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Abstract

Advanced Decision Support Systems based on mathematical

programming models receive input data from Decision Data Bases (DDB) that

are derived from, but different than, corporate data bases. This paper elaborates

on the concept of the DDB, its derivation, and its practical significance. Two

specific DDB's are examined in detail, one addressing integrated logistics

planning and the other addressing dedicated portfolio optimization.





THE DECISION DATA BASE

Introduction

An increasing number of managers have come to realize that transactional

data in their corporate data bases cannot be used directly to analyze many of

their important decision problems. The difficulty is especially apparent if the

problems involve large sets of numerical data. This is the case, for example,

when managers are confronted with facilities location, production scheduling, or

other value chain management problems. It is also the case for portfolio selection

and related financial decision problems.

Shapiro et al [1993] discuss the application of Advanced Decision Support

Systems (DSS's) based on mathematical programming models to value chain

management problems. Their development includes a brief discussion of what

they call the Decision Data Base (DDB) which is derived from corporate data

bases and contains the input data for Advanced DSS's. They note that the DDB

has value in its own right in supporting managerial decision making, even if it is

not used in the generation and optimization of mathematical programming

models.

The goal of this paper is to elaborate on the concept of the DDB and on its

practical significance. Our development will employ mathematical

programming as the primary tool both for analyzing business problems and for

suggesting the design and content of DDB's. Thus, the paper also serves to

review recent practices in the use of models to support managerial decision

making. DDB's could be developed in other ways. However, we have found

mathematical programming to be a robust problem solving paradigm that is well

suited for these purposes.



Derivation of the DDB

In contemplating the form and content of any DDB, we require that the

collection of business problems of concern be focused to the extent that a

coherent family of models can be created to analyze them. In other words, the

DDB is the result of inductive business problem analysis using models. This is

different than a deductive approach in which the management scientist tries to

build a complete model of the company's business which, once completed, will

be used to analyze virtually any data intensive decision problem that might arise.

The latter approach is doomed to failure because it is impossible to bring to

closure.

The first step in creating a DDB is depicted in Figure 1. It begins with a

domain of business problems to be evaluated. After extensive dialogue with the

manager(s) about these problems, the model builder conceptualizes the models

that fit the problems. The cloud like graphic description of these steps indicates

that the activities of problem articulation and model building are creative and

imprecise mental exercises.

It is possible, even likely, that different model builders will derive

different models for a given set of problems. In an absolute sense, some

formulations may be better than others, and these differences will be reflected in

the associated DDB's. However, for the purposes of discussion, we presume

henceforth that the suggested family of models accurately and uniquely

describes the business problems at hand.



Relationship Between Business Problems and a DDB
Figure 1

The model generator is a concrete object. It is a software program that

realizes the model builder's conceptualization of the necessary models. As

shown in Figure 2, the model generator transforms input data into the equations

and variables of a mathematical programming model expressed in a form that

can be read by a numerical optimizer.
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Figure 2

At the design stage of an Advanced DSS development project, the design

of the model generator determines the structure of the DDB. Implicit in this

design is a parsing of the model's data requirements into their natural

components which form the basis for the DDB. As shown in Figure 2, we have



divided the DDB into two parts: Objective Data that is derived from the

company's corporate data base; and Policy Data that reflects the manager's

judgment about acceptable characteristics of optimal strategies. Objective data

might include, for example, costs, capacities, transformation recipes, and

transportation activities. Policy data reflects managerial concern about risk,

secondary objectives, or constraints on the practical implementation of a strategy.

It might stipulate, for example, that no more than 50% of a company's

requirements of raw materials can be satisfied by purchases from companies

outside the U.S., or, that bond purchases for a fixed income portfolio must be in

lots of 1000 bonds. For most applications, the objective portion will be much

larger than the policy portion.

Both types of data in the DDB are quantitative, although some of the

policy data may be logical or boolean in nature. For example, a constraint that a

company's logistics network may contain a distribution center (DC) in Los

Angeles or San Francisco, but not both, or a constraint that a dedicated portfolio

may contain bonds issued by General Motors or Ford, but not both.

A third possible type of input data omitted in Figure 2 are control

parameters for the optimizer. Such parameters are especially needed when the

model to be optimized is a mixed integer program. Because the time required to

compute an optimal or demonstrably good solution for such a model can be

unpredictable. Thus, it is important to impose limits on the extent of

computation performed by the optimizer. Moreover, the user may assist the

optimizer by conveying his/her judgment about priorities among important

decision variables. This type of data could be viewed as policy information

about the desired quality and probable structure of decision strategies produced

by the Advanced DSS.



Referring again to Figure 2, we note that model generation is data driven

at run time. That is, for a given data instance, the model generator checks which

components of a decision problem are passed forward from the DDB and

generates a model encompassing only those components. In this way, the model

generator has the capability to create a variety of models, each tailored to the

immediate needs of the decision maker.

The solution generator is a program that takes the output data from the

optimizer and parses and organizes it in a manner consistent with the structure

and content of the input data fed to the model generator. It uses the internal

names of decision variables and constraints selected by the model generator in

creating the mathematical programming model. The solution generator

interprets and, for some output, suppresses non-managerial technical structures

associated with mathematical programming models. Output from the model

generator becomes part of the DDB.

We intend and expect that the DDB and the Advanced DSS will reside on

a pc or workstation, although the company's corporate data base may reside on a

mainframe computer. Figure 2 conveys the idea that an Advanced DSS can be

implemented on these platforms using an open architecture approach in which

the graphical user interface (GUD and the data base management system (DBM)

can either be purchased off-the-shelf or constructed quickly using a software

toolkit. The optimizer can also be purchased off-the-shelf. Only the model

generator needs to be handcrafted for the problem solving domain of the

Advanced DSS.

The perspective that the optimizer is a "black box" which can be purchased

off-the-shelf merits emphasis. It is not widely appreciated that highly effective

linear and mixed integer programming packages for desktop computers can be

acquired at a modest cost. After more than 40 years of development, the research



community has developed efficient algorithms for these types of mathematical

programming models. Coupled with phenomenal strides in the numerical

processing capabilities of microprocessors, these packages allow optimization of

large scale models in times that are commensurate with those associated with

mainframes of less than 10 years ago. Of course, the demand for faster

computation and an ability to optimize larger models is never ending. Still, the

absolute capabilities of today's desktop computers allow business problems of

significant size and complexity to be efficiently modeled and optimized on them.

With these advances, optimization of a properly posed mathematical

programming model is a reliable and almost routine task. A more challenging

task is to conceptualize and implement the model generator. The bulk of the

actual work, however, is to create the DDB. In terms of the time required to

implement and validate an Advanced DSS, perhaps 80% or 90% will be spent in

developing the data handling routines of the DDB, organizing data, and making

validation runs, while only 10% to 20% will be spent on the model generator.

The discussion thus far has assumed that a DDB is defined in terms of a

coherent class of business decision problems. In later sections, we discuss

specific DDB's, one addressing logistics problems and the other addressing

dedicated portfolio selection problems, in order to be more concrete about their

construction, meaning and use. We have chosen such disparate applications in

order to examine the DDB from radically different perspectives.

Business Process Redesign, Integrated Planning and the DDB

An Advanced DSS is often sought by management to promote integrated

or coordinated planning within the firm. Mathematical programming models

are well suited to the task of unraveling the complex interactions and ripple

effects that make integrated planning difficult and important. For such



applications, the DDB reflects the content and level of data detail that must be

communicated among managers with differing functional responsibilities to

achieve integrated planning. A specific case is discussed in the following section.

The role of the DDB in integrated planning is complementary to current

software developments aimed at promoting business process redesign (e.g., see

Davenport [1993]). For example, Winograd and Flores [1987] have proposed a

workflow paradigm defined in terms of the interaction between two people

conducting business, the "customer" and the "supplier". As goods or services

move through the value chain, the customer at a given stage becomes the

supplier of a different customer at the next downstream stage of the chain. New

software is needed to facilitate formal or informal negotiations about the terms of

satisfaction between customer and supplier, and agreement about when these

terms have been met.

Advanced DSS's and DDB's for integrated planning are needed to

complement business process software and procedures because decisions made

by customers and suppliers will tend to be myopic. It is critically important for

customers and suppliers, especially if they work within the same firm, to be

given guidelines that are effective from a more global, integrated viewpoint.

Conversely, the implementation and use of new business process software

should greatly facilitate the creation of accurate and timely data for the purposes

of higher level, integrated planning by Advanced DSS's.

DDB for Integrated Logistics Analysis

The discussion in this section represents an amalgam of facts and

experiences from several integrated logistics modeling studies performed for

retail distribution companies. We begin by considering the logistics network of

the distribution division of a retailing company operating in Illinois, Wisconsin
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and Indiana. A sin^plified form of the network is displayed in Figure 3. The

division handled in-bound transportation, warehousing, inventory management

and out-bound transportation for more than 50,000 SKU's shipped to retail stores

where the products are sold to the public. Total annual logistics costs exceeded

$100 Million.

Logistics Network of Retail Distribution Company
Figure 3

The retail stores were comprised of corporate stores owned by the parent

company, franchise stores with which the parent had long-term contractual

arrangements, independents, and specialty stores in a small company recently

acquired by the parent. The total number of stores in all categories was

approximately 600. The division operated 7 distribution centers (DCs): A large



DC in Chicago and 6 medium-sized DCs located in or near other cities. The DCs

were stocked by approximately 400 suppliers located throughout the U. S. and

Canada. Foreign suppliers were considered to be located at the port of entry of

their products.

Senior management of the division wished to analyze a range of questions

about the structure and operating rules of the logistics network. The time frame

for the analysis was one year; study years included the next calendar year and

the two calendar years after that. The questions to be answered included

• What is the optimal number and location of DCs?

• Should each DC handle all product lines or should some product

lines be handled by specialized DCs?

• Which DC should serve each market?

• Which supplier locations should serve each DC?

• What is the tradeoff between logistics cost and service level as

measured by the maximal time to transport products from any DC

to any customer?

• What is the additional cost of servicing each customer for all its

products from a single DC?

A mixed integer programming model was well suited to study questions

such as these. The model was a snapshot or single period model encompassing

one year of the company's operations. (See Shapiro [1985] or Williams [1990] for

further details about mixed integer programming models and their application to

logistics.)

A central data construction for integrated logistics planning models such

as the one that was used in this application is the definition of the set of
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"products" which are actually product families. In this case, after considerable

discussion, we chose 40 products given by

8 warehouse groups x 5 types of customers

Each warehouse group was comprised of products with similar handling and

distribution characteristics. These groups had been used for planning and

control purposes in the company for several years. The types of customers were

corporate, franchise, large independent, small independent, and specialty

company stores.

The product definition was chosen so that each type of customer had

similar DC assembly and store delivery characteristics. That is, for each

warehouse group, the work of receiving, assembling and re-loading orders

constituting full truckload shipments out-bound from the DC's varied among,

but not within, each of the 5 types of customers. Moreover, the time spent by the

delivery truck driver unloading at the stores varied among, but not within, each

of the 5 types of customers. Thus, the 40 products reflected a complete spectrum

of handling and transportation differences due to differences in physical

handling and customer characteristics.

The next set to be defined was the set of customers. This definition

followed naturally from the definition of products. The 600 stores were used to

define approximately 200 customers as follows. Large stores were treated as

separate entities in their given geographical locations. There were approximately

50 of such stores. The remaining 150 customers were aggregations of similar

types of smaller customers in close geographical proximity. Each type of

customer had positive demand for each of the 8 warehouse groups of products.

The set of suppliers was similarly defined. The largest 40 were treated as

separate entities in their given geographical locations. Each of these suppliers
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were sources for only a few of the 8 warehouse groups. The remaining suppliers

were aggregated into approximately 50 supplier zones.

PRODUCT INDEX SET

CUSTOMER INDEX AND LOCATION SET

SUPPLIER INDEX AND LOCATION SET

DC INDEX AND LOCATION SET

RESOURCE SET

SUPPLIER COSTS AND CAPACITIES

IN-BOUND TRANSPORTATION ARCS: COSTS AND CAPACITIES

SUPPLIER DIRECT TO CUSTOMER ARCS: COSTS AND CAPACITIES

RESOURCE CAPACITIES AT THE DCS

PRODUCT COSTS AND TRANSFORMATION RECIPES AT THE DC'S

INDIRECT VARIABLE AND FIXED COSTS AT THE DC'S

INTER-DC SHIPMENT ARCS: COSTS AND CAPACITIES

OUT-BOUND TRANSPORTATION ARCS: COSTS AND CAPACITIES

MARKET DEMANDS

POLICY PARAMETERS

Data Files in the DDB
Integrated Logistics Advanced DSS

Table 1

These definitions of the sets of products, customers and suppliers, were

the prerequisites for developing the numerical, objective data for an integrated

logistics model. A listing of the data files in the DDB are given in Table 1. Most

of the data in this table are self-explanatory. Resources at the DCs refer, for

example, to labor hours or square feet of storage space. They may also refer to
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quantities such as throughput of a particular product upon which inventory

handling and holding costs are based. Transformation recipes refer to processes

whereby input products are transformed to output products; for example, when

products are assembled into orders ready to be shipped to the stores.

The in-bound and outbound transportation arcs constituted the biggest

data files in the DDB. The costs associated with movements along the inbound

arcs were based on industry rates for truckload movements and the distances

between suppliers and existing and new DCs. Approximately 10,000 to 20,000

such arcs were created where the actual number depended on the number of new

DC sites to be evaluated. Since most deliveries from DCs to customers were by

company-ov^med trucks, regression analysis on historical data was performed to

determine rates and costs for the out-bound arcs. Again, depending on the

number of new DC sites being considered, the number of arcs linking DCs to

customers ranged from 15,000 to 25,000.

Policy constraints for this family of logistics problems included options

allowing the decision maker to specify whether customers were to be sole

sourced for each product family, or not. A second policy parameter was the

allowable service distance between a DC and the customers it served. This

parameter was used to delimit the set of permissible out-bound arcs. A third

type of policy constraint were multiple-choice constraints on DC locations. For

example, a constraint stating that at most one new DC could be selected from a

set of three potential DC sites.

The strategic logistics study that led to the creation of the DDB for

integrated logistics analyst for the distribution company was successfully carried

out. Many scenarios of the distribution company's future were modeled and

optimized. From these runs, senior management identified a redesign of their

logistics network with indicated savings of several million dollars in total
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logistics cost. The redesign involved a reduction in the total number of DC's in

operation and a partial specialization of some DC's to handle a limited number of

product lines.

After the study v^as completed, other important uses of the DDB became

apparent. One use was to support quarterly and monthly tactical logistics

planning. The need for tactical decision support was particularly acute during

the period when the network of DC's was being redesigned. A second potential

use of the DDB was as a cost control mechanism. By comparing actual DC

operating costs and transportation costs against those projected by the DDB and

the optimization runs, management could develop exception reports identifying

operational inefficiencies.

DDB for Dedicated Portfolio Selection

The discussion in this section is based on our experiences developing

analytic engines for dedicated portfolio selection systems based on mathematical

programming models. These were data management and modeling systems

used by investment banking firms to evaluate the re-structuring of all or part of a

dedicated portfolio comprised of government and corporate bonds and other

fixed income instruments. Analysis by models was provided as a service of the

investment banking firm to pension managers and other fixed income portfolio

managers looking to re-structure their portfolios. Although they were

mainframe systems, pc versions based on the open architecture schema of

Figure 2 would be straightforward to implement.

The model constraints were of two types. First, for each period (usually a

month) in the planning horizon (10 to 40 years), there was an asset/liability

balance equation:
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+ This period's cash flow from coupons and principal repayment of

bonds held in the portfolio.

+ Cash flow from re-investment of cash surplus from the previous

period.

+ Cash flow from borrowing or other sources during this period.

+ Liabilities forecast for this period.

+ Re-payment of borrowing in the previous period.

+ This period's cash surplus which will be re-invested.

Note that the model addressed only the question of which bonds to purchase

here-and-now to meet future liabilities. The assumption was that the bonds

would be held to maturity. In other words, they would not be sold before that

time. Thus, the complications of forecasting future bond prices and

incorporating future sell and buy decisions in the model were excluded.

Similarly, the model incorporated only the one decision choice of 30-day

government bills for re-investment of cash surpluses.

The second type of constraint were policy constraints based on attributes

of the bonds. They were imposed by portfolio managers as surrogates for risks

associated with the dedicated portfolio selection decisions. Attributes included

the here-and- now cost of bonds whose cash flows would (more-or-less) cover

forecasted liabilities. Other attributes included rating, average age, duration or

yield to maturity of the bonds. Computation of attribute data such as these

required tailored routines in the conversion programs shown in Figure 2.

The DDB for this application is shown in Table 2. The lot size quantity in

the BOND DATA refers to the integer number of bonds in the minimal lot size

that could be purchased (e.g., 1, 10, 100). The conditional minimum refers to the
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quantity of bonds of a given bond type that must be bought if any bonds of that

type are bought at all (e.g., either bonds or at least 1000). Cash flow pairs refers

to combinations of periods and cash flow for those periods when cash flow is

positive.

BOND SET

PERIODS SET

ATTRIBUTES SET

BOND DATA - For each bond: name; market price; lot size; absolute minimum;

conditional minimum; maximum; attributes; cash flow pairs

PERIOD DATA - For each period: liability payments; re-investment rate;

minimum and maximum on cash surplus balance; borrowing rate; maximum

borrowing

COST FUNCTION AND ATTRIBUTE CONSTRAINT DATA - Cost function;

average constraints; only constraints; each constraints; total constraints; logical

constraints

Data Files in the DDB

Dedicated Portfolio Advanced DSS

Table 2

The default objective function of the model was total cost minimization,

but any weighted combination of attributes and cost could be selected as an

alternative. As shown in Table 2, the model generator used these attributes

values for individual bonds to write "average" constraints on the entire portfolio

with respect to these attributes. The "only" constraints were used to screen bonds

as candidates for the portfolio based on their attributes. The "each" constraints
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were used to limit total investment in individual bonds based on their attributes.

The "total" constraints were used to limit total investment in specified sets of

bonds based on their attributes. Finally, the logical constraints were a variety of

boolean constraints on bonds such as "if bond A is selected then bond B cannot

be selected," or "at most one of bonds A, B, C may be selected," and so on.

Data Aggregation and Other Estimations and Transformations

As we have seen, data aggregations are both necessary and desirable for

DDB's that address tactical and strategic value chain problems. Due to the broad

scope of these problems and the corresponding scope of the models for analyzing

them, products, customers, suppliers, time periods and other factors must be

aggregated if the models are to be of a manageable size. The same or similar data

aggregations are also desirable if the manager is to achieve a high level view of

his/her problems. For example, when considering global inventory and

production schedules for the next quarter, the manager will obtain better insights

by reviewing data aggregated into product families that number in the tens

rather than SKU's numbered in the thousands or ten thousands. Moreover, sales

forecasts for the next quarter should be based on the same or similar

aggregations of finished products. For many types of businesses, regional

forecasts should also be based on customer aggregations into market zones.

It is well known that traditional accounting data must often be

transformed if they are to accurately describe costs in a DDB. For example,

allocations of indirect and overhead costs based on historical levels of volume

must be taken out of unit cost figures and treated as separate volume and non-

volume dep)endent costs. This is one of the major tenets of activity based costing

(ABC) (see Cooper [1988]).

17



Another difficulty with standard accounting data is that important costs

may be bundled together, thereby obscuring decision options available to

management. For example, many suppliers are paid for their products delivered

to the company's facilities. In-bound transportation costs are imbedded in the

amounts paid to these suppliers. In order to decide whether or not to take over

certain in-bound transportation activities, the company must determine or

estimate the supply costs FOB the suppliers' facilities, and the in-bound

transportation costs from these facilities.

By contrast to the discussion above, sometimes aggregate accounting data

needs to be refined for the purposes of decision making. For example, in the

integrated logistics DDB discussed above, an average unit cost per mile for on-

bound transportation was judged to be too inaccurate. Instead, statistical

regression methods were used to compute origin-destination and product

specific transportation costs.

Comparison of Two DDB's and Advanced DSS's

The data listed in Tables 1 and 2 are very different, reflecting the

differences in decision making between logistics planning and portfolio

management. However, procedures that were used to design and implement

Advanced DSS's for these applications and their associated DDB's had a great

deal in common. In this section, we elaborate on the similarities and differences.

I. Availability of Data and Time Required to Assemble a DDB .

Our experience has been that data for a logistics DDB requires two weeks

to three months to assemble. The actual time depends on the size and

complexity of the company's operations, the state of the corporate data base, the

number of people involved in converting the data, and several other factors. The

monolithic depiction of the corporate data base in Figure 2 is misleading because
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data will reside in different data bases in most companies. Some data, such as

capacities and indirect costs, may be approximate, especially in the first version

of a logistics DDB.

Further, as we indicated above, considerable aggregation of the products,

markets, and suppliers may be necessary and desirable for effective tactical and

strategic logistics planning. The design and implementation of meaningful

aggregation procedures may require several weeks if the problems to be

addressed are large and complex. Even after aggregation, the files in the DDB

pertaining to in-bound and out-bound transportation arcs will be large and

require time to generate and verify.

By contrast, dedicated portfolio DDB's can be assembled in just a few

days. This is because electronic retrieval of financial data is better organized and

more efficient than it is for logistics data. Financial data is usually more accurate

due to its intrinsic nature and the exigencies of global trading. However, once

the portfolio manager has identified the strategy that he or she wishes to

implement as the result of running several scenarios, a final verification of

prevailing market prices for the different bonds and other fixed income

instruments, and a final optimization run, are usually required.

2. Permanency of Data and DDB's .

Much of the data in the logistics DDB is stable in that it changes slowly

over time. Costs and capacities may not change significantly over a period of

several months. The rate of change of other data depends on whether the

problems being addressed are short-term tactical, in which case we would expect

that inventory and demand data will change rapidly, or long-term strategic, in

which case we would expect that no data will change rapidly. In either case, the

DDB provides an effective mechanism for tracking the real world integrated

logistics system being analyzed.
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On the other hand, critical data in the dedicated portfolio DDB such as

bond prices are quite transient. Although changes in bond prices over just a few

days may not be large in absolute terms, they are relatively large for the purposes

of exact portfolio optimization. A reduction of 0.1% in the cost of rebalancing a

portfolio of $100 Million is $100,000.

As they are currently used, dedicated portfolio DDB's are viewed as

temporary data sets for analyzing how best to rebalance portfolios. The DDB is

created, used to generate optimization models over the course of a few days or

weeks, and then abandoned after the exercise has been completed. This seems

short sighted. An alternative would be to maintain and update the DDB after the

rebalancing has been completed and use the updated data, especially the values

of the portfolio's attribute constraint coefficients, as a diagnostic for deciding

when the portfolio should once more be rebalanced.

3. Similarity of Models .

Mixed integer programming models were used for both applications

despite the large differences in the real world business decision problems that

they were describing. At the purely mathematical system level, the models have

considerable similarity. The similarity could be exploited to translate the

dedicated portfolio optimization problem into a pseudo-logistics planning

problem. In the recast problem statement, each bond type acts as a potential

source of cash flow to be supplied to liabilities viewed as sinks with associated

cash requirements.

The artificial but accurate recasting of problems that are not logistics

problems as pseudo-logistics problems has conflicting implications to the

construction of effective DDB's and Advanced DSS's. On the one hand, the

artificiality of the pseudo-logistics formulations would interfere with the design

and construction of coherent and transparent DDB's. On the other hand, the
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ability to recast a wide variety of non-logistics business problems as a pseudo-

logistics problems would facilitate the development of a general purpose model

generation language, thereby reducing the extent to which the model and

solution generators in Figure 2 must be hand crafted. Brown , Northup and

Shapiro [1986] report on a such a language developed on this principle. The

approach remains an open area of investigation.

4. Realism of Models .

The usefulness of the DDB's for the two applications is clearly related to

the realism of the underlying models. In our opinion, mixed integer

programming models provide a very realistic description of decision problems

associated with integrated logistics planning. The models capture costs,

transformation activities, capacities, inventory management, product

movements, and facilities location decisions in a manner that is complete and

consistent v^th managerial intuition.

By contrast, the mixed integer programming models for dedicated

portfolio optimization are a less realistic fit to the problems they are supposed to

analyze. The main reason for the lack of realism is their deterministic view of the

future. The models do not directly address the primary responsibility and

concern of financial managers; namely, to control risk while guaranteeing a

superior or acceptable return. As we discussed, the attributes constraints are

intended to provide these managers with indirect means for controlling

uncertainty, but their effectiveness leaves much to be desired.

For fixed income portfolios, the most important uncertain parameters are

future interest rates. These rates not only influence the value of cash surpluses

generated in the future, but also future cash flows associated with callable assets

such as mortgage backed securities. Extension of the mixed integer

programming models to stochastic programming with recourse models provide
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much more realistic descriptions of dedicated portfolio problems, in large part

because they offer the possibility of incorporating models from finance theory

describing interest rate movements and options pricing (see Hiller, Klaassen and

Shapiro [1991] or Zipkin [1992] for a discussion of stochastic programming

models applied to dedicated portfolio optimization). However, the extensions

require considerable more research and development because their form and size

makes them difficult to manage and implement.

By their very nature, stochastic programming models of dedicated

portfolio optimization problems would require the creation of extremely large

DDB's. In effect, the DDB would need to contain data describing each of a very

large number of scenarios of an uncertain future. Note also that the box in

Figure 2 labeled "Conversions Programs" would contain complex and

sophisticated interest rate forecasting and other descriptive models from finance

theory.

Of course, probabilistic analysis of integrated logistics planning problems

may also be desirable. In many instances, this can be accomplished by running

deterministic models under different scenarios of an uncertain future to see how

optimal strategies vary. Each scenario might be determined by modifying a base

case scenario in the DDB.

The stochastic programming with recourse approach discussed for

dedicated portfolio problenns is also relevant to integrated logistics planning

(e.g., see Wagner [1969] or Bienstock and Shapiro [1985]. In effect, a stochastic

programming model would simultaneously determine optimal contingency

plans for each scenario and a here-and-now strategy that optimally hedges

against these plans. Although the approach is technically feasible, it is not yet

practical to pursue because the simpler deterministic models are not yet

sufficiently understood or accepted.
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Conclusions

Our purposes in this paper were to introduce the notion of the DDB and to

demonstrate its innportance in decision support. We presented specific

illustrations of DDB's constructed for integrated logistics planning and dedicated

portfolio optimization, and compared and contrasted their functionalities and

uses. We conclude the paper with brief discussions of important related topics

not previously covered.

Although the discussion focused on models and systems for decision

support, the DSS practitioner must never lose sight of the critical need for

accurate data in the DDB. To this end, the "Conversion Programs" in Figure 2

may include a collection of complex descriptive models which, in some instances,

may be the most difficult and time consuming task of an Advanced DSS

implementation. In addition, these programs should incorporate procedures for

error checking. Recent advances in data quality management software are also

relevant to the creation of accurate DDB's.

The specific DDB's discussed above related to tactical and strategic

planning. A number of new issues arise when one considers DDB's for

operational decision support. One is the need to examine decision problems in

much greater detail at the operational level than is necessary and desirable for

tactical and strategic applications. The form and content of DDB's for operational

environments is an area of current investigation.

Finally, we remark that a fundamental assumption underlying the

construction of a DDB is that it is defined by the requirement to analyze a

coherent class of decision problems. In a large company, we would expect to

find multiple classes of problems each with its implied DDB. This suggests a

higher level organization of DDB's to support integrated planning at a higher
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level. Of parricular importance is integrated inter-temporal planning of strategic,

tactical and operational decisions. The concept of hierarchical planning is

relevant to the design of DDB's for this purpose (see Hax and Meal [1975]).

Mathematical programming models and methods for hierarchical planning are

particularly attractive approaches for creating related and overlapping DDB's

(see Graves [1982]).
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