

HD28
.M414

OB^EY

EMPIRICAL RESEARCH ON
SOFTWARE MAINTENANCE:

1981-1990

Chris F. Kemerer
A. Knute Ream II

May 1992

CISR WP No. 237
Sloan WP No. 3429

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

EMPIRICAL RESEARCH ON
SOFTWARE MAINTENANCE:

1981-1990

Chris F. Kemerer
A. Knute Ream II

May 1992

CISR WP No. 237
Sloan WP No. 3429

©1992 C.F. Kemerer, A.K. Ream II

Center for Information Systems Research

Sloan School of Management
Massachusetts Institute of Technology

JUL 1 6 1992

RECBVBJ

Empirical Research on Software Mairitenance: 1981-1990

Abstract

Despite its economic importance, the activity of software maintenance is relatively

under-studied by researchers. This comprehensive survey documents that only two
percent of all articles appearing in three leading journals and two refereed conferences

over the past decade were devoted to empirical studies of software maintenance. The
primary purpose of this paper is to document "what is known" from this research, and to

suggest future avenues of research. The sixty-one articles surveyed are conveniently

summarized as to major differences and similarities in a set of detailed tables. The text is

used to highlight major findings and differences. Although the emphasis of the paper is

on the subject matter, a section discussing appropriate research methodologies is included

as a guide to researchers new to this area.

Table of Contents

1. INTRODUCTION
1.1 Why Empirical Studies of Software Maintenance?

1.2 Scope of the Review
1.3 Organization of the paper

2. SOFTWARE COMPLEXITY MEASUREMENT RESEARCH
2.1 Introduction

2.2 Modularity and Structiu-e

2.2.1 Module Size

2.2.2 Coupling

2.3 Complexity Metrics

2.3.1 Relationships among Metrics and Maintenance

2.3.2 Dimensions of Software Complexity

3. COMPREHENSION RESEARCH
3.1 Individual Differences

3.2 Aids to Comprehension
4. GENERAL MANAGEMENT ISSUES RESEARCH

4.1 Causes of Maintenance Activity

4.2 Repair versus Replace

5. METHODOLOGICAL ISSUES IN EMPIRICAL RESEARCH IN SOFTWARE
MAINTENANCE

5.1 Methodological Choice
5.2 Methodological Rigor

6. CONCLUDING REMARKS

ACM CR Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance; D.2.8

[Software Engineering]: Metrics; D.2.9 [Software Engineering]: Management; ¥23 [Analysis of Algorithms and

Problem Complexity]: Tradeoffs among Complexity Measures; K.6.0 [Management of Computing and

Information Systems]: General - Economics; K.6.1 [Management of Computing and Information Systems]: Project

and People Management; K.63 [Management of Computing and Irvformation Systems]: Software Management

General Terms: Management, Measurement, Performance.

Additional Key Words and Phrases: maintenance, complexity, metrics, modularity, comprehension.

1. INTRODUCTION

1.1 Why Empirical Studies of Software Maintenance?

While much is written about new tools and methods for developing new software, a

significant percentage^of professional software engineers' time is spent maintaining

existing software. Software maintenance represents a large and growing expense for

organizations^. In addition, due to the shortage of experienced software engineers, the

preponderance of maintenance work represents an opportunity cost of those resources that

would otherwise be devoted towards developing new systems. Therefore, software

maintenance represents an activity of considerable economic importance and is a

candidate for academic research.

As an aid to researchers interested in maintenance or maintenance-related issues, this

paper surveys the past decade's empirical studies of software maintenance. The focus on

empirical studies was deliberately chosen due to the relative newness of the field. Unlike

more mature disciplines, this area does not yet have a large body of well-accepted theory

upon which to build. Therefore, the primary early gains have been made in careful

observation of maintenance activities through empirical studies. The intent of the survey

is to collect, classify, and analyze the existing body of work, with special attention paid to

identifying those issues where further research would appear to be most beneficial.

1.2 Scope of the Review

Schneidewind, in his guest editor's introduction to a special issue on software

maintenance in the March 1987 issue of IEEE Transactions on Software Engineering, {lEEE-

TSE) noted that there was not a single article on maintenance in lEEE-TSE over a past

period of a little more than a year. And, a preliminary exploration of two years of archival

journals revealed a general dearth of empirical work in software maintenance. Therefore,

the scope of this review was set to comprehensively examine the leading archival journals

and refereed conference proceedings over the past decade. The choice of publication

^Various studies have noted that maintenance is estimated to comprise from 50-80% of software development

activities. Some of these are summarized in [Kemerer, 1987].

^For example, it has b»een estimated that 60 percent of all business expenditures on computing are for

maintenance of software written in COBOL alone [Freedman, 1986].

outlets included three journals and two conference proceedings. These five outlets

published 3,018 papers in the tin^e span of the survey. The three journals were:

• Communications of the ACM (CACM)

• IEEE Transactions on Software Engineering (lEEE-TSE)

• Journal of Systems and Software iJSS)

Communications of the ACM is the journal with the largest circulation of the

Association of Computing Machinery, a leading professional society. Due to its wide

circulation and monthly format, it provides a large number of highly visible pages within

which to publish refereed articles. It has also scored highly on subjective rankings of

"journal quality", which contributes to its attractiveness as a publication outlet for

scholars^. IEEE Transactions on Software Engineering is also a well-regarded monthly

journal which is focused on software engineering topics. The Journal of Systems and

Software is another frequent source of software engineering-related articles. It currently

has nine issues per year, although there are plans to expand to a monthly format.

The refereed conferences chosen were:

• IEEE International Conference on Software Engineering

• IEEE Conference on Software Maintenance

The IEEE International Conference on Software Engineering is a well-regarded refereed

conference proceedings, and is focused on software engineering topics. The IEEE

Conference on Software Maintenance was an obvious choice given the topic.

There are arguably other journals that could be included on such a list.^ However,

given that this set alone generated over 3,000 possible articles to review implied that this

sample would be likely to result in finding most of the important papers in this area. In

addition, while the statistics and tables included below are limited to those papers that

appeared in one of those five sources, a few widely-cited papers that have appeared

elsewhere that are relevant to this review have also been included in the discussion.

^For example, in an unpublished survey by two computer information systems researchers at New York

University of the top journals ranked by computer information systems faculty, CACM ranked third, and /£££-

T5E ranked fifth.]SS was not included in the study and therefore was unranked (Ramesh and Stohr, 1989].

'^There is a relatively new journal from Wiley called the]oumal of Software Maintenance. It was not included

in this review due its relative absence during the period surveyed, but would be a logical choice for a review

spanning the next decade.

2

The criteria for inclusion in this set were that the paper had to present and analyze

empirical data relating to software maintenance. This research adopts the ANSI/IEEE

standard 729 definition of maintenance: "Modification of a software product after delivery

to correct faults, to improve performance or other attributes, or to adapt the product to a

changed environment" [Schneidewind 1987]. Empirical research on software maintenance

has much in common with research on new software development, since both involve

the creation of working code through the efforts of human developers equipped with

appropriate experience, tools, and techniques. However, software maintenance involves a

fundamental difference from development of new systems in that the software maintainer

must interact with an existing system [Swanson and Beath 1989b].

Some of the research included herein overlaps the areas of both maintenance and

development. One example is that there is evidence to suggest that development

decisions, such as the use of structured programming techniques, are expected to have a

noticeable effect on later maintenance efforts. Another example is that it has been noted

that the cost of correcting program errors typically increases significantly the later they are

discovered, suggesting that extra effort in the development phase will reduce maintenance

costs [Shen et al. 1985]. Complexity metrics are another area of study that applies to both

development and maintenance. To account for these sorts of overlaps, a study or

experiment did not have to specifically address maintenance issues in order to qualify for

inclusion, but was required to provide insight that could be readily applied to

maintenance. It is suggested that this review may therefore be broadly useful to

researchers in new software development who may also benefit from familiarity with this

work.

The identification of articles suitable for inclusion was done manually through the

review of titles and abstracts of individual articles in each publication and then a reading

of the full article for those which initially appeared to be appropriate. Eighty-three articles

were originally identified as candidates, and of these, sixty-one were ultimately found to

meet the criteria [Ream 1991]. This approach to selecting articles, of course, leaves open the

possibility that some may have been inadvertently omitted.^ To reduce the probability of

this type of error, a check of the selected titles was made against an existing bibliography of

empirical software maintenance research that was published in the 1988 IEEE Conference

on Software Maintenance [Hale and Haworth 1988]. All of the articles cited there are

^Some difficult conscious omissions were made as well. For example a 1982 CACM article by Elshoff and

Marcotty addresses many items of interest to maintenance. However, it does not present and analyze a new set

of empirical data, but rather relies on a set of constructed examples.

3

included in the this survey, as well as approximately forty additional articles that were not

included on that list. Thus, although inadvertent omissions may remain, this

compilation is believed to be representative of empirical software maintenance over the

last decade.

One of the first findings from this review is the relative scarcity of empirical work in

software maintenance. A total of sixty-one articles out of 3,018 were found to meet the

criteria set out, approximately 2% of the total (See Table 1). This scarcity of research

confirms the earlier but less systematic observation of Schneidewind. Even allowing for

inadvertent omissions, the percentage of effort devoted to this type of work in software

maintenance, as reflected by its publication in scholarly outlets, seems far below what its

practical importance would seem to warrant. This neglect of software maintenance as a

research area should concern practitioners, since little effort is being devoted to

discovering new knowledge about an activity of considerable economic importance.

A related concern may be that there is no clear trend for more work in this area.

Figure 1 shows both the raw frequency counts by year plus a cumulative average. The raw

counts may be somewhat misleading, given the irregular publication cycles, particularly of

the IEEE Conference on Software Maintenance. However, there is no strong trend in the

average, which suggests that Schneidewind's call for more work in this area has not been

acted upon.

Empirical Studies of Software Maintenance:

Frequency by Year

1 2 T

10--

D Number

— Moving Average

Figure 1: Frequency of articles by year

TOTALS

(vs possible)

1.3 Organization of the paper

Despite the small percentage of articles discovered, 61 articles form an amount of

material sufficiently large that some structure needs to be imposed in order to properly

convey the contributions made by each study. The approach adopted here was to briefly

summarize the contributions of every article in table form, and then expand on these

comments in the text for a subset of those articles that merited additional discussion. The

papers are organized under three broad areas, with one area subdivided into two more

focused parts. These areas, with the number of articles in parentheses, are:

• Software Complexity Measurement

•• Modularity and Structure Metrics (15)

•• Other Complexity metrics (16)

• Comprehension (15)

• General Maintenance Management (15)

The format of the tables includes the following data:

• Author, year

• Publication in which the article appeared

• Methodology (Field studies, experiments, and surveys. Lab studies and experiments)

• Data source

• Dependent variable

• Statistical test(s) employed, if any

• Brief summary of key results

The tables are additionally designed to assist readers interested in narrower topics, e.g.,

"COBOL programming" or "laboratory experiments involving students".

The remainder of this paper is organized as follows. The next section, "Software

Complexity Measurement" presents work whose primary contribution lies in the

relationship between complexity measurement and software maintenance results. Section

3, "Comprehension" focuses on research whose primary interest is in how maintainers'

comprehension of existing software can be improved. All other topics are summarized in

section 4, "General Maintenance Management" and section 5 provides a summary and

discussion of some meta-issues highlighted by this review of the previous decade's worth

of software maintenance research. A final section provides some concluding remarks.

2. SOFTWARE COMPLEXITY MEASUREMENT RESEARCH

2.1 Introduction

Research in this area is generally focused on the relationship between a complexity

measure and maintenance effort, or among complexity measures. Basili defines software

complexity as "...a measure of the resources expended by another system while interacting

with a piece of software. If the interacting system is people, the measures are concerned

with human efforts to comprehend, to maintain, to change, to test, etc., that software."

(1980, p. 232). Curtis et al. similarly define the same concept (which they refer to as

psychological complexity) as: "Psychological complexity refers to characteristics of software

which make it difficult to understand and work with" (1979, p. 96). Both of these authors

note that the cognitive load on a software maintainer is believed to be higher when

structured programming techniques are not used.

Schneidewind estimates that 75-80 percent of existing software was produced prior to

significant use of structured programming (1987). A key component of structured

programming approaches is modularity, defined by Conte et al. (1986, p. 197) as "the

programming technique of constructing software as several discrete parts." Structured

programming proponents argue that modularization is an improved programming style,

and therefore, the absence of modularity is likely to be a significant practical problem. A
number of researchers have attempted to empirically validate the impact of modularity on

either software quality or cost with data from actual systems, achieving somewhat mixed

results. (See Table 2.)

There is a significant amount of other work in software complexity metrics area, for

example, volume measures such as those of Halstead's Software Science. (See Table 3.)

Work in this area often overlaps the work in modularity and structure, with many articles

reporting results for both. Given the large amount of work in measurement, an attempt

has been made to place an individual article into either Table 2 or Table 3, but not both.

Researchers who are broadly interested in the issue of software complexity measurement

and its relation to productivity should carefully examine both tables.

Dependent variables in this research are generally either quality related -- number of

errors or defects found (sometimes number of changes is used as a surrogate), or

productivity related - effort required to make a change, time required to debug, et cetera.

This emphasis on performance evaluation is a pervasive theme in this literature.

Ul

3

3

a
c
«

a

o

19

O

o

a
<

- c

i
§

3 =

;/! '-J

- u n-^ D.

3 -3

S i

3
s

o
a.

3

CD

G

•a
o

f2

a
e

Q

ec
o
"o

o

3
a.

—

^

o
a.

C/3

V3

E
o
U

m
a

ae
o
o

o

B
O

a.

a

tils
" " S 5

i/i u
20 Q.

I r
o S

Q. o
E <->

-3 M

8.;
2 r

o :;

o
a

V 00

o c

c c
o tu

-5

5?.T D.

3^>

J2 -a

J2 i

i>^
^^

a
E
o
U

rn

=s

0.1

u
o
a.

2.2 Modularity and Structure

2.2.1 Module Size

An important widely disseminated early piece of research on the impact of modularity

and structure was by Vessey and Weber (1983). They studied repair maintenance in

Australian and US data processing organizations and used subjective assessments of the

degree of modularity in a large number of COBOL systems. In one data set they found that

code with greater modularity (on average, more, smaller modules) was associated with

fewer repairs; in the other data set no effect was found. These equivocal results were

unexpected by the authors, and in their conclusion they note "Our results stand as a

challenge to some conventional wisdom and the proponents of structured programming

(who include us). We readily acknowledge that our research is exploratory and there are

problems with the statistical model. Nevertheless, the results are anomalous." (1983,

p.l34).

A number of researchers took up this challenge. Since Vessey and Weber focused on

repair maintenance, many follow-on studies have examined the "number of errors" as

their dependent variable. Basili and Perricone (1984) and Shen, et al. (1985) in separate

studies found that larger modules tended to have significantly fewer errors. Similarly,

Compton and Withrow, in a recent examination of 263 Ada packages, found that smaller

packages had a disproportionately high share of the errors. A study by An et al. (1987)

analyzed change data from two releases of UNIX. They found that the average size of

unchanged modules (417 lines of C) was larger than that of changed modules (279 lines of

C) Unfortunately, they did not provide any analysis to determine if this difference was

statistically significant.

However, other studies that have appeared elsewhere have suggested that some degree

of modularity is necessary. Korson and Vaishnavi (1986) conducted four experiments

comparing the time required to modify two alternative versions of a piece of software, one

modular and one monolithic. In three of the four cases the modular version was

significantly easier to modify. Therefore, a newer, alternative hypothesis is that modules

that are either too large (undermodularization) or too small (overmodularization) are

unlikely to be optimal. For example, Conte et al. (1986, p. 109) note that: "The degree of

modularization affects the quality of a design. Overmodularization is as undesirable as

undermodularization." It is a common general belief that large modules are more difficult

to understand and modify than small ones, and maintenance costs will be expected to

increase with average module size. If the modules are too large they are unlikely to be

12

devoted to single purpose. However, research has clearly shown that a system can be

composed of too many small modules. If the modules are too small, then much of the

complexity will reside in the interfaces between modules and therefore they will again be

difficult to comprehend. Interfaces are relevant because they have been shown to be

among the most problematical components of programs [Basili and Perricone 1984].

Therefore, complexity could decrease as module size increases. Some recent work has

suggested that a U-shaped function is likely, with an optimal module size that lies between

the extremes noted by earlier research [Banker et al. 1992].

2.2.2 Coupling

Another important issue within this set of literature is the effect of module coupling

on performance. A 1981 study by Troy and Zweben explored a number of hypotheses

dealing with structured programming concepts, including the notion of coupling. Some of

the intuition behind structured programming is that minimally related tasks should be

kept independent by locating their functions in separate modules. Independence of

modules is maximized to the degree that coupling among modules is minimized [Lohse

and Zweben 1984]. Of all the hypotheses tested by Troy and Zweben, they found the

strongest support for the notion that the number of source code modifications (a surrogate

for errors) was positively correlated with a high degree of coupling, i.e., highly cohesive

but loosely coupled modules were less likely to require modification.

Continuing in this stream of research Selby and Basili studied a large production

system for which actual error data were available (1988). They used as their independent

variable the ratio of coupling to cohesion, (cohesion defined intuitively as the amount of

interaction among elements within a module), where a low value of such a ratio was

believed to reflect good structured programming practice. They found strong support for

the notion that high values of their ratio were associated with higher error rates and

higher efforts to correct errors.

Lohse and Zweben note that there are multiple dimensions to improving module

coupling, including the size and type of the information passed to the module. They

performed a lab experiment using student programmers to determine whether passing

information using either global variables or parameter lists had an effect on the time

required to modify a program. They note that the literature offers corxflicting advice on

13

this question° and therefore it was a topic meriting experimental study. Unfortunately,

their experiment yielded no conclusive results. A later study by Yau and Chang, however,

found that use of global variables was correlated with more errors and changes [Yau and

Chang 1988].

In general, not enough is known about the proper ways to minimize coupling. This is

clearly a topic that merits further research, particularly in newer implementations, such as

object-oriented environments, where the equivalent of coupling needs to be considered in

the design of objects, methods and classes.

2.3 Complexity Metrics

Within the empirical research on software maintenance surveyed, the largest part of

that was devoted to software metrics, particularly those relating to aspects of software

complexity as defined above. With only a few exceptions, the emphasis in this review is

on those studies of metrics that examined the relationship between the metrics and

maintenance-related dependent variables, such as error rates, time to locate and correct

defects (debugging), and number of subsequent changes.

2.3.1 Relationships among Metrics and Maintenance

Sunohara et al. simultaneously collected data on several of the main complexity

metrics, including McCabe's V(G) and Halstead's E, as well as source lines of code (SLOC)^

for a medium-sized Fortran system and calculated the inter-metric correlations [McCabe

1976] [Halstead 1977] [Sunohara et al. 1981]. For example, they found a Pearson correlation

coefficient value for the pairwise correlation of non-comment SLOC and Halstead's E of

.812 (p<.001). The implication of these strong correlations among these metrics, is that a

metric such as SLOC may be preferable, since it provides similar information but with

greater ease of collection and of managerial interpretation. Similar results were obtained

by Gremillion, who collected multiple metrics for 346 PL/1 programs [Gremillion 1984].

Interestingly, his correlation between SLOC and E was .82 (p<.001), nearly identical to the

Sunohara et al. study. Gremillion's main finding was that the number of program defects

was significantly related to the complexity metrics, and in particular that the best single

predictor metric was SLOC. Essentially the same results were found by Lind and Vairavan

^Structured design argues that use of global variables will result in higher coupling, while complexity metrics

such as Halstead's E would indicate less coupling stemming from use of global variables (Lohse and Zweben
1984, p. 3031.

^These are referred to as "steps" in their paper, as this is the standard nomenclature in Japan. (See, for

example, [Cusumano and Kemerer 1990].)

14

in a study of a number of releases of a large medical imaging system [Lind and Vairavan

1989]. They found a high correlation between the more complex metrics and SLOC, and

found that SLOC was the best single predictor of number of "system performance reports"

and development effort. Clearly, at least one aspect of complexity is represented by the

simple size metric SLOC.

There are two main conclusions that can be drawn from this set of research. The first

is that complexity metrics can be useful predictors of the maintenance behavior of systems,

and that greater use of measurement in systems development, testing, and maintenance is

recommended. The second conclusion is that a number of the more complex metrics may

be essentially measuring the size of the program or other component under investigation,

and therefore may provide little additional information. This may obviate their use if it is

believed to be difficult to collect or implement use of these metrics within an organization.

2.3.2 Dimensions of Software Complexity

Stemming in part from the results summarized above, some research has focused on

attempting to identify unique dimensions of software complexity, i.e., which metrics can

be seen as relatively independent and thus may represent different dimensions. Li and

Cheung, in a study of 255 student FORTRAN programs, collected data on 31 separate

metrics [Li and Cheung 1987]. They found that the metrics could be roughly divided into

two groups, "volume metrics" (i.e., size) and "control metrics". Their recommendation

was to use a metric from both groups, or to use a hybrid metric that could capture elements

of both. A similar conclusion was reached by Wake and Henry, who investigated the

relationship between software metrics and the number of LOC changed in a set of 193

modules of C code [Wake and Henry 1988]. They suggest that a model with a combination

of metric types predicts better than any single metric. Most recently Munson and

Khoshgoftaar used factor analysis to isolate two dimensions of complexity which they label

"volume" and "modularit/' [Munson and Khoshgoftaar 1990]. They found their

generated metric to be good predictor of debugging time for a set of 27 FORTRAN
programs.

This research provides additional support to the notion of using software complexity

metrics to predict maintenance activity. It further refines earlier metric work in noting

that a small number of underlying dimensions of complexity are represented in the

literature by a relatively large number of proposed metrics. For practitioners the result is

that they should consider adopting a small set of metrics to aid their management of the

maintenance process. For researchers the conclusion is that proposals for new metrics

15

must demonstrate both orthogonality to existing metrics and superior performance in

terms of predicting dependent variables of interest.

3. COMPREHENSION RESEARCH

The single critical factor that differentiates software maintenance from new software

development is the software engineer's need to interact with existing software and

documentation. Therefore it is not surprising that a significant amount of software

maintenance research has focused on the issue of comprehension. The research described

in the previous section on complexity metrics may also be seen as applying to

comprehension. This is because a program that is considered to be more error-prone

because it, say, contains more complex logic paths, must be founded on the notion that

such a program is harder for the maintainer to comprehend and therefore harder to

correctly maintain.

However, such arguments about the impact of complexity on comprehension are only

indirect in that, even when increased complexity is shown to be correlated to a decrease in

a performance variable, it is only a presumption that such affects are caused through

difficulties in comprehending the more complex artifacts. This section focuses on studies

that more directly address the issue of comprehension, through use of dependent variables

that operationalize comprehension or other types of emphasis. This issue has been

identified as critical to the subject of maintenance for some time. Fjelstad and Hamlen

reported back in the late 1970's their belief that more than fifty percent of all software

maintenance effort was devoted to comprehension [Fjelstad and Hamlen 1983]. Dean and

McCune, in a survey of Air Force maintainers reported that the top three problems in

software maintenance were all comprehension related: (1) a high rate of personnel

turnover requiring that unfamiliar maintainers work on the systems, (2) difficulty in

understanding the software, particularly in the absence of good documentation, and (3)

difficulty in determining all of the relevant places to make changes due to an inadequate

understanding of how the program works [Dean and McCune 1983]. (See Table 4.) Of the

work covered in this review, two research problems dominate: the variation in individual

maintainer' s ability and the efficacy of various aids to maintenance comprehension.

3.1 Individual Differences

One consistent empirical observation has been that certain individuals, often those

with greater experience, are simply better at maintenance tasks under nearly all conditions

than those without such skills. In a study whose main focus was on the optimum amount

of program indention, Miara et al. found that expert subjects (those with three or more

16

years of programming in school and / or more than two years of professional

programming) outperformed novices under all conditions [Miara et al. 1983]. Curtis et ai

report than in a series of experiments involving professional programmers, the number of

years of experience was not a significant predictor of comprehension, debugging, or

modification time, but that number of languages known was [Curtis et al. 1989]. They

suggest that this means that breadth of experience may be a more reliable guide to ability

than length of programming experience. Most recently, in a study of undergraduate

programmers, Oman et al. found that seniors outperformed juniors who outperformed

sophomores in all categories [Oman et al. 1989].

All of this research gives an important message to researchers that the ability and

experience levels of subjects in experiments must be carefully controlled for if meaningful

results are to be obtained. However, ultimately knowing that more experienced

maintainers perform at a higher level is only interesting if managers understand why this

is so. For example, do some individuals' problem solving styles naturally lend themselves

to being good maintainers, such that they perform well, are rewarded appropriately, and

stay to gain additional experience in maintenance? Or, does performing a lot of

maintenance work provide experiential learning such that all or most software engineers

could eventually become good maintainers? If this were better understood then managers

could take action to (1) make more informed choices about assigning individual

maintainers to tasks, and (2) improve conditions under which maintainers gain such

experience faster, so that less-skilled maintainers can emulate the better performers.

Two studies in this review have had as their focus an attempt to construct theories of

comprehension from detailed investigations of observing software engineers performing

maintenance. Liftman et al. videotaped ten professional programmers as they went about

doing a constructed maintenance problem [Littman et al. 1987]. They identified two

generic strategies which they called "systematic" and "as-needed". As the names imply,

maintainers employing a systematic strategy attempted to construct a mental model of

how the program worked, and then used that mental model in the performance of their

maintenance task. Others only examined the program code when necessary to check

specific hypotheses. The systematic maintainers were the only ones who successfully

completed the maintenance tasks. Recently, Robson et al. have noted that this finding

may be an artifact of the small program used in the experiment, and that on large

programs this approach may be infeasible [Robson et al. 1991].

17

c

B

u
a.

o

J2

eg

>

E

i9

Q

at
o
o
o
o

0.

-3 2

« o S
= -5 =

.
- PM •= ^

2 5 E h 5 £

3 X

s
C

- ^

— D

>

o
a.

2 £; c

I/,
— tfl

'^ 03 -—

* = 5

- 00
J2 q

3

C =

I "

S j:

o -

-S E

u =

so-o

>, -

ra S -

o ^ M - D

-3 ""

V c

3
-3

—3 0.™

5 = H H " i

S -S £.

3
73

C .= c-

!«.::.= - -J
,- rz u ^

y -ft

3 J2

- .s

" -3

c o

E
i— rt

w) an
= o "
= § 5

— u

-- vH

o S

- 3 J2 -3

.H S

o a.-

u 1^ -^ ^

« -3 -

M'c

O 4) _o o

5 o
:2 _ =0

= -C 3

3 ^^X -J ^

-3 C S

:j ~ "H

=15 "5 -3

J 2 3

III

3

™

a 3
;i >-

* ~ 3

- y = OJ
•3 -5" c w
"> .5 -2 -

~ ^ = -°

2 2=-
afl M 3 -C
„ c u

.2f

3 S.-3

S 1^ c
= IS <

C

c

u
u
Cl

E
o
U

•o

^ i

3 J3

c

li
E 2
2

"3

^^
s =

S go 3
t

O J
.2 .:»:

3 -a

IS-

Q

o

2 a£ E

E ^ ^

:-i

1^
00 u
s.s
a.—

c «

3 o
3 "1

o

g ii'^r
-3 o O ^
3 £ !£ M
/* ^ C o3 Z.

'

a.5 I- 2

Q.

ai MO
C £ J^ o-o

at
o

O

J9
3
a.

^ s. &

u

Letovsky videotaped and analyzed verbal protocols of six professional programn^ers

[Letovsky 1987]. These verbal protocols revealed micro-level processes that maintainers

performed as well as knowledge types that maintainers sought out as they went about their

task. The author suggests that such data will be useful both to researchers in developing

cognitive theories of maintenance and to practitioners in identifying what types of aids

might be most useful in supporting maintenance.

3.2 Aids to Comprehension

Within this area a significant portion of the research has been addressed to the relative

utility of various aids to comprehension, most particularly graphical versus text-based aids.

Shneiderman et al. in a lab experiment testing comprehension found that groups using

data structure diagrams outperformed those without such aids or with control flow

documentation [Shneiderman 1982]. Lehman conducted an experiment and found that

the graphical data structure diagrams-equipped group took less time and had fewer errors

on the same task as a group equipped with textual Yourdon style data dictionaries [Lehman

1989]. An experiment by Baecker even showed that graphically enhanced text was a

statistically significantly superior aid to plain text in a test of comprehension [Baecker 1988].

However, in a study by Ramsey et al. they found that groups equipped with program

design language documentation (PDLs) performed better than flowchart groups [Ramsey et

al. 1983]. This study was later criticized by the previously cited study by Curtis, et al. for

having results that may have been confounded by inadequate controls in the experimental

design with respect to the experience level of the programmers (1989, pp. 170-171). In

particular, it may have been the case that the flowcharts were used by a group that was, on

average, of less ability than the PDL group. In their own experiments Curtis et al. found

the choice of whether a constrained language or ideograms (symbols) was superior to be

somewhat task-dependent. However, natural language was never found to be a superior

format in any of their four experiments.

The Curtis et al. experiments, besides being the most recent of the studies reviewed

here, also offer a dear model for how such experiments on comprehension should be

performed. They also provide a detailed review of previous research on comprehension,

and this paper is recommended reading for researchers beginning work in this area. It

concludes with the suggestion that "Little additional research is needed that compares

flowcharts to a program design language on module-level tasks. Rather, attention needs to

be focused on the context of the documentation, such as different ways of representing data

structures or state transitions." (1989, p. 202).

20

4. GENERAL MANAGEMENT ISSUES RESEARCH

While the research in the preceding Uvo sections tends to be centered on narrowly

defined research questions, the work that is grouped together here centers on research

questions that are higher level and more general in nature. (See Table 5.) The unit of

analysis in these studies is more typically at the project or system level, as opposed to the

the work in the previous sections which was much more focused at the program or

module level. Therefore, while all maintenance research tends to have implications for

management, the work reviewed in this section generates conclusions that typically

require higher level management intervention if the recommendations are to be

successfully implemented.

The higher level unit of analysis is also reflected in the fact that a much higher

percentage of the studies reviewed in this section do not report statistical test results, but

tend to rely more on descriptive data. This difference is, of course, related in that a larger

unit of analysis generally results in a smaller sample size which may be less amenable to

statistical analysis.

Two main streams of research are present in this work. The first focuses on the causes

of maintenance work, and seeks to prevent or reduce the need for maintenance. The

second focuses on the 'repair vs. replace' question, seeking to determine whether it is more

cost effective to maintain an existing piece of software or to simply write a new program to

replace it.

4.1 Causes of Maintenance Activity

A survey of DPMA members by Lientz and Swanson laid the groundwork for much later

work in software maintenance [Lientz and Swanson 1980; Lientz and Swanson 1981]. They

present a typology of maintenance consisting of corrective (repairs), adaptive (change

accommodation) and perfective (enhancements), which has since gone on to become the

standard terminology in this area^. The approximate distribution of maintenance work was

that more than half was perfective, approximately one-quarter was adaptive, and the

remainder was corrective. Their survey respondents reported that user problems, specifically

lack of user knowledge, was believed to be a critical source of maintenance activity.

^This typology was first presented by Swanson in "The Dimensions of Maintenance" in Proceedings of the Second

International Conference on Software Engineering. 1976, pp. 492^97.

21

03

3
(A

"a

OS

E
V
SI)
C8

c
a

u
4*
c

U

flB

H

a

a

s
a.

o
a

C/5

3
(A

a
a

c

E

OX)

«
c

c

•r>

g.g

3 U C

u^ w^ O

rt fl --- - o

.= .£ g
E £ "

g £ ^
n re o

2 2c
B. a o

< 2

S =
3 r

^ u ••>

O
T3

2 c
c —

^ =

u ^
-e -

>^ <" * s

= •= 1 °

c u c u

lp =
O- S c n

"5 -

o
"

-sou
o 2 •=

a £
o

o-

n ^ -^

^ t

:^£l
2.-2 ^
^ u g ^
2 5 - ^i

c;5 * ji 5

S E

^1

3 = H

i 5 '•>

£.= :

= "5 H
^ cj u
(/) _ -^
>^ :i

•"

< s J
•J -J —
— CI. 1/1~ =^ iC M 5
S = -S
^ c
O ,/, u

Z '-J

~ S
c
2 =
£ j2

c

00 o

£ 2
= a.

H -

C

o
D.

2 5^

'J

fl

D
C

u "3 £
" " o

' £ a
C OJ C
W OO 4^

5^1

5 E

-J

2 £

^

o u

a g

00 V
c E

£

S a ^

3

C ^ U 00

2 >> > =
3

>"
£ S— U 3 U

> I §

"

u £ J

o

u
sa

^

Lin and Gustafson further investigated the distribution of work by examining before

and a:..: versions of two COBOL systenns [Lin and Gustafson 1988]. The combined

percentage of perfective and corrective maintenance activity was greater than seventy

percent in one case and greater than ninety percent in the other. Adaptive was only

approximately ten percent, and a number oi new categories (e.g., adding and deleting

comments) all represented small percentages of the work.

Weiss and Basili did a detailed investigation of the change data from three systems at

the Software Engineering Laboratory [Weiss and Basili 1985]. They found that

approximately forty percent of changes were to correct errors. Their data did not support

some conventional wisdom in software engineering; for example, interfaces did not

appear to be particularly problematic, and most corrections were small changes in only one

location.

Additional work in this area would be useful in better understanding how

maintainers actually spend their time. In particular, it may be time to develop a finer-

grained taxonomy that further develops the three types of activities first proposed by

Swanson. Beyond this documentation of effort distribution, analysis linking patterns in

the distribution of maintenance work could suggest improvements in the initial

development process that would reduce later expenditures on maintenance. For example,

lower than average amounts of corrective maintenance and/or easier (less expensive)

adaptive and perfective maintenance might be associated with systems developed with

certain modern development practices. Systems with higher levels of software re-use may

be associated with lower levels of corrective maintenance.

4.2 Repair versus Replace

One relatively unsettled question is how the distribution of work may change over

time as systems age. Guimaraes observed that successive program changes tend to

complicate the logical flows of the program and to render program documentation

obsolete, thus increasing maintenance expenditures [Guimaraes 1983]. Lientz and

Swanson [Lientz and Swanson 1981] agree that maintenance costs increase with program

age, but offer results that suggest that the increases may be avoidable through managerial

action: "Though system size and age are seen to he strongly associated with the problems of

maintenance, this association was shown in subsequent analysis to be explainable in terms

of other, intervening variables, viz. magnitude and allocation of maintenance effort and

the relative development experience of maintainers of the system."

24

If the effects of age on software were better understood, then this could offer insight

into the question of when to replace rather than repair (maintain) a given software

component. Most of the data collected so far suggest that modification is more expensive

than is commonly believed, and that the development cost savings of using modified

modules may pale in comparison to the later costs of maintaining the resulting system

[Bowen 1983] [Basili and Perricone 1984].9

Bowen analyzed error data from a large (6000 module) Hughes air defense project and

determined that a composition of a balanced mixture of new and lifted (modified from

existing code) software (e.g. 35/65 to 75/25) is nearly four times as error-prone as a

composition of extremely unbalanced mixtures of new/lifted software (e.g. 15/85 or 90/10).

This implies that if one is planning to utilize pieces of an existing system, one should

either use it sparingly in a new system, or use it nearly completely intact. If large scale

modifications are planned, it seems much more efficient to design from scratch to avoid

the prohibitive maintenance costs of problem fixes associated with reuse. Supporting this

view is the study by Card et al. where problem fixes required ten times the effort of

developing new code [Card et al. 1987]. ^'^

While they did not specify optimal blends of new and modified modules in the

construction of new systems, Basili and Perricone concluded that adapted modules taken

from other systems were more expensive to maintain [Basili and Perricone 1984]. One

factor that may have contributed to this result is that they also determined that most of the

errors in the systems they analyzed were due to incorrect or misinterpreted functional

specifications, and the single largest error types were those involving interfaces. Modules

borrowed from other systems are likely to be less comprehensible to programmers than the

newly designed code, and thus would be especially prone to these types of errors.

In seeming contrast to the above, Lanergan and Grasso offer evidence of a large scale

success in the reuse of software components [Lanergan and Grasso 1984]. They examined

5000 source COBOL programs at Raytheon, and identified redundant sections of code that

were prime candidates for standardization. Subsequent evaluation of the actual effects of

using these standardized functional modules led to estimates of an increase in

productivity of up to 50%. The examples cited were simple, however, comprising routines

^Although not all data collected on this topic are in agreement. In a study of 65 COBOL maintenance projects it

was found that the costs associated with modified lines of code were approximately equal to new lines [Banker,

et al, 1987]

^*^This is also related to some interesting theoretical work done by Code, et al, whose model results suggest,

among other propositions, the somewhat surprising conclusion that the optimal time within which to replace

larger systems is shorter than that for smaller systems [Code, et al, 1990).

25

to perform date conversions, part number validations, or data field edits. Reuse of

relatively atomic functions such as these has proved effective, but the advantages may not

carry over quite as well to modules with more complex functions and interfaces.

Further research into when the benefits of reusability are offset by the cost to modify

seem warranted, as well as more longitudinal studies that document how systems evolve.

5. METHODOLOGICAL ISSUES IN EMPIRICAL RESEARCH IN SOFTWARE
MAINTENANCE

One advantage of a review that examines so many years of research is that it permits

some observations to be made about meta-issues. One issue that has already been raised is

the sheer dearth of research in this area. A second such issue are methodological concerns

in the research. Two main topics merit discussion here, the choice of methodologies and

the care with which research is conducted.

5.1 Methodological Choice

Proponents of alternative research methodologies seem somewhat inclined to criticize

other approaches rather than simply benefiting from assimilating those findings into their

own work. A common division is between those who conduct field research (typically

field studies rather than field experiments) and those who conduct experiments (typically

laboratory experiments rather than field experiments). The experimentalists emphasize

the need to find causes of behaviors and often complain about the lack of a theoretical base

in some field studies. For example, Soloway and Ehrlich, at the end of an article describing

their experiments, note "More importantly, our approach is to provide explanations

(emphasis in original) for why a program may be complex and thus hard to comprehend.

Towards this end we have attempted to articulate the programming knowledge that

programmers have and use. Thus, our intent is to move beyond correlations (emphasis in

original) between programmer performance and surface complexity as measured by

Halstead metrics, lines of code, etc, to a more principled, cognitive explanation." [Soloway

and Ehrlich 1984].

On the other side, field researchers often complain about the lack of external validity of

most lab experiments which typically use student programmers and small programs. For

example, Conte et al. note "The results from controlled experiments which will be

discussed later, are usually limited by economic constraints to small projects by individual

programmers, and are usually performed only in universities. Such results are useful in

providing insights to certain parameters of the programming process, but are not normally

26

generalizable to team programming and large projects, which are common in industry."

[Conte etal. 1986].

Both of these statements, while true, emphasize the shortcomings of alternative

research methodologies without conveying the notions (1) that difficult research problems

such as those being investigated in this research are likely to benefit from attack by

dissimilar methods, and (2) that given the current shortage of research in this area, almost

all published research is providing positive marginal contribution. It would seem

appropriate for researchers to attempt to assimilate the findings from the other streams

into their own work so that all groups would move ahead. Only a very small number of

field experiments have been reported, and some of these have been criticized as not being

done as well as they might have [General Services Administration 1987; Zvegintzov 1988].

As it stands now, a review of Tables 2, 3, and 4 reveals that problems and methodologies

are tightly linked, e.g., complexity metrics work is almost entirely field study based and

comprehension work is almost entirely laboratory experiments. While to a certain degree

this bias is natural and appropriate, given the topics studied, over-reliance on a subset of

research tools may hinder progress. What may be required is collaboration among

maintenance researchers who reflect different traditions and who possess complementary

research skill sets.

5.2 Methodological Rigor

Empirical work in software engineering in general (not just maintenance) has been

sometimes criticized for lack of methodological rigor, e.g. [Kearney et al. 1986]. Work in

this area suffers from a number of handicaps owing to the difficulty of the research

problem ~ the large number of potential factors to model, the absence of standard

definitions for dependent and independent variables, and the lack of large and /or readily

available data sets with which to analyze.

Unfortunately, these limitations are sometimes overlooked, or at least not

acknowledged, by researchers. A recent summary of a set of thirteen general criticisms has

been provided by MacDonell, where he notes deficiencies in such areas as experimental

method and design, data collection, and statistical analysis and interpretation [MacDonell

1991].

One particular point of MacDonell's that is borne out by the data collected in this

review and is highlighted in the tables is the (over)-reliance on Pearson correlation

[MacDonell 1991, pp. 146-147]. One concern is the sometimes casual manner in which

researchers move from interpreting what are often exploratory correlation results with

27

causation. Kearney et al. note "When large numbers of differing experimental conditions

are examined, the likelihood of finding accidental relationships is high. The unfortunate

consequence of this practice is a substantial inflation of the probability of making a type [

error- inferring the existence of a non-existent relationship." (page 1048) This concern

seems worthy of repeating, especially in light of a recent trend observed in the tables

towards greater use of exploratory factor analysis in software engineering maintenance

research.

A more general concern is the extensive use of parametric statistical methods, such as

Pearson correlation, whose proper use includes an understanding of the method's

distributional assumptions. Shepperd provides a very relevant example of where such

assumptions are violated - the use of the number of errors as a dependent variable

[Shepperd 1988]. Clearly, this can never be negative, and therefore at best this distribution

is truncated normal, yet such concerns are rarely acknowledged by authors. Two

exceptions from this review worthy of emulation by other researchers are

acknowledgements by Curtis et al. and Woodfield, et at.:

"In using ANOVA, we assume that the values of the dependent variable are normally

distributed. Unfortunately , this is typically not the case with response-time measures. For

most response-time measures, the variance is proportional to the mean, since many of the

values are near zero and the distribution is positively skewed. For all the analysis reported

in experiment 1, a logarithmic transformation was applied to the response time to

attenuate the influence of extreme scores an produce a more normal distribution..." [Curtis

etal. 1989].

"The most common correlation measure is the Pearson product-moment correlation

coefficient, which requires that data be from interval scales with underlying normal

distributions, with the sets of data being correlated having nearly equal variance. ..some

models yield outlier estimates that do not meet the normal distribution assumption.

Thus, we also use the Spearman rank correlation coefficient to determine how well

estimates of programming times relate to actual programming times." [Woodfield et al.

1981b]

Despite the ease in doing so, such acknowledgements are rare in this literature. In

general, for much of the empirical research in software maintenance it would seem that

greater use of non-parametric (distribution free) statistical tests would be appropriate.

28

6. CONCLUDING REMARKS

The first broad conclusion from tl^is review and analysis of empirical research in

software maintenance is that the area has been understudied relative to its practical

import. It confirms Schneidewind's observation that the software engineering field needs

to reassess its priorities with regard to research topic selection and devote more attention

to maintenance.

In terms of specific research areas covered, this review noted four broad areas of

coverage: (1) software modularity and structure, (2) general software complexity metrics, (3)

software comprehension, and (4) general management issues. This section focuses on

discussing suggestions for future research, and these recommendations are summarized in

Table 6 which appears at the end of this section.

A great deal of work has been directed at determining the benefits of modularity, with

the most recent work suggesting that there is an optimum level in each environment that

can be discovered through the use of statistical models. Further work to confirm this

finding and to determine the range of values and determinants of the differences would be

useful, and could eventually lead to the development of local standards for proper practice.

There has been less work on the issue of inter-module coupling, but all of the results argue

for greater emphasis on reducing coupling when possible. There is some limited evidence

that the "ripple effects" caused by the propagation of errors through coupling are more

expensive to correct than primary errors, but further work on this topic seems necessary.

Considerable effort has gone into correlating complexity metric scores with increased

effort, errors, changes or all three, and it seems clear that strong relationships do exist.

What also seems clear is that many complexity metrics measure the same dimension, e.g.,

program size. Therefore, in the absence of some other compelling argument, the

publication criteria for new metrics must be that they be shown to be sufficiently

orthogonal to existing measures. That is, complexity metrics need to be shown to be

adding value beyond representing size.^^ It has also been suggested that systems grow in

complexity as they age, but why this may be true is not well-documented. There is a need

for more longitudinal studies that can reflect a system's status at various points in its life.

Most useful would be studies that track all phases of the life cycle (including analysis and

design) so that investigations could be done to determine the effects on subsequent

^^A pilot study in this regard is the work in cyclomatic complexity density [Gill and Kemerer, 1991).

29

maintenance requirements caused by using different techniques and emphases during the

earlier phases.

A significant amount of research activity has been devoted to the issue of maintainer

comprehension of existing source code and documentation. Wide individual variations

in performance have been noted by many researchers. One laboratory finding on this topic

is that a systematic approach to performing maintenance tasks appears more effective than

the technique of referencing the code only as needed for each step in performing the task.

Further work is required both to validate this finding and to discover other habits of good

maintainers so that these techniques can be further routinized and taught to new

maintainers. A second finding in this area is that graphical aids seem to be, on the whole,

as good as or better than text-based documentation. With the increasing availability of easy

to use software for generating this documentation this would appear to be an inexpensive

recommendation for managers to adopt.

In terms of higher level managerial issues two foci were noted, the causes of

maintenance and the question of repair versus replacement. The data on the causes of

maintenance are somewhat mixed, and do not always represent consistent or sufficiently

detailed definitions. It will be extremely difficult to evaluate the impact of improved

practices, in design or elsewhere, if accurate tracking of the scope and origin of

maintenance requests cannot be done. More work needs to be done to track maintenance

work in practice, in part to support the aforementioned need for more longitudinal data.

The repair/replace issue is often discussed, but is difficult to research. Some research

suggests that repair is more expensive than new development, but research in the software

reuse literature suggests that significant savings can be achieved through code reuse.

Savings depend on the degree to which the reused code needs to be modified, but little is

known about even how to measure this phenomenon.

In terms of methodological issues greater emphasis should be placed on using

multiple, diverse research methods to address the large number of remaining research

issues. Empirical researchers in software maintenance, particularly new ones, are

reminded by a number of authors about using appropriate caution in borrowing

techniques, particularly statistical tools, from other disciplines, without examining the

assumptions necessary to appropriately apply them.

It is important to try and step back from the existing studies to attempt to determine

what is missing or at least neglected. One common concern about documentation not

addressed by laboratory studies is that in practice maintainers often do not use it at all,

30

regardless of format, perhaps because they do not trust that it has been kept consistent with

the existing system. Researchers and vendors in new systems development need to

address this issue by making automatic generation and update of documentation of feature

of their new tools, lest the potential comprehension gains of proper formatting of such

documentation be wasted.

An area of research that is conspicuous by its absence is work on the organizational

aspects of software maintenance. Work on comprehension focuses narrowly on an

individual's approach to a piece of code and work on complexity metrics tends to ignore

the maintainer completely. In practice there is considerable influence from the

organizational environment in terms of the presumed undesirability of maintenance

work and the subsequent likely effects on morale and performance. ^2 While several

academic studies surveyed here mention this in passing, with the exception of recent work

by Swanson and Beath, none address the organizational component [Swanson and Beath

1989a; Swanson and Beath 1990]. It seems likely that the organizational effects on

performance are at least as great as those that have been studied in detail, such as work on

documentation formats.

For example, is poor performance in maintenance a result of low morale of the

maintainers? Is maintenance's low occupational status in the software engineering

community a function of the common practice of assigning relatively inexperienced staff

members to this role? And, in turn, how does the use of these junior staff members

contribute to poor performance? Do the benefits of assigning software engineers with

higher levels of experience to maintenance outweigh the possibly increased cost of

turnover? These are difficult research questions to operationalize and test in the field, and

what would be appropriate are collaborative research projects between organizationally-

oriented researchers and more traditional software engineering researchers, where the

respective interests and skills of each could lead to some very interesting and carefully

researched results.

In general, software maintenance is likely to gradually evolve into a better understood

activity, but there are economic advantages to speeding this process. As software managers

recognize the importance of the maintenance process, more resources can be allocated to

improve it. This gradual realization of importance may help alleviate the possible stigma

and morale problems associated with maintenance work, and is crucial to promoting

further research.

^^Schneidewind likens working in maintenance to "having bad breath" [Schneidewind 1987].

31

Because so little theory currently exists it remains important that research be

empirically driven in order to record the observations that will lead to greater theory

development in this area. An obstacle faced by researchers is the difficulty in obtaining

good data to analyze. Data collected from field studies are often not complete, and can be

inaccurate depending on how well constraints are enforced ensuring consistent data

reporting. In addition to inaccuracies, it may be the case that organizations are reluctant to

release what they may view as proprietary data. This has been suggested as one of the

causes for the emphasis in the research literature on maintenance tasks being done in an

academic or military setting [Hale and Haworth 1988]. One solution to this problem may

be the establishment of "software maintenance research databases" where data could be

contributed by organizations under the agreement that a neutral party, such as a

university-affiliated research center, would maintain the anonymity of the individual

contributions.

In order to facilitate such industry cooperation and therefore an increase in the

quantity of maintenance research, studies need to be conducted with an eye towards how

the results can be eventually utilized by maintenance managers. As managers acquire the

skills to use metrics effectively and begin to benefit from software maintenance research,

they will be increasingly willing to encourage further studies.

Lastly, tools for metric collection have historically been constructed by the researchers

as needed, and were not readily available. More recently, automated tools have come on

the market and it is expected that as data collection becomes easier, more data will be

available to analyze and more research will be conducted. As new automated metric

gathering tools become increasingly commercially available, validation research of

applying metrics to different environments will become much easier and the quantity of

research should increase. This validation research needs to be coordinated, correlating the

measurement observations from a wide variety of metrics and environments. With these

common definitions, better tools, and greater sharing of data significant progress can be

expected in the next decade.

32

Table 6: Summary Recommendations for Future Empirical Maintenance Research

Software modularity and structure

1. More work on determining optimal levels of modularity

2. More work on effects of coupling minimization techniques

3. More work on relationship between coupling and ripple errors

General software complexity metrics

1. Less work on new metrics that have high correlations with existing metrics

2. More experimentation with regard to impacts of complexity on performance

Software comprehension

1. More work on developing measures of maintainer ability and experience

2. More work on impact of experience on performance

3. More work on how documentation is used (or not) in the field

General management issues

1. More work on a finer grained taxonomy of maintenance activities

2. More work on linking maintenance tasks to earlier lifecycle phase activities

3. More work on documenting modification costs and relationship with reuse

4. More work on organizational issues, including morale and turnover

33

BIBLIOGRAPHY

An, K. H., D. A. Gustafson and A. C. Melton, "A Model for Software Maintenance", 3rd

IEEE Conference on Softzuare Maintenance, pp. 57'-62, 1987.

Baecker, R., "Enhancing Program Readability and Comprehensibility with Tools for

Program Visualization", 10th International Conference on Software Engineering, pp. 356-

366, 1988.

Banker, R. D., S. M. Datar and C. F. Kemerer, "Factors Affecting Software Maintenance

Productivity: An Exploratory Study", Proceedings of the 8th International Conference on

Information Systems, Pittsburgh, Pennsylvania, pp. 160-175, 1987.

Banker, R. D., S. M. Datar, C. F. Kemerer and D. Zweig, "Software Complexity and Software

Maintenance Costs", MIT Sloan School Working Paper #3155-90, (January 1992).

Basili, V. R., "Quantitative software complexity models: A panel summary", pp. 232-233 in

Tutorial on Models and Methods for Software Managment and Engineering, Basili, V. R.

(ed.), IEEE Computer Society Press, Los Alamitos, CA, (1980).

Basili, V. R. and B. Perricone, "Software Errors and Complexity: An Empirical

Investigation", Communications of the ACM, 27, (1): 42-52, (January 1984).

Benander, B. A., N. Gorla and A. C. Benander, "An Empirical Study of the Use of the

GOTO Statement", Journal of Systems and Software, 11, (3): 217-223, (1990).

Bendifallah, S. and W. Scacchi, "Understanding Software Maintenance Work", IEEE

Transactions on Software Engineering, SE-13, (3): 311-323, (March 1987).

Blum, B. I., "Evolution With System Sculpture: Some Empirical Results", 3rd IEEE

Conference on Software Maintenance, pp. 45-56, 1987.

Bowen, J. B., "Software Maintenance, An Error Prone Activity", 1st IEEE Conference on

Software Maintenance, pp. 102-105, 1983.

Card, D. N. and W. W. Agresti, "Measuring Software Design Complexity", Journal of

Systems and Software, 8, (3): 185-197, (June 1988).

Card, D. N., D. V. Cotnoir and C. E. Goorevitch, "Managing Software Maintenance and

Cost", 3rd IEEE Conference on Software Maintenance, pp. 145-152, 1987.

Chong Hok Yuen, C. K. S., "An Empirical Approach to the Study of Errors in Large

Software Under Maintenance", 2nd IEEE Conference on Software Maintenance, pp. 96-

105, 1985.

34

Chong Hok Yuen, C. K. S., "On Analyzing Maintenance Process Data at the Global and
Detailed Levels: A Case Study", Proceedings of the 4lh IEEE Conference on Software

Maintenance, pp. 248-255, 1988.

Compton, B. and C. Withrow, "Prediction and Control of ADA Software Defects", Journal

of Systems and Software, 12, (3): 199-207, (July 1990).

Conte, S. D., H. E. Dunsmore and V. Y. Shen, Software Engineering Metrics and Models,

Benjamin-Cummings, Reading, MA, (1986).

Coupal, D. and P. N. Robillard, "Factor Analysis of Source Code Metrics", Journal of

Systems and Software, 12, (3): 263-269, (July 1990).

Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst and T. Love, "Measuring the

Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe
Metrics", IEEE Transactions on Software Engineering, SE-5, (2): 96-104, (1979).

Curtis, B. S., E. Sheppard, J. B. Kruesi-Bailey and D. Boehm-Davis, "Experirrxental

Evaluation of Software Documentation Formats", Journal of Systems and Software, 9, (2):

167-207, (February 1989).

Cusumano, M. and C. F. Kemerer, "A Quantitative Analysis of US and Japanese Practice

and Performance in Software Development", Management Science, 36, (11): 1384-1406,

(November 1990).

Dean, J. S. and B. P. McCune, "An Informal Study of Software Maintenance Problems", 1st

IEEE Conference on Software Maintenance, pp. 137-139, 1983.

Fjelstad, R. K. and W. T. Hamlen, "Application Program Maintenance Study: Report to

Our Respondents", pp. 11-27 in Tutorial on Software Maintenance, Parikh, G. and N.

Zvegintzov (ed.), IEEE Computer Society Press, Los Angeles, CA, (1983).

Freedman, D. H., "Programming without Tears", High Technology, 6, (4): 38-45, (April

1986).

General Services Administration, U. S., "Parallel Test and Evaluation of a COBOL
Restructuring Tool", Federal Software Management Support Center Office of Software

Development and Information Technology Report (September 1987).

Gibson, V. R. and J. A. Senn, "System Structure and Software Maintenance Performance",

Communications of the ACM, 32, (3): 347-358, (March 1989).

Gill, G. K. and C. F. Kemerer, "Cyclomatic Complexity Density and Software Maintenance

Productivity", IEEE Transactions on Software Engineering, 17, (12): 1284-1288, (December

1991).

35

Gode, D. K., A. Barua and T. Mukhopadhyay, "On the Economics of the Software
Replacement Problem", Proceedings of the 11th International Conference on

Information Systems, Copenhagen, Denmark, pp. 159-170, 1990.

Gorla, N., A. C. Benander and B. A. Benander, "Debugging Effort Estimation Using
Software Metrics", IEEE Transactions on Software Engineering, 16, (2): 223-231, (February

1990).

Gremillion, L. L., "Determinants of Program Repair Maintenance Requirements",

Communications of the ACM, 27, (8): 826-832, (August 1984).

Guimaraes, T., "Managing Application Program Maintenance Expenditures",

Communications of the ACM, 26, (10): 739-746, (October 1983).

Gustafson, D. A., A. Melton and C. S. Hsieh, "An Analysis of Software Changes During

Maintenance and Enhancement", 2nd IEEE Conference on Software Maintenance, pp. 92-

95, 1985.

Hale, D. P. and D. A. Haworth, "Software Maintenance: A Profile of Past Empirical

Research", Proceedings of the 4th IEEE Conference on Software Maintenance, pp. 236-240,

1988.

Halstead, M., Elements of Software Science, Elsevier North-Holland, New York, NY,
(1977).

Harrison, W. and C. Cook, "Are Deeply Nested Conditionals Less Readable?", Journal of

Systems and Software, 6, 335-341, (1986).

Henry, S. and D. Kafura, "Software Structure Metrics Based on Information Flow", IEEE

Transactions on Software Engineering, SE-7, 510-518, (September 1981).

Jensen, H. A. and K. Vairavan, "An Experimental Study of Software Metrics for Real-Time

Software", IEEE Transactions on Software Engineering, SE-13, (2): 231-234, (February

1985).

Kafura, D. and G. R. Reddy, "The Use of Software Complexity Metrics in Software Maintenance",

IEEE Transactions on Software Engineering, SE-13, (3): (March 1987).

Kearney, J. K, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray and M. A. Adler, "Software

Complexity Measurement", Communications of the ACM, 29, (11): 1044-1050, (1986).

Kemerer, C. F., Measurement of Software Development Productivity, unpublished
Carnegie Mellon University Ph.D. thesis, (1987).

Korson, T. D. and V. K. Vaishnavi, "An Empirical Study of the Effects of Modularity on

Program Modifiability", pp. 168-186 in Empirical Studies of Programmers, Soloway, E.

and S. Iyengar (ed.), Ablex PubUshing Co., (1986).

36

Lanergan, R. G. and C. A. Grasso, "Software Engineering With Reusable Designs and

Code", IEEE Transactions on Software Engineering, SE-10, (5): 498-501, (September 1984).

Lehman, J. A., "An Empirical Comparison of Textual and Graphical Data Structure

Documentation for COBOL Programs", IEEE Transactions on Software Engineering, 11,

(2): 12-26, (September 1989).

Letovsky, S., "Cognitive Processes in Program Comprehension", journal of Systems and

Software, 7, (4): 325-339, (December 1987).

Li, H. F. and W. K. Cheung, "An Empirical Study of Software Metrics", IEEE Transactions

on Software Engineering, SE-13, (6): 697-708, (June 1987).

Lientz, B. and E. B. Swanson, Software Maintenance Management, Addison-Wesley,
Reading, MA, (1980).

Lientz, B. P. and E. B. Swanson, "Problems in Application Software Maintenance",

Communications of the ACM, 24, (11): 31-37, (November 1981).

Lin, L-H. and D. A. Gustafson, "Classifying Software Maintenance", Proceedings of the 4th

IEEE Conference on Software Maintenance, pp. 241-247, 1988.

Lind, R. and K. Vairavan, "An Experimental Investigation of Software Metrics and their

Relationship to Software Development Effort", IEEE Transactions on Software

Engineering, 15, (5): 649-653, (May 1989).

Lindberg, M. V., H. Pei and R. Bond, "A Study of Requirements Change Effects on
Incrementally Delivered Systems", Proceedings of the 4th IEEE Conference on Software

Maintenance, pp. 204-211, 1988.

Littman, D. C, J. Pinto, S. Letovsky and E. Soloway, "Mental Models and Software

Maintenance", Journal of Systems and Software, 7, 341-355, (1987).

Lohse, J. B. and S. H. Zweben, "Experimental Evaluation of Software Design Principles: An
Investigation Into the Effect of Module Coupling on System Modifiability", Journal of

Systems and Software, 4, (4): 301-308, (November 1984).

MacDonell, S. G., "Rigor in Software Complexity Measurement Experimentation", Journal

of Systems and Software, 16, 141-149, (1991).

McCabe, T. J., "A Complexity Measure", IEEE Transactions on Software Engineering, SE-2,

(4): 308-320, (1976).

Miara, R. J., J. A. Musselman, J. A. Navarro and B. Shneiderman, "Program Indentation

and Comprehensibility", Communications of the ACM, 26, (11): 861-867, (November
1983).

37

Munson, J. C. and T. M. Khoshgottaar, "Applications of a Relative Complexity Metric for

Software Project Management", Journal of Systems and Software, 12, (3): 283-291, (July

1990).

Oman, P. W., C. R. Cook and M. Nanja, "Effects of Programming experience in Debugging
Semantic Errors", journal of Systems and Software, 9, 192-207, (1989).

Porter, A. A. and R. Selby, "Evaluating Techniques for Generating Metric-Based

Classification Trees", journal of Systems and Software, 12, (3): 209-218, (July 1990).

Ramesh, B. and E. A. Stohr, "Survey of Journals and Proceedings in Computer Science and
MIS", New York University working paper (May 18, 1989).

Ramsey, H. R., M. E. Atwood and J. R. Van Doren, "Flowcharts Versus Program Design

Languages: An Experimental Comparison", Communications of the ACM, 26, (6, June):

445-449, (1983).

Ream, A. K., A Survey and Review of Recent Empirical Research on Software

Maintenance, unpublished Massachusetts Institute of Technology B.S. thesis, (1991).

Robson, D. J., K. H. Bennett, B. J. Cornelius and M. Munro, "Approaches to Program
Comprehension", journal of Systems and Software, 14, 79-84, (1991).

Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability", IEEE Transactions on Software Engineering, SE-13, (3): 344-354, (March

1987).

Rombach, H. D. and V. Basili, "Quantitative Assessment of Maintenance: An Industrial

Case Study", 3rd IEEE Conference on Software Maintenance, pp. 134-144, 1987.

Schneidewind, N. F., 'The State of Software Maintenance", IEEE Transactions on Software

Engineering, SE-13, (3): 303-310, (March 1987).

Selby, R. and V. Basili, "Error Localization During Software Maintenance: Generating

Hierarchical System Descriptions from the Source Code Alone", Proceedings of the 4th

IEEE Conference on Software Maintenance, pp. 192-197, 1988.

Shen, V. Y., T.-J. Yu, S. M. Thebaut and L. R. Paulsen, "Identifying Error-Prone Software -

An Empirical Study", IEEE Transactions on Software Engineering, SE-11, (4): 317-323,

(1985).

Shepperd, M., "A critique of cyclomatic complexity as a software metric". Software

Engineering journal, 3, (2): 30-36, (March 1988).

Shneiderman, B., "Control Flow and Data Structure Documentation: Two Experiments",

Communications of the ACM, 25, (1): 55-63, (1982).

38

Soloway, E. and K. Ehrlich, "Empirical Studies of Programming Knowledge", IEEE
Transactions on Software Engineering, SE-10, (5): 595-609, (September 1984).

Sunohara, T., A. Takano, K. Vehara and T. Ohkawa, "Program complexity measure for

software development management". Proceedings of the Fifth International Conference

on Software Engineering, San Diego, CA, pp. 100-106, 1981.

Swanson, E. B., "The Dimensions of Maintenance", Proceedings of the Second

International Conference on Software Engineering., pp. 492-497, 1976.

Swanson, E. B. and C. M. Beath, Maintaining Information Systems in Organizations, John
Wiley &c Sons, xNew York, (1989a).

Swanson, E. B. and C. M. Beath, "Reconstructing the Systems Development Organization",

MIS Quarterly, 13, (3): 293-308, (September 1989b).

Swanson, E. B. and C. M. Beath, "Departmentalization in Software Development and
Maintenance", Communications of the ACM, 33, (6): 658-667, (June 1990).

Tenny, T., Program, "Readability: Procedures Versus Comments", IEEE Transactions on

Software Engineering, SE-14, (9): 1271-1279, (1988).

Troy, D. A. and S. H. Zweben, "Measuring the Quality of Structured Designs", Journal of

Systems and Software, 2, 113-120, (1981).

Vessey, I. and R. Weber, "Some Factors Affecting Program Repair Maintenance: An
Empirical Study", Communications of the ACM, 26, (2): 128-134, (1983).

Wake, S. and S. Henry, "A Model Based on Software Quality Factors Which Predicts

Maintenance", Proceedings of the 4th IEEE Conference on Software Maintenance, pp. 382-

387, 1988.

Weiser, M., "Programmers Use Slices When Debugging", Communications of the ACM,
25, (7, July): 446-452, (1982).

Weiss, D. M. and V. R. Basili, "Evaluating Software Development by Analysis of Changes:

Some Data From the Software Engineering Laboratory", IEEE Transactions on Software

Engineering, SE-11, (2): 157-168, (February 1985).

Wiener-Ehrlich, W. K., J. R. Hamrick and V. F. Rupolo, "Modelling Software Behavior in

Terms of a Formal Life Cycle Curve: Implications for Software Maintenance", /£££
Transactions on Software Engineering, SE-10, (4, July): 376-383, (1984).

Woodfield, S. N., H. E. Dunsmore and V. Y. Shen, "The Effect of Modularization and

Comments on Program Comprehension", 5th International Conference on Software

Engineering, pp. 215-223, 1981a.

39

Woodfield, S. iN'., V. Y. Shen and H. E. Dunsmore, "A study of several metrics for

programming effort", Journal of Systems & Software, 2, 97-103, (1981b).

Wu, C. F., "Information System Development Audits and Software Maintenance", 3rd

IEEE Conference on Software Maintenance, pp. 190-197, 1987.

Yau, S. S. and P. S. Chang, "A Metric of Modifiability for Software Maintenance",

Proceedings of the 4th IEEE Conference on Software Maintenance, pp. 374-381, 1988.

Yau, S. S. and J. S. Collofello, "Design Stability Measures for Software Maintenance", IEEE
Transactions on Software Engineering, SE-11, (9): 849-856, (September 1985).

Zvegintzov, N., "High Noon III: Continuing the quest for a true test of software

maintenance tools", Software Maintenance News, 6, (1): 6-7, (January 1988).

40

?l 10 n?!

Date Due '-^-9Z_

FEB. i i.

APR. 1 7 mh

Lib-26-67

Mil lIBRiRIES

3 TOaO DD7n0fl7 b

