uneasy with the D in DSS. It

largely reflects the cognitive focus — even bias — in the early

DSS research, which draws on Simon's theories of individual decision

making and concepts of cognitive style and cognitive complexity. Or-

ganizational Support Systems far outnumber PSS in the published case

studies and require a very different theoretical base, which is so

far lacking.

A. Middle-Out Design

The studies strongly support the concept of middle-out de-

3
sign for DSS. Almost all the descriptions of DSS implementation

highlight careful use of prototypes, continued incremental development,

and response to users' changing demands. Writers such as Ness, Courbon,

Grajew and Tolovi, and Berger and Edelman make a strong implicit case

' for viewing X Support Systems (where X may stand for Decision, Manage-

ment, Personal, Organizational, Interactive, or whatever) as an adap-

tive design strategy.

The obvious question is: Is the strategy a general one for •

interactive systems or needed only for particular situations? Middle-

out design differs most from traditional techniques in that it explicit-

ly proceeds without functional specifications. Data Processing (DP)

has learned, through vicarious trial-and-error learning and occasion-

al reflection, that systems development requires planning before pro-

-7-

gramming. Brooks' brilliant and somewhat rueful review of software

engineering, The Mythical Man-Month , established that coding is only

10% of the total effort in the system's development life cycle. Stan-

dard textbooks generally recommend that around ^0% of the effort go

to analysis and specifications, 10% to coding, 30% to testing, and

20% to installation (and another 100% - 300% to maintenance) . The

vocabulary of DP is full of terms like "signing-of f
", "functional

specifications" and making a system "operational".

The DSS case studies, including those in which the design

strategy was not based on middle-out, contradict the recommendations

underlying the systems development life cycle. This clearly implies

that defining a system as a DSS, rather than, say, an interactive

information retrieval system, does make a difference. It shifts the

development process from a focus on delaying coding to getting going

on it as fast as possible, from aiming towards a clearly-defined

"final" system to implementing an initial one that can then be firmed-

up, modified and evolved. The systems development life cycle is a

strategy for getting finished; adaptive design (this term captures

all the middle-out, incremental and evolutionary techniques scattered

throughout the case studies) is a method for getting started.

5. ^'Semi-Structured" Tasks

Viewing DSS in terms of the design process is not enough to

integrate all the conclusions from the case studies. It also side-

steps key conceptual issues raised by the. decision research and task-

centered conceptions of DSS. Gorry and Scott Morton's A Framework for

-8-

\/ Management Information Systems (1971) was a seminal paper for DSS.

It built on Simon's concept of programmed and non-programmed tasks

and identified "semi-structured" tasks as those requiring special

treatment. Structured tasks can be automcited or routinized, thus

replacing judgment, while unstructured ones entirely involve judgment

and defy computerization. Semi-structured tasks permit a synthesis

of human judgment and the computer's capabilities.

There are several problems with this argument. The terms

"structured" and "unstructured" point to a spectrum of tasks, but

there is no real operationalization of "semi-structured". More import-

antly, it is unclear if structure is perceptual or intrinsic to the

task. Stabell also points out that organizations often decide to

treat an unstructured task as if it were structured; the degree of

structure is then socially defined, as well as perceptual.

Tlie Gorry-Morton framework is not a complete or convincing

theoretical statement. The range of applications, technologies and

mode of use of the DSS described in the case studies are too broad

to fit into it. (This applies also to Gorry and Morton's use of

Anthony's distinction between strategic planning, management control

and operational control. Morton (1971) suggests that DSS apply to

the first two areas, but Berger and Edelman give striking examples

of a DSS for operational control.)

Despite the looseness of its definition and the lack of

comprehensive supporting evidence in the case studies, Gorry and Morton's

notion of semi-structured tasks is intuitively convincing. Keen and

Scott Morton rely on it in explaining the concept of support, rather

-9-

than replacement, of managerial judgment. Any effort to define how

a DSS helps improve effectiveness in decision making, and not just

efficiency, has to introduce some similar notion of the relationship

between task structure and process (Stabell, Carlson and Sutton).

6. DSS Redefined

A central argument of this paper is that what Gorry and

Morton present', and Gerrity, Morton, Stabell, and Keen and Morton later

extend, is not the general case but a special one. The following

definition of Support Systems meshes the task-centered perspective

into that of adaptive design and also picks up on the most interesting

finding from the case studies, the unpredictability of DSS usage:

The label "Support System" is meaningful only in

situations where the "final" system must emerge

through an adaptive process of design and usage .

This process may be needed for a variety of reasons:

(1) The designer or user cannot provide functional

specifications or is unwilling to do so.

A "semi-structured" task is such an instance ;

we either lack the necessary knowledge to

lay out procedures and requirements (i.e.,

the degree of structure is perceptual) or

feel that such a statement can never be

made (i.e., the lack of structure is instrinsic

to the task)

.

(2) Users do not know what they want and the de-

-10-

signers do not understand v;hat they need

or can accept; an initial system must be

built to give users something concrete to

react to (this is the assunption underlying

laiddle-out) .

(3) Users' concepts of the task or decision

situation will be shaped by the DSS. The

system stimulates learning and new insights,

which in turn stimulate new uses and the

need for new functions in t^ie system. The

unpredictability of DSS usage surely re-

flects this learning, which can be exploited

only if the DSS evolves in response to it.

(A) Intended users of the system have sufficient

autonomy to handle the task in a variety of

ways, or differ in the way they think to a

degree that prevents standardization. In

this situation, any computer support must

allow personalized usage and be flexible.

While (3) states that the DSS shapes the user, (4) equally

suggests that the user shapes the DSS.

This conception makes DSS a necessary concept. For any

given system development effort, it makes a great deal of difference

whether or not the implementers view it as requiring a DSS as opposed

to a marketing model, retrieval system, report generator, etc. It

would be a severe mistake to rely on traditional development techni-

-3.1-

ques if the final system will evolve only through the ongoing inter-

action of designer and user, learning, personalized use, or the evolu-

tion of new functions. Learning, adaptation and evolution are made

feasible by building a "DSS" and not a "m^del". If these are not

needed for effective development and use of a system, then one should

build it as a "model" in the traditional way and the new label is not

relevant.

This definition of DSS in terms of adaptive design and use

provides a base for a research framework that is consistent with the

empirical findings of the case studies and that integrates the concep-

tual issues they raise or reflect. There seem to be three overall is-

sues for a theory of DSS:

(1) understanding the dynamics of the adaptive

relationship between user, designer and

technical system;

(2) analyzing tasks in relation to users' pro-

cesses and criteria for system design;

(3) developing an organizational focus to com-

plement the cognitive perspective and thus

include Organizational as well as Personal

Support Systems.

7. Adaptive Development and Use

Figure 1 shows the adaptive links between the major actors

Involved in any DSS development and the technical system. The arrows

represent a direction of influence. For example, SYSTEM ^ USER

-12-

FIGURE 1

An Adaptive Framework for DSS

USER

middle-out
design

SYSTEM BUILDER

evolution of system functions

-13-

indicates that learning is stimulated by the DSS while USER—̂ SYSTEM

refers to the personalized, differentiated mode of use that evolves.

The two adaptive processes work together :_ an effective DSS encourages

the user to explore new alternatives and ripproaches to the task

(S—:^U). This in itself stimulates new uses of the system, often

.unanticipated and idiosyncratic (U—^S).

The arrows are not merely a convenient schematic. They help

clarify whether a particular system should be called a DSS. For

example, an airline reservation system is technically similar to many

retrieval-based DSS. However, it is not intended to stimulate learning

(S—A-^U), nor are there personalized modes of usage; there is a "right"

way to operate the system and the user must adjust to it, not vice

versa (U—/-^S). Similarly, an interactive planning model that is

used to assess a predetermined range of alternatives is a system for

solutions, not for learning. It need not be flexible and adapt to

the user (U—t^S).

The arrows also represent requirements for successful DSS

development and use. For example, if the system forces users to follow

a fixed set of procedures, learning cannot be exploited:

User

System

In effect the DSS contains its own obsolescence. It stimulates new

approaches which it in turn inhibits.

-14-

The definition of USS as applicable in situations where the

final system must evolve from adaptive development and use thus implies!

(1) A system is a "DSS" only if each of the arrows

is relevant to the situation.

(2) Where they are relevant, the design process

must ensure they are not blocked by inflexible

design structures, failure to allocate re-

sources for implementing new functions, or

lack of a direct relationship between user

and designer.

(3) Each arrow represents a distinctive aspect

of research and practice.

Figure 1 ignores the context of the DSS development process,

especially the task to be supported and the wider organization. Be-

fore expanding it, however, it seems useful to discuss each adaptive

link in relation to DSS research. There are three loops:

S''~^U , U B , and S^ ^B.

7.1 The System-User Link

S_ U: this, in the context of Personal Support Systems,

may be termed the cognitive loop . (The issue of organizational support

will be discussed separately.) The link S ^u concerns managerial

learning and U S the individuals' exploitation of the DSS capabili-

ties and/or their own learning. The cognitive loop helps explain the

consistent finding in the case studies that individuals use a given

DSS in very different ways and that uses are so often unintended and

-15-

unpredicted. This seems a natural outcome of the sequence

S'''~^U^'~^S''^'^U ...

Much early DSS research explored aspects of the cognitive

loop, particularly characteristics of individual problem-solving that

influence the use of a DSS. This was a fairly static analysis and

it seems essential to examine the managerial (and organizational)

learning process in more detail. Doing so requires richer theoretical

models; the early research drew on limited concepts of cognitive style

and cognitive structure, that were at too high a level of analysis to

track the learning process. They focussed on general aspects of the

psychology of individual differences (Stabell, Carlisle, Grochow)

.

7.2 The User-Builder Link

The link U, B is the implementation loop,

(a) U B highlights a key aspect of adaptive

design, discussed by Ness and Courbon, et^ al .

Ackoff long ago pointed out that users do not

know what they need. The middle-out approach

relies on the quick delivery of an initial

system to which users can respond and thus

clarify what they really want. Kiddle-out

design is the means by which the designer

learns from the user ; it also ensures that

the user drives the design process.

(b) B U: this link has been explored in

-16-

studies of DSS implementation that examine

the role of the "integrating agent" (Bennett),

intermediary (Keen) , chauffeur (Grace) , and

change agent (Ginzberg) , DSS are a service

rather than a product and require that the

designer understand the users' perspective

and processes, build credibility and be respon-

sive to their evolving needs.

The implementation loop is both well-researched and well

understood. The empirical work of Courbon, Grajew and Tolovi is an

exhaustive and precise test of the concepts of adaptive design. The

more diffuse discussions of implementation are less operational

(Bennett, Keen, Ginzberg and Scott Morton).

7.3 The System-Builders Link

This evolution loop (S B) is less easy to label than the

others. While the case studies show again and again that DSS evolve

and much of the conceptual work relevant to DSS recommends evolution-

ary development (Urban), there are few detailed, longitudinal studies

or theoretical models. It is perhaps easiest to view the links in

relation to the other loops. Managerial learning (S ^U) and per-

sonalized uses (U''''~^S) put strain on the existing system. This

builds pressure for evolution (S' d) . New functions are then pro-

vided (B^ ^^S) . The case studies imply that this is not a continued,

evenly-paced process, but occurs in discrete phases (see also Andreoli

and Steadman) . Users explore the initial system for a while and

4

-17-

gradually become confident with it. At a certain point, it becomes

apparent that a new function needs to be added to the system. Quite

often, usage does not really take off until this extension is provided;

the "new" system leads to very different volumes and modes of use than

the earlier one (Andreoli and Steadman).

The S'''~^B link needs research. Keen and Gambino have em-

ployed the common device of a data trap to track individuals' use of

a DSS (see also Stabell, Andreoli and Steadman), in terms of emerging

patterns and "command sequences". The argument is that users initially

use the commands of the DSS as single words (e.g., 'LIST', 'REGRESS'),

but later develop, largely via the adaptive processes of the cognitive

loop, what are effectively sentences; they use consistent sequences of

commands and build up their own analytic routines. This process is

easy to identify; the hypothesis is that it triggers demand for or

readiness to use new commands.

The other link, B'''~'^^S, is easier to explain. It simply

involves the designer adding new capabilities to the DSS. This ob-

viously is feasible only

(a) if the design architecture is modular,

flexible and easily modified;

(b) the programmer can implement new func-

tions cheaply and quickly;

(c) the designer maintains ongoing contact

with the users.

The advocates of APL as "the" language for DSS (Contreras, Keen), of

end-user languages (Keen and Wagner) , and "command-driven" interfaces

1 o

all emphasize the need for program structures and programming methods

to facilitate evolution. The case studies indicate that the success

of a DSS often depends on its evolution rather than its initial use,

and on fast > responsive implementation.

Discussions of DSS evolution focus on new functions and

commands. There is relatively little exploration of the evolution

of data and data structures." Model-based DSS seem both easier to

build and evolve than do data-based ones. DSS research currently

lacks a focus on handling data management issues.

7.4 Summary

There is not room here to discuss each adaptive link in

Figure 1 in any detail. The preceding summary covers only a few is-

sues relevant to research. Hopefully, Figure 1 constitutes a defini-

tion of DSS development that clarifies what a DSS is and is not, and

what actions and processes it involves. Each arrow represents a

clear research area relevant to DSS practice.

8. The Task Context

Figure 1 ignores the task to be supported. Obviously, a

DSS can be built only if the designer understands the task at a level

of detail sufficient to:

(a) relate the task to the users' processes;

(b) design the functions of the DSS;

(c) by extension, relate the users' processes

to the DSS functions.

-19-

At present, methodologies for describing tasks, user pro-

cesses and system functions are at too high a level to integrate the

three components. For example, one may ,classify an individual in

terms of cognitive style (e.g., intuitive versus systematic), classify

the task as semi-structured and the system as an interactive retrieval

system. This provides no link between task characteristics and de-

tailed design criteria and user behavior. DSS research needs to find

a level and method of representing tasks that permit this link. Such

a method does not yet exist. Hackathorn's and Meldman's use of net-

work models comes closest, but is not intended as a general methodology

for DSS.

The ideas presented below require a major research effort'

before they can be validated and made operational. In a way, they

pick up on Gorry and Morton's discussion of "semi-structured" tasks,

at a more molecular level:

(1) The tasks a DSS addresses involve some degree

of discretion, inference and selection of in-

formation; if this is not so, there are no

adaptive links between user and system (U^ S)

.

A whole task is composed of subtasks. The whole

task may be the uni^M2rsity admissions decision,

portfolio management, media selection, etc., etc.

The subtasks are discrete intellectual opera-

tions, such as

calculating a sura,

searching for a value,

-20-

or comparing two variables on a graph.

(2) The subtasks identify the potential func-

tions for the DSS, e.g., CALC, FIND, COMPARE.

(3) User behavior and user learning can be des-

cribed in terms of the sequence of and change

in subtasks.

(A) Use of the DSS can be tracked in relation to

the functions.

This level of representation has several practical and con-

ceptual merits. It also suggests that DSS should be command-driven.

Keen and Alter argue that the commands correspond to the users' verbs

(e.g., 'list', 'graph'). Keen adds that if a function in a system

does not relate directly to some concept in the users' mine, it

Lxxeally cannot be used. Carrying out a task involves a sequence of

t verb-related subtasks (Do this... then this...). Using a DSS involves

invoking a sequence of verb-based commands. Evolving it means adding

new commands. Learning is identifiable only in terms of use of new

commands or redefinition of existing ones, and personalized use is

apparent from the choice of commands.

\y In a structured task, the subtasks can be clearly specified

and the sequence in which they are invoked predicted. A "semi-struc-'

/ tuired" task is thus one where either not all the subtasks can be rep-

resented and hence translated into DSS commands or they can be repre-

sented but the sequence not predicted. V^Focussing on subtasks, rather

than whole tasks, retains the intuitive appeal of the Gorry-Morton

framework but eliminates its problems of definition. In addition.

-21-

doiug so addresses Stabell's point, that a whole task is often socially-

defined; two universities may handle the admissions process — the whole

task — very differently, but it will have common subtasks.

Keen and Morton, building on Gerrity and Stabell, discuss

DSS design as a balance between descriptive and prescriptive under-

standing of the decision process. Supporting users implies providing

conmiands that correspond to their existing (or at least desired) verbs.

Improving the effectiveness of their decision making means identifying

new commands and stimulating their use through the adaptive processes

described by Figure 1.

A number of DSS researchers share this focus on subtasks.

Blanning outlines the equivalent of a generative grammar for DSS that

goes beyond verbs. Keen and Gambino suggest that most whole tasks

require a cocmion set of verbs; almost any DSS needs such functions as

Graph, List, Select and Describe (provide descriptive statistics).

Henderson e_t al. have designed a set of experiments on DSS use which

track user behavior at the command and subtask level.

The ideas presented above are tentative and a proposal for

research rather than a conclusion from it. The central postulate is

^ythat adaptive design and use of DSS, DSS evolution, managerial

learning, etc., require a decision research process where the level

of analysis is at the subtask level. Much of the vagueness of DSS

concepts disappears when this is provided. Of course, the research

issue is how to represent the subtasks. Contreras, following on

Berry, argues that they are linguistically at the level of APL func-

tions, which can be further broken dovm into primitives. Blanning

-22-

adopts a similar perspective.

Figure 2 adds the task dimension to the adaptive loops.

Whatever methodology or theoretical model of task structure and per-

formance is used, it is obvious that the representation can only be

at thesubtask level if it is to translate an understanding of how

the users think, and an assessment of how their performance can be

made more effective into specific functions in a DSS.

9. Contextual Issues in DSS Development

Figure 3 expands Figure 2 to include contextual forces.

The additional links are not so much adaptive influences, as limiting

ones. For example, organizational procedures may constrain user dis-

cretion and behavior (0'' ""*lJ) . In several of the case studies, DSS

were not effectively used because the organization's control, communi-

cation and reward systems provided no incentive. Clearly, the extent

to which organizational procedures affect individuals in a given task

determines whether the situation requires a Personal, Group or Organi-

zational Support System. In turn, the extent to which the user(s)

can influence the procedures (U'' ' 0) limits the organizational learn-

ing a DSS can stimulate.

In a similar fashion, the DSS itself is constrained by the -

organization's available technology (T'" S). This includes data

as well as computer power, and the base of reliable operational sys-

tems and technical expertise on which a DSS capability is built. The

case studies mainly describe successful systems but there are several

suggestions that DSS will not take root in an organization that has

-23-

FIGURE 2.

Task Context

USER

Descriptive
map of user

processes

TASK
REPRESENTATION

Design
of DSS

functions
(commands)

Prescriptive
map of task

performance

BUILDER

-24-

FIGURE 3.

Organizational Issues

ORGANIZATIONAL
PROCEDURES
AND SYSTEMS
/

J

i /

4
USER

/ /

/ ^
ORGANIZATION '

S

TECHNOLOGY

BUILDER -- ^

^
ORGANIZATIONAL
CHARTER AND

LOCATION

-25-

not yet provided managers with standard data processing and reporting

systems. In such situations, DSS are seen as a luxury or as irrelevant.

The link S''"^T is a reminder that learning and evolution can

be blocked by the inability to obtain additional technology. Keen and

Clark found that use of their DSS for state government policy and analy-

sis was strongly constrained by states' existing technology and pro-

cedures for operating it. In addition, managerial learning and evolu-

tion of the DSS may require new data and structures or lead to an

overloading of the organization's time-sharing computer. The whole

adaptive process in Figure 3 breaks do^ra when any influence is absent

or blocked.

The final contextual issue addressed by Figure 3 is the

charter for the builder. The implementation loop relies on facilita-

tion and middle-out design. This requires a close relationship be-

tween the user and builder, which may not be feasible if:

(1) the two groups are geographically or psycho-

logically isolated;

(2) the designers are part of a unit, such as

Data Processing, with no mandate for inno-

vation;

(3) the organization's charge-out policies and

procedures for project justification dis-

courage exploration and require "hard" bene-

fits. Keen points out that DSS often pro-

vide mainly qualitative benefits. They

"improve" a decision process and it is un-

-26- • •

likely that one can point in advance to

a "bottom-line" payoff, especially if the

value of the system is in the end deter-

mined by an adaptive, evolutionary process.

Many DSS builders are either consultants or academics, who

can be brought into an organization by the user and who thus have

relative freedom to define their role. A major constraint on develop-

ing a DSS capability may be the lack of a suitable organizational

charter.

10. Conclusion

The additions to the earlier schema made in Figure 3 address

the question of Organizational Support Systems raised earlier and left

hanging. Figure 1 provides a complete research framework for Personal

Support Systems. Figure 3 is far more tentative. Substantial research

on organizational issues for DSS is needed, and no effort will be made

here to justify or elaborate on this preliminary identification of organ-

izational forces constraining DSS. The more important point is that

Figure 1, and the definition of DSS it reflects, seem to provide a

robust and adequately precise framework for DSS research. The rep-

resentation of subtasks indicates a theoretical, if not yet practical,

methodology for studying and building DSS.

If the framework presented here is valid, then Decision

Support is a meaningful and independent discipline. The existing

research base is fairly strong in certain areas, especially the imple-

mentation loop. There are more than enough case studies available

27-

to point up issues, such as the nature of managerial learning and

DSS evolution, that should be explored at a more precise level, often

through laboratory experiments. The major conceptual problems con-

cern subtasl: representation, and a theoretical base for Organizational

Support Systems. The term "Decision Support Systems" is an excellent

rallying cry. "Decision Support" can be an equally outstanding field

of study.

APPENDIX 1

CASE STUDIES OF DSS

Until definitions of DSS are firmly established, it will be

difficult to keep track of the literature on the topic. Three refer-

ences contain most of the case-based descriptions used for the review

in this paper:

(1) Keen and Scott Morton, Decision Support

Systems: An Organizational Perspective ,

(1978). This represents the orthodox faith.

It includes fairly detailed descriptions of

seven DSS. It excludes (largely because it

filters the world through MIT-colored glasses,

but also due to the long lead time between

writing and publishing), the work of Courbon,

Grajew and Tolovi, and most of that done at

Wharton by Ness and Hurst. It has a compre-

hensive bibliography.

(2) Carlson, Morgan and Morton (Editors), Pro-

ceedings of a Conference on Decision Support

Systems , (1977). This contains very little

conceptual material and emphasizes real-world

applications. It has a strong "show-and-tell"

flavor. Whereas as Keen and Scott Morton use

case descriptions to illustrate the concepts

of a DSS, in this volume practicioners demon-

-A2-

strate their view of wliat aspects of con-

cept have practical value. It seems clear

that on the whole they do not share Keen

and Scott Morton's emphasis on the c-gr.l-

tive characteristics of the Jnaividual de-

cision T.aker but focus instead on organiza-

tional processes.

(3) Alter, Decision Support Systems: Current

Practice and Future Challenges , (1979).

This book is based on case studies of 56

systems, only a few of which are DSS. There

are 7 detailed cases, some of which overlap

with Keen and Scott Morton, and Carlson £t al.

Alter is partly concerned v;ith sharpening

the practical definitions of DSS by looking

at innovative systems in general. He -uses

the term Decision Support System fairly

loosely, mainly since his is an exploratory

study which specifically asks if it is useful

to identify a system as a DSS.

A fourth study, by Grajew and Tolovi describes 3 experimental

DSS projects. Le Moigne criticizes Keen and Scott Morton's book as

"partial et partiel" — incomplete and limited to the US experience.

He feels that French researchers are more advanced than the Americans.

Certainly the work of Courbon, Grajew and Tolovi builds on earlier

-A3-

research imaginatively and effectively.

The best bibliographies on DSS are in Keen and Scott Morton

and in Grajew and Tolovi. In the list below, the major sources of

-viT'^rence are identified as Keen and Scott Morton (K-M)

,

Carlson, et ^1 (C), and Alter (A). The major cases are:

AAIMS: An Analytic Information Management System (C and A)

BIS: Budget Information System (A)

BRANDAID: Marketing Brand Management (K-M)

CAUSE: Computer Assisted Under^vnriting System at Equitable (A)

CIS: Capacity Information System (K-M)

EIS: Executive Information System (C)

GADS: Geodata Analysis Display System (K-M)

GMIS: Generalized Management Information System (K-M)

GPLAN: Generalized Planning (C)

IMS: Interactive Marketing System (A)

IRIS: Industrial Relations Information System (C)

ISSPA: Interactive Support System for Policy Analysts

(Keen and Gambino)

MAPP: Managerial Analysis for Profit Planning (C)

PDSS: Procurement Decision Support System (International

Harvester, private paper)

-A4-

PMS: Portfolio Management System (K-M and A)

PROJECTOR: Strategic Financial Planning* (K-M)

REGIS: Relational Generalized Information System (C)

-A5-

APPENDIX 2

1. Unanticipated Uses:

PMS — intended use, investment decisions tool; actual

use, marketing tool and customer relations.

MAPP — intended use, financial planning; actual use,

revealed branch bank irregularities.

PROJECTOR — intended use, analyzing financial data to

answer preplanned questions; actual use, alerted users

to new issues and unplanned questions.

2. Personalized Uses:

GADS — public officials (police and school system users

could imagine solutions then use GADS to test hypotheses;

individual users' values placed on variables led to entirely

different conclusions.

REGIS — encouraged data browsing, discerning new

relationships and questions.

PMS — wide variance in function combinations used by

individual managers.

3. Evolution:

BIS — initial system modular in structure, database

separate from applications programs, new programs added

incrementally without upsetting data base.

PMS — initial prototype followed by full implementation,

doubled number of programs in six months.

-A6-

CAUSE -- four evolutionary versions, deliberate emphasis

on phased development to build credibility and capability,

routines increased from 26 to 200 during the evolutionary

period.

4. Simple Functions:

AAIMS — 60 verb like commands used, DISPLAY, PLOT,

QUARTEPvLY , CHANGE , . .

.

iSSPA — DESCRIBE, EQUITY, REGRESS, HISTO, RANK, NTILES
,

...

PMS ~ SCATTER, SCAN, STATUS, TABLE, GRAPH, SUM>L\RY,

GROUP, ...

5. Organizational Support System:

CAUSE — supports underwriting process, including data

definition and collection.

PDSS ~ stabilized purchasing agents' ordering system.

IRIS — supports operations control in industrial

relations applications

6. Benefits:

CAUSE — reduced need for employer specialization,

increased possibilities of internal reorganization, gave

opportunity to newer employees.

PROJECTOR — time effectiveness improved "by a factor of 20 ,

forced consideration of related issues, "confidence-inspiring'

ananysis.

MAPP — better product definitions and costing allocation,

promoted internal learning.

-A7-

7. Intermediaries:

GADS — chauffeur used as teacher and translator, used

to save time to get as many possible solutions as quickly

as possible.

IMS — 50% of use by junior researcher with no decision

making authority, intermediary used only to push buttons

not make decisions.

PMS — secretaries operate, managers specify desired output.

REFERENCES

1. The analysis is contained in a report by Keen, "A Review of DSS

Case Studies", now in draft form.

2. Keen and Scott Morton's book on DSS is mistakenly subtitled

. "An Organizational Perspective". ITie authors herev;ith recant.

3. The term was created by Ness, who built many of Vht early DSS and

trained, at MIT and Ifliarton, many DSS designers. His working

papers and case studies in Alter and Keen and Morton show the

development of the middle-out concept. Courbon, Grajew and

Tolovi have extended it in some brilliant empirical studies;

they use the term "I'approche evolutive".

4. This vjork is still in progress « The DSS has been in use for less

than six months, so that patterns of learning are only now

becoming clear.

5. Methlie and LeMoigne have drawn attention to this and point out

that Keen and Scott Morton entirely ignore data management issues.

6. Stabell has developed a range of techniques for decision research

at several levels of analysis. However, they focus on task and

on individual, and do not as yet include DSS design criteria.

7. Henderson, Gambino and Ghani, private communication.

Ginzberg, M.J., "A Process Approach to Management Science Implementation",

Ph.D. dissertation, M.I.T., 1975.

Gorry, G.A., and M.S. Scott Morton, "A Framework for Management

Information Systems", Sloan Management Review , Vol. 13, No. 1,

pp. 55-70, Fall 1971.

Grace, B.F., Training Users of Decision Support Systems , San Jose,

California, IBM Research Report RJ1790, May 1976.

Grochow, J.M,, "Cognitive Style as a Factor in the Use of Interactive

Computer Systems for Decision Support", M.I.T., 1974.

Hackathorn, R.D., "Research Issues in Personal Computing", Proceedings

of the National ACM Conference, Washington, December 1978.

Keen, P.G.W., "Computer Systems for Top Managers: A Modest Proposal",

Sloan Management Review , Vol. 18, No. 1, pp. 1-17, Fall 1976a.

Keen and Clark, ''Simulations for School Finance, a Survey and Assessment",

Research report to Ford Foundation, November 1979.

Keen and Gambino, "Mythical Man-Month Revisited", CISR working paper,

January 1980.

Keen and M.S. Scott Morton, Decision Support Systems: An Organizational

Perspective , Addison-Wesley, 1978.

Keen and Wagner, "Implementing Decision Support Systems Philosophy",

Datamation, November 1979.

Meldman, J. "Decision Support Systems for Legal Research", Paper

presented at the II Symposium Nacional de Systemas Computacionales,

Monterrey, Mexico, March 15-18, 1977.

Morton, M.S. Scott, Management Decision Systems: Computer Based Support

for Decision Making , Cambridge, MA: Division of Research, Harvard,

1971.

Ness, D.N. "Decision Support Systems: Theories of Design", Paper

presented at the Wharton Office of Naval Research Conference on

Decision Support Systems, University of Pennsylvania, Philadelphia,

Pennsylvania, November 4-7, 1975.

Simon, H.A. , "A Behavioral Model of Rational Choice", In H.A. Simon,'

Models of Man
, pp. 241-260, New York: Wiley, 1957.

Stabell, C. , "Decision Research: Description and Diagnosis of Decision

Making in Organizations", In D. Heradstreit and 0. Narvesen (eds.).

Decision Making Research: Some Developments , Oslo, Norway: Norsk

Utenriks politisck Institute, 1977.

BIBLIOGRAPHY

Ackoff, R.L., "Unsuccessful Case Studies and Why", Operations
Research , Vol. 8, No, 4, pp. 259-263, March-April, 1960.

Alter, S.L., Decision Support Systems: Current Practice and Continuin ;

Challenges , Addison-Wesley, 1980.

Andreoli, P., and J. Steadman, "Management Decision Support Systems:
Impact on the Decision Process", Master's thesis, M.I.T., 1975.

Anthony, R.N. , Planning and Control Systems: A Framework for Analysis
,

Cambridge, MA, Harvard University Graduate School of Business
Administration, Studies in Management Control, 1965.

Bennett, J., "Integrating Users and Decision Support Systems", in

J.D. Wiite (ed.). Proceedings of the Sixth and Seventh Annual
Conferences of the Society for Management Information Systems ,

pp. 77-86, Ann Arbor, University of Michigan, July 1976.

Berger, P., and F. Edelman, "IRIS: A Transaction-Based Decision
Support System for Human Resources Management", Database ,

Winter 1977, Vol. 8, No. 3.

Berry, P., "The Democratization of Computing", Paper presented at

Eleventh Symposium Nacional de Systemas Computacionales, Monterrey,
Mexico, March 15-18, 1977.

Blanning, R. , "The Decision to Adopt Strategic Planning Models,
"Wharton School working papers, 1979.

Brooks, F.P., The Mythical Man-Month , Reading, MA, Addison-Wesley,
1975.

Carlisle, J., "Cognitive Factors in Interactive Decision Systems",
Ph.D. dissertation, Yale University, 1974.

Carlson, E.D., and J. A. Sutton, A Case Study of Non-Pro grammer
Interactive Problem-Solving , San Jose, California, IBM Research
Report RJ1382, 1974.

Contreras, L., "Decision Support Systems and Corporate Planning",
Informal Communication, 1978.

Courbon, J.C., J. Grajew, and J. Tolovi, "Design and Implementation of
Interactive Decision Support Systems: A Evolutive Approach".

Gerrity, T.P., Jr., "The Design of Man-Machine Decision Systems",
Ph.D. dissertation, M.I.T., 1970.

