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1. Introduction

Over the twenty-five years since Little's Law first appeared (Little [11]),

its simplicity and importance have estabhshed it as a basic tool of queueing

theory (cf e.g. the survey paper by Ramalhoto, Amaral and Cochito [12] ).

Little's Law equates the expectations of two variates in a system. For many of

the systems to which Little's Law is applicable, a stronger relation between

the distributions of the two variates is available. The setting required is

described in the theorem in Section 2. The distributional form of Little's law

has been observed previously in special contexts, (Fuhrmann and Cooper [2],

Servi [13], Svoronos and Zipkin [14]) but the generahty of the setting and its

importance for queueing theory has not been set forth.

Suppose that, for some ergodic queuing system, there is a class C of

customers in the system with Poisson arrival rate X. Let N be the ergodic

number of customers in the system in that class and let T be the ergodic time

in system spent by a customer in that class. Let k^^(u) = E[u^] be the p.g.f. of

N and let (Xp^Cs) = E(e"^^) be the Laplace-Stieltjes transform of T. Suppose it

is known for class C that

7lj^5(u)= a^s(?i-?LU) (1)

i.e. that

N=d K^j (2)

Here Kq is a Poisson variate with parameter . In words, the ergodic

number of customers in that class in the system is equal in distribution to the

number of Poisson customers arriving during an ergodic time in system for

members of that class. A customer class for which the equality in

distribution holds may be said to satisfy the distributional form of

Little's Law or to be an LLD class. If one differentiates (1) at u = 1, one

sees that LLD implies Little's Law, i.e. E[N] = A,E[T] for that class. The

converse is not true as wiU be seen.
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For many of the system contexts for which Little's Law is vahd , the

distributional form of the law is also valid. The object of the paper is to

demonstrate the prevalence of such system contexts, and to make clear the

value of the distributional form.

2. The prevalence of LLD Classes

It is known ( c.f.Kleinrock [10]) that the customers of an M/G/1 system

with infinite queue capacity and FIFO discipline satisfy (1). A broader

prevalence of the distributional form of Little's Law is suggested by the

following two theorems.

Prop. 1 ( Keilson and Servi [7])

Consider an M/G/1 type system with two classes of customers, infinite

queue capacity and FIFO preempt-resume discipline for the low priority

class. The distributional form of Little's Law is valid for the low priority

customers.

Prop. 2.

Every class of customers in an M/G/1 type priority system for which all

classes have Poisson arrivals and FIFO preempt-resume discipline over

lower priority classes is an LLD class.

Proof. Each class of customers sees only the customers with higher

priority. The totality of all customers with higher priority may be regarded

as a single class having a Poisson arrival rate equal to the sum of all the

arrival rates with higher priority and an effective service time distribution

which is a weighted mixture of the service times with higher priority. The

general result then follows from that for two classes.

These examples suggest an even broader validity. A more general

theorem is given next.
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Theorem.

Let an ergodic queueing system be such that for a given class C of

customers,

a) arrivals are Poisson of rate X;

b) all arriving customers enter the system, and remain in the

system until served i.e there is no blocking, balking or reneging;

c) the customers remain in the system until served and leave

the system one at a time in order of arrival (FIFO).

Then the distributional form of Little's Law is valid for that class C of

customers.

The proof is based on two lemmas.

Lemma A.(Cf. Cooper [1] for the result due to Burke and Takacs) Let N(t)

be a time homogeneous process in continuous time on the lattice of non-

negative integers with changes of ±1 at sequences of successive arrival and

departure epochs (T'^j) and (T^j) respectively. Then lim
j _^ oo P[N(T^j-i-) <

n ] = lim
j _^ c>o P[N(T'^,-) < n ] when these limits exist.

Lemma B. (Cf. Wolff [17], [1]) Let N(t) be an ergodic population

counting process in continuous time with Poisson arrivals at successive

epochs (T'^'j). Then

lim
t _^ ooP[N(t) < n ] = lim

j ^ ooP[N(TA +) < n ]

Proof. Suppose that at t=0, the system is empty. Let T^ be the arrival epoch

of the k'th customer in class C, and let T^^, be the departure epoch for that

customer. Let N(t) be the number of customers of class C in the system at

time t. Let T^ be the time spent in the system by the k'th customer, i.e. let Tj^

= Tpj^ - T^ . Then N(Tdj.+) = ^ K^-j-j^ . This is true, since all customers found

at arrival by the k'th customer have left the system before that customer

entered service, all customers arriving during his time in system are still
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of such systems ( cf. Keilson and Servi [8], Harris and Marchal [3]) , the

server may take vacations after servicing a customer with a probability

dependent on queue length. The server might not end a vacation duration

until exactly N customers are waiting (where N is a prespecified positive

integer) ( cf. Yadin and Naor [16], Heyman [4] ) Little's law holds in

distribution for the customers in such systems provided they are served in

order of arrival.

C. M/G/1 systems with preemptive interruptions at clock ticks (Cf.

Keilson and Servi [6] ). If a Poisson stream of ordinary customers with iid

service times is preempted by other iid tasks arriving at clock ticks, then

Little's law holds in distribution for the time to service completion of the

ordinary customers.

D. Cyclic service systems (Cf. Takagi [15]) Suppose Poisson customers

queue at service sites and a single server moves cyclicallly between such sites,

either serving the customers at the sites to exhaustion, employing a Bemoulli

schedule (Keilson and Servi [5] ), or serving at most K customers at a site

before moving on. Then the customers at any site are an LLD class provided

they are served in order of arrival. The changeover time of the server

between sites does not disturb the LLD property.

E. Tandem server systems ( M/G/G/ . . /G). Consider K servers in

tandem each with infinite queue capacity and each having iid service times

for successive arrivals. If arrivals to the system are Poisson, and FIFO

discipline is maintained throughout the system, then Little's law in

distribution relates the time spent in the system to the number of customers in

the system at ergodicity.

4. The value of the distributional form of Little's Law.

Apart from the relations between means and variances given

in (3), the distribution information has other benefits, some of which

are listed below.
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Stochastic bounds

It is well known that the Poisson variate Kq increases stochastically

with e. It then follows from (2) that N increases stochastically when T
increases. It is sometimes easy to obtain a distribution bound for a time in

system. When one can do so one automatically has a distribution bound for

the number in the system.

Heavily loaded systems.

Suppose it is known that T is exponentially distributed to good

approximation. It is then a direct consequence of the distributional form of

Little's Law that for an LLD system N is geometrically distributed. The

single parameter needed for the distribution is then available from the first

moment. For heavily loaded systems, knowledge that T is asymptotically

exponential in distribution implies that N is asymptotically geometric in

distribution . An easy example is that of the number in the system for M/G/1

with FIFO discipline.

Decomposition Results.

For a broad class of customers, Fuhrmann and Cooper [2] proved that

the ergodic number of customers in the system is distributed as the sum of

two random variables, one of which is the ergodic number in the system of an

ordinary M/G/1 queue. This class is a proper subset of the LLD class. Every

LLD class for which N decomposes has a decomposition for T. This

decomposition has also been observed in [2] via separate reasoning.

5. The LLD property for the number in queue.

The ordinary form of Little's Law is applicable both to the time in

system and to the time in queue. It is natural to try to find an LLD result for

the time in queue and the number in queue by transferring the ingredients of

the proof of the theorem to a subsystem consisting of a queue only. Direct

application of the theorem, however does not work. The difficulty arises

from the requirement in the theorem that the arrival process be Poisson . For

M/G/1, say, arrivals bypass the queue when the server is idle . The arrival
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process to the queue (as against to the system) is then a Poisson point process

with censored epochs i.e. is not Poisson. Nevertheless , for an M/G/1 system,

the time in queue and the number in queue do obey Little's Law in

distribution.

This may be first verified from the familiar M/G/1 results . Let %q(u) be

the pgf of the ergodic number in the queue and let o^qCs) be the transform of

the ergodic time in queue. Let ^s^^^) ^^ ^^^ P§^ °^ ^^ ergodic number in the

system and let ajs(s) be the transform of the ergodic time in system. Let a^(s)

be the transform of the service time. We first note that ji^qCu) has

contributions from the idle state and from the states where the server is busy.

One then has

71^S(U)-(1-P)

W^^ =
u ^ ^^'P^ •

From our theorem, %s(u) =aj^{'k-Xu) = a^Q{X-Xu)aj(X-7M). One has

ajQ{X-Xu)aj(X-X\i) -(l-p)(l-u)

^nq(u) = — •

Since the time in queue at ergodicity coincides with the ergodic waiting time ,

we may employ the Pollaczek-Khintchine Law for o^qCs) to see that

(l-p)(l-u)aT-a-Xu)
^-(l-p)(l-u)

ay(?L-?wU)-u

aj(X-Xu)
-,

('-p>"-">tM^:;^ -'
' (i-P)(i-u)

as required.

The vahdity of Little's Law in distribution could also have been obtained

from our theorem with the help of the following artifice. One could replace

the M/G/1 system by an M/G/1 vacation system (e.g., [1]) where the server

takes a vacation of duration D whenever it finds the queue idle . In this way
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the queue is treated as a subsystem with Poisson arrivals and the theorem

gives the LLD result. When a sequence of such subsystems with vacation

durations Dj is considered, and Dj -^ 0, LLD holds for each j and hence in

tlie limit for M/G/1

.

The same artifice or a similar artifice could be applied to all of the

customer classes described in Section 3 to conclude that the LLD property is

available for the ergodic number in queue and time in queue.
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