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A DYNAMIC SALES CALL POLICY MODEL

1. Introduction

In spite of the fact that personal selling is the largest

single item in the marketing budgets of most firms, only a handful

of analytical attacks upon personal selling decision problems have

been reported in the literature. While certain characteristics of

personal selling decision problems, sales managers, and management

scientists have contributed to this dearth of progress, the time

seems ripe for a concerted effort on the part of management

scientists to assist the sales manager in the solution of certain

sales management problems.

This paper will present a model framework for the analysis of

a particular sales management problem - that of specifying call

norms for current and potential customers. Consideration will first

be given to the nature of the sales call policy decision problem.

Then the dynamic call policy model will be developed. Attention will

next turn to the application of the model to hypothetical data which

will illustrate the nature of the call policies recommended by the

model as well as provide insight into its practical computability.

For an analysis and critique of the existing literature see Chapter 6

in D.B. Montgomery and G.L. Urban, Management Science Models in Marketing ,

(Englewood Cliffs, N.J. : Prentice-Hall), forthcoming in January, 1969.

2
For a consideration of the factors which have contributed to this lack

of progress see D.B. Montgomery and F.E. Webster, Jr. "Application of

Operations Research to Personal Selling Decisions", Journal of Marketing ,

(January, 1968), pp. 50-57.
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2. The Decision Problem

Periodically a salesman must make a decision as to how much

sales effort to expend upon a particular customer or class of

customers. The decision often takes the form of a specification

of the number of sales calls which should be made on the customer

during some period of time. This decision is termed the call norm for

this customer (or class of customers).

In establishing a call norm for a customer we shall view the

salesman's objective as maximizing the total profit contribution to

the firm which will result from his sales effort on a particular

customer. Thus we are taking the firm's viewpoint in developing

the salesman's call norms rather than the viewpoint of the salesman

in terms of maximizing his own income. However, if the salesman's

compensation is proportional to the profit contribution he makes

to the firm, then the two viewpoints would coincide in the sense

3
that both the salesman and the firm would select the same call norm.

In the present paper we concentrate upon situations in which

there may be a continuing relationship between the salesman and the

customer. That is, we shall focus on situations in which the customer

has a recurring need for the type of products offered by the salesman. ,

3
'For a discussion of salesman compensation based upon profit

contribution see J.U. Farley, "An Optimal Plan for Salesman

Compensation", Journal of Marketing Research , (May 1964), p. 39-43.





3.

The success of a salesman with a customer in any time period

would seem to depend upon at least the following key elements:

1. The prospect's sales potential.

2. The profit contribution per unit of sales.

3. The salesman's past history of sales to the customer.

Has the customer ordered recently? If he did, did he

order very much in terms of his sales potential?

4. The sales effort expended on the customer in the past

several periods.

5. The current period sales effort expended upon the

customer.

6. The customer's response to sales effort.

7. The cost of each sales call.

The sales call policy model developed below is an attempt to

synthesize the above elements into a realistic, albeit abstracted,

representation of the problem. Implicit in the model is the

assumption that the remainder of the firm's marketing mix (e.g. price,

advertising, product line, etc.) remains constant or changes in such

a manner that there will be no repurcussions on the call policy.

In addition, competitive sales activity is not modeled explicitly,

although differing competitive climates might be encompassed by

considering their effects upon the parameters in the model.
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The model develops an optimal call policy for a particular

customer. In practice, however, the firm would want to stratify

current and potential customers into relatively homogeneous

groups for the purpose of establishing call norms. Such a procedure

eases the imput and computational burden of the model for firms having

a substantial number of accounts. The bases for such a

stratification of customers will generally be sales potential and

the responsiveness of the customer to such factors as current sales

effort, sales effort in the recent past, and the history of

purchases from the salesman.

3. The Call Policy Model

The model focuses upon the number of sales calls to allocate

to a given customer over some period (e.g. month, quarter, year,

etc.). The central elements in the model are two probabilities —

the probability that the customer will order and the conditional

probability associated with the size of his order given that he

orders from the firm.

Before outlining the nature of these probabilities, it is

useful to specify two salient characteristics of the customer

which will influence the success of sales calls in the current

period. The first characteristic is a measure of the history of

sales to this customer. In the present model sales history is

measured as the exponentially smoothed ratio of the customer's
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purchases to his potential. That is.

(1) H^ = a(X^_^/P) + (1 - a) H^_^

where H = smoothed history of sales to the customer at the
beginning of period t (measured as the ratio of

customer purchases to his potential)

X = unit sales to the customer during period t

P = sales potential of the account (in units)

a = smoothing constant which determines the weight

given to recent sales (0 < a <^ 1)

,

The second characteristic is termed the customer's remembered sales

effort. It reflects the fact that past sales effort may help pave

the way for success in the current period. However, the effect

of past sales effort will also tend to diminish with time -

i.e. forgetting will occur. Thus the impact of past sales effort

on success in the current peril d will be measured by remembered sales

effort which is given by

(2) E^ = g (E^_^ + S^_^)

where E = sales effort from past periods remembered at the

beginning of period t.

S = sales effort expended on the customer during period t

(number of sales calls).

g = parameter representing the fraction of previous
sales effort retained each period (0 < g < 1)

.
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When the call policy model is formulated as a Markov sequential

decision process, the remembered sales effort and sales history

variables will define a two-dimensional state space for the

customer.

Probability of Ordering

In discussing the probability that the customer will order,

we consider current customers separately from potential customers.

For a current customer, the probability of his ordering in the

current period is taken to be a function of his sales history,

remembered sales effort, and the current sales effort allocated

to him. The probability is given by

(3) P(Order during t) = P^. (H^ ,E^ ,S^)=c(l -exp {-bH^})

+ (1 - c)(l - exp {-d[Ej. + S^.]})

where c = parameter reflecting the relative impact of sales
history versus remembered and current sales
effort (0 < c < 1).

b,d = parameters reflecting diminishing returns to sales

history as well as'^remembered and current sales

effort (b > 0, d > 0).

In this formulation the probability of obtaining an order is composed

of two components: one reflecting sales history and the other reflecting

sales efforts, both current and past. Each component experiences a

diminishing return to the factor of which it is a function. The

question might arise as to why one component of the order probability
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should be a function of the sales history, H . The reasoning

behind this formulation is that sales history reflects the

success of past sales effort. The formulation in Equation (3)

enhances the chances of success in the current period according

to how successful past efforts have been, as indicated by the

level of H . Further, the component which is responsive to sales

effort allows for a substitution of remembered sales effort and

current sales effort. Thus, if a salesman has built up a cumulative

history of sales calls to the customer, less current period effort

will be required to yield a given likelihood of obtaining an order.

The order probability for prospects is developed below. One

reason for treating prospects differently from current customers

is that by definition, prospects have no sales history. Furthermore,

it would seem that additional information should be taken into

account in our representation of prospects. We shall first specify

the functional representation of a prospect's order probability

and then discuss its implications. Let

(4) P^^ = PMAX (n,Et)[l - exp { -q (E^ + S^)}]

= [exp {-knE^}][l - exp { -q(E^ + S^)}]

where n = the number of previous periods in which the prospect has
been called upon and in which he has not ordered,

n = 0, 1 , . . . , N
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P = the probability that a prospect who has been called
on and yet has not ordered for n periods will order
in period t. Note that t corresponds to n+1.

PMAX(n,E ) = the maximum order probability for a prospect having
a remembered sales effort of E and having been
called upon for n previous periods without buying.

(0 _< PMAX(n,E ) <_ 1.0).

k = parameter reflecting the reduction in the maximum
probability of an order as n and/or E increase.

q = parameter reflecting diminishing returns to current
and remembered sales effort.

In the first place, notice that we have introduced the concept of

a prospect's age as measured by n. We postulate that the longer

a prospect is called upon and yet remains a prospect , the lower the

likelihood that he will order from the firm. Furthermore, the

older the prospect is in this sense(i.e. the larger his n) and the

more intensively he has been called upon with no success

(i.e. the higher his E ), the greater the diminution in the firm's

prospects for winning his as a customer. Consequently, in

Equation (4) we have represented the maximum probability of winning

the prospect as a customer in period t as an exponentially declining

function of nE .

However, remembered sales effort should also have some positive

effect upon the prospect's order probability in period t. T he fraction

of PMAX(n,E ) that will be realized in period t is taken to be a

positive function of both current and remembered sales effort. The

function also exhibits diminishing returns.
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In sum, we have postulated a model in which the length of time

a prospect has remained a prospect and the intensity of cumulative

sales effort to him will yield information on our likelihood of

converting him from a prospect into a customer. In most cases

we will only require information on n = 0, 1, ... N for some

small number N. For example, if the period is a quarter, then

N = 4 is probably sufficient. Once a prospect gets to N, he is

no longer aged, but remains in the prospect class specified by N.

Probability of Order Size

If a customer orders, the size of his order is taken to be

a Poisson random variable having mean sales rate X (P, H , E , S )

which is viewed as an increasing function of the customer's sales

potential (P) , his sales history (H ) , his remembered sales

effort (E ), and current period sales effort (S ). More

explicitly, the mean sales rate is given by

(5) X^(P,H^,E^,S^)= P[l - exp {-fr H^ - (1 - f)s(E^+S^)}]

where X (P,H ,E ,S ) = Poisson parameter in the order size

distribution as a function of P,H ,E ,

and S .

f = parameter representing the relative importance of

sales history versus current and remembered sales

effort (0 ^ f ^ 1.0).

r,s = parameters representing diminishing returns to

sales history and sales effort - i.e. , they determine

the extent to which increasing H and E +S causes

X to approach its asymptotic
value of P (r > 0, s > 0)

.
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Two interesting aspects of this formualtion should be noted.

In the first place, it is assumed that a good recent sales

history to the customer can be substituted for some current

and remembered sales effort. Secondly, note that we have specified

the customer's sales potential as an upper bound to the expected

size of his total orders in a given period. Thus, his actual

purchases may be significantly in excess of his sales potential, P.

It should be emphasized at this point that the procedure used

to develop an optimal call policy is appropriate for any functions

describing X , P , and P . No convexity or concavity restrictions

are needed. The functions specified in Equations (3) , (4) , and (5)

are presented for concreteness and because they represent a

reasonable initial representation of the process. It may be

anticipated that field study will lead to suitable modifications

to the model. The present representation is sufficient to explore

the behavior of the model and the computational efficiency with

which it may be used.

For any current customer we may now define the probability

of ordering any amount X as a function of P, H , E , and S . Thus,

for X = we have

(6) P(X^ =
I

P, H^, E^, S^.) = 1 - Pj.(Hj., E^, Sj.)

+ Pj.(H^, E^, S^) exp {-X ^(P, H^,E^,S^)}
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and for X = 1, 2, ... we have

P,(H,,E S )[A (P,H E .Sj]^t
(7) P(X

I

P, H E S ) = ^_L_^—E 1 t__L_t
expCX (P.TT, E .SJ }

t

Equation (6) is the sum of the probability of no order and the

product of the order probability and the Poisson probability that

the order quantity is zero. The latter term reflects an intention

to order on the part of the customer but for some reason (perhaps

a short term sales decline or excess inventory situation) the customer

does not require any additional units of the product during the

period. The larger A , the smaller will be the probability of this

event. Note that for a potential account we would substitute P
tn

for P in equations (6) and (7).

The Markov Sequential Decision Process

In the probabilistic process defined above, the firm has a

single control variable, sales calls (S ), which may be set at a

number of discrete values. The problem is to determine the optimal

number of sales calls to make to a customer having some particular

set of parameter values in equations (l)-(7) and currently having

some sales history (H ) and remembered sales effort (E ) . In this

section we show that this problem may be cast in the form of a

Markov sequential decision process and solved by means of Howard's

4
policy and value iteration technique.

4
See R.A. Howard, Dynamic Programming and Markov Processes ,

(Cambridge, Massachusetts: M.I.T. Press), 1960.
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The state of a customer at any time t may be described by his

values of H and E . Thus, the state space in our model is two

dimensional. If the model is to be computationally feasible, it

will be necessary to transform intervals of H and E into some

reasonable number of discrete states.

Consider first the sales history of the customer which we

shall denote by i. Each possible value of H is uniquely associated

with one of the history states i = 1, 2, ... I. Let there be equal

intervals of H corresponding to each i (except for state I which

will have associated with it any H greater than some specified

value). Now the sales history information we have about a customer

at the beginning of any period t will be his history state i, which

will correspond to any H in the interval which maps into i. In

order to be able to assess the probabilities given in equations

(6) and (7) when we only know i and not H , we will associate with

each i the midpoint of the corresponding H interval. We shall

denote the midpoint by HM. . The value HM^ will be used in place
•^ It it

of H in the equations of the model for a customer in history state i,

Suppose we have a customer who at the beginning of period t

is in history state i and who purchases X units during period t.

What will be his history state i' at the beginning of period t+1?

We first compute his value of H as

(8) H , = a(X /P) + (1-a) HM. .

t+1 t It
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Then his history state i' at t+1 will be the history state which

corresponds to H . Since we have chosen equal intervals of

H for mapping H into history states, we may formally represent

the correspondence between H and the history state i' by

(9) i' = [1.0 + (H^+3^/SFj^)]

= [1.0 + ({a(X /P) + (l-a)HM. }/SF„)]
t 1 L n.

where [ ] denotes the greatest integer less than function and SF
H

denotes an appropriate scaling constant for history states. The

term 1.0 in equation (9) reflects the fact that we have choosen

to denote the lowest history state by i=l.

In formulating the Markov process we shall be interested in

the probability that a customer in history state i having some

remembered sales effort and receiving S sales calls during t, will

be in history state i' in t+1. That is, we need to know the

transition probability P(i'| i, j, S ) where j denotes the customer's

effort state at t. If each distinct value of sales to the customer

in t(X ) mapped into its own distinct history state, then this

transition probability would simply equal the appropriate

value from equation (6) or equation (7). However, we see from

equation (9) that several values of X may lead to the same history

state. Thus, the history state transition probability will be given by

(10) P(i'| i,j,S^) = ZP(XJi,j,S^)

V X ) Eqn. (9) holds

where the terms on the right hand side are from equations (6) and (7)
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with the obvious correspondence in notation and with suppression

of the sales potential (P) since it is a parameter of the customer.

We now turn to a consideration of the customer's effort

state, which we have denoted by j (j=l, . . . ,J) . Each value of

E will be uniquely associated with one of the effort states and

we will take equal intervals on E in making the correspondence

to the states j. Again, in computing the probabilities in

equations (6) and (7) when we only know j and not E , we will

associate with j a representative value of E which will be

chosen as the midpoint of the corresponding E interval. The

midpoint will be denoted by EM and will be used in lieu of

E in the model equations.

Now we could take the transition from effort state j at

time t to effort state j' at t+1 as deterministic simply by

using

(11) j' = [1.0 + {g(EM + S )}/SF„]
jt t bj

where we have made use of equation (2) , SF is the scaling factor
E

for effort, and [ ] again denotes the greatest integer function.

However, the effort state transition may also be taken as stochastic.

Consider the following approach. Let EU(j) denote the

greatest value of E for which the effort state will be j. Now,

suppose for the purpose of determining the transition from j to j

'

that we assume that E is uniformly distributed over the interval

EU (j-1) to EU(j) where we take EU(j-l) to be a value of E
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just large enough to be classified in state j. We also take

EU(0) = 0. The above approach is consistent with our use of

EM. in our other computation since EM. is the expected
jt ^ jt ^

value of E when the effort state is j and E is uniformly

distributed over the interval. We should also note that in

the transition from effort state j into a new effort state j'

that j' may only take on at most two distinct values. This

results from the fact that 1 g 5. 1.0.

Now , compute

(12) jmax = [1.0 + {g(EU(j) + S^)}/SFg]

and

(13) jmin = [1.0 + {g(EU(j-l)^ + S^)} /SF^].

Then if jmax = jmin, P(j' = jmax
|

j, S ) = 1.0

if jmax ^ jmin, we have

EU(jmin) - g(EU(j-l)'^ +S )

(14) P(j' = jmin
I

j,S ) =

g(EU(j) - EU(j-l)'^)

since we assumed a uniform distribution of E in state j

.

t
-^

We might note that except for an infinitesimally small term,

EU(j) - EU(j-l) = SF„. Since j' may take on at most two
E

values , we have

(15) P(j' = jmax
I

j, S^) = 1 - P(j' = jmin
|

j, S^).





16.

In order to use Howard's algorithm to find the optimal

call policies for our model, we need to know the transition

probabilities

.

P(i',j' |i,j,S^) i.i' = 1,2,..., I and j,j' = 1,2,... J

and their associated rewards

R(i',j' |i,j,S^) i,i' = 1,2,..., I and j ,

j
' = 1,2,... J.

The R(i',j'| i,j,S ) represent the rewards (in our case profit

contributions) associated with a customer who begins in state ij

,

receives S sales calls, and ends up in i'j' at the beginning of

period t+1. Since the history and effort states to which the customer

goes at t+1 are independent random variables, we have

(16) P(i',j'|i,j,S^) = P(j'|j,S^) P(i'|i,j,S^)

where the factors on the right hand side may be determined from

the previous discussion.

It remains to determine the associated rewards. Let

(17) PC(X^|S^) = m X^ - uS^

where PC(X |S ) = the profit contribution which will result
from the sale of X units to the customer
as a result of S sales calls.

m = profit contribution per unit excluding the
cost of sales calls ($/unit)

u = cost per sales call ($/call).

Once again, since several values of X may lead to the same history

state i' in t+1, we will need to sum over the appropriate set of

X in order to determine the expected reward associated with going
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from state ij to state i j . We have

(18) R(i',j'|i,J,S )
=

Vx

r P(j'|j,S^)P(XJi,j,S^)PC(xJS^) 1

t> L P(i',j'|i,J,S^) J
Eqn. (9) holds

^ P(X^|i,i,S )PC(X Is )

y^ s
<. t'

'-J
' t t' t

Eqn. (9) holds

P(i'|i,J,S^)

Note that the effort state transition probability drops out since

the reward is not a function of that transition, but only of the

history state transition.

The model is now in a form amenable to solution via one

of Howard's algorithms. We shall utilize his iteration cycle with

discounting. We incorporate discounting into the model for two

reasons. First, we want to reflect the time value of the stream

of profit contributions which will result. Second, we want to reflect

an element of uncertainty concerning the duration of our

relationship with a given customer. Both of these effects will be

encompassed in the discount factor. It should be noted that in

using this algorithm we are considering the steady-state solution

of the process (i.e. the process has a large number of stages).
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4. Some Computational Results

This section presents some computational results using

hypothetical data which will serve to illustrate the nature

of the optimal call policies recommended by the model. For

this purpose we present three runs of a very small scale

version of the model. We have also run much larger versions of

the model which indicate that these smaller scale results are

representative.

The parameter values for the three runs or cases are

presented in Table 1. Case 1 is taken as a reference case.

Case 2 has the same parameters as Case 1 except for a heavier

weight given to sales history relative to current and remembered

sales effort in equations (3) and (5). Case 3 is also the same

as Case 1 except that now sales history is given a much smaller

relative weight in equations (3) and (5) than current and

remembered sales effort. The optimal sales call policies for

these three cases are given in Table 2.
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TABLE 1

Hypothetical Parameter Values
Used in the Call Policy Model

Parameter Description * Case 1 Case 2** Case3'^"^

a Weight given to recent sales in H (1) 0.5 -

g Fraction of previous sales effort
retained (2) 0.6

c Weight given to H component of P (3) 0.5 0.9 0.1

b DRC*** of H in P (3) 8.0

d DRC of E +S in P (3) 0.5

o DRC of E +S in P (4) 0.5
* t t tn

k COEFFIENT OF nE in P (4) 0.07
t tn

N MAX, aging of prospects (4) 2 - -

P Sales Potential (5) 10.0

f Weight of H in A (5) 0.5 0.9 0.1

r DRC of H in \ (5) A.O

s DRC of E in A (5) 0.5

m Profit contribution per unit (17) $250 - -

u Cost per sales call (17) $20

Discount Rate = l/(l+i) 0.75

Max, number of Sales Calls 6 — —

* The number in parenthesis corresponds to the equation in which
the parameter appears.

** A - for a parameter value indicates that it has the same value

for this case as for Case 1.

***DRC denotes diminishing returns constant (Note: strictly speaking
fr and (l-f)s are the DRC's in equation (5).)





TABLE 2

Optimal Call Policies
for Cases 1, 2, and 3

Case 1 Reference Case

Effort States

20.

History States 1

Prospect
Age Classes
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Table 2. continued

Case 2 Heavy weight on H , Slight weight on E + S in P and X

Effort States

History States

Prospect
Age Classes

1
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Table 2, continued

Case 3 Slight weight on H , Heavy weight on E + S in P and Ae&
J..

76 tttt

Effort States

History States

Prospect
Age Classes





While it is not our purpose to elaborate extensively on these

hypothetical cases, a number of interesting features of the call

policies may be noted. For example, consider the results for

Prospect Age Class 2 in Case 1. The policy recommendation is that

for a prospect who has been called upon for at least two periods

and yet has not become a customer by purchasing, the firm should

adopt a pulsing type of call strategy. To see this, consider

a prospect in this class whose effort state is 4. The optimal

policy is not to call upon that prospect during the current period.

Then as the prospect's effort state diminishes due to forgetting

he will eventually fall into one of the lower effort states, at

w hich time the company should call upon him intensively. It should

be noted that the single call which should be made when he is in

effort state 3 will not be sufficient to sustain him in effort

state 3 if he does not purchase as a result of that call.

Consequently, he will always ultimately fall toward state 2 if he persists

in not purchasing. The model recommends a periodic pulse of sales

effort for such prospects.

In case 2, we see that when a greater relative importance is

attached to sales history, it generally becomes less attractive to

call frequently on the account, particularly for large values of

the history state. This is certainly what we would expect. Note,

however, that in history state 1 and effort state 4 it is now profitable

to make the maximum number of sales calls, 6, in contrast to the

policy of 5 for this cell in Case 1. In this case, it is worth

every effort to get the customer into a higher history state.
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In Case 3 where the relative importance of current and

remembered sales effort is much greater than that of sales history,

we see that the call policy is independent of the history state.

It might be noted that Case 3 would probably be representative

of a highly competitive situation in which the salesman needs

to continuously hustle in order to maintain the account as a

customer. Case 2 is a situation in which continuing relationships

are relatively easy to sustain.

An interesting contrast between Cases 2 and 3 occurs in

the Prospect Age Classes. Now the call policy implications of

the two cases reverse. Case 2 recommends nno re intensive calling

than does Case 3 in several instances and it never recommends

a lower level of calling in any instance. This was an

unexpected result since the parameters of P for the prospect

age classes are identical in both cases.

Howard's algorithm has proven to be computationally efficient

for this model. The runs presented here converged in about three

iterations and used an average of 0.13 minutes of IBM 360-65 time.

Larger scale runs having 120 states compared to the 20 states in

the present runs have run in about 1 minute on the model 65 and have

never taken more than five iterations to converge on the optimal policy.
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5. Conclusions

This paper has formulated and presented some preliminary

results using a dynamic model for the determination of sales

call policy. The approach of the model does not depend upon the

particular functions which were used in this paper since it does

not require any convexity or concavity restrictions on these

functions.

Several issues remain for research on this model. Perhaps

the first order of business is to try the model in actual selling

situations. No doubt this will lead to revision of the model

in order to make it more appropriate to particular empirical

cases. Further, it would be interesting to examine the implications

of the model for the size of the salesforce. In addition, it

should be able to shed some light upon how a salesman can best

allocate his time to the population of customers and prospects

he faces at any point in time. One bonus of the discounted

formulation is that it yields the present value of an optimal call

strategy to a customer or prospect in any state or age class. This

information should provide a starting point for the determination

of how he should allocate his time to the population of prospects

and customers.
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