

Research Program on the

Management of Science and Technology j

'

DATANAL: AN INTERPRETIVE LANGUAGE FOR

ON-LINE ANALYSIS OF EITIRICAL DATA

JAMES R. IHLLER

August 1967 275-67

"Work reported herein was supported (in part) by Project MAC, an M.I.T.

research program sponsored by the Advanced Research Projects Agency,

Department of Defense, under Office of Naval Research Contract Number

Nonr-4l02(0l). Reproduction in whole or in part is permitted for any

purpose of the United States Government."

"The research described in this paper was supported (in part) by NsG-235

of The National Aeronautics and Space Administration for research

studies in the organization and management of research and development.

The findings and views reported herein are those of the author and do

not necessarily reflect those of the sponsoring agency."

Ms a"?

C -Z

RECEIVED

OCT 2 1967

ABSTRACT

The purpose of this working paper is to describe an interpretive
language for data analysis. The name of the language is DATANAL. It
has been designed to facilitate:

1. analysis of any kind of empirical data collected in any
context;

2. on-line conversational interaction between a user and selected
portions of his data base through the medium of a time-shared
computer

;

3. two-way communication between a user and his computer in
English (i.e., no additional programming languages need be
learned) ; and

H. immediate usability by individuals relatively naive with
respect to computers and their idiosyncrasies.

Discussion is focused upon how DATANAL appears to the user and how
he might formulate and answer empirical questions within its framework.
Less attention is given to the programming details underlying its opera-
tion. Hence, this should be regarded as a user's manual rather than as

a programmer's manual.

At the time of this writing, DATANAL stands partially implemented

on Project MAC's Compatible Time-Sharing System (CTSS). An earlier,

less efficient but no less encompassing version of DATANAL was completed

in June 1967. It is hoped that this final version will be finished by
the end of 1967, at which time transfer to the Computation Center is

fully anticipated.

TABLE OF CONTENTS

DATANAL: AN INTERPRETIVE LANGUAGE FOR

ON-LIIE ANALYSIS OF EMPIRICAL DATA

Pare

1.0 INTRODUCTION 1

2.0 STATEMENT OF THE PROBLEII 3

3.0 THE CONCEPT OF A DATA BASE 5

3.1 Cases: The Basic Units of Analysis 5

3.2 Properties: The B?sic Categories of Discussion 6

3.3 Hierarchical Ordering 7

J,h Matrix Representation 8

3.5 Global Properties: Level Zero 9

k.O TIE CONCEPT OF AN E1PIRICAL QUESTION 11

^.1 Rules for Constructing a We 11-Formulated Empirical Question 12

k.Z An Example 12

^.3 The Process of Ansxvrering a Well-Formulated Empirical

Question l^J

5.0 THE CONCEPT OF A WORKING DATA BASE 16

5.1 Its Purpose lo

5.2 Its Structure 17

5.3 Its Implications for Preparing Raw Data 19

5A Its Basic Philosophy 23

5,5 Some of Its Operating Consequences 26

6.0 THE SUPERVISOR 29

6.1 The ATTACH Command 31

6.2 The REMOVE Command 33

6.3 The TE'ON Command 33

6.4 The TTMOFF Command 35

6.5 The RESET Command 36

6.6 The QUIT Command 37

6.7 Certain Synonym Commands 38

7.0 THE EXTERNAL COMMANDS OF DATANAL 40

7.1 Universal Operating Features Z41

7.1.1 Typing Errors Zjl

7.1.2 Incomplete Specifications 43

7.1.3 Illegal Specifications 44-

7.1.4 Rapid Vs. Guided Input Modes 44

7.1.5 Error Counting 45

7.1.6 Manual Abort H6

7.1.7 Data Base Protection 48

7.2 Data Base Commands 48

7.2.1 The SETUP Command 49

7.2.2 The ESTABLISH Command 52

7.2.3 The OPEN Command 54

7.2.4 The CLOSE Command 55

7.2.5 The LLST Command 56

-IV-

7.3 Property-Defining and Property-Descritine Commands

7.3.1 The READ Command 60

7.3.2 The DEFINE Command 61*

7.3.3 The SET Command 79

7-3. U The COMPUTE Command 8l

7.3o Tne RECODE Command 83

7.3.6 Tne ASSIGN Command 89

7.3.7 The GROUP Command 93

7.3.8 The ECOUNT Command 95

7.3.9 The DESCRIBE Command 96

7.3.10 The CHANGE Command 99

7-3.11 The ERASE Command 1C1

7 .k Data-Creating and Data-Destroying Commands 102

7.U.1 The CREATE Command 103

7.4.2 The DESTROY Command 110

7.5 Data-Summarizing and Data-Display Commands 111

7.5.1 The DISPLAY Command 113

7.5.2 The DESTAT Command 115

7.5.3 The RANK Command 115

7.5- *+ The COUNT Command 116

7. 5. 5 Tne TABLE Command 117

8.C THE STANDARD ANALYTICAL COMMANDS OF DATANAL

8.1 Rapid Analysis Commands

8.1.1 The CNTING Command 120

8.1.2 The T-TEST Command 122

8.1.3 The TOTEST Command 12U

8.1.U The ANLVR1 Command 125

8.1.5 The ANLVR2 Command 126

8.1.6 The NRMTST Command 128

8.1.7 The CORREL Command 129

8.1.8 The LINFIT Command 131

8.2 Established Synonyms 132

8.3 Guided Analysis Commands 136

9.0 PRIVATE USER-PREPARED COMMANDS 137

10.0 OBTAINING ACCESS TO DATANAL 139

References lUl

-VI-

1.0 INTRODUCTION

The purpose of this working paper is to describe an interpretive

language for data analysis. The name of the language is DATANAL. It

has been designed to satisfy four major objectives.

First, DATANAL is context-free. It may be used to analyze scienti-

fic data gathered in the course of some research project (e.g., thesis

research). It may equally well be used to analyze administrative data

as part of a management information system.

Second , DATANAL is conversational. The language is designed for

on-line interaction between a user and selected portions of his data

base through the medium of a time-shared computer.

Third, DATANAL is in English. It permits two-way communication

between a user and his data in a sub-set of the English language. No

additional programming languages need be learned.

Fourth, DATANAL is immediately usable Extensive knowledge of com-

puters and their idiosyncrasies is not required. Relatively naive users

have mastered the basic commands of DATANAL with less than one hour of

practice.

The focus of this report is upon the user—how DATANAL appears to

him and how he might formulate and answer empirical questions within its

framework. The basic commands of DATANAL will be discussed in detail,

along with some indication of how each command might be used. Less

attention will be paid to the programming structure underlying DATANAL's

operation.

2.0 STATEMENT OF THE PROBLEM

A formal statement of the problem which DATANAL has been designed

to solve might appear as follows:

1. given an already designed and currently existing data base

(e.g., thesis data punched up on cards);

2. given that the contents of the data base are hierarchically

ordered (notes the meaning of "hierarchically ordered" will be

spelled out in section 3«3);

3. given that the hierarchical ordering is perfect (note: the

meaning of "perfect" will also be spelled out in section 3o3);

i| given a user who desires to answer some particular question;

5» given that the data base contains at least one datum relevant

to the question posed;

6. then the problem is to devise a set of general procedures which

will translate any we11-formulated question into a sequence of

operations to be performed upon the data base such that, after

the sequence of operations has been performed and a result or

set of results has been obtained , the user will regard such

results as an answer to his question,,

The above problem definition says two kinds of things „ Items 1

through 5 above serve to exclude those problems which DATANAL has not

been designed to solve „ It is assumed that all of these have achieved

adequate resolution before the user attempts to converse with his data.

On the other hand, item 6 delineates the essentia- nature of DATANAL—

a

set of general procedures to translate well-formulated questions into

computer solutions. In order to preclude later confusion, some of the

givens in this problem definition will be amplified briefly.

First, it is assumed that a data base has already been designed and

coded. DATANAL does not provide any assistance in either of these

respects.

Second, it is assumed that all data to be included in the data base

have been gathered and transferred to some permanent, computer-readable

storage medium (e.g., punched on cards , stored on tape, etc.). DATANAL

provides no assistance either to the data gathering or to the data

recording process.

Third, DATANAL does not identify users, nor does it identify

sensible questions. It is assumed that users will identify themselves

and will produce spontaneously their own criteria of sensibility.

Fourth, DATANAL cannot guarantee that a given data base will con-

tain data relevant to every possible question. Only if, in the user's

judgment, the data base does contain relevant data, and only if he can

then formulate his question in terms of such data, only then can DATANAL

provide an answer. The relevance of data to a given question must first

be perceived and specified by the user himself.

3.0 THE CONCEPT OF A DATA BASE

A data base is assumed to consist of a number of (at least one)

discretely identifiable physical entities, each one of which is charac-

terized by a number of (at least one) discretely identifiable proper-

ties. Thus, if a data base contains the results of a questicmaire

survey conducted among a sample of defense contractors, then the par-

ticular defense contractors in the sample would constitute discretely

identifiable cases being observed, and responses to each item in the

questionnaire would constitute properties associated with each case

(contractor). Let us develop further these notions of cases and

properties.

3.1 Cases: The Basic Units of Analysis

Whenever empirical data are gathered, some physical process must

occur in which observations are made on selected attributes of concrete

physical entities. In the example above, the process involved respond-

ing to a questionnaire, and the objects of interest were the defense

contractors (i.e., business organizations) in the survey sample.

It sometimes happens, however, that observations are made on

physical entities which are not static objects at all. They are instead

well-delineated sets of activities. A mission flown aeainst the enemy

or a project to reach the moon are good examples. In order to permit

this latter kind of entity to become a basic unit of analysis in DATANAL,

and in order to avoid confused interpretations, the more general rubric

"cases" will be used instead of "objects," A case can be anything the

analyst chooses to regard as his basic unit of analysis so long as:

1. it is something physically identifiable; and

2. it adheres to certain rules of hierarchical ordering to be

discussed in section 3<>3»

3.2 Properties: The Basic Categories of Discussion

Having defined and delineated the various cases for inclusion in a

data base, the next logical step is to establish basic conceptual

categories in terms of which these cases may be discussed. Such cate-

gories of discussion and analysis are called properties. The responses

to items in a questionnaire survey, the damage inflicted by a combat

mission, and the date when the moon is reached all constitute properties

of a responding contractor, a particular combat mission, and the overall

mission of NASA, respectively. The contents of an empirical data base

(i.e., the essential nature of empirical data) are observations of

whether or not and possibly the degree to which each included case

possesses various defined properties.

3.3 Hierarchical Ordering

Not all of the properties (e.g., responses to questionnaire items)

need refer to cases at the same level of organization. Some properties

may refer to the entire population (industry) of which each case

(defense contractor) is a member. Other properties may refer to a par-

ticular case (contractor), and still other properties may refer to sub-

units of each case (departments or project groups within the contract-

or's corporate structure). It is in this sense of logical inclusion

that both cases and properties referring thereto may be hierarchically

ordered

.

Stated more formally, one class of cases in a data base is said to

occupy a higher position in the hierarchy than another if and only if a

case from the first class is capable of containing a case from the second

class as a member. Similarly, one property is said to occupy a higher

position than another if and only if it refers o a higher-level case.

An immediate implication of the above definition is that all prop-

erties may be imputed downward to each lower-level case contained as a

member, although upward imputation is not always possible. Thus, all

defense contractors in our hypothetical questionnaire survey share cer-

tain properties related to the industry of which they are members (e.p.,

they all perform defense work, they all receive direct or indirect fund-

ing from the federal government, etc.), but the entire defense industry

is not uniformly engaged in, let us say, missile production.

Another concept worth introducing at this juncture is perf« st

ordering. The contents of a data base are said to be perfectly ordered

if and only if all the membership relationships between each pair of

cases are either absent or assymetric. That is, given any pair of

cases, either there is no membership relationship between them (i.e.,

neither contains the other or any part thereof as a member) or there is

a membership relationship defined, and it is unilateral (i.e., the

higher-level case contains the lower-level case as a member, but the

lower-level case does not contain the higher-level case). An example of

proper ordering would be a defense contractor who belongs to the defense

industry, but who does not contain the entire defense industry within

one of his project groups.

In the discussion that follows, we shall only consider perfectly

ordered data bases. Also, uniform numbering conventions will be adopted

such that the lowest level in a data base will be designated level one,

the next-higher level will be designated level two, and so on. In addi-

tion, there will be established a "level zero" to accommodate

properties. These will be discussed in section 3»5»

3.4 Matrix Representation

Now that we have introduced the twin concepts of cases and proper-

ties, we may envision any data base as if it were a rectangular table or

matrix. The rows of the matrix are occupied by physical cases, and the

columns are occupied by properties. Hence, a complete description of a

given case would require enumerating all of the observations along its

row of the data matrix, while a complete description of a given prop-

erty would require enumerating all observations down its column.

If the data base contains more than one explicitly defined level,

then we may envision separate matrices for each level. Complete separa-

tion permits each level to have its own number of cases and properties

and yet still be represented in matrix form. However, when this occurs,

cross-level linkages must be provided to indicate the higher-level case

to which each lower-level case belongs. The introduction of level-link-

age identity tags as explicit properties of each casf will mediate com-

plete identification (note: these level-linkage tags must appear as raw

data within the data base).

3.5 Global Properties: Level Zero

It is convenient to characterize every data base as possessing an

external level over and above however many levels are explicitly defined

within. We shall refer to this level as the global level, and we shall

refer to all its properties as global properties. To distinguish it

numerically from explicitly defined levels within a data base, we shall

henceforward refer to the global level as level zero.

10

One type of global property refers to the whole data base as a phys-

ical entity. Common characteristics of the data gathering process, the

dates when data were gathered, and the purposes for gathering data

illustrate this type of global property. It is rare that such proper-

ties achieve explicit representation within the data base (e.g., punches

in specified card columns), but they are important. They are particu-

larly relevant to the process of interpreting results obtained from the

data base and generalizing conclusions drawn therefrom.

There exists another kind of global property which may be computed

from individual property values. Thus, the mean value of any property

(averaged ove -

" all cases on a given level) constitutes a global prop-

erty. The same statement applies to a median, frequency count, or any

other computed summary measure. Computed summary measures may always be

imputed downward to cases on the level of computation, as well as to all

lower-level cases. However, such properties may not, in general, be

imputed to higher-level cases. Only if the summarizing computations are

particularized for each higher-level case (e.g., a conditional mean is

computed over all lower-level cases belonging to a single higher-level

case) can upward imputation occur; for only then is a unique property

value defined for each higher-level case,

A third kind of global property is a pure constant (e.g., the value

of rr) entered into the data base for analytical purposes. Reasons for

entering constants into the data base will be discussed later.

11

4.0 THE CONCEPT OF AN EMPIRICAL QUESTION

An empirical question is here being defined as any interrogative

statement referring to:

1. either a sub-set of the contents of a data base (e.g., "what

were the responses to all questions answered by company X in

the questionnaire survey?");

2. or statistics computed "rom a specified sub-set of the contents

of a data base (e.g., "what was the mean response on item 37 in

the questionnaire survey?");

3. or relationships among specified sub- sets of the contents of a

data base (e.g., "was company X's response on item 37 higher

than company Y's?");

4. or relationships among statistics computed from a specified

sub-set of the contents of a data base (e.g., "was company X's

mean reported project group performance higher than company

Y's?").

An empirical question is really an interrogative form of an empir-

ical hypothesis. As such, there are certain rules which must be adhered

to before a candidate query may be called a well-formulated empirical

question.

12

4.1 Rules for Constructing a Well-Formulated Empirical Question

First, a question must be phrased so as to be neither logically-

true (a tautology) nor logically false (a logical contradiction or

inconsistency). An example of a tautological question would be, "Are

all bachelors unmarried?" This is a tautology, since the definitional

meaning of "bachelor" is "unmarried male," which makes the answer logic-

ally true. An example of a logically false question would be, "Is it

possible for human beings to survive in a climate where no mammals can

survive?"

Second, a question must be empirically testable with respect to the

possible contents of the data base (i.e., there must exist at least one

logically possible datum within the data base such that, if such data in

fact exist, the question will be answered yes; and there must exist at

least one other logically possible datum such that, if such data in fact

exist, the question will be answered no).

One major purpose of DATANAL is to induce users to ask only well-

formulated questions.

4.2 An Example

A reasonable empirical question which might be asked of the data

base resulting from our hypothetical questionnaire survey appears below.

13

"Do project groups in company X tend to perform better, on the

average, than groups in company Y?"

As stated, this question is in principle untes table. It fails to make

clear what constitutes "project group/' "better performance,," or

"average," to mention just a few terms. Consequently, it would not

qualify as we11-formula ted „ However, the situation can be repaired.

Let us nottf operationalize some of the above terms. Let us define

"project group" as meaning whatever the respondent stated in his answer

to item 32 of the questionnaire „ Let us define "performance" as his

response to item 37 » Let us define "better performance" as a numeric-

ally higher response to item 37» Let us define "average performance" as

an arithmetic mean of the responses to item 37 "omputed over all project

groups (indicated by item 32) within a given company. Let us also form-

ulate an acceptance criterion in terms of the results of a T-test. Let

us agree to give an affirmative answer to the above question if and only

if both of the following conditions are satisfied.

1. The mean performance of project groups in company X exceeds the

mean performance of project groups in company Y„

2. The probability of occurrence of whatever value of T emerges

from the analysis falls at or below .05.

Now the question is well formulated. Every term is defined opera-

tionally and with respect to xhe possible contents of the data base. A

second purpose of DATANAL is both to require and to facilitate the

m

operationalization of empirical questions, as -well as to compute and

display ansxrers.

4.3 The Process of Answering a Well-Formulated Empirical Question

The general process of answering a well-formulated empirical ques-

tion might be broken down into the following four sequential phases.

1. Extract and/or compute from the contents of the data base

whatever specific properties are defined operationally by the

well-formulated question.

2. Select one or more specific analytical and/or display proced-

ures to be performed upon the operationally defined properties.

A well-formulated question identifies precisely which proced-

ures are relevant.

3. Arrange the extracted/computed operational properties in a form

compatible with the selected procedure (s).

4. Execute the procedure (s), and display the results.

Returning to the sample question formulated in section 4.2, this

process might proceed as follows.

1. Identify all of the project groups associated with companies X

and Y, respectively (by inspecting responses to item 32).

Separate, thereby, two sub-samples of performance data

(responses to item 37). The first sub-sample will contain

15

performances of company X project groups . The second will

contain performances of company Y project groups.

2. Select a pre-compiled T-test routine from the DATANAL library.

Its inputs include two variable size sub-samples of interval

scale numbers. Its outputs include sub-sample means, the com-

puted value of T, and an associated probability of occurrence.

3. Extract the sub-sample data from the data base, and re-package

it in the form of two variable-length input vectors.

k. Transmit the two input vectors to the T-test routine, execute

the routine, and display the results.

Whether the original question receives an affirmative answer would

now depend upon the outputs of the T-test routine. If the project group

mean achieved by company X exceeds company Y's mean, and if the assoc-

iated probability of occurrence falls at or below .05, then an affirma-

tive answer is appropriate. Otherwise, either a negative answer or a

decision to suspend judgment pending further investigation would be

appropriate

.

16

5.0 THE CONCEPT OF A WORKING DATA BASE

Of central importance to DATANAL is the concept of a working data

base. It is through this medium that DATANAL achieves much of its com-

puting power, its analytical flexibility, and its convenience to the

user. The remainder of this section will set forth the role played by a

working data base in accomplishing these ends.

The major purpose in creating a working data base is to provide a

physically separate and completely self-contained collection of basic

instructions, descriptive information, and data associated with an

empirical question or set of closely related empirical questions. The

conceptual unit here is the question itself or„ as it is sometimes

called, the working hypothesis. It will be recalled from section 4.3

that answering a well-formulated empirical question requires:

1. extracting whichever properties are relevant to answering the

question from a raw data base;

2. selecting specific analytical and/or display procedures to

operate on these proper-ties .

3. arranging property data to serve as legitimate inputs to the

selected procedures; and

17

b. executing the procedures and displaying the results.

All of these operations are performed and fully documented within

the confines of a working data base.

5.2 Its Structure

Every working data base contains two kinds of information. First,

there is descriptive information about the structure and contents of the

data base itself. Second, there is the actual data either extracted

from a raw data base or created internally by executing various

analytical procedures.

Descriptive information is deposited on a single string of binary-

packed words called the "P-string" ("P" stands for property). A P-

string may be as long as 4O96 words but will normally be less than 1000.

Since it is binary-packed , a P-string is never displayed to the user in

raw form. It must be interpreted by special programs, which are part of

the DATANAL language.

Every P-string contains the following information describing the

structure and contents of the working data bases

1. the name of the raw data base from which this working data base

was created (the process of creating a working data base will

be discussed in section 7) °

2. the number of levels defined in the working data base;

18

3. the number of cases on each level;

4. the number of unit records (e.g., punch cards) required to con-

tain all property data associated with each case on each level;

5. the number of blocks of data contained in this working data

base (the meaning of a data block will be explained shortly);

6. the number of data words contained in each data block;

7. the number of currently defined properties;

8. for each property -

a. its name or label,

b. its origin (i.e., how it was originally defined),

c. its property type (i.e., scalar, vector, or matrix),

d. its dimensions (i.e., number of rows and columns),

e. its level (i.e., the level of the cases to which it refers),

f

.

whether or not the corresponding property data have been

created and, if so, where such data are located,

g. whether the definition of the property is temporary (i.e.,

may be erased) or permanent (i.e., may not be erased),

h. whether the corresponding property data are temporary

(i.e., may be destroyed) or permanent (i.e., may not be

destroyed)

,

i. an optional verbal description of its meaning or signifi-

cance to the user (the user must compose such a description

and type it into the console).

19

j, an operational definition indicating how the corresponding

property data are computed (DATANAL composes, stores, and

interprets this information internally)

„

The actual data are stored on blocks of up to ^096 words each.

There can be approximately 500 blocks associated with every working data

base. This means that a single working data base can accommodate

approximately 200,000 data words , so long as sufficient disk space

remains available for storage,

A single data block contains all of the data associated with at

least one property. As mentioned previously, part of the definition of

every property is an address pointer indicating the particular block

containing that data, if such data exist.

P-strings and data blocks exist as permanent files on disk storage.

Whenever any work is performed by one of the commands in DATANAL, the

entire P-string and whichever data blocks are relevant get moved into

core, updated, and returned to disk. In this manner, a working data

base is always maintained up-to-date.

Inherent in the programming structure of DATANAL are several types

of capacity limitations. These limitations in fact apply to operations

on a working data base, but their primary significance (from the user's

20

point of view) relates to the preparation of raw data. Hence, a list of

rules for preparing a raw data base has been compiled and appears below.

Why some of these rules apply cannot be understood without a detailed

knowledge of how DATANAL has been programmed. However, that they apply

will become immediately apparent to any serious user.

1. No more than 10 levels of cases are permitted.

2. The hierarchical ordering across all levels must be perfect and

must be explicitly indicated by level-linkage identity tags,

rules for which are stated in 9 (see below).

3. No more than ^096 cases are permitted on a single level.

4. When preparing a data deck or tape for transfer onto disk, all

of the unit records (e.g., cards) associated with all of the

cases on a single level must be placed together in a block.

There will be as many such blocks as there are levels.

5. The order of cases within each level block is arbitrary, but

the order of level blocks must be ascending. That is, all of

the data (e.g., cards) associated with level one (the lowest

level) must precede all data associated with level two, which

must precede level three, and so forth.

6. There is no limit to the number of unit records (e.g., cards)

required to contain complete property data for each case, nor

is there a limit to the number of properties per case.

21

7. However, if multiple records are used to describe a case, then

the ordering of these multiple records within each case must be

fixed,, That is, the first unit record (e.g., card) must always

precede the second, and so forth,

8. The arrangement of data within each unit record must adhere to

fixed-field formatting conventions. The formatting conventions

must be identical for all records (e.g., cards) of a given type,

but may be different for different types. Thus, all of the i

cards associated with each case on the j level must share the

same fixed-field format, but this format may differ from other

cards on the same level and/or different levels. No field on

any record may exceed 12 characters (e.g., card columns) in

width.

9. Each case must possess at least one explicit level-linkape

identity tag. There must be as many tags associated with each

case as there are levels at and above the level on which that

case resides. Thus, if there are three levels in the raw data

base, all first-level cases must possess three tags, all

second-level cases must possess two tags, and all top-level

cases must possess one tag. The total number of such tags,

including all levels, is given by the expression i=1 £ n^ (N-i+l),

where N is the number of levels and n
±

is the number of cases

on the i
th

level. This total cannot exceed 4096. Each tag

must appear on the first record (e.g., card) associated with

22

each case and, if multiple tags exist, must be entered in con-

tiguous four-column fields, starting in column one. A unique,

although not necessarily serially ordered nor justified tag

must be assigned to each case on each level, and the tag of

every higher-level case to which each case belongs must also be

assigned. The order of tags in successive four-column fields

must be as follows;

a. a tag to distinguish each case from all other cases on the

same level (columns 1-4)

;

b. the tag of the case on the next-higher level (if one

exists) to which each case belongs (columns 5-8);

Co the tag of the case two levels higher (if such a level

exists) to which each case belongs (columns 9-12);

d, and so forth.

10. Although DATANAL will read nonnumeric data (i.e., it will not

terminate upon encountering a nonnumeric character or improp-

erly presented number), it will only interpret legal numbers.

Both integers and decimal numbers with explicit decimal points

are considered legal, but exponential or any more esoteric form

of notation is not. Anything other than an integer or normal

decimal number will be ignored by DATANAL and treated as a

•'missing" or nonexistent observation. The property value for

that case will be undefined. In particular, blank fields are

23

considered nonnumeric by DATANAL (i.e., blanks are not inter-

preted as zeros). Hence, a blank field may serve (and, in

fact, frequently does serve) as a missing data code.

5.^ Its Basic Philosophy

As stated previously, a working data base provides a concrete focus

of attention in formulating and testing empirical hypotheses. This is

its primary role. A working data base actually embodies such a question

or hypothesis in the sense that all descriptive information relevant to

its formulation and all basic instructions required to provide an answer

are stored on the P-string. In addition, whatever raw data have been

read in and whatever new data have been created are stored on the data

blocks. However, not all of the actual data need be stored in order to

obtain an answer. This is because the basic instuctions stored on the

P-string, in conjunction with the CREATE command to be discussed in sec-

tion 7, provide the capability of creating (or recreating) any property

data for which an operational definition exists. This point is so cen-

tral both to the philosophy and to the operation of DATANAL that it

deserves amplification.

Perhaps the best way to begin is with an analogy from nature. The

process by which all living organisms are created is directed by a com-

bination of genetic and biological synthesizing mechanisms. The

2k

instructions for this process are stored in highly coded form within

strings of genetic material called chromosomes. Each chromosome con-

tains numerous sub-strings called genes. Now these genes do not them-

selves combine to form living matter. Instead, they provide direction

to external synthesizing mechanisms which, in turn, combine raw mater-

ials (e.g., amino acids) into intermediate sub-cellular building blocks

(e.g., protein molecules), building blocks into cells, cells into com-

ponent organs (e.g., arms and legs), and component organs into finished

organisms (e.g., complete human beings). The three basic elements in

this entire process are:

1. the original instructions contained in genetic code on the

chromosomes

;

2. the various synthesizing mechanisms which take their instruc-

tions from the chromosomes and which operate on raw and inter-

mediate biological materials to form complete organisms; and

3. the raw materials out of which cells and more complete struc-

tures are formed.

DATANAL mimics this natural process very closely. The P-string

plays the role of a chromosome, with each individual property definition

playing the role of a single gene. Certain working programs (princip-

ally the CREATE command) play the role of biological synthesizing mech-

anisms. Raw data contained in the raw data base play the role of amino

acids and other elementary biological materials. Intermediate results

25

computed out of raw data in the process of answering an empirical ques-

tion play the role of component organs. Finally, an entire working data

base, containing all property definitions and corresponding property

data required to generate an answer to a given empirical question, plays

the role of a complete organism of a given species.

The importance of the above analogy is three-fold. First, the

internal programming structure of DATANAL bears close resemblance to its

biological counterpart. In fact, DATANAL was explicitly designed with

the genetic process in mind.

Second, recalling the biological analogy may help the user to

understand the dramatic separation within DATANAL of property-defining

and property-describing procedures on the one hand from property-creat-

ing and data-manipulating procedures on the other hand.

Third, and perhaps most important, DATANAL, like the genetic proc-

ess, is primarily formulation-oriented and only secondarily execution-

oriented. The principle role of the genetic process is to formulate and

direct a sequence of biological procedures. Involvement in the actual

execution of these procedures is limited, indirect, and of secondary

importance. Similarly, DATANAL is oriented primarily toward formulating

question-answering and hypothesis-testing procedures. It is only

secondarily a means of executing such procedures, once formulated. The

ability to concentrate upon formulating question-answering and hypoth-

esis-testing procedures, with confidence that any well-formulated

26

procedure may be executed to obtain an answer, should permit many more

and potentially better solutions to analytical problems. At least, this

is the basic premise upon which DATANAL rests.

5.5 Some of Its Operating Consequences

The structural separation of a raw data base from its associated

working data bases has several important operating consequences. First,

this separation permits a user both to operate upon numerous raw data

bases simultaneously and to create multiple working data bases out of

each distinct raw data base. Great analytical flexibility is thereby

realized. However, since most of the commands in DATANAL are oriented

toward a particular working data base, this added flexibility is not

purchased at the expense of stringent capacity limitations. The liberal

capacity limitations stated on sections 5°2 and 5-3 still apply. Also,

several tools are provided within DATANAL to remind the user of the var-

ious connections he has established among various data bases. These

include s

1. the ability to assign a symbolic name to each working data base

suggesting the particular question (hypothesis) which it was

designed to answer (test);

2. special commands which permit free movement from one working

data base to another; and

27

3. Immediate access to the name of and to complete structural

information about the raw data base from which each working

data base was created,

A second consequence flows from the physical discreteness of a

working data base. Since it is stored on disk in physically separate

files, it may be removed at any time, either temporarily or permanently,

to a less expensive storage medium. Any working data base may be

punched out on cards or stored on tape whenever disk space becomes

limited. This serves both to free up disk space for additional analyses

and to reduce storage costs for the results of analyses already per-

formed. Furthermore, should a user wish to return to that data base at

some future time, he may replace it on disk and re-open it. Recall that

the P-string contains an always up-to-date description of its structure

and contents. Hence, a user may review all of the operations previously

performed to read in and manipulate property data and proceed from

there. It is as if the data base had never been removed. The user is

right back to the point where his last operation was completed.

A third consequence is the relatively great security provided

against machine breakdown. Since DATANAL is oriented toward a working

data base, and since both P-strings and data blocks are updated after

every command and stored on disk, the effect of a machine breakdown is

rarely serious. Unless physical damage is done to the disk, the worst

that can happen is to nullify whichever operation is currently beinp

28

performed and to return the data base to its status following the last

completed command. The entire day's work is not lost, as is usually the

case with core-oriented analysis systems.

A fourth consequence is the complete buffering provided by a work-

ing data base between raw data and the various commands of DATANAL. Raw

data are never altered. Data are first read selectively into a working data

base and then operated upon. In this manner, the integrity of raw data

is always preserved, but without any loss in flexibility.

A fifth consequence flows also from the complete buffering provided.

It is possible to group properties in various ways so as to form vectors

and matrices in a working data base, even though the original data

existed in scalar form in the corresponding raw data base. Fore will be

said about this very important feature of DATANAL in section 7.

29

6.0 THE SUPERVISOR

DATANAL is operated under the constant control of a special super-

visor. The major purpose of this supervisor is to stand as a buffer

between the user and the overall time-sharing monitor and to manage all

interactions both within DATANAL and between DATANAL and all other rou-

tines available under time-sharing.

To initiate DATANAL, the special supervisor must be loaded into

core. This is accomplished by issuing the command "RESUME DATANAL."

The special supervisor will then maintain control of all subsequent

interactions until either the user decides to terminate DATANAL volun-

tarily (by issuing the command "QUIT") or a fatal error occurs. In

either case, control will be returned to the time-sharing monitor.

V'hen first loaded, the special supervisor proceeds immediately to

clear out any commands or fragments thereof remaining from previous

interactions. This reduces the probability of Incorrectly interpreting

information from a previous command as relevant to the current command.

It then reads a single typed line from the console.

The first word on each console line is interpreted by the super-

visor as a command word. After comparing it with an internal list, each

command word is interpreted as signifying one of the followinf three

types of commands;

1. an internal supervisor command;

30

2. a command external to the supervisor but included within

DATANAL;

3o neither of the above—either a command recognized by the time-

sharing monitor or an error.

If an internal supervisor command is identified, control is main-

tained by the supervisor,, and that command is executed. Following suc-

cessful execution, the supervisor will print the message "OK" on the

console, possibly accompanied by some timing information. The "OK"

message indicates that the current command has been executed normally

and that the supervisor is ready to read the next command line.

If an external DATANAL command is identified, control is passed

temporarily to the external program embodying that command (i.e., the

external program replaces the supervisor in core). Control will return

automatically to the supervisor following its successful execution, and

the "OK" message will appear as before.

If the command word is not recognized by the supervisor, control is

passed conditionally to the time-sharing monitor in hopes that it may

still be legitimate. If it is, appropriate action is taken under con-

trol of the time-sharing monitor, and, if all goes well, control will

return to the special supervisor upon successful completion of that

action. Return of control will be indicated by the usual "CK" message.

However, if either the command word is unrecognized by the time-sharing

monitor or an error occurs while under the control of the time-sharin-

31

monitor, the special supervisor will not regain control automatically.

This condition will be indicated by the absence of an "OK" message and

the substitution of whatever diagnostic message the time-sharing monitor

deems appropriate . VFhen this occurs, the special supervisor must be

re-loaded manually into core just as it was at the initiation of DATANAL.

One important consequence of these control-passing activities is

that a user may move freely in and out of DATANAL, and, while in DATANAL,

he need not sacrifice access to any commands available under the time-

sharing monitor.

The remainder of this section will present a detailed description

of the internal supervisor commands within DATANAL. Each command will

be described in terms of its purpose its format, its effects, and any

diagnostic information it may provide,

6.1 The ATTACH Command

The ATTACH command is used to update the supervisor's internal list

of recognized command names. DATANAL has been designed so that users

may invent their own private commands and may attach these to "their

version" of the system. Detailed instructions for preparing private

commands will be postponed until section 9« However, once a private

command has been prepared, it is entered into DATANAL by issuing the

ATTACH command.

32

The ATTACH command is issued as follows.

ATTACH NAlffil NAME2 ... NAKEN

NAME1, NAME2, NAMEN are the names which will be given to the new

commands. Any name involving up to six BCD characters is legal, so lonp

as no other command already exists under the same name. To determine

the names of existing commands, the user may type "LIST COMMANDS." As

many command names as can be typed on a single console line (each name

separated by at least one blank space) may be entered with a single

ATTACH command. The supervisor can handle up to ^30 command names in

all.

The effect of issuing the ATTACH command is to alter a special disk

file called "'"TTRENT COMNDS" so that it will include the newly attached

command names. The CURENT COMNDS file is created by DATANAL the first

time a user loads the special supervisor. This initial version of

CURENT COMNDS contains the names of all commands mentioned in this

report. Subsequent ATTACH commands (and certain other internal com-

mands to be discussed shortly) alter the CURENT COMNDS file so that the

supervisor will always be up-to-date.

An error message is issued whenever a user attempts to attach more

than ^30 command names to the supervisor's internal list.

33

6.2 The REMOVE Command

The REMOVE command is the antithesis of the ATTACH command. It

serves to remove various command names from the supervisor's internal

list. Such removals might be useful either to make room for additional

command names (if the limit of ^30 has been reached), to change the

official name of an existing command, or to permit a more efficient

search through the supervisor's internal list by deleting and/or

resequencing some of them.

The REMOVE command is issued as follows.

REMOVE NAME1 NAME2 ... NAMEN

NAME1, NAME2, NAMEN are the command names to be removed ^rom the

internal list. As many names as can be typed on a single console line

(each name separated by at least one blank space) may be entered with a

single REMOVE command. Should a user attempt to remove one or more non-

existent command names, these requests will be ignored without damage

and without any error message.

The effect of issuing the REMOVE command is to alter the CURFKT

COMNDS file— just like the ATTACH command.

There are no diagnostic messages associated with the REMOVE command,

6.3 The TIMON Command

The special supervisor is equipped with an optional capability of

3"

providing either continuous or intermittent information to the user con-

cerning how much computer time he has consumed. Exercise of this option

is controlled by selective issuance of the TTMON, the TLMOFF, the RFSET,

and the QUIT commands.

The TIMON command is issued as follows.

TTMON (no additional parameters)

Should the user enter any additional parameters by mistake, these will

be ignored without damage and without an error message.

The effect of issuing the TIMON command is to initiate the internal

timing mechanism. This is accomplished by updating the CURENT COMNDS

file— just like the ATTACH and REMOVE commands.

When the TIMON command is first issued after either the initial

loading of DATANAL or a subsequent reloading of DATANAL (provided that a

normal exit was made from the previous loading via the QUIT command) or

after any issuance of the RESET command, the internal timing mechanism

is both turned on and initialized to zero. However, no effect is appar-

ent to the user until the next command is issued. Then, until the first

issuance of the TIMOFF command , each subsequent command will be followed

by an "OK TIME1 TIME2" message instead of the usual "OK." TTME1 is the

incremental time in seconds and tenths of a second required to complete

the current command. TIME2 is the cumulative time in seconds and tenths

of a second used since either the initial loading of DATANAL, the last

issuance of the QUIT command, or the last issuance of the RESET command.

35

whichever occurred most recently. Both TTME1 and TTME2 constitute aggre-

gates of execution and swapping time, since it is these aggregate times

which represent the total resource drain imposed by the user upon the

computer.

Incremental and cumulative times will continue to appear with each

"OK" message until the TTMOFF command is issued. When this occurs, the

timing mechanism is turned off and printing of both incremental and

cumulative times is suppressed. However, the timing mechanism is not

initialized. The user may query the supervisor at any moment by re-

issuing the TIMON command. This will cause both incremental and cumu-

lative times to be reinstated in the "OK" message. The incremental time

associated with re-issuing the TIMON command has a special interpreta-

tion. It includes all time consumed since the most recent TIMOFF com-

mand was issued. The corresponding cumulative time includes all time

consumed since the first TIMON command was issued. Incremental and

cumulative times associated with all subsequent commands have their

usual interpretation.

6.4 The TIMOFF Command

The purpose of the TIMOFF command is to suspend operation of the

internal timing mechanism and to suppress printing of both incremental

and cumulative times in the "OK" message. Since the timing mechanism

36

itself consumes about one-half second per command, it should be turned

off unless the user is really interested in timing himself.

The TIMOFF command is issued as follows.

TTMOFF (no additional parameters)

Should the user enter additional parameters by mistake, these will be

ignored without damage and without an error message.

The effect of issuing the TIMOFF command was discussed in section

6.3. TIMOFF also updates the CURENT COMNDS file.

6.5 The RESET Command

The purpose of the RESET command is to initialize the timing mech-

anism (i.e., set incremental and cumulative times to zero) without turn-

ing it off and without terminating DATANAL.

The RESET command is issued as follows.

RESET (no additional parameters)

Should additional parameters be entered by mistake, they will be ignored

without damage and without an error message.

3?

The effect of issuing RESET is to zero out both incremental and

cumulative times. This does not involve any changes to the CURENT

COMNDS file. Incremental and cululative times will continue to be

printed out with each subsequent "OK" message, but cumulative times

will now include only that amount of time used since issuing RESET.

Incidentally, incremental and cumulative times will be automatically

re-set whenever a user crosses a shift barrier (e.g., crosses from the

first to the second shift at 5'-00 p.m. on any week-day).

Although the TIMON. TIMOFF, and RESET commands are designed to be

issued in certain regular sequences, no damage will result from issuing

them out of sequence. Thus, two successive issues of TTMOFF will be

wasteful of computer time, but will not damage the internal timing

mechanism.

6.6 The QUIT Command

The QUIT command is issued to terminate a session with DATANAL and

to initialize the internal timing mechanism.

The QUIT command is issued as follows.

QUIT (no additional parameters)

Should additional parameters be entered by mistake, they will be ignored

without damage and without an error message.

38

The effect of issuing the QUIT command is to re-set both incremen-

tal and cumulative times to zero and to return control to the time-shar-

ing monitor. However, the internal timing mechanism is not turned off

(i.e., no changes are made to the CURENT COKNDS file).

6.7 Certain SYNONYM Commands

The supervisor also provides for using different command names to

call essentially the same procedure. This feature is useful for trans-

lating automatically what a user may regard as separate procedures from

the analytical point of view into what the computer has been programmed

to regard as a single procedure. Thus, a user may distinguish conceptu-

ally between performing a Chi square test of homogeneity, a Chi square

test of independence, a Fisher exact test of either homogeneity or inde-

pendence, and a median test. However, all five of these tests are

extremely similar from a mathematical and computational point of view.

For this reason, they have all been combined into a single procedure

under the name CNTXNG (meaning contingency table analysis), which per-

mits considerable programming efficiency and saving in disk storage

space. Reference to this procedure can then be made by issuing any one

of the following commands

s

1. CNTING (plus parameters);

2. HONNOM (plus parameters);

39

3. FISHER (plus parameters);

4. MEDTST (plus parameters).

The use of these procedures and their accompanying parameters will be

explained more fully in section 8.

Synonym relationships are maintained within the core image of the

supervisor itself. Each command line is intercepted and inspected for

synonyms prior to calling an external program. Hence, changing

established synonym relationships would require re-coding the supervisor

by hand (in assembly language) and re-assembling the re-coded version.

40

7.0 THE EXTERNAL COMMANDS OF DATANAL

Beside the internal supervisor commands discussed in section 6,

DATANAL consists of six types of external commands. These are:

1. commands to define, describe and create a working data base;

2. commands to define and describe properties within a working

data base;

3. commands to implement property definitions (i.e., to execute

the instructions comprising an operational definition of a

property and to create thereby the corresponding property

data)

;

k. commands to summarize and display property data in certain con-

venient ways (e.g., in terms of means, standard deviations,

frequency counts, cross-tabulations, etc.);

5. commands to perform standard statistical analyses upon property

data (e.g., contingency analyses, ordinal and cardinal correla-

tion analyses, regression analyses, etc.); and

6. private commands prepared by a user and attached to "his ver-

sion" of DATANAL.

The remainder of this section will discuss all but the statistical and

private commands. These topics will constitute the subjects of sec-

tions 8 and 9, respectively.

m

7.1 Universal Operating Features

Before launching into a separate discussion of each command, it

would be useful at this point to set forth some of the general features

common to all commands. These universal operating features are

described below.

7.1.1 Typing Errors

Typing errors are to be expected, even by frequent and pro-

fessional users of DATANAL. For naive and infrequent users, they will

constitute a major source of irritation. Obviously, the best remedy is

experience and practice, whose effect will be to reduce both the fre-

quency and the seriousness of such errors. In addition, several speci-

fic devices have been provided to mitigate their consequences.

The first device is a kind of "electronic eraser" which oper-

ates in three separate forms. Whenever a new command is issued, DATANAL

automatically clears out any information remaining from previous com-

mands—so long as that information was entered with a carriage return.

(Note: Merely typing information on the console without pushing a car-

riage return will not transmit the message to the computer. A carriage

return is essential at the end of every typed line. Failure to push the

carriage return is one of the most common mistakes made by naive users.)

This automatic clearing device is also present within those commands of

DATANAL which require multiple lines of typed input (e.g., the DEFINE

command).

kz

However, typing errors are frequently detected by visual

inspection before an input line has been completed and entered. Under

these conditions, either of two kinds of "electronic erasure" may be

effected manually. The quotation mark (") serves as a single character

eraser and will wipe out the immediately preceding character. Multiple

quotation marks will wipe out successive characters, counting backwards

from the current character position. The question mark (?) serves as a

complete line eraser. It will wipe out the entire contents of the line

up to the point where it is entered. Multiple? question marks are

redundant, but nondamaging. After either type of erasure has been

effected, typing may continue normally on the same line, just as if the

erased portions had never existed.

The question mark provides a useful retort to occasionally

incomprehensible diagnostics. Many of the commands of DATANAL require

multiple lines of input. To expedite the input process, these commands

have been programmed so that the computer will read, interpret, and

check previously entered input lines while the user is typing subsequent

lines. If an error is discovered while the user is typing, the computer

will interrupt with a diagnostic message (recall that the computer can-

not tell whether typing is currently going on until the carriage return

is pushed). This leaves an unfinished piece of an input line to be

interpreted by the next read cycle. Invariably, it will be misinter-

preted. This frequently gives rise to an incomprehensible diagnostic.

*»3

To avoid the entire problem, the next typed line should start with a

question mark.

A second device is the presence of extensive interpretive and

diagnostic logic within all commands of DATANAL. A great deal of effort

has been expended to incorporate specific and detailed error diagnostics,

along with recovery procedures. In fact, many more computer instruc-

tions are dedicated to performing these kinds of functions than are

involved in making actual computations.

A third device is the ability to abort any command at any

point in its progress. This will be discussed more fully in sec-

tion 7.1.6.

7.1.2 Incomplete Specifications

All commands will accept incomplete specifications. Only the

command word itself (e.g., "ATTACH") is required to transfer control

from the special supervisor to the appropriate command. This makes it

possible for a naive or infrequent user to initiate any command without

really knowing how to complete it. It also provides an explicit mechan-

ism for obtaining guidance on issuing a command at the same time that

the command is being issued. Guidance may be obtained by issuing only

the command name. If that cannot be remembered, entering "LIST COMMANDS"

will cause a complete list of currently defined command names to appear

on the console.

In the face of an incomplete specification, every command will

respond with detailed typing instructions. These will lead the user

V*

through the remainder of the command specification on a word-by-word

basis. However, any partially completed portion of a command need not

be re- typed, so long as it was legal and properly ordered.

7.1.3 Illegal Specifications

Almost all commands require that certain logical and syntactic

rules be adhered to in their specification. Whenever possible, viola-

tions are treated individually, and only the offending pieces of inform-

ation need be corrected and re-submitted. If impossible, the entire

specification must be repeated. In either case, a specific diagnostic

message and re-submission request will appear on the console.

7.1.4 Rapid vs. Guided Input Modes

As suggested by previous discussion, all commands accept input

specifications in either of two modes. The primary mode is completely

devoid of any interaction with the computer. Hence, it is called the

rapid mode. The secondary mode involves typing instructions and/or

error diagnostics provided on an interactive basis. Hence, it is called

the guided mode.

The user is placed in the rapid mode at the beginning of each

command. He will stay in that mode so long as he provides a specifica-

tion which is:

1. complete;

2. properly ordered;

3. legal in syntax; and

k. legal in content.

k5

Incomplete specifications will cause an immediate shift to the guided

mode for the incompleted portions. Improper ordering will require a

complete respecification, sometimes in the rapid mode, sometimes in the

guided mode, depending upon how many errors have been detected. Other

syntax errors are treated similarly. Illegal contents are treated on an

individual basis, wherever possible. No mode change will occur, unless

the number of errors becomes excessive.

7.1.5 Error Counting

Every command records and counts the number of specification

errors made by a user. As this number increases, the user is more

likely to be thrown into the guided input mode (the exact conditions for

such a mode change vary from command to command). However, if three

errors occur in any command, that command is automatically aborted, and

control is returned to the special supervisor (indicated by the usual

"OK" message). If a legal specification is achieved before committing

three errors, whether in the rapid or in the guided mode, the command

will be executed, and an explicit message to that effect will appear,

followed by "OK."

This automatic abort feature is particularly useful in limit-

ing the duration of error loops (i.e., no more than three go-arounds).

If an error loop is induced by confusion on the user's part (which is

usually the case), its efficacy is mostly psychological. If the com-

puter has become hopelessly confused, it serves to initialize machine

conditions.

46

7.1.6 Manual Abort

It is also possible at any time in the course of any command

to effect a manual abort. This may be accomplished by pushing the

"break," "quit," or "interrupt" button, as it is variously called,

either once or twice. (Notes This button is located somewhere on the

face of the console depending upon the particular model being used). A

single push will return control immediately to the DATANAL supervisor

and will cause the usual "OK" message to be printed out. Two pushes

will return control to the time-sharing monitor. The ability to effect

a manual abort, particularly the single-push variety, is useful under

any one of the following circumstances.

1. The user decides in the middle of a command that he does

not wish to complete that command at all. He wishes to

issue another command or the same command in a different

manner

o

2. The user has requested and received specific information

from the computer, but it continues to pour out additional,

irrelevant information (e.g., a command name is located by

issuing "LIST COMMANDS" before the entire command list has

been exhausted).

3. The user has made one or two specification errors within a

command. The computer has therefore concluded that he

needs assistance and has switched him into the guided

**7

input mode. Meanwhile, the user has recalled the correct

specification format and does not wish to be led by the

hand (always a slow and torturous, although safe process).

Consequently, he effects a manual abort and starts over.

This causes the computer to "forget'* how many mistakes he

made and to reinstate the rapid input mode.

4. An unusually long response delay on the part of the com-

puter has occurred (e.g., several minutes have elapsed

without any action). The user wishes to determine the

cause of the delay. Possible causes are:

(a) failure to push the carriage return;

(b) heavy usage of the time-sharing system so that every

user's response time has deteriorated; and

(c) temporary breakdown so that nobody gets any response

at all.

A useful procedure, under such circumstances, would be first to push the

carriage return twice, then the quit button once. Pushing the carriage

return will remedy the first type of problem and should elicit a

response fairly quickly,, If heavy usage is the problem, merely pushing

the carriage return will have no effect, nor will it damage DATANAL.

However, a single push of the quit button will induce a manual abort,

indicated by the usual "OK" message. If no response occurs to either of

the above procedures, a temporary breakdown has probably occured, and

there is nothing to do but wait.

*|8

7.1.7 Data Base Protection

Recall from section 5*2 that all relevant information pertain-

ing to a working data base is stored on the P-string and its associated

data blocks. It is essential, therefore, that these disk files be pro-

tected against damage or accidental loss. In addition to the various

protective devices provided by the time-sharing system for all disk

files, DATANAL affords special protection to these critical files. In

particular, it prevents their loss due to disk storage overflow. When-

ever a user has exceeded his storage quota (e.g., by creating new data

within DATANAL) , the P-string and/or its associated data blocks will be

written out onto the disk in temporary mode instead of the usual perman-

ent mode. A strong warning will appear on the console indicating that

such has occurred and recommending that the user clear out some disk

space immediately. It is imperative that this warning be heeded and

that the temporary files be returned to permanent mode.

7.2 Data Base Commands

There are three data base functions which must be performed within

DATANAL. First, when a raw data base is initially submitted to a user's

disk file, or whenever an existing raw data base is structurally altered,

DATANAL must be notified. Upon notification, all necessary machinery

for creating working data bases therefrom will be set up. These func-

tions are performed by the SETUP and ESTABLISH commands.

49

Second, there must be some way to activate the above machinery and

thereby create working data bases. Also, there must be some way to move

back and forth between working data bases which have already been

created. These functions are performed by the OPEN and CLOSE commands.

Finally, even though DATANAL may know which working data base it is

operating upon, which raw data base this came from, and which structural

properties pertain to both, the user may be unclear on some of these

issues. Hence, the LIST command may be issued to obtain such information.

7.2.1 • I..J SETUP Command

The SETUP command is designed to notify DATANAL of the exist-

ence of a raw data base prepared externally in some machine-readable

form. Typically, this means a deck of cards. Assuming cards, the pre-

pared deck must be submitted off-line to the disk editor for transfer

onto the user's disk file. All raw data bases must be given the second

name "DATA." Any unique combination of one-to-six nonblank characters

may serve as a first name. Also, raw data bases must adhere to the

specifications set forth in section 5.3.

Assuming the rapid input mode, the SETUP command is issued as

follows

.

SETUP DBNAME NLV NCS1 NREC1 . . . NCSN NRECN

DBNAME is the first name of the raw data base to be set up. The second

name is assumed to be DATA. NLV is the number of levels in DBNAME. NCS1

50

is the number of cases on the first (lowest) level, and NREC1 is the

corresponding number of unit records (e.g., cards) per case. If DBNAME

contains more than one level, subsequent pairs of NCS and NREC param-

eters are entered up to NCSN NRECN, indicating the number of cases and

records per case, respectively, associated with additional levels up to

the N (highest) level.

The command word "SETUP" and all subsequent parameters must be

typed on a single line with each word separated by at least one space.

Multiple spaces will be ignored without damage and without an error

message. However, the order of presentation of parameters is critical

and must be exactly as shown above.

The first action taken is to inspect whatever specification

has been entered by the user. This is done on a word-by-word basis.

Checks are made to determine whether:

1. a disk file exists under the name DBNAME DATA;

2. NLV is a positive integer not exceeding 10;

3. each value of NCS is a positive integer not exceeding 4096;

k, each value of NREC is a positive integer;

5. The number of NCS NREC pairs following NLV is numerically

equal to NLV;

6. the total number of level-linkage identity tags (see

formula in section 5*3) falls at or below 4096; and

7. successive values of NCS comprise a sequence of (weak)

monotone decreasing integers.

51

Absent, improperly ordered, and/or illegal parameters will cause

specific error diagnostics to be typed out on the console, along with

instructions for correction and re-submission. Under certain conditions

(e.g., incomplete and/or multiple illegal specifications), the user will

be thrown into the guided input mode.

Assuming a legal specification in the above formal senses, the

next step is to check factual correspondence with the actual contents of

DBNAME. Additional checks are made to determine whether:

1. the total number of records in DBNAME falls at or below

the total number stipulated in the specification (note:

specifying only a portion of DBNAME is perfectly legal,

but this precludes incorporating the unspecified portion

in any working data bases to be created at a later point

in time)

;

2. explicit level-linkage identity tags appear as positive

integers not exceeding 9999 in the appropriate fields of

all first records associated with all cases on all levels;

3. within each level, level-linkage tags are unique (i.e.,

each tag is a different, though not necessarily serial

integer) ; and

k. between each pair of levels, every lower-level case

possesses the tag of the higher-level case to which it

belongs (note: it is perfectly legal for a higher-level

52

case to possess no lower-level cases as members, but it is

illegal for a lower-level case to allege membership in a

nonexistent higher-level case).

If all formal and factual checks progress without error, no

diagnostic messages will appear on the console. Instead, a message

stating that "DBNAME DATA HAS BEEN SET UP" will be printed out, followed

by the usual "OK." DATANAL is now ready for the next command.

Successful execution of the SETUP command produces two files

on the user's disk. The first one is called "DBNAME PSETUP" and con-

tains all structural information about DBNAME, as well as property def-

initions of the various level-linkage identity tags contained therein.

The second file is called "DBNAME DSETUP" and contains the actual tags

read from DBNAME. These two files will form the skeleton of all subse-

quent working data bases associated with DBNAME.

7.2.2. The ESTABLISH Command

The ESTABLISH command is a special-purpose version of the

SETUP command. It is designed to accommodate small data bases which the

user is willing to enter by hand from the console. Pre-test data gath-

ered prior to conducting a full-scale questionnaire survey or experiment

might best be handled by the ESTABLISH command, since no cards need be

punched and submitted off-line to the disk editor.

Assuming the rapid input mode, the ESTABLISH command is issued

as follows.

53

ESTABLISH DBNAME NCS

DBNAME is the first name to be given to the raw data base. NCS is the

number of cases contained therein.

In reality, no raw data base called "DBNAME DATA" will exist

on the user's disk file. However, DATANAL will be tricked into believ-

ing otherwise. This will allow the user to enter raw data manually by

means of the SET and CHANGE commands. The exact procedure for complet-

ing this fraud will be postponed until the SET and CHANGE commands are

discussed (see sections 7.3.3 and 7.3.10).

Successful execution of the ESTABLISH command will produce two

disk files— "DBNAME PSETUP" and "DBNAME DSETUP." Their respective con-

tents will be as described under the SETUP command. However, the

ESTABLISH command makes the following uniform assumptions which the

SETUP command does not.

1. There will be exactly one level of cases.

2. Each case will be assigned a serial integer from one to

NCS, and these integers will serve as identity tags.

3. Each case will be assumed to require one unit record

(this is only to protect the user against disaster in case

he accidentally issues the READ command at some future time),

A single error check is made to insure that NCS is a positive

integer not exceeding *4096.

5k

7.2.3 The OPEN Command

The OPEN command serves two distinct functions. It may be

used to create a new working data base from a raw data base which has

already been set up or established. Alternatively, it may be used to

re-open an existing working data base for further analysis.

Assuming the rapid input mode, the OPEN command is issued as

follows

.

OPEN DBNAME

If a new working data base is to be created from a raw data base,

DBNAME is the name of that raw data base. If an existing working data

base is to be re-opened, DBNAME is the name of that workin? data base.

The effect in either case will be to produce a disk file called "CURENT

PSTRNG," another file called "CURENT 1," and possibly some additional

files, if multiple data blocks exist.

Action taken by the OPEN command is as follows. First, the

user's disk is searched for an existing file under the name "CURENT

PSTRNG." If one is found, the user is so informed, and control is

returned to the special supervisor, indicated by the usual "OK." This

prevents the user from inadvertently wiping out whichever working data

base he is currently operating upon.

55

If CURENT PSTRNG is not found, the user's disk is then

searched for a file called "DBNAME PSTRNG." This file will be found if

an existing working data base under that name is to be re-opened. If

found, it will be re-named "CURENT PSTRNG," and all associated data

blocks will be given the first name "CURENT." Should one or more of

the associated data blocks be missing, appropriate error messages will

appear on the console. Finally, the message "DBNAME HAS BEEN OPENED"

will appear, followed by "OK." This signifies successful execution of

the command.

If DBNAME PSTRNG is not found, the user's disk is searched

for a file called "DBNAME PSETUP." If found, it will be duplicated

(not re-named) under the name "CURENT PSTRNG," and a duplicate of

DBNAME DSETUP will be created under the name "CURENT 1." A successful

execution message and "OK" will follow.

If neither of the above files is located, an error message

will appear, and control will return to the special supervisor.

7.2.4 The CLOSE Command

The CLOSE command also serves two functions, but they are

concurrent. First, it provides a mechanism for the user to assign a

unique name to a working data base. Second, it clears the way for a

new and/or different working data base to be opened for analysis.

Assuming the rapid input mode, the CLOSE command is issued as

follows

.

56

CLOSE DBNAME

DBNAME is the name to be given to the current working data base. Any-

unique combination of one-to-six nonblank characters is legal.

Action taken by the CLOSE command is as follows. First, the

user's disk is searched for an existing file called "DBNAME PSTRNG."

If one is found, the user is so informed, and control is returned to

the special supervisor with an "OK." This prevents the user from inad-

vertently closing two working data bases under the same name.

If DBNAME PSTRNG is not found, the user's disk is then

searched for a file called "CURENT PSTRNG." This file will only be

found if the user was operating on a working data base prior to issuing

the CLOSE command. If found, it will be re-named "DBNAME PSTRNG," and

all of the current data blocks will be given the first name DBNAME.

Should one or more of the current data blocks be missing, appropriate

error messages will appear on the console. Finally, the message "DBNAME

HAS BEEN CLOSED" will appear, followed by "OK." This signifies success-

ful execution.

If CURENT PSTRNG does not exist, an error message will appear,

and control will return to the special supervisor.

7.2.5 The LIST Command

The LIST command is designed exclusively to provide status

information to the user. It displays three kinds of information on the

console

:

57

1. structural information pertaining to the current working

data base, if one has been opened;

2. a list of the names of all properties defined within the

current working data base ; and

3. a list of all currently defined command names.

Assuming the rapid input mode, the list command is issued in

either one of the following three forms.

/status

LIST-< PROPERTIES

j

'i COMMANDS)

LIST STATUS elicits structural information pertaining to the current

working data base and the raw data base from which it was created

(e.g., number of levels, number of cases, etc.). LIST PROPERTIES and

LIST COMMANDS elicit property and command name lists, respectively.

The user need not inspect all of the information provided by

the LIST command. A manual abort (see section 7.1.6) may always be

executed to terminate the listing process.

Incidentally, the list of command names will only contain the

last six characters of each name. Thus, the ESTABLISH command will be

listed as "ABLISH." Similarly, if the user should assign property

names of more than six characters, LLST PROPERTIES will uniformly dis-

play only the last six. This is because all names in DATANAL occupy a

53

single computer word, and computer words cannot accommodate more than

six charactars. In general, however, typing names of more than six

characters onto the console will not cause trouble, unless the last six

characters are identical to some other, already-established name.

7.3 Property-Defining and Property-Describing Commands

There are eleven commands in DATANAL which perform one or more of

the following four functions:

1. definition of new properties;

2. description of existing properties;

3. change in definition of existing properties; and

k. erasure of existing properties.

The definition of new properties may take any one of three forms.

First, a property may be defined as basic. This means not in terms of

and without reference to any previously defined properties. Raw data

to be read from a raw data base, to be typed in from the console, or to

be generated internally according to some mathematical rule (e.g.,

serial numbers) illustrate this concept. In fact, these three examples

exhaust the various ways in which basic properties may be defined in

DATANAL. They are implemented by the READ, SET, and ASSIGN commands,

respectively.

Second, a property may be defined in terms of some algebraic and/

or logical transformation of previously defined properties. As such,

59

this constitutes a nonbasic definition. The DEFINE, COMPUTE, RECODE,

ASSIGN, and ECOUNT commands implement nonbasic definitions of this

form.

Third, a property may be defined as a special re-arrangement of

existing property data without any algebraic transformation and pos-

sibly without any logical transformation , Forming a vector property

out of scalar properties and forming a matrix property out of vector

properties illustrate one kind of special re-arrangement. This func-

tion is performed by the DEFINE and SET commands. Grouping cases on

one level to compute conditional summary statistics applicable to the

next-higher level illustrates another kind of special re-arrangement.

This function is performed by the GROUP command. Both of these con-

stitute nonbasic definitions.

A single command exists in DATANAL to describe existing proper-

ties. This is the DESCRIBE command. It contains numerous selectivity

options, as well as a "complete" option to trace and display complete

definitional "trees," starting with all relevant basic definitions and

culminating in a single nonbasic definition. In this manner, complete

documentation of any given analytical sequence may be generated auto-

matically upon request.

A single command with many options exists to alter various por-

tions of an existing property definition. This is the CHANGE command.

Through it, the name, definition mode, creation mode, level, and/or

verbal description of any existing property may be changed.

60

7.3.1 The READ Command

The READ command is the vehicle by which certain physical

fields in a raw data base are singled out as containing data correspond-

ing to properties defined in a working data base. In fact, this field

address constitutes the operational definition of any property defined

by the READ command. All such definitions are basic.

Assuming the rapid input mode, the READ command is issued as

follows

.

READ PLABEL LEVEL RECNO COLNO F/JIDTH

PLABEL is the name or label to be assigned to whichever property is

being read. LEVEL is the level of that property. RECNO is the serial

number of the record (e.g., card) on which the corresponding property

data is to be found (e.g., second card each case). COLNO is the start-

ing column of the data field on that record (e.g., column 37). FWIDTH

is the field width or number of columns occupied by that field (e.g.,

three columns).

Action taken by the READ command is as follows. First, the

specification is inspected to determine whether;

1. it is complete;

2. it is properly ordered (i.e., just as shown above);

ei

3. PLABEL is a legal property name (i.e.: not a pure number;

not one of the arithmetic operators %" , "-", "*", "/", or

"**"; not one of the punctuation marks "(",")", or ",";

not one of the library function names "ABS", "SQRT", "LOG",

"EXP", "SIN", "COS", "MAX", or "MIN"; not the same as any

already-defined property label; and not either of the

logical control words "CONT." and "OR");

k, LEVEL is a positive integer not exceeding the maximum num-

ber of levels assigned to this working data base by the

SETUP command;

5. RECNO is a positive integer not exceeding the total number

of records required by each case on this level;

6. COLNO is a positive integer not exceeding 80;

7. FWIDTH is a positive integer not exceeding 12; and

8. the sum of COLNO & FWIDTH is a positive integer not

exceeding 80 (i.e., the total field does not extend

beyond column 80).

Incomplete, illegal, and/or improperly ordered specifications are

handled in the standard manner.

As soon as a legal specification is achieved, the user is

given the option of appending a verbal description. This may be accom-

plished by responding "yes" to the option request which appears on the

console. Any other response, including a carriage return, is

62

interpreted as meaning that no verbal description is desired. If "yes"

is typed, the computer responds with directions for entering a verbal

description of the property PLABEL. Verbal descriptions may be of any

length, of any format, and in any language. They are stored as unedited

textual information on the P-string.

Following the verbal description, a message stating that

"PLABEL HAS BEEN READ" will appear on the console, and the user will be

given the choice of either terminating the READ command or entering

another specification. Subsequent specifications may be given without

limit, except that:

1. three or more errors within any single specification (but

not cumulated across successive specifications) will

induce an automatic abort;

2. the user may execute a manual abort at any time;

3. a large number of long specifications may fill the com-

puter's internal memory allocation, in which case an auto-

matic abort is triggered between specifications, and addi-

tional internal storage is allocated.

In none of the above instances will already completed specifications be

nullified.

Successful execution of each READ specification will serve to

update the P-string. The new property name, the associated status

information, the operational definition, and the verbal description (if

63

any) will be appended. Whenever a property is defined by the READ com-

mand, the following specifications are made automatically (i.e., without

explicit directions from the usBr).

1. The origin of the property definition is noted as the READ

command.

2. The property type is uniformly scalar.

3. Each property value, being a scalar quantity, has one row

and one column as its dimensionality.

4. Both definition and creation modes are set to temporary,

indicating, respectively, that the definition may be

erased and that the corresponding property data, once read

in, may be destroyed.

5. The operational definition is the field address of the

corresponding property data on the raw data base.

As experience is gained through practice, users will wish to

move more rapidly through the READ command. This statement applies

equally to all commands in DATANAL. The fastest way through the READ

command is to type a complete (and correct) specification on a single

line, followed by three carriage returns. The first return serves to

transmit the specification to the computer. The second serves as a

negative answer to the optional verbal description request. The third

serves as a negative answer to the "go-again" request. Under such cir-

cumstances, interaction is both minimized and expedited, since all

option queries are answered (negatively) in advance.

6k

This use of multiple carrige returns to avoid interactive

options and to expedite specifications is a standard feature of many

DATANAL commands. Another use of multiple carriage returns, not illus-

trated by the READ command, is to signal the end of variable-length

specification lists. Consequently, DATANAL may appear to "get stuck"

from time to time, when the only problem is an insufficiency of carriage

returns. This situation is rendered more likely by the necessity of a

carriage return after every input line, coupled with the tendency of

users to forget it. When in doubt, an always safe and frequently effec-

tive remedy is to push two or more carriage returns. Unless the com-

puter is down, or time-sharing demands are excessive, or DATANAL has

requested (but not received) specific information, this maneuvre will

generally elicit a response. At worst, desired options (e.g., a verbal

description) may be inadvertently skipped. However, DATANAL is amply

equipped to recover from this kind of oversight.

7.3.2 The DEFINE Command

If any single command were to be identified as the "heart" of

DATANAL, it would be the DEFINE command. Although not the most complex

from the programming point of view (the CREATE command has no competi-

tors in this respect), it is both the most complex and the most central

from the user's point of view. Also, it will be the most frequently

issued of the property-defining commands, if not the most frequently

issued of all commands. Within it are incorporated most of the basic

concepts of the entire DATANAL language.

65

The DEFINE command performs three broad types of functions.

It specifies algebraic transformations to be performed on property data

(e.g., index formation, change of variable or functional form, change of

scale, etc.). It specifies logical transformations to be performed both

on property data (e.g., partitioning into sub-intervals) and on cases

(e.g., partitioning into sub-samples). It also specifies the re-arrange-

ments necessary to form both vector and matrix properties out of scalar

properties. Logical transformations may be specified in addition to

either algebraic transformations or vector/matrix definitions within a

single command, but algebraic and vector/matrix manipulations must be

specified by separate commands.

Assuming the rapid input mode, the DEFINE command is issued in

either of the following two general forms.

DEFINE PLABEL = isome algebraic expression!
FOR ALL CASES WHERE
1. PLABEL1 Rl £some algebraic expression^
2. PLABEL2 R2 ^some algebraic expression}

M. PLABELM RM £some algebraic expression^

DEFINE PLABEL = PLABEL1 PLABEL2 . . . PLABELN
FOR ALL CASES WHERE

1. PLABEL1 Rl £some algebraic expression^
2. PLABEL2 R2 ^_some algebraic expression 5

M. PLABELM RM £some algebraic expression^

66

Within both of the above two general forms there are numerous variations

and options. These will be discussed below.

Let us begin with the first form of the DEFINE command. This

is designed to specify algebraic transformations, in conjunction with

one or more optional logical transformations or Boolean conditions, as

they will henceforward be called. PLABEL is the name of the property to

be defined. The equals sign separating PLABEL from the algebraic expres-

sion means "assign the computed value of." That is, if and when PLABEL

is created, the computed value of the algebraic expression to the right

of the equals sign will be assigned as the property value of PLABEL for

each applicable case in the working data base. The algebraic expression

to the right of the equals sign must adhere to certain rules of content

and syntax, which will be discussed shortly. This completes the first

line of the specification.

The second and all succeeding lines are optional. If no Bool-

ean conditions are to be applied (i.e., if the indicated computation is

to be performed and the result is to be assigned to every case on the

level at which PLABEL resides), they may be omitted entirely. This is

accomplished by entering a double carriage return following the first

line. Alternatively, the same result may be achieved by entering a

single carriage return and a second line stating "FOR ALL CASES," fol-

lowed by another single carriage return.

67

If one or more Boolean conditions are to be applied, at least

two additional lines following the first line are required (at least

three lines in all). The second line must be "FOR ALL CASES WHERE."

The last Boolean condition line must be flagged by entering a double

carriage return thereafter.

In formulating Boolean conditions, several factors must be

kept in mind. First, each elementary Boolean condition must be complete

and of proper syntax. Second, it is frequently desirable to state com-

plex Boolean conditions (i.e., elementary conditions which are intercon-

nected with ANDs, ORs, and NOTs). Such interconnections must also

adhere to certain rules of syntax. Finally, the entire specification

must be arranged in blocks of typed lines so that the computer may

decipher the user's intentions.

An elementary Boolean condition possesses three components in

serial order (from left to right);

1. an already-defined property label;

2. a legal numeric relationship; and

3. a legal arithmetic expression.

The meaning of an already-defined property label has been discussed

previously. Legal numeric relationships include:

1. E, meaning is numerically equal to;

2. NE, meaning is not numerically equal to;

3. GT, meaning is strictly greater than;

68

k. LT, meaning is strictly less than;

5. EGT, meaning is equal to or greater than; and

6. ELT, meaning is equal to or less than.

Legal arithmetic expressions will be discussed shortly.

The existence of a logical NOT or negative is maintained

implicitly in the six numeric relationships displayed above. Thus, not

equal may be represented simply as "NE," not greater than by "ELT," and

so forth. This constitutes the first step toward formulating more com-

plex conditions out of elementary conditions.

The provision of an explicit logical OR constitutes the second

step. The general form of such a specification is as follows.

PLABEL1 Rl {some algebraic expression] OR

PLABEL2 R2 £some algebraic expression \ OR ...

OR PLABELN RN |some algebraic expression]

In addition, there are two abbreviated forms which may be used

under certain circumstances. If two or more OR-ed elementary conditions

share the same PLAEEL, but differ in their numeric relationships and/or

in their corresponding algebraic expressions, the following abbrevia-

tion is acceptable.

PLABEL Rl [some algebraic expression) OR R2 reome algebraic

expression}

If two or more such conditions share both the same PLABEL and

numeric relationship, and if that relationship is "E," then further

abbreviation is possible as shown below.

69

PLAHEL E -{some algebraic expression} OR {some algebraic expression^

This latter abbreviation simplifies the task of defining by enumeration

either a sub-sample of cases or a sub-interval along a property scale.

The third step in formulating complex conditions is the provision

of a logical AND. Whereas OR-ed conditions are typed horizontally along

a single condition line, AND-ed conditions are numbered serially (for

purposes of diagnostic reference) and typed as a vertical column of suc-

cessive condition lines. Each successive AND-ed condition line may

itself be a constellation of OR-ed conditions.

Finally, it is possible to extend any condition line beyond

the right-hand margin of the console by entering the special control

word MCONT." as the last word on that physical input line. (Note: the

placement of "CONT." in any position except the final position wiU

result in an error message.) This same technique of extending the log-

ical length of specification lines may be used on the top line of the

DEFINE command. It may also be used in any other command of DATANAL

which involves variable-length specification lines. After entering

"CONT.", push the carriage return once, and continue typing as if the

physical line had been extended. Repeated extensions may be obtained by

ending successive physical lines with "CONT.", so long as the extended

logical line contains no more than 100 words. The termination of an

extended logical line is signaled by the first appearance of a physical

line ending in anything except "CONT.". If this occurs on the first

line, then the physical and logical lines are co-extensive.

70

Let us now consider algebraic expressions. The contents of a

legal algebraic expression include and are restricted to the following

items:

1. pure numbers;

2. already-defined property labels;

3. algebraic operators;

b» punctuation marks; and

5. library functions.

A pure number is defined as any solid string of one-to-six

digits, possibly preceded by either a V or a "-", and possibly con-

taining a single "." (decimal point) anywhere in the string except pre-

ceding either '<+•' or •'-•'. Anything else will not be interpreted as a

number. In particular, the presence of one or more blanks or spaces

within the string will preclude its numeric interpretation, although the

string may be preceded and/or followed by any number thereof.

The user should bear in mind that numbers, like all other

inputs and outputs of DATANAL, are transmitted to and from the console

in free format. This relieves the user from having to compose and enter

any format specifications. However, it also imposes some restrictions

on the interpretation process. These are listed below.

1. All numbers are words and, therefore, must be preceded by

at least one blank or space in any input message typed on

the console.

71

2. Like all other words, the representation of a number must

be confined to six characters or less, including '*+", "-",

and/or "„". This serves to limit both input and output

numbers to fall between 999999 and -99999, inclusive. If

either larger or smaller numbers are desired, an algebraic

expression may be composed which specifies a scale change

(e.g., multiplication by some power of ten). This will

relax the effective range constraints, but the accuracy of

computed results will remain limited to six significant

digits at most.

3. If a user should enter a number involving more than six

characters, it will be truncated from the left, and only

the last six characters will be interpreted. For this

reason, it is always a good idea to "play back" any alge-

braic specification by issuing the DESCRIBE command.

4. None of the above restrictions apply to numbers read from

a raw data base. Up to twelve characters are permitted

here, and up to eight significant digits of accuracy are

possible.

5. All output numbers returned by DATANAL to the console are

formatted automatically so that the one-to-six most sig-

nificant (i.e., left-most) digits are displayed, in addi-

tion to a minus sign and/or a decimal point, if

72

appropriate. Leading plus signs and trailing zeros are

uniformly truncated. Integers are represented without a

decimal point. Decimals are rounded in the last signifi-

cant digit.

Returning to the contents of a legal algebraic expression, the

next item is an already-defined property label. Whether or not a can-

didate word satisfies this criterion is determined by consulting the

current P-string.

There are five algebraic operators which may be included in

any algebraic expression. These are:

1. +, meaning addition;

2. -, meaning subtraction;

3. *, meaning multiplication;

4. /, meaning division; and

5. **, meaning raised to a power.

As with pure numbers and property labels, each of these is a single word

and must, therefore, be preceded by at least one blank or space to

insure proper interpretation of typed inputs. (Note: It requires a

little practice to remember that each word in an algebraic expression

must be so separated from its neighbors.)

Since properties in DATANAL may be either scalars, vectors, or

matrices, the above algebraic operators are interpreted in terms of mat-

rix algebra conventions. This includes, but is not restricted to normal

scalar conventions. In particular, the following conventions apply.

73

1. Any two properties/numbers may be added, so long as they

are dimensionally equivalent (i.e., possess the same num-

ber of rows and columns, respectively). If equivalent,

addition will take place element-by-element.

2. Subtraction and division are handled identically. (Note:

It is possible to divide equivalent vectors and matrices

in DATANAL element-by-element so as to obtain arrays of

ratios and percentages.)

3. Any two properties/numbers may be multiplied, so long as

either at least one of them is a scalar or they are dimen-

sionally conformable (i.e., the number of columns of the

first equals the number of rows of the second). If con-

formable, a matrix product will always result with an

appropriate dimensionality. For purposes of dimensional-

ity determination, vectors in DATANAL may be either row

vectors or column vectors, whichever makes a multiplica-

tion conformable. If neither interpretation results in a

conformable specification, an error message will ensue.

Unless multiplication is indicated in an algebraic expres-

sion, vectors are normally considered by DATANAL to be row

vectors. This convention has been adopted to conform with

the row orientation of the console as a display device.

(Note: Element-by-element multiplication may be substituted

7h

for matrix multiplication of two dimensionally equivalent

properties by specifying the reciprocal of Sthe reciprocal

of one divided by the other} .

)

k. Raising to a power applies only to scalars. That is, only

scalars may be raised to a power, and only scalars may

serve as powers „ However, powers need not be integers.

There are three punctuation marks which may be included in any

algebraic expression. These are:

1. (, meaning left parenthesis;

2.), meaning right parenthesis; and

3. , , meaning comma.

Left and right parentheses are used to alter the order in which computa-

tions are performed when an algebraic expression is evaluated. The

comma occurs only in conjunction with the MAX and MIN functions to be

discussed immediately.

Finally, there are eight library functions built into DATANAL.

These are:

1. ABS, meaning absolute value of;

2. SORT, meaning positive square root of;

3. LOG, meaning natural logarithm of;

4. EXP, meaning exponentiation of (base e)

;

5. SIN, meaning sine of (argument in radians);

6. COS, meaning cosine of (argument in radians);

75

7. MAX, meaning maximum value of; and

8. MIN, meaning minimum value of.

All of the above eight functions must be followed immediately by a left

parenthesis, then a legal algebraic expression, and then a right paren-

thesis. In the case of MAX and IHN, a sequence of at least two legal

algebraic expressions must appear between the parentheses, with succes-

sive expressions set off by commas. (Note: Commas and parentheses are

treated as single words and, therefore, must be separated from their

neighbors by at least one blank or space.)

This completes our discussion of the first general form of the

DEFINE command. The second form is used to define vectors and matrices,

possibly subject to Boolean conditions. It is identical to the first <

form except on the top line. Here, a list of two or more already-

defined property labels replaces the algebraic expression to the right

of the equals sign. No parentheses nor commas nor other words may

appear in the list. The extension option is possible by using "CONT.",

so that an array of up to 97 elements may be specified. If the elements

are scalars, the result will be a (row) vector property. If the ele-

ments are vectors, the result will be a matrix property whose rows are

the component (row) vectors in the specification list. If the elements

are matrices, an error message will ensue. If the elements are mixed

and/or dimensionally nonequivalent , an error message will also ensue.

The first action taken by the DEFINE command is to inspect the

top line. Checks are made to determine whether:

76

1. PLABEL (the second word on the line) is a legal property-

name (see criteria in section 7.3.1);

2. the third word is "="; and

3. all words to the right of the equals sign (and there must

be at least one) are legal components of an algebraic

expression.

Assuming that all of these are passed, the next action is to

determine whether an algebraic transformation or a vector/matrix specif-

ication is intended. A vector/matrix specification is assumed if at

least two words appear to the right of the equals sign, and if all of

these are already-defined property labels. Otherwise, an algebraic

transformation and, therefore, an algebraic expression is assumed.

If an algebraic expression is assumed, an extended series of

checks is made on the syntax and dimensionality of the specification.

Assuming no errors, the following information is stored on the P-string:

1. the level of PLABEL, which is determined as the level of

the lowest-level property in the algebraic expression,

excluding all zero-level properties (note: there must be

at least one nonzero-level property for reasons that will

become clear when we discuss the SET and COITUTE commands);

2. the dimensionality of PLABEL, which is determined by simu-

lating the process of evaluating the expression.

If a vector/matrix specification is assumed, additional checks are made

to determine whether:

77

1. all properties are of the same type (e.g., all scalars)

and share the same dimensions

;

2. no properties are already defined as matrices.

If both checks yield affirmative results, the level and dimensions of

P1ABEL are computed and stored on the P-string.

Next comes a test for the existence of Boolean conditions.

Detection of a double carriage return following the top line or a second

line stating "FOR ALL CASES," followed by a single carriage return,

signals the absence of any conditions. Otherwise, one or more are

assumed to follow.

Boolean condition checks are made to determine whether;

1. the second specification line reads "FOR ALL CASES WHERE";

2. all subsequent condition lines are numbered serially;

3. each elementary condition is composed of an already-

defined property label, followed by a legal numeric rela-

tionship (either literally or by implication), followed by

a legal arithmetic expression;

4. all nonzero level properties referenced on both sides of

every numeric relationship exist on at least as high a

level as PIABEL;

5. each property on the left of a numeric relationship is

dimensionally equivalent to the algebraic expression on

the right; and

78

6. OR-ed conditions are stated in one of the three alterna-

tive forms previously discussed.

Assuming no errors, the DEFINE command will search for the

first double carriage return following a condition line. This means

that the last condition line has been reached. A request for an

optional verbal description will follow immediately. Successful execu-

tion of the entire command will then be indicated by a message stating

"PLABEL HAS BEEN DEFINED," followed by the usual "OK."

As with the READ command, the effect of the DEFINE command is

to update the P-string. The new property name, the associated status

information, the operational definition, and the verbal description (if

any) is appended thereto. In addition to the specifications already

discussed, additional items of information are added automatically.

1. The origin of the property definition is noted as the

DEFINE command.

2. Both definition and creation modes are set to temporary.

For the experienced user, the fastest way through the DEFINE

command is as follows.

1. If no Boolean conditions are intended and no verbal des-

cription is desired, enter the algebraic transformation or

vector/matrix definition, followed by three carriage

returns.

2. If Boolean conditions are intended, but no verbal descrip-

tion, proceed in the normal manner through the last condi-

tion line. Then enter three carriage returns.

79

7.3.3 The SET Command

The SET command is a rapid and specialized alternative to the

DEFINE command. Its use is restricted to entering constants into level

zero of a working data base. It cannot involve either algebraic expres-

sions or Boolean conditions, but it may be used to define either scalar,

vector, or matrix properties. In addition, it performs several special

functions.

Assuming the rapid input mode, the SET command is issued as

follows

.

SET PLABEL = PLABEL1 PIABEL2 . , . PLABELN

The meaning of the above terms is exactly as discussed under the vector/

matrix alternative of the DEFINE command.

Action taken by the SET command parallels exactly the action

taken by the DEFINE command, with the following exceptions.

1. All activities associated with Boolean conditions are

omitted

.

2. The list of words to the right of the equals sign may con-

tain only one item.

3. Pure numbers are permitted in any mixture with already-

defined property labels, provided that all referenced

properties reside on level zero.

80

4. If only pure numbers are involved, then PLABEL is defined

as a basic property. Otherwise, it is nonbasic,

5. The origin of PLABEL is noted as the SET command.

One special use of the SET command was alluded to in section

7.2.2. First, a phoney raw data base is set up by means of the ESTAB-

LISH command. Second, raw data are entered from the console via the SET

command. If N cases were specified in the ESTABLISH command, then

strings of pure numbers, each of length N, must be typed via SET.

Third, all properties are created by issuing the CREATE command. This

may be accomplished in one shot, as will be explained in section 7.^.1.

Finally, the level of each property is changed from to 1 by issuing

the CHANGE command (see section 7.3.10, LEVEL option).

Restrictions on the above procedure are as follows.

1. Only pure numbers are allowed in each issuance of the SET

command.

2. Property data must be entered by property rather than by

case (i.e., all of the data associated with each succes-

sive case on a given property must be entered serially)

.

3. There must be exactly N numbers entered under each prop-

erty, and N cannot exceed 97. Also, N must agree with the

number of cases specified by the ESTABLISH command.

4. The user is responsible for maintaining proper case-by-

case ordering within each property.

81

If properly executed, this procedure is equivalent to a SET-OPEN-READ-

CREATE sequence applied to an externally prepared data deck.

A second special use of the SET command involves vector and

matrix manipulations. The CREATE command will automatically impute

zero-level property data to any case on any level. Hence, special vec-

tors and matrices may be entered via SET whose sole purpose is to

extract specified rows, columns, or elements from vector and matrix

properties. Alternatively, row sums, column sums, and matrix sums may

be computed by means of other special vectors. From these, means,

standard deviations, and many other useful statistical indices may be

computed with great ease.

Finally, SET may be used to establish symbolic equivalents of

recurrent scalars. Thus, the value of tt or e may be set once and there-

after referenced symbolically rather than continually written out as a

pure number.

7.3.4 The COMPUTE Command

The COMPUTE command is also a rapid and specialized alterna-

tive to the DEFINE command. Like the SET command, its use is restricted

to entering constants into level zero, and it cannot involve Boolean

conditions. However, unlike the SET command, it cannot accommodate

82

vector/matrix specifications. It operates exclusively on algebraic

specifications

.

Assuming the rapid input mode, the COMPUTE command is issued as

follows

.

COMPUTE PLABEL = {some algebraic expression]

The meaning of the above terms is exactly as discussed under the alge-

braic transformation alternative of the DEFINE command.

Action taken by the COMPUTE command parallels exactly the

action taken by the DEFINE command, with the following exceptions.

1. All activities associated with Boolean conditions are

omitted.

2. All properties referenced in the algebraic expression must

reside on level zero.

3. If one or more zero-level properties are referenced, then

the origin of PLABEL is noted as the COMPUTE command.

4. If no properties are referenced (i.e., if the algebraic

expression is completely devoid of property labels), then

the CREATE command acts as a desk-calculator, and an

immediate answer appears on the console. This precludes

updating the P-string.

The desk-calculator function of COMPUTE is particularly useful

for evaluating fitted curves to empirical data. Results obtained from

E

either a linear or polynomial curve fit (see section 8.1.8) may be so

tested.

7.3.5 The RECODE Command

The RECODE command is a specialized version of the DEFINE com-

mand. It performs both arithmetic and logical transformations of a lim-

ited nature. Arithmetic transformations are constrained to produce only

positive integers as outputs, and logical transformations may only be

specified in terms of a single property. However, despite these limita-

tions, the RECODE command serves as the basis for all frequency counts,

cross-tabulations, and related analytical procedures (e.r.: Chi square,

Fisher, and median tests; one-way analysis of variance; two-way analysis

of variance ; etc .)

.

Assuming the rapid input mode, the RECODE command is issued as

follows

.

RECODE PLABEL PLABEL1 (SPECl) (SPEC2) ... (SPECN)

PLABEL is the name of the property being re-coded. PLABEL1 is the name

of the new property currently being defined as a re-coded version of

PLABEL. (SPECl), (SPEC2), ..., (SPECN) are Boolean specifications

indicating which numeric values of PLABEL will be assigned, respec-

tively, to category 1, category 2, ..., category N of PLABEL1. The form

and interpretation of a Boolean specification will be explained shortly.

81*

Action taken by the RECODE command is as follows. First, the

entire command specification is inspected to determine whether:

1. it is complete

;

2. it is properly ordered (i.e., just as shown above);

3. PLABEL is an already-defined property name identifying a

scalar property not on level zero;

4. PLABEL1 is a legal name for a new property (see require-

ments listed in section 7.3.1); and

5. the entire specification does not exceed 200 words.

Assuming passage of the above checks, the various Boolean

specifications are next inspected to determine whether;

1. at least one exists;

2. each successive specification is enclosed in parentheses;

and

3. each successive specification is legal in both content and

syntax.

Incomplete, illegal, and/or improperly ordered specifications are

handled in the standard manner.

Legal contents of a Boolean specification include and are

restricted to:

1. pure numbers

;

2. the six numeric relationships listed in section 7.3.2; and

3. the word "TO."

85

These may be arranged to form complex Boolean conditions, just as in the

DEFINE command. However, the notation is more compact.

A Boolean specification may assume any one of the following

three forms, or any combination thereof, subject to an ordering

restriction:

1. (Nl N2 ... NM);

2. (R N);

3. (Nl TO N2).

The first form above is a list of pure numbers separated by at

least one blank or space and enclosed within parentheses. There is an

implied OR linking each of the M listed numbers Nl, N2 NM. The

interpretation, here, is that whenever PLABEL assumes any one of the

listed numeric values (i.e., either Nl or N2 or ... or NM) , then PLABEL1

is to be assigned the serial integer corresponding to the category indi-

cated by this specification. Thus, if the value of a case on PLABEL is

numerically equal to Nl, N2, ..., or NM, and if this is the third Bool-

ean specification, which defines the contents of the third category of

PLABEL1, then the integer three will be assigned to PLABEL1 as the

numeric value of that case. Otherwise, the numeric value of PLABEL1 will

be something other than three or, possibly, undefined.

The second form above is a single numeric relationship followed

by a pure number. These two terms are separated by at least one blank

space and enclosed within parentheses. The interpretation, here, is

86

that whenever the elementary Boolean condition "PLABEL R N" is satis-

fied, then PLABEL1 is to be assigned the serial integer corresponding to

the category indicated by this specification. Otherwise, some other

integer is to be assigned, if the value of the case is defined. Any

number of these elementary conditions may be OR-ed in a single Boolean

specification. However, OR-ing must be implicit (i.e., the word "OR"

must not be typed on the console). To illustrate, the following complex

specification is legal and, incidentally, is logically equivalent to the

illustration under the first form of specification previously discussed.

(E Nl E N2 ... E NM)

The third form above consists of the word "TO" sandwiched in

between two pure numbers. As usual, each word must be separated from

its neighbors by at least one blank or space, and the entire specifica-

tion must be enclosed within parentheses. The purpose of this form of

specification is to designate a closed interval along the scale of

PLABEL. Its interpretation is that whenever PLABEL assumes a value

between Nl and N2 (inclusive), then PLABEL1 is to be assigned the serial

integer corresponding to the category indicated by this specification.

Any number of these closed intervals may be OR-ed in a single Boolean

specification. However, OR-ing must again be implicit.

Finally, OR-ing may occur between the above three forms as

well as within them. Thus, any given specification may contain a mix-

ture of the three forms. The only restriction is that the pure numbers

87

within every Boolean specification must form a (weak) monotone increas-

ing sequence. This restriction does not apply across successive specif-

ications. The "CONT." option is available to extend the effective

length of the specification line.

As soon as a legal specification is achieved, a request for an

optional verbal description will appear. This will be followed by the

message "PLABEL HAS BEEN RECODED UNDER THE NAME OF PLABEL1" and the

usual "OK," indicating successful execution.

Successful execution serves to update the P-string. The new

property name, the associated status information, the operational defin-

ition, and the verbal description (if any) will be appended. In addi-

tion, the following specifications are made automatically.

1. The origin of PLABEL1 is noted as the RECODE command.

2. The property type is uniformly scalar.

3. Each property value, being a scalar quantity, has one row

and one column as its dimensionality.

4. The level of PLABEL1 is equated with the level of PLABEL.

5. Both definition and creation modes are set to temporary.

6. The operational definition is the set of Boolean specifi-

cations which defines how values of PLABEL will be mapped

into corresponding integral values (really serial category

labels) of PLABEL1.

88

The primary function of the RECODE command is to prepare data

for frequency counts, cross-tabulations, and related analytical proced-

ures. Thus, if a frequency count of some property named PLABEL is

desired, the RECODE command is issued to establish the categories or

sub-intervals within its logical range. The resulting property PLABEL1

will encapsulate this partitioning of PLABEL. When created, property

data corresponding to PLABELl will consist of serial integers indicating

which category or cell each case falls into.

If a table is to be constructed around joint frequencies of

two properties PI and P2, then each property is first re-coded by issu-

ing the RECODE command. Two new properties Pll and P21 are thereby

defined. These indicate the row and column address, respectively, of

each case in the table to be constructed.

There are two major advantages gained from setting up fre-

quency counts and tables in this manner. First, it is very easy to

change a specification by merely re-issuing the RECODE command. Cate-

gories, rows, and columns may thereby be collapsed and/or re-partitioned.

Second, since the output of every RECODE command is a defined property,

frequency counts and tables may be subjected to additional Boolean con-

ditions via the DEFINE command. Thus, a conditional table may be spec-

ified via a pure logical transformation of the row and/or column

addresses specified by the RECODE command. All analytical procedures

which operate upon counts or tables may be similarly conditioned. This

turns out to be a very powerful and useful device.

89

The fastest way through the RECODE command is to type a com-

plete specification, followed by two carriage returns. The second

return will obviate any verbal description. Additional returns are

redundant, but nondamaging.

7.3.6 . The ASSIGN Command

The ASSIGN command is used to define internally certain

special properties. These special properties will facilitate analysis,

although the corresponding property data will frequently lack any direct

substantive interest.

Assuming the rapid input mode, the ASSIGN command is issued in

any one of the following nine alternative forms.

{SERIAL \ /INTEGERS
]

RANDOM S i NUMBERS
]

TO PLABEL PLABEL1

RANK J (DECIMALS/

In all nine forms, PLABEL is the name of the already-defined property

which will constitute the basis of* the special definition. PLABEL1 is

the name to be given to the special property currently being defined.

The first" form of the ASSIGN command is "ASSIGN SERIAL

INTEGERS TO PLABEL PLABEL1." Its purpose is to define a new property

named PLABEL1 on whichever level PLABEL resides. Property data cor-

responding to PLABEL1 will consist entirely of serial numbers ranging

from 1 to NCS, where NCS is the number of cases on that level. These

will be useful in certain ranking and sorting operations which the

analyst may wish to perform.

90

The second form of the command is "ASSIGN SERIAL NUMBERS TO

PLABEL PLABEL1." Its effect is identical to the first form.

The third form of the command is "ASSIGN SERIAL DECIMALS TO

PLABEL PLABEL1." Its effect is identical to the first two forms, ex-

cept that each serial number is transformed into a decimal fraction by

dividing NCS into it.

The fourth form of the command is "ASSIGN RANDOM INTEGERS TO

PLABEL PLABEL1." Here, serial integers are first assigned as above, but

then their order is randomized. The result is one of the NCS permuta-

tions of the set of NCS serial integers. The randomizing device is such

that every permutation is rendered equally likely. Also, successive

issuances of the ASSIGN command will, in general, select a different

permutation. Possible uses for these random serial integers are listed

below;

1. to define a random sample of cases to be drawn from all

cases on a given level (e.g., by issuing the DEFINE com-

mand containing a Boolean condition specifying a sub-

interval of these random integers);

2. to simulate statistical processes involving sampling

without replacement; and

3. to facilitate split-half reliability testing on cases.

The fifth form of the command is "ASSIGN RANDOM NUMBERS TO

PLABEL PLABEL1." This induces a set of NCS random numbers to be drawn

91

from a rectangular distribution defined over the closed interval To, ll

and to be assigned to the NCS cases on the level of PLABEL. Such random

numbers might be useful in simulating statistical processes involving

sampling with replacement.

The sixth form of the command is "ASSIGN RANDOM DECIMALS TO

PLABEL PLABEL1." Its effect is identical to the RANDOM INTEGERS option,

except that integers are converted to corresponding decimal fractions.

This makes it possible to specify a random sub-sample as a percentage of

all cases on a given level.

The seventh form of the command is "ASSIGN RANK INTEGERS TO

PLABEL PLABEL1." This assigns rank numbers to PLABEL1 indicating the

ordinal position of each case on PLABEL. Thus, the case with the numer-

ically largest value on PLABEL will receive a one on PLABEL1, the

second-highest case will receive a two, and so forth. Whenever two or

more identical values are encountered on PLABEL, identical integers will

be assigned to the corresponding cases on PLABEL1. Then, lower-valued

cases will be assigned rank numbers as if no ties had occurred (e.g.,

1222267...).

The eighth form of the command is "ASSIGN RANK NUMBERS TO

PLABEL PLABEL1." This is identical to the RANK INTEGERS option, except

that ties are handled differently. Strings of tied ranks are equated

uniformly with their arithmetic mean (e.g., 1 3.5 3.5 3.5 3.5 6 7 ...).

The ninth form of the command is "ASSIGN RANK DECIMALS TO

PLABEL PLABEL1." It is identical in effect to the RANK NUMBERS option,

92

except that rank numbers are converted to decimal fractions . Hence,

they may be treated as percentile scores

„

The ASSIGN command, in any of its nine forms, runs two error

checks. These determine whether;

1. PLABEL is an already-defined property name identifying any

property not on level zero (and scalar, if RANK is used);

and

2. PLABEL1 is a legal name for a new property (see require-

ments in section 7.3.1)

°

If no errors are detected, a request for an optional verbal

description will appear . This will be followed by the message "PLABEL1

HAS BEEN ASSIGNED," and then "OK."

Successful execution of the ASSIGN command updates the P-string

in the usual manner „ Automatic specifications are as follows.

1. The origin of PLABEL1 is noted as the ASSIGN command.

2. The property type is uniformly scalar, which implies a

dimensionality of one row and one column per case.

3. The level of PLABEL1 is equated with the level of PLABEL.

4. Both definition and creation modes are set to temporary.

5„ The operational definition is one of the nine (really

eight) generating functions previously described.

The fastest way through the ASSIGN command is to type the

single specification line, followed by two carriage returns. This will

obviate any verbal description.

93

7.3.7 The Group Command

The GROUP command serves to group cases on one level in prep-

aration for computing summary properties applicable to the next-higher

level. In this manner, group means, standard deviations, etc. may be

computed from individual case data.

Assuming the rapid input mode, the GROUP command is issued as

follows

.

GROUP PLABEL PLABEL1

PLABEL is the name of the property on the lower level whose cases are to

be grouped. PLABEL1 is the name of the property on the next-higher level

containing grouped data corresponding to PLABEL.

Action taken by the GROUP command is as follows. First, the

specification is checked to determine whether:

1. PLABEL is an already-defined property name identifying

either a scalar or a vector property not on level zero;

2. there exists at least one level higher than the level of

PLABEL; and

3. PLABEL1 is a legal name for a new property (see require-

ments in section 7*3.1).

If no errors are detected, a request for an optional verbal

description will appear. This will be followed by the message "PLABEL

HAS BEEN GROUPED UNDER THE NAME OF PLABEL1," and then "OK."

9h

Successful execution of the GROUP command updates the P-string

in the usual manner. Automatic specifications are as follows.

1. The origin of PLABEL1 is noted as the GROUP command.

2. The property type is vector, if PLABEL is a scalar, or

matrix, if PLABEL is a vector.

3. The number of rows in PLABEL1 is equated with the number

of cases in the largest group formed, if PLABEL is a vec-

tor property, or one, if scalar.

k. The number of columns in PLABEL1 is equated with the num-

ber of cases in the largest group formed, if PLABEL is a

scalar property, or vector length, if vector.

5. The level of PLABEL1 is set at one higher than the level

of PLABEL.

6. Both definition and creation modes are set to temporary.

7. There is no operational definition of PLABEL1.

The number of cases contained in a group will not, in general,

be the same across all groups. Hence, when property data corresponding

to PLABEL1 are actually created (by the CREATE command), those groups

containing fewer than the maximum number of cases will be assigned vec-

tor or matrix property values with one or more undefined elements.

Undefined elements will always be the right-most elements in a row and

the lowest elements in a column.

95

The fastest way through the GROUP command is to type the

single specification line, followed by two carriage returns. This will

obviate any verbal description.

7.3.8 The ECOUNT Command

The ECOUNT command counts the number of defined elements in

any scalar, vector, or matrix property. It is particularly useful in

counting the number of defined cases associated with any property

defined by the GROUP command. It is also useful for various matrix

algebra manipulations (e.g., computing the mean of all defined elements

within a vector property)

„

Assuming the rapid input mode, the ECOUNT command is issued

as follows.

ECOUNT PLABEL PLABEL1

PLABEL is the name of the property whose defined elements are to be

counted. PLABEL1 is the name of the new property containing this count.

Action taken by the ECOUNT command is as follows. First, the

specification is checked to determine whether:

1. PLABEL is an already-defined property name; and

2. PLABEL1 is a legal name for a new property (see require-

ments in section 7.3.1).

If no errors are detected, a request for an optional verbal

description will appear. This will be followed by the message "PLABEL

HAS BEEN COUNTED UNDER THE NAME OF PLABEL1," and then "OK."

96

Successful execution of the ECOUNT command updates the

P-string in the usual manner. Automatic specifications are as follows.

1. The origin of PLABEL1 is noted as the ECOUNT command.

2. The property type is vector, if PLABEL is matrix. Other-

wise, it is scalar.

3. The number of rows is uniformly set equal to one.

h. The number of columns is equated with the number of rows

of PLABEL.

5. The level of PLABEL1 is equated with the level of PLABEL.

6. Both definition and creation modes are set to temporary.

7. There is no operational definition of PLABEL1.

The fastest way through the ECOUNT command is to type the

single specification line followed by two carriage returns. This will

obviate any verbal description.

7.3.9 The DESCRIBE Command

The DESCRIBE command is the single mechanism through which

information about defined properties may be obtained. Such informa-

tion can be useful as a reminder to the user of previous and possibly

forgotten property definitions, as a means of "playing back" and,

thereby, verifying current definitions, as a diagnostic device to

ferret out the source of incomprehensible results, and as a vehicle of

final documentation. The DESCRIBE command will provide information

on any defined property, no matter which command was used to define it.

97

Assuming the rapid input mode, the DESCRIBE command is issued

as follows.

DESCRIBE PLABEL (additional optional parameters)

PLABEL is the name of an already-defined property.

If the DESCRIBE command is issued as shown above without addi-

tional parameters, the effect will be a complete description of PLABEL.

This will include the following items of information displayed on the

console in the following order:

1. ORIGIN—the name of the command which defined PLABEL;

2. PTYPE—scalar, vector, or matrix, whichever property type

PLABEL happens to be;

3. NROWS—the number of rows associated with each case of

PLABEL;

k. NCOLS—the number of columns associated with each case of

PLABEL;

5. LEVEL—the level on which PLABEL resides;

6. DFI DDE--temporary or permanent, depending upon PLABEL'

s

definition mode

;

7. CRI'ODE—temporary or permanent, depending upon PLABEL'

s

creation mode;

8. BLOCKN—the serial number of the data block within which

corresponding property data reside, if such data have been

created;

98

9. BLOCKA—the starting address of the first data word within

the above data block, if such data have been created;

10. VDSC—a verbal description of PLABEL, if one exists; and

11. 0PDEF--an operational definition of PLABEL, if one exists.

In many cases, the user will not wish all of this information.

Any sub-set of the above items may be obtained by appending their key-

words (the capitalized words immediately following the numbers on the

above list) to the command line. These keywords constitute additional

optional parameters to the DESCRIBE specification. They may be appended

in any order. Also, any keyword may appear more than once, and undefined

words may be interspersed with keywords. Redundancies and errors of this

nature will be ignored without damage to DATANAL and without an error

message.

In addition to these selectivity options, the DESCRIBE command

provides a COMPLETE option. By appending the keyword "COMPLETE" any-

where after PLABEL on the specification line, whatever information was

requested for PLABEL will also appear for all of the properties involved

in the definition of PLABEL. The complete definitional "tree" is traced

out, beginning with all of the basic properties underlying PLABEL, pro-

gressing through any intermediate definitions linking PLABEL to basic

properties, and culminating in PLABEL itself. If PLABEL identifies a

basic property, then only information on PLABEL will appear. This

option is particularly useful in ferreting out the source of incompre-

hensible results and in providing automatic final documentation.

99

The DESCRIBE command checks only to see whether PLABEL is an

already-defined property name. Its successful execution is indicated by

the usual "OK" message.

7.3.10 The CHANGE Command

The CHANGE command serves to alter selected portions of an

existing property definition. It also serves several special functions

previously discussed.

Assuming the rapid input mode, the CHANGE coimand is issued in

any one of the following five forms.

/pLABEL PLABEL PLABEL1

J
DFKODE PLABEL T or P

CHANGE / CRMODE PLABEL T or P

]
LEVEL PLABEL or N

^VDSC PLABEL

The first form of the CHANGE command is "CHANGE PLABEL PLABEL

PLABEL1." The second word in this specification, "PLABEL," is a keyword

and must be entered literally right after "CHANGE." It indicates that

the label or name of a property is to be changed. PLABEL (the third

word) is the name of the property which is to be changed. PLABEL1 is

the new property name. A check is made to determine whether PLABEL is

an already-defined property name. This is true for all five forms of

the CHANGE command. If so, every reference to PLABEL in the P-strine is

changed to PLABEL1, except references contained within verbal descriptions,

The second form of the command is "CHANGE DFKODE PLABEL T or P."

The keyword "DFKODE" indicates that the definition mode of PLABEL is to

100

be changed. "T" means changed to temporary. "P"- means changed to per-

manent. Requesting that a mode be changed to the mode which already

applies will cause no harm, nor will it induce an error message.

The third form of the command is "CHANGE CRNODE PLABEL T or P."

Its effect is identical to the DEMODE form, except the creation mode is

changed. (Note: neither the definition mode nor the creation mode of

level-linkage identity tags may ever be changed from permanent to

temporary.

)

The fourth form of the command is "CHANGE LEVEL PLABEL or N."

Its effect is to change the level of PLABEL, subject to certain restric-

tions. The first action is to check whether PLABEL is an already-defined

property name. The second action is to check whether any other proper-

ties are defined either directly or indirectly in terms of PLABEL. If

so, an error message will appear, and the command will not be executed.

The third action is to check whether a level change is requested to or

from level zero. Scalar and vector properties may undergo a level

change from any level to level zero. Vector properties may undergo a

level change from level zero to any other level, provided that the num-

ber of columns in the vector equals exactly the number of cases on the

new level. A scalar property on the new level will result. Matrix

properties may undergo a level change from level zero to any other

level, provided that the number of rows in the matrix equals exactly the

number of cases on the new level. A (row) vector property on the new

101

level will result with the same number of columns as the original matrix.

No other kinds of level changes are permitted.

The fifth form of the command is "CHANGE VDSC PLABEL." Assum-

ing that PLABEL is an already-defined property name, explicit instruc-

tions will appear to guide the user in appending a verbal description to

PLABEL.

None of these five forms of the CHANGE command affect property

data. Only the P-string is affected. It is updated immediately.

Successful execution of all forms is indicated by the message

"PLABEL HAS BEEN CHANGED," followed by "OK."

7.3.11 The ERASE Command

The ERASE command is used to delete property definitions and

corresponding property data from a working data base. This can be use-

ful as a storage-saving device and as a means of clearing out space on

the P-string in the very unlikely event that an overflow occurs.

Assuming the rapid input mode, the ERASE command is issued as

follows

.

ERASE PLABEL1 PLABEL2 ... PLABELN

PLABEL1, PLABEL2, PLABELN are already-defined names. The "CONT."

option is available up to 100 words.

Action taken by the ERASE command is as follows. First, each

listed property is inspected to determine whether:

102

1. it is an already-defined property;

2. its definition mode is temporary;

3. every property defined in terms of it (either directly or

indirectly) is in temporary definition mode; and

4. property data corresponding to it and to every property

defined in terms of it (either directly or indirectly) are

in temporary creation mode, whether or not these data

actually exist,,

Violations on any of the above counts will induce an error message and

will preclude execution.

For those listed properties which pass all of the above checks,

corresponding property data are removed from the data blocks. Then, the

property-defining information is removed from the P-strin^. Both the

P-string and the data blocks are then re-packed to economize on disk

storage space.

Successful execution is indicated by the message "PLABEL HAS

BEEN ERASED" for each erased property. The last such message is fol-

lowed by the usual "OK."

7.4 Data-Creating and Data-Destroying Commands

There is a single command in DATANAL to implement operational defi-

nitions generated by all of the property-defining commands. This is the

CREATE command. It is the primary vehicle for introducing property data

103

into a working data base. Except for the SETUP and ESTABLISH commands

(which create level-linkage identity tags) and certain rapid analysis

commands (to be discussed in section 8.1), it is the sole vehicle.

There is another command, the DESTROY command, for removing data

from a working data base. It may be used to eliminate intermediate

results no longer of interest to the user, redundant data generated by

duplicating various properties, and irrelevant data. It may also be

used to free up disk storage space whenever a working data base is to be

retained in a dormant state for an extended period of time. Recall that

property data may always be re-created, so long as the property defini-

tion remains on the P-string.

l.k.l The CREATE Command

Although the most complex from the programming point of view,

the CREATE command is one of the simplest to use. Assuming the rapid

input mode, the CREATE command is issued as follows.

CREATE PLABEL1 PLABEL2 . . . PLABELN

PLABEL1, PLABEL2, ..., PLABELN are the names of already-defined proper-

ties. The "CONT." option is available up to 100 words.

The first step taken is to check each listed property to

determine whether:

iou

1. it is an already-defined property; and

2. the corresponding property data have already been created.

If the property is undefined, an error message will appear. If property

data already exist, the specification will be ignored without damage and

without an error message.

The next step is to determine which command defined each

remaining property on the specification list. Those defined by the READ

command are segregated for early processing, since these are uniformly

basic. If none are found, the next few steps are skipped.

All properties defined by the READ command are then re-ordered

according to their field address in the raw data base. This permits a

single pass through the raw data base, unless the total amount of data

overflows maximum core capacity, less reading instructions. Should an

overflow appear imminent, multiple passes will be made. These activ-

ities follow a single error check to determine whether the raw data

base still exists on the user's disk.

Successful execution is indicated by the message "PLABEL HAS

BEEN CREATED" for each listed property. This means that the correspond-

ing property data have been transferred to one of the data blocks and

that both the block number and the block address have been placed on the

P-string.

Whenever missing or illegal (i.e., nonnumeric) data are

encountered in the raw data base, the corresponding data in the working

data base will be undefined. This occurs without hesitation and without

105

any error message. The number of such undefined observations may be

determined subsequently by issuing the DESTAT command (see section 7.5.2),

Their identity may be determined by issuing the DISPLAY command (see

section 7.5*1)

•

All remaining basic properties (i.e., pure numbers entered via

the SET command and serial or random numbers generated by the ASSIGN

command) , and all remaining nonbasic properties are created next. The

exact procedure varies with the definitional origin of each property.

Let us begin with properties defined by the DEFINE command.

The overall procedure is as follows.

1. Start with the first case.

2. Determine whether any Boolean conditions exist. If so,

proceed to the next step. Otherwise, proceed to step 7.

3. Evaluate the algebraic expression associated with an

elementary condition.

4. Compare this computed value with the current value of

(i.e., the value of this case on) the corresponding PLABEL

according to the indicated numeric relationship.

5. If the indicated numeric relationship is satisfied, pro-

ceed to the next AND-ed condition, and return to step 3.

Proceed to step 7, if all AND-ed conditions have been

tested. If the indicated numeric relationship is not sat-

isfied, and if this is either an AND-ed condition or the

last in a string of uniformly unsatisfied OR-ed conditions,

106

proceed to step 6. Otherwise, proceed to the next condi-

tion in the OR-ed string, and return to step 3.

6. The set of Boolean conditions has not been satisfied.

Consequently, the value of this case on the property being

created is undefined . Proceed to the next case, and

return to step 3°

7. The set of Boolean conditions (if any exist) has been sat-

isfied. Consequently, evaluate the algebraic expression

or collect property data, if a vector/matrix specification

is involved, and store the results on the data block.

Then, proceed to the next case, and return to step 2.

Within the above general procedures are imbedded several uni-

form conventions. These are listed below.

1. Boolean conditions are tested serially. The testing order

is determined by the specification order in the DEFINE

command. Consequently, the user may render the creation

process more efficient by manipulating this specification

order in two ways. First, he may order strings of OR-ed

conditions in decreasing a priori likelihood of being sat-

isfied. Second,, he may order AND-ed conditions in increas-

ing a priori likelihood of being satisfied. Although not

essential to obtaining an answer, these maneuvres will

generally obtain one more quickly.

107

2. When evaluating any expression in a Boolean condition,

every term must be completely defined. Otherwise, that

condition is considered unsatisfied „ Thus, every element

in a vector or matrix property involved in a Boolean con-

dition must be defined to satisfy that condition . This is

a necessary, but not a sufficient criterion.

3. In contrast, expressions involved in algebraic transforma-

tions and elements collected to form vectors/matrices need

not be completely defined to obtain a defined result. If

a vector or matrix is being created, some of its elements

may be defined, while others are not.

4. The evaluation of all algebraic expressions is protected

against termination due to illegal computations. This is

accomplished by a series of "look-aheads" built into the

evaluation mechanism. If an illegal computation appears

imminent (e.g., division by zero, square root of a nega-

tive number, etc.), that computation is skipped, and the

result is undefined. Processing will then continue

normally.

5. Whenever vectors or matrices are involved in any algebraic

expression, a resulting element will be defined if and

only if all elements involved in the computation are

defined, and the computation is legal. This statement

does not apply to multiplication. Here, only enough

108

elements need be defined to obtain at least one term in

the cumulative sun. The remaining undefined terms are

ignored. This device is extremely useful for defining a

series of alternative functions sharing the same range and

domain, but applying under mutually exclusive Boolean

conditions. Collecting these functional definitions in a

vector and then post-multiplying them by a vector of ones

serves to define a conditional function whose shape or

form may be altered automatically according to the current

values of whichever properties are contained in the

Boolean conditions.

The creation of properties defined by the SET and COMPUTE com-

mands proceeds as discussed above, except that no Boolean conditions are

involved.

Properties defined by the RECODE command are created as follows.

1. Start with the first case.

2. Test the set of Boolean conditions associated with the

first specification. Boolean conditions are tested as

previously described. If satisfied, assign the integer

one to this case, proceed to the next case, and repeat

this step. Otherwise, proceed to the next specification,

and repeat this step. Continue in this manner until

either one of the specifications is satisfied or the list

of specifications is exhausted. If satisfaction is

achieved, assign the serial number of the satisfied

109

specification as the value of this case, proceed to the

next case, and repeat this step. If all specifications

are exhausted without satisfaction, this case is undefined.

Proceed to the next case, and repeat this step.

Properties defined by all other commands are created in a

straightforward manner. No special explanation is required.

One additional feature of the CREATE command is its ability to

determine automatically which properties must have been created first in

order to create a specified property, to determine the order in which

such computations must be performed, and to create all necessary inter-

mediate properties without explicit direction. Thus, if a lengthy

definitional chain is established by the user, but he is only interested

in the final results, he need only request that the last property in the

chain be created. He need not remember the names of intermediate prop-

erties, nor request their creation explicitly. This is particularly

helpful when a user returns to a working data base after several months

of inactivity.

Successful execution of the CREATE command is indicated by the

message "PLABEL HAS BEEN CREATED" for each property. An "OK" will fol-

low the last such message. This means that all computed data have been

transferred to data blocks and that block numbers and addresses have been

appended to the P-string.

110

7.4.2 The DESTROY Command

The DESTROY command removes property data from a working data

base and re-packs those data blocks affected by the removal to conserve

disk storage space. This is accomplished without erasing any property

definitions from the P-string.

Assuming the rapid input mode, the DESTROY command is issued

as follows.

DESTROY PLABEL1 PLABEL2 „ „ . PLABELN

PLABEL1, PLABEL2, ..., PLABELN are names of already-defined properties.

The "CONT." option is available up to 100 words.

Undefined properties induce error messages, but redundant

specifications are ignored without damage and without any explicit

messages. Requests to destroy nonexistent data are treated as redundant.

Successful execution of the DESTROY command is indicated by

the message "PLABEL HAS BEEN DESTROYED" for each property. An "OK" will

follow the last such message.

The user should be prepared to see many changes in the data

addresses of remaining properties following the DESTROY command. This

is because all data blocks are re-packed to eliminate "holes" created

thereby

.

Ill

7.5 Data-Sunmarizing and Data-Display Commands

DAIANAL contains five commands for summarizing and displaying

already-created property data. The most basic of these is the DISPLAY

command. It is to property data what the DESCRIBE command is to prop-

erty definitions Specific results may be selected for display on the

console. However, no attempt is made within the DISPLAY command either

to reorder or to summarize data in any manner.

The DESTAT command computes and displays four descriptive statistics

for any given property:

1. its mean;

2. its median;

3. its standard deviation; and

4. the number of cases defined on it.

The RANK comand ranks property data (numerically highest first)

prior to display on the console. However, the order of cases is not

changed within data blocks.

The COUNT command provides absolute and relative frequency informa-

tion about a property. Categories must be pre-established by the RECODE

command before a count nay be effected.

The TABLE command produces and displays two-dimensional tables.

The contents of each row and column of a table must have been pre-

established by the RECODE command.

112

Before discussing these five commands individually, it would be

well to describe the several conventions which apply uniformly to all of

them. This is done below.

1. Execution of all commands is preceded by two error checks. One

determines whether every specified property has been defined.

The other determines whether the corresponding data have been

created. Only if both checks are passed will action continue.

Otherwise, the command will terminate with an appropriate error

message. None of these commands alter the contents of the

P-string or any data block.

2. All results are printed on the console without format specifi-

cation. Each command figures out its own format according to

the particular characteristics of the data involved. This

includes integer/decimal discrimination, lining up decimal

points for column arrays, horizontal spacing for vector dis-

plays, both horizontal and vertical spacing for matrix dis-

plays, and other such decisions. The user need never worry

about these annoying details.

3. Asterisks (*) are displayed uniformly to indicate undefined

property values,

4. Every command may be conditioned in either or both of the fol-

lowing ways. First, a sub-set of N cases may be obtained by

appending an integer N to the specification list. Second, this

113

can be r.ade a random sub-set by following H with the keyword

"RA:x:::." Without "RAHDOM," the sub-set will be serial (i.e.,

it will involve the first H cases). This H BASDCM option is

also available for all of the rapid analysis corr-.ar.ds, as well

as for all private, user-defined eounands. It is particularly

useful for "getting a feel" for or.e's data and for perforrin-

partial analyses without overworking the computer needless!-"

(e.g., by analyzing all cases).

5. Whenever a sufficient quantity of inforraticn has been dis-

played, a manual abort is always possible and frequently

desirable. The one-push variety is reccrr.er.ded.

6. Successful execution of all five commands is indicate-:

7.5.1 The DISPLAY Ccrr-.and

Assuring the rapid input rode, the DISPLAY conanand is issued

as follows.

DISPLAY PLASEL N RANDOM (optional)

PLA3EL is the nare of an already-defined ar.i already-created proper---.

The N RANDOM option is available. N ray be specified without RAHDGH.

If specified, RANDOI! rust be preceded by N. PLASEL must precede both.

These statements apply to all commands.

Ill*

Without the N RANDOM option, the effect is to display PLABEL

on the console. All cases are displayed according to the following

format conventions,

1. Each case is preceded by a serial integer. This is to

facilitate visual reference only. Serial integers should

not be confused with property data.

2. Scalar property data are displayed in a single column of

successive cases,

3. Vector property data are displayed row-wise, if possible.

That is, all of the elements in a vector are layed out

along a single row, and the next vector associated with

the next case appears as the next row. If vectors cannot

fit along a row, they will be layed out column-wise (i.e.,

successive single-column displays, each preceded by a ser-

ial integer). Vectors can always be layed out column-

wise, since the display process is indefinitely expandable

in the vertical direction.

^•. Matrix property data are displayed as is, if they can fit.

Once again, the constraint lies in the horizontal direc-

tion. Users are urged to define matrices so that the num-

ber of columns never exceeds the number of rows. This

will increase the likel±hood of a fit, since the number

and width of columns is the only thing that can cause an

115

overflow. Should an overflow occur, an error message will

appear, and no display will occur.

If N is specified, but without RANDOM, the first N cases will

be displayed according to the above conventions.

If RANDOM is also specified, N cases will be displayed as

before, but it will be a random selection of N cases. Normally, the

selection will differ over successive issuances of the same command.

7.5.2 The PESTAT Command

Assuming the rapid input mode, the DESTAT command is issued as

follows

.

DESTAT PLABEL N RANDOM (optional)

PLABEL is the name of an already-defined and already-created property.

Mean, median, standard deviation, and number of defined cases

is computed and displayed for PLABEL. A separate scalar, vector, or

matrix of results is displayed in each of the above four instances,

depending on whether PLABEL is a scalar, vector, or matrix property,

respectively. All summarizing computations are made on an element-by-

element basis. Format conventions are as discussed under the DISPLAY

command.

7.5.3. The RANK Command

Assuming the rapid input mode, the RANK command is issued as

follows

.

116

RANK PLA3EL N RA2ID0:: (optional)

PLABEL is the name of an already-defined and already-created orooerty.

Property data under PLABEL are ranked according to the follow-

ing conventions.

1. Highest numeric values appear first.

2. All undefined cases are pushed to the botton and appear

after the lowest defined case.

3. If PLABEL is a vector or matrix property, ranking will be

performed on the basis of the first element.

h. Format conventions are as discussed under the EISPLA"

command.

7. 5.** The COUNT Command

Assuring the rapid input mode, the COUITT command is issued as

follows

.

COUNT PLABEL N RA::iXr: (optional)

PLABEL is the name of an already-defined and already-created property.

The COUNT command will only operate upon properties defined by

the RECODE command, possibly modified by a string of DEFINE commands

involving only duplications subject to Boolean conditions (i.e., no

algebraic transformations are permitted). Then, four kinds of frequency

information are computed and displayed on the console

:

117

1. absolute frequency of defined cases in each category

(i.e., a simple count);

2. cumulative absolute frequencies;

3. relative frequency of defined cases in each category

(i.e., a percentage distribution); and

k. cumulative relative frequencies.

Undefined cases are uniformly ignored.

7.5 5 The TABLE Command

Assuming the rapid input mode, the TABLE command is issued as

follows

.

TABLE PLABEL1 PLABEL2 N RANDOM (optional)

PLABELl and PLABEL2 are the names of two already-defined and already-

created properties.

Like the COUNT command, the TABLE command operates only upon

properties defined by the RECODE command, possibly modified by a string

of restricted DEFINE commands. These restrictions apply to both PLABELl

and PLABEL2.

The TABLE command produces and displays four tables:

1. joint absolute frequencies resulting from a cross-tabula-

tion of PLABELl and PLABEL2;

2. corresponding joint relative frequencies;

3. corresponding conditional relative frequencies by row; and

^. corresponding conditional relative frequencies by column.

118

The categories of PLABEL1 form the rows of each table, while the cate-

gories of PLABEL2 form the columns. Only cases defined on both PLABEL1

and PLABEL2 are tabled. All others are ignored.

Row and column totals are computed internally. Also, display

formats are determined without specification. To reduce the chances of

a horizontal overflow in the display of these tables, they should be

requested so that the number of columns never exceeds the number of

rows. As in the DISPLAY command, horizontal overflows will induce an

error message and will preclude the display of any further results.

119

8.0 THE STANDARD ANALYTICAL COMMANDS OF DATANAL

DATANAL comes equipped with a set of standard analytical commands.

Most of these execute statistical procedures, many of which are nonpara-

metric or distribution-free in terms of their assumptions.

Almost all of the statistical procedures are available in both a

rapid and a guided version. The rapid analysis versions operate dir-

ectly upon property data prepared by the various commands described in

section 7. Guided versions are essentially independent of DATANAL.

Once called (by issuing the EXECUTE command), they are completely self-

contained. They provide explicit instructions for typing data into the

computer. They also provide detailed diagnostic and interpretive

information. Their primary value lies in training beginners and in

testing hunches which involve small-to-intermediate amounts of data. In

addition, they have proven highly successful as single-shot demonstra-

tion devices, particularly where the objective of the demonstration is

pedagogical. Hox-rever, the rapid versions are recommended for frequent

and experienced users.

DATANAL also contains certain built-in synonym relationships.

These permit a relatively small number of coded routines to be refer-

enced by a larger number of names or labels. The details of these

relationships will be discussed in section 8.2.

120

8.1 Rapid Analysis Commands

There are eight rapid analysis commands in DATAMAL. All of these

are issued with a single-line specification. Also, the N RANDOM option

discussed in section 7*5 is universally available.

Unless otherwise specified, internal core capacity restrictions are

variable. That is, imminent overflows will not be detected until execu-

tion is attempted, at which time an error message will appear. This

situation can often be remedied by re-issuing the same command condi-

tioned by some form of the N RANDOM option.

Some of these commands provide the option of saving computed

results for subsequent use. None of them destroy prepared input data.

When the save option is exercised, a new property is both defined and

created in temporary mode. The P-string is updated accordingly, and

corresponding property data (saved from the analysis) are deposited in

one of the data blocks. Subsequent issues of the DESCRIBE command will

identify the origin of such properties as "some procedure." All rapid

analysis commands ignore or skip undefined property data.

8.1.1 The CNTING Command

The CNTING command performs statistical analyses on contingency

tables. It way be used to execute a Chi square test of either homogen-

eity or independence, a Fisher exact test of either homogeneity or inde-

pendence, and a median test on absolute frequency data.

Ill

Assuming the rapid input r.ode, the CITITHG command is issued in

either of the following two forms.

CKTCC P1ABEL1 PIABE12 N RAlDCll (optional)

PLABEL1 and PLABEL2 are the nar.es of two already-defined and already-

created scalar properties residing on the sane nonzero level.

CNTING PLABEL N RANDOM (optional)

PLABEL is the name of an already-defined and already-created matrix

property on level zero.

Restrictions on the CNTOJ3- command are as follows.

1. Both PLAEIL1 and P1ABEL2 must have been defined by the

RECODE commanc. possibly -.edified by a string of DEFTHE

commands involving only logical transformations. This

restriction applies to the first form of the command.

2. PLABEL must contain absolute frequency data only, if the

second forr of the command is used.

3. Contingency tables cannot exceed 25 rows and/or 25 columns.

h. There are additional restrictions. However, they are num-

erous ard highly specific to the particular input data

received. Also, when violated, appropriate error message

will appear on the cor. sole. Consequently, they will not

be discussed here.

122

On the basis of -whatever data are received, the CNTING command

will select automatically a particular kind of analysis, perform it if

possible, and print out the following information:

1. a joint absolute frequency table;

2. a declaration of what kind of analysis was performed

(e.g., a Chi square or Fisher test);

3. the computed value of Chi square, if it was computed;

^4. the exact 1-tail and 2-tail probabilities of occurrence of

a Chi square value (or Fisher table) at least as extreme

as the one generated, assuming either homogeneous samples

or statistically independent properties; and

5. measures of predictive efficacy.

There is no save option associated with the CNTING command.

The computations are so simple and the results are so few that it pays

to repeat the command, if a review of results is desired.

8.1.2 The T-TEST Command

The T-TEST command performs an uncorrelated T test on two

samples containing independently drawn cardinal data. As an added

bonus, the Wann-Whitney U test is performed on the same data.

Assuming the rapid input mode, the T-TEST command is issued as

follows

.

T-TEST PLABEL1 PLABEL2 N RANDOK (optional)

123

PLABEL1 and PLABEL2 are the nanes of two already-defined and already-

created properties residing on the sane nonzero level.

If both PLABEL1 and PLABEL2 are scalar properties, results

will be displayed on the console with no save option. If both are vec-

tor properties, analyses will be performed on a case-by-case basis. The

results for each case iri.ll be displayed on the console, and the save

option will be offered. If exercised, a vector property will be defined

and created under a name provided, upon request, by the user. All other

kinds of inputs will be rejected with an appropriate error message.

Additional restrictions exist. These will be flagged by error

messages upon execution, if and only if they are violated.

Outputs include the following items in the following order

(note: this is the order in which they will be stored, if a vector

property is created by exercising the save option):

1. the sample mean under PLABEL1;

2. the sample mean under PLABEL2;

3. the computed value of T;

4. the exact 2-tail probability of occurrence associated with

the computed value of T;

5. the computed value of U; and

6. the exact 2-tail probability of occurrence associated with

the computed value of U. (Note: either the DESTAT or the

ECOUNT command may be issued to determine relevant sample

sizes.)

12U

8.1.3 The TOTEST Command

The TOTEST command performs a correlated T test on two samples

of matched pairs of independently drawn cardinal data. As added

bonuses, the Wilcoxon matched-pairs signed-ranks test and the binomial

sign test are performed on the same data.

Assuming the rapid input mode, the TOTEST command is issued as

follows.

TOTEST PLABEL N RANDOM (optional)

PLABEL is the name of an already-defined and already-created property

residing on any level except zero.

If PLABEL is a two-element vector property containing matched

pairs of data, results will be displayed on the console with no save

option. If PLABEL is a matrix property with two rows of matched pairs,

analysis xd.ll be performed on a case-by-case basis. The results for

each case will be displayed on the console, and the save option will be

offered. If exercised, a vector property will be defined and created

under a name provided, upon request, by the user. All other kinds of

inputs will be rejected with an appropriate error message.

Additional restrictions exist. These will be flagged by error

messages at execution time, if and only if they are violated.

125

Outputs include the following itens in the following order

(note: this is the order in which they will be stored, if a vector prop-

erty is created by exercising the save option)

:

1. the mean difference computed by subtracting each second

member of a pair from the first and averaging the results;

2. the computed value of T, assuming zero mean difference;

3. the exact 2-tail probability of occurrence associated with

the computed value of T;

4. the computed vahe of the T.!ilcoxon matched-pairs signed-

ranlcs statistic

;

5. the exact 2-tail probability of occurrence associated with

the Wilcoxon statistic

;

6. the number of positive differences computed;

7. the number of negative differences computed;

8. the exact binomial probability of occurrence of the maxi-

mum of 6 or 7 above ; and

9. the number of completely defined matched pairs involved in

computing all of the above results.

8.1.4 The ANLVR1 Command

The ANLVR1 command performs a one-way analysis of variance on

multiple samples of independently drawn cardinal data.

Assuming the rapid input mode, the ANLVR1 command is issued as

follows

.

126 .

ANLVR1 PLABEL1 PLABEL2 N RANDOM (optional)

PLABEL1 and PIABEL2 are the names of two already-defined and already-

created scalar properties on the same nonzero level.

PLABEL1 serves as a classificatory or "cutting" property. It

defines the sub-sample into xrtiich each case will fall. PLABEL2 is the

property to be analyzed (frequently some measure of an experimental

effect). PLABEL1 must have been defined by the RECODE command, possibly

modified by a string of DEFINE commands involving only logical trans-

formations. PLABEL2 must be a scalar property.

Additional restrictions exist. These will be flagged by error

messages at execution time, if and only if they are violated.

Outputs include:

1. sub-sample means on PLABEL2;

2. sub-sample sizes (i.e., number of defined cases);

3. the computed value of the F ratio;

4. the two degree of freedom numbers associated with F; and

5. the exact 2-tail probability of occurrence associated with

the computed value of F.

There is no save option available.

8.1.5 The ANLVR2 Command

The ANLVR2 command performs a two-way analysis of variance on

independently drawn cardinal data.

127

Assuming the rapid input node, the ANLVR2 command is issued as

follows

.

ANLVR2 PLABEL1 PLABEL2 PIABEL3 N RANDOi: (optional)

PLABEL1, PIABEL2 and PIABEL3 are the nanes of three already-defined and

already-created scalar properties on the sane nonzero level.

Both PIABEL1 and PLABEL2 serve as classificatory or "cutting"

properties. Together they define a two-way table (frequently indicating

different experimental treatments and/or levels of treatment) . PLABEL3

is the property to be analyzed (frequently some measure of an experimen-

tal effect). Both PIABEL1 and PIABEL2 must have been defined by the

RECODE command, possibly modified by a string of DEFINE commands involv-

ing only logical transformations. PLABEL3 must be a scalar property.

Additional restrictions exist. These will be flagged by error

messages at execution time, if and only if they are violated.

Outputs include:

1. a table of joint absolute frequencies indicating various

cell sizes (notes the ANLVR2 command will only operate

upon tables with identical cell sizes uniformly greater

than one)

;

2. a table of means on PLABEL3 including all cell means, row

means, column means, and the grand mean;

128

3. computed F ratios for the row effect, column effect, and

interaction effect, respectively;

b, associated degrees of freedom for each of the above

;

5. exact 2-tail probabilities of occurrence associated with

each of the above; and

6. measures of predictive efficacy.

There is no save option available.

8.1.6 The NRMTST Command

The NRMTST command performs a general test of goodness-of-fit

between cardinal sample data and an assumed normal population with

unknown mean and variance. As an added bonus, the symmetry of the popu-

lation is also tested.

Assuming the rapid input mode, the NRMTST command is issued as

follows.

NRMTST PLABEL N RANDOM (optional)

PLABEL is the name of an already-defined and already-created property on

any level except zero.

At least twenty defined cases are required to execute a normal-

ity test. Four cases suffice for the symmetry test. Additional restric-

tions will be flagged at execution time, if and only if they are

violated.

-

If FUSEL is a scalar property, results will be printed on the

console with no save option. If PIABEL is a vector property, analyses

will be performed on a case-by-case basis. 7r.e results for each case

will be displayed or. the console, ar.-' the save option will be offered.

If exercised, a vector property will be defined and created under a name

provided, upon request, by the user. All other kinds of inputs will be

rejected with an approperiata error r.essare :

Outputs include the fell wins i-.e-.s ir. -.he following order

(note: this is the order in which they -toll be stored, if a rector prcr-

erty is created by exercisolr.c the save option):

1. the computed value of 3hi square [indicating goodness-of-

fit to a normal population)

;

2. the associated decrees of freed:-.:

3. the exact 2-tail probability of occurrence associated with

the computed value of Chi square;

k. the computed vate of the Vile oxer, natched-pairs sirr.ed-

ranks statistic (indicating cocdr.ess-oi-fit tc a symmetric

population) : a:

5. the exact 2-tail probability of occurrence associated with

the computed value : 'yilccxcr. statistic.

8.1.7 The CORSEL Command

The CCRREL comnand performs both linear (Pearscr.
v and rank-

order (Kendall) correlation ses. It also computes selected partial

correlation coefficients, if requested.

130

Assuming the rapid input node, the CORREL comand is issued as

follows

.

CORREL PLABEL1 PLABEL2 PLABELN N RANDOK (optional)

PLABEL1, PLABEL2, ..., PLABEL!: are the names of already-defined and

already-created properties residing on the same nonzero level.

If all of the listed properties are scalar, results will

appear on the console with no save option. If all are vectors contain-

ing the same number of elements, and if the elements are matched across

vectors, analyses will be performed on a case-by-case basis. The

results for each case will be displayed on the console, and the save

option will be offered. If exercised, a set of six matrix properties

will be defined and created under names provided, upon request, by the

user. All other kinds of inputs will be rejected with an appropriate

error message.

No more than six properties may be intercorrelated in a single

command. Additional restrictions will be flagged at execution time, if

and only if they are violated.

Outputs include the following items in the following order:

1. a matrix of Pearson product-moment correlation

coefficients

;

2. a corresponding matrix of exact 2-tail probabilities of

occurrence

;

131

3. a corresponding matrix of sample sizes;

k. a matrix of Kendall rank-order correlation coefficients;

5. a corresponding matrix of exact 2-tail probabilities of

occurrence ; and

6. a corresponding matrix of sample sizes.

8.1.8 The LINFIT Command

The LINFIT command fits a linear function to cardinal property-

data via least squares. Alternatively, a polynomial may be fitted by

the same technique.

Assuming the rapid input mode, the LINFIT command is issued as

follows

.

LINFIT PLABEL1 PLABEL2 N RANDOI-I (optional)

PLABEL1 and PLABEL2 are the names of two properties on the same nonzero

level.

PLABEL1 is the property to be fitted (e.g., the dependent var-

iable), and PLABEL2 contains the fitting data (e.g., the independent var-

iable or variables). If PLAEEL1 is a scalar property, then PLABEL must

be either a scalar or a vector property. If PLABEL1 is a vector prop-

erty, then PLABEL2 must be either a vector or a matrix property. All

other inputs will be rejected with appropriate error messages.

132

If PLABEL1 is a scalar property, results will appear on the

console with no save option. If PLABEL1 is a vector property, analyses

will be perfomed on a case-by-case basis. The results for each case

will be displayed on the console, and the save option will be offered.

If exercised, a vector property will be defined and created under a name

provided, upon request, by the user.

Additional restrictions will be flagged at execution time, if

and only if they are violated.

Outputs include the following items in the following order

(note: this is the order in which they will appear if a vector property

is created by exercising the save option):

1. the linear fitting coefficients, starting with a constant-

added tern; and

2. the proportional variance reduced by utilizing information

on the fitting data.

8.2 Established Synonyms

The rapid analysis commands discussed in the previous section are

really complex programs with multiple entry points. Issuing such a com-

mand normally exercises all of the possible options contained therein.

Alternatively, one of the synonym commands may be issued to exercise

some or all of these same options. VJhen only some of the options are

133

exercised, the resulting output is reduced accordingly. Those outputs

listed in section 8.1 which are not relevant to the synonym command are

simply omitted.

There are fourteen synonym commands built into DATANAL. Each of

these will be discussed in the remainder of this section. Unless other-

wise stated, the conventions which apply to the particular rapid anal-

ysis command for which each is a synonym apply equally to the synonym

command itself.

Three synonyms exist for the CNTING command. These are "HOMNOn,"

"FISHER," and "MEDTST." Each of these may be issued by substituting the

appropriate synonym for "CNTTNG" on the single-line command specifica-

tion (see section 8.1.1). Unlike the other synonyms to be discussed in

this section, these three do not alter the logical flow through the com-

mand at all. They serve only to suggest by their names somewhat differ-

ent uses to which the same analytical procedure may be applied.

HOMNOM stands for a homogeneity analysis to be performed on

strictly nominal or classificatory data. Thus, cases may be partitioned

into two or more sub-samples according to one nominal property (e.g.,

human beings may be partitioned on the basis of their sex). Then, the

conditional relative frequency distributions of each sub-sample may be

computed on some other nominal property (e.g., hair color). If the con-

ditional relative frequency distributions are homogeneous, then the par-

titioning property may be considered devoid of influence in terms of the

13U

other property. If significant heterogeneity emerges, then some sort of

influence (possibly causal) may be inferred. H0MN0I1 may be used in this

manner as a nominal equivalent of the more popular one-way analysis of

variance

.

FISHER stands for the Fisher exact test of small, two-by-two con-

tingency tables. It may be used to perform a test of homogeneity

between two samples on the basis of a dichotomous property. It may also

be used to test the statistical independence of two dichotomous proper-

ties. In either case, the total number of cases distributed within the

two-by-two table cannot exceed thirty.

MEDTST stands for a median test. It may be used either as a homo-

geneity or as an independence test. In both cases, a two-by-two table

is assumed, wherein either or both properties are defined in terms of

dichotomous median splits. The DESTAT command may be used to determine

where the median falls on any ordinal or cardinal property.

A single synonym exists for the T-TEST command. By substituting

"U-TEST" for "T-TEST" in the command specification, only a Mann-Whitney

U Test is performed, and only U Test statistics are printed out. Other-

wise, the description in section 8.1,2 applies.

The TOTEST command possesses two synonyms. Substituting "WILCXN"

in the command specification restricts both analyses and outputs to the

Wilcoxon matched-pairs signed-ranks test and the binomial sign test.

Substituting "SINTST" causes only the sign test to be performed and

reported. Otherwise, the description in section 8.1.3 applies.

135

Execution of the NRI-1TST command may be restricted to performing and

reporting a symmetry test by substituting "SYJfTST" in the command

specification (see section 8.1.4).

Substitution of 'TEARSN" for "CORREL" will restrict both computa-

tions and outputs to Pearson product-moment coefficients. Substitution

of "KENDAL" will produce Kendall rank-order coefficients only. Other-

wise, the description in section 8.1.7 applies.

Finally, there are five synonyms for the LINFIT command. These

alter the form of the fitting function, but they do not change the out-

put format. The five synonyms are:

1. POLFTT—fits a polynomial function to collected data;

2. LINPOS—same as LINFIT, except all fitting coefficients are

constrained to be nonnegative;

3. LINHOK—same as LINFIT, except a homogeneous linear function is

fitted (i.e., the constant-added term is eliminated from the

fitting function)

;

4. POSHOM—a combination of LINPOS and LINHO!.', where a homogeneous

linear function with nonnegative coefficients is fitted; and

5. WTFIND— same as POSHOL', except that the nonnegative coeffi-

cients are required to sum to one.

136

8.3 Guided Analysis Commands

Guided versions of all rapid analysis commands and their synonyms

may be executed by issuing a single command. This is the EXECUTE com-

mand. Assuming the rapid input mode, it is issued as follows.

EXECUTE GCNAME

GCNAME is the name of the guided version desired. There are eighteen

such guided commands available. Since all of these were written up in a

separate memorandum, they will not be discussed here. The reader is

referred to On-Line Analysis for Social Scientists . Sloan School Working

Paper Number 226-66, November 1966.

137

9.0 PRIVATE USER-PREPARED COMMANDS

DATAKAL is equipped to incorporate any number of private commands

prepared by a user. The only restriction here is that no more than ^30

command names may reside within the special supervisor (i.e., within the

user's CURENT COMNDS file) at any given moment.

The procedure for preparing and attaching a private command is as

follows

.

1. Code the private command in some language which may be compiled

or assembled into machine instructions.

2. Insert a special subroutine called "LINK" at the head of the

coded program. LINK will serve both to interpret the private

command specification, when it is later issued, and to read all

referenced property data into core storage. It also mediates

the N RANDOM option.

3. Compile and load the private command.

k. Save the core image of the loaded program under some appropriate

name. This name will henceforward be the command name.

5. Issue the ATTACH command to inform DATANAL that a new command

exists. The name of the saved core image must be used in the

ATTACH command.

From that moment on, DATANAL will recognize and execute the private

command. The private command is issued as follows.

138

CNAME PLABEL1 PLABEL2 ... PLABELN N RANDOM (optional)

CNAME is the name of the private command. PLABEL1, PLABEL2, . .., PLABELN

are the names of already-defined and already-created properties. As

indicated, the N RANDOM option is universally available.

Detailed instructions for acquiring and using the LINK subroutine

may be obtained by contacting either James R. Miller or Christopher R.

Sprague at the Sloan School of Management, Massachusetts Institute of

Technology.

139

10.0 OBTAINING ACCESS TO DATANAL

At the time of this writing, the programs of DATANAL are contained

in the disk files of TI69 2750 and TI69 CMFL01 on Project MAC. It is

hoped that the entire system will be moved to the Computation Center by

the end of I967. In the meantime, access to the system on MAC is freely

available through linkages.

Links must be established to the following specific files on TI69

CMFL01:

1. ATANAL SAVED

2. CREATE SAVED

3. SETUP SAVED

4. XECUTE SAVED

5. CNTING SAVED

6. T-TEST SAVED

7. TOTEST SAVED

8. ANLVR1 SAVED

9. ANLVR2 SAVED

10. NRMTST SAVED

11. CORREL SAVED

12. LINFIT SAVED

These links will mediate access to all commands in DATAMAL except the

guided analysis routines. Additional links must be established to

lUO

Tl69 2750 to obtain access to these routines. Specific linkage instruc-

tions appear in On-Line Analysis for Social Scientists . Sloan School

Working Paper Number 226-66. (Note: When using the guided routines, be

sure that linkage is made to the version of XECUTE SAVED on TI69 CMFL01

and not to the version on TI69 2750. Otherwise, users will be bounced

out of DATANAL following every guided routine.)

lUi

REFERENCES

1. Miller, J. R. On-Line Analysis for Social Scientists . Sloan School

Working Paper Number 226-66, November 1966.

