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Abstract

The phenomenon of hydrogen assisted cracking is well known as far as the weldments
of low strength steel are concerned. Recently, during the arc welding of high stregth
steels, a large number of small cracks in the weld metal has been observed, contrary
to what it has been observed during the welding of low strength steels i.e., a small
number of larger cracks in the HAZ.

In this study, it is hypothesized that the fine dispersion of inclusions present in
the weld metal of high strength steels is responsible for the observed differences in
cracking. This hypothesis was found to be well supported by the following facts:
(a)the fine dispersion of inclusions is able to trap a relatively large amount of hy-
drogen, (b) the hydrogen has the tendency to migrate towards regions under high
triaxial tensile stress i.e., the crack tip plastic zones, (c) once the crack tip advances
out of the former plastic zone-into a region in which the hydrogen concentration is
less than the critical value-the crack is arrested. Because of the large variation of
the diffusion coefficient at room temperature, it will take too long for a crack to
grow even to a length of approximately one centimeter. Furthermore, the remain-
ing hydrogen moves towards crack nucleation sites, which are nearer, causing the
formation and limited growth of new cracks, instead of moving towards a specific
crack tip-and thus raise the crack growth rate.

Thesis Supervisor: Thomas W. Eagar
Title: Professor of the Department of Material Science and Engineering
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Introduction

In the marine industry, the need to build more efficient and more cost effective struc-

tures, dictates the need to develop high strength steels, with high strength-to-weight

ratio. This is especially true in submersible applications, where the development

of high strength tempered steels has brought with it many problems of joining by

arc welding. In construction of submersibles where these high strength to weight

ratio steels are most commonly used, strict safety standards cause rejection of struc-

tural members for otherwise relatively minor flows. Consequently, the cost of the

structure increases dramatically'.

Weld hydrogen embrittlement refers to loss of ductility of the material, which

results in cracking or failure, usually soon after the weld is completed. Nevertheless,

hydrogen cracking can occur later in service under unusual conditions. In one case

the hydrogen concentration was found to be 1 cc/100 gram in a mild steel weldment,

ten years after the welding process took place [9].

This form of cracking is also called cold cracking, delayed cracking or hydrogen

assisted cracking. The hazardous behavior of hydrogen, is a complex phenomenon

which includes the amount of hydrogen, the applied stress, the temperature and the

microstructure involved. In the past, many studies have been performed, investi-

gating and trying to model the effect of hydrogen on the properties of steel2 .

The fact that cracking may occur after a relatively long time (days or weeks

after fabrication), causes great concern over the integrity of the structures. In

'In Britain alone, the estimated annual cost of repairing the structures affected by hydrogen
embrittlement, amounts to over one hundred and forty million pounds [28].

2See bibliography.



particular, it has been observed that when welding steels with yield points over

690 MPa-(100 ksi), a large population of small cracks in the weld metal is observed

whereas when welding lower strength steel, a small number of longer cracks in the

heat affected zone (HAZ) is observed. Since the cause of this different cracking

behavior is not known, the purpose of the present study is to investigate, using

analytical means, the role of large population of inclusions in the weldment, as far

as the solubility and diffusion of the hydrogen are concerned. It is hypothesized

the presence of a fine dispersion of inclusions may be able to explain the observed

differences in hydrogen cracking behavior between low strength and high strength

steel weldments.



Chapter 1

Background

1.0.1 Sources of Hydrogen during Welding and Hydrogen

Absorption

The typical causes of hydrogen entrance and theories that govern the saturation

and solubility of hydrogen in ferrous weld metals can be found in [11, p. 28] and

[30]. The amount of hydrogen that exists in fluxes for various types of electrodes

and welding methods, as well as the fraction of that amount that finally enters the

weld metal can be found in [5]. Theories that explain the mechanism of the above

phenomenon are described in [11, p. 27].

1.0.2 Hydrogen Diffusion

The hydrogen diffusion is governed by the Fick's first and second law [6]. The

driving forces for diffusion are described in [11, p. 36].

1.0.3 Trapping of Hydrogen

The diffusivity of hydrogen in iron, especially below 2500C, is greatly affected by the

presence of traps. The effect of trapping on hydrogen diffusion has been extensively

researched, to determine the density, depth, and interaction energies of the various

trapping sites such as microvoids, grain boundaries, inclusions, microcracks, solute



elements and other structural non-uniformities [19, 22, 9, 42, 21, 36, 18]. These

imperfections have an affinity for the hydrogen which results in a binding energy of

the hydrogen to the defect. The binding energy is a measure of the trapping strength

of hydrogen and determines the effectiveness of a trap. Available data [17] suggest

that dislocations and grain boundaries are equally effective, while the interfaces of

internal microvoids, nitrides and carbides have larger binding energies. That means

that when a hydrogen atmosphere is dragged along by a moving dislocation1 and

when that dislocation passes by such interfaces, the relative chemical potentials

are such that hydrogen will strongly tend to accumulate at that interface. Such

atmospheres can be dragged by dislocations large distances,, 1mm, in an otherwise

perfect crystal. Tien [42] reports that in iron-base alloys after a deformation time of

sixty seconds, v"Dt diffusion penetration is of the order of microns while hydrogen

transport due to dislocation motion (sweeping), is of the order of centimeters.

In a special case, when the inclusion is a microvoid [42] or the void is a part

of an inclusion, the hydrogen seeps into the void, recombines to the diatomic form

and thus balances thermodynamically the local fugacity inside the void. That void

will be continuously charged or pressurized with hydrogen if the arrival rate by

the dislocation transport mechanism is faster than the rate of hydrogen diffusion

into the surrounding matrix. Such a pressure build up, may later contribute to

embrittlement, by enhancing the crack growth or dimple growth. Leakage from the

void may prevent significant pressurization; however, when hydrogen adsorption

poisons, like oxygen, segregate to the interface2 such leakage does not occur.

1.0.4 Crack and Crack-Propagation

A critical combination of stress state and hydrogen concentration is needed to ini-

tiate cracking. In other words, crack nucleation occurs because of the reduction in

cohesive strength of the metal lattice, or when the hydrogen content in the area of

1The dislocation has to move with velocity less than a critical value which is a function of
temperature and strain rate, in order to drag the hydrogen atmosphere along [38, p. 284].

2 That can happen either through rejection by the matrix or by the inclusions.



maximum triaxial stress reaches a critical value as a result of stress induced hydro-

gen diffusion in that region. Once the crack initiates, it propagates until arrested in

a region of lower hydrogen content. Further diffusion of hydrogen to the new region

where the triaxial stress is maximum will re-initiate crack propagation, see fig: 1-1.

From a fracture mechanics point of view, hydrogen assisted cracking , can occur

at stress intensity factors3 less than 25% of the fracture toughness 4[32] of the mate-

rial. For high strength steels in which the Kl.ccSdrops as the yield stress increases,

see fig: 1-2, crack initiation and propagation are very sensitive to hydrogen concen-

tration i.e., only a small amount of hydrogen is needed to initiate or re-initiate crack

propagation.

A small crack of a fixed size is more likely to start hydrogen-cracking in residual6

stress fields of a high strength, than a low strength, material since:

* the yield stress is higher and the stress intensity factor K is higher

* higher strength material has lower resistance to environmental cracks.

It has been also noted [37, p. 983], that after the magnitude of the strength-

intensity factor is increased by applying more stress to a WOL7 specimen that

has a static crack, the hydrogen pressure required to just propagate the crack is

essentially the same as that at which the crack comes to a stop at the same value of

K. However, if instead of applying a monotonically increasing load, the same value

of K is attained by unloading from a larger value of K, it is usually found that higher

hydrogen pressure is needed to propagate the crack. That is called The hysteresis

phenomenon[37].

'Stress intensity factor is defined as K = PorVa, where a is the applied stress, 8 is a dimen-
sionless parameter depending on the geometry of the cracked body and a is the half-length of the
crack.

4 The stress intensity factor associated with the stress that causes fracture is called fracture
toughness.

SThe stress intensity factor below of which stress corrosion cracking does not occur.
'Case applied to weldments.
"This test has the characteristic that as the crack propagates, the stress intensity factor drops

constantly; it is used if self-arrest of the crack under constant pressure of hydrogen gas needs to
be assured. Furthermore, it is easy to control the progress of a crack-see [37, 35].
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Chapter 2

Analytic Investigation

2.1 Inclusions

In this study the role of the inclusions is investigated regarding their effect on

cracking of the weld metal. Not too many studies have been done regarding the

quantitative analysis of the inclusions in the weld metal of high strength steels.

One that was done for HSLA is that of [29], whose results will be used in this study.

In that paper [29], various electrodes were used and the population and diameter

of the consequent inclusions were measured as shown in table 2.1. The effect of

the inclusions on cracking has been hypothesized to be trapping of hydrogen and

essentially decreasing the available amount of hydrogen that can migrate towards

the crack tip and thus the cracking growth rate is decreased.

This hypothesis came from the simple fact that the dispersion of the finer par-

ticles is larger in high strength steel (HSS) than in low strength steel (LSS) weld

metals; so, assuming that the volume fraction of inclusions in the above weld metals

is the same, since the particle diameter in the weld metal of LSS is larger (approx-

imately two orders in magnitude as shown in appendix D) than that of HSS, the

difference in the population of the inclusions is about seven orders of magnitude-

higher in HSS. Consequently, the adsorbing surface of the inclusions in HSS is

larger i.e., the amount of trapped hydrogen is larger. From the well known re-

lationship x oc -.I, a typical value of diffusion coefficient of hydrogen in steel



various types inclusion diameter density 10A^8
of welds vol. fraction micrometers 1/mm ̂ 3

S313H 0.33 0.27 7.6
SG13H 0.004 0.51 2.01
EH133H 0.033 0.42 2.99
EM13H 0.0051 0.42 6.4
Til3H 0.0033 0.4 3.27
TiOeH 0.0025 0.33 1.54

Table 2.1: Summary of inclusion data [29]

D = 10 - 7 cm2/sec and a large time interval t = 10 4 sec, the diffusion distance of

the already reduced-by the trapping effect-amount of hydrogen yields to 316 m.

Taking into account that a specific value of hydrogen concentration is necessary-

with constant applied stress for the crack to propagate, an extremely large amount

of time is needed. Consequently, despite the fact that hydrogen has the tendency to

migrate towards the regions under higher triaxial stresses, it will migrate towards a

closer crack nucleation site.

At the beginning of this study, one of the issues that was to be answered is how to

determine the maximum amount of hydrogen that can be trapped by the inclusions

in the weld metal. For that reason, it is assumed that hydrogen is adsorbed on

the inclusions, the way that it adsorbs on iron [4], since there is no evidence of how

hydrogen adsorbs on the inclusions formed in the weld metal. During the subsequent

calculations the following postulates have been made:

1. The shape of the inclusions is spherical.

2. The inclusions are equally spaced in the weld metal.

Since the amount of hydrogen adsorbed on the inclusions is not specifically deter-

mined, three cases were examined as follows':

1 The calculations of the procedures are shown in appendix A.



1. Assuming that the inclusion structure is BCC and one atom of hydrogen is

sitting on each atom of the inclusion being on the close-packed-plane (111),

the amount of hydrogen trapped is:

2.12 x 101A (2.1)
MH = NA (2.1)

NA

where MH is the amount of trapping hydrogen in grams, A is the total area of

inclusions in cm 2 and NA is the Avogadro's number.

2. Knowing the atomic radius of hydrogen (0.79 A) and assuming that a specific

area of the inclusion particle should be covered with hydrogen atoms located

one next to the other, the number of hydrogen atoms can be found by dividing

the area of the particle by the area of the projection of the spherical atom on

the particle.

3. Using a saturation value for hydrogen adsorbed on the particle, the value given

by [20] i.e., 10 s atoms/cm2 .

The values2 found for each of the above cases are:

1. 0.75 ppm.

2. 1.7 ppm.

3. 0.4 ppm.

respectively.

2.2 The Role of the Plastic Zone at the Crack

Tip

The stress distribution3 ahead of the crack tip has the form shown in fig: 2-1. As

predicted from continuum mechanics, the maximum stress is approximately 3 x 0',

2Using the average particle diameter de, = 0.371Am and population N, = 3.76 x 10 8mm -3 as
shown in appendix C.

3 Under plane strain conditions.
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Figure 2-1: Stress Distribution in Front of the Crack Tip

for an ideally plastic solid and even higher when strain hardening is involved [39].

As pointed out by Rice [39], an increase in load4 does not change the stress level

acting, but simply expands the curves shown over a wider region of material ahead

of the crack tip, by K ic/o . Since hydrogen solubility increases with triaxial tensile

stress s , it can be expected that additional hydrogen is led towards the crack tip.

Considering the above, one could conclude that the critical hydrogen concentration

is a material property and is independent of the externally applied stress 6 . This is

because the stress singularity reduction due to plastic flow, is approximately 3 to

3 .5o, , independent of stress intensity[14]. The regions where hydrogen is preferably

accumulated, depend upon the binding energy of the flaw. Kumnick et, al [25, p.

37] suggests that traps are associated with structural imperfections or point defects.

4 Therefore, an increase in K.

sSolubility oc eo-,. as shown by Rice [39]
'Although a minimum stress is required-KI,Ce.



Therefore, one could expect that crack initiation and propagation mechanisms are

triggered by local accumulation of hydrogen at microstructural heterogeneities. Any

load increase, broadens the plastic zone of the crack tip and consequently increases7

the crack growth rate.

2.2.1 Modeling the Plastic Zone

The hydrogen has a tendency to migrate towards the regions under triaxial stress.

For that reason the plastic zone can be assumed to be a hydrogen sink. To simplify

the model, it is assumed that the shape of the plastic zone is cylindrical, which

can be solved as a two-dimensional disk. The equations-developed by Rideal and

Tadayon, which calculates the total amount of diffusing substance Q remaining on

a disk of radius a , after time t is as follows.

Defining r as
ra 2

7 2- (2.3)

* For small values of t i.e., t < r eq. 2.2 can be written as :

Q = a2Co(1 -2 t
- a 2,r

* For large values of t i.e., t >> r the respective equation for eq. 2.2 is :

Sra 4 C,
4Dt

For the case of a disk sink, the above equations can be written as follows:

7There is a broader area having higher amount of hydrogen than the critical one-needed to
propagate cracking.

sThe analytic form of the equation[6, p. 28] for a disk-source[6, p. 28] is:

Q = 2ra2 C, j J(ua)e-Du (2.2)
0 U

where J, (ua) is the Bessel function of the first kind and of the first order and C. is the initially
uniform concentration in the disk.



C = Co(1 + ) (2.4)

where 0 is the average concentration after time t and Co is the initial concen-

tration.

C = Co(2- )
4Dt

for small and large times respectively 9. It should pointed out however, that the

above equations for disk sink, are valid only for O/Co < 2, as shown in appendix B.

The diffusion coefficient, at room temperature, varies [5, p. 52] from 10-8 to 10-6 cm2

and a typical radius of a plastic zone 0o, for high strength steel with KI, = 64MPaV'mr

and -, = 896MPa, is rp = 8.5 x 10- 4m. Using the plastic zone radius as disk-sink

radius, eq. 2.3 is calculated to be r = 1.1 x 10sec and r = 1.1 x 104 sec, for the

aforementioned diffusion bounds respectively. The value for t = 104 sec is a reason-

able time for cold cracking. Thus eq. 2.4 will be used for subsequent calculations.

In addition, since it has been observed that when cracking occurs, a large number of

small cracks having length and spacing among them approximately one centimeter,

a control space of 1 cm 2 is considered. The time needed for the disk-sink hydrogen

concentration to reach the critical value-for cracking to occur-is obtained by means

of the following equation"1 :

27r a C,
t = {( - 1)}2 (2.5)

9 Procedure shown in appendix B.
tOBy using the equation for plane strain condition:

1 (Kre)2
2Which yields by solving eq. 2.4 with r to t.

11Which yields by solving eq. 2.4 with respect to t.



and differentiating the above equation with respect to C,/C., it yields :

Ot 7ra2 C,,
ac"= 1) (2.6)

By plotting eq. 2.5 for D in the region of 10- 1 to 10-6 cm 2/sec and t in the

region of 103 to 104, yields figure 2-2. Figure 2-3 is produced by plotting eq. 2.5 for

D in the region of 10- 8 to 10-7 cm 2/sec and t in the region of 10' to 20 x 103 8ec,

while by plotting eq. 2.5 for UcrIC in the region of 1 to 2 and for D in the region

of 10-8 to 10-6 , yields figure 2-4. By plotting eq. 2.6 for WaI in the region of 0 to

1 and AG in the region of 0 to 2 yields figure 2-5. The graphs 2-2, 2-3 show the

critical time for a crack to propagate for a = 0.085 cm, if C,/C and D are known.

The curve that corresponds to the Uc,/Co can be obtained by interpolation from

the already marked curves. Figure 2-4 is similar to figures 2-2 and 2-3 in a sense

that it is drawn for a = 0.085 and knowing critical time and diffusion coefficient the

ratio C,/Co can be found. Figure 2-5 shows how the variation of AL\Z affects the

variation of the critical time with known C,/C,, a and D.

According to Matsuda et, al [8, p. 230], the critical hydrogen concentration for

weld metal of HY-130 weldments is something less than 0.5 ml/100g or 0.55 ppm [11,

p. 171], for lower critical stress in the region of the yield point of the base metal. Also,

Shackleton [41, p. 21] reports that the hydrogen content 12 that caused cracking in

high strength steel weld metal with 70 - 900C preheat, was in the range of 0.1 - 0.2

and 1.0 - 1.5 mi/100g, for filler metal electrodes having carbon equivalent to 0.78

and 0.70 respectively. From the above, a critical hydrogen concentration of 3 ppm

can be assigned to high strength steel weld metal, accounting for any possible error.

12Hydrogen collected over alcohol i.e., not a very good measuring method.
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2.3 Discussion

Using the procedures described in section 2.2, I proceed to the following calculations

making the additional assumptions:

* The hydrogen entering the weld metal13 is 2.5 ppm.

* The amount of hydrogen trapped by the inclusions is 1.6 ppm.

The amount of hydrogen-in grams-can be calculated from the equation:

MH=CxAxk

where k is a constant, A is the area of the control space and C is the hydrogen con-

centration in ppm. The disk area is: Ad = ir x r . Following the above assumptions,

the free hydrogen (not-trapped by inclusions) on the control space is:

my = (2.5 - 1.6) x 1 x k = 0.9 x k grams

The initial amount of the hydrogen on the disk-sink is

md = 2.5 x Ad x k

while the critical amount of hydrogen on the disk-sink is:

mdcr = 3 x Ad X k

The amount of hydrogen that has to migrate to the disk is:

mtd = (3 - 2.5) x Ad x k = 0.5 x Ad x k

1SThe saturation value for hydrogen permeated in high strength steel specimen-according to
Kim et, al [23]-is approximately 4 ppm, while due to the developed techniques regarding welding
high strength steels [41, 5] and various factors-described in [11, p. 27], the entrance of hydrogen
in the weld metal is limited. Therefore a value of 2.5 ppm seems quite reasonable.



The free hydrogen on the disk is:

md = mf x Ad = 0.9 x Ad x k

The amount of hydrogen just before the crack growth is:

mbe, = mdf + mtd = 1.4 x Ad X k

Finally, the ratio C,/Co = mbcr,/md = 1.4/0.9 = 1.88. Substituting this value of

1.88 in the equation 2.5, yields:

2r 0.085 8.789 x 10- 3

to, = ( (1.88 - 1))2D 2 D

Since D varies from 10-' to 10- 6 , the critical time is: 8.78 x 10s (244 hours) and

8.78 x 103 sec (2.48 hours) respectively. The effect of crack growth on the stress in-

tensity factor is assumed to be negligible14 therefore, the plastic zone radius remains

the same. From the observed crack length of one centimeter and the assumption that

each single crack advance is 2 x r,, for a 1 cm crack, it will take - = = 5.9

steps. Thus, the necessary amount of time will be

5.9 x 8.78 x 105 = 51.8 x 105 sec (1439 hours)

for D = 10-8 cm 2/sec and

5.9 x 8.78 x 103 = 51.8 x 103 sec

for D = 10-6 cm 2/sec.

140n the one hand crack growth increases K-by increasing a but on the other hand it decreases
K-by relaxing the residual stresses , based on the equation:

K = clVt/h.

where c is a constant, o is the applied stress and a is the crack length.



Converting the above times to days yields 59.95 days and 0.5995 days (or 14.38

hours) respectively. In the case that no inclusions were in the weld metal then, the

ratio CIr/Co = mbcr/mdf would be equal to 3/2.5=1.2 and the respective (for the

two limiting diffusion coefficients) times would become: 5.9 x 4.5 x 104 = 2.7 x 10s sec

and 2.7 x 103 sec (or 3.1 days and 0.75 hour respectively).

Generalizing the above procedure for various values of Cc,/Co and D, the critical

time for each step is shown in figures 2-2, 2-3, 2-4.

Let us suppose that after each time step, the uniform hydrogen concentration

in the disk-sink changes. That can happen by variation of the rate that hydrogen

migrates towards the new crack tip, due to stress relaxation-owing to crack opening,

or due to dislocation sweeping [42]. This variation of the uniform concentration Co,

will cause a respective time variation as shown in figure 2-5. For example, if the

initial = C-- 1.4 and A- = +0.4 with D = 4 x 10- 7 cm 2/sec the time for the next

crack growth step will increase by - +11500 sec (as can be found from figure 2-5).



Conclusion

In this study, neither the effect of many small cracks on the physical properties

of the material [2] nor the binding energy of various types of traps [22]-affecting

the solubility of hydrogen in iron, nor the effect of grain size on the critical stress

needed for crack propagation-as shown in figure 22.24 in [38, p. 780], were included.

Nevertheless, the hypothesis that the inclusions are responsible for the formation of

a large population of small cracks is well supported by the fact that it will take too

long for a crack to grow even to a length of approximately one centimeter in the

presence of many trapping sites. Furthermore, hydrogen preferably moves towards

closer crack nucleation sites causing the formation and limited growth of new cracks,

instead of moving towards a specific crack tip. This phenomenon is attributed to the

large variation of the diffusion coefficient at room temperature-as shown in figure 7

by Kiuchi et, al [22, p. 968] and figure 5.17 by Coe [5, p. 52]. It is also pointed

out by Kiuchi et, al [22]that uncertainties and inconsistencies of experimental data

for hydrogen solubility in BCC iron are due to:

* Non-Arrhenius behavior in the temperature dependence of the hydrogen solu-

bility in bcc iron from what has been observed in a "perfect" bulk lattice

* Experimental uncertainties related to defects in specimen or experimental con-

ditions

* Differences in metallographic structure and impurity levels

especially in low temperature regions. So a first step to predict a cracking resistant

weldment, is by increasing the preheat temperature (i.e., the effect of preheat in



high strength steels weldments is more important than time, because of the higher

effective activation energy). A more thorough study involving fracture mechanics

and materials science theories could produce a model that predicts both qualitatively

and quantitatively the factors that affect the hydrogen-induced crack initiation and

propagation mechanisms. The value of such a model will be very much appreciated

by the industry, since a large amount of money will be saved from the wastage of

material and labor. Also, if unpredictability of the weld behavior is minimized it

would contribute to lower the manufacturing costs.



Appendix A

Hydrogen Adsorption

A.1 One Hydrogen Atom per One Iron Atom

Assuming that one hydrogen atom sits on an iron atom and the latter is on the close

packed plane (1 1 1). Referring to figure A-1, the number of atoms in the triangle is:

3x I +1=.3 The area of the triangle is: A = 47v16 x 7-4 x 7= 4v x 72

The number of atoms per unit area is: = (. The amount of hydrogen on

each particle in grams per particle is:

Cx Ai x AWH
NA

where Ai is the area of the particle, NA is the Avogadro's number and AWH is the

atomic weight of hydrogen. In the case of the iron lattice, with lattice parameter

a = 2.86 A, it holds: 47 = V2a ==o 7 = 1.011 x 10- ' cm. The area of the

triangle becomes A = 7.0814 x 10-1 s cm 2 . The number of atoms per unit area is:

C = 2.12 x 1015.

For 3.76 x 1011 parcle and Ai = 4.324 x 10- cm 2, the amount of adsorbed

hydrogen on the particles in a control volume of 1 cm 3 is:

2.12 x 1015 x 3.76 x 1011 x 4.324 x 10- 9

MH = = 5.72 x 10- grams 0.73 ppm6.022 x 1023



-I
Figure A-1: The Closed Packed Plane of a BCC Lattice

A.2 Hydrogen Adsorption Using the Hydrogen

Atomic Radius

The hydrogen atomic radius is: rH = 0.79 A. Each "sphere" of hydrogen covers

aH = 7x r = 1.96 x 10-16 cm 2 of the area of the particle. Therefore, if the particle

area is A, = 4.324 x 10- 9 cm 2 , it can be covered by: 4.36 x 10-/1.96 x 10- 16

2.2 x 107 atoms. The total amount of trapped hydrogen is:

3.76 x 1011 x 2.2 x 107

6.022 x 1023
= 1.37 x 10-5 grams -- 1.75 ppm

/11 01\

Iw 4



Appendix B

Equations for Disk-Sink

Define as r = " 2
-D'

* For t < r

Since Q = ira2Co(1 - ) is the amount of hydrogen that remains on the

disk-source after time t, the amount of hydrogen that accumulates on the

disk-sink after time t is: Q = ra2 Co(1 + DF ). Dividing by ira 2 the equation

becomes: C = Co(1 + --). When I substitute t = r in the above equation,

it yields the maximum value forO = 2Co.

* For t >> 7

The equation for the amount of hydrogen that remains on the disk-source, is:

Q = wa The amount of hydrogen that accumulates on the disk-sink is:4Dt *

Q = ra2CO ra2CO - == Q = ra2Co(2 - Co(2 - )

It can be seen that the above equation becomes maximum i.e., C = 2Co only

when the term -E- = 0.4Dt



Appendix C

Inclusions

Liu et, al [29] reports data regarding volume fraction and population of fine

particles having critical diameter-above which grain boundaries are not pinned

by, for HSLA steels. Since no other data were available, I assumed that the

critical diameter represents a sort of a mean diameter regarding the inclusions

in the weld metal.

Refering to table 2.1 and taking the data from columns 3 and 4 (for diameter

and density respectively ), by using the equations:

N = Y d in = 3.76 x 10S mm
E di

D = n = 0.371 jm
zni

(where di and ni are the respective diameters and densities for each particular

case in table 2.1) the average density and diameter are obtained.



Appendix D

Initial Calculations

For the following calculations it is assumed:

1. The volume fraction of the inclusions 0.5%

2. The control volume is 1 cm

3. An average inclusion radius for higher strength steel rh, = 0.05 ttm

4. An average inclusion radius for lower strength steel rl, = 15 ,m

The population for the finer particles is: nh, = 0.005 = 9.55 x 1012, while the

one for the inclusions in the lower strength steel is: n, = 0.0 = 3.54 x 10.

The available adsorbing surfaces are:

- Ahs = nhs, 4 x 7rr, = 3000 cm 2

- Al, = nl, x 4 x rr, = 10 cm 2

for high and low strength steels respectively.

Using the equation developed in the section A.1 in appendix A,

2.12 x 1015 x Ahs
MHh = 2.12 10 x A = 1.02 x 10- s grams or 1.3 ppm

6.022 x 1023



and

2.12 x 1015 x Ahs,
MH 6.022 x 102 = 3.52 x 10-8 grams or 0.005 ppm

6.022 x 1023

for high and low strength steels respectively.
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