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Abstract

An experimental investigation of how small, localized

disturbances evolves and spreads in a laminar boundary layer has

been made. Two different types of disturbance generators were used.

The first consisted of circular latex membranes mounted flush with

the surface of a flat plate. The membranes were used in single or

double configuration in order to generate the different desired

disturbances. The disturbances in the flow was generated by letting

the membranes deflect in or out of the wall for a short time. The

second type of disturbance generator was a narrow slot of lenght

comparable to the diameter of the membranes, also mounted flush

with the flat plate. The slot could be rotated 360 degrees to allow for

different types of disturbanes. The disturbances from this type of

generator was created by sucking or blowing a short pulse of air



through the slot. The development of the disturbances downstream

were mapped by traversing a hot-wire in the spanwise and normal

directions to the plate at several locations downstream of the

disturbance generator. At each measurement station a time record of

the local streamwise velocity was taken. In this way a picture of how

the disturbances evolved and spread could be conceived at different

downstream locations. The aim of the experiment was to try and

generate disturbances that would grow algebraically in time, Landahl

[16]. The existence of this instability has been verified in direct

numerical simulations of the Navier-Stokes equations for the case of

plane Poiseuille flow, Henningson et. al. [20]. In the present

experiment, however, this type of growth could not bedetected.

Regardless of how the disturbance was generated and as long as the

initial amplitude was small enough not to trigger non-linear effects,

the downstream development of the disturbance had the same

behaviour. One condition for the algebraic instability is that the

disturbance must have a non-zero streamwise wave number zero

component. The experiment was designed to satisfy this condition,

especially for the case of blowing through the slot oriented parallel to

the streamwise direction of the flow. A theoretical explanation for

the absence of the algebraic instability in the experiment has been

found. The main reason for the difference between the experiment

and the numerical simulation is that the disturbance was generated

at the wall instead of out in the shear layer.
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1. Introduction

The understanding of how laminar flow becomes unstable and

breaks down to turbulence is of fundamental interest in most fluid

mechanics applications. One reason for this is that turbulent flow

around an object produces higher drag than laminar flow. Another

reason is that a turbulent flow around a body has higher heat

transfer rate than laminar, which is important especially for

hypersonic flows.

1.1 Linear theory

The study of stability and transition started with Osborn

Reynolds famous pipe flow experiment [1]. In this experiment he

found that a nondimensional parameter had a critical value by which

the flow changed from a smooth ordered state into a disordered one.

This parameter, nowdays called the Reynolds number, is the ratio of

inertial forces to friction forces and is usually written as:

Re =-
V

where U is a characteristic velocity, L a characteristic lenght and v

the kinematic viscosity. Reynolds thought that an instability

mechanism might be responsible for this abrupt breakdown of the

flow. The first to study this idea of an instabillity mechanism was

Rayleigh [2] who derived the equation for the evolution of a linear

wave in an inviscid parallel shear flow. He also found that in order



for a wave to become unstable in this type of flow, the mean velocity

profile has to have an inflection point, i.e. a point where the second

derivative of the mean velocity profile is zero which also means

that the streamwise vorticity has a extremum. This work was

followed by the study of the viscous case by Orr [3] and Sommerfeld

[4], who independently derived the now well known Orr-Sommerfeld

equation. The solution of this equation later showed that flows

without an inflection point could still become unstable at high

Reynolds numbers. Tollmien [5] and Schlichting [6] investigated the

case of boundary layer flows and estimated a critical Reynolds

number, i.e. the Reynolds number were the flow first becomes

unstable to infinitly small wave disturbances, to be between 420 and

575.

Experimentally these theoretical results were more difficult to

verify. The first successful atempt was done by Schubauer and

Skramstad [7], who used a vibrating ribbon to create waves in a flat

plate boundary layer. The ribbon could be made to oscillate at

desired frequenzies, and the growth and development of the waves

generated could be followed downstream with hot-wires. Most of the

features predicted by Tollmien and Schlichting was confirmed in this

experiment, including the critical Reynolds number. The reason for

the success of the experiment was that for the first time, care was

taken to make sure that the flow disturbances (turbulence level) was

keept low.

These first theoretical and experimental research efforts dealed



with the intital growth of infinitly small two-dimensional waves. One

reason for only studying two-dimensional waves was the result

derived by Squire [8], who showed that two-dimensional waves will

first become unstable in a parallel shear flow. He found that an

infintesimal oblique wave can be transformed into an equivalent

two-dimensional one at a lower effective Reynolds number.

Klebanoff, Tidstrom and Sargent [9] found in an experimental

investigation, using the oscillating ribbon technique, that after the

initial linear development of the waves they quickly became highly

three-dimensional. This tree-dimensionality was artificially

enhanced by putting small pieces of tape at regular spanwise

interwalls beneath the ribbon. This produced waves having a

spanwise variation. The peaks of this spanwise variation was

advected faster than the valleys, and forming into lambda shaped

vorticies that quickly broke down to turbulence in a series of high

frequenzy spikes. Kovasznay, Komoda and Vasudeva [10] explored

these lambda vorticies further, and found that they were associated

with sharp internal shear layers.

1.2 Localized disturbances

Another approach to the problem of stability of shear layers is

to study how a localized (in time and space) three-dimensional

disturbance developes as it is advected downstream by a mean flow.

This is mathematically a classical initial value problem approach. The



10

first to study this problem was Orr [3] who solved the linear two-

dimensional initial value problem for inviscid Couette flow. He

showed that in the inviscid case there must exist a continuous

spectrum of modes in addition to the discrete modes governed by the

Rayleigh equation in order to account for a general initial

disturbance. This continuous spectrum results from the singularity in

the inviscid equations which is a result of neglecting the viscous

terms. The singularity occurs where the phase speed of the waves

equals the local mean velocity. For viscous flows another continuous

spectrum exists associated with the existence of one or more free

boundaries. This can be found either by solving the Orr-Sommerfeld

equation, assuming oscillatory eigenfunctions at infinity, Grosch and

Salwen [11], or by using the initial value approach where it appears

in a natural manner, Gustavsson [12].

Case [13] and Dikii [14] outlined a solution for a general two-

dimensional parrallel flow. They showed for this case that only the

discrete spectrum can cause growth since the continuous spectrum

always will decay. Landahl [15], however, found by analysing the

three-dimensional problem that an additional effect arises from the

fact that when a fluid element is displaced vertically it still retains a

major part of its horisontal momentum. The result is a contribution

to the horizontal velocity if there is a mean shear present. This

produces a permanent scar in the flow. Landahl also found [16] that

this effect will cause an algebraic instability when low streamwise

wave numbers are excited, which means that the energy for a

disturbance having a streaky shape will grow linearely in time.
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Hennigson [17] noted that the lift-up of a fluid element is directly

proportional to the normal vorticity component.

Breuer [18] carried out an extensive investigation of the

development of initial disturbances in laminar boundary layers. He

made both an experimental and a numerical investigation of the

problem. By using rubber membranes mounted flush with the

surface of a flat plate hegenerated pulse-like disturbances in the

boundary layer. For small disturbances he found that the transient

portion of the disturbance decayed exponetially whereafter a wave

packet, formed by the dispersive wave modes, started to develop,

which was in good agreement with the theory of Gaster [19]. For high

amplitudes of the disturbance (to large to be assumed infinitesimal),

the shear layer created by the transient distorted the local mean

profile sufficiently to allow a secondary shear-layer-type instability

to grow.

Henningson, Johansson and Lundbladh [20] investigated weak

initial disturbances in plane Poiseiulle flow with direct numerical

simulations of the Navier-Stokes equations. They used an initial

disturbance consisting of two counter-rotating vortices. When the

vortices were parallel to the mean flow direction the evolution of the

disturbance was shown to be associated with the spreading of a wave

packet. By rotating the initial disturbance more than 10 degrees from

the mean flow direction they demonstrated that the total energy of

the disturbance showed linear growth in time. This, they concluded,

was caused by the net lift-up effect created when the disturbance
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were rotated.

1.3 Present work

The present work is an experimental investigation aimed at

verifying the existence of algebraic instability in a flat plate

boundary layer. The work follows Breuer [18] in much of the

experimental details where, e.g., his type of disturbance generator

has been mainly used. In his work, Breuer tried to simulate the

symmetric type of disturbance he used in his theoretical work. Here,

however, the approach is to try and generate a disturbance that

resembles the rotated symmetric disturbance used by Henningson et.

al. [20]. The way this has been done is to use two rubber membranes

mounted flush with the surface operating together with precise

timing and, with variable orientation to each other. Also thin slots of

different width were used as disturbance generators, for which the

orientation of the slot could be varied.

A related topic is also described in addition to the experimental

work. This is an numerical investigation of the inviscid stability of

the Blasius boundary layer profile.
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2. Experimental setup

2.1 Wind tunnel

The experiment was carried out in the Low Turbulence

Research wind tunnel (figure 1) located at MIT. The tunnel is a low-

speed, fan driven, closed loop facility. The test section is 6 m long

and has a cross-section area of 2 by 4 ft. The maximum velocity is

around 40 m/s and the streamwise velocity turbulence fluctuation

level has been measured to be less than 0.02 %. The minimum

velocity, that can be used and still retain good flow conditions is

about 0.5 m/s.

The tunnel has two interchangable test sections. The one used

for this experiment has a 6 m long flat plate mounted vertically in

the test section which has been used for fundamental flat plate

studies of laminar, transitional and turbulent boundary layers. The

other test section is empty exept for a traversing mechanism, and

have been used for a variety of different flow experiments. The flat

plate, made from aluminium, is 0.5 in thick and has an elliptical

tapered leading edge. It is joined to the floor and ceiling by porous

metal plates, through which suction of the boundary layers

developing in the corners can be applied. In the plate there are

inserted several plugs of plexiglass suitable for installing various

types of measurement equipment and for makeing flow

modifications. The walls parallel to the flat plate are diverging and
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are adjusted to give zero pressure gradient in the test section.

However, this adjustment was done for a tunnel speed of 40 m/s and

does not entirely hold for the speed used in this experiment, which

was 8 m/s. The effect of this is further discussed in chapter 3. The

plate also has a trailing edge flap for pressure gradient adjustments.

All measurements were made using constant temperaure hot-

wire anemometry. The hot-wire probes was mounted on the traverse

system in the tunnel. This traverse system was computer controlled

and could move the probes in all three directions. The system is

controlled by a Modulynx motion control unit and traversing is done

with step motors. The hot-wire probes was built inhouse, and the

type mainly used in this experiment was a single wire probe with a

1.27 p.m diameter Wollaston wire, with a lenght of 400 p.m giving a

L/D around 315 (figure 2). The anemometer amplifiers were also

built inhouse and were operated at a overheat of the probes at 30%.

The signal from the hot-wire was amplified and offset in order to use

the maximum resolution of the analog to digital converter which was

from -10 to +10 volts.

It is very important to keep the temperature of the air in the

tunnel constant in order to avoid drift of the hot-wire anemometers

used for the measurements. This was achieved with a heat exchanger

which kept the temperature at a constant level after a stabilizing run

time of ca 15 minutes.

All data were aquired using a Phoenix Data ADC (Analog to
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Digital Converter) connected to a MicroVAX II computer. The

maximum sampling speed of this system is 333 KHz for a single

channel. The ADC can sample up to 16 channels simultaneously using

a sample-and-hold circut on each channel. The MicroVAX II

controlled the traversing system by using a terminal line connected

to the Modulynx units RS-232 port. The computer was also used to

download and program the small microcomputer of type NMIX-0022

which controlled the valves used to create the disturbances. This

microcomputer was also connected via a terminal line from the

MicroVAX to it's RS-232 port. Figure 3 shows a schematic of the

measurement system. The way in which the microcomputer

controlled the valves will be described below.

2.2 Disturbance generators

Two types of disturbance generators were used. The first was a

further development of the technique used by Breuer [18] and

consisted of circular membranes made of latex. The membranes

(figure 4) were stretched across circular plexiglass plugs of diameters

varying from 9 to 25 mm. Beneath the mebranes there was a cavity

of 0.5 mm depth and with a diameter slightly less than the outer

diameter of the plug. In the bottom of the plugs two holes were

drilled. These holes were connected to either high or low pressures

through pressure tubes. High pressure was supplied by a 250 bar

pressure vessel. The pressure was regulated down to

approximatively 1 bar above atmosphere. Low pressure was
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supplied by a small vacuum pump. Also this pressure was regulated

and was keept slightly below atmospheric pressure. The whole plug

was then mounted flush with the surface of one of the larger

plexiglass plugs in the flat plate. Two membranes of equal diameter

were mounted side by side and the larger plug could be rotated 360

degrees. This made it possible to generate different types of

disturbances dependent on at which angle the membranes were

placed to each other and it also allowed for a study of different

parameters that influence the structure and shape of the

disturbance.

The disturbances in the flow were generated by either sucking

or blowing air into the cavity beneath the membrane. This made the

membrane deflect either in or out of the flat plate and thus either

dragging high speed fluid closer to the wall or pushing low speed

fluid away from the wall. This was done during a short time (4-10

ms) and in this way a pulse-like disturbance was created in the

boundary layer.

The other type of disturbance generator consisted of thin slots

mounted in small plugs (figure 5). The lenght of the slot was chosen

to be comparable to the diameter of the membranes and two slot

widths were used, 25 and 250 gm. The slots were constructed by

placeing two pieces of thin glass parallel to each other. The pieces of

glass had strait sharp edges and were glued on to the plexiglass plug

using a fine spacer in order to achive the the small width.

Underneath the slot a small sealed cavity was made and this had
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two pressure tubes that were connected to high and low pressures,

respectively.

For this case the disturbances was created by sucking or

blowing a short pulse of air through the slot and in this way

achieving a disturbance in the flowfield that reasembeled the ones

made with the membranes. In this case, however, mass was either

added or subtracted from the flow field, but this did not seem to

alter the sensibility of the boundary layer to the disturbances. The

slots could be rotated 360 degrees, which made it possible to vary

the shape of the generated disturbances. A schematic view of how

the disturbance generator and hot-wire was oriented on the flat

plate is seen in figure 6.

2.3 Hot-wire calibration and measurement

The hot-wires were calibrated in the test section of the tunnel.

The free stream velocity was checked by a pitot tube mounted on the

traverse system. The calibration usually consisted of seven

calibration points fitted to a cubic polynomial. Instead of using the

polynomial to calculate the velocity during the measurements a

calibration table was used. This was done by using the fact that the

ADC having 12 bits resolution and used in bipolar mode gives integer

values from -2048 to 2047 corresponding to voltages from -10 to

+10 volts. A velocity was calculated for each of the 4096 integer

values given out from the ADC and stored in an array of lenght 4096.
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The measured output from the hot-wire was then used as an index in

the calibration array to get the velocity. In this way the six

multiplications and three additions needed to calculate the velocity

from a cubic polynomial is replaced by simple indexing in an array.

For this particular measurement this increase in calculation speed

was not crucial since only 512 or 1024 points were measured at a

time, but for turbulence measurements, where several houndreds of

thousands of points are collected, this procedure can save much

computer time. A simple example routine in FORTRAN is found in

Appendix B. The calibration of the hot-wires was checked frequently

and maximum allowed deviation was 0.5%. If the deviation was

found to be more than this, but within a few per cent, the output of

the anemometer was adjusted to the calibrated value by using the

voltage offset. This new value was then checked over the entire

calibration range and usually found to be within the desired limit.

Since the tunnel was kept at constant temperature the main source

of drift of the hot-wires was from temperature drift of the

anemometer circuts.

2.4 Measurement arrangement

The flow field was mapped by traveresing a singel hot-wire in

different x-planes downstream of the disturbance generator. In this

way a time record of the streamwise velocity of the disturbance

could be measured as it passed a specific x-station.

The whole experiment was controlled by the MicroVAX II
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computer. The measurement program communicated with the ADC

and the traversing system directly and with the microcomputer

indirectly. First the probe was manually positioned at a desired

starting location, usually at the centerline of the disturbance, and at a

distance from the wall within the linear part of the laminar

boundary layer. From this position the program moved the probe to

the different measureing positions according to a predefined pattern.

The distance from the wall was found by measuring the velocity at

the first position and then using a linear interpolation scheme for the

linear part of the boundary layer to move to the desired height.

The disturbance was generated useing a 10 ps pulse that was

the output from the ADC when it was called using a time delay. The

10 ps pulse triggered the microcomputer to open and close the

valves in a predifined way. The usual opening time of the valves was

around 5 ms. The ADC started digitizing data after the time delay,

and 512 samples were taken using a sampling speed of 3,33 KHz. The

time delay was chosen acording to an estimate of the advection

speed of the disturbance and varied between 1 to 200 ms. This

procedure was repeated 100 times at each measuring position and

the mean of these 100 time records was calculated, giving a coherent

signal of the disturbance. The shape of the distubance could then be

found, e.g., by plotting a contour plot of the time records at a

constant y-position for several z-positions. A series of these contour

plots at different x-positions showed the development in time of the

disturbance.
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3. Wind tunnel flow quality

Before the experiment was started a thorough investigation of

the flat plate mean boundary layer was conducted. This was to

ensure that well defined flow conditions were present when studying

the development of the initial disturbances. The boundary layer at

78 positions were measured, at 13 x-positions, ranging from 500 mm

to 3500 mm from the leading edge of the plate, in steps of 250 mm,

and at 6 z-positions ; ±400 mm , ±200 mm and ±5 mm. A plot of all

profiles together with the theoretical solution of the Blasius equation

can be seen in figure 7. All profiles fall on top of each other. This has

been accomplished by calculating a virtual origin for each profile.

The non-dimensional distance from the wall is defined as

U

V(xY -vx-x0)

where xo is the virtual origin, which is due to the fact that the plate

has a blunt leading edge. Figure 8 shows how the measured

displacement thickness along the centerline of the plate compares to

the theoretical value for the same profiles. As can be seen the

variations are less than 1 % for most x-locations. The change of the

virtual origin with distance from the leading edge is shown figure 9.

This increase of the virtual origin means that at each subsequent

position, the boundary layer looks like it has started further

downstream than the previous, and this is an indication that the flow

is accelerating and thus having a adverse pressure gradient. A check

of the setting of the angle of the flat plate showed that it was
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installed to give zero pressure gradient at a free stream speed of 40

m/s. As the experiment described here were carried out at 8 m/s,

free stream velocity, the flow was accelerated because of the thicker

boundary layers developing on the walls at the lower speed. An

estimate of the pressure coefficient parameter defined as [21]

x dU

U(x) dx

gave a value of approximatively -0.01, which gives a slightly more

stable boundary layer then the Blasius solution. It was considered

that this slightly more stable boundary layer would not significanly

alter the behaviour of a localized disturbance introduced into it.

Another problem encountered during the boundary layer

measurements was that the traverse system was not completely

parallel to the flat plate. When doing a traverse in the z-direction the

measured velocity varied, even though the probe should have been

at the same distance from the wall. A typical example is seen in

figure 10 where the displacement thickness measured 1000 mm

from the leading edge of the plate is compared with the mean value

at this x-location. The problem was solved by at each measurement

location traversing the probe in the y-direction to find the distance

from the wall having the same mean velocity. The technique used to

acheive this was to measure the velocity at two points within the

linear part of the boundary layer, (ulU- <0.5), and then using a linear

curve fit to these points to find the location with the desired mean

velocity, after which the probe was moved to this location.
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The last major problem encountered while doing the mean flow

measurements was that the whole traversing system was vibrating.

This vibration was clearly seen on an oscilloscope when the probe

was close to the wall. In order to damp the vibrations a profiled

airfoil section, made of poly-uretane, was placed over the main beam

of the travesing system. This helped to some extent, but to get

adequate damping, the two ends of the airfoil holding the y-traverse

in the traversing system was fixed to the wall by plasticine. For

measurement of mean bounday layer profiles, this procedure was

used but not for the measurement of the development of the initial

disturbances. The velocity fluctuations from the vibration was at

least one order of magnitude smaller than the generated

disturbances, for most cases, and the influence on the measured time

signal were minimized through the averageing procedure used.
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4. Measurements

The measurements will be presented in three parts. The first is

basically a repetition of the measurements conducted by Breuer [18]

in the same facility. This concerns the development of symmetric

disturbances generated by a single membrane going either up-down

(positive disturbance) or down-up (negative disturbance). The

second part shows different configurations of membranes, mainly

combinations of two membranes but also single membranes with

different dampings and opening times. Finally, results will be

presented from the disturbances genereted by the narrow slots. This

includes both sucking and blowing through the slot and rotations of

the slot, positioning it at different angles to the flow.

4.1 Positive and negative symmetric disturbances.

Figure la-e shows the downstream development of a positive

disturbance from the 15 mm diameter membrane. The probe is

placed at a specified location in the boundary layer, usually where

the velocity is around 30% of the mean flow value, on the centerline

behind the disturbance generator. The time axis shows the total time

during which the measurement is done. This time starts after a delay

corresponding to the streamwise distance between the generator and

the measurement location. The non-dimensional distance from the

disturbance generator is defined as



24

x/8 (XMea - Xmrae)

membrane

The mebrane is first pushed out of the wall by a small pulse of air in

the cavity beneath the mebrane. This gives a decrease in velocity at

the location of the hot-wire probe, since low speed fluid is deflected

away from the wall. After ca 5 ms the valve is vented to the

atmosphere. This makes the membrane go down and even overshoot

a little, thus giving an increased velocity at the location of the probe.

In figure 10a, this can be seen clearly. The x-location is here 25

displacement thicknesses downstream of the center of the membrane

(x /8* = 25) and the peak to peak amplitude is 2.1% of the free stream

velocity. After another 15 displacement thicknesses downstream

(figure 1lb, note that the vertical scale is adjusted to the peak-to-

peak amplitude for these plots) the positive overshoot of the velocity

is almost damped out. The negative part still looks like a transient

pulse but the peak-to-peak amplitude has dropped to 0.88%. At 100

8* downstream of the disturbance (figure 11c) the amplitude has

dropped to 0.47% but the shape of the disturbance still looks similar

to the one in figure 1 lb. A small drop in velocity can be suspected

ahead of the main negative peak. In figure lid this small drop has

developed into a new wave lenght of the disturbance. The distance is

150 8* and the amplitude is now down to 0.37%. After this the

disturbance is only spreading in x and z directions and in figure lie

ca 3.5 wave lengths can be seen. The disturbance has evolved into a

wave packet. The distance is here 400 8* downstream of the

disturbance generator. The amplitude is still ca 0.40% and it stays
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almost constant at this value down to x /3 - 600. Further

downstream the disturbance will start to grow. A subharmonic

appears, the amplitude of which will grow, whereafter non-linear

effects take control and the disturbance quickly breaks down into a

turbulent spot. The last scenario is outside the scope of this

experiment and will not be discussed further. Figures 12a-e show

how a negative disturbance develops. As can be seen, the shapes at

the various x-positions look the same as for the positive disturbance

but have a phase shift of 1800. The amplitude of the initial

disturbance for this case is lower than for the positive disturbance,

only 0.26 % at x /8* = 25. For this particular initial amplitude the

disturbance was hard to pick out from the background noise by the

averaging technique. For x /8* > 50 this is partly due to the low

amplitude, only ca 0.06% corresponding to ca 5 mm/s, and partly due

to the vibration of the traversing system. For these measurements a

digital band-pass filter was employed to pick out the features of the

signal. The disturbances at x /8* = 100,150 and 350 are shown in

figure 12c, d and e respectively, and resemble those shown in figure

1 lc-e except for the phase shift. This development af the disturbance

are similar to what Breuer [18] found, and the wave packet

spreading part, after the initial transient has decayed, agrees with

the theory of Gaster [19].

The amplitudes for the two cases were nondimensionalized

with its respectivly initial amplitude and plotted against non-

dimensional downstream distance in figure 13a. The behaviour of the

two cases are similar and agrees also with the results of Breuer [18].
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In figure 13b the subsequent growth of the wave packet far

downstream can be seen.

4.2 Unsymmetric disturbances

With unsymmetric disturbances is meant disturbances

generated by using two membranes operating together but with

predefined time lag and distance between them. The aim of this was

to try and produce a disturbance that contained energy in the wave

component with zero wavelength in the streamwise direction. This

was done by rotating the mebranes so that a line connecting their

respective centres, was at an angle to the free stream direction. A

typical development of this type of disturbance is presented in

figures 14a-e. In these figures the full line represents positive

velocity and the dotted line negative. The initial disturbance at x /6*

= 12 is clearly skewed (figure 14a) with one part phase shifted 1800

ahead of the other. This pattern quickly becomes smeared out to one

distinct, slightly skewed disturbance after a distance of only 14 8*

further downstream (figure 14 b). At the same time the amplitude

has dropped with the same rate as in figure 13a. After another 24

8* the symmetric wavepacket is discernible (figure 14c) and further

downstream the wavepacket only grows in the x- and z-directions

(figures 14d-e). Figures 15a-c shows the same scenario for a phase

shifted initial disturbance with the only difference in behaviour of

the disturbance downstream being a phase shift in the wave packet.

It should be noted that the vertical scale of figures 14 and 15 are

adjusted to the size of the disturbance. In figure 16 a schematic of
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different types of initial disturbances that were tried is shown. All of

these gave the same downstream development of the disturbance

exept for the phase shift.

In order to show that a disturbance have energy at a = 0, the

time signal have to be converted to a space signal and then Fourier

transformed. But to do this the phase velocity and also the dispersion

relation of the disturbance have to be measured. This can be done,

but was considered to be outside the time frame of this work. It can

be said though, that the time signal contained energy at 2 = 0, which

implies that this is true also for the wave number.

Unsymmetric disturbances were also produced by using the

thin slots to produce the disturbance. Here the non-symmetry was

produced by rotating the slot to different angles to the mean flow

direction. Also in this case the same type of wave packet appeared

and developed in a similar way as for the membranes. The initial

transient decaying where after a dispersive wave packet appears.

Even for the case with the slot parallel to the flow direction no

change of disturbance development could be found. This was most

surpriseing since this type of disturbance basically is two streamwise

vortices, whom will have most of their energy in spanwise

wavenumbers at low streamwise wave numbers. An explanation for

the absence of algebraic instability is given by the analysis in

Appendix A.
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5. Inviscid theory

5.1 Solution of the Rayleigh equation for the Blasius

solution of the laminar boundary layer.

An investigation of the inviscid stability of boundary layer

profiles was done in order to get a simple and fast tool to investigate

profiles having an inflection point. The code that was written to this

cause was used to find the full dispersion relation for a Blasius

boundary layer. This result is included here as it is belived that it

has not been previously published.

5.2 Equations

The Rayleigh equation can be derived from the two-

dimensional unsteady Euler equations

u, + v, =0

u, + uuX + vuy = -p,
v, +uv, + vvy =-py (5.1)

with the boundary conditions

u(0) = v(O) = u(00) = v(o) = 0

These equations have been derived using the following non-

dimensionalisations
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Y* Y*

Y = " =  X

1.7208 -J
vO

U

U--
Uo

P
; P-1

-p Uo2

2

V

Uo

The assumptions made are that the flow is parallel, i.e. the mean flow

is parallel to one of the coordinate axes. In this particular case the

mean flow is taken to be in the direction of the flat plate and only

dependent on the distance from the plate. Thus the velocities may be

written

u(x,y,t) = U (y) + u'(x,y,t)

v(x,y,t) = v'(x,y,t)

and the pressure is assumed to be constant

P(x,y,t) = Constant + p'(x, y, t)

Inserting this into (5.1) and neglecting terms quadratic in the

disturbance quantities gives

u' +v = o

u:+ Vu + v'U, =-p'

v +Uv = -p

(5.2)

The coefficients of (5.2) depend only on y, which means that the

equations admits solutions which depend on x and t exponetially.



30

Solutions of the form

u' = iiexp[i(ax + act)]

v' = iexp[i(ax + act)]

p' = exp[i(ax + act)]

is substituted into (5.2). This gives

ia + D, = 0

ia(U - c)t + U = -ia

ia(U - c)v = -Dp

d/dy. Solve for the u-velocity and

differentiating in the two first equations in (5.3), and

this into the third gives

-a 2 (U - c)vi = -U'DG - (U - c)D 2 v + U" + U'D

which rewritten becomes the Rayleigh equation

pressure and

then inserting

- + a =

(5.4)

The boundary conditions are

^(y = 0) = ^(y = 00) = 0

This equation with boundary conditions is an ordinary second order

where D =

(5.3)
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differential equation with a regular singular point at U=c and can in

principle be solved analytically using Frobenius method. However, in

a practical case this requires that the velocity profile has a simple

analytical form. Here the Rayleigh equation is solved for the Blasius

profile, which in itself comes from numerical integration of the

Blasius equation and therefore a numerical approach hes been

chosen. The only difficuly with the integration of the Rayleigh

equation comes from the singularity and this must be treated

properly. Lin [22] showed that for the solution of the Rayleigh

equation to be the asymptotic solution to the viscous case as the

Reynolds number goes to infinity, the integration path has to be

above the real axis if U'(ycrit)<O and below if U'(ycrit)>O, where ycrit=y

at U=c.

5.3 Numerical solution

The Rayleigh equation is easily solved by using the shooting

metod. In this case the equation is written

(U - c)(D2 - a )v -U"v=O (5.5)

This is rewritten on matrix form by letting

e1 = v

8 2 = V1

and becomes
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[E1r o lre, 1 U"=1a = - +e1  ;
Sa (U - c) (5.6)

This equation system is solved by using a 4th order Runge-Kutta

scheme. The boundary conditions are given from vertical velocity

vanishing on the wall and at infinity. The metod of solution is to first

define a integration path in the complex plane going around the

singularity at U=c. Since the derivative of a Blasius profile is

everywhere positive the integration path has to lie on the negative

side of the real axis. Figure 17 shows the integration path used for

the calculations presented here. A Blasius profile is also included as

reference. It can be seen that the path is in the complex plane from

the wall and up to where the derivative of the velocity vanishes. This

is necessary for these specific calculations since the wave number

range used gives phase speeds of order unity. The next step is to

solve the Blasius equation using the chosen integration path. This is

done by using the shooting method and a 4th order Runge-Kutta

scheme. The integration is here from the wall out to where the

velocity is one. A complex form of the equation has to be used since

the integration path is complex. The second derivative of the velocity

has to be calculated. Then the Rayleigh equation is solved using the

velocity profile and second derivative from the Blasius solution as

coefficients. Care has to be taken to scale the second derivative in the

right way. The Blasius equation is non-dimensionalized with the

length
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1
2= vx 2

lB tUo

and the Rayleigh equation with
1

I = S = 1.7208( .D

this gives that the second derivative of the Blasius equation has to be

scaled with a factor

.7208 = 1.4806

The integration in this case is from the outer boundary (infinity) in

to the wall where the condition of vanishing normal velocity has to

be matched. A wave number is chosen and an initial eigenvalue, c,

has to be guessed. If the guess is sufficiently close to the actual value

the eigenvalue will be found. In this case the secant method is used

to search for the eigenvalue that gives the right boundary condition

at the wall. In practice the integration starts from a high value of y.

Usually a value of y /6* above 6 is sufficient. Here the starting value

comes from the solution of the equation at infinity where the

velocity is constant and the second derivative is zero. The

eigenfunctions will be of the form

v(oo) = const -e-

and the starting solution is set to
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A FORTRAN program that solves the Rayleigh equation has

been written to calculate the inviscid stability characteristics of the

Blasius boundary layer profile. The program is listed in appendix C.

The eigenvalues has been calculated for a = 0.02 to a = 2.04. The

highest value of a is restricted by the maximum phase speed. For

higher a's the equation has no physical solution. The result of the

calculation is shown in figure 18a-c. As can be seen the inviscid

stability of the Blasius boundary layer increases for increasing wave

number, which means that the Blasius boundary layer is inviscidly

stable for all wave numbers. The results show good agrement with

the sparse result from White [23] and Mack [24].
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6. Discussion

This investigation, aimed at the study of the algebraic

instability of the Blasius boundary layer, has not been able show

linear growth of localized disturbances generated at the wall. The

reason for this is explained in appendix A. The results of using

various types of different disturbances gave no difference in the

scenario of the development of the disturbance. Good agrement with

the results of Breuer [18] and Gasters [19] theoretical result was

achieved for all types of disturbances. The only influence found on

the development of the disturbance from the shape of the initial

disturbance was the phase shift. A 1800 phase shift gave a 1800

phase shift in the dispersive wave packet downstream.

The inviscid stability of the Blasius boundary layer has been

calculated for the span of wave numbers from 0.02 to 2.04. The

results agrees with what is available in the literature.
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Appendix A

Inviscid linear perturbation due to wall motion

The linearized equation for the vertical inviscid perturbation

velocity reads

-D U" v = 0
Dt dx (A.1)

where

(A.2)

with boundary conditions:

v(x,0,z,t) = = v,(x,z,t)
at

v(x,oo,z,t) = 0

(A.3)

(A.4)

where y=r(x,z,t) describes the motion of the flexible membrane. The

integration of (A.1) with respect to time gives

D = (, y, z)+ U"/, (A.5)

where subscript

element liftup,

zero denotes initial values, (t=O), and 1 is the fluid

l(x,y,z,t) = Jv(x,y,z, t)dt
(A.6)

and where

x, = x - U(t - t) (A.7)

The membrane motion is confined to a finite time t - T after which vw

= 0 Solution of (A.2) with (A.5) yields
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4 1 7

4;r

dxI dz1 dy1U"lx (x, Y, z, [t) - -
0

f f dx dz1

W- (A.8)

where

R1 = (x - x)2 + (y _ )2 + (z )2

R = (x - x, )2 + (y + Yz -z 1 )2

R = (X - X1)2 +y2 +(Z- 2

On the assumption that the fluid

within a finite range of x such that

1--0 for IxI->c

element liftup, 1, is nonzero

(A.9)

one finds that

vr- vdx I yV,(z, t)
2 I y2 + (Z - 1)

(A.10)

For t > T, for which v, = 0, then

V=0

that algebraic instability cannot be generated by small

amplitude wall motion in the manner tried in the experiment.

only

(A.11)

showing

V, (X,z19t)

3'
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Appendix B

Example of using calibration table to find measured

velocities

PROGRAM TABLEX

C

REAL*4 TABLE(-2048:2047),VELO(1024),A(4)

INTEGER*2 INDATA(1024),TSAMP, TDELAY

C

C READ POLYNOMIAL COEFFICIENTS FROM CALIBRATION FILE

C

READ(1) (A(I),I=1,4)

C

C CALCULATED VELOCITIES FOR EACH INTEGER VALUE OF THE ADC

C

DO I = -2048,2047

TABLE(I) = A(1) + A(2)*I + A(3)*I*I + A(4)*I*I*I

ENDDO

C

C COLLECT DATA FROM ADC (ONLY EXAMPLE CALL)

C

CALL ADC(INDATA,1024,TSAMP,TDELAY)

C

C CALCULATE VELOCITIES

C

DO J = 1, 1024

VELO(J) = TABLE(INDATA(J))

ENDDO

STOP

END
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Appendix C

Program solving the Rayleigh equation for the Blasius

boundary layer

PROGRAM BLARAY
C

C Program that solves the Rayleigh equation for a
C boundary layer profile.(SINGLE PRECISION VERSION)
C
C Solves for the Blasius equation in complex form.
C

IMPLICIT NONE
C

COMPLEX*8 FIl(100),FI2(100),ALFA(100),C(100),C1,C2,TEMP
COMPLEX*8 U(199),Y(199),U2(199),D,D1,AC,BC,U2A,UA,UNEW
COMPLEX*8 UP(199),UPNEW,UPOLD,UOLD,F(199)

C
INTEGER NSTEP,I,J,IT,IALFA,NCIRC,NSTEP2
INTEGER NALFA,NCIRC2,INDEX

C
REAL*4 YMAX,AR,CR,CI,YCR,YCI,AM,ERR,RESIDUE
REAL*4 YR,YI,THETA,PI,DALFA

C
PI = 4.*ATAN(1.)
ERR = 1.E-4
YCR = 1.35
YCI = 1.35
NSTEP = 100

C
YMAX = 8.0

C
C Inital guess for eigenvalue c and alpha range.
C

CR = 0.01
CI = -0.01

C
C1 = CMPLX(CR,CI)
C2 = (0.01,0.01) + C1

C
AR = 0.02
AM = 2.06
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NALFA = 100
ALFA(1) = CMPLX(AR,0.0)
DALFA = (AM-AR)/NALFA

C
C Defining integration path.
C

NSTEP2 = 2*NSTEP-1
NCIRC = NSTEP/2
NCIRC2 = 2*NCIRC+1

C
DO I = 1,NCIRC2

THETA = PI*(I-1.)/(NCIRC2-1.)
YR = YCR*(1.0-COS(THETA))
YI = -YCI*SIN(THETA)
Y(I) = CMPLX(YR,YI)

ENDDO
C

DO I = NCIRC2,NSTEP2
YR = YCR*2. + YMAX*(I-NCIRC2)/(NSTEP2-NCIRC2)
Y(I) = CMPLX(YR,0.0)

ENDDO
C
C Solving the Blasius equation.
C

U(1) = 0.0
UP(1) = 1.660287
U2(1) = 0.0
CALL CBLASIUS(NSTEP2,Y,F,U,UP,U2)
UPNEW = UP(1)
UNEW = U(NSTEP2)

C
UP(1) = 1.05*UP(1)
CALL CBLASIUS(NSTEP2,Y,F,U,UP,U2)
UPOLD = UP(1)
UOLD = U(NSTEP2)

C
RESIDUE = 1.E30

C
DO WHILE(RESIDUE.GT.ERR)

UP (1) = UPNEW-(UNEW-1.0)*(UPOLD-UPNEW)/ (UOLD-UNEW)
CALL CBLASIUS(NSTEP2,Y,F,U,UP,U2)
UOLD = UNEW
UPOLD = UPNEW
UNEW = U(NSTEP2)
UPNEW = UP(1)
RESIDUE = ABS(U(NSTEP2)-1.0)

ENDDO
C
C Switching order of the elements in integration path,
C velocity and second derivative.
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C
DO I = 1,NSTEP

INDEX = NSTEP2+1-I
C

TEMP = Y(I)
Y(I) = Y(INDEX)
Y(INDEX) = TEMP

C
TEMP = U(I)
U(I) = U(INDEX)
U(INDEX) = TEMP

C
TEMP = UP(I)
UP(I) = UP(INDEX)
UP(INDEX) = TEMP

C
TEMP = U2(I)
U2(I) = U2(INDEX)
U2(INDEX) = TEMP

ENDDO
C
C Start of alfa loop !!!
C

DO IALFA = 1,NALFA
C
C Start integration. Integrate for each of intially
C guessed c's and then check with the secant method which
C way to go in order to satisfy the centerline boundary
C condition.
C

C(IALFA) = C1
C
C Zero the iteration counter.
C

IT = 0
C
C Here starts the iteration loop.
C
50 CONTINUE

C
C Set up start condition. The disturbance is assumed to
C vanish at infinity which gives the condition
C
C V(Y=LARGE) =EXP (-ALFA(IALFA) *Y)
C
C This condition and its derivative is used as start
C values for the integration.
C

FIl(1) = CEXP(-ALFA(IALFA)*YMAX)
FI2(1) = -ALFA(IALFA)*FIl(1)



46

C Integration.
C

CALL RUNGE(FI1,FI2,Y,U,U2,C(IALFA),ALFA(IALFA),NSTEP)
C
C End of integration.
C
C Normalize solution.
C

DO I = 1,NSTEP
FIl(I) = FIl(I)/FI2(NSTEP)
FI2(I) = FI2(I)/FI2(NSTEP)

ENDDO
D = FI1(NSTEP)

C
C Check determinant (here only one element) and see if
C boundary conditon at the wall is satisfied. If not
C calculate new c using the secant method.
C

IF (CABS (D) .LT.ERR) GOTO 100
IF(IT.GT.2)THEN

IF(CABS(C(IALFA)-C1) .LT.1.E-6) GOTO 100
ENDIF

C
IT = IT + 1
IF(IT.GT.50) THEN
WRITE(*,*)' Number of iterations exeeded 50'
GOTO 2

ENDIF
C
C First iteration proceed with second guessed c2.
C

IF(IT.EQ.1)THEN
C(IALFA) = C2
D1 = D

ELSE
C2 = C(IALFA)-D*(Cl-C(IALFA))/(D1-D)
C1 = C(IALFA)
C(IALFA) = C2
D1 = D

ENDIF
C

WRITE (*, 99) IALFA, IT, C(IALFA) ,D1
C

GOTO 50
C
100 CONTINUE

C
C2 = C(IALFA)
IF(IALFA.NE.NALFA) ALFA(IALFA+l) = ALFA(IALFA)
& + CMPLX(DALFA, 0.0)
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ENDDO! IALFA

IALFA = ',13,' IT = ',12,' C =',2F10.6,
D =',2E10.2)

C
99 FORMAT (1X, '

&
C
2 STOP

END
C

C
SUBROUTINE RUNGE(FI1,FI2,Y,U,U2,C,ALFA,NSTEP)

C

C
C Subroutine that integrates a 2D vector using a
C fourth-order Runge-Kutta scheme.
C
C
C

IMPLICIT NONE
C

INTEGER I,J,NSTEP

COMPLEX*8
COMPLEX*8
COMPLEX*8

FI (NSTEP),FI2(NSTEP),H,All,Al2,A22
A21,A31,A32,A41,A42,Y(2*NSTEP-1)
C,ALFA,A,ALFA2, U (2*NSTEP-1),U2(2*NSTEP-1)

ALFA2 = ALFA*ALFA

DO I = 1,2*NSTEP-3,2

H = Y(I+2)-Y(I)
J = (I+1)/2

All = FI2(J)*H
A12 = (U2(I)/(U(I)-C)+ALFA2)*FI1(J)*H

(FI2
(FII
(FI2
(FII
(FI2
(FIl

FI (J+1)
FI2 (J+1)

(J)
(J)
(J)
(J)
(J)
(J)

+A12/2.0)*H
+A1/2.0)* (U2(I+1)/(U(I+1)-C)+ALFA2)*H
+A22/2.0)*H
+A21/2.0) * (U2(I+1) / (U(I+1)-C)+ALFA2)*H
+A32) *H
+A31)*(U2(I+2) / (U (I+2)-C)+ALFA2)*H

= FII(J)+(A11+A21*2.0+A31*2.0+A41)/6.0
= FI2(J)+(Al2+A22*2.0+A32*2.0+A42)/6.0

A21
A22
A31
A32
A41
A42

ENDDO

RETURN
END
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SUBROUTINE CBLASIUS(NINT,Y,F,U,UP,UPP)

C
C Integrates the complex Blasius equation.
C

IMPLICIT NONE
C

INTEGER NINT,I
C

COMPLEX*8 F(NINT) ,U(NINT),UP(NINT) ,UPP (NINT) ,Y(NINT) ,H
COMPLEX*8 All, Al2,Al3, A4,A21,A22,A23,A24,A31,A32,A33

COMPLEX*8 A34,A41,A42,A43,A44
C

DO I = 1,NINT-1
H = Y(I+1)-Y(I)

All
A13
A14

A21
A22
A23
A24

A31
A32
A33
A34

A41
A42
A43
A44

H*U (I)
H*UPP (I)
-H*l .4806* (F (I) *UPP (I) +U (I) *UP (I))

H* (U(I) +0.5*A12)
H* (UP (I) +0.5*A13)
H* (UPP (I) +0.5*A14)
-H*1.4806*( (F(I)+0
(U(I)+0.5*A12)*(UP

H*(U(I)+0.5*A22)
H* (UP (I) +0.5*A23)
H* (UPP (I) +0.5*A24)
-H*l.4806* ((F (I) +0
(U (I) +0.5*A22) * (UP

.5*A11)*(UPP (I) +0.5*A14) +
(I)+0.5*A13))

.5*A21)*(UPP(I)+0.5*A24) +
(I)+0.5*A23))

H*(U(I)+A32)
H* (UP (I) +A33)
H* (UPP (I) +A34)
-H*l. 4806* ( (F (I) +A31) * (UPP (I) +A34)
(U(I)+A32)*(UP(I)+A33))

F(I+l) = F(I)+(A11+2.0*A21+2.0*A31+A41)/6.0
U(I+l) = U(I)+(A12+2.0*A22+2.0*A32+A42)/6.0
UP(I+1) = UP(I)+(A13+2.0*A23+2.0*A33+A43)/6.0
UPP(I+1) = UPP(I)+(Al4+2.0*A24+2.0*A34+A44)/6.0

ENDDO

RETURN
END

_______________________________________________________________________________
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Side view
Figure 1. The low turbulence wind tunnel.

0.41

Figure 2. Hot-wire probe.
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Figure 3. Measurement set-up.
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Figure 4. Membranes placed in plexiglass plug in the flat plate.

U
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Figure 5. Plexiglass plug with slot in the flat plate.
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Figure 6. Location of membranes in plug in the flat plate.
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Figure 7. Mean boundary layer profiles at 78 different locations.
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Figure 11 a. Positive disturbance. x / S = 25
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Figure 11 b. Posirive disturbance. x / 5 = 40
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Figure 11 c. Positive disturbance. x / 6 = 97

0.21

0.21

021

0. 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T=e [s]

Figure 11 d. Positive disturbance. x / " =150
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Figare 11 e. Positive disturbance.
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Figure 12 a. Negative disturbance. x / 6 = 25
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Figure 12 b. Negative disturbance. xl c/ =50
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Figure 12 c. Negative disturbance. x/ 65 = 97 band-pass filtered signal.
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Figure 12 d. Negative disturbance. x/6 = 145 , band-pass filtered signal.

0.29

0.29

0.29

0.29
0. 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Tme Is]

Figure 12 e. Negative disturbance. x / 5 = 335 , band-pass filtered signal.
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Figue 14 a. Positive disrurbanc. x/ 3 = 12
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Figure 14 b. Positive disturbanc=. x /6 = 26
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Figure 14 c. Positive disturbance. x/3" =50
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rFiure 14 d. Positive disrurbanc:. xl/ = 240, band-pass filtered signal.
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Figure 14 e. Positive disturbance. x/ 5 = 335, band-pass filtered signal.
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Figure 15 b. Negative isturbance. x / 6 = 50
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Figure 17. Integration path for solving Rayleigh equation for the Blasius boundary layer.
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Figure 18 a. Phase speed as function of wave number.
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Figure 18 b. Damping factor as function of wave number.

0.0

-0.1

-0.2

c- -0.3

-0.4

-0.5

-0.6
0.0 0.2 0.4 0.6 0.8 1.0

Figure 18 c. Inviscid eigenvalues of the Blasius boundary layer.


