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Abstract

A method is derived to generate the minimum induced loss lift distribution for
a lightly loaded helicopter rotor in forward flight. Finding the optimal distribution
requires the minimization of the induced power with respect to variations in the
bound circulation, subject to the requirement that the rotor be in trim. The analysis
examines the flow in the far wake of the rotor, and, as such, is shown to be an extension
of the minimum induced loss theory known for propellers and fixed wings. The far
wake minimization results in lift distributions that a real rotor could not achieve,
because the lift is too high on the retreating blade side. The theory is therefore
extended to include constraints on the maximum allowable local lift at any point on
the rotor disk. The rotor theory yields a set of necessary conditions which are solved
numerically. A finite element method is used to solve the necessary conditions, since
the minimization derives from a variational principle. The extension to include the
constraints on the maximum allowable local lift is done using augmented Lagrangians.

Results are presented which show that an optimal lift distribution, with constraints
on the maximum local lift, requires between 11% and 16% less induced power than a
typical rotor lift distribution. A static aeroelastic analysis is performed to assess the
capability of a rotor to achieve the optimal lift distribution. The lift distribution of a
typical rotor is augmented by multicyclic inputs to the swashplate and trailing-edge
servoflaps distributed along the blades. It is shown that the augmented rotor should
be able to achieve approximately a 4% reduction in induced power over a typical
rotor.

Thesis Supervisor: Steven R. Hall, Sc. D.
Title: Associate Professor of Aeronautics and Astronautics
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Nomenclature

Listed below, in alphabetical order, are the variable names used throughout this

document. The list is separated into Latin characters, Greek characters, and also a

section for subscripts and superscripts.

Latin

a Blade section lift curve slope

A Rotor disk area, 7rR 2

Aj Average wake surface area of elements around node j

A Diagonal matrix whose entries are Aj

B Number of blades

B Matrix relating nodal potential values to the potential gradient

inside an element

B, Matrix relating global vector of nodal potential values

to the potential gradient inside element m

c Blade chord

C Scalar constant, pB6f/ (27r)

C, Set of nodes previously in the constraint set

and scheduled to remain in the set

Cb Set of nodes being added to the constraint set

C, Sectional lift coefficient

CP Coefficient of power, P/pA(flR) 3

CT Thrust coefficient, T/pA(fIR) 2

D Matrix relating harmonic control input to lift

E Matrix relating harmonic control input to bound circulation

F Rotor force vector

g Scalar penalty weight

G Matrix relating nodal potential values to the circulation

inside an element



Gm Matrix relating global vector of nodal potential values

to the circulation inside element m

H Aft in-plane rotor force

H Matrix relating nodal potential values to the potential

inside an element

Hm Matrix relating global vector of nodal potential values

to the potential inside element m

i, 3, k Unit vectors corresponding to the z, y, and z coordinate axes

K Finite element stiffness matrix

KE Kinetic energy in wake

1 Lift on a blade section

M Vector of rotor moments

MX Rotor hub rolling moment

My Rotor hub pitching moment

i Unit vector normal to a surface

N Number nodes in the finite element model

Pi Induced Power

P2  Penalty function for nodes in Ca

P3  Penalty function for nodes in Cb

Q Rotor shaft torque

r Blade radial station

r Non-dimenional blade radial station, r/R

r Vector from hub center to blade station r

r Unit vector along r

rc Non-dimensional root cutout

R Rotor radius

Roo Radius of finite element domain

R Right hand side vector in finite element calculations

S Surface of control volume V

T Rotor thrust



UT component of velocity incident to a blade in the direction

tangent to the blade rotational velocity

UR component of velocity incident to a blade in the radial direction

Up component of velocity incident to a blade,

perpendicular to the plane of the disk

U Velocity vector incident to a blade

v Induced velocity in the far wake

V Helicopter velocity vector

V Control volume

w Induced velocity at rotor disk

W Matrix of discrete influence coefficients, from circulation

to wash at rotor

W Wake sheet surface

X Coordinate axis, positive aft

y Coordinate axis, positive to right

Y Rotor in-plane side force

z Coordinate axis, positive up

Greek

a Airfoil angle of attack

a r Angle of tilt of rotor tip path plane into the direction of travel

lj Augmented lagrangian on node j

P Vector of Augmented lagrangians

7 Circulation strength per unit length

P Circulation

r Vector of nodal circulation values

S Variational operator

77 Angular control input schedule, function of time or azimuth

r7 Vector of input schedules for each control device



rh Vector of harmonic coefficients corresponding

to each control degree of freedom

0 tw Linear blade twist

V Lagrange multiplier on bound circulation

K Rotor induced loss factor

A Vertical advance ratio, -Vz/Q2R

Y Forward advance ratio, V,/2R

VT Thrust Lagrange multiplier

v Vector of force Lagrange multipliers

Linear impulse

II Induced power functional

w Lagrange multiplier for flap and swashplate deflection

p Density of air

a- Rotor solidity, Nc/7rR

Unit vector in wake translation direction

Velocity potential

'4 j Velocity potential at a node labelled j

4 Vector of nodal velocity potential values

Azimuthal position on rotor disk

Unit vector in azimuthal direction

wX Rolling moment Lagrange multiplier

Wy Pitching moment Lagrange multiplier

w Vector of moment Lagrange multipliers

Q Rotor rotational speed

f2 Rotor rotation vector, Q~2

Subscripts and Superscripts

()aug pertaining to augmented Lagrangians

(')d discretized approximation of a continuous quantity



(H)i induced

(')h pertaining to harmonic variables

()m of the element labelled m

(.)max local maximum

(')re of the reference case

(.)req required value

(')T pertaining to thrust in the z direction

(.)u pertaining to the unconstrained optimization problem

(-) pertaining to rolling moment

(-)y pertaining to pitching moment



Chapter 1

Introduction

The power required by the main rotor of a helicopter characterizes the craft's forward

flight performance. For instance, a helicopter's maximum forward speed and its

range at cruising speed are both limited by the efficiency of the rotor. The goal

of this research is to determine methods of reducing the power required by a rotor

in forward flight. For steady, level flight, the power required by the rotor can be

subdivided into three components: profile power, parasite power, and induced power.

The relative importance of each of these components to the total power varies with

the flight speed. The profile power is the power required by the blades to overcome

the viscous (i.e., profile) drag on the blades. The parasite power accounts for the drag

on the helicopter fuselage. Reducing these two components of the total power requires

fairing the shape of the object which produced the drag, either the blade planform or

the fuselage. The third power component, the induced power, is the power required

to accelerate the airflow around the helicopter and produce thrust. As such, all lifting

systems, even those idealized to be in a non-viscous flow, necessarily require induced

power. The induced efficiency of the lifting system can be improved by tailoring the

lift distribution. For instance, it is known that an elliptical lift distribution has the

minimum induced drag for a fixed wing. The purpose of this thesis is to produce lift

distributions for helicopter rotors that require the minimum induced power, for any

given flight condition.

To produce a set of necessary conditions which characterize the optimal rotor



lift distribution, the rotor is assumed to operate in an inviscid flow. Also, the rotor

is lightly loaded. A minimization is performed on the induced power, subject to

constraints that the rotor remain in trim and that the maximum local lift on a blade

be physically realizable. This leads to necessary conditions which are solved using a

finite element model and augmented Lagrangians. The optimal rotor lift distributions

are shown to offer considerable reductions in induced power compared to typical rotor

lift distributions. For this reason, the optimal solution is used as a guide for the

design of a rotor. Forward flight performance is analyzed for several designs of a

smart rotor system, consisting of a blade augmented by trailing edge servoflaps and

controlled by multicyclic inputs. It appears that such systems could achieve some

of the characteristics of an optimal lift distribution, and, thus, offer considerable

benefits.

The next section of this chapter surveys the current body of knowledge concerning

helicopter and propeller performance improvement. Then, the general contributions

of this research are explained and an overview of the chapters that follow is given.

1.1 Prior Work

1.1.1 Helicopters

Previous research has focused on overall helicopter performance rather than just the

induced component of the total power. Nevertheless, performance research often

implicitly includes the reduction of induced power as a goal. Two broad design

philosophies characterize most previous research. The first philosophy dictates that

one should optimize standard rotor technology for performance, since the technology is

already proven. A second philosophy allows one to augment the rotor with additional

control authority, which may or may not involve hardware changes to the system.

Then, the augmented rotor system is optimized for performance enhancement.

A technique known as integrated multidisciplinary design optimization (MDO) [2]

follows the first design philosophy. MDO makes use of sophisticated, comprehensive,



rotor simulations. The computer programs must account for the coupling between

aerodynamic forces and the resulting dynamic responses. The optimization process

minimizes a cost function consisting of horsepower, vibration, and hub loads, by

adjusting design variables such as blade dimensions and shape. These parameters

are constrained by physical limitations on the natural frequencies and inertias of the

blade [7].

One example of the second philosophy is the use of multicyclic inputs to the

swashplate. Today, higher harmonic control (HHC) is widely recognized as a poten-

tial means of reducing hub vibrations [44]. However, the possibility for its use in

reducing power requirements has also been investigated. In the 1950s, Stewart [38]

and Payne [26] used blade element analysis with uniform inflow to predict the author-

ity of 2/rev and N/rev swashplate control, respectively. Stewart predicted that 2/rev

tailoring of the lift distribution would increase a helicopter's forward advance ratio by

as much as 0.1. Concerning performance, he predicted that any reduction in induced

power would be offset by increased drag forces. Using computerized aerodynamic

programs, Arcidiacono [3] predicted similar forward speed increases with 2 and 3/rev

control but also took the significant step of attempting to identify the characteristics

of the "ideal" lift distribution for reducing retreating blade stall. His proposed ideal

consisted of an azimuthally-discontinuous lift distribution with a slightly negative lift

on the advancing blade side to counter moment imbalances. This effectively required

greater lift toward the fore and aft regions of the lift distribution.

In a more recent study, Shaw et al. [36] conducted wind tunnel tests which af-

firmed the performance benefits of 2/rev swashplate control. Using two degrees of

control input, phased pitch up on the advancing and retreating blade areas, the power

required was reduced by 6% at 135 knots and 4% at 160 knots on a CH-47D rotor.

The effect of 2/rev swashplate control on performance was further demonstrated

in an analytical study conducted by Nguyen and Chopra [25]. Using comprehensive

rotor simulation codes, they minimized a quadratic cost function based on shaft torque

and pitch inputs. It was determined that two degrees of pitch input could reduce the

torque by up to 3.8% for the rotor under study. Unlike Shaw's investigation, this



study found that the best results were achieved with nose down pitch inputs in the

advancing and retreating blade regions and nose up pitch inputs in the fore and aft

regions. The lift is effectively pushed to the fore and aft regions, as in the study by

Arcidiacono.

The use of a HHC swashplate gives the system more control authority, but it

does not involve any changes to the rotor blades. In contrast, a circulation control

rotor (CCR) [43] requires the design of a wholly different rotor blade to gain greater

control authority. A CCR blade is extremely stiff; air is blown from valves lining the

trailing edge, which reduces separation and modifies the local circulation of the blade.

Tests of a CCR demonstrated that the rotor can significantly reduce profile drag [16].

However, the mechanical complexity of these systems limits their utility.

Another example of improving performance by modifying standard rotor equip-

ment is the controllable-twist rotor (CTR) [22]. In this system, blade root pitch was

controlled by a conventional swashplate, but additional pitch control was obtained

by placing a large, outboard, mechanically actuated flap near the blade tip. The

servoflap was controlled by an independent, second swashplate, and the blades were

given a low torsional rigidity to enhance twisting authority. The CTR design was

multidisciplinary; a cost function based on factors such as total power, blade bending

moments, blade angles of attack, and hub forces was minimized to determine the

rotor's physical characteristics [42]. Wind tunnel tests of such a rotor and a conven-

tional H-34 rotor suggested that the CTR could produce up to 20% more lift at some

flight conditions by delaying blade stall, with negligible effects on the total power

required [21]

Modern advances in materials such as piezoelectrics or shape memory allows have

made research into smart rotors possible. Current investigations indicate that it

should be possible to place piezoelectric-actuated, trailing-edge servoflaps on rotor

blades [8]. The piezoelectric actuator is placed entirely inside the blade and the flap

is faired, thus avoiding the drag due to a bulky, outboard flap. Also, this actuator

allows for the implementation of modern control methods in an electronic control

system. Spangler and Hall [37] demonstrated the feasibility of such a piezo servoflap



in scale-model wind tunnel tests. The piezo servoflaps could be distributed along

a blade and, when coupled to a HHC control system, could produce both radial

and azimuthal variations in the lift distribution. This would allow more accurate

tailoring of the lift distribution than pure HHC swashplate control. Rather than

serving as primary control devices, the piezo servoflaps would be used to augment the

helicopter's normal cyclic and collective controls.

1.1.2 Propellers

Prior work concerning propellers is used extensively in this thesis and is discussed in

detail in Chapter 3. Only a brief summary of significant works is mentioned here.

Unlike rotor research, propeller research has focused on investigating the in-

duced drag. Early this century, theories developed by Betz [6], Prandtl, and Gold-

stein [12] predicted the minimum induced power for a lightly loaded propeller. Later,

Munro [24] discussed extending this theory to rotors in forward flight. Other re-

searchers have attempted to extend the Betz-Prandtl theories to heavily loaded pro-

pellers [40],[31],[45],[32].

1.2 Contributions of this Thesis

The main goal of this thesis is to find an aerodynamic optimal limit for the perfor-

mance of a rotor in forward flight. The optimum is developed with as few blade

characteristics being specified as possible. In fact, the the only parameters specified

a priori are the number of blades, the root cutout size, maximum and minimum lift

coefficients, and the flight conditions. The exact nature of the blades which produce

the aerodynamic optimum is not directly sought. The final output of the optimization

is a lift distribution which varies both azimuthally and radially.

This approach to performance improvement is fundamentally different from either

a MDO philosophy or a control authority augmentation philosophy. MDO computer

programs can greatly aid practical blade design, leading to more efficient blade pro-

files. However, the programs are inherently bound by their assumptions on existing,



available technology, rather than being bound by the fundamental fluid mechanics of

the problem alone. Thus, a given set of design variables may lead to a conclusion

about performance limitations which could be changed if different blade parameters

where chosen as variables. Also, given the large number of blade parameters and

the complexity of aerodynamic phenomena, it can be difficult to determine the fac-

tors which most strongly influence the induced power. A similar handicap limits the

conclusions that can be drawn from research into rotor systems with additional con-

trol authority. Available performance improvement is again dictated by the choice of

specific hardware. The potential benefits of any such system are further limited by

the particular electro-mechanical and control system design used for the experimental

setup.

The advantages of the approach presented here are twofold. First, eliminating

the specification of blade aerodynamics allows the investigation to concentrate on the

fluid mechanics of the problem. This provides more insight into physical limitations

on helicopter performance, rather than technological limitations. Second, finding an

aerodynamic optimum is a considerably simpler problem to solve than a complete

MDO, since the design variables do not include blade parameters.

The utility of the optimal rotor solution is clear. The solution can be used to

aid rotor design, because it prescribes what the lift distribution across the blade

should be at any azimuthal position. Blade designs and rotor technology can then be

selected based on their ability to achieve the optimal lift conditions. Of course, it is

doubtful that any real rotor system could exactly achieve the optimal lift distribution.

However, given that the solution is an optimum, an off-design lift distribution should

still provide significant benefits.

1.3 Overview

The thesis is organized as follows: Chapter 2 provides an overview of helicopter

performance analysis methods. Also presented is a performance metric which may be

used to compare lift distributions.



Chapter 3 contains the theory underlying the aerodynamic optimum. The theory

is an extension of the optimal condition for wings and propellers, which are presented

in detail. The optimal conditions for a rotor are then derived based on energy princi-

ples and the assumption of light loading. Because of aerodynamic limitations, these

conditions are shown to be inadequate for generating physically realizable lift dis-

tributions. Therefore, restrictions are placed on the maximum local lift that can be

generated by a blade.

Chapter 4 describes the computer program, CORC, that was developed to cal-

culate the optimal conditions for a rotor. The program contains an augmented La-

grangian optimization routine wrapped around a finite element solver. Also presented

are some measures of computational cost.

Chapter 5 presents the results of several representative optimizations. The CORC

routine is first validated by examining an axial flight case. Then, forward flight, op-

timal, lift distributions are compared to the lift distribution of a typical helicopter.

The induced power is computed for each distribution, allowing quantitative compar-

isons. The effects of changing the number of blades and varying the maximum local

lift coefficient are investigated.

Chapter 6 offers a preliminary analysis of how a rotor could achieve the optimal

rotor conditions. Specifically, the use of a rotor augmented by faired servoflaps is

investigated.

Chapter 7 presents the conclusions of this thesis and recommendations for future

work.
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Chapter 2

Standard Analysis Methods

Determining the induced power losses in a helicopter is not experimentally possible,

because the induced power component cannot be separated from the other com-

ponents that form the total rotor shaft power. Thus, several methods have been

developed to estimate the induced power. For a given thrust, lift distributions which

require less power are more efficient. The analysis tools presented here will allow this

efficiency to be quantified.

Induced power losses are fundamentally a result of downwash at the rotor disk. At

each blade section the downwash changes the local effective angle of attack, causing

a portion of the force generated by the blade to be directed perpendicularly to the

desired direction of lift. The perpendicular portion of the force is induced drag, and

it causes induced power losses.

Before further discussing the calculation of the induced power, a section of this

chapter is devoted to helicopter terminology. Then, three methods for analyzing a

rotor's induced power are presented in order of increasing complexity. They are:

momentum analysis, spanwise loading analysis, and near wake analysis. The last

method, near wake analysis, generally relies on a downwash model from a vortex

lattice code. This is the subject of the last section in the chapter. It will be shown

that none of the standard methods for analyzing the induced power can be extended

to yield an optimal rotor lift distribution.



2.1 Terminology

Standard helicopter vocabulary and symbology often do not correspond to the anal-

ogous terms usually associated with fixed wing aircraft. Also, most terms such as

velocity are normalized and nondimensionalized, so they deserve attention. The im-

portant variables to define are a rotor's orientation, geometry, and motion.

A Cartesian coordinate system is attached to the center of the rotor hub, i.e., the

rotor's axis. The z coordinate axis points upward. The x and y axes lie in the plane

of the rotor, with x pointing rearward and y to the right.

Blade azimuthal positions, as viewed from above, are measured by angular posi-

tion, 0, from the x axis; b = 00 points rearward and ?k = 900 points to the right, etc.

American, single-rotor helicopters generally have rotors turning counter-clockwise,

with angular velocity denoted Q. The region from 4k = 00 to ik = 1800 is called the

advancing side, while 0 = 1800 to ?k = 3600 is called the retreating side. The rotor

position can also be described in terms of quadrants. The first quadrant denotes the

blade positions between 46 = 00 and k = 900; the second denotes blade positions from

'k = 900 and 4 = 1800, etc.

The blade's radius is R. Radial position along a blade, r, can be normalized as

= r/R. Thus, f varies from f = 0 at the hub to f = 1 at the blade tip and f > 1 for

points beyond the rotor blades. The solidity, o, is the ratio of total blade area (for

all blades) to the area of the unit disk, A = rR2

The velocity of the rotor (i.e., the helicopter) is measured from the frame of a

viewer sitting at the rotor hub, or, equivalently, in the helicopter cabin. In steady,

level, forward flight, the velocity has a rearward component, V. It also has a down-

ward component, V, because the flow passing through the rotor is pushed downwards

and because the rotor disk is tilted forward to produce thrust that will overcome the

drag. These velocities can be nondimensionalized by the rotor tip speed. The forward

advance ratio is defined as i = V/OR, and the vertical advance ratio is defined as

A = -V /R. Note that these velocities refer to the motion of the helicopter, and not

to the local velocities seen by a blade section, which will be examined in Section 2.4.



2.2 Momentum Analysis

The simplest method for determining the induced power is momentum theory. Its

simplicity comes from the assumption that the induced flow at the rotor disk has a

uniform profile. In determining the rotor's thrust and power, no attempt is made

to determine details of the lift distribution, making this analysis unsuitable for opti-

mization purposes.

Momentum theory predicts that far upstream from the rotor, the velocity is purely

horizontal. By the time it reaches the rotor disk, the flow has attained a downward

velocity component of w. A jump in pressure at the rotor disk delivers an impulse in

the z direction to the flow. Far downstream from the rotor, the total pressure is as-

sumed to return to its original upstream value. Bernoulli's theorem and conservation

of mass show that this accelerates the fluid to an eventual downstream speed of 2w.

The thrust is equal to the rate of increase of the momentum in the fluid, so

T = 2mw , (2.1)

where w is the induced velocity at the rotor disk, and ti is the mass flow rate. The

induced power is equal to the force acting on the fluid times the velocity of the fluid,

so that

Pi = Tw. (2.2)

Alternatively, for a disk in edgewise flight,

Pi = DiV , (2.3)

where Di is the induced drag, and V. is the helicopter's forward flight speed. A

convenient expression for the mass flow rate, originally proposed by Glauert [9] is

S = pA V + w 2 , (2.4)

in which p is the air density and A is the disk area. The flow that would produce this



mass flux is fictitious. The expression's utility comes from the fact that it reduces

to more familiar forms at either end of the flight spectrum. At hover, the expression

agrees with the momentum theory prediction for the mass flux through a propeller.

Meanwhile, at typical helicopter forward flight speeds, V, is much greater than w so

the downwash term can be neglected. Then, the expression for the induced power can

be reduced to the formula for the induced power of a minimum induced loss, fixed

wing aircraft. At intermediate speeds, the formula has been shown to give acceptable

results [35, Chapter 5].

Examining the high speed limit, Equations (2.1)-(2.4) can be combined to elimi-

nate the induced velocity, so that

T2
Pi = (2.5)

2pAV

Furthermore, the induced power can be nondimensionalized, so that

Cp 1Cp = 1 (2.6)
CT2  2y

where Cp = PI/(pA(QR)3 ) is the coefficient of power, and CT = T/(pA(OR)2 ) is

the coefficient of thrust. Because Equation (2.6) represents the high speed limiting

case, it cannot be applied when y approaches zero. Also, the equation underpredicts

the power required for a given level of thrust, but for speeds above L = 0.1, it gives

reasonable estimates [15, Section 4-1].

Determining how much a rotor exceeds the value predicted by Equation (2.6) is

beyond the capability of momentum theory. However, an induced loss factor, r., can

defined for this high speed limit, so that

Cp 1P= -1 (2.7)
CT 2  21

For all real rotors, the loss factor must be greater than unity. Estimates for Ia can be

made by using a spanwise loading analysis or by making an exact calculation of the

induced power.



2.3 Spanwise Loading Analysis

To estimate a rotor's induced loss factor, a more refined analysis can be made by

examining the spanwise loading distribution. This is the method in which the induced

drag for wings of arbitrary planform are compared to an elliptical planform wing. For

a fixed wings, the spanwise elliptical loading represents the distribution of minimum

induced loss [18, Section 6.6].

Integrating the lift distribution across the disk, in the flight path direction, yields

the lift as a function of span location, 1 = l(y), as shown in Figure 2-1. The distribu-

tion reaches a higher peak on the advancing blade side because of the higher dynamic

pressure in that region. To counteract the rolling moment caused by the peak on the

advancing side, the blade tips must carry a relatively heavy load on the retreating

side.

The typical span loading distribution in Figure 2-1 can be compared to an elliptical

lift distribution [11] by transforming it using

0 - cos-'(yR), (2.8)

for a blade of radius R. This changes the spanwise loading distribution from 1(y) to

1(8). In particular, the elliptical distribution is converted to a half sine wave,

1,1(0) = al sin 0 . (2.9)

An arbitrary distribution has the series expansion

00

1(E) = an sin nO. (2.10)
n=l

where a, are the Fourier coefficients. The first coefficient, al, is proportional to the

lift, and the second coefficient, a2, is proportional to the rolling moment. For the

elliptical planform, the total wing drag coefficient is proportional to the square of the
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Figure 2-1: Spanwise loading of a typical rotor compared to an elliptical dis-
tribution. Flight conditions: CT/O" = 0.08; t = 0.25; and rotor
disk tilt angle, ar = -120. The loss factor, r, in this case is

equal to 1.30. Adapted from Prouty [30].

total wing lift coefficient,

(CDi)el = cL, (2.11)
7rA'

where AR is the wing's aspect ratio. The drag of the arbitrary distribution in Equa-

tion (2.10) can also be computed. It can be shown that orthogonality of the trigono-

metric functions causes the wing drag coefficient to be proportional to the sum of the

squares of the fourier coefficients, nA2. Then, the ratio of the drag of an arbitrary

loading to the ideal drag is
na2

E 2 (2.12)
n=1 a 1

Recalling Equation (2.3) from momentum theory, Prouty [30] recognized that this



ratio is an estimate for the high speed, induced loss factor, e, in Equation (2.7). It

should be noted that , is often written in terms of its reciprocal, e = 1/n, the Oswald

span loading efficiency.

Span loading analysis yields only an approximation for K, because the integration

operation does not account for the fore-aft position of variations in the flow. The

point by point effects of downwash and lift on the power are ignored, so this analysis

still neglects swirl losses and shed vorticity in the wake. Since the analysis only

provides information on the optimal spanwise variation in lift, it cannot be used to

optimize the full lift distribution over the rotor disk.

2.4 Near Wake Analysis

Analysis of a rotor's induced power requirements is most accurate if variations in the

flow are taken into account. Momentum theory assumes that the flow is uniform,

and spanwise loading only accounts for side to side variations. To fully capture the

detail in the lift and wash distributions, the forces and wash at every location on the

blades, at all azimuthal positions, must be examined, since these are the locations of

the physical origin of induced power losses. This form of analysis is generally termed

blade element analysis. However, the emphasis here is on the flowfield and the power

calculation rather than on the blades and lift calculations, therefore, no blade flapping

dynamics are included. Near wake analysis takes its name from the fact that the flow

is sought at the rotor disk, in contrast to the far wake analysis, to be presented in

Chapter 3, which examines the flow far away from the rotor.

For steady forward flight, the velocity at a blade section is derived from geometry.

The velocity component in the plane of the rotor disk, in the tangent direction, is

UT = V sin i + Or = IpR sin I + r , (2.13)

and the radial component is

UR = V, cos 0 = igR cos 1b. (2.14)



Lastly, the component perpendicular to the plane of the blades is

Up = V, = -AR . (2.15)

In vector form, the velocity at the blade can be written as

S= -UT + UR + Up (2.16)

= [(R + r sin 4) - (r cos ) - ARk] f . (2.17)

Aerodynamic forces on a blade are calculated from the bound circulation, using

the Kutta-Joukowski Theorem. The instantaneous force per unit span at a particular

blade location is

p U(r, ?) x r(r, ) 9,

for air density p and bound circulation r(r, ?). To calculate the average force on the

blade, the force per unit span is integrated along the blade; this quantity is then time

averaged over each azimuthal position. Multiplying by the number of blades yields

the total force on the rotor,

F = B pUxr dr do (2.18)

= H-Z+Y+Tk.

Normally, the largest component of this force is the thrust,

2rT pr UT dr d

2 -- pr (pAR sin + fr) dr d . (2.19)

The other components, the net aft force and net side force, are

H = pr Up sin dr d
2B 2fo IRfoB prf ArXR sin O dr dO (2.20)
2-7 o



and

Y = pr Up cos dr d

= pj r IR coso dr do. (2.21)

Similarly, the net moment on the helicopter due to aerodynamic forces is

M = pr (Ux Fi) dr do (2.22)

= M 0 +M~0+Q.

The rolling and pitching components are seen to be

M = prRUTR r sin dr d

= B J 2~ JR Pr(P R sin 4 + Qr)r sin 0 dr do (2.23)

and

MY = 2r pfUT r cos 0 dr do2 7r Jo Rf
= B fj " JR pr(ptR sin 4 + fr)r cos 4 dr do . (2.24)

The last component, the rotor shaft torque, is

S= B 2 prUp r dr d

rB prARr dr d . (2.25)

Power calculations in near wake theory follow the methodology used for the cal-

culation of the forces and moments. The incremental induced power required at each

blade location can be computed as the product of the incremental lift with the in-

duced wash at that location. Time averaging, using the formula for the lift per unit



span, and accounting for the number of blades yields

Pi= - I pw -(UX I) drdv. (2.26)

Unlike the spanwise loading calculation, this power calculation is not an approxima-

tion. It evaluates the particular quantities which physically cause the induced power:

lift and downwash. The calculation fully accounts for their variation with respect to

one another and their variation with position. In doing so, all complex phenomena,

such as tip losses and shed vorticity, have inherently been taken into account.

Equation (2.26) can be used at all operating conditions, from hover to high speed

flight. At the high speed limit, the equation can be used to calculate a coefficient of

power and thus the induced loss factor of Equation (2.7). Of course, for accuracy, the

calculation requires detailed knowledge of both the circulation and the wash distribu-

tions. In practice, if a circulation history is known, then a wash distribution can be

predicted using a vortex lattice method or other similar computational techniques.

In an experimental setting, the lift and, hence, the circulation, can be obtained with

pressure sensors mounted on the blades. The induced velocity or the wake geome-

try can be measured using smoke trails, laser velicometry, or other flow visualization

techniques.

2.5 Vortex Lattice Analysis

To calculate the induced power using Equation (2.26), the downwash at the rotor disk

must be known. Unlike the assumption made in momentum theory, a real downwash

distribution varies significantly over the rotor disk, with large velocities occurring at

the rotor tips. The downwash has its origin in the wake of the rotor. As a rotor

blades travels, it deposits a continuous sheet of vorticity, the wake sheet, which is a

distribution of infinitesimal strength horseshoe vortices. The vortex sheet induces a

flow at nearby points and, in particular, at the rotor disk.

In the absence of experimental data on rotor flowfields, computational routines



have been developed to calculate the flow from an assumed circulation history. The

most common of these methods is the vortex lattice type, which models the rotor wake

as a discrete mesh of vortex filaments. The vortex lines emanate from the blades, in

both the perpendicular and radial directions, and convect down, away from the rotor

disk. Each vortex filament induces a flow around it, and the total induced velocity at

the rotor disk, summed from all of the filaments, is the desired downwash. According

to the Biot-Savart law [18, page 48], an infinitesimal vortex segment, with strength

r, oriented along ds induces a velocity field

dsxP
dv = r , (2.27)

where P is a position vector from the vortex segment to the point where the increment

in velocity, dv, is evaluated.

In general, then, the induced velocity will be a function of the entire circulation

history, which could be time varying. However, in steady flight, the circulation can

be assumed to be periodic in time. Then, using a wake which is discretized into N

horseshoe vortices, the downwash calculated at N control points on the rotor disk is

a linear function of the circulation over the rotor disk

w = WF, (2.28)

where w, and r are N x 1 vectors, and W is an N x N matrix of influence coefficients

calculated from the Biot-Savart law.

The accuracy of the method depends on the geometry chosen to represent the

wake. The first successful vortex lattice analyses used a rigid wake, in which the

vortex segments were fixed in space and their location specified, using momentum

theory, prior to the velocity calculations [28]. Since then, more sophisticated analyses

have been developed using a free wake, in which the filaments convect due to the

induced velocity field in addition to the momentum contribution [5].

Furthermore, a fundamental problem arises because the wake has been approxi-

mated as a discrete set of finite strength vortex lines. The wake most closely repre-



Figure 2-2: The encounter problem. The solid lines are the mesh of vortex
segments most recently emitted by the blade. The dotted lines
are vortex filaments left by the previous blade passage. Each
control point is represented by an asterisk (*). The control point
labelled P is close to a vortex line from the previous wake.

sents a continuous sheet of distributed vorticity, which induces a continuous velocity

field. However, according to the Biot-Savart law, the induced velocity due to a finite

strength filament varies with the inverse square of the distance from the filament

center. Thus the velocity tends toward infinity when one calculates the velocity near

a segment. In reality, downwash velocities are approximately one order of magnitude

smaller than the rotor's forward speed. Though strong vortices are emitted from the

blade tips, high induced velocities are prevented by the viscosity in the fluid. To

combat the numerical difficulty of using finite strength vortices, vortex cores have

been used to simulate viscous effects and keep the induced velocities finite [15, pages

536-543]. Unfortunately, very little is known about how large actual vortex core sizes

should be, and the choice of the core size can significantly affect results.

The issue manifests itself most clearly in the encounter problem. The velocity field



is only calculated at a discrete set of arbitrarily chosen control points. Due to the

geometry of the wake, some of the control points may lie close to a vortex filament, as

in Figure 2-2. In this case, the induced velocity calculated at point P could be higher

than is physically realizable. Even if a core radius is present, the induced velocity is

still strongly dependent on distance to a vortex segment. Thus, while the velocity

field should be smooth and continuous (except across a vortex sheet), it can may

appear to vary in both magnitude and direction between closely spaced or adjacent

control points. Fortunately, occurrences of the encounter problem are random, and

not many points should be affected, so its effects on a power calculation are usually

slight.

In theory, after selecting a wake geometry and using a vortex lattice code to

calculate the influence coefficient matrix, W, Equation (2.26) could be used to find the

circulation distribution which required the minimum power. However, if the encounter

problem introduced noise to the velocity calculations, then this would strongly affect

the optimization. The optimization would adjust the circulation distribution to make

use of the anomalous entries in the W matrix. This would be enough to make the

influence coefficient matrix unsuitable for optimization purposes. Therefore, near

wake analysis cannot be used to find a minimum induced loss lift distribution for a

rotor.
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Chapter 3

Far Wake Theory and Minimum

Induced Loss Conditions

Minimum induced loss (m.i.l.) lift distributions are already known for fixed wings

and propellers. The m.i.l. conditions for a rotor will be derived in this chapter. It

will be shown that a set of common, fundamental principles, here referred to as far

wake theory, govern the optimal solutions for all three systems: wings, propellers, and

rotors.

Far wake theory hinges on the recognition that the thrust at the lifting system

(e.g., at the rotor disk) is proportional to the momentum in the wake. Also, the

induced power of the system is equal to the rate at which energy is added to the flow

in the far wake. These principles can only be applied to inviscid, irrotational flow,

and they make use of the Kutta-Joukowski theorem, which relates bound circulation

to the force on a lifting line.

In the next section, the m.i.l. solutions for a wing and a propeller will be discussed

in light of far wake theory. Then, in Section 3.2, far wake theory will be used to find

the necessary conditions for the optimal rotor. However, far wake theory does not

examine the aerodynamic characteristics of the object which created the wake, so it

will not necessarily limit the solution to one which is physically realizable. Thus,

the m.i.1. rotor problem must be extended to include constraints on the maximum

allowable local lift at any point on a blade. This is done in the last part of this



chapter.

3.1 Optimized Induced Drag - Classical Cases

The first system for which far wake theory can be used to derive a minimum induced

loss condition is the finite-span, fixed wing. Prandtl examined this system in the early

part of the Twentieth Century and derived the famous elliptical lift distribution. The

wake was modeled as an infinite number of infinitesimal strength horseshoe vortices

distributed along the span of the wing. The vortices induced a downwash at the wing.

This reduced the effective angle of attack, tilted the net aerodynamic force backwards

slightly, and, thus, created induced drag. Using a spanwise loading analysis (see

Section 2.3), Prandtl found an induced drag coefficient for a wing with an arbitrary

circulation distribution. From this, he could show that the distribution for minimum

induced losses is elliptical [18].

The elliptical wing solution can also be generated using far wake arguments. The

lifting system is projected onto a conceptual plane, the Trefftz plane, which is perpen-

dicular to the direction of flight [29, Section 27]. The problem is thereby converted

to a question of finding the two-dimensional velocity potential which causes the min-

imum induced drag. Integral equations for the lift and drag can be derived in terms

of the velocity potential in the far wake. Munk [23] minimizes the drag with re-

spect to variations in the velocity potential. If the planar wake of the lifting line is

regarded as a rigid body then this analysis leads to a significant geometric interpreta-

tion. The m.i.l. flow is identical to the flow due to a horizontal, two-dimensional flat

plate moving downward with constant velocity in an incompressible, inviscid fluid, as

viewed by an observer who is stationary with respect to fluid far from the plate. The

perpendicular component of the flow at the wake sheet is constant.

Shortly afterwards, in 1919, Betz [6] described the necessary conditions to achieve

the minimum induced power loss, at a given thrust and advance ratio, for a lightly

loaded propeller. Betz's original analysis dealt with the limit of an infinite number

of blades, but Prandtl, working with Betz, added an approximate correction factor



to handle a finite number of blades [29]. This introduced tip effects to the optimality

condition, ensuring that the lift and circulation fell to zero at the blade tips. Later, in

1929, Goldstein developed an exact solution for the problem by using infinite series

to solve the elliptic partial differential equations that govern the flow between the

vortex sheets of two adjacent blades [12]. Glauert summarized most of this work in

a book edited by Durand [10].

The assumption of light loading means that the wake neither contracts nor distorts

as it moves away from the propeller. The wake sheet surface has the shape of a

constant pitch screw, in which the screw helix angle, 0, is larger at the axis than at

the outer radii (see Figure 3-1). Thus, the locus of points traced out by any point on

the blade is an undistorted helix. Also, because of the light loading assumption, the

wake sheet surface is periodic.

To develop the optimal solution, Betz examined the wake far downstream from

the lifting system, as Munk had done with the fixed wing. Betz derived integral

equations for the thrust and power in the far wake. Minimizing the power with

respect to variations in the circulation yielded the condition that the flow had to be

locally perpendicular to the wake surface. Using this flow, the optimal circulation at

any radius was found by integrating the velocity around a circular path enclosing the

propeller axis.

Betz referred to the m.i.l. propeller flow as the "rigid-wake condition," and gave

it a geometric interpretation similar to that of the optimal wing: The wake sheet

is conceptualized to be an impermeable, rigid body. Then, the optimal flow can be

generated by the slow, axial translation of this rigid screw surface.

It should be noted that the term, "rigid-wake condition," can be misleading.

Modern interpretations of the condition stress that, in order for the flow to move

locally perpendicular to the surface, the fluid must move both axially and in the

swirl direction. However, the flow does not undergo a rigid body rotation nor a rigid

body translation. Figure 3-1, adapted from Larrabee [20], illustrates this. The wake

appears to undergo a rigid body translation, with an apparent velocity v', but, in

reality, the wake section moves at v' cos q.
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Figure 3-1: Flow in the wake of an optimal propeller. The helix angle, 4,
changes with radius. From Larrabee and French [20].

As a practical matter, the applicability of these theories may seem limited by the

assumption of light loading. However, experiments on hovering rotors (which are not

lightly loaded) have indicated that the theories are robust [19]. In these experiments,

a two bladed rotor, operating at blade loadings (CT/ra) from approximately 0.04 to

0.11, was shown to have power requirements which closely matched those predicted by

Goldstein's theory. Further evidence of the validity of the optimality conditions is seen

in the fact that these methods represented state of the art in propeller design for years.

Also, the theory has directed the design of optimal horizontal axis windmills [20].

3.2 Application to a Lightly Loaded Rotor

The most important concept used in the previous section was the idea of examining

the lifting system in the far wake, rather than at the lifting surface. This concept

will also be applied to rotorcraft. Although the far wake of a rotor is considerably

more complex than that of a wing or a propeller, geometric considerations such as

periodicity will allow the problem to be simplified. In addition, expressions for energy

and forces in the wake will be derived which are equivalent to the kinetics derived for

the near wake.



3.2.1 Geometry of the Far Wake

Analysis of the flow in the far wake is considerably simpler than analysis of the flow

in the near wake. One reason is that the flow in the far wake is not complicated

by interactions with the blade. Flow in the near wake is affected by the boundary

layer at the blade and separation effects. These effects have dissipated by the time

the flow reaches the far wake. Furthermore, typical rotor blade tip speeds are usually

transonic, so a near wake analysis may have to account for compressibility in the flow.

Fortunately, the induced velocities found in the far wake are approximately one order

of magnitude smaller, so the flow can be assumed to be inviscid and irrotational. Of

course, inviscid potential flows can be described by an elliptic field equation, i.e.,

Laplace's equation, which makes this a familiar problem.

Other simplifications to the problem come from the geometry of the far wake

structure and the flight conditions of the rotor. This analysis is limited to lightly

loaded rotors, which, as in propeller analysis, means that contraction and distortion

in the wake can be neglected. This yields the same wake geometry as the rigid wake

in a vortex lattice analysis. The wake sheets for a lightly loaded, two bladed rotor

are shown in Figure 3-2. In this document, the term, "wake sheets," will refer to the

two-dimensional, curved surface that contacted the blades. Also, the term, "wake

tube," refers to the volume of space containing the wake sheets and the space in

between them, bounded by the radius of the blades. Finally, the term, "wake," is

reserved for all of the volume of air that was affected by the passing of the rotor.

This volume extends beyond the radius of the rotor. As shown in the figure, the wake

sheets (and, hence, the entire wake) are periodic in the +" direction. The shape of the

wake sheets is a well-defined skewed helix and the wake tube is a well-defined skewed

circular cylinder.

Note that objects in a potential flow affect the velocity field asymptotically out to

infinity, so this implies that the wake includes all of the air behind and in front the

rotor. Fortunately, the entire wake need not be examined. Given that the far wake

is periodic, the induced velocity field and velocity potential must also be periodic.

To evaluate performance of the rotor then, only one period of the wake needs to be
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Figure 3-2: The wake sheets left by a two bladed, lightly loaded rotor. Note
that the sheets are periodic.

considered. Furthermore, since the helicopter was assumed to be in steady flight, each

individual blade experiences the same conditions at each azimuthal station. Thus,

only a volume demarcated by two consecutive blade wake sheets for a single period

is examined.

The reduced control volume, V, for the two bladed rotor is shown in Figure 3-3.

The control volume is bounded by a surface, S. As shown in the figure, the surface

S can be subdivided into an upper bounding surface, Su; a lower bounding surface,

Si; two vertical planes, S2, and So; and an outer annular band, S.. The surfaces

S, and S1 are skewed helices and contain the wake sheets, one of which is labelled

W. The location of S2, and So have been arbitrarily chosen to lie in the planes

where the blade azimuth angle is 27r and 0, respectively. The surface S actually

lies at a radius of infinity, where all effects of the rotor have asymptotically died out.

Periodicity requires that the velocity potential at S2, matches that at So, and that

the velocity potential of any point on S1 outside of the wake sheet is the same as that

of the corresponding point on Su, lying in the '" direction.

A further description could be useful. The volume V has the shape of a split

washer, except that the washer is not skewed and has a hole in the middle. If multiple

copies of V are stacked on top of each other, then a wake tube (for an infinite radius

rotor) is formed.



Figure 3-3: The control volume, V. The control volume is enclosed by the
surface S, which is composed of the upper and lower surfaces, Su
and S1, the vertical planes So and S2,, and the outer bounding
surface S,. The outer surface conceptually lies at an infinite
radius. The surfaces So and Si are hidden from view.

Having discussed the structure of the wake, boundary conditions for the velocity

potential can now be formally stated. First, recall that the velocity potential is defined

in terms of the velocity,

V4 = . (3.1)

To arrive at the first boundary condition, it is recognized that air which is infinitely

far from the rotor is unaffected by its presence. Thus, that air is still and

= constant, on S,,.

For convenience, since the constant is arbitrary, it will be assumed to equal zero.

Thus,

= 0 ,on S... (3.2)

Secondly, as was mentioned earlier, certain boundaries of V which were introduced



to simplify the problem are artificial and denote areas where the solution repeats. This

is true of any radial, vertical plane, so that

O= (3.3)

This notation is meant to indicate the velocity potential at every individual point on

So is equal to the velocity potential at a particular, associated point on S2,. The

wake is periodic in the + direction, so the point on S2, associated with a point on

So is found by moving in the direction, for a distance equal to the inter wake

sheet spacing, 2irRV p2 + i 2. This relationship applies to every point in the wake,

not just those on the borders of V. For instance, a point lying in between Su and S1

is associated with a point in the "? direction. However, that point is not in V; it is in

the volume demaracted by the succeeding blade wake sheet and S,u.

Lastly, to satisfy the conditions of irrotational and inviscid flow (as encompassed

by Laplace's equation), the velocity potential must be continuous everywhere except

at a singularity. The wake sheet, W, is composed of distributed vortex filaments and

is thus a singular surface. On W, the velocity perpendicular to the sheet is continuous,

but the velocity tangent to the sheet is not. It can be shown that this jump in the

velocity potential at any point on the wake is equal to the bound circulation of that

point in the wake [17, Section 2.7], [11, Chapter 5], so that

0 IS - o16 = -r . (3.4)

As in Equation(3.3), this notation indicates that 4 should be evaluated at a point on

S, and a particular associated point on S1.

For points on S, and S1 that are not part of the wake, the distinction between S,

and S1 is artificial and

l= , for (z,y,z)E S (3.5)
1(s, yz) ES, .



The preceding four boundary conditions are referred to as essential boundary con-

ditions, and any valid solution for this domain must fulfill these conditions. The

essential boundary conditions are independent of any trim conditions or other physi-

cal requirements of the rotor.

3.2.2 Energy and Momentum in the Far Wake

Energy and momentum in the far wake are due to the passage of the rotor. The

thrust at the rotor blades imparts momentum to the flow, which persists in the far

wake. The rate of energy change in the far wake is equal to the power production

at the rotor blades, i.e., the induced power. In this section, expressions, in integral

form, are derived for the forces, moments, and induced power. Although the integrals

are taken over V and not the whole wake, periodicity implies that multiplying the

integrals by the number of blades, B, will yield the total quantity for the whole rotor.

The total linear momentum in the control volume is

= jpvdV

f p V dV. (3.6)

The divergence theorem [14, page 60] can be written in terms of the gradient of a

scalar function (rather than the divergence of a vector function) as

fVqdV = f dA , (3.7)

where n^ is the outward pointing normal on S. Applying this to the momentum

integral yields

= Lp dA. (3.8)

This integral can be subdivided using the constitutive parts of S, so that

L,= LJ+L +L+ L, (3.9)



Then, by applying the essential boundary conditions (equations (3.2)-(3.5)) and real-

izing that A points in opposite directions on opposing faces of a surface, it is seen that

the integrals over So and S2, sum to zero. Also, the integral over S, is identically

zero. For the integrals over S, and Si, only the portions over W will remain, leaving

S= ponA + pb n dA

= J pAOn^dA

- Jpr n dA. (3.10)

This reduction of a surface integral over S to a smaller surface integral over W will

be used repeatedly in this chapter.

The average force exerted on the flow is equal to the momentum, , divided be

the time over which the impulse was applied, i.e., one period of the blade rotation,

27r/f. The average force on the rotor is equal and opposite to this, so

BfO BfO
F I= = pr fdA. (3.11)

27r 27r w

The net moment on the rotor is

M = 1B f r r  dA. (3.12)

The kinetic energy of the flow in V is

KE = p Ivl2 dV

= p IV ' dV. (3.13)

For any function q, it can be shown that

IV012 = v . vO = v . ( v) - v 20. (3.14)

In this case V 2 0 = 0, since incompressible potential flows satisfy Laplace's equation.



Therefore, applying equation (3.14) to equation (3.13) yields

KE = j p pV (V) dV

= p V . ^ dA (by the divergence theorem)

= r v -n dA. (3.15)

Finally, the time averaged induced power is simply the kinetic energy divided by

the period, so

Pi - pr -A dA. (3.16)

In forward flight, this quantity is positive, because the induced velocity, v, points into

the control volume over most of the top sheet, W, so v - ii is usually negative.

Equations (3.11), (3.12), and (3.16) can be compared to their near wake counter-

parts, equations (2.18), (2.18), and (2.26). Although the equations may look dissim-

ilar, each of the equations does yield the same result as its counterpart. The relation

between the equations can be seen by realizing that the normal to the wake sheet

will point in a direction perpendicular to both the velocity at the blade and the blade

axis, i.e., (Ux ') is perpendicular to the sheet. Also, it can be shown that

f1A dA = Ux drdb . (3.17)

It should be noted that the double integral used in the near wake equations is a single

spatial integral inside a single time averaging integral. This differs from the surface

integral used in the far wake calculations.

In addition, the power calculations also seem to differ by a factor of 1. This

is because the net induced velocity flux in the far wake is twice that found in the

near wake. This can be deduced for a rotor based on momentum arguments and

it is analogous to the fact that the downwash in the Trefftz plane of a fixed wing

is twice that at the wing and that the induced velocity in the far wake of a Betz-

Prandtl/Goldstein propeller is twice that at the propeller. In those cases, v(r,' ) =

2w(r, 7k). It is not, however, the case for a rotor that at any given position (r, ?k) in



the far wake, the velocity is twice that of the corresponding location at the blades

because of the loss of symmetry in the wake geometry.

Unlike the velocity field, the lift distribution in the far wake is exactly the same

as that in the near field. Helmholtz's vorticity theorems ensure that the circulation

in the far wake is equal to that left by the blade at the instant the blade passed by

that point. Thus, knowledge of 0 reveals the circulation at the rotor disk and, hence,

the lift distribution at the rotor disk.

3.3 Far Wake Power Optimization

In this section, the necessary conditions for a rotor to achieve the minimum induced

power loss are derived. The derivation relies on the assumption of light loading and

the near wake analysis developed in Section 3.2.2. The optimization procedure is

based on Munro's [24] analysis, which used variational principles. Expressions for the

induced power, forces, and moments (which are functions of the velocity potential)

are combined to form a cost functional that is minimized with respect to variations

in the potential.

First, the optimization is performed for the case where there are no constraints on

the maximum allowable local lift on a blade. This is referred to as the unconstrained

optimal solution. Then, in Section 3.3.2, the optimization is repeated for the case

when physical limits are placed on the local lift achieved by a blade. This solution is

called the constrained optimal solution.

3.3.1 Unconstrained Optimization

The question that is to be examined is: For a given set of flight conditions, what

is the lift distribution which will require the minimum induced power? Specifying

the flight conditions requires picking a desired forward speed, thrust, rolling moment,

and pitching moment. The flight conditions must be steady state or the far wake

periodicity conditions would not be true. In level, forward flight, the required level

of thrust is equal to the helicopter's weight. The helicopter also has no net pitching



and rolling moments. These conditions are enforced as constraints on the power min-

imization. The forward speed directly determines the shape of the wake. Therefore,

it is implicitly enforced and does not require a constraint function. A cost function

which contains the induced power and also the explicit constraints is

Hu = Pi + VT(T - Treq) + wL(Mx - M req) + wy(My - My req) (3.18)

Here, VT, wx, and wy are Lagrange multipliers. Also, (')des, denotes the valued re-

quired to keep the rotor in trim, and (.)u indicates that the maximum local lift is

unconstrained. The multipliers may be written in vector form as

v = VTk (3.19)

and

w = wQ + wy3, (3.20)

so that

II" = Pi + v - (F - F req)+ W (M - M r). (3.21)

Using Equations (3.16), (3.11), and (3.12), this can be written in terms of q and F as

S= |Vp dV + B Jpf Pr(i - + w - (rx n)) dA
2r 2 27 w

- VTT req - wxM req - WyMy req. (3.22)

Taking the variation of H" with respect to r, , VT, w, and wy yields

SIU= BQ p V - 6 (VO) dV2 v
+ B p(v - ^ + w -(r x ))Sr dA

+ (T - Treq)SVT + (M 2 - Mxreq)'w + (My - My req) . (3.23)

The first term on the right hand side of Equation (3.23) is the first variation of



the induced power. For small variations in q, this becomes

BflSP 1= p V -V (86) dv. (3.24)

Evaluating this term requires an integration by parts. The integration by parts for-

mula is (see [14])

fu-VvdV= vu.ndA- V.uvdV. (3.25)

In Equation (3.25), if V replaces u, then V.u = V 2 . Also, letting 6 replace v

leads to

sp2= pV V .-S dA - .p(V20)odV. (3.26)
2-r 27

As was done in Section 3.2.2, the essential boundary conditions can be applied to

simplify the integral over S. Note that the integral over S, is zero, because 68 = 0

there since 0 is specified on that surface (see Equation (3.2)). Like before, the integrals

over the remainder of S reduce to an integral over W alone, and

JIM BBf
61= pV. - SdA- - Ip(V 2q0)6sdV. (3.27)
27 27r

It is worthwhile to examine this equation before returning to the minimization of II".

Equation 3.27 alone could be used to minimize the induced power if trim conditions

did not have to be enforced. The induced power can be minimized by making it

stationary with respect to variations in the circulation and the potential. The first

term on the right hand side of Equation (3.27) gives the sensitivity of the induced

power to changes in the circulation. The sensitivity of any point on the disk is

proportional to the induced velocity, V4, at the corresponding position in the far

wake. As mentioned before, the circulation at a point in the wake is the same as

the circulation at the corresponding position at the rotor blades. Also, the blade

aerodynamics directly control the circulation (not the velocity potential). Thus, the

far wake wash information could be useful when trying to physically control the

induced power. The wash would show what portions of the lift distribution should



be changed to have the maximum affect on the induced power.

Returning to the minimization of the cost function, Equations (3.27) and (3.24)

are substituted back into Equation (3.23) to yield

811" = f (V20) dV

B p [ - ( A + w (rxh ))] Sr dA

+ SVT(T - Treq) + Sw~(M - M req) + 8w(My - Myreq) . (3.28)

The first order necessary condition for IIu to be a minimum is that 8II" = 0 for all

independent variations in r, o, VT, w,, and wy. The second term of Equation (3.28)

can be modified by recalling that v = V. Also, using a cyclic permutation, it can

be shown that w -(r X A) = (wX r) - i. Then the necessary conditions can be written

as

T = Treq (3.29)

MX = M req (3.30)

My = My req (3.31)

V2 = 0 in V (3.32)

v . A = (v + wXr) -A on W. (3.33)

Together with the essential boundary conditions on q (Equations (3.2)-(3.5)), these

conditions represent a complete description of the velocity potential for the uncon-

strained, minimum induced loss, lightly loaded rotor problem.

The first of the three necessary conditions require that the optimal solution achieve

the desired thrust and trim conditions. Equation (3.32) requires that Laplace's equa-

tion be satisfied. This is satisfied since the flow is a potential flow. The last condition

is the most interesting. It defines the relation between the optimal flow at the wake

sheet and the shape of the sheet. The flow is effectively the same as a flow past an

impermeable membrane (the wake sheet) which translates at a speed vT and shears

at an angular rate w. The effects of w is interpreted as a shearing, rather than a



rigid body rotation about the wake tube axis. This is because, for any element of the

wake, its center of rotation is the point in the wake corresponding to the hub location

at the time that the wake element was created.

It should be noted that Equation (3.33) does not by itself require that the wake

sheet have the skewed, screw-like form that came from the light loading assumption.

Instead, the information about the shape of the wake sheet is implied by fi, which

follows the shape of the sheet. Thus, the equation could be applied to wake sheets

of other geometries, as long as the Lagrange multipliers of interest only have the

components specified in Equations (3.19) and (3.20).

Also, the last condition is actually a generalization of Betz's solution for the

minimum induced loss propeller. In the case of the propeller, only the thrust Lagrange

multiplier is used and the condition reduces to

V fi = i = vTk:l , (3.34)

where VT now equals v' shown in Figure 3-1.

3.3.2 Constrained Optimization

The optimality conditions for the rotor will now be extended to incorporate con-

straints for the maximum allowable local lift on a blade. As will be shown in Chap-

ter 5, if these additional constraints are not imposed, then the optimal local lifts will

be excessively high. Conventional airfoil technology would be unable to achieve the

required lifts.

The lift constraints are effectively constraints on the local circulation. A relation

between the local circulation and the local lift coefficient can be found by examining

the lift at any blade section. For a two-dimensional blade section with a lift coefficient

C1 and chord c, the lift is related to lifting line theory by

PUI(r, I)r(r, ) = 2 pUI(r, )c C1(r) , (3.35)



where U± = U, + Uz is the velocity normal to the lifting line and in the plane of

the wake sheet. The maximum allowable circulation is therefore

1
r(r, i) < Pmax(r, b) = 1 UI(r,)CClmax(r). (3.36)

Unlike the previously imposed trim constraints, which dealt with integral quanti-

ties, the CImax constraint is imposed on individual points of the distribution. The new

constraint can be added to the previous functional, Equation (3.18) using a Lagrange

multiplier, t(r, ), so that

Taking the variation of the new term with respect to r and 6 produces

27 2ws d5+ (r - max) !) dA . (3.38)

The variation of the entire II functional then becomes

811- Bf 2f, 86dv

BO f
+ nJ (r - r.ma) 6 dA

SfP P[VO - n- (v-A + w - (rxn) - 6)] SdA

+ SVT(T - Treq) + 6Sw,,(M - M,. e) + SCw(M, - My req) (3.39)

Following the same reasoning used for the unconstrained optimization, the neces-

sary conditions for the constrained optimal flow are therefore

T = T req (3.40)

M, = M req (3.41)

My = M req (3.42)

V20 = 0 in V (3.43)



v - i = (v + wXr) -.i+ on W,

and
V (r, ?) O, if r(r, P) = max(r, ) (345)

(3.45){ (r, b) = O, if r(r, 7) < )max(r, ) .

Equations (3.40)-(3.45), together with the boundary conditions (Equations (3.2)-

(3.5)), completely define the velocity potential in the wake of a constrained, optimal,

lightly loaded rotor.

There have been no changes to the first four necessary conditions. However, the

Czmax constraint has modified the flow conditions and put requirements on 0. The

Lagrange multiplier, V(r, 4) is zero if the constraint is not active and it is a positive

value if the circulation, F(r, 4), is on the constraint boundary. The exact value that

O(r, 4) takes at any constrained location is the subject of Section 4.2.

Equation (3.44) describes the same flow as its unconstrained counterpart (Equa-

tion (3.33)) in the regions where the Crmax constraints are not active. However, in

the regions where the constraint is active, the speed of the flow normal to the wake

sheet is reduced by the amount 9. This is due to the fact that va - f is negative

everywhere on the rotor disk except in the reverse flow region. Again, the optimal

flow is the same as the flow past a moving, rigid, impermeable wake sheet. In the

regions where the the Cimax constraints are active, the membrane is distorted from its

unconstrained form. Larger values of V indicate greater deviations of the membrane

from the unconstrained form.

Although the optimal rotor flow is more complicated than the minimum induced

loss solutions for either the fixed wing of the propeller, the far wake theory provides a

convenient, unified framework for analysis. The result is that, in all three cases, the

theory yields a detailed description of the optimal flow and how that flow is exactly

the same as a flow which is interacting with a moving, impermeable membrane.

(3.44)



Chapter 4

Implementation

The necessary conditions for the minimum induced loss rotor, Equations (3.40)-(3.45),

require the solution of a three-dimensional field problem with boundary conditions

given by Equations (3.2)-(3.5). It is worth noting that the reduction of the problem

to its current form has only been made possible because the equations deal with

energy principles in the far wake. If the wake were examined in the nearfield, the

interaction of the flow with the blade would have to be modelled. Unfortunately, the

time-varying wake shape of the nearfield could be so complicated as to render typical

computational fluid dynamics (CFD) techniques useless. Because most helicopter

analysts are primarily interested in blade aerodynamics, they examine near wake

phenomena. Therefore, CFD codes used for more common fluids applications have

not, in general, been applied to helicopter wakes.

An analytical solution or even a reasonable analytical approximation to the rotor

problem is not possible, due to the complicated geometry of the wake. Fortunately,

the far wake problem is tractable with existing numerical techniques. One common

choice by aerodynamicists is to use a finite difference scheme for a numerical method.

However, it can be difficult for a finite difference scheme to match both the correct nat-

ural (flow stipulations) and essential (farfield and periodicity stipulations) boundary

conditions. A better choice seems to be the finite element method. A finite element

technique would fully capture the variational principle imbedded in Equation (3.37),

whereas the finite difference method would not. By using the finite element method,



the minimization technique and necessary conditions will be more completely satisfied

by the discretized domain.

It will be seen that the unconstrained optimization problem is easier to imple-

ment than the constrained problem. Therefore, the discretization of the model will

be done in detail for only the unconstrained problem. Then, in Section 4.2, the

discretized model will be extended to include the constraints on the allowable local

lifts. Afterwards, there is a discussion about how the finite element formulation pro-

duces a straightforward calculation of the induced power. The calculation has the

useful property that it always overbounds the exact answer. Then, in Section 4.4,

the development of an accurate finite element mesh for the wake is discussed. This

mesh will be used for the optimizations to be presented in Chapter 5. Lastly, the

chapter contains a section on the computer requirements for running this numerical

procedure.

4.1 Finite Element Formulation

In this section, a finite element approximation to the unconstrained problem will be

developed. The discussion is only meant as a brief introduction to the finite element

technique, to give uninitiated readers a look at how a continuous problem is converted

to a discrete problem. For more detailed discussions, the reader is referred to any

general finite element text, such as Hughes [14], Bathe [4], or Tong [41].

This finite element method is formulated from a variational principle, since that

is how the problem was originally formed in Chapter 3. Conceptually, the finite

element procedure for solving a field problem is to discretize a domain, then exam-

ine all possible potentials within the discretized domain which satisfy the essential

boundary conditions. This reduces the set of variations, 8q, which can be allowed.

The functional, II, is then minimized with respect to this allowable set of discretized

variations.

After a discussion of the discretization, the next topic in this section deals with

the application of the essential boundary conditions. Finally, a procedure to solve



the unconstrained optimal problem is explained.

4.1.1 Discretization

The first approximation made is to choose a finite, well-defined volume Vd to represent

V. Obviously, Vd will not have an infinite radius as V does. Therefore, the radius of

Vd must be sized such that the effects of the rotor have reached negligible levels before

the outer boundary. Otherwise, the boundary will act like a fluid channel and modify

the solution. Next, Vd is subdivided into a set of M three-dimensional volumes, called

elements. The elements are multifacted and each corner is called a node, which also

serves as a corner for other adjacent elements. In doing this, the surface, S, has also

been approximated by the discretized surface Sd. Some nodes, the boundary nodes,

lie on Sd and the remainder lie in the interior of Vd. The elements are continuous in

Vd, i.e., there are no voids in Vd, and the elements conform to Sd so that there are

no elements lying partially on one side of Sd and partially on the other side.

For the interior of a particular element, the velocity potential is interpolated from

the potentials at the nodes of the element. The N x 1 vector P denotes the set of

unknown potentials at each of the N nodes. If 0bm(x, y, z) is the value of the potential

anywhere in the interior of element m, then

Om(, y, z) = Hm(x, y, Z) 4. (4.1)

Here, Hm is a 1 x N matrix with interpolation functions at the locations corresponding

to the nodes of element m, and zeros elsewhere. Interelement continuity is dependent

on the order of the interpolating polynomials. For linear polynomials, the resulting

q functions are continuous across element boundaries but the derivatives are not. In

general, the choice of the interpolation function greatly affects the accuracy of the

solution.

In a similar fashion, the derivatives of 0 are based on differentiating the Hm

matrix to get

Vm(, y, z) = Bm(z, y, z)P , (4.2)



where B, is a 3 x N matrix of interpolation functions. The continuity of the Vetm

solution is thus seen to be one order lower than the potential solution.

Furthermore, recalling Equation (3.4), the circulation at any point on Wd can be

expressed as a linear function of the nodal potential,

Fm(X,y,z) = Gm(, y, z)H. (4.3)

Here, Gm is a 1 x N matrix of functions that differences the potential on opposite

sides of Wd.

For convenience, each of Equations (4.1)-(4.3) can be rewritten in terms of ,,

a vector of the nodal potentials of element m only. Then

m(x,y,z) = H m , (4.4)

V0M(0,y,z) = Bm , (4.5)

and

Fm(X, y, z) = Gm , (4.6)

where H, B, and G contain only the nonzero entries of the large interpolation ma-

trices, Hm, Bm, and Gm.

The functional IIH can now be approximated in the discretized domain by a func-

tional, HTu. Integrals over V are replaced by summations of the integrals taken over

the individual elements. Applying this to Equation (3.22) yields

II = 2 --Jv VkOM2 dV

M M

+ C fE (V )FmdA + C [w [- (rx m)] mdA
m=1 m m=1 1m

- vTT req - W,M req - WyMy req , (4.7)

where C = pBQ/(27r), and fm is the unit outward normal to element m. This is

converted from a function of continuous variables to a function of nodal potentials by



using Equations (4.4)-(4.6), so that

IIf = TJ BT C B1m, dV

+ E (v m) C Gm dA + w (rXfm)] C Gm dA
m=1 m m=1 M

- vTT req - owM req - yMy req . (4.8)

Note that 1 m is a vector of constants, so it can be taken outside of the integrals.

Before taking the variation of II, it is easier to rewrite the equation using several

newly-defined matrices:

Km = BT C Bm dV , (4.9)

= ( fm) C Gm dA, (4.10)

R" = f ( X m) C GmdA, (4.11)

RY= 3w ('Xfm)C GdA, (4.12)

and

M

K = E Km , (4.13)
m=1

M

RT = E RT. , (4.14)
m=1

M

R, = E R,,, (4.15)
m=1

M

Ry = E Rm .. (4.16)
m=l

The stiffness matrix, K, is symmetric with size N x N, but it is very sparse since

most entries of B are zero. The vectors, RT, R,, and R,, are of size N x 1. For lack

of a better name, they are referred to as "right hand side" vectors. They are usually

written on the right had side of an equation (except in a canonical form).



Substituting these definitions to Equation (4.8) yields

(4.17)

II- M Kr+ + ( (RT - •- Trq

+ W, (R- M , r ) + WY (14 -My, ) .

Taking the variation of II leads to a set of three scalar equations and one matrix

equation,

= Treq

= M req

= My req

= -VTRT

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

- wR, - wyR,

= R.

These can be rewritten in a canonical form,

0

0

0

R

0

0

0

T req
Mreq

My req

(4.23)

Thus, the finite element discretization has reduced the minimization of the II func-

tional to the solution of a large set of first order, linear equations.

4.1.2 Boundary Conditions

Although they are not clearly displayed as in Equation (3.33), the natural boundary

conditions have been implicitly incorporated into Equation (4.21) by the integrals

that form the R vector. Thus, they will form part of the solution and need not be

discussed further.

In contrast, the essential boundary conditions, Equations (3.2)-(3.5), have not yet

VTRTTj

w,R ,K~
KW yT

K

RTT

RT

iRz

RT

0

0

0



been discussed. By imposing the essential boundary conditions, the stiffness matrix

becomes positive definite and thus full rank. In theory, then, Equation (4.22) has a

unique solution and it can be solved.

The most obvious way of taking care of the essential boundary conditions is to

condense out the known nodal potential values. If, for example, 4 at node 32 is known

to equal 4, then the equation corresponding to row 32 of K and R is superfluous. It

is dropped from the equation set. Column 32 of K is then multiplied by b and the

information is subtracted from R. Thus, if the potential is known at e nodes, then

K is reduced to size (N - e) x (N - e).

Unfortunately, the condensation method requires a great deal of programming to

implement. Instead, a penalty weighting method is employed. The cost functional

is effectively augmented by weightings on squared quantities of the potential at the

nodes with essential boundary conditions. If, again, 4 at node 32 is know to equal

4, then

HI = as before + 1432 - 4 32 -

where g is a large scalar number such that g > max{Kj}. Now, instead of solving

Equation (4.22), the solution is found by solving

(K + AKB) = R + RB ,

where AKBC is a matrix of zeros except at location (32,32), which equals g, and

AR BC is a vector of zeros except for the 32nd entry, which equals gD. The weighting,

g, is large enough to make the other elements in row 32 of K be negligible. Then, to

an arbitrary numerical accuracy, (32 = D.

This method is also used to enforce the periodicity boundary conditions. If node

a is the same as node b, then (a - bb)Tg( a - bb) is added to the cost functional.

The effect on K is that four entries are adjusted by g, while R is left alone. Effec-

tively, the equation in row a then requires that 4a - 4b 0, and row b requires that

-4 , + b 0.



4.1.3 Usage

When examining a solution found via the finite element method, it should be rec-

ognized that it has limitations. The finite element solution will not exactly solve

Laplace's Equation (3.32). Laplace's equation, for an incompressible fluid flow, should

be interpreted as a statement of continuity: At every point, the net fluid flux must be

zero; there are no sources nor sinks. For the exact solution, this condition will hold

at every point in V that is not on the wake sheet. For the finite element solution, this

condition is successfully satisfied at every node not on Wd and also, in an integral

sense, by each individual element. However, for points inside the elements, the po-

tential values must be interpolated, and they do not fulfill the continuity conditions.

As derived so far, the canonical form, Equation (4.23), can be used to solve the

unconstrained optimal rotor problem. The equation would be solved directly (via LU

decomposition or any other standard method) for the four unknowns (three indepen-

dent Lagrange multipliers and one dependent velocity potential). However, this will

not be possible once the maximum local lift constraints are introduced. Therefore, an

alternate solution procedure is employed which can be used to solve the constrained

problem. For the alternative procedure, Equation (4.21) will be solved three times.

Each solution, for different, arbitrary thrust and moment conditions, will yield one

third of the information necessary to solve for the correct Lagrange multipliers.

First, Equation (4.21) would be solved by setting vT = 1, w. = 0, and wy = 0.

This would yield a solution, T, and a set of generalized forces (thrust and moments)

which are placed in a matrix of force coefficients: T 1 = T, T21 = M., and T31 = My.

Second, Equation (4.21) would be solved by setting VT = 0, w, = 1, and wy = 0.

This would lead to a second solution, ,,, and a second set of generalized force

coefficients. This procedure is repeated a third time. Combining the information

from these three solutions produces a 3 x 3 matrix equation,

T=j W = MX req , (4.24)

WY My req



where [Tj] is the matrix of force coefficients. This equation can then be solved for

the correct Lagrange multipliers under any desired trim conditions. The final velocity

potential is a linear combination of the three previous solutions

4 = VTIT + W. . + WyPy . (4.25)

Given the nodal potential distribution, 4, the circulation distribution can be

found using Equation (3.4). Finally, the lift distribution can be found using the

Kutta-Joukowski theorem.

4.2 Constrained Optimization of Rotor

Circulation

The extension of the finite element program include the Cimax constraints follows

the discussion in Section 3.3.2. Recalling the Lagrange multiplier defined by Equa-

tion (3.45), this definition can be rewritten as

9 (r - rmax) = 0. (4.26)

The natural boundary condition, Equation (3.44), requires that the velocity and,

hence, the circulation are a function of V. This means that Equation (4.26) is actually

a quadratic equation in V. Nonlinear systems of equations of this size are not practical

to solve directly. Instead, an iterative search procedure using augmented Lagrangians

will be employed.

Using an iterative technique leads to a further task. Exactly which nodes need to

be constrained must be determined with each iteration. The problem is not trivial.

For example, if an unconstrained optimal solution has unrealistically high local lifts

around (f, ,) = (0.7, 2700), then that area should be constrained, i.e., the lift pushed

down in the next iteration. However, because a desired total level of thrust must

be maintained, pushing down at (0.7,2700) will force other areas to compensate and



raise their local lifts. In this case, the solution for the second iteration would have

a lower lift at (0.7,2700), but might have higher lifts at (0.8,2500) and (0.8,2900).

If these two locations have local lifts which violate the Czmax constraints, then they

will be added to the constraint set for the next iteration. In addition, the first point,

(0.7,2700), should be reexamined to ensure that it was not pushed down too far. If it

was pushed down too far, then its constraint should be relaxed. Thus, the points in

the constraint set change with each iteration. Augmented Lagrangians will provide

the sensitivity information needed to update the constraint set every iteration.

Essentially, augmented Lagrangians combine some of the aspects of traditional

Lagrange multipliers with penalty weighting methods. Consider a traditional La-

grange multiplier which is applied to a function, f, with an inequality constraint

f fmax. The Lagrange multiplier is nonzero when the constraint is not violated

(f < fma,), and it equals zero when f is on the constraint boundary (f = fmax).

The Lagrange multiplier is not defined (or even considered) for the case of f > fmax,

because this is not a valid solution of the problem. In this respect, augmented La-

grangians differ from traditional Lagrange multipliers. Techniques using augmented

Lagrangians are similar to penalty weighting methods. Functions in violation of their

constraints approach their constraint boundaries, but from the procscribed side. Both

penalty methods and procedures using augmented Lagrangians weight the square of

the difference between a function and the constraint boundary, to bring the function

closer to the boundary. However, augmented Lagrangians cause other terms to be

added to the cost function. The additional terms will decrease the distance between

the function and its constraint boundary with every iteration. Thus, final solutions

using the augmented Lagrangian method will have points which are in violation of

the constraints, but only by an arbitrarily small error.

Recall the cost functional used in the finite element discretization, Equation (4.17).

For the constrained problem, this is augmented by several additional functions, so that

IId = 1 + ,TA (r - rmax) + g2 P2 + g3 P3 , (4.27)



and the new terms are to be defined. Here, g2 and g3 are positive valued penalty

weights. The vector, /3 contains the augmented Lagranians, 3j, for each node j.

Also, A is a diagonal matrix, whose entries are the average wake sheet surface areas

of the elements around each node. Lastly, P2, and P3 are quadratic, scalar penalty

functions.

So far, the constraint set has not been precisely defined. Points in the constraint

set are those in violation of Equation (3.36). The set is subdivided into Ca and Cb,

where

Ca = {jI j > 0} (4.28)

= the set of nodes that were previously

in the constraint set and will stay in constraint set,

and

Cb = { j = 0, j rm.ax } (4.29)

= the set of nodes that are being added

to the constraint set.

The penalty functions can now be precisely defined as,

P2= E A(r - max,) 2 , (4.30)

and

P3 = E Aj(r- rmax) 2 . (4.31)
jECb

It should be noted that this is an iterative procedure, so Equation (4.27) is im-

plicitly the cost functional for the current iteration only. The variation of IId can be

taken by substituting in the definitions for P2 and P3, and noting that w 2 and w 3 are



constants. This yields

6IId = IId

+ E [/% + 2g2 (r, - maxj )] A, 6s, + E (r, - Imax,) Aj 6#3
jEC,4  jEC.

+ 2g3 (j - Pmaxi) A 6rj . (4.32)
jECb

Assuming that g = g2 = g3, then this can be simplified to a convenient matrix form

SIIa = II + SPTA (r - rmax)

+ SrTA [p + 2g (r - rmax)]. (4.33)

Furthermore, recalling that r = GI and rearranging terms reveals that

SIId ]= II + STA (r -rm,)

+ 6TGTA [ - 2grmax] + 2g6 TGTAG . (4.34)

As before, requiring that the first variation equals zero reveals a set of equations. In

the canonical form, they are

K + 2gGTAG RT R, R, l GTA [2grmax - 13

RTT 0 0 0 VT T (4.35)
, * -. (4.35)

R, 0 0 0 Mw M req

PRT 0 0 0 w, My req

The additional equation found by requiring that 6 IId = 0 independent of S8/T leads

to conditions on each jj identical to those on ? in Equation (3.45). These conditions

will be fulfilled a priori, due to the definition of P.

The trim conditions, Equations (4.18)-(4.20) remain as before, but it is clear that

instead of solving Equation (4.22), a modified equation must be solved. Now

(K + AK) = R + AR, (4.36)



where

AK = 2gGTAG, (4.37)

and

AR = 2gG T A r m,, - GTAP . (4.38)

Like the imposition of periodic essential boundary conditions, this causes the AK

matrix to have four nonzero entries and the AR vector to have two nonzero entries for

each actively constrained node. Say, for example, that node j was to be constrained

and that bj - j+j = Fj, then

Scolumn j column + J

row j - 2gAj -2gAj ... (439)[AK] = (4.39)

rowj+J-* -2gAj ... 2gAj ...

and

2gAjrmax, - Ajpj

{AR} = (4.40)

-2gAjrmax + AjP3j

The constrained optimal problem requires solving the set of Equations (4.35) for

the unknowns 4, VT, wI, Wu, and now 3. The penalty weight, g, is a constant which

is arbitrarily chosen beforehand such that g > K max. So far, no explanation has

been given as to how C, and Cb are found or as to how the augmented Lagrangians,

3j, are sized. This will become clear as the iterative procedure is explained.

The entire optimization routine has been implemented in a computer program

known as CORC (Constrained Optimization of Rotor Circulation). Overall, it consists

of an iterative constraint update procedure wrapped around the previously described
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Figure 4-1: Flowchart of the CORC procedure.



finite element solver. As shown in the flowchart of Figure 4-1, the CORC routine

begins by solving the unconstrained optimal problem. As previously discussed in

Section 4.1.3, this yields a 3 x 3 matrix of loads, [Tij], which is used to solve for the

three trim Lagrange multipliers. At this point, because it is only the initial itera-

tion, all of the augmented Lagrangians, fli, are set to zero, and all augmented terms

(denoted ('),ug) are still set to zero. The unconstrained solution is then examined to

see which points violate the C max constraint. Points that violate the constraint are

put into Cb. This new constraint set allows formation of a new cost functional, Hd, a

AK matrix, and a AR vector.

The procedure now wraps back to the finite element solver to begin the second

iteration. As before, three solutions are required, corresponding to the three trim

Lagrange multipliers. However, now a fourth solution is required for the effects of

AR. The first three solutions can be thought of as homogeneous solutions and the

fourth as a particular solution to the problem.

The first three equations to solve are of the form

(K + AK) P = -vTRT - wR. - wR , (4.41)

and the fourth equation is

(K + AK) = AR. (4.42)

Of course, both Equations (4.41) and (4.42) must be numerically adjusted to

impose the essential boundary conditions before solving (see Section 4.1.2). Equation

(4.42) yields a set of forces and moments denoted as [ T M. My ]ug.
After finding the four potential solutions, the updated circulation distribution is

formed. This constrained solution is then checked against the Clmax constraints. The

sensitivity of points in Ca is checked to see whether the constraints should be further

tightened or released. This is done using the augmented Lagrangians, according to



the following rule:

#,e w = M + 2g (r, - max) if 3?' + 2g ( - maxj (4.43)
= 0, otherwise.

When /fl is set to zero, node j is simultaneously released from the constraint set, that

is, j V (Ca U Cb).

At this point, the induced power is calculated. If the percentage change in the

induced power since the previous iteration is below a certain tolerance, then the

procedure is finished. Otherwise, the new AK and AR are calculated with the

updated constraint set and the program loops back to the finite element solver for

the next iteration.

4.3 Power Calculations

There are two ways to calculate the induced power given the optimal rotor circulation

distribution. As discussed in Sections 2.4 and 2.5, a near wake analysis would first

calculate the induced velocity at the disk using a separate vortex lattice code with

equation (2.28) and then calculate the induced power using equation (2.26).

However, a far wake analysis provides an easier calculation because it does not

require any separate program beyond what is already incorporated into the finite

element code. Recalling the derivation of the far wake induced power calculation in

Section 3.2.2, it is evident that accurate knowledge of the velocity potential gradient

is needed. Fortunately, that is exactly what the finite element obtains with the

interpolation functions in the matrix B, i.e., V0m = Bkm. In fact, this information

is already implicitly calculated in the stiffness matrix (see equations (4.9) and (4.13)).

The induced power from the finite element solution is seen to be

Pi = 2 ETKi . (4.44)

This calculation is performed at the end of every iteration of the CORC routine.



It can be shown that, for the type of finite element analysis used here, the nu-

merical stiffness matrix is always overly stiff [4, Section 4.2.5]. This follows from an

examination of how the finite element solution converges as the number of elements

in a model is increased. It also leads to an interesting conclusion that the induced

power calculated in (4.44) will always be higher than the exact answer.

At first glance, the reader might expect that the induced power should converge

from below the exact solution. A quick explanation for this can be found by drawing

the analogy to a finite element (or a Rayleigh-Ritz) analysis for a static problem

in elasticity. In the case of an elastic member subjected to a given load, a finite

element analysis will underpredict the strain energy, because the member's stiffness

is too high. However, if a given displacement is enforced, rather than a given load,

then the calculated energy will be too great. In the case of the rotor, the problem is

effectively one of applied displacement rather than applied load. The trim conditions

require that a certain level of circulation be attained and this translates to a certain

velocity potential, so it is 0 that is effectively applied, rather than a given right hand

side vector. Merely solving equation (4.22) or (4.36) with arbitrary trim Lagrange

multipliers is equivalent to an applied force problem. However, using the Lagrange

multipliers in equation (4.25) (or the constrained problem equivalent) to adjust the

,P solutions makes it equivalent to a problem of applied displacement.

4.4 Model Geometry

In complicated finite element work, it is not unusual to spend more time refining and

selecting the proper mesh than producing and analyzing results. The accuracy of the

final results is entirely dependent upon choosing the geometry of the mesh to be fine

enough to represent all important features in the system. Unfortunately, a trade-off

must be made between accuracy and cost. For a model with N nodes, the K matrix

size and hence the computational cost are proportional to N3 . This provides a strong

incentive to be as selective as possible when choosing where and how to increase the

number of nodes. Varying element size, location, and density is often referred to as h



refinement.

A second, but highly coupled, problem facing the analyst is the choice of element

type. Element type is essentially determined by the order of the interpolating poly-

nomials used within each element. Higher order elements possess more interelement

continuity in their derivatives; they can also represent more complex shapes and so-

lutions inside each element than can lower order elements. To represent an nth order

polynomial interpolation function requires, essentially, n + 1 nodes in each linear di-

mension of the element. Thus, when changing the order of an interpolation function,

not only do the functions inside the H and B matrices change (see Section 4.1.1), but

also the size of the matrices changes, making this a non-trivial programming decision.

This type of analysis is usually referred to as p refinement.

As discussed in Section 3.2.1, the geometry of the control volume Vd is a wide,

skewed, helical ribbon with a small but finite thickness. For the flight conditions

of interest, say i = 0.25, the angle between horizontal (Z) and the wake transla-

tion direction (7') is approximately 1720. This causes large distortions in elements.

Boundary elements at the top or bottom of the mesh are particularly affected by

the skew. These are, of course, the elements which are directly used to calculate the

circulation. Distortions in an element's shape cause it to be too stiff, thus making the

power calculation inaccurate. Dealing with these skew effects is the primary difficulty

faced in trying to solve the optimal rotor equations.

For the model implemented in the CORC routine, the boundary nodes on Wd are

placed in a logically rectangular array based on a radial and azimuthal coordinate

system. Looking much like the spokes on a bicycle wheel, a radial spacing pattern

for the nodes is chosen, then this pattern is laid down at each desired azimuth. The

entire array repeats at each desired intervals in the " direction.

There are several reasons for using this fixed nodal array. Most important is the

need to enforce periodicity in the system. For instance, nodes on Sd,, must be in the

same relative location as those on Sd, so that they can be set equal. This is partic-

ularly relevant to those points on the wake sheet surface. In order to calculate the

bound circulation, Equation (3.4) must have the nodes in the same relative locations



on the rotor disk.

Aerodynamic considerations provide a second reason to keep the nodes in a regular

array. On real blades, the radial lift and circulation should roll off to zero at the

tips, proportional to v 1R- r. Correctly modeling a square root distribution with a

piecewise continuous distribution is difficult because the slope must be infinite at the

tips. An effective way to approximate it is to space the nodes in the cosine pattern of

Equation (2.8). For rotors, this rolloff occurs both at the blade tip and at the blade

root, so a cosine pattern is centered on the blade surface and nodal density increases

toward the tip and root. In addition, the wake inside the root cutout and beyond the

blade tips is also given a radial cosine distribution, with the nodal spacing continually

increasing with the distance from the blade.

The final reason to use a regular nodal array is simplicity. The velocity potential is

known most accurately at the nodes. Information for points inside an element must be

interpolated so it is less accurate and should be avoided if possible. Having points on

a regular (r, ¢) grid means that an entire radial lift distribution is known at discrete

points in time, i.e., at each given azimuthal station. This makes the evaluation of the

near wake integrals (Section 2.4) simple and accurate.

Although having a regular array of nodes is highly desirable for analysis, it restricts

the analyst's ability to refine the mesh for greater accuracy. Higher order elements are

not significantly better at modeling highly skewed geometries than linear elements.

Therefore, in the CORC program, only h refinement was investigated. Trilinear,

hexahedral, isoparametric elements were used exclusively. Each element possessed 8

nodes, which meant that each Km matrix had 64 nonzero elements and RT, R,, and

R, had 8 nonzero entries each. Also, trilinear implies that while the finite element

velocity potential solution is continuous across elements, the velocity is discontinuous

across the element boundaries.

In general, nodes must be concentrated where the potential is varying rapidly, or

the solution will not be accurately represented. In physical terms, this implies that

nodes should be concentrated where the potential gradient, and, hence, the kinetic

energy, is expected to be large. For the rotor wake, clearly, the energy will be highest
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at the wake sheet, particularly at the blade tips. A fine nodal density is achieved at

the tips by using the previously described, radial cosine spacing. In addition, a cosine

distribution is used in the direction. This concentrates elements at the wake sheet

surfaces. If the wake were not skewed (as in the case of vertical flight) then these

steps would be enough to ensure an accurate solution.

Physically, the high skew angle arises because the helicopter is moving forward

horizontally at a much greater rate than the wake is travelling downwards. Most

of the energy in the flow which lies outside of the wake tube is concentrated in the

fore and aft sections of the wake. Figure 4-2 is a contour plot of an approximate
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energy measure in the flow. The model used to generate this figure is not considered

reliable enough for power calculations, so specific values of the contour lines are not

of particular importance. However, the plot is certainly useful for showing the general

nature of the energy in the flow. The wake tube appears as a small circle piercing

the plot in the center. The contour lines are very dark around the tube because of

the high energy gradients there. The maximum contour level in the wake tube, other

than at the blade tips, is 3.0. Notice how rapidly the relative energy level falls off to

the left or right of the rotor's line of travel. Clearly, the plot demonstrates that, in

a horizontal plane, the energy extends out fore and aft very far from the wake tube.

Lastly, it should be noted that the discontinuities occurring near r = 5R in the fore

and aft regions are purely an artifact of the finite element mesh geometry.

To reduce the effects of the skew, distorted elements which would naturally have a

significant amount of kinetic energy must be straightened out. One way to straighten

out the elements in a particular region is to concentrate more nodes in that region.

The new nodes can be added in such a way that the elements are less skewed. Follow-

ing this line of reasoning, one method which was investigated, but eventually rendered

unnecessary, was the use of a finer azimuthal spacing near 00 and 1800.

The most significant step taken to alleviate skew distortions was to modify the

shape of Vd. As Figure 4-2 showed, the majority of the flow is concentrated in the

fore and aft regions of the wake. If no steps are taken to alleviate the skew, then the

flow encounters the face of the element on Sad at a highly oblique angle, making the

calculation the flux across the surface inaccurate. However, if the control volume in

the fore and aft regions is extended perpendicularly to the wake tube axis, -', then

the faces of the elements will face directly into the predominant direction of the flow.

Therefore, the surface of the control volume is made to bend away from the axis of the

rotor blade immediately outside the blade radius. The angle at which the mesh bends

away from the blade axis varies as cos b, so the control volume is not modified at

0 = 900 and i = 2700. The shape of Vd lying inside the wake tube was not modified,

because of the utility of the regular, rectangular array over Wa. A conceptual view

of the new, discretized control volume is pictured in Figure 4-3. Here, the volume
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Figure 4-3: Anti-skew mesh. (a) right hand side, (b) front

corresponding to all the blade passages is drawn, rather than just the volume between

two consecutive blades. In part (a) of the figure, the conceptual domain is seen from

the helicopter's right side. The volume inside the wake tube is contained in the middle

region, which appears to be a parallelogram from this perspective. Points outside the

rotor disk, but still affected by the flow, surround the wake tube and prominently

appear as rectangles. A view from above the rotor disk, looking along the flight path

direction, is shown in figure (b). The domain looks like an elliptical cylinder. The

rotor disk also appears elliptical because it is seen at an angle.

Use of this anti-skew mesh has the benefit of reducing the number of nodes needed

for a given domain size, R.. If the mesh had not extended perpendicularly to , but

had instead remained parallel to the rotor disk plane, the number of elements would

have to increase by a factor of 1/ cos 6.

It should be noted that this change in geometry does not change any of the

periodicity boundary conditions on q. The surfaces Sd,,, Sd,, etc., still maintain

their relations to one another and Vd can still conceptually stack like a split washer.

In practice, the anti-skew mesh proved to decrease solution time in the finite

element routine by 25% or more compared to similarly sized meshes that did not bend

the domain outside of the wake tube. This indicates that the new K matrix was much

better conditioned. More importantly, the better conditioning is also manifested in



the power calculation, which showed a better than 3% decrease in computed induced

power for a given set of flight conditions.

After extensive testing, the mesh settled upon for use in the CORC routine had

77 radial, 61 azimuthal, and 29 vertical nodes. The azimuthal positions were spaced

evenly throughout the array. The radial distribution had 6 points inside the root

cutout, 23 over the blade surfaces, and 48 nodes spread between the blade tip and

R,. Along the y axis, Ro was set to 7.63R, which was found to be significantly far

enough away from the rotor that it did not affect the flow.

4.5 Computer Usage

The CORC routine was implemented in FORTRAN, on a Cray X-MP supercomputer.

For the model size chosen, it required 21 megawords of memory, not including the

linear algebra solver package. The solver package used was the Sparse Linear Algebra

Package (SLAP) [34]. The SLAP routine mated well with the finite element program

because it was designed for use with sparse, positive definite matrices. It employed a

conjugate gradient method to solve Equation (4.36).

Each solution of the finite element routine took on the order of 28 minutes of

system CPU time. Either three or four finite element solutions were required for each

iteration of the CORC routine. The time required for finite element assembly, setting

up and checking the constraints, etc. was negligible compared to the time required to

solve the N x N system of equations. Convergence of the outer iterations was quick

and usually took only 1 unconstrained iteration followed by 2 constrained iterations

before a final solution was reached. More will be said about convergence and the

performance of the augmented Lagrangians in Section 5.1.
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Chapter 5

Results

The primary goal of this research is to find rotor lift distributions which will require

the minimum induced losses. Now that the optimization theory and solution proce-

dures have been discussed, several optimal distributions can be presented. They will

be compared to the lift distribution for a typical, non-optimal rotor. Furthermore, a

brief study of how the number of blades affects the optimal solution will be made.

Because the optimal solutions are generated from a numerical routine, and no

analytical solutions for the optimal rotor exist, it is important to establish that the

program functions properly before producing results. The program is checked against

degenerate optimal cases, for which analytical results exist. Also, internal checks can

be performed to make sure that the constraints are properly applied. This validation

effort is the first topic of the chapter.

5.1 Validation of the Numerical Routine

The CORC computer routine consists of two entities. The first is the finite element

routine; a demonstration that this component works means that all of the matrices

discussed in Chapter 4 have been set up properly, the boundary conditions are applied

correctly, and the mesh has the required accuracy. The second half of the CORC

program is the constraint updating procedure; satisfactory elimination of the points

in violation of the constraints effectively demonstrates that this procedure functions



properly.

5.1.1 Tests of the Finite Element Routine

In axial flight, the rotor experiences an axisymmetric velocity field, so there is no lift

deficit due to a retreating side. Because of this, there is no need to apply the maximum

local lift constraints and the finite element subroutines can be tested without the usual

constraint update procedures. Also, in axial flight, the optimal rotor theory presented

in Section 3.3.1 reduces to the classical case of a minimum induced loss propeller. This

solution is well understood and can be numerically computed using Goldstein's [12]

method. Physically, propellers differ from rotors in hover because propellers have a

high axial advance speed compared to their wake displacement speed, while rotors

have zero axial advance speed. A rotor in a vertical climb does have an axial advance

rate, but not as high as is common for propellers. Nevertheless, in the far wake, the

problems are equivalent if the wake geometry, as defined by the vertical advance ratio

A, and the desired thrust coefficient CT are the same.

A test case was run for a four bladed rotor at a vertical advance ratio of A = 0.0775.

The Goldstein solution for the bound circulation on a blade is shown as the solid line

in Figure 5-1. The finite element program was tested with meshes of two different

nodal densities, the standard mesh derived in Section 4.4 and a mesh with identical

geometry but using only every other node. The bound circulation for these cases is

also plotted in Figure 5-1. The two finite element solutions lie virtually on top of

each other and both are almost indistinguishable from the Goldstein solution.

A measure of efficiency was also computed for the three cases. In the limit of the

rotor acting like a perfect actuator disk [15, Section 2.1]; momentum theory gives the

relationship
CP 1
p = 1 l (5.1)
CT2  2A

Real rotors can only approach the actuator disk limit, leading to the definition of an
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induced loss factor, K, which is greater than unity,

=C 1 (5.2)
CT 2  2)A

The induced power at CT = 0.012 for the finite element optimal rotor solutions

is computed using two different methods. First a near wake calculation is performed

using Equation (2.26). This requires the induced velocity at the disk, w(r, b), which

is calculated using a rigid wake vortex lattice code and the optimal rotor circulation

distribution. Second, a far wake calculation is performed using Equation (4.44). These

two calculations should yield the same result for a given circulation distribution.



Table 5.1: Finite Element Validation: Axial flight induced loss factors. N =
4, A = 0.2.

Loss factor, i
grid size finite element vortex lattice Goldstein

77 x 61 x 29 1.086 1.067 1.067
39 x 31 x 15 1.077 1.067 1.067

The induced power for the exact Goldstein solution was also found using the

vortex lattice program and near wake methods. The vortex lattice code could, by

itself, reproduce Goldstein's circulation distribution when the code's wash influence

coefficients were used in an optimization procedure. Therefore, its induced velocity

calculation was deemed adequate for this limited study. A more exact way to calculate

the induced power would be to examine Goldstein's method and isolate factors such

as the induced velocity, but this degree of accuracy was not considered necessary.

The induced loss factors for the Goldstein case and the finite element solutions are

listed in Table 5.1.

All of the results in the table agree to within about 2%. The higher loss factor

calculation found from the far wake methods is attributable to the fact that the mesh

is slightly stiffer than the exact solution, and, as expected, the far wake solutions

bound the answer from above (see Section 4.3). These particular far wake calculations

exhibit one unusual discrepancy. The finer mesh is inherently less stiff than the coarser

mesh and should predict a lower energy. Unfortunately, this is not the case, and could

be a result of a lack of convergence in the solver during these particular runs.

Despite these irregularities, the power calculations and the circulation distribu-

tions of the two meshes are very similar. This indicates that the standard size finite

element mesh adequately solves the minimum induced loss propeller problem.

5.1.2 Test of the Constraint Update Procedure

After the finite element procedure was validated, the iterative constraint update pro-

cedure was checked. For satisfactory performance of the constraint procedure, the



power calculation should converge without too many iterations and the augmented

Lagrangians should settle to a stable set of values. Performance of the augmented

Lagrangians is dependent upon a proper choice for the penalty weight, g, defined in

Section 4.2. Although it was not discussed in Chapter 4, if convergence is too slow,

then the penalty weight may need to be updated in a procedure similar to that used

for the augmented Lagrangians [27].

As part of the CORC procedure, two types of convergence criteria are checked

after each iteration. Each point in the constraint set is measured with two criteria:

AI- = Pi- maxJ) 1(5.3)

and

A 2 m = (r - Pmaxi) (5.4)
maxi

where the factor of 1/(flR 2) is merely used to nondimensionalize the first measure.

Equation (5.3) measures how close a point is to its constraint boundary on an absolute

scale. In contrast, Equation (5.4) measures how close a point is to its constraint

boundary relative to the boundary value. For a solution which precisely meets the

Czmax constraints, then both A1 and A 2 are zero everywhere on the disk. However,

the iterative method employed allows the solution to violate the constraints by an

arbitrarily small error.

For a given forward flight test case (to be discussed in detail in the next section),

the convergence criteria are given in Table 5.2. The second column shows the induced

power, calculated using Equation (4.44). The power increased with each iteration; it

was effectively settled by the third iteration. This monotonic increase was found to

be a characteristic of all the optimization runs.

The following columns in the table contain measures of the constraint violations.

The values are the maximum deviations from the constraint boundary found anywhere

on the disk, at the end of each iteration. Thus, they do not chart the progress of

any particular point. The 3rd column displays the maximum value of A1 . The

corresponding value of A 2 for the same point is given in the 4th column. Thus, these



Table 5.2: Constraint Update validation: convergence criteria for a typical,
constrained local lift case. Average circulation over the disk is
r/(OfR 2)=2.09e-2.

Violation of Maximum Allowable Circulation

j = arg max Alj j = arg max A2

iteration Cp A1  A 2 j A 1j A 2

1 3.80e-3 4.22e-2 6.6e+0 3.78e-2 1.7e+1
2 4.22e-3 2.49e-3 5.2e-2 2.03e-4 1.0e-2
3 4.22e-3 1.57e-4 4.0e-3 1.17e-4 8.2e-2

are the largest absolute violations of the constraints. The 5th (last) column of the

table displays the value of the maximum A2 found on the disk. The corresponding

value of A1 for this point is listed in the preceding column. These last two columns,

then, are the largest relative violations of the constraints.

Both the absolute and the relative convergence measures demonstrate that the

solution comes closer to satisfying the constraints with each iteration. In this case,

convergence of the induced power calculations was considered complete after the

third iteration. Although there is a point that is still 8.2% away from its constraint

boundary, this can be considered insignificant, since the absolute violation (1.17e-4)

is much smaller than the mean level of circulation.

Convergence in three iterations was typical of every constrained optimal rotor case

tested, so it was deemed unnecessary to employ penalty weight updating. Given that

the induced power calculation settled quickly and that the error in the constraints

was small, it seemed clear that the constraint update procedure works.

5.2 Typical Forward Flight Optimization

Before an assessment can be made about the quality of an optimal rotor lift distri-

bution, a baseline performance level must be established. This is presented next.

Following that, optimal lift distributions from the CORC routine are discussed and



numerical performance measures are given.

5.2.1 Reference Lift Distribution

Flight conditions for the optimization tests were chosen to match those presented

by Johnson [15, Chapter 13] and are listed in Table 5.3. A comprehensive rotor

simulation, developed by Scully [33], was used to analyze a typical, non-optimal rotor

at these flight conditions. The computer program used a vortex lattice to calculate

the downwash at the rotor disk. This information was coupled to a blade dynamic

model which introduced the effects of flapping, etc. to the system. There was no

modeling of the fuselage's influence on the flow. At a disk loading of CT/o = 0.12,

the case does not classify as light loading. Nevertheless, it was used because a detailed

lift distribution was given in the reference. This data was discretized and analyzed so

it could provide a clear baseline with which to evaluate the optimal rotor solutions.

The baseline lift distribution is plotted in Figure 5-2. Although it may not be

apparent from the contours, the blade is stalled over a small region on the retreating

side. Also note that the lift does not roll off to zero at the root and hub. Lift on

real rotors characteristically falls off with a square root distribution at the tips. The

behavior of the reference case is due to the fact that the vortex lattice emits a finite

strength vortex filament from the tip and root. For a given CT, the unrealistically

high tip loading unloads the inner portions of the blade. This results in an overop-

timistic efficiency estimate. When analyzing the spanwise loading efficiency of this

Table 5.3: Flight parameters of the reference case
Thrust coefficient CT 0.012
Forward advance ratio p 0.25
Number of blades B 3
Rotor solidity a 0.1
Root cutout fe 0.15
Linear blade twist 0 t,, -8.0 deg
Nondimensional helicopter drag f/A 0.015
Lock number y 8
Blade section lift curve slope a 5.7
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Figure 5-2: The reference lift distribution. L/(pac(flR)2 ). Flight parame-
ters are listed in Table 5.3. Adapted from Figure 13-13 of John-
son [15] and used with permission.

distribution, as discussed in Section 2.3, this lack of tip rolloff may not necessarily be

significant, because the analysis will smooth out such details in the flow. However,

for induced power calculations, this could be significant. To calculate the power, the

baseline lift distribution from approximately 0.2R < r < 0.95R was put into the

CORC routine as a constraint. Using the standard sized mesh, the CORC routine

outputted a distribution which matched the baseline between 0.2R and 0.95R, but

also rolled the lift off to zero at the tip and root. This modified reference distribution,

rather than the original interpolated data, was used for induced power calculations.



5.2.2 Optimal Lift Distributions

Of the parameters listed in Table 5.3, the CORC routine utilizes only the first seven.

The last two parameters specify blade structural properties and aerodynamic proper-

ties, which are not used. The fuselage drag coefficient gives the rotor tip path plane

a slight angle, ar, into the flow.

Although not discussed previously, minimum local lift coefficient constraints were

put in place in exactly the same manner as the maximum local lift constraints, so

that the rotor could not exert too great a downward force. Thus, in addition to

the previously mentioned parameters, the CORC routine also requires specifications

for the blade sectional lift coefficients, Clmax and C1m.i. Various levels of Clmax

were investigated, from Cmax = 1.2 to 1.5, which is the approximate maximum

for a NACA 0012 symmetric, uncambered airfoil [1]. In all cases, Clmi. was set

to the negative value of Clmax. Also, as an upper bound on the performance, the

unconstrained solutions, in which Clmax is effectively infinite, are also examined.

The maximum and minimum lift coefficients were taken to be constant along a

blade, though they could have been made a function of position. Note that using

constant sectional properties does not a priori specify the shape of the optimum

rotor. The optimal lift distribution could imply that the blade should have varying

radial properties, such as variable twist. This is certainly an available outcome in the

solution space, as long as it does not violate the given local lift constraints.

The geometry of the far wake is specified by the vertical advance ratio, A. Mo-

mentum theory [15, page 128] gives a relation between CT and the net flux needed to

achieve this loading,
CT

=A (5.5)
2V112 + (IL tan ar + A)2

This formula can be solved iteratively, and in this case the solution converges to

A = 0.024. In addition to the inflow due to the momentum exchange, a geometric

inflow of A = 0.01 must be added in due to the tilt of the tip path plane (i.e., the

rotor disk) toward the flight path direction. Thus, the total inflow defining the wake's

shape is A = 0.034.
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Figure 5-3: The optimal unconstrained lift distribution; Cmx = oo.
L/(pac(nfR)2 ). Flight parameters are listed in Table 5.3.

Shown in Figure 5-3 is the unconstrained optimal lift distribution, i.e. CImax = oo.

Several significant features of the distribution should be pointed out and compared

with the reference distribution in Figure 5-2. First, the lift distribution rolls off

with the expected square root behavior at the tip. This effect is commonly known

as tip losses. Second, inboard of the tip, the optimal lift contours are smoother

than those of the reference case. This indicates that much of the shed vorticity has

been eliminated. As a result, the optimal lift distribution should exhibit less severe

unsteady flow effects and should, therefore, be more efficient. Third, the optimal lift

distribution is symmetric fore and aft. A symmetric lift (and, hence, a symmetric

circulation) for forward flight is not an obvious solution. The explanation for this



phenomenon comes from looking at the far wake. At a position in the far wake,

the wake extends downwards effectively for an infinite distance and upwards towards

the helicopter for an effectively infinite distance. Thus, the wake is symmetric with

respect to a 1800 rotation about the y axis. The symmetry means that the circulation

any point in the wake has a reciprocal influence on the induced velocity at any other

point in the far wake.

This symmetry should not be interpreted to extend entirely to the induced wash.

While the induced wash in the far wake is fore-aft symmetric, it is not symmetric in

the near wake, i.e., at the rotor disk. This is because at the rotor disk there is no

wake extending above to allow for the reciprocal velocity induction. Therefore, the

optimal solution dictates that the rotor must produce a symmetric lift distribution

while flying through a non-symmetric induced velocity field.

Next, in Figure 5-4, the constrained optimal lift distribution is shown for a

maximum and minimum lift coefficient of 1.2. Following that, the distribution for

Cimax = 1.5 is plotted in Figure 5-5. Like the unconstrained case, both of these

distributions roll off at the tips and are symmetric fore and aft.

On the whole, the two constrained optimal lift distributions look similar. However,

the case with a lower Cimax carries more lift toward the rotor tips and achieves

higher peak lift values. Further tests have shown that all constrained optimal lift

distributions resemble these two, with the lift contours shifting radially inwards or

outwards depending on the level of the maximum allowable lift.

Furthermore, both constrained optimal lift distributions display a region on the

retreating side where the contour lines form sectors of concentric circles. This is

the region where the maximum lift coefficient constraints must be enforced. The

constrained nodes are pinpointed exactly for the C/max = 1.5 case in Figure 5-6. Lift

in the marked region is at a maximum.

By closely examining the constrained region of Figure 5-4, it can be seen that

the reference case has contours that are radially more inboard at each contour level.

This means that the effective lift coefficient of the reference case is higher than 1.2.

Further inspection reveals that the reference case has a lift coefficient closer to the
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Figure 5-4: The optimal lift distribution with Cimax = 1.2. L/(pac(OR)2 ).
Flight parameters are listed in Table 5.3.

optimal case with Cmax = 1.5.

Because the rotor must maintain a certain thrust, limiting the lift in the con-

strained region pushes that lift into the fore and aft regions. Specifically, the peaks

in the lift distribution occur near , = 2000 and 4 = 3400. This is consistent with

most findings concerning 2/rev control. Past research [3], [38] has predicted that

2/rev control could best improve performance by concentrating lift towards the fore

and aft. In particular, a recent study by Nguyen and Chopra [25] predicted that the

best 2/rev performance would be achieved by effecting pitch up in the first and third

quadrants of the disk. Though the peak in the third quadrant seems to match the

peak near 0 = 3400 in the optimal distribution, the 2/rev controller is forced to peak
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Figure 5-5: The optimal lift distribution with C,,max = 1.5. L/(pac(QR)2 ).
Flight parameters are listed in Table 5.3.

in the first quadrant, which is after the peak predicted by the optimal. However,

actuating the controller to achieve this second peak predicted by the optimal is not

critical to performance, because, as the baseline distribution shows, typical helicopter

lift distributions may already be near optimal in this region.

Further discussions of how a rotor could physically attain the optimal solution

will be put off until Chapter 6. It should be realized that arbitrarily trying to match

a particular lift contour will not necessarily provide performance enhancement. This

is because the lift distributions do not explicitly contain the information about which

regions of the disk are the most sensitive to power production. That information is

contained in the far wake wash distribution.
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Figure 5-6: The constraint set for the lift distribution of Figure 5-5. A "+"
means that the node is in set Ca or Cb. If no symbol appears,
then the point is not in the constraint set.

5.2.3 Measures of Efficiency

In order to get a quantitative understanding of the advantages to using an optimal

distribution, an efficiency can be calculated. Two different measures will now be

checked. The first is the spanwise loading efficiency, and the second is the induced

power.

Spanwise Loading

This analysis follows the procedures outlined in Section 2.3. As mentioned earlier,

there is some question as to how the data for the reference case should be represented.
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Figure 5-7: Spanwise loading for the reference case. -, reference case with-
out tip losses as interpolated directly from Figure 5-2; - ,
reference case with tip losses as outputted by the CORC pro-
gram; - - -, elliptical lift distribution.

The reference case can be modified to include tip rolloff, using the CORC routine, or

it can be analyzed in its original interpolated form. Figure 5-7 shows the spanwise

loading for both representations. The raw data is considerably noisier, but flatter,

since it carries lift out to the tips. Also shown is the optimal fixed wing loading which

is, of course, elliptical.

Next, in Figure 5-8, the spanwise loading distributions are shown for the optimal

rotor with no constraints on the lift coefficients and the optimal rotor with the local

lift coefficient constrained not to exceed 1.5. Both optimal spanwise loadings are

noticeably closer to the elliptical distribution than the reference loadings, because

lift is raised toward the center and decreased toward the tips. This spanwise view is
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Figure 5-8: Spanwise loading for the optimal cases. -, optimal case with
CImax = 00; - - -, optimal case with Cm = 1.5; ,

elliptical lift distribution.

consistent with the observation that the optimal loading distributions tend to shift

the lift toward the fore and aft regions of the rotor disk.

Using Equation (2.12), span loading inefficiencies are calculated for each case and

displayed in Table 5.4. The numerical results confirm the visual assessments made

earlier. The reference case has a loss factor which is between 8% and 12% greater

than unity, depending on whether or not tip losses are included. In contrast, the

unconstrained optimal distribution is only 2% out of elliptical. As the maximum

possible local lift is reduced, efficiency decreases, till at a maximum lift coefficient of

1.2, the optimal rotor is of comparable efficiency to the reference case.

Spanwise loading provides a straightforward visual means of comparing lift dis-

tributions, but its numerical analysis does not account for swirl losses nor for shed



Table 5.4: Loss factors computed from spanwise loading analysis.

grid size Cimax Loss factor, K

Baseline with tip losses 1.12

Baseline without tip losses - - 1.08

Optimal 77 x 61 x 29 1.2 1.11
Optimal 77 x 61 x 29 1.5 1.04
Optimal 77 x 61 x 29 00 1.02

vorticity. A more selective, but complementary, comparison can be made by comput-

ing the induced power.

Induced Power

Induced power is the most valid and critical means of judging the merit of any rotor

lift distribution. Because its calculation uses incremental information at every point

on the rotor disk, it fully accounts for all of the effects of nonuniform inflow, swirl,

tip losses, and shed vorticity. It was this quantity that was specifically minimized to

produce the optimal distributions and, as such, is the major focus of this study.

The induced power can be computed using two methods, as was done for the finite

element validation tests. First, is the the near wake analysis, using Equations (2.26)

and (2.28) with a rigid wake vortex lattice code. The second method, Equation (4.44),

uses the information from the finite element code alone. While the finite element

power calculation is guaranteed to overbound the exact solution, no such fundamental

relation governs the behavior of the vortex lattice power calculation.

For each rotor lift distribution, an induced loss factor a was computed using

Equation (2.7) and the results are compiled in Table 5.5. The finite element and vortex

lattice induced power calculations agree well, to within 2-3%. The unconstrained

optimal lift distribution is 21% to 25% more efficient than the reference case. As the

maximum level of allowable local lift is lowered, lift is pushed from the retreating blade

side into the fore and aft regions of the disk. Accordingly, the induced power increases

with lower Czmax settings. At a maximum lift coefficient of 1.5, which approximately

matches the maximum lift coefficient of the reference case, the optimal is between



Table 5.5: Loss factors based on induced power

Loss factor, K
grid size Cimax finite element vortex lattice

Baseline - 1.75a 1.70 a

Optimal 77 x 61 x 29 1.2 1.68 1.72
Optimal 77 x 61 x 29 1.5 1.47 1.51
Optimal 77 x 61 x 29 00 1.32 1.33

aOriginal baseline lift distribution was optimized inside of 20% span and from
95% span outwards to introduce tip losses.

11% and 16% more efficient.

It is possible that the CORC routine's standard finite element mesh could still be

overly stiff (see Section 4.4), in which case the induced power readings would be too

high. This does not seem to be the case for the results presented in Table 5.5, since

the finite element and vortex lattice calculations match closely. However, even if the

calculations for the induced power require adjustment, it will be a collective change.

Thus, a relative ranking in efficiency would be the same. The percentage difference

in loss factors clearly demonstrates the superiority of an optimal rotor distribution

over the reference case.

5.3 Effects of the Number of Blades

When Betz [6] derived his original theory for the minimum induced loss propeller,

he assumed that the propeller had an infinite number of blades. Prandtl recognized

that this resulted in an overprediction of efficiency and introduced an approximate

correction factor to account for any given number of blades. Efficiency decreased

as the number of blades decreased because larger inter wake sheet spacings allowed

more flow to interact with air outside the wake tube. These end effects caused tip

losses. The brief numerical study described in this section examined the effects of the

number of blades on the optimal rotor in forward flight.

Flight conditions for this study are the same as those shown in Table 5.3, except



that the number of blades is set to four instead of three. The solidity, u, was held at

its original value. It is important to note that solidity is a characterization of blade

geometry, so it has no inherent effects in far wake theory. However, it does affect the

constraints on the maximum allowable local lift coefficients, because the blade chord

is defined as
7rR 2  7rR

c = 0 = - . (5.6)
BR B

Recall Equation (3.36), which sets the maximum allowable circulation levels. This

means that, for a fixed radius, an increase from B = 3 to B = 4 results in a 25%

decrease in maxx(r, ,) everywhere on the disk. Thus, the lift constraints are tighter

for a given level of Cmax. Of course, these changes to max, are irrelevant to the

unconstrained problem.

More fundamentally, the increase in the number of blades affects the geometry

of the far wake. The control volume, V, is thinner, i.e., there is less space between

adjoining wake sheets. Renewing the split washer analogy, stacking four of the new

control volumes or three of the original control volumes would yield an ungapped,

skewed cylinder with exactly the same dimensions.

Test runs were made using the standard 77 x 61 x 29 mesh used earlier. The lift

distributions for two levels of Cimax, are shown in Figures 5-9 and 5-10. The general

character of any four bladed optimal distribution is similar to that with B = 3.

The maximum lift for the four bladed unconstrained case has dropped to 75% of

its value for the three bladed case. Each blade is effectively unloaded by 25%, since

four blades now do the work of three. However, the plots of the three and four bladed

distributions do not appear significantly different because the lift has been normalized

by the blade chord. For the cases with constraints on the maximum local lift, the

blades are similarly unloaded, but the lift constraints have simultaneously been tight-

ened. The net result is that the new distributions are constrained in approximately

the same regions as the cases with three blades.

For a baseline efficiency measure, the reference distribution was again inputted

to the CORC routine as a constraint, but four blades were used instead of three.
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Figure 5-9: The four bladed optimal lift distribution with C .nx = 00.
L/(pac(OR)). Flight parameters except for the number of
blades are listed in Table 5.3.

Induced power loss factors and and spanwise loading loss factors were calculated for

all of the cases and are displayed in Table 5.6. Some cases were run with a slightly

different root cutout, but this was shown to have a negligible effect on the induced

power.

Comparing the data for the four bladed cases to their three bladed counterparts

in Table 5.5, it is evident that efficiency increases with the number of blades. The

exact amount of change is difficult to specify because the spanwise loading analysis

shows almost no change in efficiency, while the power analysis shows improvements

ranging from 10% to 20% depending on the flight condition.
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The four bladed optimal lift distribution with Cimax = 1.5.
L/(pac(QR)2 ). Flight parameters except for the number of
blades are listed in Table 5.3.

Table 5.6: Induced loss factors for the four bladed rotors

Loss factor, K

grid size CLmax finite element vortex lattice spanwise loading
Baseline - 1.50 a  1.37a 1.08'

Optimal 77 x 61 x 29 1.2 1.49c 1.39c 1.08c
Optimal 77 x 61 x 29 1.5 1.30 1.24 1.03
Optimal 77 x 61 x 29 00 1.23c 1.19 1.02

aOriginal baseline lift distribution was optimized inside of 20% span and from
95% span outwards to introduce tip losses.

bOriginal baseline lift unmodified.
erf = 0.20



The four bladed cases show much wider discrepancies between the power calcu-

lated from the finite element method and from the vortex lattice method. This is

probably due to a worsening stiffness problem in the finite element mesh. The change

from three to four blades actually accentuates the skew in some elements of the re-

treating side, especially in the reverse flow region and near the boundaries of the

constrained region. Although these areas should contain relatively low levels of en-

ergy, excessively stiff elements could still present problems. Thus, the vortex lattice

power calculation is considered more reliable for the four bladed runs.
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Chapter 6

Smart Rotor Performance

The results presented in the previous chapter clearly demonstrate that a typical he-

licopter achieves less than optimal efficiency. The lift distributions in Figures 5-3

and 5-5 provide a clear aerodynamic goal which must be attained to achieve the

minimum induced power loss. However, so far, the aerodynamic optimization has

provided no information on what would be the best choice of rotor technology to

achieve these conditions. This chapter contains a brief investigation of the matter.

As discussed in the first chapter, higher harmonic swashplate control has been

demonstrated to offer performance improvements over conventional rotors [36]. Of

particular importance is 2/rev swashplate control, since this can raise the lift toward

the fore and aft regions of the rotor disk and delay blade stall.

However, an examination of the lift contours in Chapter 5 reveals that considerable

radial variations in the lift may be necessary for power reduction. One way to achieve

this is with a smart rotor, in which independently actuated servoflaps are distributed

over the radius of a blade. Flap deflection causes a change in the local lift at the flap,

but also twists the blade by a significant amount, since the blades operate at speeds

well past the aileron reversal speed [8]. This means that the servoflap can be thought

of both as a local lift augmentation device and as a blade twist mechanism. A flap

schedule which reduces the induced power must balance the effects of each of these

philosophies.

In the next section, a rotor model for higher harmonic control (HHC) will be
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selected. That model is developed in the Section 6.2. Then, a procedure is devel-

oped to obtain swashplate and servoflap deflection schedules to meet the optimal lift

conditions. These results are discussed in the last section of this chapter.

6.1 HHC Model Selection

Modeling any lift control device is inherently more complicated than modeling the

far wake, because of the complicated flow patterns in the near field of the rotor. This

is due to several effects. First are the aerodynamic lags associated with Theodorsen's

work [15, Section 10.2]. Changes in pitch or camber cause the blade to shed a vortex

parallel to the blade. The wash caused by this vortex effectively reduces the effect of

the camber change. Second are the blade flapping and pitching dynamics. Both of

these motions change the velocity field encountered by the blades.

It was decided to investigate the effects of trailing-edge servoflaps by using the

most sophisticated near wake analysis tools available to the author. Comprehensive

rotor analysis codes have been written which include multiple degrees of freedom

for each blade, and model the aerodynamics using a vortex lattice, Theodorsen-type

lags, and dynamic stall effects. One such analysis program is the Boeing Helicopter

Company's proprietary code, named C-60 [39]. This code was tested using a four-

bladed H-34 rotor. Each blade was augmented with a single 20% chord, trailing-edge

servoflap placed between 0.625R and 0.8625R. The flaps could be given a harmonic

input. This case is identical to a system investigated on C-60 by Fox [8].

The lift distributions of the four-bladed H-34 rotor were examined in a test without

flap actuation and then in a test with 5 degrees of 4/rev flap actuation. In both cases,

a conventional swashplate provided pitch inputs to maintain trim. At an advance

ratio of t = 0.39 and a blade loading of CT/o = 0.06, it was found that the blades'

torsional response looked very similar to a static aeroelastic response. As the flap

pitched down, it increased the local lift near the flap location. However, the flap

actuation also caused a nose down pitching moment, which was manifested as lower

lift along the rest of the blade span. This effect, known as aileron reversal, is common
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for rotors with trailing edge flaps. Most significantly, the blades' pitching motions

were very close to being 1800 out of phase with the prescribed 4/rev flap deflections.

The blade pitching and blade flapping dynamics apparently had little effect on the

thrust. Thus, the predominant effects of the flap could have been obtained using a

static aeroelastic analysis.

The fact that the blades' response was not dominated by dynamic effects can be

explained by recalling the frequency response of a single degree of freedom, second

order, harmonic oscillator. Frequency response charts, based on analytical formulae,

exist for these systems and give the amplitude ratio between output magnitude and

input magnitude. To apply these charts to this system, it was calculated that the

H-34 rotor had a natural frequency in torsion of about 7.60. Also, the system was

forced at a frequency of 4Q, via the servoflap. The charts predict that dynamic effects

would cause the input magnitude to be magnified by less than 40% over the static

response. For a 3/rev input, this magnification drops to less than 19%, and for a

2/rev input it drops to less than 8%. Thus, a static aeroelastic analysis should give

a response that is reasonably close to the dynamic response, for input frequencies

below 4f2.

Further studies of servoflap effectiveness could have been conducted using the

C-60 program. However, analyzing the output from the program required several

hours per test case. This expenditure of time was deemed unnecessary, since it would

produce only a moderate increase in accuracy over a static analysis. Therefore a

static aeroelastic model was developed for the rotor.

6.2 Static Aeroelastic Model

The key assumption in the development of the static model is that the velocity field

can be determined from geometry. Blade flapping dynamics are not included, so the

velocity at a blade is U, which was defined in Section 2.4. Also, both the struc-

tural and aerodynamic theory employed is linear, so the effects of the flap and the

swashplate can be superposed to the original system to calculate a net effect.
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In linear aerodynamics, actuation of the flap downwards causes a nose down mo-

ment which is proportional to the flap deflection,

dM, = p U 2 2 c' ,, (6.1)

where 77 is the flap deflection in radians, dM,, is the moment per unit span and CM,

is the flap's coefficient of moment. Integrating this quantity over the width of the

flap yields the moment on the blade, inboard of the flap location. Beyond the flap

location, the flap produces no moment. Of course, this moment produces a twist in

the blade, which causes an additional angle of attack

a(f) = - dr, (6.2)

where f is any radial position inside the flap location, and GJ is the torsional rigidity,

which can vary with r. For piecewise constant structural properties, the blade twist

will be piecewise linear.

The effect of the flap on the lift is more subtle. The nominal lift on a blade section

away from the flap is
1

1(r) = 2p IU 2 caa, (6.3)

and the nominal lift at a section of the flap is

1(r)= p U12 c (aa + C,7), (6.4)

where C1,, is the flap lift curve slope. However, use of the nominal values would lead

to a discontinuous lift at the boundaries of the flap, which is unrealistic. In reality,

the lift should undergo a continuous transition at the flap boundaries, and the lift

over the flap will be less effective than predicted by Equation (6.4).

To approximate the continuous lift function due to a flap, a test was conducted

with a fixed-wing, lifting line model. Using the spanwise Fourier analysis discussed

in Section 2.3 (also see [18, Chapter 6]), the circulation distribution for a wing with a

step function in its geometric angle of attack was calculated. It was found that the lift

104



made a smooth transition, taking approximately two chord lengths on either side of

the jump in the blade angle to attain its final, nominal value. At approximately one

chord length past the blade discontinuity, the lift was seen to reach only 88% of its

nominal value. This lift transition effect was fitted with an arctangent function, which

was then used to modify the nominal lift values given by Equations (6.3) and (6.4).

It should be noted that the size of the transition region is logically defined in terms

of the wing's chord and not the span, since even an infinite span wing would show

the same transition effect.

A final modification was made to the nominal lift functions in Equations (6.3)

and (6.4). Prandtl's tip loss function [29] was used to ensure that the lift fell smoothly

to zero at the blade tips. This approximation was strictly meant only for propellers

but it does ensure that the lift falls in the proper square root fashion.

Development of the model for swashplate actuation followed the previous discus-

sion. However, the blade did not elastically twist due to a root input. Therefore,

Equation (6.3) could be used to calculate the lift across the entire blade.

The basic structural properties used for the model came from the H-34 rotor. The

rotor was modified to have only three blades; also the root cutout and chord were

modified to more closely match the parameters of the reference rotor in Chapter 5

(see Table 5.3). The final blade characteristics for the aeroelastic model are listed in

Tables 6.1 and 6.2. Note that the blade's natural frequency in torsion was kept at

7.6Q.

The flap used in the model was sized to be 15% of the blade's chord. This was

smaller than the 20% chord flap which was found effective for vibration control by

Fox [8]. The flap had a nominal section lift curve slope of 3.3059 rad- 1, and a section

pitching moment curve slope of 0.6417 rad- 1 . The flaps could be located in any of

thirteen bays, with the following radial boundaries (r/R) demarcating each available

bay: 0.2800, 0.3450, 0.4100, 0.5250, 0.5750, 0.6250, 0.6800, 0.7300, 0.7700, 0.8050,

0.8375, 0.8625, 0.8875, 0.9125. These spacing locations were chosen because they

matched the borders of the piecewise constant data available for the H-34's structural

properties.
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Table 6.1: Selected properties of the modified H-34 blade and flight condi-
tions in the static aeroelastic model

Property Value
Forward speed, V, 163 ft/s
Rotational speed, fl 222 RPM
Number of blades, B 3
Blade radius, R 28 ft
Blade chord, c 1.37 ft
Root cutout, fr 0.15
Section lift curve slope, a 5.73 rad- 1

Torsional natural frequency 7.6 0

Table 6.2: Torsional Rigidity of the H-34 Blade

location, r/R GJ (lb in2 )
0.0357-0.0900 1.9000 x 108
0.0900-0.1300 5.8712 x 107
0.1300-0.1400 2.4890 x 107
0.1400-0.1500 2.0566 x 107
0.1500-0.2150 1.8960 x 107
0.2150-1.0000 1.8000 x 107

6.3 Flap Schedule Optimization

The original optimization of the induced power cost functional, with respect to vari-

ations in the velocity potential, the circulation, and trim Lagrange multipliers, was

done in the far wake. It was shown, in Equation (3.27), that the sensitivity of the

induced power to changes in the circulation is proportional to the far wake induced

wash. It would be useful to incorporate this sensitivity information explicitly into the

optimization of the control schedules. Unfortunately, this cannot be done because

of practical limitations. In the finite element model, the far wake induced wash has

one order lower continuity than the potential or circulation information. When cal-

culating the power internally to the finite element code, the wash is never explicitly

calculated. Instead, flux is calculated for element surfaces. However, if the induced

velocity is desired as an output of the code, then the velocity at any point must be
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calculated by averaging the flux of surrounding elements. This produces a wash dis-

tribution which is generally smooth, but has noticeable noise. Thus, the sensitivity

of individual points on the lift distribution is subject to error and is not reliable for

an optimization. With this in mind, the flap schedule optimization will be performed

entirely in the near wake.

As mentioned previously, the aerodynamic and structural operators used in the

aeroelastic model are linear. Therefore, the results of a flap input can be superposed

to a baseline lift distribution, such as the reference case considered in Chapter 5.

Recalling Equation (3.35), the flap or swashplate input can also be related to the

bound circulation on the blade. The induced power can then be calculated using near

wake methods, Equation (2.26). This demonstrates that the power can be expressed

as a quadratic function of the flap and swashplate inputs,

Pi = p (Lref+ D7h) (ref + Eh) dr d, (6.5)

where Lrf and F,re are the lift and circulation of the reference distribution, and D and

E are operators relating the harmonic input to lift and circulation, respectively. Also,

r7 h is a vector of harmonic coefficients which contains a sine and cosine coefficient for

each flap and swashplate harmonic. For example, given a 2/rev flap input,

,q = rh, cos 20 + 1h2 sin 20 , (6.6)

where q is the flap schedule in the azimuthal (i.e., time) domain.

As in the previous optimizations, it is necessary that the helicopter remain in trim,

so the net thrust, pitching moment, and rolling moments must be constrained. Also,

constraints are placed on the maximum allowable flap deflections, 77() < 77max(O). To

achieve this, the harmonic coefficients were directly constrained, and this constraint

was adjusted until the time domain deflections met their requirements. This con-

straint is similar to the maximum local lift constraints used to form the constrained

optimal rotor solution. The local lift constraint was not explicitly applied in this case,

because the exact level where a flapped airfoil should stall is not well defined. Instead,

107



the maximum flap deflection constraints serve to limit the amount of lift that a flap

can add. Also, the flap deflection constraints have physical importance because flap

actuators, such as piezoelectrics, have a limited stroke length [37].

Therefore, a cost functional which includes the desired constraints is,

IIh P + VT(T - Treq) + w,(M~ - MO req) +wY(MY - M req)
Nh

+ (7h - 17him ,) Wi, (6.7)
i=l

where wi is a Lagrange multiplier on the flap deflection, and Nh is the number of

harmonic coefficients. A Lagrange multiplier wi is zero if 1hi < 7him.x, for all ', and

it is greater than zero if 7hl = 1.im.

The minimization of the functional in Equation (6.7) could be done using the

augmented Lagrangian technique discussed in Chapter 4. However, the number of

design variables in this problem is much smaller than the original number of design

variables (N). Now the number of design variables is equal to twice the number of

flaps times the number of desired flap harmonics plus twice the number of desired

swashplate harmonics. The problem is small enough that it can be solved using a

quadratic optimization routine in the Matlab [13] computer software package.

It should be noted that this optimization relies on using the influence coefficient

matrix, W, from a vortex lattice simulation. These coefficients may contain random

noise due to the encounter problem (see Section 2.5). Fortunately, in this calcula-

tion, the noise should not invalidate the optimization. In Equation (6.7), the design

variables are harmonic coefficients, rather than the circulation at points on the disk.

If one attempts to optimize the circulation at all points on the rotor disk, the opti-

mization will take advantage of each anomaly in the W matrix. In contrast, when

optimizing harmonic coefficients, the lift due to the flap is fitted over the entire dis-

tribution, not just a single point. Thus, spurious entries in the influence coefficient

matrix have much less effect.
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6.4 Results from the Aeroelastic Model

A variety of flap arrangements and swashplate inputs were compared to try and

characterize their effects on the power production. Not surprisingly, it was found

that the more control degrees of freedom available, the more optimal was the new

distribution.

Swashplate control with 0, 1, and 2/rev harmonics were tested alone and in com-

bination with servoflap inputs. Harmonic input to the servoflaps was limited to 1,

2, and 3/rev harmonics, in order to stay within the valid operating range of the

static aeroelastic model. It was decided to test only two configurations of blades

with servoflaps. The first configuration utilized a single, short flap between 0.8875R

and 0.9125R. A second configuration had a independent flap in each of the 13 bays

available between 0.28R and 0.9125R. No flaps were placed beyond 0.9125R for two

reasons. First, the lift distribution rolls off at the blade tips so the exact shape of

the tip distribution is difficult to model. Real flaps operating close to the blade tips

will be strongly affected by three-dimensional effects. Second, the dynamic pressure

is higher at the tips than at the root, requiring more energy to deflect the flaps.

Actuation devices such as piezoelectrics have a finite energy capacity and will not

necessarily be able to fully deflect at typical blade tip velocities.

A list of the significant cases is compiled in Table 6.3. In all of the cases shown

here, the maximum flap or swashplate deflection was set to 7 degrees. The relative

performance of each of the systems is displayed in the last column. Also shown is the

loss factor for the reference case of Chapter 5. As the results indicate, adding addi-

tional control authority by increasing the number of actuators improves performance.

The best case tested decreased the power required by 4% from the reference case.

Case 3, with one flap and 2/rev swashplate control, will be examined in detail.

The swashplate and flap schedules are plotted in Figure 6-1. Surprisingly, the flap

schedule is primarily 3/rev rather than 2/rev. The swashplate is predominantly 2/rev

in frequency with amplitude modulation provided by the 1/rev input. It is interesting

to examine how the swashplate and flap controls are used by the optimization. For
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Table 6.3: Performance of the tested rotor systems

case Number Flap Swashplate Loss Factor
number of flaps Harmonics Harmonics K

ref 0 none 0 1.37
1 1 1,2,3 none 1.36
2 0 none 1,2 1.33
3 1 1,2,3 1,2 1.32
4 13 1,2,3 1,2 1.31

instance, in the half quadrant past 900, the flap and swashplate controls are working

in conjunction to raise the lift over the blade. The flap is pitched up, which causes a

nose up moment on the blade; meanwhile, the swashplate command is also nose up.

In contrast, in the the 600 region from approximately approximately 2600 to 3200, the

flap and swashplate issue competing pitch commands to shape the lift on the blade.

Specifically, the swashplate issues a pitch-up command to raise the lift. However,

the flap deflection causes a nose down pitch, which reduces the swashplate's effect,

especially near the blade tip.

The lift distribution due to just the flap and swashplate inputs is plotted in Fig-

ure 6-2. Over most of the distribution, the local lift the flap is not distinct from

the rest of the blade. It is only visible from approximately 1200 to 170" as a slight

bowing in the contour. This indicates that the flap is primarily used as a moment

(i.e., twist) actuator rather than a local lift adjustment device. The flap used in this

example is less than 3% of the blade span, which is very small. A larger flap would

cause a greater twisting moment for any given deflection. It is likely, therefore, that

further performance enhancement could be made with a single flap if the flap were

larger than the case tested here. Similarly, Fox [8, Section 5.3] investigated the effect

of servoflap size on vibration control. An analytical study found that doubling the

flap size near r = .90R resulted in approximately a 60% increase in authority.

Finally, the net lift distribution was obtained by superimposing the lift of the

control inputs onto that of the reference case. It is plotted in Figure 6-3. Comparing

this to the constrained optimal case in Figure 5-5, it is seen that the controls have
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Figure 6-1: Actuation schedules for the swashplate and single flap of case 3,
Table 6.3. The flap deflection is positive trailing-edge down,
while the swashplate is positive nose up.

pushed the lift towards the optimal distribution, especially near 900 and 270'. How-

ever, overall, much of the character of the lift distribution appears unchanged from

the original reference case. This indicates that subtle changes in lift profile can have

a significant effect (3% decrease) on the power required. The lift distributions for the

other flap and swashplate HHC cases have similar appearances.

It is apparent that more control authority is needed to fully achieve the optimal

lift distribution of Figure 5-5. The increase in efficiency of a flap and swashplate HHC

system over a pure swashplate HHC system is clearly evident by comparing cases 2

and 3. However, both the flap system and swashplate system need harmonic inputs

greater than 3/rev to be more effective. To get an indication of how effective an arbi-

trary level of control authority would be for performance improvement, a further test
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Figure 6-2: Lift from the flap and swashplate of case 3, Table 6.3.
L/(pac(OR)2 ). Contour intervals are 0.003, labels are x 103.

was conducted. A model with 13 non-harmonic flaps and non-harmonic swashplate

control was fitted to the lift difference between the optimal case with Cmax = 1.5 and

the reference case. Power was not minimized; instead, only the lift was fitted. The

flaps could change position arbitrarily quickly between each discretized azimuthal po-

sition. Effectively, this meant that the flaps and swashplate could operate at 24/rev.

These high authority lift distributions matched the constrained optimal lift distribu-

tions very closely. A rough calculation, based on the level of the error in the fit of the

lift distribution, indicated that the high authority case would achieve efficiencies 9%

better than the reference case. Of course, this test cannot be considered as accurate

as the previously discussed cases, since the harmonic content of the controls is too
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Figure 6-3: Net lift from the reference case modified by the HHC flap and
swashplate actuation of case 3, Table 6.3. L/(pac(fR)2 ). Flight
parameters are listed in Table 5.3.

high to make a static analysis truly valid. However, it does confirm the utility of

harmonic inputs with greater than a 3/rev frequency. Even more effective, would be

generalized, non-harmonic inputs.

To analyze the effectiveness of generalized, non-harmonic inputs, a dynamic anal-

ysis is needed. This could be done with a comprehensive analysis program, such as

C60. An impulsive input could be given to the flap at a given azimuth. The resulting

lift distribution would then be differenced with a baseline distribution to isolate the

effects due to the additional control inputs. This would then be repeated at series of

azimuthal locations. Next, the resulting data would be compiled in a flap influence
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coefficient matrix, which would give the lift at any location due to a flap deflection at

any azimuth. Of course, a separate series of tests would have to be run for the effects

of a different sized flap or the effects of a flap at a different radial location. Also, the

data would depend on the flight conditions such as the forward speed and the thrust

coefficient.
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Chapter 7

Conclusions

This chapter begins with a summary of the analysis contained in this document.

It also highlights the most significant results. The work completed on the optimal

rotor problem should be viewed as a step toward improving the performance of actual

helicopters. Therefore, guidelines for further research on helicopter efficiency conclude

the chapter. The proposed research makes direct use of the optimal rotor solution.

7.1 Summary and Conclusions

The goal of this research has been to produce forward-flight, helicopter lift distribu-

tions which require the minimum induced power loss. This thesis contains the results

of this investigation as well as a discussion of the theoretical model used to optimize

the lift distributions.

Chapter 2 surveys standard methods used to compute the induced power of a

helicopter. Two of the methods, momentum theory and spanwise loading, only es-

timate the induced power, so they cannot be used to optimize a lift distribution. A

third method, here referred to as near wake analysis, yields expressions which exactly

compute the induced power. However, the method is numerically unreliable due to

its usage of vortex lattice-type downwash models. Therefore, it is also unsuitable for

optimization purposes.

A different method must be found to produce the optimal lift distribution. A
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procedure is described in Chapter 3 which follows an analysis done by Munro [24].

Strictly speaking, the analysis is restricted to lightly loaded rotors. However, experi-

ments on hovering rotors indicate that the analysis may have a broader applicability.

The method examines momentum and kinetic energy in the far wake and relates these

to the thrust and induced power of the rotor. The induced power is minimized with

respect to variations in the bound circulation, subject to trim requirements on the

rotor. It is recognized that this is fundamentally the same technique that can be used

to derive the minimum induced loss (m.i.1.) conditions for a fixed wing or a lightly

loaded propeller. In all three cases, the energy and momentum must be examined far

from the lifting system. Also, the theory leads to a geometric interpretation of the

optimal flow in the far wake. In this document, the analysis technique is referred to

as far wake theory.

Optimization using far wake theory leads to lift distributions which are not phys-

ically achievable for a rotor. Real rotors fly through an axisymmetric velocity field

and would not be able to generate enough lift on their retreating blade side. The

optimization is therefore modified to include constraints on the maximum allowable

local lift anywhere on a rotor blade.

This type of optimization is not common in helicopter research. Typical efforts,

such as multidisciplinary design optimization (MDO), seek to find the minimum he-

licopter power for a given set of blade parameters. MDO presupposes that the he-

licopter must use particular types of hardware. This optimization, using far wake

theory, is based solely on the aerodynamics alone. It results in lift distributions which

can be used to select the rotor technology which is most appropriate for enhancing

performance.

Because of the complex geometry of the far wake, the optimal rotor problem cannot

be solved analytically. A numerical solution procedure is described in Chapter 4. The

optimization theory uses variational principles, so a finite element method solution is

formulated by analyzing the same cost function. The extension of the optimization to

include the constraints on the maximum allowable local lift is done using augmented

Lagrangians. The procedure was implemented in a computer program known as
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CORC, on a CRAY X-MP supercomputer.

The energy in the rotor wake was shown to be concentrated in a narrow, skewed

cylinder. For typical forward flight speeds, this cylinder is highly skewed and has

the appearance of a flat ribbon, rather than a tube. This energy distribution is

difficult to model accurately with a regularly-spaced finite element mesh. For this

research, a regularly-spaced mesh is employed, and the skew problem is accounted

for by modifying the shape of the finite element domain. However, it could be that

the mesh is still overly stiff for a model of this size. In this case, the problem can be

solved by using a mesh with an unstructured spacing. Also, it should be noted that

energy calculations using the finite element method will always overpredict the true

energy in the wake.

The results of the CORC program are presented in Chapter 5. First the program's

functionality is validated. Then, the optimization of a typical, forward flight, lift

distribution is performed. Optimal solutions are generated for different levels of

C1max and varying numbers of rotor blades. Then, the optimal lift distributions are

compared to the lift distribution for a typical, non-optimal helicopter. It is found

that:

1. For approximately the same maximum local lift coefficient, the optimal lift

distribution is 11% to 16% more efficient than the reference distribution, at

CT = 0.012, and p = 0.25.

2. The optimal lift distributions concentrate lift toward the fore and aft regions of

the rotor disk.

3. Constraining the optimal lift distributions to produce realistic lift coefficients

causes the blades to achieve the maximum possible lift on the retreating side

without stalling.

4. Achieving the optimal lift distribution requires a reduction in shed vorticity,

which is manifested as less severe unsteady aerodynamic effects.

5. The efficiency of the optimal lift distributions increases as the level of Cmax
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increases.

6. The efficiency of the optimal lift distributions increases as the number of blades

increases.

It is recognized that producing the optimal lift distribution would require signif-

icant radial and azimuthal variations from the reference lift distribution. Chapter

6 examines the capabilities of a smart rotor to achieve the desired lift distribution.

The smart rotor is assumed to consist of a swashplate and independently-actuated

flaps distributed along the blade. The swashplate and flaps can be actuated at multi-

ples of the blade rotation frequency. A static aeroelastic analysis predicts that a 4%

reduction in induced power can be achieved with such a rotor.

In summary, the conditions to achieve the minimum induced losses with a lightly

loaded rotor have been described in detail. Minimum induced loss, i.e., optimal,

lift distributions are derived by minimizing the induced power with respect to the

bound circulation, subject to certain constraints. The procedure is a generalization

of the analysis that Betz used to derive the solution for the minimum induced loss

propeller. For the rotor, the optimization requires a numerical solution, which is

performed here using finite elements and augmented Lagrangians. The optimal rotor

lift distributions are between 11% and 16% more efficient than a typical rotor at

an advance ratio of 0.25 and a thrust coefficient of 0.012. It appears that a rotor,

augmented by multicyclic swashplate inputs and multicyclic servoflap inputs could

partially achieve the optimal loading distribution.

7.2 Recommendations for Future Work

Further work on helicopter performance should follow two courses of action. The

first course would involve refinement of the optimal rotor model. The second would

require further analysis with the model, to be followed by experimental work.

One of the useful qualities of the optimal rotor model is that the optimization pro-

cedure can be expanded to include new constraints or physical effects. This merely
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requires adding terms to the cost functional, Equation (3.37). For instance, to make

the aerodynamics more realistic, a term could be included to account for rotor blade

profile drag. Then, the optimization procedure would seek to minimize the combina-

tion of induced and profile power.

Profile power can be can be added to the cost functional because linear aerody-

namics predicts that the sectional profile drag is proportional to the angle of attack,

which is related to the circulation. The incremental profile power is equal to the profile

drag dot multiplied with the velocity at the blade section. As was done in Section 2.4,

the incremental power can be integrated to yield the average profile power,

Pp = B U. Dpdr db, (7.1)

where Dp is the profile drag, and P, is the profile power. Furthermore, it is noted

that aa is equal to C1. This substitution can be made in Equation (3.35) to reveal

that

a = 2 . (7.2)
Uca

The profile drag can be expressed in terms of the angle of attack by

1
Dp = pU2CCD a, (7.3)

2

where CDa is the sectional drag curve slope. Finally, substituting Equation (7.2) for

a gives the relation between profile drag and the circulation,

D = pU CD r. (7.4)
a

The profile power is thus a linear function of the bound circulation, which is the design

variable in the optimization. Profile drag is a viscous effect, coming from friction at

the blade surfaces. As such, the calculation of profile power can only be performed

in the near wake and is not considered in far wake theory.

The reader may wonder if other effects, such as wake rollup and contraction could

be modeled. These factors have not been considered because they are only present
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under heavy loading conditions. There does not seem to be a way to account for

these wake distortions with the current analysis technique, because the optimization

depends on wake periodicity. However, if the model were simplified to have an infinite

number of blades, then it might be possible that ad hoc correction factors could be

added to account for wake contraction. In other words, drawing the analogy to

propellers, the current technique is an exact numerical solution, as is the Goldstein

propeller solution. It is hypothesized that the rotor model could be simplified and

a new solution derived which is analogous to Betz's original propeller solution. This

would still require a numerical solution, because of the geometry of the skewed wake.

The new solution could then be modified, as Theodorsen [40] did for Betz's solution,

to include correction factors for wake contraction (also see [31], [32], and [45]).

The current analysis could be further enhanced by using an unstructured mesh in

the finite element model. As discussed in Section 4.4, the numerical accuracy of the

current mesh is limited by the skew problem. An unstructured mesh, using tetrahe-

dral elements instead of hexahedral elements, could concentrate more nodes toward

the edges of the wake sheet and the blade tips, thus improving solution accuracy.

Within the past two years, commercial mesh generation programs have become avail-

able which allow the user to specify the surface mesh and then generate the interior

geometry automatically. This would allow the model to retain the advantageous,

regular grid over the wake sheet, yet have the accuracy of an unstructured grid.

The second route for future research uses the optimal rotor solution to work on

the problem of actual helicopter performance. So far, the optimal rotor solution has

been examined at a variety of Cimax levels with a varying number of blades, for a fixed

thrust and speed. Also, the possibility of achieving near-optimal performance with a

smart rotor was briefly examined in Chapter 6. This investigation can be expanded.

Further tests should be run to obtain performance data for the entire flight envelope

(by varying / and CT). These cases have not been tested yet because reliable data for

a typical helicopter's induced power is not readily available. This data is necessary to

serve as a baseline performance measure. It is likely that the constrained optimal lift

distributions would provide greater performance improvements at certain portions of
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the flight envelope than at others. A single flight condition should be chosen where

optimal distributions indicate that a large improvement can be made to the induced

efficiency. Then, at the chosen flight condition, a series of computer analyses should be

run to determine the effects of general, non-harmonic flap and swashplate inputs. As

discussed in Chapter 6, this information can be used to generate flap and swashplate

schedules to minimize the power.

The validity of such an analysis can only be evaluated in a rotating rotor test setup.

An effort to develop scale models suitable for testing on rotating stands is currently

underway at MIT. The models use piezoelectric-actuated, trailing-edge servoflaps,

which can accept both multicyclic and general, non-harmonic control inputs. The

design of an experiment to test the smart rotor must consider what, if any, sensing

devices should be incorporated to the rotor feedback control system. Real-time flow

and pressure data could be used to modify the flap and swashplate schedules as nec-

essary. However, as the results of Chapter 6 demonstrated, the effects of multicyclic

control are subtle, so initial control experiments will necessarily be open-loop.
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