

^

x\|^

HD28
.M41A

i^

Business uL MIT

MIT Sloan School of Management

Sloan Working Paper 4187-01

eBusiness@MIT Working Paper 113

October 2001

A DECLARATIVE APPROACH TO BUSINESS RULES IN

CONTRACTS: COURTEOUS LOGIC PROGRAMS IN XML

Benjamin Grosof, Yannis Labrou, Hoi Y. Chan

This paper is available through the Center for

eBusiness@MIT web site at the following URL:

http://ebusiness.mit.edu/research/papers.html

This paper also can be downloaded without charge from the

Social Science Research Network Electronic Paper Collection:

http://papers.ssm.com/abstract_id=2 9 94

A Declarative Approach to Business Rules in Contracts:
Courteous Logic Programs in XML *

Benjamin N. Grosof
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

grosof@us . ibm. com (alt.: grosof@cs .Stanford, edu)
http

:
//www . research . ibm. com/people/g/grosof

/

Yannis Labrou
Computer Science and Electrical Engineering and Department

University of Maryland, Baltimore County, Baltimore, MD 21250, USA
j klabrouOcs . urnbc . edu

http :
//www. cs .umbo . edu/~ jklabrou/

Hoi Y. Chan
IBM T.J. Watson Research Center, RO. Box 704, Yorktown Heights, NY 10598, USA

hychanOus . ibm . com

Abstract

We address why, and especially how, to represent

business rules in e-commerce contracts. By con-

tracts, we mean descriptions of goods and services

offered or sought, including ancillary agreements

detailmg tenris of a deal. We observe that rules

are useful in contracts to represent conditional rela-

tionships, e.g., in terms & conditions, service provi-

sions, and surrounding business processes, and we

illustrate this point with several examples.

We analyze requirements (desiderata) for repre-

senting such rules in contracts. The require-

ments mclude: declarative semantics so as to en-

able shared understanding and interoperability; pri-

oritized conflict handling so as to enable modu-

lar updating/revision; ease of parsing; integration

into WWW-world software engineering; directe x-

ecutabihty; and computational tractability.

We give a representational approach that consists

of two novel aspects. First, we give a new fun-

damental knowledge representation formalism: a

generalized version of Courteous Logic Programs

(CLP), which expressively extends declarative or-

dinary logic programs (OLP) to include prioritized

conflict handling, thus enabling modularity in spec-

ifying and revising rule-sets. Our approach to im-

plementing CLP is a courteous compiler that trans-

Copyright ACM. To appear: Proceedings of the

1st ACM Conference on Electronic Commerce (EC99),
to be held Denver, Colorado, USA, Nov. 3-5, 1999.

Edited by Michael R Wellman. New York, NY: ACM
Press, 1999. http://www.ibm.com/iac/ec99/ or

hccp; //www. acm.org.

forms any CLP into a semantically equivalent OLP
with moderate, tractable computational overhead.

Second, we give a new XML encoding of CLP,

called Business Rules Markup Language (BRML),

suitable for interchange between heterogeneous

commercial rule languages. BRML can also ex-

press a broad subseto f ANSI-draft Knowledge In-

terchange Format (KIF) which overlaps with CLP,

Our new approach, unlike previous approaches,

provides not only declaratives emantics but also

prioritized conflict handling, ease of parsing, and

integration into WWW-world software engineer-

ing. We argue that this new approach meets the

overall requirements to a greater extent than any

of the previous approaches, including than KIF, the

leading previous declarative approach.

We have implemented both aspects of our ap-

proach; a free alpha prototype called Common-

Rules was released on the Web in July of 1999, at

http : //alphaworks . ibm. com.

An extended version of this paper will be avail-

able as afo rthcoming IBM Research Report (at

http : //www. research . ibm. com).

1 Introduction

One form of commerce that could benefit substantially from

automation is contracting,wh ere agents form binding.a gree-

able terms, and then execute these terms. By "agents", we

mean initially parties in the Economics sense, e.g., as buyers

or sellers; however, once automated, these agents might be

intelligent agents in the Computer Science sense.

By e-commerce "contracts", we mean in a broad sense: de-

scriptions otgoods and services offered or sought, along with

applicable terms & conditions, i.e., ancillary agreements de-

tailing teniis of a deal. Such terms include customer service

agreements, delivery schedules, conditions for returns, usage

restrictions, and other issues relevant to the good or service

provided.

Such descriptions are to be found in catalogs and store-

fronts, as well as in bids and requests communicated (e.g., by

agents) during negotiations, procurements, and auctions.

The overall contracting process comprises several stages,

including broadly:

1

.

Discovery: Agents find potential contracting partners.

2. Negotiation: Contract terms are detemiined through a

process of communication between agents, often involv-

ing iterative modification of the contract terms.

3. Execution: Transactions and other contract provisions

are executed by the agents.

We observe that many contract terms involve conditional

relationships, and can conveniently be expressed as rules, of-

ten called business nileso r business policies. (Sometimes,

"business rule" is used to mean any kind of significant ap-

plication logic, e.g., the algebraic formula for computing an

insurance annuity. By "rule" in this paper, we mean more

specifically an implication (i.e., IF-THEN) in which the an-

tecedent (i.e., the IF part) may contain multiple conjoined

(i.e., AND'ed) conditions.)

For example, rules are useful in describing:

• terms & conditions, e.g., rules for price discounting;

• service provisions, e.g., rules for refunds; and

• surrounding business processes, e.g., rules for lead time

to place an order.

(Section 2 elaborates on these examples.) We believe that

rules as an overall representational approach capture well

many aspects of what one would like to describe in automated

contracts.

In this work we are concerned primarily with the negotia-

tion stage of contracting, and specifically with how to repre-

sent business rules in contracts.

The contract terms may or may not be modified during the

negotiation stage. If not, the negotiation stage may be a rel-

atively simple process of communication followed by accep-

tance. Crucial during negotiation, however, is thatal 1 agents

must understand and agree. In terms of automation, the con-

tract has to be communicated and digested by each agent,

with shared semantics. (More generally, some agents might

be human, as well as automatic; however, the aspects of hu-

man interaction are beyond the scope of this paper.)

Our goal is a shared language with which agents can reach

a common understanding of rules in contracts, such that the

rules are relatively easily modifiable, communicatable, and

executable by the agents.

Note that we make a sharp distinction between the repre-

sentational mechanism for communicating contract rules, and

the actual rule execution mechanisms employed by partici-

pating agents. Our concern here is with the former, though of

course in designing a communication mechanism one must

consider and anticipate the requirements of execution to be

performed by each of the agents.

We will take a declarative approach to business rules in

contracts. By "declarative" semantics for rules, we mean

in the sense of knowledge representation (KR) theory, in a

manner abstracted away from the choice ofim plementation

approach: the semantics say which conclusions are entailed

(e.g., model-theoretically) by a given set of premises, with-

out dependence on procedural or control aspects of inference

algorithms. In particular, declarative semantics abstract away

from whether the direction of rule inferencing is backward

versus forward.

2 Example Roles for Rules and Prioritized

Conflict Handling

Next, we give a few brief examples, expressed in natural lan-

guage, of business rules in contracts. As we go, we will see

both the need for prioritized conflict handling — because of

conflict, and the opportunity for prioritized conflict handling

— because of naturally available prioritization information.

Example 1 (Refund Policy)

A typical example of a seller's refund policy is:

• (Rule A:) "If buyer returns the purchased good for any

reason, within 30 days, then the purchase amount, minus

a 10% restocking fee, will be refunded."

• (Rule B:) "If buyer returns the purchased good because it

is defective, within I year, then the full purchase amount

will be refunded."

• (Priority Rule:) "If both Rules A and B apply, then

Rule B 'wins', i.e., the full purchase amount will be re-

fiinded".

Here, we say a rule "applies" when that rule's body (i.e., an-

tecedent) is satisfied. The Priority Rule is necessary because

it can happen that the buyer returns the good because it is de-

fective within 30 days. In this case, Rules A and B conflict

with each other; both rules apply but their consequents are

incompatible with each other. The conflict is resolved by pri-

ority: Rule B is specified to have higher priority than Rule A.

Example 2 (Lead Time)

In business-to-business commerce, e.g., in manufacturing

supply chains, sellers often specify how much lead time, i.e.,

minimum advance notice before scheduled delivery date, is

required in order to place or modify a purchase order. An

example of a parts supplier vendor's lead time policy is:

• (Rule A:) "14 days lead time if the buyer is a preferred

customer."

• (Rule B:) "30 days lead time if the ordered item is a

minor part."

• (Rule C:) "2 days lead time it": the ordered item's itein-

type is backlogged at the vendor, and the order is a mod-

ification to reduce the quantity of the item, and the buyer

is a preferred customer."

• (Prioriis Rule:) "II' Rules A and C both apply, then Rule

C 'wins', i.e. ,2 days lead time,"

The rationale for Rule C is that the vendor is having trouble

filling its overall orders (from all its buyers) for the item, and

thus IS pleased to have this buyer relieve the pressure.

Rules A, B, and C may conflict: two or three of them might

appK to a given purchase order. The Priority Rule provides

partial prioritization information - its rationale might be that

Rule C is more specific, or more recent, than Rule A. How-

ever, the above rule-set leaves unspecified how to resolve con-

flict between Rules A and B, for example; no relative priority

between them is specified as yet. This reflects a common sit-

uation when rules accumulate over time, or are specified by

multiple authors: at any given moment during the process of

incremental specification, there may be insufficient justified

priority to resolve all potential conflicts.

Example 3 (Bookstore Personalized Discounting)

Sellers often provide personalized price discounting. A topic

of considerable interest today among e-commerce sellers is

how to do this more cheaply and uniformly by automating it.

An e.xample of a bookstore's personalized discounting policy

is:

• (Rule A:) "5 percent discount if buyer has a history of

loyal spending at the store."

• (Rule B:) "10 percent discountif buyer has a history of

big spending at the store."

• (Rule C:) "5 percent discount if buyer has a store charge

card."

• (Rule D:) "10 percent discount if buyer is a member of

the store's Platinum Club."

• (Rule E:) "No discountif buyer has a late-payment his-

tory during the last year."

• (Priority Rules:) "B is higher priority than all the oth-

ers; D is higher priority than A and than C; E is higher

priority than A and than C and than D."

Here, the Priority Rules specify a set of priority comparisons,

that are sufficient to resolve all the potential conflicts among
the rules.

More Example Roles for Rules

We believe that many contract terms can be well represented

as rules.

• Policies about cancelling orders are often similar in feel

to the examples above about refunds and lead time.

• Policies about discounting for groups or preferred

customer organizations, e.g., hotel discounts for AAA
members, are often similar in feel to the example above

about personalized discounting.

• In supply chain settings: requests for proposals, and re-

sponding bids, often involve conditional relationships

between price, quantity, and delivery date, e.g., "If

the order quantity is between 400 and 1000 units, and

the delivery date is between 15 and 30 daysfro m the

order date, then the price is $48 per unit.".

• In product catalogs, many properties of a product are

most naturally specified as conditional on other proper-

ties of that product, rather than being particular to an in-

dividual product. E.g., "all laptop computers include an

internal modem". E.g., "all women's T-shirts are avail-

able in sizes XS, S, M, and L", "all men's T-shirts are

available in sizes S, M, L, XL, and XXL", and "all T-

shirts are available in colors navy, khaki, and black".

E.g., "all V-neck sweaters are available in fabrics acrylic

and cashmere".

• Policies about creditworthiness, trustworthiness, and

authorization are often naturally expressed in terms of

sufficient and/or necessary conditions. Such conditions

include: credentials, e.g., credit ratings or professional

certifications; third-party recommendations; properties

of a transaction in question, e.g., its size or mode of pay-

ment; and historical experience between the agents, e.g.,

familiarity or satisfaction.

3 Rule Representations: Previous Approaches
including KIF, Requirements Analysis

In section 1, we stated that in this work our goal is a shared

language with which agents can reach a common under-

standing of rules in contracts, such that the rulesa re rela-

tively easily modifiable, communicatable, and executable

by the agents.

In this section, we analyze and elaborate these require-

ments (i.e., criteria or desiderata, which we bold-face

throughout this section) for a rule representation, and discuss

candidate previous approaches in light of them, as motiva-

tion for our approach. We begin by reviewing previous ap-

proaches.

There are multiple approaches already in wide imple-

mented commercial use for representing business rules gen-

erally (not for contracts in particular). One approach is di-

rectly as if-then code constructs in general-purpose imper-

ative programming languages such as C, C++, and Java'.

Other approaches are more specific to rules. A second ap-

proach is Prolog [3], a programming language oriented to-

wards backward-chaining rules. A third approach, closely re-

lated to Prolog, is SQL views. In SQL-type relational database

'trademark of Sun Microsystems Inc.

systems [22] a view is defined, in eflect, by a set of rules. A
fourtli approach, fairly closely related to SQL views, is eveni-

coiiJiiion-action rules I "active rules" / "triggers" [22] of the

kind found in many database systems and routing systems.

These are forward-directed, triggered by events such as up-

dating a database relation. A fifth approach is production

rules, a form of forward-chaining rules, of the kind in sys-

tems descended from the 0PS5 system [4]. There are other

approaches as well, e.g., in expert systems, knowledge-based

systems, and intelligent agent building tools, but the above-

listed are probably the currently most commercially impor-

tant, especially m e-commerce.

A sixth approach for representing business rules is Knowl-

edge Interchange Format (KIF)^. KJF is not a directly ex-

ecutable representation. Rather, KIF is a language for in-

terchange of knowledge, including rules, between heteroge-

neous software systems, e.g., agents. More precisely, KIF is

a prefix' version of first-order predicate calculus (i.e., first-

order classical logic) with extensions to support the "quote"

operator (thus enabling additional expressiveness akin to that

of classical higher-order logic) and definitions. KJF is cur-

rently well along in the ANSI standards committee process.

Supporting or endorsing KIF is also being considered infor-

mally in several other standards efforts relevant to agent com-

munication, e.g., FIPA^'.K IF, however, is not yet in wide im-

plemented commercial use.

Next, we elaborate on requirements and relate them to the

previous approaches. One group of requirements revolves

around heterogeneity. Specifically, the multiplicity of widely

implemented approaches implies an immediate requirement

to cope with heterogeneity of implementations of busi-

ness rules. The ability to communicate with shared under-

standing then implies the requirements of interoperability

with declarative semantics. The above-listed widely imple-

mented approaches lack fully declarative semantics.

Communicatability and interoperability imply the require-

ment of ease of parsing rule-sets that are being communi-

cated. Interoperability and practical executability imply the

requirement of integration into WWW-world software en-

gineering overall. The XML aspect of ourapp roach facili-

tates such parsing and integration.

A second group of requirements revolves around expres-

siveness. A basic overall requirement is expressive power in

specifying rules. Practical executability, however, implies the

strong desire for computational tractability in the sense of

average-case and worst-case complexity. Expressive power

has to be balanced against tractability.

^http
:
//logic . Stanford. edu/kif / and

http
:
//www. cs . umbo .edu/kif/

^The current draft ANSI specification of KIF
(http

:
//logic . Stanford. edu/kif /dpans .html) also

includes an infix version of KIF intended for human consumption
rather than automated exchange.

"Foundation for Intelligent Physical Agents:

http
:
//www . f ipa . org

Ease of modifiability implies the requirement of expres-

sive convenience for the process of specification. Expressive

convenience is in part an aspect of expressive power, but also

implies the need for conceptual naturalness of semantics.

An important aspect of expressive power is the ability to

conveniently express rules that are logically non-monotonic,

i.e., rules that employ negation-as-failure or are default rules.

In particular, it is important to conveniently express pri-

oritized conflict handling, i.e., where some rules are sub-

ject to override by higher-priority conflicting rules, such as

by special-case exceptions, by more-recent updates, or by

higher-authority sources. As we saw in our contract rule-set

examples in section 2, conflict, and the need/opportunity for

prioritized override, frequently arise.

Most commercially important rule systems (including the

above-listed widely implemented approaches) employ non-

monotonic reasoning as an essential, highly-used feature.

Typically, they employ some form of negation-as-failure. Of-

ten they employ some forni of prioritized override between

rules, e.g., the static rule sequence in Prolog or the computed

rule-activation sequence/"agenda" in 0PS5-heritage produc-

tion rule systems.

In modern software design, it is widely recognized that a

vital aspect of modifiability ismod ularity and locality in

revision, e.g., in the manner that subclassing and informa-

tion hiding provide in object-oriented programming. Prior-

itized conflict handling enables significantly easier modifi-

cation and more modular revision/updating. New behavior

can be specified more often by simply adding rules, without

needing to modify the previous rules. E.g., a more specific-

case rule can be added and given higher-priority than a previ-

ous general-case rule, without needing to modify the general-

case rule. This is similar to the modular/local gracefulness

in object-oriented programming of adding a subclass without

needing to modify the superclass.

Another important aspect of expressive power, in rela-

tion to practical executability, is the ability to conveniently

express procedural attachments. Procedural attachments

are the association of procedure calls with belief expres-

sions, e.g., in Example 1, the association of the Java method

CustomerAccount . setCredi tAmount with the logi-

cal predicate refund. Procedural attachments are crucial in

order for rules to have actual effect beyond pure-belief in-

ferencing, e.g., forac tions to be invoked/performed as a re-

sult after rule conclusions are inferred. Procedural attach-

ments are also very useful to invoke procedure calls when

rule conditions are tested/queried. Almost all of the above-

listed widely implemented approaches include procedural at-

tachments.

However, procedural attachments are semantical ly prob-

lematic, and an open research issue today is how to give them

a semantics that abstracts away from implementation details

and is thus akin to being declarative. (See the discussion of

Situated Logic Programs in section 5.)

K.IF has been developed specifically for puqioses of com-

munication, in response to the need to cope with implemen-

tational heterogeneity of rules and other knowledge. By con-

trast with the abo\e-listed widely implemented approaches,

KIF has a fully declarative semantics; indeed, that is its main

intended strength. Its declarative semantics is based on clas-

sical logic, primarily focusing on first-order logic. First-order

logic is logically monotonic, highly expressive, and compu-

tationally intractable (to perform inferencing) for the general

case

KIF can express a broad class of rules. However, it has

several important shortcomings as a language for business

rules in e-commerce, including in contracts. Perhapsm ost

crucially, KIF has a shortcoming of its fundamental knowl-

edge representation (KR): it cannot (conveniently) express

logical non-monotonicity, including negation-as-failure, de-

fault rules, and prioritized conflict handling;KI F is logically

monotonic. KIF also cannot (conveniently) express procedu-

ral attachments; it is a pure-belief KR. KIF has been designed

with an orientation towards knowledge as a non-executable

specification as much or more than towards knowledge as ex-

ecutable. Also, the KIF effort has focused more on a highly

inclusively expressive representation than on ease of develop-

ing translators in and out of that representation (this is some-

thing the XML aspect of our approach improves upon).

In our \ievv. none of the above-listed previous approaches

to representing business rules, nor any other previous ap-

proach that we are aware of, satisfactorily meets the whole set

of requirements we listed above (in bold-face). In particular,

the widely-implemented approaches above lack sufficiently

declarative semantics; KIF, though declarative, lacks logical

non-monotonicity.

KIF's declarative approach does, however, inspire us to de-

velop our own declarative approach.

4 A New Declarative Approach to Rules:

Courteous Logic Programs + XML
The approach is to choose Ordinary Logic Programs (OLP)
— in the declarative sense ([1] provides a helpful review), not

Prolog— as a fundamental KR, plus to embody this KR con-

cretely in XML for purposes of communication between the

contracting agents. ' Logic programs are noton ly relatively

powerful expressively,b ut also practical, relatively computa-

tionally efficient, and widely deployed.

We expressively extend the approach's declarative fun-

damental KR formalism to be Courteous Logic Programs

(CLP). CLP expressively extends Ordinary Logic Programs

to include prioritized conflict handling, while maintaining

computational tractability. CLP is a previous KR [10] which

"Ordinary" logic programs are also sometimes known as "gen-
eral" (e.g., in [1]) or "normal" logic programs, or as (the declarative

version of) "pure Prolog".

we have here further expressively generalized, notably to han-

dle pairwise mutual exclusion conflicts, rather than simply

conflicts of the form p versus -ip.

4.1 First KR Step: Ordinary Logic Programs

We begin defining our approach by choosing the fundamen-

tal KR for rules to be: declarative Ordinary Logic Programs

(OLP), with the well-founded semantics (WFS) [23], inhially

expressively restricted to the predicate-acyclic case (defined

below). (Henceforth, we will leave "declarative" implicit.)

This is a "pure-belief" KR, i.e., it lacks procedural attach-

ments.

Each rule in an OLP has the form:

Ao <- Ai /\ . . . h Am /\ ~^m+l A ... A ~An.
Here, n > m > 0, and each A, is a logical atom. Aq is called

the head (i.e., consequent) of the rule; the rest is called the

body (i.e., antecedent) of the rule. If the body is empty, the

<— may be omitted. A ground rule with empty body is called

a fact. ~ stands for the negation-as-failure operator symbol,

and is read in English as "fail". Intuitively, ~p means that p
is not believed to be true, i.e., that p's truth value is either

false or unknown.

E.g., the first rule in Example 2 might be written as:

orderModificationNotice{'?Order, daysli)
<— preferredCustomerOf {?Buyer , ISeller)

A purchaseOrderClOrder, ?Buyer, ? Seller)

.

Here, the prefix "?" indicates a logical variable.

Ordinary LP's have been well-studied, and have a large lit-

erature (reviewed, for example, in [I]). For several broad but

restricted expressive cases, their (declarative) semantics is un-

controversial: e.g., for the predicate-acyclic, stratified, locally

stratified, and weakly stratified cases; these form a series of

increasing expressive generality. However, OLP's have prob-

lematic semantics for the unrestricted case, due essentially

to the interaction of recursion with negation-as-failure. "Re-

cursion" here means that there is a cyclic (path of syntactic)

dependency among the predicates (or, more generally, among

the ground atoms) through rules. More precisely, a logic pro-

gram S's predicate dependency graph PDGs is defined as

follows. The vertices of the graph are the predicates that ap-

pear in S. {p,q) is a (directed) edge in PDGs iff there is a

rule r in £ with p in its head and q in its body. "Predicate-

acyclic" means that there are no cycles in the predicate depen-

dency graph. "Stratified" (in its various flavors) means cycles

of a restricted kind are allowed.

The well-founded semantics is probably the currently most

popular semantics for the unrestricted case, and is our fa-

vorite. With WFS, the unrestricted case always has a single

set of conclusions, and is tractable under commonly-met re-

strictions (e.g., VBD defined below).

Our approach for an initial practically-oriented LP-based

business rules KR is, however, to keep to expressively re-

stricted cases that have uncontroversial (i.e., consensus in the

research community) semantics — starting with predicate-

acyclic. Compared to these uncontroversial cases, the unre-

stricted case (e.g., with WFS) is more complex computation-

ally and, perhaps even more importantly, is more difficult in

terms of software engineering, lireq uires more complicated

algorithms and is not widely deployed. The predicate-acyclic

expressive restnction can be checked syntactically with a rel-

atively simple algorithm and with relatively low computa-

tional cost.

An OLP (with WFS) consists of a set of premise rules, and

entails a set of (primitive) conclusions. In a predicate-acyclic

OLP, each conclusion has the form ofa ground atom. Intu-

itively, each conclusion atom is believed to be true, and every

other (i.e., non-conclusion) ground atom is not believed to be

true (recall ~ above).

Next, we discuss the advantages of OLP's (with WFS).

(.\dv 1): OLP has a fully declarative semantics that is use-

ful and well-understood theoretically. (Adv 2): OLP in-

cludes negation-as-failure and thus supports basic logical

non-monotonicity. (Adv 3): OLP has considerable expres-

sive power, yet is relatively simple and is not overkill expres-

sively. (Adv 4): OLP, unlike first-order-logic/KIF,is compu-

tationally tractable in the following sense. Under commonly

met expressive restrictions, e.g., VBD, inferencing — i.e.,

rule-set execution — in OLP can be computed in worst-case

polynomial-time. Here, we say that an LP is ''VBD" when

either (a) it is ground, or (b) it has no logical fijnctions of

non-/^ero arity (a.k.a. the Daialog restriction^) and it has a

bounded number of logical variables appearing in each rule.

By contrast, classical logic, e.g., first-order logic — and thus

KIF, is co-NP-hard under the VBD restriction. (Adv 5): We
observe predicate-acyclic OLP's semantics is widely shared

among many commercially important rule-based systems as

an expressive subset of their behavior. Prolog is the most

obvious family of such systems. Relational databases are an-

other such family; many SQL view definitions (and relational

algebra operations) are in effect OLP rules. 0PS5-heritage

production rule systems are less closely related because of

their extensive use of procedural attachments, but insofar

as they commonly do pure-belief predicate-acyclic inferenc-

ing, their semantics is closely related to forward-directed

OLP's. Event-condition-action rules are somewhat similar in

this regard to a simple form of production rules. Other sys-

tems sharing the semantics include many expert/knowledge-

based systems and intelligent agent building tools; many of

these implement forward-directed predicate-acyclic OLP's.

Predicate-acyclic OLP semantics thus reflects a consensus in

the rule representation community that goes beyond the logic

programming community. (Adv 6); Predicate-acyclic OLP's

are, in effect, widely implemented and deployed, including in

Prolog's and SQL relational databases, but also beyond them.

"It is usually straightforward to representationally refomiulate a

rule-set so as to replace a logical flinction / having arity fc > by

a predicate /p having anty fc -I- 1, where inUiitively the (fe -|- l)""

argument corresponds to the resultof applying the flinction.

(Adv 7): There is a large population of developers (not just

researchers) who are familiar with them.

4.2 KR Extension to Courteous Logic
Programs

Courteous LP's (CLP) expressively extends Ordinary LP's

(with WFS) by adding the capability to conveniently ex-

press prioritized conflict handling, while maintaining compu-

tational tractability (e.g., under the VBD restriction). CLP
is a previous KR [10] which we have here further expres-

sively generalized, notably to handle pairw'ise mutual exclu-

sion conflicts, rather than simply conflicts of the form p ver-

sus ->p. (Here, -> stands for classical negation. Intuitively, -p

means p is believed to be definitely false.)

CLP can be tractably compiled to OLP. Indeed, we

have implemented such a courteous compiler [II] [13] [12].

The compiler enables modularity in software engineering and

eases implementation and deployment: the Courteous LP ex-

pressive capability can be added modularly to an Ordinary LP

rule engine/system simply by adding a pre-processor. Com-

pilation's computational complexity is cubic, worst-case, but

often is closer to linear.

In this paper, we do not have space to give full details about

the generalized CLP formalism or its courteous compiler. In-

stead, here we will give an overview and some examples. For

details, see [12] and the forthcoming extended version of this

paper.

CLP handles conflicts between rules using partially-

ordered prioritization information that is naturally available

based on relative specificity, recency, and authority. Rules are

subject to override by higher-priority conflicting rules. For

example, some rules may be overridden by other rules that are

special-case exceptions, more-recent updates, or from higher-

authority sources.

Courteous LP's facilitate specifying sets of rules by merg-

ing, updating and accumulating, in a style closer (than Ordi-

nary LP's or than classical logic/KIF) to natural language de-

scriptions. The expressive extension provided by CLP is thus

valuable especially because it greatly facilitates incremental

specification, by often eliminating the need to explicitly mod-

ify previous rules when updating or merging. In terms of the

rule representation requirements we gave in section 3, this en-

ables significantly greater modularity, locality,ea se of modi-

fication.e xpressive convenience, and conceptual naturalness.

In CLP, priorities are represented via a fact comparing rule

labels: override s{rulel, rule2) means that rulel has higher

priority than rule2. If rulel and rule2 conflict, then rulel

will win the conflict.

Syntactically, a CLP rule differs from an OLP rule in two

ways. First, it may have an optional rule label, used as a

handle for specifying prioritization. Second, each rule literal

may be classically negated. Syntactically, OLP is simply a

specialca se of CLP. An OLP rule lacks a label and does not

mention classical negation.

A CLP rule has the fomi:

{lab) Lo <- Li A . . . A Lm
A ~Lm+i A ... A ~L„.

Here, n > m > 0, and each I, is a classical literal. A clas-

sical literal is a Ibniiula of the t'onn -4 or -i.4, where .4 is

an atom. -> stands for the classical negation operator sym-

bol, and is read in English as "not", lab is the rule's label.

The label is optional. If omitted, the label is said to be empty.

The label is not required to be unique within the scope of the

overall logic program; i.e., two rules may have the same la-

bel. The label is treated as a 0-ary function symbol. The label

is preserved during instantiation; all the ground instances of

the rule above have label lab. overrides and the labels are

treated as part of the language of the logic program, similarly

to other predicate and function symbols appearing in the logic

program.

Semantically, a CLP entails a set of (primitive) conclusions

each of which is a ground classical literal. Classical nega-

tion is enforced: p and -^p are never both concluded, for any

(classical literal) p. This can be viewed as the enforcing of an

implicit mutual exclusion between p and -ip.

In the newly generalized version of CLP,th e CLP also op-

tionally includes a set of pairwise mutual exclusion (mutex)

statements, along with the rules. These mutex 's specify the

scope of conflict. An unconditional mutex has the syntactic

form-

± t- Li A L2.

where each Lj is a classical literal. Semantically, each such

mutual exclusion specified by a mutex is enforced: Li and L2

are never both concluded (for any instantiation). These mu-

tex's are particularly useful for specifying that at most one of

a set of alternatives is to be permitted. E.g., in Example 1 , it is

straightforward to specify via a mutex that the refund percent-

age must be at most one of the values {90% , 100%}. E.g., in

Example 2, it is straightforward to specify via 3 mutex 's that

the lead time must be at most one of the values {2 days, 14

days, 30 days}. E.g., in Example 3, it is straightforward to

specify via 3 mutex's that the discount percentage must be at

most one of the values {0%, 5%, 10%}.

It is expressively more convenient sometimes to use a more

general form of mutex: a conditional mutex, which has the

syntactic form:

1 ^ Li A L2
I

(?y 7^?Z).

where TV and ?Z are logical variables that appear respec-

tively in Li and ^2- E.g.,

± <— giveDiscount[1Cust, lYPercent)
A giveDiscount{1Cust, ?ZPercent)

I

(lYPercent ^?ZPercent).

This conditional mutex enables one to specify with a single

mute.x statement (rather than with three or more unconditional

mutex's) that for a given customer ICust there must be at

most one value concluded for the discount percentage.

The enforcement of classical negation can be viewed as a

set oi implicit unconditional mutex's, one for each predicate

Q, that each have the form

1 <- Q(?X1, . .
.

, IXni) A ^g(?Xl, . .
.

, ?Xm).
where Q's arity is m. This is called a classical mutex.

Example 4 (Ordering Lead Time, in CLP)

Example 2 can be straightforwardly represented in CLP as

follows:

(a) orderModificationNotice{?Order, dayslA)

<— preferredCustomerOf{?Buyer, '^Seller) A
purchaseOrder{'!Order, '?Buyer, ? Seller).

(b) orderModificationNotice{?Order, days30)

(— minorPart{?Order) A
purchaseOrder{?Order, ? Buyer, ?Seller).

(c) orderModificationNotice{1Order, days2)

<— preferredCustomerOfC?Buyer,? Seller) A

orderModificationType{?Order, reduce) A

orderltemisInBacklogilOrder) A
purchaseOrder{?Order, 1Buyer, ISeller).

overrides{c,a).

± <— orderModificationNotice{'?Order,?X) A

orderModijicationNotice{10rder, lY)

I

{IX ^lY).

To represent this example directly as an Ordinary LP —
while handling conflict appropriately in regard to priorities

and guaranteeing consistency — requires modifying the

rules to add extra "interaction" conditions that prevent more

than one rule applying to a given purchase order situation.

Moreover, adding a new rule requires modifying the other

rules to add additional such interaction conditions. This is

typical of conflicting rule-sets and underscores the advantage

of the prioritized conflict handling expressive feature (recall

the discussion of modularity andea se of modification in

section 3).

Semantically, the prioritized conflict handling in CLP is

defined by a process of prioritized argumentation among

opposing candidates. Opposition is specified by the set of

mutex's. Each rule r whose body is satisfied, i.e., which

"fires", generates a candidate c for r's (appropriately instan-

tiated) head p. This candidate has an associated label, which

is simply that rule r's label. In general, there may be multiple

candidates for a given p, i.e., a team for p. If and only if there

is an opposing candidate d (i.e., a candidate for an opposing

literal q) that has higher priority than candidate c, then c is re-

futed. Suppose there is an unrefuted candidate for p. If there

are no unrefuted candidates for any opposer of p, then p wins,

i.e., p is concluded. However, it may be that there is an unre-

fiited candidate for an opposer of p; in this case, the opposing

unrefuted candidates skeptically defeat each other. The con-

flict cannot be resolved by the specified priority; neither p nor

its opposer is concluded.

Another way to view thisis as follows. An opposition-

locale is a set of /i > 2 ground classical literals that op-

pose each other,su ch that at most one of those literals is per-

mitted (by the specified mutex's) to be concluded. In each

opposition-locale, if the maximal-priority candidates are all

for the same literal, then that literal wins.

The definition of CLP includes some additional expressive

restrictions, which we do not have space to detail here.

CLP always produces a consistent set of conclusions, en-

forcing all the mutex's. CLP also has several other attractive

well-beha\ ior properties, including about merging and about

natural belun ior of prioritization; however, we do not have

space here to detail these.

The courteous compiler in effect represents the priori-

tized argumentation process in OLP. It introduces some ex-

tra "adorning" predicates to represent the intennediate stages

of argumentation: candidates, unrefuted candidates, skepti-

cal defeat, etc.. The compiler makes it simple to detect an

unresolved conflict, e.g., to raise an alarm about it in either

fonvard or backward reasoning.

From the tractability of courteous compilation, it follows

directly that Courteous LP inferencing under the VBD restric-

tion is tractable. It has the same worst-case time and space

complexity as: OLP inferencing where the bound v on the

number of variables per rule has been increased to w -I- 2.

Note that CLP overlaps syntactically and semantically with

KIF for a broad case. CLP without negation-as-failure, with-

out labels (or ignoring labels), and without conflict, is syn-

tactically a restricted (essentially ,cl ausal) case of first-order-

logic (FOL)/KIF. Semantically, such CLP is sound but incom-

plete when compared to FOL/KIF, in that its entailed conclu-

sions are equivalent to a (conjunctive) set of ground literals.

4.3 XML Embodiment: Business Rules
Markup Language

Our approach includes a second aspect beyond the funda-

mental KR.W e embody the rule representation concretely as

XML documents.

Next, we give, for the first time, an XML embodiment of

CLP. Called Business Rules Markup Language (BRML), this

XML embodiment functions as an interlingua between het-

erogeneous rule representations/systems which different con-

tracting agents may be employing. BRML inherits the declar-

ative semantics of CLP.

BRML also is the first XML embodiment of (declarative)

OLP to our knowledge. Since CLP also expressively covers

a subset of KIF, as described above, BRML is also an XML
embodiment of that subset of KIF — to our knowledge, the

first XML embodiment of (any fragment oO KIF.

Figure I shows the CLP from Example 4 encoded in

BRML. Only the first rule of that Example is shown in de-

tail, "cliteral" means "classical literal", "fcliteral"
means a rule body literal, i.e., a literal formed by optionally

applying the negation-as-failure operator outside/in-front of a

classical literal.

In this paper, we do not have space to give full de-

tails about the XML encoding. For full details, see:

(1) the CommonRules prototype download package (at

<?xml version="l .
0"?>

<clp>
<erule rulelabel="a">
<head>
<cliteral predicate=

"orderModi£icationNotice">
<variable name= "Order" />
< function name="daysl4 "/>
</cliteral>

</head>
<body>
<and>
<fcliteral predicate=

"preferredCustomerOf " >

<variable name= "Buyer"/

>

<variable name="Seller"/>
</fcliteral>
<fcliteral predicate= "purchaseOrder"

>

<variable name="Order"/>
<variable name = "Buyer"/

>

<variable name= "Seller" />
</fcliteral>
</and>

</body>
</erule>

</clp>
[rest of rules & mutex's skipped]

Figure 1 : XML,i. e., BRML, for Example 4.

http://alphaworks.ibm.com), which contains the

XML Data Type Definition (DTD) for BRML, explanation of

it, and a number of examples (esp. "orderingleadtime" there);

and (2) the forthcoming extended version of this paper. The

current DTD is in draft form; updates to it willbe posted on

the authors' websites. See [14] for how BRML fits into the

larger context of agent communication languages, including

the FIPA Agent Communication Language (ACL) draft stan-

dard.

As compared to the usual plain ASCII text style of embod-

iment cf KIF or Prolog or most programming languages,

the XML approach has several advantages. It facilitates

developing/maintaining parsers (via standard XML parsing

tools), and integrating with WWW-world software engineer-

ing. XML is easier to automatically parse, generate, edit,

and translate, because there are standard XML-world tools

forth ese tasks. The hyper-text (i.e., links) aspects of XML
are also useful. For example, a rule set may via XML have

some associated URL's which point to documents describing

that rule set's knowledge representation or authors or appli-

cation context. Or it may have associated URL's which point

to tools for processing that rule set, e.g., to execute it, edit it,

analyze it, or validate it (syntactically or semantically). Par-

ticularly useful for our nearer-term purposes is that an asso-

ciated URL may point to documents describing the seman-

tics and algorithms for translator services or components, as

well as to translator tools and examples. Representing busi-

ness rules in XML has a further advantage: it will comple-

ment domain-specific ontologies (i.e., vocabularies) available

ill XML. Many such ontologies exist already, and many more

are e.vpected to be developed in the ne.\t few years, including

in e-commerce domains. The XML approach also facilitates

integration with Electronic Data Interchange (EDI) and other

e-commerce components that "talk" XML.

We have implemented sample translators that go (bidi-

rectionally) from the .\ML interlingua to several ac-

tual rule systems as proof of feasibility. These rule

systems include two previously e.xisting WFS OLP
inferencing engines built by others and implemented

in C. One is exhaustive forward-direction: Smod-

els (version I), by llkka Niemela and Patrik Simons,

http : //saturn . hut: . f i/html/st;af f/ilkka . html.

The other is backward-direction: XSB, by David Warren

el al, htitp : / /www . cs . sunysb . edu/~sbprolog.

In addition, we have implemented a sample translator to a

third, predicate-acyclic WFS OLP inferencing engine we

built ourselves in Java. Furthermore, we have implemented a

sample translator to ANSI-draft KIF (ASCII format).

5 Discussion and Future Work

The implementation of our approach was released as a free

alpha prototype called CommonRules on the Web in July

of 1999, al http
:
//alphaworks . ibm.com. This pro-

totype is a Java library that includes both the CLP and the

BRML aspects of ourapp roach. In particular, it includes a

courteous compiler and sample translators between BRML
and several other rule systems/languages.

In summary,we believe our approach combining CLP and

XML meets the whole set of requirements we gave in sec-

tion 3 better than any previous approach. Indeed, we believe

our approach meets every one of those requirernents to a sig-

nificant degree, with one exception: the ability to express pro-

cedural attachments.

The usefulness of rules in a declarative KR for represent-

ing executable specifications of contract agreements is based

largely on their following advantages relative to other soft-

ware specification approaches and programming languages.

First, rules are at a relatively high level of abstraction, closer

to human understandability, especially by business domain

experts who are typically non-programmers. Second, rules

are relatively easy to modify dynamically and by such non-

programmers-

In current work, we are expressively generalizing fur-

ther to Situated Courteous LP's, so as to enable procedu-

ral attachments as well — in a semantically clean manner

(i.e., declaratively in a particular well-defined sense). Situ-

ated LP's[9] [16] [15], another expressive extension of Ordi-

nary LP's, hook beliefs to drive procedural APIs. Procedu-

ral attachments for condition-testing ("sensing") and action-

performing ("effecting'') are specified as part of the knowl-

edge representation: via sensor and effector linl< statements.

Each sensor or effector link associates a predicate with an at-

tached procedure.'

In current work, we are also expressively generalizing CLP
and BRML further to relax expressive restrictions such as on

cyclicity/recursion restriction, e.g., to be stratified rather than

predicate-acyclic.

There are several other formalisms for prioritized LP's that

have similar syntax to Courteous LP's (except for lacking mu-

tex's) but different semantics in regard to conflict handling

(see [10] [II] for a review). A direction in our current work

is to explore this dimension of heterogeneity. None of these

other fonnalisms to our knowledge has as attractive a combi-

nation of useful expressive power, software-engineering mod-

ularity, well-behavior (e.g., consistency, unique set of conclu-

sions), tractability, and conceptual simplicity (e.g., in prioriti-

zation behavior and merging). In particular, none can express

mutex's (besides implicit classical mutex's), and none has a

compiler to OLP's.

There are other, more expressively powerfiil approaches to

prioritized default reasoning such as Prioritized Default Logic

[2] and Prioritized Circumscription [19] [18] [7] [8] that es-

sentially can express mutex's, but in these the prioritized con-

flict handling imposes computationally intractable overhead

[6].

It appears fairly straightforward to extend our BRML DTD
in stages so as to express full first-order logic and then full

KIF. A direction for future work is to create a DTD, maxi-

mally compatibly with BRML, that expresses full KIF.

In other work [21], we have extended our contract rule

representation approach with negotiation features oriented to-

wards automatic configuration of auctions, including to spec-

ify which attributes of a contract are to be the subject of ne-

gotiation or bidding.

Of course, there is yetm ore to do to fiilfill our approach's

promise, and achieve its ultimate goals. Further issuesfo r

fiiture work include: meshing more closely with other as-

pects of contracts, e.g., transactions, payments, negotiation

and communication protocols [5] [20], EDI, and utility/cost-

benefit; fleshing out the relationships to a variety of com-

mercially important rule representations/systems; represent-

ing constraints as in constraint satisfaction and Constraint

Logic Programs; and representing delegation as in secu-

rity/authorization policies [17].

An extended version of this paper will be avail-

able as a forthcoming IBM Research Report (at

http : //www. research . ibra. com).

Acknowledgements

Michael Travers(wh ile at IBM T.J. Watson Research Cen-

ter) and Xiaocheng Luan (of UMBC, while at IBM T.J. Wat-

son Research Center), contributed to the current implemen-

tation of the CLP KR, BRML, and the associated translators.

'Note that "link" here does not mean in the sense of an XML or

HTML hypertext link.

Micliacl Travers' contribution was especially to the XML em-

bodiment. Miao Jin (UMBC) contributed to the XML DTD.

Daniel Reeves and Michael Wellrnan (ofU. Michigan) con-

tributed to the fomiulation of the overall context and motiva-

tion lor automated contract languages. Thanks to anonymous

reviewers for editing suggestions.

References

[1 1 Chitta Baral and Michael Gelfond. Logic programming

and knowledge representation. Journal of Logic Pro-

gramming. 19,20:73-148, 1994.

[2] Gerhard Brewka. Reasoning about priorities in default

logic. In Proceedings of the Twelfth National Confer-

ence on Artificial Intelligence (AAAI-94), pages 940-

945, Menlo Park, CA / Cambridge, MA, 1994. AAAl
Press / MIT Press.

[3]

[4]

[5]

[6]

[7]

W. F.Cloc ksin and C.S. Mellish. Programming in Pro-

log. Springer-Verlag, 1981.

Thomas Cooper and Nancy Wogrin. Rule-based Pro-

gramming with OPS5. Morgan Kaufmann Publishers,

San Francisco, CA, 1988. ISBN 0-9346 1 3-5 1 -6.

Asit Dan, D. Dias, T. Nguyen, M. Sachs, H. Shaikh,

R. King, and S. Duri. The Coyote Project: Framework

for Multi-party E-Commerce. In Proc. 7th Delos Work-

shop on Electronic Commerce. Lecture Notes in Com-

puter Science. Vol. 1513. Springer-Verlag, 1998.

Georg Gottlob. Complexity results for nonmonotonic

logics. Journal ofLogic and Computation, 2:397-425,

1992.

Benjamin N. Grosof Generalizing Prioritization. In

Proc. 2nd Intl. Conf on Principles of Knowledge Rep-

resentation and Reasoning (KR-91), 1991.

[8] Benjamin N. Grosof Updating and Structure in Non-

Monotonic Theories. PhD thesis, Computer Science

Dept., Stanford University, Oct. 1992.

[9] Benjamin N. Grosof Building Commercial Agents: An
IBM Research Perspective (Invited Talk). In Proc. 2nd

Intl. Conference and Exhibition on Practical Applica-

tions of Intelligent Agents and Multi-Agent Technology

(PAAM97J, P.O. Box 137, Blackpool, Lancashire, FY2

9UN, UK.

[10] Benjamin N. Grosof Prioritized conflict handling for

logic programs. In Jan Maluszynski, editor, Logic Pro-

gramming: Proceedings of the International Sympo-

sium (ILPS-97),Ml T Press, 1997.

[II] Benjamin N. Grosof Compiling Prioritized Default

Rules Into Ordinary Logic Programs. IBM Research

Report RC 21472.

[12] Benjamin N. Grosof A Courteous Compiler from

Generalized Courteous Logic Programs To Ordi-

nary Logic Programs (Preliminary Report). Tech-

nical report, IBM T.J. Watson Research Center,

http://www.research.ibni.eom/pcople/g/grosof/papers.html,

July 1999. Included in CommonRules documentation

released July 30, 1999 at http://alphaworks.ibm.com .

Revised version forthcoming as IBM Research Report.

[13] Benjamin N. Grosof DIPLOMAT: Compiling Priori-

tized Default Rules Into Ordinary Logic Programs, for

E-Commerce Applications (extended abstract of Intelli-

gent Systems Demonstration). In Proc. AAAI-99,\^ 99.

Morgan Kaufmann. Extended version is IBM Research

Report RC 21473.

[14] Benjamin N. Grosof and Yannis Labrou. An Approach

to using XML and a Rule-based Content Language with

an Agent Communication Language. In Proc. lJCAl-99

Workshop on Agent Communication Languages, 1999.

[15] Benjamin N. Grosof, David W. Levine, and Hoi Y.

Chan. Flexible procedural attachments to situate rea-

soning systems. In U.S. Patent 5, 778,150 (July 7. 1998),

Washington,D.C., USA

[16] Benjamin N. Grosof, David W. Levine, Hoi Y. Chan,

Colin P. Parris, and Joshua S. Auerbach. Reusable Ar-

chitecture for Embedding Rule-Based Intelligence in In-

formation Agents. In Proc. ACM Conf. on Information

and Knowledge Management (CIKM-95) Workshop on

Intelligent Information Agents, 1995.

[17] Ninghui Li, Joan Feigenbaum, and Benjamin N. Grosof

A logic-based knowledge representation foraut horiza-

tion with delegation (extended abstract). In Proc. 12th

Intl. IEEE Computer Security Foundations Workshop,

1999. Extended version is IBM Research Report RC
21492.

[18] V. Lifschitz. Computing circumscription. In Proceed-

ings Intl. Joint Conf on AI (IJCAI-85), 1985.

[19] J. McCarthy. Applications of circumscription to formal-

izing commonsense knowledge. Artificial Intelligence,

28:89-116, 1986.

[20] Naftaly H. Minsky and Victoria Ungureanu. A Mech-

anism for EstablishingPo licies for Electronic Com-

merce. In Proc. 18th Intl. Conf on Distributed Com-

puting Systems (ICDCS), May 1998.

[21] Daniel M. Reeves, Benjamin N. Grosof, MichaelW ell-

man, and Hoi Y. Chan. Toward a Declarative Language

for Negotiating Executable Contracts. In Proc. AAAI-99

Workshop on Artificial Intelligence in Electronic Com-

merce (AIEC-99).

[22] Jeffrey D. UUman and Jennifer Widom. A First Course

in Database Systems. Prentice-Hall, 1997.

[23] A. Van Gelder, K. Ross, and J. Schlipf The well-

founded semantics for general logic programs. Journal

ofACM, 38(3):620-650, 1991.

DEC mi

Date Due

3 9080 02246 1328

