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Abstract

In this paper we consider a linear programming problem with the underlying matrix uni-

modular, sind the other data integer. Given arbitrary near optimum feasible solutions to the

primal and the dual problems, we obtain conditions under which statements can be made about

the value of certain variables in optimal vertices. Such results have applications to the prob-

lem of determining the stopping criterion in interior point methods like the primal-dual affine

scaling method and the path following methods for linear programming.
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1 Introduction

We consider the following linear programming problem:

Minimize c^x,

subject to Aa; = 6,

a; > 0,

where A is an unimodular matrix (i.e., the determinant of each Basis matrix of A is —1, 1, or

0), and 6, c are integers. For such linear programs, it is well known that all extreme vertices are

integers.

In this paper we consider the problem of determining optimal solutions of this linear program

from information derived from a given pair of primal and dual near optimum feasible solutions. An

example of such a result is the strong duality theorem which asserts that if the objective function

value of the given primal solution is equal to the objective function value of the given dual solution,

then we can declare the pair to be optimal for the respective problems. Here we investigate the

problem of determining optimal vertices of the two problems given that the difference in the

objective function values ( i.e., the duality gap ) is greater than zero. For the special case of

unimodular systems, under the hypothesis that the duality gap is small ( not necessarily zero ),

we obtain results that assert the integrality of variables in optimal solutions. An example of such

a result ( Corollary 3 ) is that if the duality gap is less than 1/2, and the optimum solution of the

program is unique, then the optimum vertex can be obtained by a simple rounding routine.

These results have applications in determining stopping rules in interior point methods. The

study of these methods was initiated by the seminal work of Karmarkar [2]. Our results are

particularly applicable to the methods which work in both the primal and the dual feasible regions.

These include the methods of Kojima, Mizuno and Yoshise [3], Monteiro and Adler [9], Saigal [10],

and Ye [14]. These results can also be used in the primal methods where a lower bound on the

objective function value is available; and, to the dual methods where an upper bound on the

objective function is available. In case the data of the linear program is integral ( i.e., A, 6, c are

integers) it can be shown that an optimum solution of the linear program can be readily identified

when the duality gap becomes smaller than 2~^'^', where L is the size of the binary string needed

to code all the integer data of the linear program. Compare this to tiie result just quoted above

for the unimodular systems, which include the transportation and assignment problems. For

such systems, first such results were obtained by Mizuno and Masuzawa [8] in the context of the
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transportation problem, Masuzawa, Mizuno and Mori [6] in the context of the minimum cost flow

problem, and Saiga! [11] in the context of the assignment problem.

After presenting the notation and assumptions in section 2, in section 3 we prove our main

results that show how to identify an optimal solution from the duality gap; and, in section 4, we

present the concluding remarks.

2 Notation and Definitions

We consider the following primal and dual linear programming problems.

(P) Minimize c^x,

subject to a; G Gx = {x : Ax = b,x > 0}.

(D) Maximize b y,

subject to (y, z) e Fy^ = {{y, z) : A^y + z = c, 2 > 0}.

Throughout the paper, we impose the following assumptions on (P) and (D).

Assumption 1 The vectors b and c are integral and the matrix A is unimodular.

Assumption 2 The feasible regions Gx and Fyz are nonempty.

From Assumption 1, all the vertices of the polyhedral sets Gx and Fyz are integral. From Assump-

tion 2 and the duality theorem of linear programming, the problems (P) and (D) have optimal

solutions and their optimal values are the same, say v' . Let Sx and Sy^ denote the optimal

solution sets of (P) and (D), respectively:

Sx = {xeGx-. Jx = v'},

Syz = {{y,z)GFyz:b'^y=v'}.

We define the orthogonal projective sets of Fy^ and Sy^ onto the space of z:

Fz = {z:{y,z)eFyz},

Sz = {z:{y,z)eSyz}-

We also define

Gxix°) = {xGGx: L.c°J < X, < [j;°] for each j}



for each x° G G^ and

F,(z°) = {zeF,: [z^j <z,< [2°] for each j}

for each z^ E F^, where [xj and [x] denote the largest integer smaller than or equal to x and the

smallest integer larger than or equal to x, respectively.

3 The Main Results

Suppose x' denotes some primal feasible solution, z' denotes some dual feasible solution, and v*

denotes their common optimum objective function value. Theorem 2 developes a relationship

between ex' — v'
,
(the measure of non-optimality of x' ), and the distance of x'. from [x'J and

[x'] . In particular, one part of the theorem asserts that if x' — [x' J is less than ex' — v" then there

is an optimal integer solution x'(j) such that Xj(j) — fx'] . These results are used in Corollary 3

to establish that in the case the optimal solution is unique, and ex' — v* < 1/2, rounding x' to

the nearest integer gives the optimal solution.

Except in the case that the optimal solution is unique. Theorem 2 and Corollary 3 do not

guarantee that there is a solution x* obtained by rounding each componant of x' to the nearest

integer. However, Theorem 4 gives conditions under which some componants of a feasible solution

x' can be simultaneously rounded. In particular. Theorem 4 states that there is an optimal solution

X* with the property that ij is the closest intger to x'j for all j satisfying
|
x* — x'j \<

""' — Z^
'

.

Theorem 6 gives bounds on a dual feasible solution z'j under which an optimal solution x* must

have Xj = 0. It also gives bounds on a primal feasible solution x' under which an optimal solution

to the dual must satisfy Zj = 0. We now prove these theorems.

Assume that feasible solutions x° G Gx and {y^,z^) G Fyz are available. Since the feasible

region Gx{x^) is a bounded polyhedral convex set and x^ G Gj:(^x^), there exit vertices u' [i =

1, • • • , m) of Gi:(x°) such that
m

i=l

m

«=i

A, >0 for f= l,2,---,m.

where m < 1 + dim(Gx(a;'')); dim(5) denotes the dimension of the set S. By Assumption 1, each

vertex u' is integral (see, for example, Schrijver [12]), so



for t = 1, 2, • • • , m and j = 1, 2, • • •
,
n. Some of the vertices u"s are optimal, but the others are

not. We divide the vertices into two index sets Iq and /^v (possibly /q = <?!> or /yv = <P) and rewrite

the relation above as follows:

a;0= ^ A.«'4- ^ A.m', (1)

>6/o '&Jn

x:a.+^ A. = i,

A, > for i € /o U In,

where

/o = {i :
«' e Sj:, i - 1,2,- -.m},

Ij.^ — \^i : VL ^ SX , i = 1, 2, • • •
, m}.

Similarly, there exist optimal vertices iw' € 5^ fl Fj(z°) (i € Jo) and nonoptimal vertices

i«' € i^z(2'')\'S3 (i G Jn) (integrality of these vertices is established in Theorem 1, Hoffman and

Kruskal [1]) such that

z° = ^ ix,w^ + Y. M."''' (2)

^ /i,+ Yl M. = 1-

Hi > for i E Jo U Jn-

Theorem 1 Let x^ 6 Gx and (y°,z°) G i^yz, airf /e< f' be the optimal value of (PJ. Suppose that

x^ and z^ are expressed as (1) and (2), respectively. Then we have

ieJN

Proof: We easily see that

Jx° -V* = Y ^.c^«' + Y ^.c^«' - ^*

where the last inequality follows from c^u' = v' for each i G lo and c^u' > v* + 1 for each i G /yv-



In the same way, we also have the second inequaUty of the theorem. The third inequahty

follows from the first two inequalities and

= (c^x°-i;') + (u'-6^y°).

D

The above theorem can be used to obtain some information about an optimal solution.

Theorem 2 Let x° G Gx, and let v' he a lower bound on the optimal value v* of (P).

(a) If x'j is integral and c x — v' < 1 then there exists an optimal solution x* G S^ such that

X* = x^.
J J

(h) If c x^ — v' < x^ — |_XjJ then there exists an optimal solution x*{j) G Sx such that x^(j) =

(cj If c x° — v' < [xj] — Xj then there exists an optimal solution x''{j) G 5^ such that x*{j) =

Proof: Suppose that a;° is expressed as (1).

If Xj is integral then u' = x^ for each i. U Iq = 4> then Theorem 1 implies

-v' > Jx^ -V* >Y,^' = 1-

J^O „iHence, if c x — t; < 1 then Iq / 4>, i.e., there exists an optimal solution u' {i G lo) such that

u' = x°

Under the condition of (b) x° cannot be integral. Thus

rx°i = [x'jj + 1.

If X* ^ [xj] for each x* £, S^, we have

u'j ^ [xjl for each i G lo,

or equivalently

u'j = [x°J for each i € Iq-



Then we see

-'(J) = (3)

16/0 '&In

< [x°J + (c^x° - t)') (by Theorem 1)

< L.oj + (c^x° - O-

Hence we have (b).

In the same way, we can prove (c).

As a special case of the above theorem, we get the following useful result.

Corollary 3 Let x° e Gx and (y°,2°) G Fy^. If {x°)'^ z° < 1/2, for each j, there exists an

x*(j) G Si such that

'
L^?J ^/ -^^ - L-^?J < 1/2,

[xfl «/ x] - [xOj > 1/2.

In case the problem (P) has a unique optimal solution x* € S-,;, we can compute each coordinate

of the optimal solution by (3).

Proof: If x^ is integral. Theorem 2(a) implies that x* = [xjj for an x* ^ Sx- So we only consider

the case where Xj is not integral. If x^ — [x°J < 1/2, we have

rx°l - x° > 1/2 > (x°)^z° = c^x° - 6^y°.

Since 6 y° is a lower bound of t;*, by Theorem 2(c), there exists x* G 5^ such that i^ = [x^J . If

x°- - |_x^J > 1/2, we have

Xj — [XjJ > 1/2 >[x)z=cx— by.

Hence, by Theorem 2(b), there exists x' G S^ such that ij = \xj].

Theorem 2 gives information about an element of an optimal solution. The next theorem shows

a relation between a feasible solution and coordinates of an optimal solution.

Theorem 4 Let x° G Gx, and let v* be the optimal value of (P). If cFx^ — w* < 1, there exists

an optimal solution x' G 5^ such that

I Ol r J. • ^ f •
I Ol ^ l-(C^X<'-t>')

[xJ for each j e Ij : x^^ - L^°J < ,l^^S.)'

[xO] for each j e \j : \x^] - x" <
^l^,^^^

^^^'

- < (4)



Proof: Suppose that a; is expressed as (1), where we may assume without loss of generaUty that

the number of optimal vertices is less than or equal to 1 + dim(Sj):

#/o < l + dim(S^).

By Theorem 1, we have

^ A, = 1 - Yl A. > 1 - {Jx" - v').

Hence there is an index i' G Iq such that

From (1), we see

Hence we obtain

l + dim(S^)

„.'_U0, < ^° - L^;J < l + dim(5.) .o_, 0|.

' ^' ^ - A.-,
- l-(c^xO-t;-)^' ^' ^''-

Since the vertex u' is integral, x" — w' satisfies (4).

CoroUary 5 Lei x° £ G^ and (y°, a°) € Fy^. // [c^x^J = f^^y"! ("= w*; <Ae optimal value) and

.0.0 . (1 -{c'x^-v*)){\-{v*-h'rf ))

(l + dim(S^))(l + dim(S,))^Vi < ' ~:\ lj::;.: , w^r:..
'

for each ,, (5)

ihe following system has a solution and each solution is an optimal solution of (P):

Au = b, u > 0, (6)

(7)
J

1- {c^x° - V*)
Uj = for each j £ K = < j : x'- < ... ,„ .

I

-^

l + dim(Sx)

Proof: In the same way as Theorem 4, there exists a (y*, r*) G Syj such that

jv' - b^rj

+ dim(5,)
z, = UJ for each J G ^ : ., -

[^^J < i+d.m(5.) "
^^^



From (5) and the definition of K , we see that

'
l + diiTi(Sj)

From (4) and (8), there exist x* G S^ and (y*, z*) £ Sy^ such that

I* = for each j E K, (9)

z' = for each j ^ K (10)

Since z* € G^ and (9) holds, x* is the solution of the system (6) and (7).

Let u* be any solution of the system (6) and (7), then (7) and (10) imply u*^ z* = 0, or

c^u' = by*, from which it follows that u* is an optimal solution of (P). n

Now we show that some coordinates of all the optimal vertices can be fixed when feasible

vertices of (P) and (D) are available.

Theorem 6 Let x € G^ and (y , z ) 6 Fyz, owrf let v' and v" be a lower bound and upper bound

of the optimal value v' of (P), respectively.

(a) If z'j > v" — b y°, then x'j = for any optimal vertex x' £ S^-

(b) If x'j > c^x^ — v', then zj=0 for any optimal vertex (y', z*) G Sy^.

Proof: Let x* G Sx be any optimal vertex of (P), then we see

x'jz] < x*^^° = x'^ic - A^y'') = v'- b^y"" < v" - b'^y°.

Uz]>v" -b^y°, we have

^i < ^ < 1-

Since x^ is integral, we obtain (a).

In the same way, we also have (b).

4 Concluding Remarks

In this paper we obtained results under the assumption that the linear program (P) is in the

standard from. In the case the problem is given in inequality from, we can derive all the results

of section 3 with the added assumption that the matrix be totally unimodular. Similar results
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can also be derived for other forms of the problem, i.e., problems with upper and lower bounds on

variables, etc.

These results have implications for solving integer programming problems via interior point

methods. This will be a topic of a subsequent paper.

Acknowledgement: The authors would like to thank Professor Masakazu Kojima, the

co-editor, and an anonymous referee for their helpful comments.
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