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Abstract

Marine mammal whistle calls present an attractive medium for covert underwater
communications. High quality models of the whistle calls are needed in order to syn-
thesize natural-sounding whistles with embedded information. Since the whistle calls
are composed of frequency modulated harmonic tones, they are best modeled as a
weighted superposition of harmonically related sinusoids. Previous research with bot-
tlenose dolphin whistle calls has produced synthetic whistles that sound too "clean"
for use in a covert communications system. Due to the sensitivity of the human audi-
tory system, watermarking schemes that slightly modify the fundamental frequency
contour have good potential for producing natural-sounding whistles embedded with
retrievable watermarks. Structured total least squares is used with linear prediction
analysis to track the time-varying fundamental frequency and harmonic amplitude
contours throughout a whistle call. Simulation and experimental results demonstrate
the capability to accurately model bottlenose dolphin whistle calls and retrieve em-
bedded information from watermarked synthetic whistle calls. Different fundamental
frequency watermarking schemes are proposed based on their ability to produce natu-
ral sounding synthetic whistles and yield suitable watermark detection and retrieval.

Thesis Supervisor: James C. Preisig
Title: Associate Scientist
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Chapter 1

Introduction

Due to the challenges of the underwater ocean environment, minimal progress has

been made in the field of covert underwater acoustic communications. In some appli-

cations, low data rates would be an acceptable tradeoff for a sufficiently low probabil-

ity of detection. Current robust underwater acoustic communication systems rely on

a relatively high Signal-to-Noise Ratio (SNR) that precludes a covert posture. Ma-

rine biologics provide a significant source of background noise that any underwater

acoustic communications system needs to overcome. However, if the communications

scheme was able to mimic marine biologics in their natural environment, a covert

posture may be retained while operating at a relatively high SNR.

Marine mammal whistle calls are an attractive medium for masking underwater

acoustic communications due to their low frequency range, relatively sustained du-

ration and regular harmonic structure. High-quality synthetic models are needed to

effectively mimic marine mammal whistle calls with an embedded information signal.

This thesis focuses on developing techniques for processing and embedding informa-

tion in bottlenose dolphin whistle calls, but the techniques derived are applicable to

other harmonically-structured tonal signals, including other marine mammal whistle

calls.



1.1 Prior Work

1.1.1 Classification of Bottlenose Dolphin Whistle Calls

Christian [9] compiled a database of bottlenose dolphin whistle calls for his research

on using generic signal compression for the identification, characterization and repeti-

tion detection of various signals. His approach estimated the fundamental frequency

contour of a whistle call, recorded with a nominal 50 kHz sample rate, using 512

point blocks with no overlap, as higher resolution was not considered necessary. He

compared the periodogram and Burg's autoregressive (AR) methods of spectral es-

timation, and concluded that the periodogram provided sufficient resolution of the

fundamental frequency when compared to the computationally expensive Burg tech-

nique. Five major spectral peaks from each block were retained from which a tracking

algorithm resolved the fundamental frequency contour. A 16-dimension coding space

was then developed using the fundamental frequency contour to generate a dictionary

of unique whistles. Single dolphins were found to reproduce their signature whistles

very precisely, and were estimated to be capable of producing over a billion unique

whistles.

1.1.2 Prior Models of Bottlenose Dolphin Whistle Calls

Although some methods used in human speech analysis and synthesis have been

tested on marine mammals [3, 46], Buck et al. [5, 24] have been behind the effort

to model bottlenose dolphin whistle calls for synthesis and modification purposes. A

parametric model that can synthesize natural-sounding whistles can be used to study

how dolphins communicate by modifying the whistle frequency contour and observing

the response of dolphins.



Weighted Superposition of Sinusoidal Harmonics

Buck et al. [5] initially proposed a whistle model characterized as the weighted su-

perposition of harmonically related sinusoids,

R

s[n] = a,[n] sin(27r,[n]) , (1.1)
r=l

which embodies their typical description as frequency-modulated tonal calls. The

fundamental frequency contour is extracted using a peak-picking algorithm detailed

in [6], which was found to work well for recordings of individual animals at high

SNR. The signal is broken into short blocks for which it is assumed to be relatively

constant in amplitude and frequency. Frequency and energy contours for each har-

monic are constructed from analyzing each block. Different modification strategies

are proposed that modify different characteristics of the frequency and energy con-

tours. Finally, whistles are synthesized at the original sample rate by interpolating

phase and amplitude contours from the compressed frequency and energy contours.

This technique differed from other speech processing algorithms [2, 46, 64] primarily

in that discrete-time upsampling was performed instead of linear or polynomial inter-

polation between blocks. Example whistles recorded at 81.92 kHz were synthesized

using a block length of 512 samples with 50% overlap. Human testing could dis-

tinguish between the original and unmodified synthetic whistles using quarter-speed

in-air playbacks. The synthetic whistles were characterized as "clean sounding" and

"not enough noise" when compared to the original whistles.

Autoregressive Model

Based on the distinct perceptual differences between original dolphin whistles and

their synthetic counterparts produced with the sinusoidal model, Buck's student

Huang [24] proposed using an AR synthesis model to generate more natural-sounding

synthetic whistles. The whistle was broken into blocks of length 512 samples with



75% overlap, which are smoothly recombined during synthesis using a half-amplitude

Hamming window. Each block was then modeled using a high order (p = 60) AR

model. It was noted that the signal residue power spectrum contained a noticeable

component of the original frequency contour. For each block, the resulting system

poles were compared to the frequency contour used in the sinusoidal model for select-

ing signal poles corresponding to each harmonic. The whistles are then synthesized

by driving the corresponding all-pole filter for each block with the signal residue for

unmodified whistles and a white noise residue for modified whistles. While the AR

synthesis whistles sounded more "natural" than the cleaner sinusoidal synthesis whis-

tles, a study has not been performed to assess the overall quality of the AR synthesis

whistles. Some problems encountered were the high computational load and the need

to choose algorithm parameters such as block length, amount of overlap and AR

system individually for each dolphin whistle.

1.1.3 Related Work in Human Speech Processing

Generally, human speech processing has focused on a stochastic model for speech

production that seeks to design filters that imitate the physical dynamics of speech [15,

41]. These filters are then driven by combinations of two basic forms of excitation,

periodic impulses for voiced speech and white noise for unvoiced speech. Linear

prediction analysis is usually used to design all-pole filters that describe short blocks

of similar speech patterns. Cepstral analysis was developed to separate the impulse

response of the vocal system model from the excitation sequence, but its application

is limited based on its computational complexity.

The basic sinusoidal superposition model in Eq. (1.1) used by Buck et al. [5]

has been researched in human speech processing with excellent results. Serra and

Smith [64] note that additive synthesis algorithms were among the first techniques

used in computer-based synthesis, with the introduction of the heterodyne filter in

the early 1970's, followed by the digital phase vocoder. McAulay and Quatieri [46, 53]
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Figure 1-1: Quatieri and McAulay's speech production model [53]

and Smith and Serra [65] developed similar algorithms at about the same time that

addressed inharmonic and pitch-changing sounds. Essentially, each algorithm used

the same sinusoidal model while developing new methods to track relevant frequency

contours and smoothly vary amplitude and phase from block to block. The signal

was broken into analysis blocks, with overlap ranging from 50% to 75%, and relevant

frequencies selected based on peaks in the discrete Fourier transform. McAulay and

Quatieri included a time-varying filter model of the vocal tract at the output of the

sinusoidal representation, as seen in Fig. 1-1. For a variety of sounds, including some

whale sounds, their algorithm was reported to produce synthetic signals "essentially

perceptually indistinguishable" from the original signal. Serra and Smith [64] up-

dated their algorithm to better incorporate noise-like aspects of speech by removing

the sinusoidal representation from the original signal and then applying stochastic

modeling to the residual, but found that combining the sinusoidal and stochastic

components sometimes produced undesirable results. The deterministic plus stochas-

tic model was refined by Levine [36] by further decomposing the stochastic component

into a quasi-stationary "noise" part and a rapidly changing "transient" part, resulting

in a coding scheme that is both efficient and expressive [38].



1.2 Introduction to Information Hiding

The field of information hiding [11, 27] has largely grown out of the field of cryp-

tography to include the additional aspect of keeping the existence of the information

secret. A lot of the techniques that are used in information hiding draw upon the

experience gained from cryptography, and in many cases the lines between the two

are blurred, since any cryptographic system would be more robust to attack if its very

existence was a secret. However, the practical wisdom of cryptography teaches that

sensitive information should also be protected by a secret key, to safeguard against

the information hiding techniques being discovered [50]. In general, information hid-

ing techniques can be divided into four categories, which either include or exclude

the separate principles of steganography and watermarking based on their applica-

tion [11].

1.2.1 Steganography

Steganography is the art of concealed communication, in which the very existence of

a message is secret [11]. Most applications of steganography follow the same general

principle [26] described as follows. Alice, who wants to share a secret message m

with Bob, randomly chooses a harmless message c, called cover-object, which can

be transmitted to Bob without raising suspicion. With the potential use of a secret

key k, a stego-object s is generated by embedding m into c in a careful way so that

a third party cannot detect the existence of a secret in the apparently harmless

message s. Alice then transmits s to Bob over an insecure channel, hoping that

Wendy, a suspicious person with access to s, will not notice the embedded message.

Bob can reconstruct m, since he knows the embedding method used by Alice and

has access to the key k used in the embedding process. The extraction of m from

s should be possible without access to the original cover c. In a "perfect" system,
a normal cover should be indistinguishable from a stego-object, either by a human



or computer looking for a statistical pattern. There are basically three types of

steganographic protocols that differ based on the choice of k. Pure steganography

does not incorporate the prior exchange of secret information, so a key is not used in

the embedding process. Secret key and public key steganography bolster security by

using a secret or public key in the embedding process, although both use a secret key

to reconstruct the secret message [26].

1.2.2 Watermarking

Watermarking, while closely related to steganography, is based on different underlying

philosophies, requirements, and applications that result in techniques that clearly

distinguish themselves from steganography. Essentially, the purpose of a watermark

is to embed self-identifying information within a cover-object that can be used for

copyright protection or tracking purposes. While the existence of a watermark does

not normally need to be kept secret, the watermark should be permanently attached

to the cover-object. Thus, watermarking has the notion of being robust to both

malicious and benign attacks to remove the identifying information. In practical

commercial applications, the watermark should be perceptually transparent enough

to not annoy consumers or reduce the value of the product [32].

1.2.3 Applicable Digital Audio Watermarking Techniques

Watermarking of digital audio signals is more challenging compared to watermarking

image or video sequences due to the wide dynamic range of the human auditory

system (HAS). The HAS perceives sounds over a range of power greater than 109 : 1

and a range of frequencies greater than 103 : 1. In particular, the HAS has a high

sensitivity to additive white Gaussian noise, which can be detected as low as 80 dB

below ambient level in a sound file. However, there are some "holes" available in

which to place a watermark. While the HAS has a wide dynamic range, it has

a small differential range, meaning loud sounds generally tend to mask out quiet



sounds. Additionally, the HAS is insensitive to a constant relative phase shift in a

stationary audio signal. Finally, some environmental distortions are so common that

they are ignored by the listener in most cases [4, 12].

Due to the sensitivity of the HAS, digital audio watermarking techniques apply

directly to steganographic applications, since on a perceptual basis the existence of

an embedded message needs to be kept a secret. In a covert communications scenario,

the robustness against intentional attacks is not usually required, although signal pro-

cessing modifications, channel-induced signal distortion and additive ambient noise

should not prevent retrieval of the watermark. In these applications, the watermark is

expected to achieve a higher data rate and use blind detection schemes for watermark

detection and reconstruction [12].

Fig. 1-2 shows a basic model depicting watermarking as a communications pro-

cess, as described by He and Scordilis [23]. A secret message is modulated into a

watermark waveform using a secret key. The watermark is embedded imperceptibly

into a host signal to form the stego-signal. Transmission through a channel adds

noise and distortion to the stego-signal. The watermark detector reconstructs the

watermark from the received signal using the secret key, and in some cases, the host

signal. Blind detection, in which the host signal is not available, is more flexible in

operation, but lowers the achievable data rate by making detection more complex.

In the underwater channel, the primary sources of distortion are multipath arrivals

and Doppler spreading [29, 51]. In order to combat these effects and maintain the

fidelity of the stego-signal, the best watermarking scheme appears to be based on

slight modifications of the fundamental frequency contour that result in natural-

sounding stego-signals. Liu [38] has focused on a parametric approach to digital

audio watermarking that is heavily based on the sinusoidal synthesis model and the

work of Smith, Serra and Levine [36, 64]. Fig. 1-3 shows the watermarking scheme

based on parametric analysis and synthesis proposed by Liu [38]. To embed a binary

watermark W, the host signal is first decomposed into s = sl0) + r, where sle) is
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Figure 1-2: Communication model for watermarking [23]

perfectly parameterized and r is a residual orthogonal to sl0). Then, the parameter

set 10) is modified to 10*) to carry the watermark W. The new signal sl0o), constructed

from the watermarked parameter set, is combined with r to form the stego-signal x

which is transmitted through a channel with unknown noise and distortion. Upon

the reception of a corrupted copy y, parameters are estimated so as to decode W.

The attempt at watermarking is successful if the estimated parameters 0) are close

enough to 10*) such that the decoded binary message W is identical to W. There is an

inherent tradeoff when determining how 0 is modified to 0*: the modification should

be small enough to not introduce perceptible distortion, but it should also be as big as

possible to maximize robustness against attacks. In the case of a digital audio signal,

the parametric component sle) matches the sinusoidal model perfectly and receives

the watermark, while the stochastic component r is removed during watermarking

but then added back in for transmission to minimize perceptible alteration from the

host signal s.

Chen and Wornell [8] designed a class of digital watermarking techniques called

quantization index modulation (QIM) that were shown to reach or nearly reach em-

bedding rate capacity for important classes of models. However, this simplest form
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Figure 1-3: Parametric watermarking scheme [38]

of QIM was not robust to amplitude scaling, which is a common operation in music

processing. Liu is currently working on the development of a F-QIM watermarking

scheme that applies QIM techniques to the frequency parameters in the sinusoidal

synthesis model [381.

Krishnan et al. have proposed a watermarking scheme based on joint time fre-

quency analysis of the audio signal [30). Most of the other watermarking techniques

analyze audio in either the time or frequency domains separately, which does address

the nonstationarity of audio signals. Krishnan et al. calculate the instantaneous mean

frequency (IMF) of the audio signal using the Wigner-Ville distribution (WVD). The

WVD is a time frequency distribution that gives a clear picture of the instantaneous

frequency and group delay of a signal, but suffers from confusing artifacts when the

signals are multicomponent [10]. The IMF for short blocks of the signal is deter-

mined, and then a spread spectrum watermarking scheme is implemented; to recover

the watermark the IMF for the original signal is needed. Krishnan et al. also propose

a chirp based spread spectrum watermarking scheme that reduces the complexity

of watermark detection relative to the IMF scheme. The detector extracts the wa-

termarking bits and uses the WVD and a chirp detection algorithm to decode the

watermark [30].



1.3 Objectives

This thesis proposes a new approach for determining the parameters of the sinusoidal

superposition model of Eq. (1.1) to represent recorded marine mammal whistle calls.

To achieve high quality results, the recordings are assumed to consist solely of tonal

whistle calls at high SNR produced by a single animal, without contamination by high

frequency clicks. A new method for tracking the nonlinear fluctuations in a whistle

call's fundamental frequency contour is developed based on the structured total least

squares method. Amplitude contours for each harmonic are then determined using

the estimated fundamental frequency contour and Prony's method. Different meth-

ods of watermarking the fundamental frequency contour are examined in terms of

human imperceptibility and complexity of watermark reconstruction in the underwa-

ter environment. Experimental data is presented demonstrating the ability to track a

whistle's fundamental frequency contour in an underwater communications scenario.

In summary, the ability to communicate at low data rates using a natural-sounding

synthetic marine mammal whistle call is demonstrated.

1.4 Organization

The remainder of this thesis consists of five chapters. Chapter 2 develops the pro-

gression of linear prediction techniques to model exponentially damped sinusoidal

data. Chapter 3 describes a new approach to estimate the frequency and amplitude

contours of chirp signals. Simulation results demonstrate the performance of the new

approach, and other frequency estimation methods are compared to the structured

total least squares method. Chapter 4 applies the results of Chapter 3 to building

synthetic bottlenose dolphin whistle calls and examines different approaches to wa-

termarking synthetic whistles. Chapter 5 presents data from a shallow water ocean

experiment testing watermarked chirps and synthetic whistle calls. Finally, Chapter 6

closes with conclusions and indicates future directions for research.
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Chapter 2

Sinusoidal Modeling Using Linear

Prediction

The term linear prediction as a method for time series analysis dates back to Wiener

in 1949 [41, 74]. Since then, it has been widely applied in many fields for the modeling,

parameterization, prediction, and control of dynamic systems and signals [42], and

has been used in speech analysis and synthesis since 1966 [41]. Generally, the work

focuses on discrete stochastic models of autoregressive (AR) systems whose value at

any point in time is a linear combination of a finite number of past samples plus

additive noise. Signals are parameterized in the linear prediction or autoregressive

coefficients, and can then be synthesized by driving a corresponding all-pole filter

with white noise [15, 21, 42]. Spectral estimation is performed by fitting an AR

model to the data's autocorrelation sequence and transforming into the frequency do-

main. Although it is not a spectral estimation technique, Prony's method has a close

relationship to the least squares linear prediction algorithms used for AR parameter

estimation. In contrast to AR methods that seek to fit a random model to the second

order statistics, the modern version of Prony's method seeks to fit a deterministic ex-

ponentially damped sinusoidal model to the data [43]. Based on the sustained tonal

characteristic of a marine mammal whistle call, applying a deterministic sinusoidal



model is an intuitive starting point for estimating whistle call frequency contours.

2.1 Prony's Method

Gaspard Riche, Baron de Prony's paper [14, 43] proposed in 1795 a method for exactly

fitting damped exponentials to available data points for his research on the expansion

of various gases. The modern form of Prony's method generalizes to identifying the

amplitudes Ak, damping factors ak, sinusoidal frequencies fk, and initial phases Ok of

a linear combination of complex exponentials,

p

x[n] = Ak exp[(ak + j27rfk)(n - 1)T + jOk] (2.1)
k=l

for 1 < n < p, where T is the sample interval. In the case of real data, the complex

exponentials must occur in complex conjugate pairs of equal amplitude, reducing

Eq. (2.1) to

x[n] = 3 2Ak exp[(ak(n - 1)T] cos[27rfk(n - 1)T +k] . (2.2)
k=1

Eq. (2.1) can be written in the form

x[n] = hkz 1  , (2.3)
k=1

where the complex constants hk and zk are defined as

hk = Akexp(j0k) , (2.4)

zk = exp[(ak + j2rfk)T] . (2.5)



Expressing Eq. (2.3) in matrix form as a set of simultaneous equations for 1 < n < p

results in
z° zo ... z0 hi x[1]

z z1  1 h2 x[2]
z1  2  (2.6)

zp-1 ZP-1 .. . Z - 1  hp zp]

Prony discovered a method to separately solve for the exponential zk elements, from

which Eq. (2.6) can then be solved for the vector of unknown constants hk. Ap-

pendix A shows that Eq. (2.3) is the solution to a homogeneous constant-coefficient

difference equation
P

w[m]x[n - m] = 0 , (2.7)
m=0

where w[m] are the coefficients of the polynomial O(z) with roots zk,

p p

O(z) = fl(z - Zk) = Z + + E w[mZP- m  . (2.8)
k=1 m=l1

The p equations for which Eq. (2.7) is valid, p + 1 < n < 2p, can be expressed in

matrix form as

x[p] [p- 1] ... x[ [ w[1] x[p + 1]

x[p + 1] x[p ... x[2] w[2] x[p + 2] (2.9)

x[2p- 1] x[2p- 2] . x.. [p] w [p] x[2p]

Prony's method to fit p exponentials to 2p data points can be summarized in three

steps. First, Eq. (2.9) is solved to determine the coefficients of the polynomial O(z)

in Eq. (2.8). Second, the roots zk of O(z) are calculated. Third, Eq. (2.6) is solved to

determine the parameters hk.



The desired parameters are then determined by the relationships

ak = in IZk/T

fk = tan-1[Im{zk}/ Rezk}]/27rT

Ak = jhkl

ok = tan-1 [Im{hk}/ Re{hk}]

(2.10)

(2.11)

(2.12)

(2.13)

2.2 Least Squares Prony Method

In practical situations, the presence of some noise in the data sequence prevents

obtaining an exact exponential fit to the data, so the number of data points N usually

exceeds the 2p data points used in the original Prony method. In this overdetermined

case, the data is approximated as an exponential sequence,

p

[n] = hkz - 1

k=1

(2.14)

for 1 < n < N, with observation error e[n] = x[n] - x[n]. Applying standard linear

least squares (LS) procedures [19] to the original Prony method results in the three-

step LS Prony method. First, forming the linear prediction relation

x[p] x[p - 1]

x[p + 1] [p]

x[N - 1] x[N - 2]

Aw b

x[1]

x [2]

x[N - p]

w[1]

w[2]

w [p]

, and b =-

(2.15)

x[p + 1]

S[p + 2]

x[N]

the LS solution is given by

WLS = (AHA) -AHb . (2.16)



Second, the roots zk of O(z) in Eq. (2.8) are calculated. Third, the LS solution for

the parameters hk is given by

hLS = (ZHZ)-IZHx , (2.17)

where

1 1hi x[1]

zl  z2  ... h2 x[2]
Z = h= and x =

zN-1 zN-1 N-i h[N]
z1  2  ...

Unfortunately, the LS Prony method doesn't perform well in the presence of signifi-

cant additive noise because it assumes the data matrix A is error free and models the

observation error in b as white noise. Different methods that have been used to im-

prove the performance of the Prony method include employing high prediction orders

and reduced rank approximations of the data matrix via singular value decomposition

(SVD) [31, 43, 68, 69]. The higher prediction order improves the estimation of signal

parameters by adding extra exponentials to model the additive noise. The poles zk

related to the true signal exponentials cluster closer to their correct values, while the

extraneous poles fluctuate widely to account for the noise. The noise contribution to

the data matrix A can be reduced by using its reduced rank approximation

AK = UKKVH  (2.18)

composed of the largest K singular values and singular vectors of A, where K is the

number of signal exponentials, and

A = UEVH (2.19)



where

U = [Ul, ... , UNp], ui N-p,

V = [v1, ... , v,], vi E Rp ,

E = diag(ul, ... , cap), a > - - - U min(N-p, p)

is the SVD of A with UHU = IN-p and VHV = IP. The principle eigenvector (PE)

method developed by Tufts and Kumaresan [68, 69] uses both a high prediction order

and the reduced rank approximation of Eq. (2.18) to improve Prony's method in the

presence of noise. More recent work has applied a modified LS Prony method to the

frequency estimation problem [25, 39, 66].

2.3 Total Least Squares Approach

In the classical LS problem of Eq. (2.15), there is an underlying assumption [18] that

all of the errors are confined to the vector b, i.e., that the data matrix A has no errors.

Since both A and b contain values from the data sequence x[n] for 1 < n < N, errors

in b will also appear in A. The total least squares (TLS) method [18, 73] compensates

for error in both A and b, and should be expected to give a better solution than

Eq. (2.15).

2.3.1 Solution to the Total Least Squares Problem

A good way to motivate the TLS method is to state the ordinary LS problem as

follows:

minimize I[Ab[[2 (2.20)
Ab E RN-p

subject to b + Ab E Range(A)



where I1 - 12 denotes the 12 norm given by

(2.21)IIAb 2 = Abi 2

The LS problem amounts to perturbing the observation b by a minimum amount Ab

so b + Ab can be predicted by the columns of A. The TLS problem accounts for

perturbation in both b and A, i.e.,

(A + AA) w = b + Ab (2.22)

or expressing Eq. (2.22) in a different form,

=0

(C + AC) z = 0 (2.23)

where

C=[A b], AC=[AA Ab, and z

The TLS problem seeks to

minimize IIACIIF
AC IR(N-p)x(p+1)

subject to (b + Ab) C Range(A + AA)

w
-1

(2.24)

b] + [AA Ab



where II - lF denotes the Frobenius norm given by

IfACI|F = , ACij 2 . (2.25)

Eq. (2.23) shows that the TLS problem involves finding a perturbation matrix AC E

R(N-p)x(p+l ) having minimum norm such that C + AC is rank deficient. The SVD

can be used for this purpose. Let

C = UEVH (2.26)

where

U =[Ul,.., UN-p, Ui E RN-p,

V -[V 1, ... , Vp+l], Vi E RP+,

E = diag(al, ... , p+1), 1 > > k -k+ 1 = ">_ -= p+1 > 0,

be the SVD of C with UHU = IN-p and VHV = I,+1. It is assumed here that the

problem is overdetermined, i.e., N > 2p. Two cases arise in the TLS solution. In the

first case, when up > up+l, a unique solution exists. The solution can be thought of

as finding a matrix (C + AC) of rank p that satisfies Eq. (2.24). A reduced rank

approximation to
p+l

C = O iuVH (2.27)
i=1

is obtained by removing one or more ai terms from Eq. (2.27). The smallest pertur-

bation AC that reduces the rank of C by one is

AC = -U+iUp+1iVH1 (2.28)



Inserting Eq. (2.28) into Eq. (2.23) yields z = avp+l, since vp+l is now in the nullspace

of
p

(C + AC) = Z iuivH (2.29)
i=1

Thus, provided (vp+,l)p+1 0, the TLS solution is given by

(vP±1)1

WTLS = . (2.30)

[(vppi)pJ

The TLS solution does not exist if (vp+l)p+l = 0, but this doesn't commonly arise

in engineering applications. In the second case, when up = Up+1, a solution may

still exist, but it is not unique. However, a unique solution is chosen in the sense of

minimum norm [18, 73].

An alternative expression for the TLS solution WTLS in Eq. (2.30) can be derived

as follows.

CHCvp+ 1 = (VEUH)(UEYVH)Vp+I

= (VE 2VH)Vp+l

= 2UplVp . (2.31)

Inserting C =A b] and vp 1 = P+1 into Eq. (2.31) gives the expression:
I(Vp+l)p+l

AHA AHb1 VP+ 2 Vp+ 1 (2.32)

bHA bHb [(Vpl)p+l p (Vp)p+l

Expanding Eq. (2.32) gives the set of equations,



(AHA - +I,)vp+ + (vp+l)p+lAHb = 0 (2.33)

bHAvp+1 + (bHb - 2a+,)(v,0l),+l = . (2.34)

V

But if (vp+l)p+l =' 0, WTLS = (v 1 so Eq. (2.33) reduces to

(AHA - a,+I)WTLs = AHb . (2.35)

If (AHA - a+aI) is invertible, the alternative expression for the TLS solution is

WTLS =(AHA - -1 Ip)- AHb . (2.36)

2.3.2 Prony's Method and Total Least Squares

The TLS solution WTLS is the maximum likelihood (ML) estimate for Eq. (2.15)

only if the errors in C = [A b] are independently and identically normally dis-

tributed with common covariance matrix proportional to the identity matrix with

zero mean [35, 73]. Due to the Toeplitz structure of the matrix A, the errors are not

independently distributed, so the TLS solution is not optimum. However, the TLS

solution does tend to reduce the effects of noise in the linear prediction formulation,

and provides improvements over the LS solution. Rahman and Yu [56] applied the

TLS method to the linear prediction frequency estimation problem and demonstrated

better performance than the LS-based principal eigenvector (PE) method [69] for the

same prediction order. The TLS method yielded the greatest improvement relative

to the PE method at minimal prediction orders, although both solutions improve

with higher prediction orders. As the prediction order is increased, additional corre-

lated errors are added to the matrix C, reducing the benefit of the TLS method. At

maximal prediction order, with p = N for even N, both the TLS and PE solutions2 nN ohteTSadP ouin



converge to the same performance.

The matrix Z in Eq. (2.17) used in the third step of the Prony Method for deter-

mining the parmeters hk has a Vandermonde structure [19]. Assuming that relatively

good estimates are available for the system poles zk, the major source of error will

be in the observation vector x. Thus, the LS solution of Eq. (2.17) appropriately

accounts for errors in the model.

2.4 Structured Total Least Squares Approach

Structured Total Least Squares (STLS) is a natural extension to the TLS approach

when the same observations occur in multiple rows of the matrix C in Eq. (2.23). In

order to find an ML estimate of w, [AA Ab] needs to have the same structure as

[A b] [1]. This leads to the following formulation of the STLS problem [35]:

minimize [AA Ab] (2.37)

such that(A + AA)w = (b + Ab),

and [AA Ab] has the same structure as [A b],

where -Ix denotes the 12 norm defined on the unique entries of [AA Ab]. Many

different formulations have been proposed for the STLS problem involving linearly

structured matrices: the Constrained Total Least Squares (CTLS) approach [1], the

Structured Total Least Norm (STLN) approach [60, 72], and the Riemannian Singular

Value Decomposition (RiSVD) approach [13]. Each approach uses iterative numerical

algorithms to find the solution, but all of them suffer from inherent multiple local

minima that occur in the STLS problem [34]. When the noise level is relatively low,

the STLS problem is not difficult to solve, and simple starting values will suffice.

However, when STLS is used for its rank reducing properties and there is not a

solution nearby in an 12 norm sense, the starting values need to be chosen with care.



2.4.1 STLS Solution for Hankel/Toeplitz Matrices

The linear prediction relation of Eq. (2.15) can be written with a Hankel structure

by reordering the columns of matrix A and reversing w:

Aw b , (2.38)

x[1] x[2] ... x[p]

A x[2] x[3] ... x[p + 1]

Sx[N-p] x[N-p+l] ... x[N - 1]

w[p] x[p + 1]

w [p- 1] and x[p+2]
w= ,and b= -

w[1] x[N]

so that C =[A b] has a Hankel structure. The solution w is then reversed for

determining the poles zk in Step 2 of the Prony method. The Hankel STLS problem

can be solved using the Hankel STLN formulation:

N

minimize Z(Ax[n]) 2  (2.39)
n=l

such that (A + AA)w = (b + Ab),

and [AA Ab] has a Hankel structure,

where Ax[n] for 1 < n < N are the unique entries of the Hankel matrix [AA Ab].

The STLN approach solves the STLS problem as a nonlinear optimization problem

with nonlinear constraints [60, 72]. Lemmerling and van Huffel [35] propose the fol-

lowing STLN algorithm for solving Eq. (2.39):



STLN Algorithm

Input: extended Hankel data matrix [A b] E Imx(n+1) (m > n) of full rank n + 1

and identity weighting matrix Im+n

Output: the parameter vector w E Rnnx and vector Ax E R (m+n)xl composed of

the unique entries of the matrix [AA Ab]

Step 1: Initialize Ax, w, and Lagrange multiplier vector -y C Rm X

Step 2: While stop criterion not satisfied

Step 2.1: Solve the following system of equations:

S JT g + Jy
L J 0 JAj' 1 Lr(Ax, w)j

Step 2.2: Ax <-- Ax + AR

w - w + AiV

End

where S =m+n R(m+2n)x(m+2n), J = W A + AA] E Rmx(m+2n) is the

Jacobian of the constraints r(Ax, w) in Eq. (2.39),

r(Ax, w) = (A + AA)w - (b + Ab)

g =Im+ 0 Ax E R(m+ 2n) x is the gradient of the objective function in
0 0 Aw

Eq. (2.39), and W E Rmx(m+n) is defined by

WAx = [AA Ab]
-1



which for the Hankel-structured matrix [AA Ab] has the form

w[p] ... w[1] -1 0 ... ... 0

0 w[p] ... w[1] -1 0

W=

0 '. . 0

0 ... ... w[p) ... w[1] -1

The stop criterion, chosen based on the application, tests for convergence of the STLN

algorithm. With each iteration, the algorithm updates parameter estimates for Ax

and w in an attempt to drive the constraint r(Ax, w) to zero. If the iterative solution

approaches close to one of many local minima, the algorithm will not converge to the

actual STLS solution. The system of equations in Step 2.1 is solved using the LDLT

factorization of the matrix [ T

A natural choice for the initialization parameters in the STLN algorithm would be

to set Axinitial = 0, 7 = 0, and Winitial = WLS or WTLS. It turns out that winitial =

WLS is the better choice, but both take a large number of iterations for the STLN

algorithm to converge to a solution that is often a local minima. Lemmerling et al. [34]

propose a better initialization procedure based on the Hankel Total Least Squares

(HTLS) subspace algorithm developed for Nuclear Magnetic Resonance (NMR) data

fitting [71]. The HTLS algorithm is suboptimal in the sense that while it gives a

good estimate of the solution, it is not the closest rank-deficient Hankel matrix to

[A b]. The STLN algorithm is then initialized close to the global solution for the

STLS problem using the values AXinitial = AXHTLS, 'y = 0, and Winitial = WHTLS-



HTLS Algorithm Description

The HTLS algorithm [70] is based on the fact that Eq. (2.14) can be modeled by an

autonomous linear state-space model of order p,

y[n + 1] = By[n] (2.40)

x[n] = hTy[n] + e[n],

where y[n] is a complex state vector, hT is a complex row vector, and x[n] are noisy

observations with observation error e[n] = x[n] - i[n]. Equating Eq. (2.14) and

Eq. (2.40) for 1 < n < N yields

p

S[n] = hTB ] = hkzn- 1, (2.41)
k=1

where i[n] has zero observation error, and defines

zl 0 ... 0 1 hi

0 z2 ... 0 1 h2
B= , y[1]= , and h=

0 0 0 zp 1 hp

Essentially, the modern Prony method is described in a state-space model which is

used to estimate the parameters zk and hk. A Hankel matrix H ] (LxM), as square

as possible for best parameter accuracy [71], such that L = M(+1) r N/2, is formed

using the N data points,

x[l] x[2] ... x[M]

H= x[2] x[3] ... x[M + 1]

x[L] x[L + 1] ... x[N]



If the observation error E[n] is zero, H decomposes into an observability matrix 0

and a controllability matrix C given by:

H = OC =

hT

hTB

hTBL-1

[y[1] By[1] ... B" 'y[1]]

In practice, the observation error in Eq. (2.41) is non-zero. Hp, the SVD reduced-rank

approximation of H, is computed as

Hp = UppVH (2.43)

where

HLxM = ULxLELxMVHxM

9 1 '... O'min(L,M),

and Up, E,, and V, are the first p columns of U, E, and V. Hp is used to estimate

O and C up to a similarity transformation matrix S,

H, = UVpVH (OS- 1 )(SC) (2.44)

1
where (p = Up and V, = VpEp if unbalanced splitting is used, and U]p = UpE2 and

1

V, = VpE if balanced splitting is used. Substituting B = S-1QS into Eq. (2.44),

where Q = SBS - 1 has the same eigenvalues as B, yields:

(2.42)

E = diag(0rl,... Omin(L,M))



HH HHp = UppV

hTS-1

hTS-1Q

hTS-1QL-1

[Sy[1] QSy[1] QM-lSy[1]]

The TLS solution QTLS is computed for the incompatible set

U Q upM ,

where Up and Up are derived from Up by omitting its first and last row,

hTS-1Q

hTS-1Q 2

hTS-1QL-1

and

hTS-1

hTS-1Q

hTS-1QL-2

Provided V 22 is non-singular, the TLS solution is given by

QTLS = -V 12 (V 2 2 ) -  ,

in which V 12 and V 22 are obtained from the SVD of the augmented matrix

[Up p] = U(L-1)x(L-1) V 2px2p ,

(2.45)

(2.46)

Up-p

(2.47)

(2.48)



where

V 11 V 12 P

V 2 1 V 22 P

p p

If V 22 is close-to singular in Eq. (2.47), it is replaced by its pseudo-inverse V22. The

system pole estimates zk are equal to the eigenvalues of QTLS. It is not necessary to

find the similarity transformation matrix S. Finally the parameter estimates hk are

obtained by inserting the pole estimates Zk into Eq. (2.17),

hLS = (ZHZ)-lZHX . (2.49)

STLS Initialization using HTLS

Once the estimates zk and hk are obtained using the HTLS Algorithm with unbalanced

splitting in Eq. (2.44), the resulting adjusted data values are calculated as

p

(x[n] + AHTLS[n]) = n-1 , (2.50)
k=1

from which the initial values for AAHTLS, AbHTLS, and WHTLS in Eq. (2.39) are

found.

HTLS Algorithm

Input: extended Hankel data matrix [A b] E Rmx(n+1) (m > n) of full rank n + 1

Output: extended Hankel noise data matrix [AAHTLS AbHTLS] and parameter

vector WHTLS, such that [A + AAHTLS b + AbHTLS] is a rank-deficient Hankel

matrix.

Step 1: y -- [A(:, 1)T A(m, 2 : n) b(m)]T



Step 2: M <-- ceil((m + n)/2)

Step 3: H - hankel(y(l :m + n- M + 1), y(m + n- M +1 :m + n))

Step 4: Calculate the left singular vectors U(:, i), i = 1,..., n of H,

corresponding to the n largest singular values

Step 5: Calculate the TLS solution of the system

U(2: M, 1: n)Q r- U(1: M- 1, 1: n).

The eigenvalues of Q are the estimated signal poles t, 1 = 1,..., n

Step 6: Solve the complex amplitudes ht, 1 = 1,..., n, from the system of equations:

y(k) ~ 1= hi , k =1,..., m + n

Step 7: y(k) -- E hi, k= 1,..., m+n

Step 8: [AAHTLS AbHTLS] - hankel(y(1 : m), ,(m : m + n)) - [A b]

Step 9: Solve the square system

(A(1: n, 1: n) AA(1 : n, 1: n))WHTLS = b(1: n) + Ab(l: n)

The STLN algorithm is then initialized using AXHTLS and WHTLS. The improved

initialization procedure enhances both the solution quality and calculation time by

starting the iterative search routine close to the global minimum for the Hankel

STLS problem [34]. Lemmerling et al. [33] demonstrated the improved accuracy of

the STLN algorithm using HTLS parameter initialization in a speech compression ap-

plication. Even with the improved HTLS initialization procedure, the computational

load of the STLN algorithm is large compared to standard speech coding algorithms.

Various methods have been used to produce faster STLS algorithms [44], but current

algorithms are are still too slow for real-time application.
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Chapter 3

Simulation Results

As described in Chapter 1, the different techniques for modeling acoustic signals based

on the sinusoidal superposition model of Eq. (1.1) differ primarily in the method

by which the interpolation of amplitude and phase contours is performed between

analysis blocks. Frequency estimation is generally performed by taking the Fourier

transform (DFT) of a windowed block of data of length N samples, with N = 512

being common in practice, although some algorithms adaptively vary N. Different

windowing functions are used to provide better spectral peak estimation performance.

The data sample advance between analysis blocks, known as the hop size H, is usually

chosen to have some overlap between blocks to produce smoother results across time

at the expense of higher computational loading [641. Choosing H = 1 is generally

not used since parameters are assumed to be slowly-varying and accumulation of

excess data is not desirable [17]. In most applications, data storage is an important

design criteria, and while optimal synthesis quality is desired, some amount of signal

compression is acceptable.

In the case of modeling marine mammal whistle calls, computational loading and

signal compression is not a design criteria in generating high-quality synthesis mod-

els. Since the frequency contours of a marine mammal whistle call vary with time, a

method of closely tracking the frequency contour is desired to improve the synthesis



quality. This is achieved by using a hop size of H = 1 and reducing the effective

window size by applying the parametric approach of linear prediction to estimate the

instantaneous frequency. Based on the harmonic structure of marine mammal whis-

tle calls, estimation of the fundamental frequency contour should provide adequate

estimates of higher harmonics, as assumed in [5]. In a communications scenario,

good frequency tracking performance is desired even at relatively low SNR to ensure

capability of reconstructing the embedded watermark.

The rest of this chapter proceeds as follows. The algorithm for tracking the funda-

mental frequency contour and amplitude contours using weighted STLS and Prony's

method is described. Simulation results are presented for tracking frequency con-

tours of chirp signals with constant amplitude, and are compared to other frequency

estimation methods. Finally, simulation results are presented for tracking both the

frequency and amplitude of a chirp signal with variable amplitude harmonics.

3.1 Algorithm Description

The algorithm applies a sliding block window of size M samples to a harmonically

structured whistle recording s[n], where p = 2R is the model order, R is the number

of harmonics in s[n], and M - p is the number of linear prediction equations used to

estimate the AR parameters of s[n]. Thus, s[n] is modeled as

R

s[n] = a[n] cos 2r[n] + ) +[n], for 1 < < N, (3.1)
r=1

or explicitly writing each exponential component,

R

s[n] =- a[n exp (jOr) exp j27r[n] + exp - j27rr) [n] + v[n], (3.2)



where fr[n] is the instantaneous frequency of the rth harmonic at time n such that

n

,r[] = fr[i]/fs ,
i=1

(3.3)

a, [n] is the amplitude of the rth harmonic at time n, 0r is the initial phase of the rth

harmonic, f, is the sample rate, and v[n] is additive ambient noise. The lth analysis

block, using a hop size of H = 1, is expressed as

x1 [m] = W[m]s[m + 1 - 1], (3.4)

for 1<I<L= N-M+1,

and 1 < m < M,

where W[m], discussed on page 51, is a window of length M applied to the data.

Setting up the first step of Prony's method using the Hankel structure in Eq. (2.38)

gives

ax[1]

x [2]

xzz[M -p] xz

wi[p 
w[p-1]

will

kw 1 bl

x [2]

x,[3]

[M -p + 1]

and b, = -

(3.5)

. x [p]

Sx 1[p +

Szl[M -

x[p + 1]

, [p + 2]

X, [M]

Eq. (3.5) is solved using the STLS method if v[n] # 0, but in simulations where

v[n] = 0, the LS method is sufficient. The system pole estimates k, are then found

Al =

w1



as the roots of the polynomial

p

l(z)= z + E zl[k]p-k , (3.6)
k=l

keeping in mind that w, is written in reverse order when A1 has a Hankel structure.

In the presence of noise, the poles k,l fluctuate back and forth across the unit circle as

the analysis block xl moves through the data, giving a better frequency estimate than

if the poles were constrained to be on the unit circle. However, the underlying model

in Eq. (3.1) assumes that the original dolphin whistle has an undamped sinusoidal

structure, so only the frequency component

fs I Im{ zk,l}
fk,l = - tan-1  (3.7)27 Ref{ zk,

is retained while scaling the pole estimates to the unit circle, i.e.,

zkl k, (3.8)

In the STLN formulation [34], the HTLS algorithm is used to initialize the iterative

search for the closest rank-deficient Hankel matrix [A, bi]. However, simulation

results show that both the STLN [35] and extended structured least squares (ES-

TLS) [75] algorithms do not improve upon the frequency estimate fk,l provided by

the HTLS algorithm. Thus, the poles Ik,I are found as the normalized eigenvalues of

the matrix QTLS,l (Eq. (2.47)). The pole estimates zk,l are then used in Step 3 of the

Prony method to calculate the parameters hk,l using Eq. (2.17),

hi = (zHrz)-ZiHX , (3.9)



where

1 1 ... 1 hl, x [1]

Z = z, z2,l - l , h = h2, , andx = x, [2]

M-l 2M-1 M-1 hp, x[M]

1,1 2,1 ... p, j

The least squares estimate of the amplitude of the kth harmonic exponential is

Ak, = Ihk,l , (3.10)

meaning that for each analysis block, the amplitudes are chosen to minimize the

residual mean square error (MSE) between the sinusoidal model and the observed

data.

An important aspect of this approach is selecting the window W[m] and measuring

the corresponding estimation delay between the leading edge of the analysis window

and the effective estimation point of the algorithm. Since there is not currently a

recursive implementation of the STLS method, the type of window is restricted to a

constant-length analysis of the data, known as a sliding window approach. In general,

the window that is chosen is an exponential sliding window,

W[m] = AM-m 1<m<M where <A<1 (3.11)
0 elsewhere.

If A = 1, W is a rectangular window. For 0 < A < 1, the weights decay at an exponen-

tial rate, gradually decreasing the effect of old data on current parameter estimates,

which is why A is called the forgetting factor [22]. The resulting rectangular and ex-

ponential sliding window approaches using STLS are analogous to the sliding window

least squares (SWLS) and exponentially weighted least squares (EWLS) approaches

compared by Niediwiecki [47]. For estimators with the same effective window length,



EWLS has better parameter tracking characteristics due to the window's higher de-

gree of concentration at the leading edge of the window, while the rectangular SWLS

has better parameter matching properties due to the linearity of its phase charac-

teristic. Essentially, reducing the forgetting factor A allows the algorithm to track

fast parameter changes better, but lowers the estimation accuracy attainable when

parameters are slowly-varying. In terms of AR modeling, the exponential window

applies an artificial damping factor to the data in order to improve tracking perfor-

mance, causing the corresponding system poles to shift to k 4 zk/A. The linear

prediction relation in Eq. (3.5) can also be applied in the backward direction with

respect to time. For a sinusoid with poles on the unit circle, choosing Af > 1 in the

forward direction scales the system poles within the unit circle and is the same as

choosing Ab = 1/Af in the backward direction.

The effective sample estimation point t, of the analysis window is the weighted

time average of the window W[m] for which a linear prediction equation is valid, i.e.

p+1<m<M,

Ern=p+l mW[m]
e rm=p+1 wi]

Ep m M-m=p+1M-m 
(3.12)

m=p+1

The corresponding sample estimation delay Te is

Te = M- i , (3.13)

and the effective window length is leff e 2 Te. Taking advantage of knowing the point

in time t,l for which an estimate fk,l is valid, where

te,t = M + 1 - 1 - Te = t, + 1- 1, (3.14)



a more localized estimate of the amplitude contours in Eq. (3.9) can be made by

contracting xt about Le,j and reducing the number of rows in Z1. The weighted average

frequency for the lth analysis block,

fM M-m (3.15)
m M AM-m

m=p+1

where fk[nl for 1 < n < N is the underlying frequency contour for the kth exponential,

provides a measure of the smoothing effect of the sliding window. However, fk,l will

usually track closer to f,[n] than fk,l when the frequency contour changes faster than

linearly.

3.2 Frequency Tracking of Chirp Signals

This section presents simulation results demonstrating the ability to track the fre-

quency of harmonic chirp signals in the presence of white noise, and comparison is

made with other frequency estimation methods. The simulated chirp whistles are

constructed according to Eq. (3.1) and Eq. (3.3) with ar[n] = 1 for all n, Or = 0,

N = 500 samples, f, = 100 kHz, v[n] is additive white gaussian noise with variance

VU2 such that SNR = 5 dB unless specified otherwise, and f,[n] is specified for each

chirp. Unless otherwise specified, the algorithm parameters are chosen as A = 1,

M = 101, and p = 2R, with the chirp having R harmonics. In the following figures,

fHTLS represents the positive frequency estimate fk of fr obtained using the HTLS

algorithm and fAVG is the weighted average frequency for each analysis block, fk-

3.2.1 Single Harmonic Linear Chirp

Fig. 3-1 demonstrates the frequency estimation and tracking performance of the HTLS

algorithm for a linear chirp with fL[n] = 8000 + 2(n - 1) (Hz) for 1 < n < N. The

resulting frequency estimate is essentially unbiased, which can be seen graphically



after adjusting for the estimation delay, where T = 49 samples in this example.
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Figure 3-1: HTLS frequency tracking performance for a linear chirp (SNR = 5 dB)

3.2.2 Double Harmonic Linear Chirp

Fig. 3-2 demonstrates the frequency estimation and tracking performance of the HTLS

algorithm for a linear chirp with two harmonics (R = 2), f L[n] = 8000 + 2(n - 1) (Hz)

and f 2[n] = 16000 + 4(n - 1) (Hz) for 1 < n < N.
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3-2: HTLS frequency tracking performance for a linear chirp with two har-

(SNR = 5 dB)

3.2.3 Single Harmonic Linear Chirp with Abrupt Frequency

Shifts

Fig. 3-3 demonstrates the frequency estimation and tracking performance of the HTLS

algorithm for a linear chirp with an abrupt frequency shift of 250 Hz,

fi[n] = J8000 + 2.5(n - 1)

7750 + 2.5(n - 1)

for 1 < n <250,

for 251 < n < 500.

f- f
fcT

(3.16)
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Figure 3-3: HTLS frequency tracking performance for a linear chirp with abrupt
frequency shifts (SNR = 5 dB)
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Fig. 3-4 shows how the tracking performance of the HTLS algorithm is improved

by lowering the forgetting factor A at the expense of estimation accuracy. To clearly

demonstrate the tradeoff between tracking performance and estimation error, an SNR

of 15 dB and a frequency shift of 500 Hz are simulated, where

[n] -= 8000 + 5(n - 1) for 1 < n < 250, (3.17)
7500 + 5(n - 1) for 251 < n < 500.

In the case where A = 0.9, the transition between the linear chirp segments is much

sharper than for A = 1 due to the shorter effective window length. The corresponding

estimation point i, is closer to the leading edge of the analysis window, which shifts the

frequency estimation region toward the end of the signal. The increased estimation

error variance would preclude using A f 1 for most frequency estimation problems,

unless it was necessary to detect abrupt frequency shifts.

3.2.4 Single Harmonic Linear + Sinusoidal Chirp

Fig. 3-5 demonstrates the frequency estimation and tracking performance of the HTLS

algorithm for a chirp with a combined linear and sinusoidal frequency contour, fi [n] =

8000 + 2(n - 1) + 500 sin(,( 1 ) (Hz) for 1 < n < 500. The frequency estimation

error becomes biased at peaks in the underlying frequency contour, fl[n], due to

the smoothing effects of the analysis window. However, the frequency estimator

tracks closer to fi [n] than the weighted average frequency for each analysis window.

Thus, while peaks in the actual frequency contour are not fully resolved due to the

estimation bias, the existence of peaks in the frequency contour can be detected by the

HTLS algorithm with a sliding window. If needed, the actual peaks could be resolved

with better accuracy by removing the smoothing effects of the analysis window by

deconvolution. In regions where the frequency contour is close to linear, the HTLS

frequency estimate is practically unbiased.
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Figure 3-5: HTLS frequency tracking performance for sinusoidal chirp (SNR - 5 dB)

3.2.5 Comparison with Alternative Frequency Estimators

In [43], Marple discusses the important difference between spectral estimation, which

attempts to match the spectrum of a signal over a continuous range of frequencies,

and frequency estimation, which is only concerned with the behavior of the spectrum

local to a specific frequency. Kay [28] reviews the sinusoidal parameter estimation

problem, showing how the ML estimate of the frequency of a single complex sinusoid in

complex additive white Gaussian noise is found by choosing the frequency at which the

periodogram is maximized. The Cramer-Rao lower bound (CRLB) for the unbiased

frequency estimator of a single complex exponential of the form

s[n] = A, exp[j(27fin + 01)] + v[n], for 1 < n < N, (3.18)



with unknown parameters A1, fl, and 01, and complex white Gaussian noise v[n] with

variance av, was shown by Rife and Boorstyn [57] to be

var( > v (3.19)
Al (2r)2 N(N 2 - 1)

For a single real sinusoid,

s[n] = A1 cos(27rfin + 01) + v[n]

= exp[j(27fin + 01)] + exp[-j(2w7fn + 01)] +v[n], (3.20)

for 1 < n < N, the frequency CRLB [58] is

6a2
var (6f) > V (3.21)

A2 7 2N(N 2  1)

When estimating the unknown parameters of a single complex exponential linear

chirp sequence, the CRLB of Eq. (3.19) applies to the center frequency of the analysis

window [16]. Extending to real linear sinusoidal chirp signals, the CRLB of Eq. (3.21)

also applies to the center frequency of the analysis window [58].

Quinn and Hannan [55] present different classes of frequency estimators that can

be compared with the HTLS algorithm for linear chirp signals. Fig. 3-6 shows the

performance of some of these frequency estimators compared to the CRLB for the

linear chirp in Eq. (3.1), with R = 1, al[n] = A1 = 1 and fi[n] = 8000 + (n - 1) (Hz)

for 1 < n < N, N = 1100, f, = 100 kHz, and 01 = 0. The HTLS frequency estimate

was computed using a rectangular window (A = 1) of length M = 101 and a model

order of p = 2. SNR is defined as

A 2

SNR = 1 (3.22)
2u2



The MSE for each frequency estimator is computed as

JL L -2

MSE = IE fi- fi=
j=1 =1

(3.23)

where J = 5 is the number of independent trials performed for each chirp, L =

1000 is the number of frequency estimates computed for each trial, and f, is the

center frequency of the lth analysis window for a rectangular window. Each of the

frequency estimators applies the same sliding rectangular window to the data to

obtain a frequency estimate ft,j for each analysis window and trial. The corresponding

CRLB is

(3.24)
- SNR 2 M(M2 -21)

The FTI frequency estimator, using the FTI 3 algorithm of [55], performs an in-

terpolation about the maximiser of the periodogram using three Fourier coefficients.

-30
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Figure 3-6: Linear chirp frequency estimator performance vs. CRLB



Macleod [40] has developed alternative techniques based on the same approach. The

RIFE frequency estimator is an older approach by Rife and Vincent [59] based on

quadratic interpolation of the moduli of Fourier coefficients to reduce data storage

requirements. The QUINN frequency estimator is an AR-based iterative algorithm

developed by Quinn and Fernandes [54]. The multiple signal characterization (MU-

SIC) frequency estimator developed by Schmidt [63] is based on eigenanalysis of the

noise subspace.

Each of the frequency estimators in Fig. 3-6 was developed for quasi-stationary

signals for which the frequency could be considered constant in each analysis window.

Even though the estimators are used in an unconventional manner when analyzing

linear chirps, they provide a baseline to gauge the performance of the HTLS algorithm.

As the SNR increases above 10 dB, the HTLS algorithm increasingly outperforms the

other frequency estimators and nearly achieves the CRLB for an unbiased estimator.

Between 0 and 5 dB, the QUINN frequency estimator outperforms the HTLS and

FTI estimators due to an inherent bias that worsens performance at higher SNR.

The faster FTI frequency estimator achieves nearly the same performance and can

be considered as an alternative to HTLS at lower SNR.

A lot of research has been done on joint ML frequency and chirp rate estimation

of linear chirp signals with short data lengths. Djurid and Kay [16] proposed similar

estimators based on their ease of on-line or off-line implementation that achieve the

CRLB at SNR above 8 dB, with SNR defined as (12) for a single complex sinusoid.

Liang and Arun [37] use a method very similar to the HTLS algorithm with balanced

splitting to initialize a search for the ML parameter estimates of multiple superim-

posed chirp signals, with simulation results attaining the CRLB at SNRs above 10

dB. Saha and Kay [61] propose using importance sampling to maximize a compressed

likelihood based on frequency and chirp rate to implement joint ML parameter esti-

mation of superimposed chirp signals, demonstrating simulation results that achieve

the CRLB at SNRs above 3 dB. At low enough SNR, all of the frequency estimators



depart sharply from the CRLB, as seen in Fig. 3-6 below an SNR of 3 dB. Ultimately,

Fig. 3-6 demonstrates that the HTLS algorithm can be used to nearly optimally track

the frequencies of chirped signals.

3.3 Amplitude Estimation of Chirp Signals

This section presents simulation results demonstrating the ability of the Prony method

to estimate the amplitudes of a double harmonic linear chirp signal based on frequency

estimates obtained using the HTLS algorithm. As with Section 3.2, the simulated

chirp whistle is constructed according to Eq. (3.1) and Eq. (3.3) with N = 500

samples, f = 100 kHz, 0 r = 0, and v[n] is white Gaussian noise with variance a 2

The frequency and amplitude contours are defined as

fr[n] = 8000 + 2(n - 1), r = 1 (3.25)
16000 + 4(n - 1), r = 2

and

S1+ tukey[n]), r = 1 (3.26)
ar[n] = 2 (3.26)

(1 + tukey[n]), r= 2

for 1 < n <, where tukey[n] is the N point cosine-tapered Tukey window [20] with

parameter a = 0.5 shown in Fig. 3-7. The HTLS algorithm parameters are chosen

as A = 1, M = 101, and p = 4. The harmonic chirp amplitude estimates are found

from a reduced version of Eq. (3.9) by using W = 20 data points centered at the

estimation point te,l for the lth analysis window,

lh = (ZVi)->1Z[x , (3.27)
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Figure 3-7: Tukey window with a = 0.5

where

1 1 ... 1 h, X3[Lei + 1

- hi aw-x - 2

Z Wl 2, p, , i = h2,l , andx [, - + 2]]

L -1 W-1... Z -1 h, 1  xl[Lte,l - + W J]

This is done to limit the effect of time-varying frequency and amplitude parameters

within the analysis window while providing sufficient averaging to reduce the error

variance.

Fig. 3-8 compares the estimated amplitude contours aLS to the actual contours

in Eq. (3.26) for an SNR of 50 dB. There are two noticeable factors which increase

the amplitude estimation error at relatively high SNRs. First, even in regions of con-

stant harmonic amplitudes, the second harmonic amplitude estimate shows greater

deviation from the known contour. Rife and Boorstyn [58] show that for multiple
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Amplitude estimation performance for double harmonic linear chirp (SNR

tones, the CRLB of a particular tone's frequency estimate depends on its own ampli-

tude but is independent of the other tone amplitudes. The weaker second harmonic

results in a less accurate amplitude estimate due to a less accurate frequency esti-

mate in Eq. (3.27). Second, in regions where a tone's amplitude is time-varying, the

amplitude estimate is less accurate because Eq. (3.27) assumes the parameters hk,l

are constant within the analysis window. The largest estimation error in Fig. 3-8

occurs in regions where both the chirp amplitude is changing and the corresponding

frequency estimate is less accurate. A third source of error is due to the assumption

that the frequencies are also constant in Eq. (3.27), while the underlying frequency

contours are also time-varying. Fig. 3-9 shows the residual MSE in the amplitude

estimation problem, computed from Eq. (3.27) as

residual MSE = - 2 (3.28)
W
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Figure 3-9: Residual MSE for double harmonic linear chirp (SNR = 50 dB)

The residual MSE is characterized as being somewhat periodic and sensitive to rapid

changes in the amplitude and frequency contours, with strong dependence on the

weaker chirp amplitudes due the corresponding decrease in frequency estimation ac-

curacy.

Fig. 3-10 compares the estimated amplitude contours aLs to the actual contours in

Eq. (3.26) for SNR = 25 dB. The increased additive white noise degrades the frequency

and amplitude estimation problems, resulting in larger deviations from the underlying

amplitude contour for sustained periods of time. Fig. 3-11 shows the corresponding

residual MSE. In comparison with Fig. 3-9, the increased additive white noise boosts

the residual MSE while reducing the relative performance gain when the amplitudes

are held constant.
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Chapter 4

Synthetic Marine Mammal Whistle

Calls

This chapter applies the experience gained from the parameter estimation of harmonic

linear chirps in Chapter 3 to the parameter estimation, modification and synthesis

of bottlenose dolphin whistle calls. Section 4.1 focuses on parameter estimation and

synthesis of bottlenose dolphin whistle calls. Section 4.2 proposes different strategies

for watermarking whistle calls based upon detection capability and exploiting natural

variability in the whistle call frequency contours.

4.1 Modeling Recorded Bottlenose Dolphin Whis-

tle Calls

Fig. 4-1 shows a bottlenose dolphin whistle call composed of three separate whistles

taken from the Sarasota Bottlenose Dolphin Whistle Catalog maintained at Woods

Hole Oceanographic Institution [62]. The whistle call was recorded using a custom

built suction cup hydrophone attached to the forehead of the dolphin. The original

analog recording at f, = 40 kHz was later digitized using a sample rate of fs = 96

kHz. Fig. 4-2 is a spectrogram of the bottlenose dolphin whistle call in Fig. 4-1
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computed using the short-time Fourier transform with a 750 point Hamming window

and 250 samples of overlap [49]. Each whistle contains up to six harmonics with

frequency generally increasing throughout the whistle.

The performance of the frequency estimation problem is dependent upon three

parameters: the exponential forgetting factor A, the number of data samples M used

in each analysis block, and the model order p. To limit the smoothing effect of

the analysis window while achieving optimal frequency matching characteristics, the

values A = 1 and M = 101 are chosen. The choice of p is more complex. If the whistle

calls were composed of R harmonics with stable, relatively equal amplitude contours,

then the model order would be chosen as p = 2R. In reality, the higher harmonics are

significantly weaker than the fundamental harmonic, and in regions where the whistle

amplitude or frequency changes rapidly, the amplitudes of each harmonic fluctuate

strongly. Due to the known harmonic structure of the whistles and the relatively

weak amplitudes of higher harmonics, all harmonics are best estimated as multiples

of the fundamental harmonic, fl. A low model order of p = 2 is chosen, for which the

frequency of the strongest harmonic is estimated, because of the occasional instability

of the whistle harmonics. However, since higher harmonics are not accounted for in

the model, the resulting fundamental frequency estimate has a higher error variance

than if the data contained only the fundamental frequency contour. The solution

is to apply a bandpass filter to isolate the fundamental harmonic from the higher

harmonics before performing frequency estimation.

The wide frequency range of the bottlenose dolphin whistle calls require using

two overlapping bandpass filters to isolate the fundamental frequency contour. The

overlap region is chosen to be large enough to allow a smooth transition between the

two frequency estimates. The Matlab command filtfilt [45] is used to perform zero-

phasing filtering to ensure the resulting estimated frequency contours are correctly

aligned in the time domain. Fig. 4-3 shows the frequency estimates for Whistle 1

obtained using a bandpass filter overlap region of 12-12.5 kHz and a transition time
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between frequency estimates of 237.65 msec. The resulting fundamental frequency

contour is shown in Fig. 4-4. The frequency contours of the higher harmonics are

fr[1] = rf [1] for 1 < 1 < L, where L is the number of analysis blocks in the whistle.

The harmonic amplitude estimates are then found for each analysis block using

an estimation width of W = 20 data points. For each data block, the number of

harmonic amplitudes to be estimated is specified based on the frequency of the fun-

damental harmonic. For example, when the fundamental harmonic exceeds 10 kHz,

there will be at most three harmonics present due to the frequency cutoff at 40 kHz.

Overestimating the number of harmonics in the data gives spurious results. The esti-

mated amplitude contours for Whistle 1 is shown in Fig. 4-5. It is important to keep

in mind that the amplitude estimates are performed for the recorded whistle and

are not necessarily representative of the actual whistle, since the higher harmonics

are artificially cutoff by the recording equipment at frequencies greater than 40 kHz.

The actual harmonic amplitudes most likely do not fluctuate as rapidly as seen in

a4
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Figure 4-5: Estimated amplitude contours for Whistle 1 in Fig. 4-1



Fig. 4-5. The observed short-time variability in the amplitude contours accounts for

model mismatch and frequency estimation error.

Fig. 4-6 shows the residual MSE for Whistle 1. The MSE is remarkably low in the

middle of the whistle while the amplitude contours are relatively stable, indicating

good frequency and amplitude estimation performance. In regions where the whis-

tle is less stable, such as during the attack phase at the beginning of the whistle,

the parameters vary more quickly, resulting in worse estimation performance. The

synthetic whistle is then constructed from the harmonic frequency and amplitude

contours according to the model in Eq. (3.1),

s[l] = Ei a[/ cos 27r + )r for 1 < 1 < L,
r=l i=1 fs

(4.1)

where &r are the harmonic amplitude contours, r are the initial phases of each har-

monic, and if is the fundamental frequency contour. Since the human auditory system
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Figure 4-6: Residual MSE for Whistle 1 in Fig. 4-1



(HAS) is insensitive to the initial phase, the synthetic whistles could be constructed

with 9 r = 0, but accounting for the initial phase difference between harmonics causes

the synthetic whistle to more closely resemble the recorded whistle in the time do-

main.

Fig. 4-7 compares the recorded and synthetic time domain representations for

Whistle 1. Fig. 4-8 compares the spectrograms for the recorded and synthetic versions

of Whistle 1. In-air playbacks using Matlab demonstrate that the synthetic whistle

is almost indistinguishable from the recorded whistle. However, the sinusoidal model

does not account for any stochastic 'noise-like' portions of the whistle, such as seen

surrounding the fundamental frequency contour at the end of Whistle 1 in Fig. 4-8.

Other dolphin whistles should be studied to determine whether this type of stochastic

effect is actually produced by the dolphin.

Figs. 4-9 through 4-12 show the fundamental frequency and amplitude contours

for Whistles 2 and 3 in Fig. 4-1. Each successive whistle has a longer duration and is

characterized by increasingly stable frequency and amplitude contours. The residual

MSE for Whistles 2 and 3 is shown in Fig. 4-13 and Fig. 4-14. Both Whistle 2 and 3

have a lower residual MSE than Whistle 1, as expected based on the stability of the

frequency and amplitude contours. Each whistle has a higher residual MSE when the

fundamental frequency is rapidly increasing toward the end of the whistle.
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4.2 Watermarked Synthetic Whistle Calls

In a covert communications scenario, a blind watermark detection scheme is generally

desired, in which the host signal is not needed for watermark retrieval. Due to the

sensitivity of the HAS, a parametric watermark that produces a natural-sounding

stego-signal provides the best opportunity for passing embedded information with-

out alerting observers to the existence of the information. The harmonic frequency

contours are chosen as the parameter set to be watermarked based on the strong

performance of the sinusoidal model of Eq. (4.1) in representing recorded bottlenose

dolphin whistle calls. In order to produce natural-sounding whistles using a retriev-

able watermark, the harmonic relationship between frequency contours should be

maintained. Thus, different schemes for watermarking the fundamental frequency

contour of a synthetic whistle should be considered in terms of the ease of watermark

detection and retrieval and the naturalness of the resulting stego-signal.

The fundamental frequency contour regularly fluctuates about its instantaneous

mean that can be described as a vibrato in the frequency contour. Instead of adding

distortion on top of the observed vibrato, watermark retrieval can be enhanced by

watermarking the instantaneous mean frequency (IMF) contour, fiME, which is as-

sumed to be the original frequency contour if the vibrato effect did not occur. The

vibrato can be thought of as a stochastic vibration or watermark fw added to the

smoothed frequency contour fIMF, so that

fil[l] = fMF[I] + fw [1], for 1 < 1 < L. (4.2)

Since the natural bottlenose dolphin whistles consist of distorted frequency contours,

there is a good chance that robust watermarking methods can be utilized to produce

natural-sounding synthetic whistles. However, if the watermark is too natural, it may

be difficult to distinguish between natural and synthetic whistles.

The IMF contour is found as the weighted time-average of the fundamental fre-
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Figure 4-15: Impulse response of moving-average filter

quency contour using a moving-average filter with the impulse response shown in

Fig. 4-15. The observed bottlenose dolphin whistle vibrato occurs with an average

period of roughly 1 msec, so the effective impulse response length of the filter is cho-

sen to be about 1 msec. The resulting moving-average filter gives equal weight to

local frequency estimates while giving consideration to more distant values in order

to smoothly estimate the IMF. The Matlab command filtfilt [45] is again used

to perform zero-phase filtering. The fundamental frequency and IMF contours for a

portion of Whistle 2 are shown in Fig. 4-16.

In a covert communications scenario, it would be desirable to be able to retrieve the

watermark under relatively low SNR conditions, such as SNR = 5 dB. This requires

a relatively robust watermarking scheme that facilitates watermark retrieval even

when frequency estimation performance is relatively bad. Liu's F-QIM watermarking

scheme [38], which is based on detecting the difference between separate frequency

quantizers, would require either large frequency deviations between quantizer levels
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Figure 4-16: Fundamental frequency and IMF contours for a portion of Whistle 2 in
Fig. 4-1

or high SNR to ensure robust watermark retrieval due to the frequency estimation

performance. The remainder of this chapter considers two watermarking schemes that

are relatively robust for a range of SNR. The first scheme constructs a watermark

composed of linear chirp segments separated by an abrupt frequency shift. The second

scheme constructs a watermark that simulates the natural vibrato of the fundamental

frequency using continuous-phase modulation (CPM).

4.2.1 Linear Chirp Segments With Abrupt Frequency Shifts

The goal of most communications systems is to maximize the achievable data rate

for which transmitted information can be reliably decoded. This implies that each

information bit will correspond to a minimal number of samples in the transmitted

signal. Thus, from the perspective of data rate, an optimal frequency watermarking

scheme will have a relatively low number of samples per information bit available for



frequency estimation. Increasing the sample rate at the receiver will also generally

improve frequency estimation performance by providing more samples per information

bit, but it is assumed fixed when choosing a watermarking scheme. At low SNR,

small changes in the frequency contour may be obscured by the increased frequency

estimation variance, making robust QIM-based watermarking schemes unattractive

in terms of perceptual distortion of the host signal. To improve frequency estimation

performance and limit perceptual distortion, the IMF contour should be watermarked

with a generally smoothly-varying signal that can be tracked over time using the

HTLS frequency estimator or other frequency estimators.

WATERMARKED
FREQUENCY CONTOUR

INSTANTANEOUS MEAN
FREQUENCY CONTOUR

Figure 4-17: Watermarking scheme based on linear chirp segments with abrupt fre-
quency shifts

A potential watermarking scheme, portrayed in Fig. 4-17, approximates the IMF

contour using linear chirp segments with abrupt frequency shifts Af. The water-

marked information is encoded in the amount of time between abrupt frequency

shifts, Ato and At1 . The slope of each linear chirp segment is chosen to achieve a fre-

At > 1

Ato 0

At,> 1

At> 0

A-------
Aff



quency separation of Af from the IMF contour after a duration Ato or At 1 specified

by each information bit. The synthetic stego-signal is then constructed according to

Eq. (4.1) using the watermarked fundamental frequency contour and the amplitude

contours estimated using the original fundamental frequency contour estimate. An

alternative to the watermarking scheme in Fig. 4-17 is to tag the midpoint instead of

the initial point of each linear chirp segment to the IMF contour.

Fig. 4-18 shows the linear chirp watermarked fundamental frequency contour based

on Whistle 2 of Fig. 4-1. The watermarked contour was constructed using a random

information bit stream and the parameters Af = 150 Hz, Ato = 1 msec and At 1 = 2

msec. In-air playbacks using Matlab demonstrate that there is a small perceptible

difference between the recorded and watermarked synthetic whistles. The parameter

that most effects the perceptible distortion of the host signal is the frequency shift,

Af. At relatively high SNR, the frequency estimation performance will be improved,

and thus require a smaller Af for reliable watermark retrieval. As SNR decreases,

400

350

300-

250 -

200

150

100

50

0
6 8 10 12 14 16 18 20 22

Frequency (kHz)

Figure 4-18: Linear chirp watermarked frequency contour of Whistle 2 in Fig. 4-1



the frequency estimation variance increases, and a larger Af is needed to differenti-

ate between an actual frequency shift and estimation error. Watermark retrieval is

performed by detecting abrupt frequency shifts in the fundamental frequency contour

of the received whistle.

4.2.2 Continuous Phase Modulation

Due to the inherent vibrato observed in the bottlenose dolphin whistle calls, an alter-

native to the linear chirp watermarking scheme is to embed information in a synthetic

vibrato using continuous phase modulation (CPM) as shown in Fig. 4-19. CPM sig-

nals [52] have a continuous carrier phase

n

0(t;I) = 27r Ikhkq(t - kT), nT < t < (n + 1)T (4.3)
k=-oo

where {Ik} is a sequence of M-ary information symbols selected from the alphabet

±1, ±3, ... , ±(M- 1), {hk} is a sequence of modulation indices, and q(t) is some

normalized waveform shape. While many types of CPM could be used to construct a

synthetic whistle vibrato, a simple type called minimum-shift keying (MSK) can be

used to illustrate a watermarking scheme using CPM.

INSTANTANEOUS MEAN CPM WATERMARKED
FREQUENCY CONTOUR WATERMARK FREQUENCY CONTOUR

Figure 4-19: Watermarking scheme based on CPM perturbation of the IMF contour



MSK is a special form of binary CPM in which the modulation index h = 1 and

normalized waveform shape

0 (t < 0)

q(t) = t/2T (0 < t <T) (4.4)

1/2 (t > T)

The phase of the MSK carrier in the interval nT < t < (n + 1)T is

1 n-1

0(t;1) 2 7E Ik +rlq(t -rT)

k=-oo (4.5)
On 1 (t - nT) nT<t<(n+)T,

where

0n =-2 E k . (4.6)
k=-oo

The modulated MSK carrier signal with amplitude A and carrier frequency fc is

s(t) = A cos [2rfct + On + -n T (47)

Acos 2r f + In) t - -rl + On , nT < t < (n + 1)T.

From Eq. (4.7), it can be seen that for each interval nT < t < (n + 1)T, MSK can be

thought of as having one of two frequencies,

1
fo= fe -

4T (4.8)
fi= fe+ I

4T'

with an adjusted phase to achieve a continuous phase across all intervals.

The synthetic vibrato signal fw[1] can be constructed by sampling Eq. (4.7) at



the points t = 1/f, with a carrier rate of fc = 1/T,

fw[l] = A cos L 1 + -I.) - nrIn+n , nTf8 <l (n + 1)Tf, (4.9)

where {In} is a sequence of binary information symbols ±1. The CPM watermarked

fundamental frequency contour is

fcPM[l] = fIMF [] + fw[1], 1 < 1 < L. (4.10)

Fig. 4-20 shows both the unmodified and CPM-watermarked fundamental fre-

quency contours for a portion of Whistle 2 in Fig. 4-1, where fCPM is constructed

using the parameters A = 50 Hz and T = 1 msec. The main distinguishing feature

between the two fundamental frequency contours is that the watermarked contour

vibrato has a constant amplitude as opposed to the variable strength vibrato in the

Frquency (kHz)

Figure 4-20: Unmodified and CPM-watermarked frequency contours for a portion of

Whistle 2 in Fig. 4-1



recorded whistle. In-air playbacks using Matlab demonstrate that the watermarked

whistle, constructed from Eq. (4.1) using the unmodified amplitude contour estimates,

is essentially imperceptible from the recorded whistle, with the exception of slight

background noise in the recorded whistle. Proakis [52] covers CPM demodulation

methods that can be used for watermark retrieval after estimating the fundamental

frequency contour of the received whistle.



Chapter 5

Experimental Results

This chapter presents results from the Rescheduled Acoustic Communications Ex-

periment (RACE08) conducted in Narragansett Bay during March 2008. Synthetic

whistle calls based on the bottlenose dolphin whistle call in Fig. 4-1 were transmit-

ted throughout the experiment. The frequency estimation performance of the HTLS

algorithm is demonstrated for both natural and watermarked frequency contours.

5.1 RACE08 Description

RACE08 was conducted at the University of Rhode Island's Narragansett Bay Cam-

pus, shown in Fig. 5-1, from March 1st through March 25th. Acoustic signals were

transmitted from a stationary tripod located roughly 100 meters from shore in water

depth of 9 meters. The primary source transducer, an ITC-1007 spherical transducer

with resonant frequency of approximately 11kHz, was located about 4 meters from

the sea floor. A source array composed of three Datasonics AT-12ET transducers, lo-

cated beneath the ITC-1007, was not used for transmitting synthetic whistles. Three

main receiver array tripods were located roughly 400 meters to the East, 400 meters

to the North, and 1000 meters to the North of the source array tripod. The 400 meter

receiver arrays were composed of 24 elements with 5 cm spacing. The 1000 meter



Figure 5-1: University of Rhode Island's Narragansett Bay Campus

receiver array was composed of 12 elements with 12 cm spacing. The bottom element

of each receiver array was located 2 meters above the sea floor. The water depths

between source and receiver arrays ranged from 9 to 14 meters. A reference ITC-100

hydrophone was mounted 1 meter from the ITC-1007 source transducer. The sample

rate of the transmitter and all receivers was 39062.5 Hz (1e7/256).

5.2 RACE08 Results

Synthetic whistle calls, based on the bottlenose dolphin whistle call in Fig. 4-1, were

transmitted on the ITC-1007 source transducer at two hour intervals throughout

the RACE08 experiment. The results presented here, taken from the 8:00 P.M. EDT

transmission on March 23rd, were chosen for relatively calm environmental conditions

in Narragansett Bay.

Fig. 5-2 compares spectrograms of unmodified synthetic whistle calls received at
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Figure 5-2: Spectrograms of unmodified synthetic whistle calls received at the refer-

ence (left) and N1000 (right) hydrophones (dB)

the reference and North 1000 meter (N1000) hydrophones. The reference hydrophone

records the whistle call without multipath or intersymbol interference (ISI), while the

N1000 hydrophone sees an impulse response of length greater than 0.5 seconds. The

relatively long impulse response is due to strong reflections from shore in the narrow

channel.

Fig. 5-3 compares spectrograms of watermarked synthetic whistle calls received

at the reference and N1000 hydrophones. The watermarking scheme was similar to

that portrayed in Fig. 4-17, except that the frequency was held constant for each

information bit, resulting in a variable abrupt frequency shift Af. The parameters

Ato = 10.2 msec and At 1 = 20.4 msec were chosen for initial testing to ensure

frequency estimation and watermark retrieval could be demonstrated. The presence of

the watermark is clearly seen at the N1000 hydrophone in Fig. 5-3, since the multipath

energy only appears at discrete frequencies determined by the watermarking scheme.
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Fig. 5-4 shows the third whistle (Whistle 3) from Fig. 5-2 as recorded by the

reference hydrophone. Due to the frequency response of the ITC-1007 transducer,

the amplitude of Whistle 3 varies in time as the frequency changes. The rest of this

chapter examines the frequency estimation performance of the HTLS algorithm for

both unmodified and watermarked versions of Whistle 3.

Fig. 5-5 compares the frequency estimation performance for both unmodified and

watermarked versions of Whistle 3 received by the reference hydrophone, using the

parameters A = 1, M = 101, and p = 2. A major drawback of this watermarking

scheme is that when the unmodified frequency contour is relatively constant, there is

little frequency separation between information bits, and watermark retrieval requires

excellent frequency estimation. By using linear chirp segments with abrupt frequency

shifts Af, robust watermark retrieval is possible independent of the unmodified fre-

quency contour.
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Figure 5-5: Frequency estimation performance for unmodified (left) and watermarked

(right) whistle contours received at reference hydrophone



Fig. 5-6 compares the frequency estimation performance for both unmodified and

watermarked versions of Whistle 3 received by the N1000 hydrophone, using the

parameters A = 1, M = 101, and p = 2R with up to 3 harmonics. The effect of ISI is

combatted by increasing the model order to account for major peaks in the impulse

response, yielding good frequency estimation of the transmitted contour. However,
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Figure 5-6: Frequency estimation performance for unmodified (left) and watermarked

(right) whistle contours received at N1000 hydrophone

overestimating the model order harms the frequency estimation performance, so p

was manually adjusted to account for the onset of strong multipath arrivals.

Fig. 5-7 and Fig. 5-8 show the complete estimated frequency contours for unmod-

ified and watermarked versions of Whistle 3 received by the N1000 hydrophone. As

seen in Fig. 5-7, ISI can cause sudden spurious frequency estimation results. Dis-

counting the outliers in Fig. 5-7, the standard deviation of the unmodified whistle

frequency estimate is 21.6 Hz, while the standard deviation of the watermarked fre-

quency estimate is 20.8 Hz.
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Figure 5-7: Frequency estimation performance for unmodified whistle contour re-
ceived at N1000 hydrophone
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Figure 5-8: Frequency estimation performance for watermarked whistle contour re-
ceived at N1000 hydrophone



Although the distortion due to ISI presents a challenge to watermark retrieval,

it can be overcome in mild environmental conditions with clearly defined multipath

arrivals by appropriately increasing the model order used in frequency estimation.

In severe environmental conditions, where the multipath arrivals reflected off surface

waves are less clearly defined, the frequency estimation performance will degrade.

Further testing with the watermarking schemes presented in Section 4.2 should be

performed in various environmental and bathymetric conditions to establish the op-

erational limits on robust watermark retrieval.



Chapter 6

Conclusions and Future Directions

The work presented in this thesis develops a method for high-resolution modeling

of marine mammal whistle calls that can be used to generate natural sounding syn-

thetic whistles for biological research or covert communications. Although McAulay

and Quatieri [46] reported good results in applying their human speech processing

sinusoidal model to the synthesis of whale sounds, their technique was based on a

block-by-block estimation of slowly-varying parameters. By applying a relatively

short sliding window with hop size of H = 1, the quickly-varying parameters of

chirp signals can be accurately estimated. Essentially, higher resolution estimates

are found for the fundamental frequency and amplitude contours used by Buck et

al. [5] in the modification and synthesis of bottlenose dolphin whistle calls. Due

to the sensitivity of the HAS, the optimal scheme for watermarking marine mam-

mal whistle calls is based on slight imperceptible modifications of the fundamental

frequency contour. High-resolution frequency estimation is essential for producing

natural sounding stego-signals that are robust to channel-induced signal distortion

and additive ambient noise.

An interesting result, previously unknown due to the lower resolution of other tech-

niques, is that the bottlenose dolphin whistles exhibit an inherent fluctuating vibrato

of the fundamental frequency contour, presumably due to the physical mechanism



for generating whistles. A typical vibrato of the bottlenose dolphin fundamental fre-

quency, ranging from 6 to 22 kHz, has a period of 1 msec with a magnitude from 50 to

100 Hz. The presence and resolvability of the inherent vibrato naturally lead to wa-

termarking the instantaneous mean fundamental frequency contour with a synthetic

vibrato using CPM signals.

Directions for future work can be divided into two categories: updating the ex-

isting model to better describe marine mammal whistle generation and addressing

operational aspects of a covert communications system. The major distinction be-

tween these categories is that modeling can performed offline at ideal SNRs, while a

covert communications system will optimally operate online at degraded SNRs.

Accurate modeling of marine mammal whistle calls requires high-quality record-

ings with a high SNR and sufficient sample rate to capture the desired harmonics

without aliasing. The custom built suction cup hydrophone, used in the Sarasota

Bottlenose Dolphin Whistle Catalog to record whistles during brief capture-release

events, provides recordings with excellent SNR. For the whistle recording studied in

this thesis, the high frequency harmonics are cutoff above 40 kHz. Optimal recordings

should use a high enough sample rate to resolve the desired harmonics and employ

anti-aliasing filters to limit whistle distortion. A large number of bottlenose dolphin

whistle calls should be analyzed to determine characteristic modulations of the fre-

quency and amplitude contours. If these characteristics can be accurately modeled,

natural sounding whistles can be generated from scratch, without requiring a whistle

recording to develop frequency and/or amplitude contours. The existing sinusoidal

model could be updated to include components of the whistles that are not confined

to narrow band harmonics. The apparent stochastic effects of the whistles, such as

during the attack or final phases of the whistles, could be modeled in a similar fash-

ion as Levine's sinusoid+noise+transient model [36]. Finally, the bottlenose dolphin

vocal tract could be modeled to improve the sinusoidal synthesis model, as shown in

Fig. 1-1.



One of the drawbacks for using the HTLS algorithm to track fundamental fre-

quency contours in a covert communications system is the high computational load

required to obtain a frequency estimate for each sample. A recursive implementa-

tion of the weighted HTLS algorithm, using an appropriate forgetting factor A to

discard old data, would greatly improve the algorithm's computational load for real

time applications. Liang [37] discusses using the SVD-update algorithm of Bunch

and Nielsen [7] after calculating the initial SVD to reduce the computational loading

of sequential chirp parameter estimation. Taking advantage of the state-space model

utilized in the HTLS algorithm, an extended Kalman filter [22] could be developed to

track parameter changes throughout a whistle call. It would be beneficial to develop

a more robust way to deal with channel-induced ISI, such as using the Expectation-

Maximization (EM) algorithm [48] to estimate channel conditions and performing

channel equalization prior to frequency estimation. It could also turn out that other

frequency estimators, such as Quinn's FTI frequency estimator, are a better choice

than the HTLS algorithm for watermark detection and retrieval. Quinn [55] com-

bines FTI frequency estimation with a Hidden Markov Model (HMM) to track slowly

varying frequencies at low SNR. HMMs could be developed to improve freequency

tracking of marine mammal whistle calls at low SNR.

Different watermarking schemes should be tested and compared in terms of their

ability to produce natural sounding synthetic stego-signals, potential achievable data

rates, and watermark detection and retrieval performance. While this thesis focused

on the frequency of estimation of a single marine mammal whistle call, an operational

environment at sea will often include actual marine mammal whistle calls in addition

to the synthetic stego-signal. Sturtivant and Datta [67] have looked at extracting

whistle contours from recordings of several dolphins. An eventual covert communica-

tions system will most likely need to be able to overcome acoustic interference from

biologics that respond to the natural sounding stego-signals.
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Appendix A

Prony's Derivation of the Linear

Prediction Equations

Prony demonstrated that the nonlinear aspects of Eq. (2.3),

p

x[n] = hk - 1 , (A.1)
k=1

can be embedded into a polynomial factorization problem [43]. He showed that the

poles zk can be resolved separately from the parameters hk, which can then be found

by solving Eq. (2.6). The key to the separation is to recognize that Eq. (A.1) is the

solution to a homogeneous linear constant-coefficient difference equation. In order to

find the form of this difference equation, first define the polynomial O(z) that has the

poles zk as its roots,
p

O(z) = (z - Zk) (A.2)

k=1

If the products of Eq. (A.2) are expanded into a power series, the polynomial may be

represented as the summation,

P

O(z) = W [m]z p- m  (A.3)
m=0



with complex coefficients w[m] such that w[O] = 1. Shifting the index in Eq. (A.1)

from n to n - m and multiplying by the parameter w[m] yields

w[m]x[n - m]
p

= w[m] hkz n-m-1

k=1

Forming similar products w [0]zx [n], ... , w [p]x[n - p] and summing produces

E w[m]x[n - m]
m=O

w[m] hk n-m-

m=O k=1

p p

= hk Ewm Zn-m-i

k=1 m=O

which is valid for p + 1 < n < 2p. Making the substitution zn"- m - = n-p-p-1p-m

P P P

w[mx]z[n - m] hkZn-p- 1  -wfm]zpm

m=O k=1 m=0

P

= hk n-p-1(z) =0 . (A.6)
k=1 Z=Zk

Eq. (A.6) is the linear difference equation whose homogeneous solution is given by

Eq. (A.1). Eq. (A.3) is the characteristic equation associated with this linear differ-

ence equation. The set of valid linear prediction equations is expressed as

X [p]

x[p+ 1]

x[2p - 1]

x[p - 1]

x[2p - 2]

X[1]

... ~ [2]

. [p]

w[1]

w[21

_w [p]

x[p + 1]

x[p + 2]

x[2p]

(A.7)

Although it is derived from different assumptions, the modern Prony's method, which

accounts for error in the model, is equivalent to the covariance method of linear

prediction [41].
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