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ABSTRACT
The effect of different structural parameters on the indentation and

bending behavior of laminated plates was investigated through a nonlinear
analysis and static indentation experiments using rigid backface support
and clamped-clamped boundary conditions, and specimens with six
different spans between 32 and 508 mm in the clamped-clamped condition.
The specimens were graphite/epoxy laminates in a [±452/02]s layup made
from Hercules AS4/3501-6 tape prepreg. The laminates were loaded at their
geometrical center with a 12.7 mm hemispherical indentor, while
recording force, deflection, indentation and strain data. The damage in the
specimens was evaluated using X-ray photography and cross-sectioning. A
nonlinear analysis of the bending of the plates was developed using
nonlinear strain-displacement relations, laminated plate theory, and the
Rayleigh-Ritz method to produce a set of nonlinear equations to be solved
using the Newton-Raphson method. The indentation behavior of the plates
was influenced by structural parameters as indentations were seen to be
different at a given force level depending on the boundary condition and
possibly, the span. A comparison between previous impact results and the
static tests, for the same structural parameters, showed that static force-
deflection behavior for the two boundary conditions tested bounds the
behavior in the impact tests and that membrane effects are important in
both impact and static events. The membrane behavior was observed to
become more dominant for larger spans and at increased force levels. The
analytical force-deflection and force-extensional strain curves fit the
experimental data well using a fitting parameter which accounts for the
flexibility of the in-plane boundary conditions. The initial damage in the
specimens consists of matrix cracks near the backface of the specimens.
These are accompanied by delaminations at higher force levels, which
increase in extent toward the lower face of the laminate. The specimens
tested with a rigid support show no damage (to loads of 1479 N) while the
specimens tested with a clamped-clamped support show a progression of
damage for the same forces tested, initiating between 507 N and 549 N, but
with no variation with total span. Using force as the parameter for
comparison, the type and through-thickness location of the damage are
similar for both impact and static tests, but the overall extent of the damage
is smaller for statically loaded specimens.
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Title: Associate Professor, Department of Aeronautics and
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NOMENCLATURE

a plate dimension in x-direction

Ai modal amplitude associated with u-displacement

Aij in-plane stiffness component of the plate (i, j = 1, 2, 6)

b plate dimension in y-direction

Bi modal amplitude associated with v displacement

Bij bending-stretching stiffness component of the plate (i, j = 1, 2, 6)

c, first constant of integration

C2 second constant of integration

Ci modal amplitude associated with iVx-displacement

Cij two-dimensional reduced plane stress material constants

Di modal amplitude associated with yy.displacement

Dij bending stiffness component of the plate (i, j = 1, 2, 6)

Ei modal amplitude associated with w-displacement

F force

fi(x) mode shape in x-direction associated with u-displacement

gi(y) mode shape in y-direction associated with u-displacement

Gij transverse shear stiffness component of the plate (i, j = 4, 5)

gk(X) system of homogeneous nonlinear equations to be solved with
Newton-Raphson method

h thickness of plate

hi(x) mode shape in x-direction associated with v-displacement

i modal amplitude index number

Jk Jacobian matrix of equations gk(X), where k is the step in
Newton-Raphson method
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NOMENCLATURE (continued)

k local contact stiffness

stiffness matrix for linear term of complete system of equations

CIr* stiffness matrix for linear term of reduced system of equations

Kiij subcomponent of stiffness matrix for linear term of complete
system of equations (i, j = a, b, c, d, e)

KI stiffness matrix for nonlinear squared term of complete system
of equations

Kiij subcomponent of stiffness matrix for nonlinear squared term
of complete system of equations (i, j = a, b, c, d, e)

Kll stiffness matrix for nonlinear cubic term of complete system of
equations

KIIn* stiffness matrix for nonlinear cubic term of reduced system of
equations

KmII stiffness matrix for nonlinear cubic term of system of
equations reduced with 1

KiKj shear correction factor

L beam length

Id deformed length of plate

li(y) mode shape in y-direction associated with v-displacement

lo original length of plate

M total number of modes in the y-direction

mi(x) mode shape in x-direction associated with Vx-displacement

Miy bending moment resultants (i, j = 1, 2)

N total number of modes in the x-direction

n local contact nonlinearity exponent

ni(y) mode shape in y-direction associated with Vx-displacement
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NOMENCLATURE (continued)

Nij in-plane stress resultants (i, j = 1, 2)

oi(x) mode shape in x-direction associated with fy..displacement

Pi transverse force per unit area

Pi (y) mode shape in y-direction associated with vy.displacement

Qi bending moment resultants (i = 1, 2)

qi(x) mode shape in x-direction associated with w-displacement

qj generalized coordinates for linear terms (j = 1, 2, ..., M)

& generalized force vector

R radius of indentor

R2  correlation factor

ri(y) mode shape in y-direction associated with w-displacement

Rji generalized force vector associated with a modal amplitude (j =
a, b, c, d, e)

S surface area of the plate

U internal strain energy

u displacement component along the x-coordinate direction

v displacement component along the y-coordinate direction

W work done by the external forces

w displacement component along the z-coordinate direction

x1 direction equivalent to x-direction

x2 direction equivalent to y-direction

x3 direction equivalent to z-direction

Xk generalized representation of the modal amplitudes, where k
is the step in Newton-Raphson method
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NOMENCLATURE (continued)

zl z-coordinate of lower face of laminate

zu z-coordinate of upper face of laminate

a indentation at the contact point

P geometrical nonlinearity factor

Al change of length of plate on through-thickness centerline

Au displacement of end of plate

eij strain tensor components (i, j = 1, 2, 3)

el strain on the lower face of the laminate

o midplane extensional strains

Eoii strain tensor components at midplane (i, j = 1, 2)

EC strain on the upper face of the laminate

Y transverse shear strains

X plate curvatures

Ici curvature tensor components (i, j = 1, 2)

A index number for y-direction mode shapes

inp total potential energy

WVx rotations of a plane section about the x-axis

Wry rotations of a plane section about the y-axis

C index number for x-direction mode shapes
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Chapter 1

INTRODUCTION

Composites are becoming the material of the present in aircraft

structures. Composite materials have found their way into an increasing

percentage of the total structure of military and, more recently, commercial

aircraft. Commercial aircraft companies have turned to composites in an

attempt to give their designs an edge in an increasingly competitive

market. Because of their high strength and stiffness to weight ratios,

composites offer an attractive way to increase the profitability,

performance, and safety of aircraft. Yet, composites have a largely

underutilized potential due, in part, to the high safety factors and

knockdowns required in designing with them while they gain acceptance

as replacements for metallic structures. In order to take full advantage of

the benefits of composite materials, the understanding of the issues which

affect their structural performance must be matured to the point where

they can be used in design with the confidence now associated with metals.

The performance of a structure that has been impacted by a foreign

object is an issue of particular concern in composite materials. Low speed

impact events such as a tool dropped on a skin panel, a composite part

banged against a storage rack during manufacture, or debris kicked up

during a takeoff roll can pose a serious threat to a composite aircraft. This

threat comes from two basic characteristics of composite materials. First,

low through-the-thickness strength, due to a lack of fiber reinforcement in

that direction, makes composite materials susceptible to damage during

lateral loading such as impact. Second, the existence of internal ply

interfaces may result in an impact event causing significant damage to the
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structure internally while the surface of the laminate appears undamaged.

While much work has been conducted in an attempt to understand these

phenomena, the understanding of the impact behavior of composites lags

behind that for metals.

As work has progressed to better understand how impact affects

composite materials, the subject has been divided into two areas: damage

resistance and damage tolerance. Damage resistance pertains to the

amount of damage sustained by a material or structure when loaded.

Damage tolerance pertains to the capability of a structure to perform with

damage present [1]. Correct evaluation of damage tolerance requires an

accurate definition of the damage state in the material. In order to do this

properly for the case of impact, the damage resistance of the material must

be well understood. Therefore, understanding damage tolerance with

regard to impact relies on understanding damage resistance.

In understanding impact damage resistance of composites, there is

not a distinct division between structure and material. In composites,

material design is an integral part of structural design in that the material

is built up in conjunction with the structure. This indicates that the

response of a composite to impact is not a material property alone. It is

therefore necessary to understand the effects of impact on both material

and structural behavior to properly assess damage resistance.

The fact that both material and structural behavior are important to

properly assessing a structural system is recognized in the building block

approach to understanding failure phenomena [2]. The first step in this

approach is to test small samples which allow the understanding of basic

material behavior. The second step is to test samples more representative

of actual structural size, shape, and boundary conditions to gain further
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understanding of material and structural behavior. Because of the

connection between material and structural behavior in composites, the

philosophy of these steps is the basis for the work presented here.

The structural effects on impact resistance of composite laminated

plates are considered in the present research. This is done by examining

the effects of varying the size and boundary conditions of a plate on its

contact, bending, and damage behavior in a static indentation test. An

analysis was also developed to model the bending of the plate for the same

conditions. This work also contributes to understanding the ability and the

validity of using static indentation tests for evaluating impact resistance.

This is accomplished by comparing the contact and bending behavior, as

well as the damage, from these static tests with existing experimental data

from impact tests. This approach has been suggested and verified for

certain configurations [1,2].

This investigation of the issues described above is presented in the

following six chapters. In Chapter 2, the research needs identified by

previous work on impact and static indentation are presented. The

manufacturing techniques, the test matrix, the test methods, and the

damage evaluation techniques used in this research are described in

Chapter 3. The plate bending analysis is outlined in Chapter 4 through the

derivation of the governing equations and the solution technique concluding

in a description of the computer implementation of the analysis.

Experimental and analytical results are presented in Chapter 5 followed by

a discussion of those results in Chapter 6. This work concludes with a

presentation of conclusions which are drawn from this investigation and

recommendations for future work in Chapter 7.
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Chapter 2

PREVIOUS WORK

Because impact is a major concern in the design and use of

composite structure, there have been many investigations into impact

behavior in the past two decades. Abrate [3] has conducted an extensive

review of the work that has been done on impact of laminates. It has been

shown that the topic of impact of composites can be divided into two issues

which may be treated separately: damage resistance and damage

tolerance. The issues may be separated because the details of how damage

is created (damage resistance) does not affect the way the structure

responds to that damage (damage tolerance) [4]. The present work

addresses only aspects of the issue of impact damage resistance.

The impact damage resistance works examined herein can roughly

be divided into four categories: correlation between static indentation and

impact testing, contact behavior, bending behavior, and damage

characteristics of an indented specimen. These categories, which may

define the damage resistance of a structure under impact, yield a logical

way to separate a large amount of work into comprehensible bits. However,

the relationship between these categories of behavior may be different for

static and dynamic events, leading to the question of when static

indentation results are applicable to impact events. The lack of work in one

or another of these categories may point to a deficiency in the

understanding of the impact event in regards to that area.
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21 Correlation of Static Indentation and Imact Testin

There is great motivation to use static tests to evaluate the damage

resistance of a structure to impact. Static tests can be better controlled and

more simply instrumented using "standard" testing equipment since such

tests require fewer factors to be controlled during an experiment. Also,

effects such as ringing in impact force measurements, which may mask

behavior, are not present in static tests. Overall, static tests are less

complicated than impact tests, thereby allowing better fidelity in the data

gathered statically. The desire to use static tests to investigate the

structural and material characteristics involved in impact resistance

requires the establishment of a relationship between static tests and impact

events.

To relate static and impact tests, the contact force between the

indentor and plate has been shown to be the best parameter for comparison.

The maximum force measured in an impact (which is related to the

physical characteristics of the impact event) test may be used as the

maximum force for a static test, allowing direct comparison between the

two kinds of tests [1]. Also, the damage incipience (the onset of damage)

has been observed to occur at a consistent contact force level in the two types

of tests [5]. Because of this, the force history of the impact event is

considered by many to be the most useful parameter in understanding

impact damage mechanisms and correlating static and impact results [1,

2,6].

A number of studies have shown that static indentation tests may

yield useful information about contact behavior, failure mechanisms, and

failure loads for composite plates under impact. In attempts to investigate

the applicability of static tests to model impact events, similar results for
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both kinds of tests have been seen in experimental force-displacement and

damage behavior for monolithic plates [5-8] and sandwich panels [9]. The

displacement of the point of contact between a plate and an indentor has

been found to be virtually the same for both static indentation and impact

tests [5-9]. During both impact and static tests, the force at which a given

level of damage occurs, generally incipience or penetration, was also seen

to be essentially the same [5, 7, 9]. Once the damage occurred, evaluation

techniques such as C-scan and X-ray photography showed that the size,

type, and progression of damage with applied force result from both static

and impact events [5-8]. These results indicate that static tests can be used

to evaluate impact phenomena for composite laminated plates.

In response to the experimental results, there have been effective

attempts to analytically clarify the reasons for the apparent similarity

between static indentation and impact tests results and better define the

limits of that similarity [2, 7, 8]. Among these, Jackson and Poe [2] cite

cases when static indentation results may be applicable to impact events.

They indicate that for large mass, low velocityt impact events, the contact

duration is much longer than the time required for flexural waves to be

reflected from the boundaries. This means that during a long contact

period, the flexural waves have time to move to the boundaries and reflect

repeatedly, resulting in a deformation mode approaching the static

solution. However, it is also indicated that the size of the plate is important.

For example, in larger plates (25.4 x 25.4 cm is cited) where flexural waves

take longer to reflect from the boundaries, the static deformation mode may

not develop during impact except for very large impactor masses. The

t No distinct definition of what bounds were set on "large" mass or "low" velocity were
given.
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conclusion is that quasi-static response is only applicable during impact if

the target is relatively small (described in this specific case as less than 12.7

x 12.7 cm) and the impactor mass is relatively large.

There exists a good basis for comparing the two kinds of tests, but the

range of applicability of static tests to impact tests is still unclear. In light

of the investigation by Jackson and Poe, it must be noted that the previous

studies considered plates under 15.3 cm in span [5-8] or sandwich panels

[9]. The applicability of results from static indentation tests of larger panels

to impact events is still in question. No investigations have been found that

examine larger plates under static indentation or impact loading, except

for the impact experiments of Jackson and Poe [2] and Wolf [10], whose

results will be used in this work.

2.2 ContactBehavior

Contact behavior can be defined as the response of a structure to an

object (the indentor) being pressed into its surface. A result of this

interaction, if the indentor is rigid, is a reduction in the thickness of the

structure, defined as indentation. Among the parameters of interest

involved in this behavior are the size, shape, mass, and velocity (if the

contact is dynamic) of the indentor, the local contact rigidity of the plate,

and the force between the two objects in contact. Understanding contact

behavior is a key to understanding damage because the extent of damage is

dependent on the contact force, which can be related to the indentation [11].

Hertz developed the "classical" contact theory [12]t. Starting with the

assumption of contact between an elastic sphere and a homogeneous

t A detailed discussion of Hertzian contact theory can be found in the book
"Impact" by Goldsmith [13].
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isotropic elastic half-space, a simple formula for the relationship between

the force and indentation was determined:

F=kan (2.1)

where k is the local contact rigidity and the exponent n is equal to 3/2.

Hertzian contact law has been shown to work well as a prediction tool for

loading and reloading in certain cases. Some of the earliest work on static

indentation of composite laminates conducted by Sun and colleagues [11, 14,

15] showed that Hertzian contact law was followed for loading and

reloading of plates under indentation,. Unloading followed a similar power

law with an exponent of n equal to 5/2. There are obvious limitations of this

theory in regard to the impact of composite plates since plates may not be a

good approximation of a half-space and composites are inhomogeneous and

orthotropic. In order to overcome the limitations of Hertzian theory, there

have been a number analyses [16-22] developed which have achieved some

success in predicting force-indentation behavior for composite laminates.

Along with the limitations of Hertzian contact theory already noted,

there is evidence that contact behavior may be affected by increasing

deflection, increasing indentation, and the geometry of the plate being

indented. Increasing the deflection of a beam specimen creates a larger

contact area with the indentor, reducing the contact stresses and causing

smaller indentations [15]. When indentations increase, and the region of

contact increases, contact stresses redistribute away from Hertzian. The

contact stresses may also change because the plate wraps around the

indentor in the contact region when the contact area grows and the plate

thickness decreases [17]. This behavior, called plate wrapping, is defined

as a local bending of the plate to conform to the indentor [16]. This behavior
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is very different from that allowed by Hertz' elastic half-space. Also

different from Hertzian assumptions is the behavior of a finite, simply-

supported isotropic square plate. The geometry of the plate causes a

reduction in the contact area corner-to-corner as indentation is increased,

causing the contact stresses to be higher along the longitudinal and

transverse axes. The result is a contact area in the shape of a four-lobed

hypotrocoid (a square with rounded corners). In this case the hypotrocoid

is oriented so that its "corners" point to the edges of the plate and its flat

sides towards the plate corners. The hypotrocoid-shaped contact area was

also seen to occur concurrently with wrapping as the indentation grows,

causing a divergence from Hertzian contact behavior [23].

The works that are presented here clearly show that the contact

behavior between a plate and an indentor may differ from Hertzian

behavior. However, because Hertzian contact law is relatively simple and

well-established as a first order model for indentation, it may be valid to use

it as a basis of comparison for what effects boundary conditions and plate

geometry have on contact behavior. Still, there is a lack of experimental

work which attempts to define what structural parameters (boundary

conditions, plate geometry, etc.) may affect the contact relationship.

2.3 Benrn Bevir

Contact behavior is one form of deformation of a plate under

indentation or impact load; the overall (global) bending of the plate is the

other. Plate bending behavior is influenced by the geometry and boundary

conditions of the plate: the larger the span of the plate between supports,

the larger the bending deflection at the geometrical center for a given force.
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The potential for large deflection bending under transverse loading

increases with plate span.

Finite deflections of plates have been considered in many analyses

throughout this century, based on equations developed by von K[rmdn [24]t.

These equations represent a nonlinear theory that has been used to

accurately predict the large deflection bending of both homogeneous [26]

and composite laminated plates [27-30] under uniformly distributed

loading. The references cited are not intended to represent the large

quantity of work done but rather provide a source for the basics behind this

theory. The volume of the work done on finite bending of plates precludes a

general discussion of the work here. As previously stated, the current

discussion is limited to the topic of impact resistance of composite

laminated plates. Nonlinear dynamic analyses of composite plates have

shown that nonlinear theory predicts smaller deflections in comparison to

linear theory, attributed to membrane stiffening of the plate [31, 32].

Comparison of nonlinear dynamic analysis with experimental data shows

that geometrical nonlinearity caused by finite deflections must be included

and that boundary conditions must be correctly modeled to accurately

predict the impact event [32].

Experimental investigations have shown that bending behavior can

influence the contact behavior and the development of damage during an

impact event. Increasing the deflection of a plate can result in a larger

contact area with the indentor, reduce the contact stresses and cause

smaller indentations which can be related to the damage size [15]. Longer

plates, which bend more easily, experience damage which initiates as

t An explanation of von KArmin's equations for large deflections is presented by
Timoshenko and Woinowsky-Kreiger in "Theory of Plates and Shells" [25].
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splitting between lower surface fibers; while shorter plates, which do not

bend as easily, show damage limited to the area immediately beneath the

indentor [33].

However, the reported effects of bending seem to be somewhat in

conflict. Comparison between support conditions which allowed bending

(two sides clamped) and prohibit bending (rigid foundation) have shown

similar effects in loading and damage [1]. Other tests have shown that

varying the span of a specimen, which obviously changes how it bends, does

not alter the damage that results in the plate [2].

Clearly there is a need for clarification of the effects of bending

behavior. This behavior is greatly influenced by plate geometry and

boundary conditions. No experimental work could be found that deals with

the bending effects on the impact response of a wide range of plate sizes.

There is also a lack of analytical work on impact resistance as it relates to

large deflection bending. Only two analytical investigations could be found

[31, 32] that deal with large bending effects of plates under impact and only

one of these [32] compared the analysis with experimental data.

2.4 Dama Characterstics

The most important aspect of an impact or indentation event in

regard to structural integrity may be the damage that occurs during the

event. Damage is important in determining the ability of a structure to

perform during and after an impact event. The force at which damage first

occurs (incipience), the types of damage, and the extent of the damage in-

plane and through-the-thickness are factors which are deemed important

in understanding how a material and structure resist an impact or

indentation event. One factor which appears common to impact and
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indentation events is that a particular contact force can be associated with a

particular level of damage in the laminate [1, 2, 8, 11] (as cited in section

2.1). However, the force at which the damage occurs should be

accompanied by descriptions of the type, extent, and through-the-thickness

location of the damage as these factors are equally important in evaluating

the damage resistance of the structure [1].

A number of studies [5, 6, 8, 10, 33, 34] have shown very similar

modes of damage and sequences of damage growth for laminates. From

observations made with a variety of techniques including X-ray

photography, C-scan, deplying, sectioning and microscopic photography,

and visual inspection after both static and impact tests, a general scheme of

damage can be seen for tape laminates. As contact force is applied,

damage initiates at a particular force level as matrix cracking. Increasing

the force causes the damage to progress: the matrix cracks grow, link up

and encounter ply interfaces, forming delaminations. The delaminations

begin in an area between two matrix cracks, but as the contact force is

increased further, the delaminations grow in size, become elliptical in

shape, but remain bounded by the cracks. Final failure occurs when the

force increases to the point where fibers begin to crack. After this the

indentor may penetrate the plate.

Other types of plate geometries and boundary conditions will produce

different modes of damage. Short thick beams (described as having length

less than 75 mm and thickness less than 2 mm) and long thin beams

(described as having length greater than 75 mm, and thickness greater

than 2 mm) display different damage modes under the same impact

conditions [33]. These "long and thin" targets experience flexural damage

consisting of splitting between lower surface fibers since the structural
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bending stiffness for these types of specimens is low and the bending

stresses, which are tensile on the lower surface of the laminate, cause

damage to initiate there. The "short and thick" targets show contact failure

consisting of matrix cracks originating from the edge of the contact zone

and delaminations in the top plies. This type of damage results from high

local contact stresses between the target and the impactor.

It is apparent that damage can occur in many different ways

depending on a number of parameters which are not well understood.

While there has been some work that addresses the affects of structural

geometry on damage, there exists a need to better define how structural

configuration influences the occurrence of damage and the relationship

between damage occurring in static and impact tests.

From this discussion it can be seen that structural geometry and

boundary conditions can affect the impact damage resistance of a composite

laminated plate. However, the effects of structural geometry and boundary

condition on the impact damage resistance and the applicability of using

static tests to evaluate impact damage resistance of composite laminated

plates need better definition.
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Chapter 3

EXPERIMENTAL PROCEDURES

3.1 General An oach

The discussion in Chapter 2 indicates that there is a lack of

understanding of how the geometry of a plate affects the contact

relationship, the damage progression, and the relationship between static

indentation and impact events in composite plates. In addition, the large

deflections of these plates under impact conditions has not been widely

investigated, so it is not fully understood how large deflections might affect

the contact relationship and the damage that occurs. The objective of the

current work is to understand how plate geometry affects the impact

resistance of a laminate and to better understand the relationship between

static indentation tests and impact tests for these laminates.

The behavior of the laminates was investigated by conducting static

indentation tests which have been shown to yield useful information about

the impact behavior [1, 5-9]. The tests were carried out using plates

ranging in span from 32 mm to 508 mm and two boundary conditions,

clamped-clamped (with respect to bending deflection) and rigid backface

support. The contact relation that resulted from these tests was compared

to the Hertzian contact law in an attempt to determine the effects of the

combinations of plate size and boundary condition. The global bending

characteristics of the plate under static indentation were also examined

and compared with results from impact test data. A static nonlinear

analysis of a plate under concentrated loading was developed with the

intent of comparing results with the experimental data. Finally, the

damage state of the laminates was examined after the tests were run and
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the extent of damage was compared with damage results from available

impact test data using the force as the parameter for comparison.

32 Test MatriAx and Desci tion of Specimens

All tests were conducted on [±452/02]s laminates made from Hercules

AS4/3501-6 graphite/epoxy. The layup and material system were chosen to

allow direct comparison with previous experimental impact data [10]. Six

different spans from 32 mm to 508 mm were considered. This range of

spans was selected because it includes "short" span sizes (127 mm and

smaller) similar to those tested in other investigations [5-8], 254 mm span

specimens as used in previous work for direct comparison [10], and longer

spans which have not been tested previously. The different spans were also

chosen to provide a wide distribution in bending and membrane behavior

during the indentation tests. In all cases, the width of the specimens was

kept at 89 mm, which was the plate width previously used by Wolf [10]. The

specimens were cut approximately 102 mm longer than the desired span

length to allow 51 mm on each end of the specimen for gripping in the test

fixture. The overall specimen dimensions are shown in Figure 3.1.

Two kinds of boundary conditions were used for the tests: clamped-

clamped and rigid backface support. The clamped-clamped support fixed

the out-of-plane deflection and rotation of the longitudinal ends of the

specimen to zero, while the transverse sides were free. The distance

between the two clamps was defined as the span of the specimen. This

boundary condition was used because it may provide an approximation of a

skin structure used in aircraft and was used previously by Wolf [10]. The

rigid backface support consists of a thick (19 mm) steel plate on which the

specimen rests, fixing out-of-plane deflection of the entire backface of the
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plate to zero. Since bending is not allowed in this case, span has no

meaning. The rigid backface support was used to eliminate all bending

effects in the laminate in an attempt to provide conditions more closely

approximating the Hertzian assumptions. This boundary condition may

also provide a bounding case for indentation behavior in a laminate under

impact loading. The two boundary condition cases were selected to parallel

the previous work [1, 9].

The overall test matrix is shown in Table 3.1. All the tests were

conducted with a 12.7 mm hemispherical indentor as has been used in a

number of investigations [2, 5, 9-11, 14, 15, 33, 35]. The indentation took

place at the center of the top face of each specimen.

The first specimens tested were the plates with a 254 mm span. For

these tests, the long ends were clamped in a fixture originally designed to

restrain motion both in-plane and out-of-plane, maintaining a clamped-

clamped boundary condition. However, through a comparison of

experiments using this fixture [10] with an analysis modeling these

experiments [36], this fixture was found to exhibit in-plane flexibility. This

type of boundary condition was chosen because it was the same as in

previous experimental impact tests by Wolf [1, 10]. In order to observe the

progression of damage, static tests were performed at various forces. Each

of the forces chosen were based on the maximum contact force seen in an

impact test conducted at a particular velocity by Wolf [10]. This enabled the

comparison of the damage states resulting from static and impact tests.

The range of forces represent impact test velocities which were selected to

capture the entire range of damage from none to large amounts of matrix

cracking and delamination [10]. In addition to measuring the force and

damage of the plate, the indentation was measured to compare with the
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Table 3.1 Test matrixa.

Maximum Span Length, mm

Force, N 31.75 63.5 127 254 381 508

444 Cb R

507 C

549 C R

739 C

930 C1 C1 C1 CR C1 C1 C1

1183 C

1479 C2 C2 C2 CR C2 C2 C2

a One specimen for each configuration

b Indicates boundary condition and test scheme:
C - Clamped - Clamped Support, No Strain Gages
R - Rigid Backface Support, No Strain Gages
C1 - Strain Gage Scheme A, Clamped - Clamped Support
C2 - Strain Gage Scheme B, Clamped - Clamped Support
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analytical contact law and the deflection was measured to compare with

previous experimental impact results [10] and the static analysis presented

later in this work.

The next set of specimens were tested with the rigid support behind

the entire backface of the laminate. The rigid support was provided by a 19

mm thick steel plate. The bending of the plate was also measured to ensure

that the boundary condition was truly rigid. The steel plate deflected less

than 0.35 mm under the maximum force of 1479 N tested in this

investigation (a detailed description of this evaluation is presented in

section 3.4). This provides an essentially rigid support. Since the entire

backface of the laminate is supported, span length is irrelevant in a test of

this kind. Specimens with a length of 254 mm were used because they were

the easiest to manufacture. Force, indentation, and damage were

measured for these specimens. The force is measured as the correlation

factor for the other quantities, the indentation was measured to compare

with Hertzian contact law, and the damage was measured to compare with

the previous impact tests and the other static tests.

The specimens with a range of spans were tested last, using the

clamped-clamped boundary condition. The specimens were tested at two

force levels used in the first set of tests: 930 N which was seen to be the

approximate level of damage incipience from the first set of tests, and 1479

N which was a high enough force to allow delamination damage to occur.

Both forces were high enough so that large deflection bending effects could

fully develop. In addition to collecting force, indentation, and damage data

for these tests to compare with the previously collected data, strain data was

collected at different points on the top and bottom of the specimen along the

longitudinal centerline of the plates. Two different gage schemes were



used for the two force levels. The first scheme, illustrated in Figure 3.2,

was used with the tests to 930 N in order to get a distribution of longitudinal

strains along the plate for comparison with the bending analysis. The

second scheme, illustrated in Figure 3.3, was used with the tests to 1479 N

in an attempt to determine the effects of the boundary condition on the

distribution of strain near the end of the plate and to determine if the plate-

wrapping effect, noted in previous analyses [16, 23], could be observed.

The strain gages were placed on the plate to capture the bending and

membrane behavior in the plates. The strain gages were placed on the top

and bottom of the plate so that bending and extensional strain could be

separated during data reduction. The gages in "scheme A" (Figure 3.2)

were placed at one-eighth span intervals across half the span of a specimen

in order to determine the bending and extensional strain distributions on

the longitudinal centerline of a plate. In "scheme B" (Figure 3.3), the

centerline of the gages at the end of the plate were placed 7 mm from the

clamps to put them as close as possible to the clamps while leaving

approximately 2 mm between the gage and the clamp so that the specimen

could be aligned without damaging the gage with the clamp. These gages

were placed at the end of the plate to determine if the plate was slipping in-

plane in the grips during the test. If slippage was occurring, extensional

strain was expected to be nonexistent or smaller than would be expected if

the clamps were perfect. The centerline of gages 4 and 5 were placed 9 mm

from the transverse centerline of the plate. This is the minimum distance

possible to the point of contact without having the indentor touch the gage

(and damage it) during the test. Gages 6 and 7 were butted up against

gages 4 and 5, placing their centerline 14 mm from the transverse

centerline of the plate. The centerline of gage 3 was placed directly on the
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transverse centerline of the plate, putting it on the backface of the plate

directly opposite the point of contact with the indentor. These gages were

placed near the contact point in an attempt to catch plate wrapping around

the indentor. If the plate was wrapping around the indentor, a change in

the bending behavior in the region where the gages were placed was

expected to be observed. Because of a lack of space, gages 1 and 2 were

omitted from the 32 mm span plates in both schemes.

&3 Manfactrin Procedures

The specimens mentioned were manufactured according to TELAC

standard procedures [37] except where noted. The Hercules AS4/3501-6

prepreg material, supplied in 305 mm rolls, consists of AS4 graphite fibers

impregnated with 3501-6 matrix system with a resin content of 41%. Until

needed, the prepreg is stored in a sealed bag in a freezer at a temperature

below -18 0 C. Before layup, the prepreg is removed from the freezer and

allowed to warm up inside its bag for approximately 30 minutes, or until it

is no longer cold to the touch. The material is kept in the bag while it

warms up to prevent moisture, which may affect the quality of the

specimens, from condensing on it.

The plies for the specimens are carefully cut so that proper angles

can be maintained. The prepreg was unrolled and the necessary plies were

cut using teflon-coated aluminum patterns, a teflon-coated straight edge,

and a sharp utility knife. Two sizes of plies cut, 365 mm by 305 mm for

"normal" panels and 685 mm by 305 mm for "large" panels. The zero

degree plies were easily made by cutting the tape at the correct length for

the desired plate. The angle plies for the normal panels were cut from the

tape with two templates, one in the shape of a parallelogram to make an
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initial cut from the tape, the other a quadrilateral to cut the parallelogram-

shaped piece of tape into two parts (see Figure 3.4). The resulting two

pieces were then reassembled into a rectangular shape of the desired

dimensions with the seam running parallel to the fiber direction of the

tape. A matrix joint such as this, as opposed to a fiber joint, is necessary to

ensure the desired high quality of the laminate. The large angle plies were

cut similarly except that three pieces were used (see Figure 3.5). The pieces

which make up the ends of the ply were cut by the same procedure as for

the normal plies. The length of the ply was then increased by cutting a

center piece using the parallelogram-shaped template. This piece was then

measured to the correct length with a ruler and cut to that length against

the teflon-coated straight edge. The three pieces were placed together, now

with two matrix joints, to make a ply. Angle plies of any length could be

made using this procedure simply by placing different numbers and

lengths of center pieces between the original two end pieces. Once all the

plies are cut, the roll of prepreg is returned to its bag and the freezer.

With the proper number of plies cut, the laminates were assembled.

The individual plies are stacked in proper sequence using an L-shaped

aluminum jig to provide alignment of the angles in the laminate. The

corner of the laminate which was placed in the corner of the aluminum jig

is assumed to have the most accurate ply stacking and is marked as the

"good corner" for future reference. The laminate is trimmed with a sharp

utility knife and aluminum pattern to the nominal dimensions. Peel ply

one-half inch larger than the plate on three edges and two inches larger on

the short edge adjacent to the good corner, is placed on both top and bottom

surfaces to provide a subtly textured surface for good gripping in the test

fixture and for ease of applying strain gages. The laminates were sealed in
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a vacuum bag and left out for no longer than twenty-four hours before

curing.

The laminates were cured according to the manufacturer's

recommended procedure for AS4/3501-6. The arrangement of packaging

material placed on the aluminum cure plate is shown in Figure 3.6. The

aluminum parts are sprayed with a release agent and covered with

guaranteed nonporous teflon (GNPT) to prevent resin from adhering to

them. The laminate with peel ply is placed on top of the sheets of nonporous

teflon and is constrained by cork and aluminum dams. The "good corner"

of each laminate (marked during layup) is placed into the corner of an

aluminum T-dam to maintain the correct alignment of plies. The T-dams

are sized so that a normal-sized laminate will have two sides bordered by an

aluminum dam and two sides bordered with cork dams. Since the T-dams

did not extend all the way to the end of the large laminates, cork was used to

complete the dam around their perimeter. One sheet of porous teflon is

placed on top of the laminate followed by one sheet of bleeder paper for every

two plies in the laminate, and an aluminum top plate. The bleeder paper

soaks up excess resin that is released from the laminate during the cure.

The entire cure plate is covered by a sheet of porous teflon and a layer of

fiberglass airbreather. The airbreather provides an airway so that vacuum

can be applied evenly over the entire cure plate. Finally, a vacuum bag is

placed over the entire assembly and attached to the cure plate by vacuum

tape to create an airtight seal between the bag and the plate.

A vacuum check is performed on the cure plate before it is rolled into

the autoclave. This is done by applying a vacuum of 760 mm Hg to the plate,

sealing it, and then shutting off the vacuum pump. The vacuum seal is

considered satisfactory if less than 130 mm Hg is lost after five minutes had
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elapsed. If the seal is not good, attempts are made to find and repair any

leaks in the vacuum bag or tape or, in the extreme, the entire bag is

replaced. When the seal is found to be satisfactory, the cure plate is rolled

into the autoclave on a cart and the vacuum check repeated.

Once the autoclave is sealed with the plate inside, a vacuum of 760

mm Hg is maintained on the plate. The autoclave pressure is raised to 0.59

MPa and held. After this pressure is reached, the autoclave temperature is

raised at a rate of 1-3 0 C per minute to 1160C. After an hour at 1160C, the

temperature is raised at the same rate to 177C and held for two hours. The

cure is completed by decreasing the temperature at 3-50C per minute to

800 C, at which time the pressure is slowly released. The pertinent cycles

for the cure are illustrated in Figure 3.7. Finally, the laminates are

postcured at 1770C for eight hours in an oven without applying vacuum or

pressure.

The final specimens were milled from the cured panels with a 220-

grit diamond cutting wheel. The milling is done with a 254 mm diameter,

water-cooled cutting wheel rotating at 1100 rpm. The laminate is fed past

on a table at 279 mm per minute. The specimens are aligned for cutting by

placing a trimmed edge against a reference bar bolted to the milling table

that has been predetermined as parallel to the cutting blade. To provide

extra spacing for different width cuts, square steel and aluminum scraps

are placed between the reference bar and the specimen to be cut. With this

setup, the rough edges of each panel were trimmed off (approximately 5

mm on each side). Next, the 89 mm width dimensions were cut by aligning

the good corner of the laminate to the reference bar. The desired length

specimen was then cut from the panels by measuring the length dimension
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from the good corner and milling across the width at that point, again

aligning the good corner for a specimen with the reference bar.

After the specimens were milled, marks were applied to the laminate

with a white paint marker so that measurements could be taken at

consistent points and so that the laminate could be aligned properly in the

test fixture. The dimensions of each laminate were measured to check the

results of the manufacturing procedure at a number of locations (see

Figure 3.8): nine points for thickness, three points for width, and one point

for length. The average ply thickness of all the specimens was 0.136 mm

compared to the nominal ply thickness of 0.134 mm.

The last procedure in the preparation of the specimens was to apply

strain gages to the appropriate specimens. The strain gages used were

Micro-Measurements EA-06-125AD-120 (large gages) and EA-06-031DE-120

(small gages). The large gages have an element size of 3.18 mm by 3.02 mm

and the small gages have an element size of 0.79 mm by 0.79 mm. All the

strain gages were applied by the standard TELAC procedure [37] using a

cyanoacrylate adhesive. The gages were applied at the locations shown in

Figures 3.2 and 3.3. Once attached, copper lead wires were soldered to the

terminals of the gage and a terminal strip. If the gage read the nominal

value 120 Q (±1 Q) when checked with an ohmmeter, it was considered

acceptable. If not, the lead wires and gage were checked and replaced or

repaired if necessary.

3.4 Statc Indentation Test P edures

All the static indentation tests were conducted using an MTS-810

uniaxial testing machine and the setup illustrated in Figure 3.9. The test

fixture used to hold a specimen during a test was mounted in the lower grip
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of the machine. The same basic setup is used for both the clamped-clamped

boundary condition, shown in Figure 3.9, and the rigid backface support

boundary condition, shown in Figure 3.10 (the details of how these

boundary conditions are achieved is discussed below). A stainless steel,

12.7 mm diameter hemispherical indentor and an MTS 8896 N (2000 lb) load

cell were mounted in the upper grip of the machine. A Trans-Tek 0350-0000

Linear Variable Displacement Transducer (LVDT) was clamped to a

stationary frame which allowed it to be positioned beneath the indentor. By

raising the lower crosshead, the fixture moves up which raises the

clamped ends of the laminate. The LVDT and tup are fixed in space, so the

indentation of the specimen is measured directly by the movement of the

LVDT as the laminate thickness reduces under load. The deflection of the

specimen is also measured directly by the testing machine stroke as the

motion of the fixture. The setup shown in Figure 3.9 allows the

measurement of both the indentation and deflection of the specimen using a

clamped-clamped boundary condition. The setup shown in Figure 3.10

allows the measurement of both the indentation and deflection of the

specimen using a rigid backface support boundary condition. However,

bending deflection is effectively prevented by the 19 mm-thick steel plate

used to achieve this boundary condition.

The setups illustrated in Figures 3.9 and 3.10 are the same basic test

fixture, the details of which are shown in Figures 3.11 through 3.15. The

holding jig shown in Figure 3.11 was used to provide the clamped boundary

condition. This is the same as the jig used in the impact tests by Wolf [10].

This was to ensure that the clamped-clamped boundary condition were the

same as in that previous work. The specimen was held between two

aluminum blocks with 80-grit sandpaper applied with double-sided tape to
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the clamping faces. The blocks were secured to the test fixture and each

other by eight bolts, lubricated with SAE 20 weight oil and torqued to 10

Newton-meters. The sandpaper was changed after every two tests to

ensure uniformity of the boundary condition and prevent slippage during

the test. The gripping blocks were bolted to a fixture, illustrated in Figure

3.12, that could be adjusted to the correct span length by moving the grip

mounting plates in or out.

The testing fixture illustrated in Figure 3.12 consists of three major

parts: the channel/fixture support assembly, the channel mounting plates,

and the grip mounting plates. The details of these parts are illustrated in

Figures 3.13-3.15 All the components are constructed of aluminum except

the channel, which is steel. The grip mounting plates, illustrated in

Figure 3.15, were secured to the rest of the jig by bolting them in holes that

were pre-drilled at locations in the channel mounting plates, illustrated in

Figure 3.14, to provide the correct spans for the tests. The channel

mounting plates were bolted to the channel to fix the whole grip assembly to

the fixture support, illustrated in Figure 3.13.

The rigid backface support condition was provided by placing a 19

mm thick flat steel plate on the grip mounting plates. The laminate was

placed backface down on the steel plate as shown in Figure 3.10. The steel

'plate had been tested beforehand to confirm that its indentation and

deflection were negligible in comparison to that in the laminate. The

deflection and indentation of the steel plate at the maximum contact force

tested, 1479 N, were 0.35 mm and 0.004 mm respectively. The deflection and

indentation of a laminate tested to the same contact force of 1479 N were 23.0

mm and 0.18 mm, respectively. The deflection and indentation of the steel

plate represent 1.5% and 2.2%, respectively, of the deflection and
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indentation of the composite specimen at the maximum force tested,

making the steel plate essentially rigid.

A computer data acquisition system was used to record load and

stroke from the MTS machine, indentation from the LVDT, and strain from

the strain gages. This system consists of a GW Instruments MacADIOS II

analog/digital converter connected to a Macintosh IIx computer. Since the

data acquisition system was limited to eight channels, the specimens with

strain gages required the sacrifice of certain measurements. When strain

gage scheme A was used, involving six gages, stroke was measured by a

voltmeter and only the maximum value was recorded. When strain gage

scheme B was used, involving seven gages, both stroke and indentation

were measured by voltmeters, again recording only the maximum values.

The static indentation tests were carried out as follows. The fixture

was adjusted to the necessary span by moving the grip mounting plates so

they were aligned with the correct holes shown in Figure 3.14. The grip

mounting plate was secured in position by bolts torqued to 10 Newton-

meters into the aligned holes. The plate was then placed loosely into the

grips. If the plate had strain gages, they were balanced and zeroed before

the grips were tightened. This was to prevent zeroing out strain in the plate

caused by any preload created by damping the plate in the fixture. The

specimen was aligned by eye and a small square by matching up paint

markings on the specimen and alignment marks scribed on the fixture.

Using these marks for alignment ensured that the plate was square with

the clamps and that the indentor contacted the center of the plate. The

grips were then tightened as previously mentioned. Once the specimen

was secured in the desired boundary condition and at the proper span, the

upper crosshead was lowered until the indentor was approximately 2 mm
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from the test specimen. The lower crosshead was then moved up using the

zeroing knob until a preload of not more than 5 N was seen. At this point,

the LVDT was brought into contact with the backside of the laminate

directly opposite the indentation point and its offset was recorded in the data

acquisition system. The crosshead movement rate was set to 0.0127 mm/sec

for rigid support tests, 0.0730 mm/sec for clamped-clamped tests of spans

254 mm and greater, and 0.0726 mm/sec for clamped-clamped tests of

spans less than 254 mm. These rates were selected because they provided a

loading rate that was considered quasi-static and because they provided a

rate which allowed data to be taken slowly enough to determine the loading

curves completely. The stroke range was set to the 10% range (±12.7 mm)

for rigid support tests, the 50% (±63.5 mm) range for clamped-clamped tests

of spans 254 mm and greater, and the 20% (±25.4 mm) range for clamped-

clamped tests of spans less than 254 mm. These ranges were chosen to

accommodate the maximum deflection that was expected for each

specimen given the load to be applied. The load range for the 8896 N (2000

lb) load cell was changed between 50% (±44.5 kN), 20% (±17.8 kN), and 10%

(±8.9 kN) depending on the maximum contact force desired in the test.

The MTS machine was run in compression mode and stroke control.

Data was recorded during the test by the acquisition system at a rate of 2

Hz. The fixture was moved upward, with the lower crosshead, into the

fixed indentor. The specimen could bend (in the clamped-clamped tests)

while the LVDT base and indentor remained in a fixed position. With the

LVDT in contact with the back surface, the movement of the laminate

relative to the indentor (the indentation) was measured. The movement of

the center point of the laminate relative to the test fixture (the deflection)

was measured by the stroke of the testing machine. Once the maximum
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contact force for the test was reached, the crosshead was reversed. The test

was completed when the crosshead returned to its original position.

3.5 D Evhu on Proedurs

Three methods were used for damage evaluation: visual inspection,

X-ray photography, and sectioning. After an indentation test, observations

made from a visual inspection of all specimens were recorded in a

notebook. The specimens were then x-rayed to determine the interior

damage in the laminate. To accomplish this, a 0.74 mm diameter hole was

drilled through the specimen at the indentation point with a Dremel Moto-

Tool@ equipped with a 220-grit diamond grit drill bit. A piece of flash tape

was placed over the exit hole on the back face (opposite the point of

indentation) of the laminate. The specimen was then placed on a flat

surface and 1,4-Diiobutane (DiB) dye was injected into the hole. Enough dye

is injected so that a small bubble forms over the hole. This is to ensure that

sufficient dye seeps into the cracks and delaminations in the laminate.

Because the cracks and delaminations are transparent to X rays, the X ray

opaque dye is necessary to show the damage as dark spots on an X-ray

photograph. The specimen was left for forty-five minutes so that the dye

would have sufficient opportunity to flow into the damage features. At the

end of that time, the remaining dye was absorbed with a paper towel and

the flash tape was removed from the backface.

The specimen was then x-rayed with a Scanray Torrex 150D X ray

Inspection System. Using the TIMERAD control, the specimen was

exposed to 240 mR at 3 milli-amps and 50 V potential. An image was

obtained by placing a piece of Polaroid Type 52 PolaPan film behind the

laminate during the exposure and then developing it. A typical X-ray
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photograph is shown in Figure 3.16. The orientation of the specimen was

set so that the xl (longitudinal) direction of the specimen (defined in Figure

3.1) is aligned vertically with the page.

Once the X-ray photographs were taken, one cross-section was made

through the center of the area of damage indicated in the photographs.

This location was aligned with the hole drilled to insert dye into the

specimen for X-ray photography. The specimens were again cut with a 220

grit diamond cutting wheel. As before, the cutting was done with a 254 mm

diameter water-cooled cutting wheel rotating at 1100 rpm, while the

laminate fed past on a table at 279 mm per minute. The sectioned edges

were then buffed by a felt cylinder rotating in a drill press while a slurry

mixture of polishing powder and water was applied to create a smooth

surface. A smooth surface was necessary to identify the location of the

damage through the thickness of the laminate through a microscope.

An Olympus SZ-Tr Zoom Stereo Microscope was used to examine all

specimen cross-sections. The damaged region was magnified 5X to 20X to

identify delaminations, matrix cracks, and fiber damage. Matrix cracks

could be observed as light lines through the matrix between the fibers.

Delaminations could be observed as lightened areas between plies which

had separated. In one case, fiber damage was observed as an area where

fibers were seen to be loose or missing from a ply. The damage showed up

light because the white powder used to polish the cross-sectioned surface

accumulated in the cracks and delaminations. Transcriptions of the

damage were made, when damage was apparent, by examining the

specimens under the microscope at the magnifications described above.

The specimen was then photographed under 5X magnification as

this allowed the full extent of the damage to be seen in all cases. The
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photographs were made using a Polaroid camera with a 55 mm aperture

and a lens magnifying the subject five times. The specimen was held

between two blocks of 25.4 mm thick plastic joined together by two bolts.

This simple fixture secured the specimen and assured that it was held

perpendicular to the flat surface beneath the camera. A scale divided into

0.5 mm increments was attached to the specimen at the damaged area.

The camera was focused on the cross-sectioned edge of the specimen and

the specimen was then adjusted until the damaged area was centered in

the camera's viewfinder. Lighting was concentrated on the specimen at

the damaged area and adjusted while looking through the camera's

viewfinder until the damage was highlighted. The camera was loaded with

Polaroid Type 52 PolaPan film which was then exposed. The picture was

developed using the standard procedures accompanying the film. The

quick processing of the Polaroid film was of great benefit as poor

photographs frequently resulted from vibrations or poor lighting. As a

result, adjustments to the setup and lighting could be made immediately

and better photographs could be made. In order to provide a comparison, a

typical photograph and transcription are shown in Figure 3.17. Because

the transcription provides a clearer and equally accurate representation of

the damage that occurs through-the-thickness, the cross-sections will be

represented by transcriptions throughout this work.
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' '10 mm

Figure 3.16 Typical X-ray photograph of the damage in a 127 m m
specimen in a clamped-clamped support tested to a maximum
contact force of 1479 N.
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Figure 3.17 Typical cross-section of damage in a 127 mm specimen in a
clamped-clamped support tested to a maximum contact force
of 1479 N via (top) magnified photograph and (bottom)
transcription.
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Chapter 4

ANALYTICAL MODEL

The need for better understanding of large deflection bending

behavior of laminated plates under impact loading is clear from the

discussion in Chapter 2. In response to this need, a model for the response

of composite laminated plates under indentation loading was developed to

aid in identifying how the global bending of the plate affects the impact

damage resistance of the plate. Shear deformable nonlinear plate theory is

used following the analysis developed by Matsuhashi [32, 36] for the impact

case. Nonlinear strain-displacement relations are used with constitutive

equations based on linear stress-strain relations and laminated plate theory

to develop energy equations for the plate. Using the principle of minimum

potential energy and the Rayleigh-Ritz method, a system of nonlinear

equations for the bending of the plate is determined. The system of

equations are solved using the Newton-Raphson method to find the roots of

the equation for a particular contact force. The results are force-deflection

and force-strain behavior for the plate under static indentation loading.

4.1 inear Wide BnmAnanlvyi

Before the nonlinear plate analysis was developed, a simple linear

beam analysis was developed as a basis for comparison with the nonlinear

analysis. It is important to compare the nonlinear analysis with an

accepted analysis, such as the linear wide beam analysis, to ascertain

whether they are in agreement for simple cases before comparison with

experimental data is attempted. This is accomplished by comparing the

nonlinear analysis with the linear analysis for small deflections. The
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nonlinear analysis should provide results which match the linear analysis

for small deflections.

The linear analysis is referred to as a wide beam analysis since the

loading that is assumed is a moment acting about the transverse direction

causing bending along the longitudinal axis only. This is also known as

cylindrical bending [25]. This type of loading makes the plate essentially a

beam, hence wide beam analysis. An illustration of this configuration is

provided in Figure 4.1. The coordinate system used in the development of

this analysis is illustrated in Figure 4.2. The axes are centered at the left

end of the plate. The x-axis is aligned with the longitudinal centerline of

the plate and the y-axis is oriented in the transverse direction of the plate on

the through-the-thickness centerline of the plate. The z-axis begins at the

through-the-thickness centerline and is perpendicular to the back surface

of the plate (away from the point of application of force).

A linear strain-displacement relationship between the longitudinal

strain and the second derivative of the bending deflection, w, is assumed:

a2 w(x)
e1(x)= zr 11(x)= -z 2  (4.1)

where exl(x) is the longitudinal strain and rli(x) is the curvature. The

constitutive equations used are those for a laminated plate under bending

only (with no twisting):

{ M11 j D D12 11i (4.2)

M22  1 2 D22J22J

In this case, the transverse moment M22 is equal to zero. Solving equation

(4.2) for rll yields,



-77-

Original
Beam Position

A X

Position /

-F Under /

Clamped L
Boundaries

Figure 4.1 Illustration of the bending of a clamped-clamped beam under
point load.
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=11 = Ml1 L D122 (4.3)

By assuming a clamped-clamped boundary condition at the ends and a

point load acting at the center point on a beam, an expression for Mrl can be

found in terms of the load F and the length L of the wide beam [38]:

M -- x- (4.4)
2 4

Combining equations (4.3) and (4.4) and applying the strain-displacement

relationship (4.1) yields a differential equation for the deflection in terms of

the geometry of the wide beam, the material constants, and the loading.

d2w(x) F (x 1 D-12 2
11 = - = x- (4.5)

Equation (4.5) may be twice integrated with respect to x, after canceling the

minus signs, to give an equation for the deflection,

dw(x) 2 -- -4 C + c 
2  2) (4.6)

F (x LX2 X D)22 (4.7)
W(X) -- - - + c l x + c 2  2l -

2 6 8 D22Di - DA2

where c1 and c2 are constants of integration. For the case of clamped-

clamped boundary conditions, these are set to zero because the deflection

and slope at the ends of the plate are zero. The bending strain in the beam

is given from equation (4.1) as:

ell = ZK= -Z x -- L)(D 2 2  (4.8)
2 4 D2 I - 22
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This analysis provides a way of checking the nonlinear plate analysis

with a simple, linear analysis. If the nonlinear analysis is done properly, it

should match the linear analysis over a range for "small" deflections.

4.2 GovM-nin Euations for Nonlinear Analysis

The deflection in a static indentation problem is comprised of two

parts: the indentation and the global bending. The difference between these

two kinds of deformation under a contact load F is illustrated in Figure 4.3.

The indentation a is equivalent to the reduction in the thickness of the plate

under the point of contact. The global bending w is the deflection of the

plate midplane relative to the undeformed state. Only the global bending is

considered in the current analysis. This is because the bending is two

orders of magnitude larger than the indentation (as will be seen in Chapter

5), making the contribution of the indentation to the total deformation

negligible.

The development of the following analysis from the strain-

displacement relations through the Rayleigh-Ritz method is taken from the

nonlinear transient analysis developed by Matsuhashi [36]. The only

divergence from Matsuhashi's analysis is the assumption that the event is

considered quasi-static as the current analysis models a static indentation

event, whereas Matsuhashi modeled an impact event. Therefore, the

equations for the analysis developed here exclude the time-varying terms in

Matsuhashi's analysis.

The coordinate system used in the development of this analysis is

illustrated in Figure 4.2. The axes are centered at the left end of the plate.

The x-axis is aligned with the longitudinal centerline of the plate. The y-

axis is oriented in the transverse direction of the plate on the through-the-
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thickness centerline of the plate. The z-axis begins at the through-the-

thickness centerline and is perpendicular to the upper surface of the plate

(the surface on which the force is applied). The model assumes that the

contact force acts at the geometrical center of the upper surface of the plate.

4.2.1 Str DisDt Relation

In order to model the geometric nonlinearity in the plate due to the

large deflections seen in tests (on the order of ten times the thickness), the

strain-displacement relations include second order nonlinear terms in the

mid-plane strains. The Green-Lagrange strain relations [39] are used:

1 (u duj d k dUke- d= +- + (4.9)
2 dx, dudx, dxaxj x

with the independent variables x1, x2, x3 representing the coordinates

x, y, z.

The effects of shear are included in the analysis by using shear

deformable plate theory [40]. It is assumed that plane sections remain

plane but not necessarily perpendicular to the midplane. An illustration of

the deformation of an element with end sections originally perpendicular to

the midplane is shown in Figure 4.4. The independent quantity, V,

represents the rotation of the plane section from a plane perpendicular to

the midplane before deformation. The deformations y and y, represent

rotations in the x - z and y - z planes, respectively. The displacements in

the x, y, and z directions are ul, u2, and u3, respectively, and u, v, and w

are the associated midplane displacements. Because the indentations are

considered negligible in this analysis (the thickness of the plate never

changes), the out-of-plane displacements are a function only of the in-plane
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Figure 4.4
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coordinates, x and y. The displacement of a point on the plate can

therefore be represented by:

u (x, y, z) = u(x, y) + z x(x, y)

u2 (x, y, z) = v(x, y) + z y (x, Y)

u3(x, y,z) = w(x,y)

(4.10)

The strain can be expressed simply with vector notation.

(x, y, z) = e (x,y) + z I(x,y)

y(x,y,z)= y(x,y)
(4.11a)

where,

l 2
,2EI2J

2e jdwy
2E3 dx

1 01

e= 1O2218012J

du 1 dw 2

d" 2( dxd

d +y2 r
du dv dw dw
a y dx dx y

K22
K: 2

The eo represent the midplane extensional strains, the _ represent the

curvatures of the plate, and the y represent the transverse shear strains.

The difference between the nonlinear strain-displacement relations in

equations (4.11a) and (4.11b) and the linear relations are the second-order

terms in the e* expressions.

dx

dy

(4.11b)
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4.2.2 Consttutive Eqation

In the analysis it is assumed that the material properties do not

change during the indentation event. The implications of this assumption

are that the occurrence of damage is not taken into account in this analysis

and that the material behaves in a linearly elastic manner. This

assumption allows the constitutive equations for a general laminate to be

used:

I {N} [A] [B] Co
{M}J [[BIT [D l[] J (4.12)

fQ4 I [G55 G45 if E5
,QJ LG45 G44 Je4

where [A], [B], and [D] are the in-plane, bending-stretching, and bending

stiffnesses of the plate, respectively. Each of the matrix components are

given by:

(A, B, D-)= .X CJ,' (1, z, z2) dz (i, j = 1, 2, 6) (4.13)

where n is the nth ply out of a total of Nplies. The C1, are assumed to be the

plane stress material constants. The components of the transverse shear

stiffness matrix [G] are defined as:

N

Gj = KiKj  ' C" dz (i, j = 4,5) (4.15)

where the shearing correction term, KiKj , is assumed to be the isotropic

correction factor of 5/6, which may be used for laminates made from thin

plies [41]. The indices i, j become 1,2,4,5,6 because the strains are

represented with the following notation:



2= 2,2 2, 12EI (4.14)

212J1 J

4.2.3 Ees isons

The potential energy of the plate under static loading comes from two

sources, the strain energy stored in the plate and the work done on the

plate. The strain energy for linear stress-strain behavior can be written,

U = C.JCjCe,eij dV (4.16)
V

where the integral is taken over the volume, V, of the plate. The work that

transverse external forces do on the plate can be represented as,

W= piwi dS i= 1,2,3 (4.17)

where the integral is taken over the surface, S, of the plate. Additionally,

Pi is the transverse force per unit area and wi is the transverse

displacement of the plate.

By inserting the strain equations, (4.11a) and (4.11b), into equation

(4.16) and integrating through the thickness, a strain energy expression

which is a function only of the displacements is produced.

U= ( oT [A] O + 2eoT [B] + rT[D] . + YT[G] y ) dS (4.18)

The strain energy in equation (4.18) can be written as the sum of four parts:

U = UU + Ur + Um + Uv (4.19)
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where each of the four terms represents a physical relationship between the

strains and material constants in the plate. The term U represents the in-

plane stretching, the geometric coupling between in-plane and out-of-plane

deformations, and the terms accounting for large deformation. The term

U contains linear terms representing the material coupling between in-

plane and out-of-plane deformations that may occur in unsymmetric

laminates (B-matrix) and the nonlinear terms representing in-plane

strains. The term Ur represents the bending energy of the plate. And the

term Uv represents transverse shear deformation in the plate.

Finally, the total potential energy of the system can be written:

ip, = U + W (4.20)

which is the sum of the potential energy of the plate and the work done by

external forces.

4.3 Raleigh-Ritz Method

Assumed mode shapes for the displacements are used in conjunction

with the principle of minimum potential energy to create a system of

equations. Each of the displacements are approximated by a series whose

terms are comprised of a modal amplitude and mode shapes in both the x

and y directions.

Vx(x,y)= A, f (x)g,(y) (4.21a)

uy(x,y) = ) C B h.(x)l (y) (4.21b)

u(x,y) = C C m (x)n (y) (4.21c)
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v(xy) = ;D, o(x)p,(y)

w(x,y) = XE q.(x)r,,(y)
q L

or, combining the double summation

Vx(x,y)= CAi f (x)g,(y)

Wy(x, Y) = _ Bi h,(x)l1 (y)

u(x,y) = XCim.(x) n.(y)

v(x,y) = .Di o(x)p" (y)

w(x,y) = Y Ei q;(x)r (y)
i

into a single summation,

(4.22a)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

The modal amplitudes to be determined from

and Ei . The single summation makes

manipulate, but the index numbers, i, g, and

the relationship:

the analysis are Ai, Bi , Ci, Di,

the equations simpler to

y, must be related through

i = Mx [~-1]+ p (4.23)

where M is the total number of modes (the maximum value of A) in the y-

direction. Also, N is defined as the total number of modes in the x-

direction. The mode shapes, f, g, h, 1, m, n, o, p, q, and r are beam functions

defined by Dugundji [42] and outlined in Appendix A. Because the Raleigh-

Ritz method requires that only geometric, or displacement, boundary

conditions be met, selecting the correct beam functions to represent the

(4.21d)

(4.21e)
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physical constraints to be modeled is all that is necessary to define the

boundary conditions.

The second step in using the Raleigh-Ritz technique is to apply the

principle of minimum potential energy to equation (4.20). Since the degrees

of freedom in the energy expressions have been transformed into the modal

amplitudes by the assumption of mode shapes, the principle of minimum

potential energy becomes,

P= 0 j 1, 2,.., M (4.24)

where qj are the modal amplitudes, Ai, Bi , Ci, Di, and Ei. The total number

of degrees of freedom, M, is simply the number of generalized coordinates

(the modal amplitudes) multiplied by the number of modes in each

direction: M= 5x=5xqx. By substituting the series expressions for the

displacements (4.22) into the expressions for potential energy (4.18) and

work (4.17), which are then substituted into equation (4.24), a system of

equations is derived,

Ai  "AkE ' AkEEm

i  BkEl BkEIEm

[KI] Ci + [KII CkEI + [KMI] CkElEm = -F{R} (4.25)

D i  DkE, DkEIEm

Ei EkEl EkEIEm

where F is an externally applied force and where,

iKaa Kiab KIac Klad -Iae
Klab Ibb KIbc KIbd KIbe

[K]= KacT KIbcT KIcc KIcd Q (4.26a)
K KTK K

lad KIbd Icd Idd  0

Klae Kibe 0 Klee
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0 0 0 0 KnIa

O 0 0 0 KIbe

[K= 0 0 0 KlHce (4.26b)
0 0 0 0 KIende

KHea KHeb Kec KIed Q

0000 0

[K]R=- OQi  0 (4.26c)
0000 0

and

R i

Each element of the stiffness matrices for the linear term [KI] and

nonlinear terms [K11] and [Kn], and the generalized force vector {R} is

itself a matrix or a vector. The individual terms in these matrices are

defined in reference [36].

4.4 Reduction Of Eauations

The size of the matrices in equation (4.25) are determined by the

number of modes assumed. The stiffness matrices [KI], [K], and [Km]

have dimensions (5 x Nx M) by (5 x Nx M), (5 x Nx M) by (5 x (Nx M)2 ), and

(5 x N x M) by (5 x (N x M) 3 ) respectively. Elements in each of the stiffness

matrices, such as Klaa, Ka e , and Kmee have dimensions (NxM) by

(Nx M), (Nx M) by (Nx M)2 , and (NxM) by (Nx M)3 respectively. From

these general expressions, it can be seen that the sizes of the matrices

increase geometrically with the number of modes. Therefore, reducing this
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set of equations is important for the calculations to be carried out in a

reasonable amount of time.

The assumption that the laminates considered are symmetric

(Bij =0) leads to a reduction in the system of equations. Some of the

components of the stiffness matrices from equation (4.26) include only the

Bi laminate constants. Their elements become zero in the reduced set of

matrices:

[Ki] =

KIaa

K T

QTab

0 00K T
0 0

00
0 0

00Q
00

K T0

0KIbe2

-- IIec

00

-_;0000

02

0 0
0 0

KIcc KIcd
KIcd KIdd

0 0

0 0
0 0
0 KIIce
0 Knde

KIied 0

00

Hee

Ilee.

KIbe

K0
Klee

(4.27a)

(4.27b)

(4.27c)

Since this analysis is not concerned with the details of the local

indentation, the indentor is modeled as a point load. This was found to

yield satisfactory results in the impact analysis by Matsuhashi [36].

However this type of modeling may cause inaccuracies in the region near

the contact point. The point load acting in the z-direction allows the force

vector to be written:
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0

0

0
0

6Re
--ei.

(4.27d)

With the new stiffness matrices in equations (4.27a-c), expanding

equation (4.25) yields a set of equations which may be solved simultaneously

for the modal amplitudes, A., Bi, Ci, Di, and E5.

KiaaAi + Klab i + KI.i = 0

K _abT A i KbbBi + KIbei = 0

K Ci + cdDi + KHEeEkE = 0

KIcdT Ci + Kdd Di +d e EkE= 0

KTA+K TB+KEIaeT  
i + KibeT B i + Klee i

+ KnIecCkE + KIedDkE + KmeeEkEEm = -FR i

(4.28a)

(4.28b)

(4.28c)

(4.28d)

(4.28e)

However, it should be noted

written in terms of the fifth.

equations in is Ei . Solving for

and (4.28b) yields,

that four of the modal amplitudes may be

The most convenient amplitude to write the

Ai and Bi in terms of E. in equations (4.28a)

(4.29)
A - K aa Kjab--'-a i,S- Kb T KIbbJ LKIb,

which may be inserted into equation (4.28e) with the result,

KI* Ei + KIecCkEl + Kned DkEl + KmeeEkEEm = -FRei

where,

' = Klee - ae KIbe J :KT I beK -lab KIbb-b

(4.30)

(4.31)
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Equations (4.28c) and (4.28d) can also be reduced by solving for Ci and Di in

terms of EiEj, producing,

= J Ic KKI] E Ej) (4.32)

which, when inserted into equation (4.30), gives the result:

KnICkE + KHdDkEI =

[KIC Kicd Kli e (4.33)[Kna Klled{IIK T K K ] d ]EEI J k

Through manipulation of the indices, equation (4.33) can be used to

produce,

[KI*]{i} + [III]{EEIEm} = -F{Rei} (4.34)

where,

[Ki']{EkE1Em = [mee EkEIE)

KIe Kicd -I e IIce J (4.35)
[K K IlcdT KIdd -KIIde- _

The system of equations can be solved for the modal amplitudes, Ei.

Once Ei has been determined, it can be substituted into equations (4.29) and

(4.32) to evaluate the other four modal amplitudes.

4.5 elrble Boundary Conditions

In this work, the analysis was used to model the bending of a plate

which is clamped on the two sides perpendicular to the longitudinal

direction of the plate and free on the two sides perpendicular to the
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transverse direction of the plate. When the clamped boundary condition is

used, as in this work, the analysis assumes that the boundary condition is

perfectly rigid: there is no displacement or rotation of the ends of the plate

in any direction, x, y, or z. It is important to recognize the distinction

between in-plane boundary conditions and the out-of-plane boundary

condition. The out-of-plane clamped boundary condition requires that the

out-of-plane displacement, w, be equal to zero at the ends of the plate. The

in-plane clamped boundary condition, as used here, requires the in-plane

displacements, u and v, to be zero at the ends of the plate. However, in

realistic cases, the in-plane clamped boundary condition might not be

perfectly rigid: small, but nonzero, in-plane displacements (u and v) at the

ends of the plate may occur during the indentation event. These small

displacements due to the slightly flexible in-plane boundary condition can

significantly affect the membrane force which must be taken into account.

The in-plane flexibility enters the analysis through the stiffness terms in

equations (4.28c) and (4.28d). The stiffnesses from these equations affect the

nonlinear stiffness term [Km*] in equation (4.34). This effect can be

accounted for by applying a geometrical nonlinearity factor, 1 [32]. Since

only the subtracted term in equation (4.35) involves the effects of the

flexibility, it is useful to combine the effects of that term and the flexibility

as:

1 [Km,] = [Km'] (4.36)

Equation (4.36) results in a modification of equation (4.34):

[KjI* ]{Ei}+ [KIjl]{EkEEm =-FRi) (4.37)
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Note the use of P imposes a relationship between the linear and

nonlinear terms in the midplane strains. Physically, 1 represents a range

of flexibility of the boundary conditions from clamped-perfectly-sliding,

(p = 0), to clamped-perfectly-rigid, (/ = 1). Referring to Figure 4.5, / can be

seen as the degree to which in-plane sliding is allowed. The factor is

quantified as the ratio of the change in length of the plate to the difference

between this change in length and the displacement of the ends of the plate,

where the length of the plate is measured on the through-the-thickness

centerline, following the curve of the plate:

Change in Length of the Plate
Change in Length of Plate - Displacement of Plate Ends

or,

P = (4.38)
Al - Au

The change in length of the plate on the through-the-thickness centerline,

Al, is simply how much the plate itself stretches (measured following the

curve of the plate) during the application of load. This change in length of

the plate can be found by integrating the midplane strain over the length of

the plate:

[ou 1 w2-

Al= .+ 2-( ) (4.39)

The deflection of the end of the plate, Au, is the sliding which is allowed by

the flexible in-plane boundary condition. This movement of the end of the

plate can be found by taking the average in-plane deflection of the plate over

its length:

J (1 duAu = -- dx (4.40)
0l -J d
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Figure 4.5 Illustration of (upper) perfectly rigid and (lower) perfectly
sliding in-plane boundary conditions.
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These expressions are substituted into equation (4.38) to yield:

r'[ du 1 (dW'9l.
S= (4.41)

- + - - -dx

Manipulation of equation (4.41) results in a relationship between the

nonlinear and linear terms in the expression for midplane strain:

-u = [ -1]w) 2  (4.42)
&x 2

By manipulating the definition of longitudinal extensional strain, ell ,

from equation (4.11b) and inserting it into equation (4.42) (solve for the

partial of u with respect to x and insert into (4.42), then solve the result for

ell ), a modified expression for midplane strain results:

ell - ( 2  (4.43)
2 ,ax)

Using equation (4.43) to determine the midplane, or extensional, strain in

the plate eliminates the need to solve for Ci and Di to determine the in-

plane strains. It should be noted that this ignores the pointwise shell (i.e.

large displacement) effect, but only characterizes the geometric

nonlinearity on a global basis.

The /-factor also has the desirable effect of eliminating the need to

employ equation (4.35), incorporating its effect on the nonlinear term in

equation (4.34) into the nonlinearity factor. This significantly simplifies

and shortens solving the equations for Ei.
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There are certain limitations to the .- factor which must be noted. It

is an empirical parameter which must be fit with experimental data, so

only the rigidly clamped or perfectly sliding case can be determined

analytically. It does not account for variations in the "degree" to which the

plate is clamped across the width in that different -factors may be

required at different locations along the width of the plate. This would

arise, for example, if the edges of the plate were closer to an ideal clamped

condition, while the center of the plate is closer to a sliding condition, due to

the details of how the clamping is accomplished. Because the 8-factor is

derived by integrating over the length of the plate, the non-ideal boundary

condition is averaged over the span of the plate. Also, since only one P-

factor is used across the width in this analysis, the non-ideal boundary

condition is effectively averaged over the width of the plate as well. All this

means that the 1-factor must be determined empirically for a unique

degree of flexibility, remembering the limitation that it is an averaged effect

over the span and width of the plate.

4.6 SolutionMethod

The key set of equations to be solved in the previous section are the set

of equations given by (4.37). This nonlinear set of equations must be solved

using a numerical method. The Newton-Raphson method was chosen

because of its simplicity, ease in programming, and fast convergence when

the initial guess is near the solution. A thorough discussion of this method

is presented in reference [43]. The Newton-Raphson equation can be

written,

[Jk]{Xk+1 - xk} = _{gk(X) (4.44)
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where [jk] is the Jacobian matrix of the equations gk(X), given as,

.agX 1 dg 2 dg j

and gk(X) are the system of homogeneous nonlinear equations to be solved.

In this case:

g k (X) = [K * Ek + j KIeeI{EkElEmlk F(k+ (4.46)

The Xk are the modal amplitudes, Ei , which the method is attempting to

determine. The superscript, k, denotes the step of the iteration. The

method is executed by assuming a trial solutiont, X0, for the modal

amplitudes, which is used to calculate the value of the equations and the

Jacobian. The next trial solution, X1, is then found by solving the matrix

equation (4.44). The steps are repeated until the change between the next

trial solution and the current trial solution is less than a tolerance

prescribed by the user (this will be discussed in the section on computer

implementation).

t Reference [43] presents a full discussion on the "proper" choice of trial solutions and their
implication on convergence of the Newton-Raphson method.
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The modal amplitudes, Ei, representing the out-of-plane

displacement, w, are determined from the Newton-Raphson method and

are used in equations (4.29) and (4.32) to determine the other modal

amplitudes. Once these are determined, the modal amplitudes are used in

equations (4.22a-e), to evaluate the shape functions at the points of interest

to arrive at the displacements y,, V,, u, v, and w at those points.

Equations (4.22a-e) can also be combined with equations (4.11) or equation

(4.43) to determine the strains in the plate.

4.7 Computer Imlemntation

The analysis and solution technique described in sections 4.2 and 4.3

were implemented in a FORTRAN 77 program called "STATIC1". The

program code is listed in Appendix C. STATIC1 is divided into two main

parts: the calculation of the stiffness matrices and the solution of the

system of equations, roughly dividing the topics as in sections 4.2 and 4.3t.

Each of the parts is further subdivided into subprograms which carry out

individual processes. An illustration of the program flow through the

subroutines is shown in Figure 4.6.

The first set of subprograms calculates and stores the matrices KI*

and Kmie to be used in solving equation (4.37) and the matrices necessary to

determine A, and Bi using equation (4.29). To begin calculating the

stiffness matrices, an input file named "Stiff.dat" containing information

such as plate dimensions, laminate constants, and solution parameters (a

full listing is given in Table 4.1) is read by the subprogram INPUT. Based

on this information, parameters for the mode shapes (see Appendix A) are

t Much of the first part of the program was taken directly from the nonlinear impact
analysis program "GLOBAL2" written by Matsuhashi [36].
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assigned for either all modes, via subprogram BOUND, or for odd modes

only, via subprogram BOUND1. Odd modes only may be used to reduce the

computational time without loss in accuracy if the bending is expected to be

symmetric, as would occur in symmetrically laminated plates with no

bending-twisting coupling [36]. However, despite the fact that the laminate

analyzed here has finite bending-twisting coupling, the difference between

odd modes only and all modes was not investigated in this work. The

assumption that odd modes only were sufficient was based on the

comparison between odd modes only and all modes results presented by

Matsuhashi [36] for the same laminate investigated here. Once the mode

shape parameters are assigned, the subprogram INTGRL1 calculates

components of the stiffness matrices _.l, KIy, Ke , Kibb , Ibe, and KIeg

by using the extended trapezoidal rule [44] to carry out the necessary

integrations numerically. Because the shape functions for free-free

boundary conditions are used in the y-direction, the inverted term in

equation (4.31) becomes singular and cannot be inverted without some

rearrangement. Normally, some of the rows and columns are all zeroes

and may be eliminated, so the next subprogram, ARRANG, checks for zero

rows and columns in the matrix, removes them, and compresses the

matrix so that it can be inverted. The subprogram CONDENS carries out

equation (4.31) by inverting and multiplying out the terms of the stiffness

matrices to arrive at KI*, which is stored for use in the solution part of the

program. The inversion is done in the subprogram INVERS by performing

LU-decompositiont and back substitution using the subprograms LUDCMP

and LUBKSB. The subprogram CONDENS also provides the inverted

matrix to the subprogram REMAT, which multiplies terms in equation

t A standard method for solving linear matrix equations, described in reference [431.
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(4.29) and outputs them to the data file "Kunmat" which is used in the

solution part of the program to recover Ai and Bi . The nonlinear stiffness

matrices are computed in the subprogram INTGRL3, which uses the same

techniques as INTGRL1 to calculate the components of the stiffness matrix

Kem. The stiffness matrices are calculated once for a case and then

passed to the solution portion of the program for repeated use.

The second set of subprograms uses the information from the first set

to build and solve equation (4.37) and calculate the final results of deflection,

extensional strain, and bending strain. The parent subprogram, NRSOL,

coordinates the input and output of data and increments the force levels for

use in the solution subprograms. New data, including the nonlinearity

factor, the maximum force level for the current case, and the initial trial

solution for the Newton-Raphson method, are read from the file "Stiff.dat"

by the subprogram INPUT2. The matrices KI* and KmIee, the current trial

solution for E k , the nonlinearity factor P, the generalized force vector Re,,

and the current indentation force F, are all passed to NEWRAF, the

subprogram which carries out the Newton-Raphson method, equation

(4.44). The subprogram EEQS determines gk(X) and its Jacobian for use in

NEWRAF. The derivatives in the Jacobian are found by determining what

their form will be from the indices of the modal amplitudes and then

inserting the current data into that form. The subprogram NEWRAF then

solves equation (4.44) for the next trial solution using LU-decomposition and

back substitution using the subprograms LUDCMP and LUBKSB. The

value of the modal amplitudes is returned to NRSOL if the difference

between the next and current trial solutions is less than the error given in

the file "Stiff.dat"; otherwise, the procedure within NEWRAF executes until

the error condition is met or a nonconvergence condition (exceeding a
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prescribed number of steps) is met. Since the number of iteration steps to

completion is written to both the screen and the output file, it is

immediately obvious when the method has not converged in the maximum

number of steps prescribed (in all cases, increasing the maximum number

of steps allowed solved any problems of this nature). The modal amplitudes

Ei are then passed to the subprogram RECOVR which uses equation (4.29)

and the data from the file "Kunmat" to determine the modal amplitudes Ai

and B. Finally, the modal amplitudes that have been determined are used

in the subprogram MODSHP along with the mode shapes to determine the

transverse deflection:

w(x, y) = Ei q;(x) r, (y) (4.47)

the longitudinal extensional strain:

o .(xy) = E ry) =(Y)) 2  (4.48)

and the bending strain:

z 1z(xy) = d(x, = z g,(y) (4.49)
dx ax

at points on the plate requested in the file "Stiff.dat". Equation (4.47) is a

reiteration of equation (4.22e); equations (4.48) and (4.49) are a combination

of equations (4.11b) with equations (4.22a) and (4.22e), using the definition

from equation (4.43). The entire procedure is repeated to create load-

deflection and load-strain curves by incrementing the load from zero to the

desired maximum load. The load-deflection and load-strain data are

output to the file "Solve.out" for further data reduction.
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Because STATIC1 encodes a quasi-static analysis similar in many

respects to the transient analysis carried out in Matsuhashi's GLOBAL2

[36], it encounters similar problems due to computer hardware constraints.

STATIC1 deals with a relatively large stiffness matrix for the nonlinear

(cubic) term from equation (4.37). For example, using 13 by 13 odd modes

only (or 7 by 7 actual modes, the largest number of modes attempted for this

work) results in a 49 by 117,649 non-square Km, matrix. Because of the

size of this matrix, STATIC1 requires much more memory (RAM) than

would be necessary for a linear analysis. The case cited above used all of

the 64 Megabytes on the DEC 5000/133 on which it was run. The size of the

nonlinear stiffness matrix affects not only the memory required, but the

computational time (CPU time). Running a 13 by 13 odd modes only case

significantly taxed the DEC 5000/133, as the program ran continuously for

ninety-one hours to calculate the deflection, extensional strain and bending

strain data for the twenty forces necessary to calculate curves similar to

those in Figures 4.7 through 4.9. The required CPU time is strongly

dependent on the number of modes used as input. The 9 by 9 odd modes

only case used as the example in the next section required approximately

forty minutes to complete, whereas the next odd modes only case, 11 by 11

took approximately three hours to complete. Increasing the number of

modes seems to increase the CPU time at a geometrical rate. The

conclusion is that the computer must be fast to run the program in a

reasonable amount of time, but it must have enough memory (RAM) to run

large mode cases at all.



-106-

4.8 Numericsl ample

A 254 mm by 89 mm AS4/3501-6 graphite/epoxy plate with a [±452/02]s

stacking sequence under indentation to a maximum contact force of 930 N

was used as the example case. The data used for this example is presented

in Table 4.1. Force, deflection, extensional strain, and bending strain were

the data output from the program. Reduction and presentation of the data

output from STATIC1 was done on Apple Macintosh@ computers using

commercial software. The data are plotted as functions of force, as this has

been determined to be the critical factor for comparison of impact

phenomena [1]. A plot of force versus center point deflection is provided in

Figure 4.7. Plots of force versus extensional strain and force versus bending

strain for a point 63.5 mm from the transverse centerline and on the

longitudinal centerline (strain gage locations 3 and 4 from strain gage

scheme A, illustrated in Figure 3.2) are provided in Figures 4.8 and 4.9

respectively. These plots display the typical format and type of data used for

comparison with experimental results to be presented and discussed in

Chapters 5 and 6.

As previously mentioned, the P-factor must be determined

empirically. This is done by using different values of 3 in the analysis

program until a curve which matches the experimental data is found.

Using this process, ( equal to 0.03 was found to fit the experimental data

best. This process also points out how the force-deflection curves vary with

P. This is illustrated in Figure 4.10 where results for the extremes of P

values, 0 and 1, and the best fit value, 0.03 are shown. When P equals zero,

the plate is perfectly clamped-sliding and behaves linearly as the plate does

not stiffen with increasing load. When 8 equals one, the plate is clamped-
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Laminate Material System

Lay-up

x-direction Boundary Condition

y-direction Boundary Condition

Plate Length (x-direction)

Plate Width (y-direction)

Plate Thickness

All1,,

A 1122

A1112

A 2 2 2 2

A 2 2 12

A 1 2 1 2

D1112

D2222

D2212

D1212

G44

G45

G55

Shear Correction Factor

Nonlinearity Factor f
Number of Modes in x-direction

Number of Modes in y-direction

Maximum Contact Force

Number of Force Increments

: AS4/3501-6 Graphite/Epoxy

: 452/02]S

:Clamped-Clamped
:Free-Free
: 254 mm
: 89 mm

: 1.608 mm

: 125,542,700 N/m

: 37,682,300 N/m
: 0.00 N/m

: 54,249,900 N/m
: 0.00 N/m

: 42,568,300 N/m
: 17.072 N-m
: 11.272 N-m
: 5.121 N-m

: 15.365 N-m

: 5.121 N-m
: 12.325 N-m

: 6.92 MN/m
: 0.00 MN/m
: 8.06 MN/m
: 0.833
: 0.030
: 9 (odd modes only)

: 9 (odd modes only)
: 930 N
: 20

Table 4.1 Inputs for STATIC1 - Example Problem.
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Figure 4.7 Analytical force-deflection curve for an AS4/3501-6 [±452/02]s
254 mm span specimen indented to 930 N.

1000

z
0

LL
4-

C0

800

600

400

200

20



-109-

1000
AS4/3501-6
[±452/02]

254 x 89 mm plate800 - fP = 0.030
z

o 600
0

LL

O 400

C-

200

0
0 200 400 600 800 1000

Extensional Strain (gstrain)

Figure 4.8 Analytical force-extensional strain curve at position 3-4
(strain gage scheme A) for an AS4/3501-6 [±452/02]s 254 mm
span specimen indented to 930 N.
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Figure 4.9 Analytical force-bending strain curve for gage 4 (strain gage
scheme A) for an AS4/3501-6 [±452/02]s 254 mm span specimen
indented to 930 N.
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perfectly rigid as the plate stiffens to the maximum amount as load

increases.

The analysis was run using from 5 by 5 odd modes to 13 by 13 odd

modes. The analytical curves for deflection, extensional strain, and

bending strain for each mode case are compared with each other to check

for convergence of the analysis. The analytical curves are also compared

with experimental curves to check if the method is converging to actual

data. The convergence comparison for the force-deflection curves is shown

in Figure 4.11. The analysis converges very quickly and matches the

experimental data well when using P = 0.03 as even the 5 by 5 odd modes

case appears to be well converged. On this basis, 1=0.03 is used for all

further convergence comparisons.

Since the analysis is displacement-based, the convergence is

obviously based on the displacement. Therefore, poor or non-convergence of

the strains should not be surprising. Because the extensional strain is the

first derivative of the displacement and the bending strain is based on the

second derivative of the displacement, the error in basing their convergence

on the displacement should result in poor convergence of the strains. A

convergence comparison for a force-extensional strain curve is shown in

Figure 4.12. The analysis does not converge as quickly as the force-

deflection curves, but appears to be converged after 9 by 9 odd modes. A

convergence comparison for a force-bending strain curve is shown in

Figure 4.13. For this case, the analysis does not appear converged after 13

by 13 odd modes. Further mode cases were not tried because computer

hardware limitations made it impossible.
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Figure 4.10 Analytical force-deflection results for various values of P for
an AS4/3501-6 [±452/02]s 254 mm span specimen.
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Figure 4.11 Convergence of force-deflection curves for an AS4/3501-6
[±452/021] 254 mm span specimen indented to 930 N.
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Figure 4.12 Convergence of force-extensional strain curves at position 3-4
(strain gage scheme A) for an AS4/3501-6 [±4 5 2/0 2]s 254 mm
span specimen indented to 930 N.
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Figure 4.13 Convergence of force-bending strain curves for
gage scheme A) for an AS4/3501-6 [±4 5 2/0 2]s
specimen indented to 930 N.
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Chapter 5

EXPERIMENTAL AND ANALYTICAL RESULTS

The experimental results include force-deflection, force-indentation,

and force-strain data taken during indentation, and X-ray photographs and

sectioning transcriptions made of the specimens after indentation to

determine the damage state. The analytical results include force-deflection

and force-strain data output from the program STATIC1.

&1 Contact Behavior

The results which address the contact relation between the indentor

and the specimen are contained in this section. These results are

presented as force-indentation plots.

Representative force-indentation data taken during a test using the

rigid backface support boundary condition are shown in Figures 5.1 and

5.2. These two force-indentation curves show the indentation response for

the maximum contact forces of 549 N and 1479 N and include both the

loading and unloading of the specimen. The maximum indentations seen

for the maximum contact forces 549 N and 1479 N were approximately 0.10

mm and 0.18 mm, respectively. It should be noted that the maximum

indentation seen, 0.18 mm, is approximately 11% of the average laminate

thickness. The curves also show that as the maximum contact force was

increased, the difference between the indentation for loading and unloading

at a particular force level increased. No permanent indentation was

indicated by the data or observed after the contact force was removed.

Force-indentation data from the tests using the clamped-clamped

boundary condition for a 254 mm span are shown in Figures 5.3 and 5.4 for
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Figure 5.1 Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 549 N.
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Figure 5.2 Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 1479 N.
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Figure 5.3 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 549 N.
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Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 1479 N.

0.20



-121-

loading to maximum contact forces of 549 N and 1479 N. Similar force-

indentation curves for the other maximum contact force levels tested are

shown in Appendix B. The maximum indentations seen for the maximum

contact forces 549 N and 1479 N are approximately 0.065 mm and 0.090 mm,

respectively. The plot for the contact force 1479 N shows a discontinuity in

the data at approximately 1200 N, possibly indicating that damage has

occurred beneath the indentor. It should be noted that the indentation

levels seen during these tests using the clamped-clamped boundary

condition are consistently smaller by approximately half than the

corresponding indentation during the rigid support tests.

The force-indentation data taken during a test to the maximum

contact force of 930 N using the clamped-clamped boundary condition are

shown in Figures 5.5 and 5.6. Two force-indentation curves are shown, one

each for the spans of 31.75 mm and 508 mm. Variations in the force-

indentation curves for the other spans tested are seen in the curves

presented in Appendix B. This will be discussed in Chapter 6. The plots

show indentation data for both loading and unloading of the specimen. The

maximum indentations seen for the two spans shown were approximately

0.100 mm and 0.090 mm, respectively. Each of the plots shows a break in

the data above 800 N, possibly indicating that damage has occurred beneath

the indentor.

The force-indentation data was fit to the power relation:

F=ka n  (5.1)

to see how the data compared to Hertzian contact theory, where n equals 1.5

(as discussed in section 2.2), and to provide a basis for comparison for the

data taken. Taking the logarithm of both sides of this equation gives:
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Force-indentation data for the specimen with a 32 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.

AS4/3501-6
[+452/02]S

- Clamped-Clamped
32 mm Span

I I I

0.20



-123-

0.04 0.08 0.12 0.16
Indentation (mm)

Figure 5.6 Force-indentation data for the specimen with a 508 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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log(F)= log(k) + n log(a) (5.2)

which is a straight line with a slope n and a log(F) axis intercept of log(k).

By plotting the logarithm of the force data versus the logarithm of the

indentation data, a linear regression can be done on the data. A line was fit

through the data using the least squares method, yielding the slope and y-

axis intercept of the line. The slope is the exponent n and the y-axis

intercept of the line gives log(k), from which the constant k is found. The

correlation factor, R2, was also determined for each log-log curve fit. This

correlation factor indicates that the curve fit matches the data well when it

has a value close to 1.0. An example of a log-log plot for the force-

indentation data of Figure 5.1 is shown in Figure 5.7. The same log-log

data was also fit to equation (5.2) while constraining n to the value of 1.5

used in Hertzian contact theory. Using this constrained curve fit, the

values of k and the correlation factor, R2, were determined from the data.

The value of the maximum indentation (a), n and R2, and k, from the

unconstrained curve fit for each maximum contact force and boundary

condition and span are listed in Tables 5.1, 5.2, and 5.3, respectively. The

maximum indentation obviously increases with the maximum contact

force for both support conditions, but it should be again noted that the

maximum indentation for the rigid backface support tests is consistently

greater than the corresponding value for the clamped-clamped support

condition. The maximum indentation values vary somewhat with span,

but, if the high value for the 63.5 mm span is excluded, these values could

be considered to be the same within the range of experimental error. The

values of n for the rigid backface support boundary condition are
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Table 5.1 Table of values of the maximum indentationa, a, for the un-
constrained curve fit.

Maximum Rigid Span Length, mm

Force, N Support 32 63.5 127 254 381 508

444 0.100 0.052

507 0.047

549 0.100 0.064

739 0.073

930 0.085

930 0.141 0.094 0.120 0.083 0.076 0.092 0.088

1183 0.083

1479 0.181 0.092

a All values in mm
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Table 5.2 Table of values of the exponent, n, and the correlation factora,
R2 , for the unconstrained curve fit.

Maximum Rigid Span Length, mm

Force, N Support 32 63.5 127 254 381 508

444 1.92 2.40
(0.994)a (0.939)

507 1.88
(0.936)

549 1.41 2.23
(0.991) (0.993)

739 1.55
(0.991)

930 1.89
(0.997)

930 1.71 1.97 1.96 1.74 1.72 1.87 1.67
(0.996) (0.997) (0.994) (0.992) (0.997) (0.997) (0.995)

1183 1.92
(0.988)

1479 1.66 2.01
(0.997) (0.986)

a Values in parentheses are correlation factors.
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Table 5.3 Table of values of the contact stiffnessa, k, for the unconstrained
curve fit.

Maximum Rigid Span Length, mm

Force, N Support 32 63.5 127 254 381 508

444 34.3 407

507 152

549 13.4 260

739 43.8

930 84.0

930 27.1 87.8 60.0 70.3 74.4 72.0 61.0

1183 107

1479 25.1 146

a All values in kN/mmn .
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consistently smaller than the corresponding values for the clamped-

clamped support condition. The values of n and k vary greatly in some

cases for increasing maximum contact force or for increasing span length.

However, it is felt that they remain constant within the range of

experimental error. The correlation factors shown in Table 5.2 indicate

that the least squares curve fits appear to correspond well with the log-log

data. Note that the dimensions of k are [Force/Lengthn], so that the value of

n varies the dimensions of k. This fact makes comparing values of k for

specimens which show different values of n of questionable benefit.

The values of k and R2 from the constrained curve fit for each

maximum contact force and boundary condition and span are listed in

Table 5.4. The values of k are consistently smaller for the rigid support

tests. However, the values of k do not follow any obvious relationship with

the span or maximum contact force. The correlation factors indicate that

the rigid support tests fit the Hertzian contact theory, where n is equal to

1.5, better than the clamped-clamped boundary condition tests. Obviously,

since the unconstrained fit uses two parameters and the constrained fit

uses one parameter, the tests show generally poorer correlation for the

constrained curve fit than for the unconstrained curve fit. However, this

does not necessarily mean that the value of n equal to 1.5 is invalid,

especially for the rigid support case.

5.2 BHendint Behaim

The results of the experimental and analytical investigation into the

bending behavior of the specimens are contained in this section. The

experimental results are presented as force-deflection plots made from data

obtained from the testing machine stroke (as discussed in Chapter 3, this
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Table 5.4 Table of values of the contact stiffnessa, k, and the correlation
factorb, R2 , for the constrained curve fit.

Maximum Rigid Span Length, mm

Force, N Support 32 63.5 127 254 381 508

444 10.6 34.4
(0.947)b (0.987)

507 39.8
(0.898)

549 17.5 24.1
(0.987) (0.886)

739 34.7
(0.977)

930 23.1
(0.955)

930 15.5 23.6 17.2 32.2 35.2 22.6 34.8
(0.980) (0.941) (0.939) (0.972) (0.980) (0.959) (0.985)

1183 25.2
(0.966)

1479 17.1 30.4
(0.987) (0.909)

a All values in kN/mmn .

b Values in parentheses are correlation factors.
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data was only taken for the tests using specimens with a 254 mm span that

were not strain gaged) and force-strain plots from data obtained from the

strain gages (refer to the illustrations shown in Figures 3.2 and 3.3 for the

positions of these gages). The analytical results using 9 by 9 odd modes and

a a-factor of 0.030, as determined in Chapter 4 to best fit the experimental

data, are presented with the force-deflection and force-strain plots to

compare the results.

5.2.1 Fore-Deflection

The force-deflection data taken during a test using the clamped-

clamped boundary condition on a specimen with a 254 mm span loaded to

the maximum contact force of 1479 N is shown in Figure 5.8. Force-

deflection curves for the other maximum contact force levels tested are

shown in Appendix B. When overplotted, the force-deflection data in Figure

5.8 and Appendix B shows this behavior to be consistent from specimen to

specimen. The maximum deflections seen in these tests are compiled in

Table 5.5.

It should be noted that the largest deflection observed, 23.0 mm, is

approximately fourteen times the average laminate thickness Deflections

of this magnitude, relative to the laminate thickness of 1.60 mm, constitute

"large deflection" behavior [27]. A characteristic of this type of behavior is

nonlinear force-deflection curves, as seen in Figure 5.8. The deflection

starts off linear in a region below a contact force of approximately 100 N, but

becomes nonlinear after that as the plate shows a stiffening behavior. This

stiffening effect during large deflections is termed "membrane stiffening"

because the geometry of the plate under large deflection bending causes
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Figure 5.8 Experimental and analytical force-deflection results for a 254
mm specimen loaded to a maximum contact force of 1479 N
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Table of the maximum deflections of a specimen with a 254 mm
span for various maximum contact forces.

Maximum Force, N Maximum Deflection, mm

444 13.7

507 14.2

549 15.4

739 17.2

930 19.2

1183 20.8

1479 23.2

Table 5.5
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forces acting in the plane of the plate, or membrane forces, to become non-

negligible.

Force-deflection results from the wide beam and the nonlinear plate

analyses for the case of a maximum contact force of 1479 N are also shown

in Figure 5.8. Analytical force-deflection curves for the other maximum

contact force levels tested are shown in Appendix B. The small deflection

portion of the force-deflection data in Figure 5.8 is well predicted by the wide

beam analysis. Since this is a linear analysis, it does not account for the

membrane stiffening effect and it is not expected to predict large

deflections. The important issue with this analysis is that it shows that the

nonlinear analysis matches a simple, known analysis for small deflections.

The nonlinear analysis curve in Figure 5.8 matches the

experimental force-deflection data well. The geometrical nonlinearity

factor P, which is discussed in section 4.5, is used to model the unknown

flexibility of the boundary conditions. A value of 0.030 was found to best

match the experimental data. Nine by nine odd modes were used because

the analysis was converged at that number of modes (see Chapter 4). The

good agreement between this analysis and the experimental data points to

the fact that including the geometrical nonlinearity accounting for the

membrane stiffening effect is important to correctly model the large

deflection bending effects during a static indentation event.

5.2.2 Foe-Stin

The force-strain data taken during a test using the clamped-clamped

boundary condition on a specimen with a 254 mm span loaded to a

maximum contact force of 930 N are shown in Figures 5.9, 5.10, and 5.11.

These plots show strain data for loading of the specimen only. The strain
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Figure 5.9 Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure 5.10 Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure 5.11 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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data for this test was collected at the locations shown in Figure 3.2. These

specimens were gaged to define the distribution of the strain along the span

of the specimen. Figures 5.9 and 5.11 show strain data for the gages nearer

the contact point and the clamped boundary, respectively. Note that the

strains registered on the top and bottom faces reverse sign between these

two points on the plate, indicating the change in curvature of the plate.

Also note that the strain data shown in Figure 5.10 are of a much smaller

magnitude than the data shown in the other two figures. This is because

the gages recording this data were very near the inflection point on the

plate where the curvature of the plate changes. At this point, the curvature

of the plate would be zero. In these figures, it is clear that the strains on the

top and bottom face of the laminate are not symmetric about zero, as one

would expect for a case of pure bending. From this result, it is immediately

obvious that there is a nonzero strain acting at the midplane of the

laminate, making it necessary to look at the two components of the strain

on the laminate - extension and bending, as is done later.

The force-strain data taken during a test using the clamped-clamped

boundary condition for a 254 mm span loaded to a maximum contact force

of 1479 N are shown in Figures 5.12, 5.13, 5.14, and 5.15. The strain data for

this test was collected at the locations shown in Figure 3.3. These plots

show strain data for loading of the specimen only. The major difference

between these tests and those examined in the previous case was the

location of the strain gages. These specimens were gaged to examine the

possibility of wrapping around the indentor and the effect of the boundary

condition on the strain at the end of the plate. The data for the gages near

the clamped boundary, given in Figure 5.12, shows slight nonsymmetry

about zero, indicating only small extensional strains acting at this point.
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Figure 5.13 Force-strain data from gage 3 (see Figure 3.3) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.

AS4/3501-6
[±452/0 ]

Clamped-Clamped
254 mm Span

- Gage 3
X Gage Fa

I I

30000

ilure



-141-

2000

Z 1500

a

LL 1000

-

o 500

F-

I-

0 '
-4000

Figure 5.14

AS4/3501-6
[±452/0Os

Clamped-Clamped
254 mm Span

- Gage 4 f

- - Gage 5 i

I
/

d

I -
4000-2000 0 2000

Strain (gstrain)

Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.

6000



-142-

2000

z k1500

0

COLL.. 1000
+-

0
0 500

0 L
-4000

Figure 5.15

-2000 0 2000
Strain (gstrain)

4000

Force-strain data from gages 6 and 7 (see Figure 3.3) for the
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and tested to a maximum contact force of 1479 N.
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The data for the gage directly opposite the contact point, given in Figure

5.13, shows smooth behavior until approximately 600 N where there is a

break in the data which may indicate that damage is occurring. It should

be noted that the data at this location for the other spans tested showed

breaks in the data at approximately the same force level: 450 to 600 N. It

should also be noted that a "cracking noise" was audible during the tests for

each of the specimens when the load reached approximately 450 to 500 N.

The data for the gages near the contact point are shown in Figures 5.14 and

5.15. The gages nearer the contact point (gages 4 and 5) show larger strain

magnitudes than the gages farther away. These gages nearer the contact

point also show a sharp change in the strain behavior at approximately

1300 N which could indicate damage. In these figures it is again clear that

the strains on the top and bottom face of the laminate are not symmetric

about zero. This result shows that there is a nonzero strain acting at the

midplane of the laminate, making it necessary to look at the two

components of the strain on the laminate - extension and bending.

The force-strain data was reduced into its components, extensional

and bending strain, by using the following equations. The midplane or

extensional strain is given by,

o = E+ (5.3)
2

and the bending strain at a point on the lower surface of the specimen is

given by.

zt = - (5.4)
2
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where e, and el are the strains on the upper and lower facest (respectively)

at a point along the longitudinal centerline of the laminate and z, is the

through-the-thickness coordinate of the lower face of the laminate.

Similarly, the bending strain at a point on the upper surface of the

specimen is given by:

zU, = -L (5.5)
2

where z, is the through-the-thickness coordinate of the upper face of the

laminate. The extensional strain at the three gage positions from gage

scheme A (shown in Figure 3.2) are shown in Figures 5.16 through 5.21 for

the various spans tested to a maximum contact load of 930 N. The bending

strain on the bottom face at the same gage positions from scheme A are

shown in Figures 5.22 through 5.27 for the same cases. Similarly, the

extensional strain at the three positions from gage scheme B (shown in

Figure 3.3) are shown in Figures 5.28 through 5.33 for the various spans

tested to a maximum contact load of 1479 N, while the bending strain on the

bottom face at the same gage positions from scheme B are shown in Figures

5.34 through 5.39 for the same cases.

Referring to the graphs for the specimens loaded to 930 N, there are

some points which are immediately obvious. The extensional strain

'changes character as span increases, appearing nonlinear with force for

the smaller spans (32 and 63.5 mm) and linear with force, except at very

low contact force levels, for the other spans. The maximum extensional

strain at each position is listed in Table 5.6. Note that, as discussed in

Chapter 3, gages 1 and 2 were omitted from the specimens with a 32 mm

t The upper face is the side which the indentor contacts and the lower face is the side
opposite the upper face.
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Figure 5.16 Force-extensional strain data for the specimen with a 32 mm
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Figure 5.18 Force-extensional strain data for the specimen with a 127 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.19 Force-extensional strain data for the specimen with a 254 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.20 Force-extensional strain data for the specimen with a 381 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.21 Force-extensional strain data for the specimen with a 508 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Table 5.6 Table of maximum extensional strainsa for specimens of
different spans in a clamped-clamped support and tested to a
maximum contact force of 930 N.

Span Length, mm

Positionb 32 63.5 127 254 381 508

1/2 -- c 1100 850 725 675 675

3/4 650 800 450 425 450 500

5/6 475 600 300 400 450 500

All values in microstrain.
Strain gage positions as given in
There was no gage 1 or 2 for the
text.

Figure 3.2.
32 mm configuration as discussed in the
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Figure 5.22 Force-bending strain data for the specimen with a 32 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations. Note
that there is no gage 1 or 2 for the 32 mm configuration.)
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Figure 5.23 Force-bending strain data for the specimen with a 63.5 mm
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Figure 5.24 Force-bending strain data for the specimen with a 127 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.25 Force-bending strain data for the specimen with a 254 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.26 Force-bending strain data for the specimen with a 381 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Figure 5.27 Force-bending strain data for the specimen with a 508 mm
span in a clamped-clamped support and tested to a maximum
contact force of 930 N. (See Figure 3.2 for gage locations.)
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Table of maximum bending
spans in a clamped-clamped
contact force of 930 N.

strainsa for specimens of different
support and tested to a maximum

Span Length, mm

Gageb 32 63.5 127 254 381 508

2 ..c 3080 3000 1140 430d  
3 10d

4 1000 970 890 130 70d 30d

6 -660 -520 -1310 -780 -250d -210d

a All values in microstrain.
b Strain gage positions as given in Figure 3.2.
c There was no gage 1 or 2 for the 32 mm configuration

text.
d Maximum did not occur at maximum force level.

as discussed in the

Table 5.7
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span because that span did not have space to fit the full compliment of

strain gages. The general trend appears to be that the maximum

extensional strain decreases with increasing span. It should be noted that,

for the larger spans, the extensional strain at positions 3/4 and 5/6 appear to

reach approximately the same strain level. The maximum bending strain

at each position is listed in Table 5.7. The general trend appears to be that

the maximum bending strain, at a position on a plate, decreases more

rapidly with increasing span than the extensional strain, except for gage 6.

For the spans greater than 127 mm, the bending strains reach a plateau

where the strain no longer changes appreciably with increasing force.

This plateau occurs after the "elbow" in the force-bending strain curve.

This "elbow" in the curve is observed to occur at a decreasing contact force

level as the specimen span length increases. The bending strains decrease

after this point for the 381 mm and 508 mm spans.

There are observations which can be made regarding the graphs for

the specimens loaded to 1479 N. For each span, the extensional strain

curves for locations 4/5 and 6/7 are very similar, but the values for location

6/7 are consistently lower, except for the 381 mm case. The maximum

extensional strain at these locations is approximately 2000 microstrain for

spans less than 254 mm but grows in the larger spans. The maximum

extensional strains are compiled in Table 5.8. The extensional strain for

location 1/2 (represented by gages 6 and 7 for the 32 mm span, as discussed

in Chapter 3) shows a maximum strain of approximately 2000 microstrain

for spans less than 127 mm. However, the maximum strain drops to

approximately 500 microstrain and remains constant at that level for larger

spans. It should be noted that in many of the specimens, a drop or large

change in the extensional strains occurs above approximately 1300 N at
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Note that there is no gage 1 or 2 for the 32 mm configuration.)
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Figure 5.30 Force-extensional strain data for the specimen with a 127 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Figure 5.31 Force-extensional strain data for the specimen with a 254 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Figure 5.32 Force-extensional strain data for the specimen with a 381 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Figure 5.33 Force-extensional strain data for the specimen with a 508 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Table 5.8 Table of maximum extensional strainsa for specimens of
different spans in a clamped-clamped support and tested to a
maximum contact force of 1479 N.

Span Length, mm

Position b  32 63.5 127 254 381 508

1/2 .c 2300 500 500 600 600

4/5 2000 d 2500 2500d 170 0d .. e 3000

6/7 1700 2000 2100 2200 2600 2500

All values in microstrain.
Strain gage positions as given in
There was no gage 1 or 2 for the
text.

Figure 3.3.
32 mm configuration as discussed in the

d Maximum did not occur at maximum force level.
e This gage failed at a low force, therefore presenting a maximum would

be misleading.
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Table 5.9 Table of extensional strainsa
spans in a clamped-clamped
contact force of 1479 N.

at 930 N for specimens of different
support and tested to a maximum

Span Length, mm

Positionb  32 63.5 127 254 381 508

1/2 __c 1500 300 400 400 400

4/5 900 1000 1300 1300 1500 1900

6/7 600 1000 1100 1300 1500 1600

All values in microstrain.
Strain gage positions as given in
There was no gage 1 or 2 for the
text.

Figure 3.3.
32 mm configuration as discussed in the
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Figure 5.34 Force-bending strain data for the specimen with a 32 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.
Note that there is no gage 1 or 2 for the 32 mm configuration.)
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Figure 5.35 Force-bending strain data for the specimen with a 63.5 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Force-bending strain data for the specimen with a 127 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)

6000



-171-

1000 F-

AS4/3f
[+_452/C

Clamp
Clam

254 m

501-6

)2]s
ed-
ped
n Span

I
U

Ii
U
I
I
I
I
U
I
U
I
I
I
I
I
I
I
I
I
I
I
Ir
SI/

I

I

- Gage
- -Gage

- Gage
0 ' -" '"

-6000 -4000 -2000 0 2000 4000 60C
Bending Strain (gstrain)

Figure 5.37 Force-bending strain data for the specimen with a 254 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Figure 5.38 Force-bending strain data for the specimen with a 381 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Figure 5.39 Force-bending strain data for the specimen with a 508 mm
span in a clamped-clamped support and tested to a maximum
contact force of 1479 N. (See Figure 3.3 for gage locations.)
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Table 5.10 Table of maximum bending
spans in a clamped-clamped
contact force of 1479 N.

strainsa for specimens of different
support and tested to a maximum

Span Length, mm

Gageb 32 63.5 127 254 381 508

2 c 3500 -5000 3500 -3500 -2500

5 2500d 4000 5000 3500 ..e 2500

7 3000 2000 3500 2500 2000 2000

All values in microstrain.
Strain gage positions as given in
There was no gage 1 or 2 for the

Figure 3.3.
32 mm configuration

text.
Maximum did not occur at maximum force level.
This gage failed at a low force, therefore presenting
be misleading.

as discussed in the

a maximum would
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location 4/5 which may indicate that the damage has grown to that point on

the plate. It can also be seen that for positions 4/5 and 6/7 in the tests to 1479

N, the extensional strains are much greater, at the same force, than those

seen at any of the other strain gage locations from schemes A and B. This

can be seen by comparing the values in Tables 5.9 and 5.6. This is

especially evident for the specimens with a span of 127 mm or greater.

Also, the bending strains for gages 2 and 5 have a similar magnitude but

opposite sign for every span except the 32 mm span (as mentioned

previously, there was insufficient space to fit the full compliment of strain

gages on a specimen with this span). The maximum bending strains at

each gage location on the plate are compiled in Table 5.10. The bending

strains measured at gage 7 for each of the spans show consistently smaller

strains than those seen for the other two gages. Otherwise, the bending

strains show the same pattern in the specimens tested to 1479 N as those

tested to 930 N of more linear behavior for smaller spans and nonlinear

behavior with a less pronounced "elbow" for larger spans.

The force-extensional strain data from the nonlinear plate analysis,

done for the case of a plate with a 254 mm span loaded to 930 N, and the

similar experimental case are shown in Figures 5.40, 5.41, and 5.42. The

force-bending strain data from the nonlinear plate analysis and the

experiment are shown in Figures 5.43, 5.44, and 5.45. The geometrical

nonlinearity factor, P, in the analysis was set to 0.030. This is the same

value which was determined to correctly model the deflections in section

4.5. Nine by nine odd modes were used because the analysis was converged

for deflection and extensional strain at that number of modes. The

nonlinear analysis curves for extensional strain match the experimental

force-extensional strain data well, with the exception of position 1/2 (Figure
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Figure 5.40 Experimental and analytical force-extensional strain data at
the position for gages 1 and 2 (see Figure 3.2) for a specimen
with a 254 mm span in a clamped-clamped support and tested
to a maximum contact force of 930 N.
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Figure 5.41 Experimental and analytical force-extensional strain data at
the position for gages 3 and 4 (see Figure 3.2) for a specimen
with a 254 mm span in a clamped-clamped support and tested
to a maximum contact force of 930 N.
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Figure 5.42 Experimental and analytical force-extensional strain data at
the position for gages 5 and 6 (see Figure 3.2) for a specimen
with a 254 mm span in a clamped-clamped support and tested
to a maximum contact force of 930 N.
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Figure 5.43 Experimental and analytical force-bending strain data at the
position for gage 2 (see Figure 3.2) for a specimen with a 254
mm span in a clamped-clamped support and tested to a
maximum contact force of 930 N.
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Figure 5.44 Experimental and analytical force-bending strain data at the
position for gage 4 (see Figure 3.2) for a specimen with a 254
mm span in a clamped-clamped support and tested to a
maximum contact force of 930 N.
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Figure 5.45 Experimental and analytical force-bending strain data at the
position for gage 6 (see Figure 3.2) for a specimen with a 254
mm span in a clamped-clamped support and tested to a
maximum contact force of 930 N.
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5.40), which differ by approximately 22% at the maximum force level. The

nonlinear analysis does not appear to predict the bending strains well.

However, it does capture the general trends of the bending strains as the

analysis captures both the nonlinear shape of the bending strain curve and

the leveling off and reduction of the bending strains at high forces, as

shown in Figures 5.43 and 5.45, except for gage 4, as shown in Figure 5.44.

It should also be noted that the bending strains from the analysis predict

the experimental strains well at low forces (below 100 N) where the plate is

experiencing small deflections, and the behavior is linear.

5.3 Damage

The damage results are presented in this section via X-ray

photographs taken of damage in the plane of the specimen and

transcriptions of the damage observed in a cross-section through the

thickness with a microscope, both as described in section 3.4. The

transcriptions of the damage in a cross-section are useful in determining

the through-the-thickness location of damage and its approximate shape.

Note that the transcriptions are not to scale through-the-thickness. The X-

ray photographs provide a more accurate description of the planar shape

and extent of the damage in the laminate, but no through-the-thickness

specifics.

Following the format of the discussion in section 5.1, damage for the

tests using the rigid backface support boundary condition should be shown

first. However, no damage was seen through either X-ray photography or

microscopic examination for any of the maximum contact force levels (up to

1479 N) for which specimens were tested with this support condition.
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The damage results outlining a make-up of the progression of

damage during loading, using different specimens for each load level, are

shown in Figures 5.46 through 5.50. These results represent the damage

which occurred during tests on specimens with a 254 mm span using the

clamped-clamped boundary condition. An X-ray and a transcription are

shown for the maximum contact forces of 549 N, 739 N, 930 N, 1183 N and

1479 N. Damage was not observed at load levels below 549 N (444 N and 507

N). The first damage observed, as shown in Figure 5.46, occurred in a

specimen loaded to a maximum contact force of 549 N and consists of a

matrix crack extending approximately 8 mm, in the +45* plies nearer the

backface, on each side of the hole used for injection of the DiB dye. The

transcription of the microscopic examination was inconclusive as the crack

could not be observed in the cross-section examined. However, a small

delamination, which is not apparent in the X-ray photograph, was observed

in the cross-section.

An increased extent of damage is seen at the higher force levels. The

next step in the progression of damage that resulted from these tests

consists of further matrix cracking and delaminations. This damage is

seen to occur in the specimen loaded to a maximum contact force of 930 N

as shown in Figure 5.48. The delaminations appear very small, indicating

that they may have initiated from the matrix cracks at approximately this

force level. The delamination is oriented along the +45* direction. The

examination of the sectioned specimen under microscope showed that the

delamination had occurred in the interface between the +45* and -450 plies

nearer the back face of the laminate. Other delaminations were seen to

occur in both interfaces between the -45* and 0* plies, with a matrix crack

running between them at an angle through the 00 plies. The final step
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Figure 5.46 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 549
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.47 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 739
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.48 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.49 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 1183
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.50 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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observed in the progression of damage consists of matrix cracking, further

growth of delaminations, and fiber damage in the plies at the backface of

the laminate. This damage resulted from loading the specimen to a

maximum contact force of 1479 N and is shown in Figure 5.50. The largest

delamination appears as an elongated ellipse extending in the +45*

direction from the hole used to inject the DiB dye. The examination of the

sectioned specimen under microscope showed that the largest area of

delamination occurred in the interface between the +450 and -450 plies

nearer the back face of the laminate, while delaminations could be seen in

every interface. Matrix cracks were observed between delaminations in the

-450/00 and +450/-451 interfaces nearer the backface of the specimen. An

area of massive matrix and fiber damage was seen in the +451 plies at the

backface of the specimen. This transcription shows that the extent of

damage increases toward the back face of the laminate (away from the

point of indentation).

The damage that occurs for specimens of different spans loaded to a

maximum contact force of 930 N using the clamped-clamped boundary

condition is observed to be similar in type, location, and extent. This is also

observed for the specimens loaded to a maximum contact force of 1479 N.

This can be seen through the X-ray photographs and transcriptions shown

for the maximum contact force of 930 N in Figures 5.51 through 5.56 and

the maximum contact force of 1479 N in Figures 5.57 through 5.62. The

damage shown in Figures 5.51 through 5.56 is similar to the damage seen

for the specimen with a 254 mm span loaded to a maximum contact force of

930 N, consisting of cracking and some small delaminations. The damage

shown in Figures 5.57 through 5.62 is similar to the damage seen for the

specimen with a 254 mm span loaded to a maximum contact force of
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1479 N. This damage again consists of matrix cracking and delaminations

for each span length. The most prominent delamination appears as an

elongated ellipse extending in the +45* direction from the hole at the center.

The examination of each sectioned span under microscope showed that the

largest area of delamination occurred in the interface between the +450 and

-450 plies nearer the back face of the laminate, while delaminations could be

seen at every interface. Also, matrix cracks extend between the

delaminations at the -450/0* interfaces at an angle through the 0* plies.

These transcription show that the extent of damage increases toward the

back face of the laminate (away from the point of indentation). The

important point to note is that for both maximum force levels, the damage

appears to be of similar type, extent, and location regardless of the span

length that was tested.
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Figure 5.51 Damage in the specimen with a 32 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.52 Damage in the specimen with a 63.5 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.53 Damage in the specimen with a 127 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.54 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.55 Damage in the specimen with a 381 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.56 Damage in the specimen with a 508 mm span tested in a
clamped-clamped support to a maximum contact force of 930
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.57 Damage in the specimen with a 32 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.58 Damage in the specimen with a 63.5 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.59 Damage in the specimen with a 127 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.60 Damage in the specimen with a 254 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.61 Damage in the specimen with a 381 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.
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Figure 5.62 Damage in the specimen with a 508 mm span tested in a
clamped-clamped support to a maximum contact force of 1479
N via (top) X-ray photograph and (bottom) transcription of a
cross-section.

ZL

+450
+450
-450
-450

00
00
00
00

-450
-450

+450
+450

-- Delamination
I Matrix Crack
m Fiber Damage

X

t,



-203-

Chapter 6

DISCUSSION OF RESULTS

The goals of this investigation are to understand how the structural

parameters of plate span and boundary condition influence the (impact)

damage resistance, to evaluate the ability of the nonlinear analysis to

predict the indentation event, and to understand how static indentation

results compare with impact results. These issues will be addressed in this

chapter through observations that can be made from the data obtained from

the indentation experiments and analysis as reported in Chapter 5.

6.1 Effects ofBo da Condition

Two boundary conditions were used in this investigation, clamped-

clamped and rigid backface support, as described in Chapter 3. These

boundary conditions provide different supports for the specimen: the rigid

backface support fixes the deflection of the backface of the specimen to zero

and therefore has a nonzero through-the-thickness stress on the backface

opposite the indentor; whereas the clamped-clamped support fixes only the

ends of the specimen, allowing the specimen to bend, and has zero through-

the-thickness stress on the backface opposite the indentor. These conditions

cause different behavior to occur as observed in the test data. For example,

the clamped specimens undergo deflections as high as 23 mm while the

specimens supported on the backface have zero deflection.

In the tests with rigid backface support, consistently different

indentation behavior occurred as compared to that from tests with the

clamped-clamped condition. This is manifested in terms of higher

indentations for the rigid backface support condition than those seen at the
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same force level for the clamped-clamped condition. The maximum

indentations for the rigid backface support condition were approximately

two times larger than the corresponding indentation for the clamped-

clamped case as shown in Table 5.1. The indentations could be smaller for

the clamped-clamped case because the global bending, which is allowed in

this case, allows the indentor to contact the specimen over a greater area.

This larger contact area results because the spherical indentor contacts the

curved plate over a larger arc as the plate curves more (increased bending)

with increased force. This situation hinges on the fact that the indentor is

spherical and the specimens are undergoing approximately cylindrical

bending, allowing "smooth" contact over a continuous surface on both the

indentor and the plate. The contact force is therefore distributed over a

larger area, producing lower peak contact stresses and therefore less

indentation. The total contact force, which is the integral of the stress over

the contact area, remains constant for the two cases, but, since the contact

area changes, the maximum contact stress is larger for the rigid support

case. This effect is illustrated in Figure 6.1. In addition to this effect, the

through-thickness stress (o,,) on the backface opposite the indentor is

nonzero for the rigid backface support. This causes the average through-

thickness stress in a specimen which has a rigid backface support to be

higher than the average through-thickness stress in a clamped specimen.

Because the average through-thickness strain and therefore the

indentation is proportional to the average through-thickness stress, this

can also result in higher indentations for the cases with a rigid backface

support.

The values of the local contact stiffness, k, for the rigid backface

support condition were observed to be smaller than the corresponding
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values for the clamped-clamped case, as shown in Tables 5.3. From the

constrained curve fit, the values of the contact stiffness for the rigid

backface support condition were seen to be on the order of one-half of those

seen for the clamped-clamped condition (see Table 5.4)t. The smaller

values of k indicate that a specimen which is supported on the backface is

more locally compliant through-the-thickness on a structural basis than a

corresponding specimen which is clamped on two ends. In this latter case,

the local compliance is affected by the structural conditions due to an

apparent interaction with the bending. The values of the contact relation

exponent, n, for the rigid backface support condition were observed to be

smaller than the corresponding values for the clamped-clamped case, as

shown in Tables 5.2. The constrained fit also showed that, on average, the

data from the rigid backface support tests was fit better using an exponent

of 1.5 than the clamped-clamped data. The values of n for the rigid backface

support lie closer to the value of 1.5 expected from Hertzian contact theory.

This result is expected because the rigid backface support condition more

closely imitates the Hertzian assumption of contact with an elastic half-

space [12]. The values of n for the clamped-clamped case, which are closer

to two, do not match the Hertzian value. This discrepancy results because

the half-space assumption of Hertzian contact theory is not a good

approximation, in this case, due to the bending which occurs in the

clamped-clamped plate and the fact that the through-thickness stress will

be zero on the backface.

t The constrained curve fit yields values for the contact stiffness which are more easily
compared than the unconstrained fit because they have consistent units (kN/mmn, where
n is equal to 1.5 for the constrained fit, but may be any value for the unconstrained fit).
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Another important difference between cases with the two different

boundary conditions is that the rigid support cases show no damage up to

loads of 1479 N while the clamped-clamped cases show a progression of

damage for the same forces tested, beginning at loads between 507 N and

549 N. Again, the explanation is that bending is allowed in the clamped

case. This causes a difference in the stress state in the plates: the clamped-

clamped plate transmits the contact stresses to the boundaries through

global bending stresses along the whole span of the plate, whereas the plate

supported on its backface transmits the contact stresses to the boundary on

the backface through local through-the-thickness stresses. This situation

results in large in-plane (bending) stresses in the clamped plate. The

bending stresses are tensile in the back half of the laminate and increase in

magnitude toward the backface. This causes matrix cracking and

delaminations with the amount of such damage increasing toward the

backface of the laminate as observed in the damage descriptions in Chapter

5. This pattern of backface damage has been seen previously in thinner

laminates which are allowed to bend globally [33]. Damage incipience and

progression was not investigated past a contact load of 1479 N for the rigid

backface support condition so the type and location of damage which will

develop in this case is not known. However, evidence exists [33] that thicker

laminates show cracking and delamination, in the plies nearer the contact

surface, which results from high local contact (through-the-thickness)

stresses. This situation is similar to the rigid backface support condition

which appears thick due to the support. As a result, it is expected that if

higher force levels had been tested, damage in specimens with a rigid

backface support would initiate in the plies near the upper face, where the

local stresses are highest, and consist of matrix cracking and
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delamination. However, the creation of this type of damage, which is

similar to that seen previously [331, would have to be verified.

82 EMfectsofSpn

In this investigation, specimens in the clamped-clamped boundary

condition with a range of spans between 32 mm and 508 mm were loaded to

two different maximum contact forces, 930 N and 1479 N, as described in

Chapter 3. The different bending effects, which this variety of plates

experience, are most evident from the observation that, at the same force

level, specimens with larger spans undergo larger deflections than

specimens with smaller spans. This is because a longer specimen has a

longer moment arm from the point of application of force to the boundary

which creates a larger bending moment and therefore a larger deflection

for larger spans.

The contact behavior may also be affected by the span. This may be

seen if the force-indentation data for each of the different kinds of tests is

overplotted. Overplots for the rigid backface support tests loaded to different

maximum contact forces, the tests on the specimens with a 254 mm span in

a clamped-clamped support loaded to different maximum contact forces,

and the tests on specimens with different spans in a clamped-clamped

support are shown in Figures 6.2, 6.3, and 6.4, respectively. The rigid

support data is consistent (within experimental error) for each of the tests

to a maximum contact force, as is the clamped-clamped data. However, the

data for different spans shows a variation that does not have an obvious

relationship with span, as seen in Figure 6.4. Because there is such a wide

variation in the data for different spans when compared to the other tests, it

is likely that span affects the relationship. Unfortunately, the small sample
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of data for each span is not sufficient to definitively say what that

relationship is. The general trend may be that the indentations decrease

for a given force as span increases, but this would have to be determined

conclusively through more tests.

If the range of indentations seen for contact forces of 200 N

(indentation range approximately equal to ±0.01 mm) and 500 N

(indentation range approximately equal to ±0.02 mm) in Figure 6.3 can be

considered representative of the range of data for the force-indentation

results, then, by accounting for this variability, it could be concluded that

the indentation at a given force level decreases with increasing span. This

can be seen if the indentation is plotted, accounting for the variability for

each force, against specimen span as seen in Figures 6.5 and 6.6 for contact

force levels of 200 N and 500 N, respectively. In these figures, a line, which

decreases monotonically with span, can be drawn through the range of

variability of the indentations, indicating that a monotonically decreasing

relationship may exist between span and indentation. The data may also

indicate that span does not affect indentation because a horizontal line

(indicating the indentation is not affected by span) may also be drawn

through the range of variability of the indentations. Additionally, because it

allows no bending, the rigid backface case effectively acts as a zero span

plate. In this way, the rigid backface support can be thought of as the upper

limit on indentations for specimens of different spans (for this reason, the

rigid support test to a force level of 930 N was included in Figure 6.4). This

also indicates that indentation may decrease as span increases. If this

behavior were occurring, it could be explained in the same way as the

difference between indentations for the different boundary conditions. The

global bending creates a larger contact area, distributing the contact force
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over a larger area, producing less contact stress and therefore less

indentation. The global bending increases with increasing span, causing

the contact area to increase as the span increases Again, this is caused

because the spherical indentor contacts the curved plate over a larger arc

as the plate curves more (increased bending) with increased bending. This

will cause the contact stresses to be lower in the case of larger spans and

cause smaller indentations. A similar situation has been described for

increasing indentations in a previous investigation of contact behavior [15].

Such logic may differ depending upon the shape of the indentor.

It should be noted from the arguments above that changes in bending

should influence the contact relationship regardless of the reason they

occur. This is because the magnitude of the bending moment in the plate

does not depend on whether it was created by an increase in the force, or an

increase in the moment arm. Because of this, an increase in bending

which occurs due to the application of force should change the contact

behavior in the same way as an increase in bending which occurs due to an

increase in span. This means that specimens loaded to different contact

forces, which will obviously see increased amounts of bending as the load is

increased, should have values of n and k which change with force.

However, this effect needs further verification because it could not be

determined in the specimens with a 254 mm span which were tested to

different maximum contact forces.

While the rigid support case can be qualitatively thought of as an

extreme case representing a "zero span" plate, this representation does not

explain the large difference in contact behavior between even the specimen

with the shortest span and the rigid backface support case. There are two

effects at work in the different boundary conditions (as mentioned
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previously): the difference between allowing bending and not allowing

bending, which leads to the statement that the rigid case effectively acts as

a zero span plate; and the difference between the stress states on the

backface of the specimen. The most likely explanation for the large

difference in the contact behavior is that both effects are influencing the

force-indentation response. However, the contribution of each of these

effects needs to be individually determined.

The span of the plate is also observed to have an effect on the strain

behavior of the plate. The maximum bending strains decrease more

rapidly with increasing span than the extensional strain at a position on

the plate, as seen in Figure 6.7. This is because the extensional strain

becomes more dominant than the bending strain in the plate as the span of

the specimen increases - the membrane effect is greater for longer

specimens which experience larger deflections. This change in behavior of

the specimens from bending-dominated behavior toward membrane-

dominated behavior can be seen by considering the results for specimens

with different spans shown in Figure 6.7. Extensional strain at a given

contact force increases with span, indicating that membrane forces become

more important as the plate size grows. For plates with spans longer than

254 mm, the extensional strain dominates the strain behavior. For smaller

spans, bending strain dominates. This indicates that, at higher contact

forces, the specimens with spans longer than 254 mm were behaving more

like membranes than the smaller span specimens.

The development of membrane behavior in the larger span plates can

also be seen as the magnitude of the deflection increases. The bending

strains actually decrease for the cases of the specimens with 381 mm and

508 mm spans as the load increases beyond some value. This behavior can
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be seen clearly in Figure 6.8 which shows the bending strain at the scheme

A gage locations (see Figure 3.2) for selected forces for a specimen with a

508 mm span. This relaxation in the bending, which occurs at very large

deflections, can be explained due to the expansion of the point of inflection to

a region of inflection. This is illustrated in Figure 6.9. There is an

inflection point on a plate where the curvature of the plate, and therefore

the bending strain, is zero. This is the point where the curvature of the

plate changes from positive to negative. As the deflection of the plate

becomes large, the inflection point becomes more like an inflection zone - a

characteristic which shows that the plate is behaving more like a

membrane. In the inflection zone, the plate flattens out again so that the

bending strain approaches zero. In the limit, the plate behaves completely

as a membrane.

The bending strain relaxation seen in Figures 5.26 and 5.27 can be

thought of as the inflection zone extending as the contact force increases,

reducing the bending strain of the plate in that region. The bending strains

nearer the inflection point on the plate decrease as span increases because

the larger plates begin to behave more like membranes. This can be seen as

the relaxation effect develops and becomes more pronounced as the span of

the plate increases, as shown in Figure 6.10. In this figure, it can be seen

that the bending strains in the middle of the plate decrease toward zero as

the span of the plate increases and that the length of the region over which

this occurs grows as span increases.

The extensional strains can be seen to scale with the contact force.

The extensional strains for each span, at each gage location along the span

(from scheme A, Figure 3.2, and scheme B, Figure 3.3) are shown in

Figures 6.11, 6.12, and 6.13 for the contact forces 200 N, 600 N, and 930 N.
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In this series of figures, the extensional strains along the length of each

plate span overplot for each contact force. However, the extensional strains

for the smaller plate sizes deviate slightly from this pattern as the force

increases. This is most likely due to the fact that these specimens have a

low span to width aspect ratio resulting in behavior which is more "plate-

like" (the bending is no longer cylindrical) than "beam-like" in the larger

spans with a higher aspect ratio. The precise mechanism which causes

the higher extensional strains is not known, but the low aspect ratio is the

most likely cause. If this is so, the increase in extensional strain seen

nearer the contact point for the larger spans as the contact force increases

might also be explained as a result of the local non-cylindrical bending

which occurs in this area. The extensional strain decreases away from the

contact point as the plate takes on more cylindrical bending or "beam-like"

characteristics.

The bending strains can be seen to scale with the bending moment at

the boundary of the plate (the contact force multiplied by the moment arm:

half the span). The bending strains for each span, at each gage location

along the span (from scheme A, Figure 3.2, and scheme B, Figure 3.3) are

shown in Figures 6.14 and 6.15 for bending moments of 5 Nm and 15 Nm,

respectively. The same information for only the four largest spans are

shown in Figure 6.16 for a bending moment of 60 Nm. The specimens of the

two smaller spans were not loaded high enough to create this moment

level. In this series of figures, the bending strains along the length of each

plate span overplot only for the lowest bending moment level. At the higher

bending moments, the difference between specimens of different spans

increases as the bending relaxation effect starts to dominate the bending
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response of the plate, causing the bending strain to deviate from the pure

bending response as seen for the lower forces.

If the span of the plate can affect the indentation response, it is

possible that it may influence other local effects. It was observed for

specimens with a span of 127 mm or greater that the extensional strains at

positions 4/5 and 6/7 (gage scheme B, see Figure 3.3) are much greater, at

the same force, than those seen at any of the other strain gage locations

from both schemes A and B. Furthermore, the extensional strains at

locations 4/5 and 6/7 increase with span while the extensional strains for

the other gages, from both schemes A and B, seem to be approaching a

constant value along the length of the plate as span increases. These points

were observed through a comparison of the values of extensional strain at

each of the gage locations from both schemes for all the spans, as shown in

Figure 6.17. In this figure, the extensional strain at the gages near the

contact point (those with the highest span location) for each span is seen to

increase, except for the specimens with the 63.5 mm span. This seems to

indicate that span is having an effect on extensional strain behavior local to

the contact point, which may be an indication of "wrapping". Wrapping

has been defined as a local bending of the plate to conform to the indentor

[16]. An observation which supports this is seen when comparing the

extensional strain data from the analysis with the experimental data. The

nonlinear analysis curves for extensional strain match the experimental

force-extensional strain data well with the exception of position 1/2 (Figure

5.40) which is closest to the contact point. The discrepancy between

experiment and analysis at that point could be explained as local effects

(possibly wrapping) resulting from the contact between the indentor and the

plate which are not accounted for in the analysis.
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Not all the data seems to support the idea of wrapping, however. It

was observed that the bending strains at gages 2 and 5 (gage scheme B) for

the tests to 1479 N were of similar magnitude but opposite sign for all the

spans tested (except the 32 mm span for which data was unavailable), as

seen in Table 5.9. This can also be seen in Figure 6.10. The symmetry of

the bending about the inflection point should cause bending strains at

points equidistant from the boundary and the contact point to be equal in

magnitude but opposite in sign, if local effects are neglected. This can be

easily seen in the wide beam analysis developed in Chapter 4. From

equation 4.5 (reiterated here as equation 6.1), it is obvious that the inflection

point (where the curvature, icI, is equal to zero) will occur at the quarter

span point:

d2w(x) F xL D22 (6.1)&F 2 4 D22 1 - D122

While this is only rigorous for beams and not for plates, it is a good enough

approximation to explain the behavior of these two gages. Since gage 2 is

the same distance to the boundary as gage 5 is to the contact point, the

similarity in the magnitude of the bending strains makes sense. However,

this also seems to indicate that wrapping is not occurring at location 4/5 for

any of the plates because a local bending effect should upset the symmetry

in the bending strains and this is not observed.

The issue of wrapping needs further work. In the present work, the

extensional strains obtained increase near the contact point. This may be a

result of local shell effects. However, the bending strains do not seem to

indicate any local effect at all. This indicates that wrapping behavior is not

observed to affect the plate at the locations of gages 4 through 7 from gage
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scheme B. However, this does not indicate that wrapping is not occurring

as wrapping may influence an area which is very local to, or directly

beneath, the indentor and can, therefore, not be measured via the strain

gages in this work. As a result, the issue of wrapping should receive

attention in future works. This effect has been identified as possibly

influencing the bending response [36].

With all of the differences in behavior resulting from changing span,

it would be expected that the damage would also show differences.

However, the damage extent, type, and location through-the-thickness does

not vary with changes in span. The progression of damage through two

different maximum contact forces also appears similar for every span.

However, these observations do not necessarily indicate that span has no

effect on damage behavior. These observations are all made for a specimen

in which damage has already initiated. The damage in a laminate will

affect the stress state in the laminate, usually in ways that are not well

understood, diminishing the ability to positively determine what

relationships are occurring. This means that the results obtained for span

in this investigation only indicate that the progression of damage, once

initial damage has occurred, is similar for the range of spans tested.

Because the initiation of damage for different spans was not investigated,

the question of what relationship damage has to the span should be

determined in future works through an investigation of how the damage

incipience changes with span.

.3 Evaluation ofAnalysis

The nonlinear analysis, developed in Chapter 4, was used to

determine the global effects of a static indentation event on a plate. This
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analysis was compared to the experimental force-deflection, force-

extensional strain, and force-bending strain data to determine the validity

of the analysis and to identify parameters which may be important in static

indentation events.

The force-deflection curves fit the experimental data well for a

geometrical nonlinearity factor, P, equal to 0.03, as seen in Figure 5.8. The

predicted deflection of the plate is seen to change by only a small amount for

large variations in the a-factor, possibly indicating that there is a

logarithmic relationship between P and this predicted deflection of the

plate. The deflections were also seen to converge very quickly, providing

good results for small numbers of modes. This is because the mode shapes

used were designed to accurately define the bending shape of the plate and

because . was well defined at the center of the plate. The latter point was

due to the fact that effects from the in-plane boundary flexibility were

averaged across both the span and the width, making the center point,

arguably, the most accurate.

The nonlinear analysis curves for extensional strain match the

experimental force-extensional strain data well, with the exception of

position 1/2 (gage scheme A), which is shown in Figure 5.33. The

discrepancy between experiment and analysis at that point can be

explained as a local bending effect (possibly wrapping and/or local shell

effects) resulting from the contact between the indentor and the plate which

are not accounted for in the analysis. The slight difference between the

experimental and analytical curves for position 5/6 (gage scheme A), which

is shown in Figure 5.35, can be explained as a result of effects from St.

Venant's principle - the grips might not grip evenly across the width of the

plate and cause the distribution of stresses near the end of the plate to
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diverge from what is assumed in the analysis. The extensional strains

were seen to converge more slowly than the deflection. A reason for the

slower convergence is that the extensional strain is a first derivative which

is extracted from the displacement-based analysis, removing it by a step

from the conditions of convergence which are based on the displacement.

Another reason for the slower convergence is that the extensional strains

are calculated at specific points along the plate. As stated previously, the

use of the f-factor ignores the pointwise shell effect, but rather accounts for

the geometrical nonlinearity only on a global basis. This means that by

using the f-factor, the effect of the flexible boundary condition is averaged

over both in-plane directions.

At first glance, the nonlinear analysis does not appear to predict the

bending strains well. However, this does not mean that the method of

analysis is in error. The poor agreement is because not enough modes have

been used to allow the bending strain to converge (see section 4.6). This

indicates that higher mode cases are needed to accurately predict the

bending strains using this method. However, as discussed in Chapter 4,

investigation of higher mode cases becomes difficult due to the size of the

matrices involved in setting up and solving the nonlinear equations. As a

result, the convergence of the bending strains could not be fully investigated

due to limitations of the available computational facilities and time. It

should be noted (on the positive side) that the analysis seems to account for

the relaxation of the bending strain, as seen in Figure 5.38, even if it has not

converged to the experimental data. A reason for the slow convergence is

that the bending strain is a second derivative which is extracted from the

displacement-based analysis. In other words, the deflection, for which the

analysis was formulated, must be diluted twice to arrive at bending strain.
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Another reason for inaccuracy of the analysis is that bending calculations

must be done at a specific point through-the-thickness of the plate. By

using the a-factor, which takes into account only the change in length

along the through-the-thickness centerline, the effect of the flexible

boundary condition is averaged across the thickness of the plate. This

compounds the problem of using an average 1-factor across the in-plane

directions of the plate and could certainly cause slow convergence or

inaccuracies in the method. More modes and possibly a better

quantification of the local shell effects are needed to fully determine the

ability of this method to accurately predict strains.

Finally, it should be mentioned that despite its limitations, the P-

factor appears to work well in accounting for the global effects of the

flexibility of the in-plane boundary conditions. This has allowed the

deflection and extensional strain behavior to be matched closely with

analysis, by accounting for this flexibility. The p-factor gives insight into

the effect of a flexible in-plane boundary on the deflection, as shown in

Figure 6.18, and the extensional strain of a plate, as shown in Figure 6.19.

The extreme case of this flexible boundary, where P is equal to zero, is seen

to increase the deflection and decrease the extensional strain in the plate.

These points highlight the fact that the ideal boundary conditions modeled

in this nonlinear analysis will not perfectly model boundary conditions even

in a controlled experimental environment. Therefore, it is not expected that

the ideal boundary conditions in this analysis could properly model the

boundary conditions of a plate in a realistic structure. Such conditions are

not ideal due to intentional design or variability in manufacturing. This

indicates that the 1-factor would be useful when modeling boundary

conditions in realistic situations. The P-factor would, however, need to be
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measured for each case. Furthermore, better accuracy in predicting the

bending strains may not be possible without accounting for the local shell

effect. Despite this, the f-factor has successfully taken the in-plane

boundary flexibility into account for modeling static force-deflection and

force-extensional strain data and previously to model impact force-time

histories [32, 36].

64 Co rison with Impact Result

In this investigation, specimens with a 254 mm span with a

clamped-clamped boundary condition were loaded to seven different

maximum force levels. These force levels were determined from the

maximum contact forces seen in previous impact experiments for the same

material and laminate [10]. Each of the maximum contact forces

corresponds to a particular impact velocity as seen in Table 6.1. The results

from these static indentation tests are compared with the impact tests

using force as the parameter for comparison. Force has been shown to be a

useful parameter for evaluating impact phenomena [1] and in this case it is

the only practical parameter to use as a basis of comparison between the

two tests.

The force-deflection behavior can be seen to be different for the static

and impact cases. The deflection during an impact is determined by twice

integrating a force-time history (taken from reference [10]) to arrive at a

force-deflection plot. This procedure is also discussed in detail in that

work. A plot of the force-deflection behavior for a maximum contact force of

1479 N for both the impact and static tests is shown in Figure 6.20. It is

observed from this data that the deflection seen in the static test is

approximately twice the deflection seen in the impact test, at the same
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Table 6.1 Table of the maximum contact forces and the corresponding
impact velocities for a specimen with a 254 mm span in a
clamped-clamped boundary condition [10].

Impact Velocity, m/s

1.0

1.3

1.4

1.5

2.0

2.6

3.0

Maximum Force, N

444

507

549

739

930

1183

1479
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force. However, the curves both show similar overall nonlinear behavior (if

the predominant first mode response of the impact data is considered),

indicating that, although the magnitude is different, generally similar

membrane effects are occurring in both specimens. It should also be noted

that the rigid backface support condition can also be represented on this

figure as the vertical line at zero deflection since no bending is allowed for

this case. Observing this leads to the conclusion that the impact behavior

for the clamped-clamped boundary condition is bounded by the static

indentation behavior for the rigid backface support and clamped-clamped

boundary conditions. This also implies that the static force-indentation

behavior for the two boundary conditions may also bound the behavior in the

impact case, although this would have to be verified.

The damage that results in a specimen for both the static and impact

tests loaded to the same maximum contact force can be seen to be similar in

certain aspects and different in others. For both cases, the first damage

was seen for the test that was run to a maximum contact force of 549 N.

The types of damage and through-the-thickness location are also the same.

In both cases, cracks develop in the +450 plies nearer the backface of the

laminate and are accompanied by delaminations at higher force levels. In

both cases the damage extent is seen to increase toward the lower face of the

laminate. As described earlier, the increase in the damage toward the

backface of the laminate can be explained as a result of the higher bending

stresses on the backface of the laminate. However, the overall extent of the

delaminations appears somewhat smaller for the static indentation tests as

can be seen in Figure 6.21. Damage incipience needs to be better defined to

compare the damage which occurs in static and impact tests. The extent of

the damage may not relate for the two cases due to dynamic effects. The
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extent of the damage also may not relate for the two cases because the

internal stress state will change once damage occurs. There is no simple

way to determine how this could interact with the overall bending stresses

and local effects to alter the extent of damage.

Static tests are useful in investigating certain aspects of impact

behavior. As seen here, the results of the static tests can be used to bound

the global bending and indentation characteristics of an impact event and to

understand general trends in behavior. However, caution must be used

when directly applying results from static tests to quantify impact damage

resistance, both in terms of damage incipience and damage extent.

Clearly, plate geometry and boundary condition influence the indentation

and bending response of a plate during impact and static events, but

further work is needed to determine the relationship that exists between the

damage incipience and damage extent in static and impact events for the

plate geometries and boundary conditions examined here.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

In this work, the effect of different structural parameters on the

indentation and bending behavior of laminated plates was investigated

through the use of static indentation. These different structural

parameters include two boundary conditions, rigid backface support and

clamped-clamped, and six different spans in the clamped-clamped

boundary condition. The local indentation, bending, and damage response

was studied for each case and, where possible, compared to previous

impact test results. Additionally, a nonlinear analysis was developed to

model the bending response of a plate under static loading and results from

this analysis were compared to the experimental results.

The conclusions which can be drawn from this investigation are:

1. The maximum indentations for the rigid backface support condition

are approximately two times larger than the corresponding

indentation for the clamped-clamped case.

2. The force-indentation responses can be fit with the contact

relationship F = ka n . The values of the exponent, n, for the rigid

backface support lie closer to the value of 1.5 expected from Hertzian

contact theory than the values for the clamped-clamped case, which

are closer to two.

3. The force-indentation curves for the tests on specimens with different

spans in a clamped-clamped support indicate that force-indentation
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behavior may decrease monotonically or remain constant with

increasing span. However, this relationship could not be determined

conclusively.

4. The force-deflection behavior for both the impact tests and the static

tests show similar overall nonlinear behavior, indicating that,

although the magnitude is different, generally similar membrane

effects are occurring in both specimens. The analysis also shows

that membrane stiffening is important for the plates tested.

5. Membrane behavior was observed to become more dominant in plates

with larger spans and at increased force levels.

6. Until nonlinear effects dominate, strain behavior does not change

with span if location on the plate is normalized by span and the

extensional strains are compared on the basis of contact force, while

the bending strains are compared on the basis of bending moment at

the boundary of the plate.

7. For specimens with a span of 127 mm or greater, the extensional

strains may be influenced by local effects. However, the bending

strains show no indication of being influenced by local effects.

8. The analytical force-deflection curves fit the experimental data well

using a fitting factor, .8, to account for flexibility of the in-plane

boundary conditions. The deflections were also seen to converge very

quickly, providing good results with a small numbers of modes.
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9. The nonlinear analysis curves for extensional strain generally

match the experimental force-extensional strain data well with the

exception of the extensional strains at a location one-eighth of the

span from the contact point. However, the extensional strains were

seen to converge more slowly than the deflection.

10. The analysis accounts for the relaxation of the bending strain, but

local shell effects need to be included to predict the values accurately.

11. The specimens tested with a rigid support show no damage up to

loads of 1479 N (the maximum utilized) while the specimens tested

with a clamped-clamped support show a progression of damage for

the same forces tested, beginning at loads between 507 N and 549 N

for both static and impact tests.

12. The damage in the specimens consists of cracks in the +45* plies

nearer the backface of the laminate which are accompanied by

delaminations at higher force levels. The damage extent is seen to

increase toward the lower face of the laminate for both impacted and

statically loaded specimens.

13. The damage extent, type, and location through-the-thickness for a

contact force does not vary with changes in span. However, the

influence of span on the contact force and type and location of

damage at damage incipience was not determined.
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14. Using force as the parameter for comparison, the types of damage

and through-the-thickness location are the same for both impact and

static tests. However, the overall extent of the damage appears

smaller for specimens loaded to the same contact force level in the

static indentation tests as that seen in impact tests.

15. The force-deflection behavior for the clamped-clamped boundary

condition in the impact tests is bounded by the static force-deflection

behavior for the rigid backface support and clamped-clamped

boundary conditions.

16. In order to reliably use the static indentation test in assessing

(impact) damage resistance, further work is needed to determine the

relationship that exists between the damage incipience and damage

extent in static and impact events for the plate geometries and

boundary conditions examined here, as well as others.

Based on the results of this investigation, recommendations for

further research are:

1. Investigate the effect of boundary conditions (including rigid backface

support) and specimen span on the damage incipience for both

impact and static tests.

2. Confirm whether or not the indentation decreases with increasing

bending curvature through indentation tests which allow plates to
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undergo different amounts of bending caused both by changing span

and changing force.

3. Determine the individual contributions of the local through-thickness

stress state and the overall bending characteristics to the difference

in force-indentation response seen in specimens tested with the rigid

backface support and the clamped-clamped support.

4. Further investigate the development of membrane behavior in plates

with different geometries. Specifically, use the relationships between

bending strain and bending moment and between extensional strain

and contact force at a location on the plate normalized to span to

examine at what contact force and specimen geometry (aspect ratio,

length, thickness, etc.) membrane behavior becomes important.

5. Determine the change in behavior and important scaling parameters

for the bending, indentation, and damage characteristics for

specimens with different geometries to better understand how these

parameters might influence the damage resistance for realistic

geometries.

6. Investigate the possibility of wrapping occurring near the contact

point. Specifically, identify the effects this behavior might have on

the resulting damage in the plate and the range of contact forces or

indentations under which this behavior will develop.
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7. Include the local shell effect in the nonlinear analysis as developed in

order to achieve better accuracy in predicting the bending strains

which would enable prediction of the occurrence of damage in the

plate.

8. Identify the physical meaning of the a-factor in terms of the

flexibility of the in-plane boundary conditions through experiment

and analysis.

9. Determine whether or not the indentation response of a specimen in

a clamped-clamped boundary condition during an impact event is

bounded by the indentation responses of specimens in a clamped-

clamped boundary condition and a rigid backface support condition,

as the deflection is.

10. Determine the relationship that exists between the damage

incipience and damage extent in static and impact events for

different plate geometries and boundary conditions.
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APPENDIX A: GENERALIZED BEAM FUNCTIONS

To implement the Rayleigh-Ritz method, it is necessary to define

shape functions which approximate the deformed shape of the plate.

Dugundji [42] derived approximate beam shape functions (generalized

beam functions) for various bending modes and boundary conditions.

Although these generalized beam functions are approximations to the

traditional beam shape functions, the difference between the two becomes

negligible when the mode number is greater than two.

The generalized beam functions are written in the form:

n(x)= h2sin(BPx +0)+ Ae-PX + Be -Ph(1-x) (A.1)

where the constants or shape parameters 8,, 0, A, and B are given in

Table A.1 for some common boundary conditions. All modes are

normalized such that the mode shape ,(x) satisfies the condition:

J 2(x) dx = 1 (A.2)

These modes also apply for the case of n equal to one with less than a 1%

error, except for the clamped-free case. The form of equation (A.1) has the

advantage that generalized beam functions can be written in one single

parametric form and easily evaluated numerically.

The shape functions are implemented in the analysis presented in

this work by specifying the mode shape which best approximates the shape

of a displacement or rotation. This is done by using the form of equation

(A.1) for the clamped-clamped boundary condition in the x-direction and the

free-free boundary condition in the y-direction, as determined by the values

in Table A.1.
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Table A.1 Euler Beam Elastic Mode Shape Parameters [42].

Boundary
Conditiona ,n 0 A B

CL-CL (n + 1/2) - /4 1 (-1)n+

FR-FR (n + 1/2) + 3x/4 1 (-1)+1

a CL = clamped, and FR = free.
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APPENDIX B

All of the force-indentation, force-deflection, and force-strain data

obtained in this investigation is presented in this section. Analytical curves

showing strain results, comparisons of f-factors, and convergence of

strain results are also presented here. The contents of this section are

summarized in Table B.1.
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Table B.1 Appendix B Contents

Figure Descriptions Figure Numbers

Comparisons of #-factors

Analytical strain results

Convergence of strain results

Force-indentation data from tests of specimens
with a rigid backface support

Force-indentation data from tests of specimens
with a 254 mm span in the clamped-clamped
boundary condition

Force-indentation data from tests to a
maximum contact force of 930 N on specimens
of various spans in the clamped-clamped
boundary condition

Force-deflection data from tests of specimens
with a 254 mm span in the clamped-clamped
boundary condition

Force-strain data from tests to a maximum
contact force of 930 N on specimens of various
spans in the clamped-clamped boundary
condition

Force-strain data from tests to a maximum
contact force of 1479 N on specimens of various
spans in the clamped-clamped boundary
condition

B.1 - B.6

B.7- B.12

B.13 - B.18

B.19 - B.22

B.23 -B.29

B.30 -B.35

B.36- B.42

B.43 - B.59

B.60- B.82
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Figure B.1 Experimental force-extensional strain data and analytical
force-extensional strain results for various values of / at
position 1-2 (strain gage scheme A) for an AS4/3501-6 [±452/02]s
254 mm span specimen indented to 930 N.
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254 mm span specimen indented to 930 N.
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Figure B.3 Experimental force-extensional strain data and analytical
force-extensional strain results for various values of P at
position 5-6 (strain gage scheme A) for an AS4/3501-6 [±452/02]s
254 mm span specimen indented to 930 N.
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Figure B.4 Experimental force-bending strain data and analytical force-
bending strain results for various values of f for gage 2
(strain gage scheme A) for an AS4/3501-6 [±4 5 2/021s 254 mm
span specimen indented to 930 N.
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Figure B.5 Experimental force-bending strain data and analytical force-
bending strain results for various values of J for gage 4
(strain gage scheme A) for an AS4/3501-6 [±452/021 254 mm
span specimen indented to 930 N.
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Figure B.6 Experimental force-bending strain data and analytical force-
bending strain results for various values of f for gage 6
(strain gage scheme A) for an AS4/3501-6 [±452/02]s 254 mm
span specimen indented to 930 N.
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Figure B.7 Analytical force-extensional strain curve at position 1-2
(strain gage scheme A) for an AS4/3501-6 [±4 52/0 2]s 254 mm

span specimen indented to 930 N.
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Figure B.8 Analytical force-extensional strain curve at position 3-4
(strain gage scheme A) for an AS4/3501-6 [±452/02]s 254 mm
span specimen indented to 930 N.
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Figure B.9 Analytical force-extensional strain curve at position 5-6
(strain gage scheme A) for an AS4/3501-6 [±452/02]s 254 mm
span specimen indented to 930 N.
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Analytical force-bending strain curve for gage 2 (strain gage
scheme A) for an AS4/3501-6 [±452/02]s 254 mm span specimen
indented to 930 N.
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Figure B. 11 Analytical force-bending strain curve for gage 4 (strain gage
scheme A) for an AS4/3501-6 [±452/02]s 254 mm span specimen
indented to 930 N.
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Figure B.12 Analytical force-bending strain curve for gage 6 (strain gage
scheme A) for an AS4/3501-6 [±4 5 2/0 21 s 254 mm span specimen
indented to 930 N.
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Figure B.13 Convergence of force-extensional strain curves at position 1-2
(strain gage scheme A) for an AS4/3501-6 [± 4 5 2/02]s 254 mm
span specimen indented to 930 N.
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Figure B.14 Convergence of force-extensional strain curves at position 3-4
(strain gage scheme A) for an AS4/3501-6 [±4 5 2/02]s 254 mm
span specimen indented to 930 N.
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Figure B.15 Convergence of force-extensional strain curves at position 5-6
(strain gage scheme A) for an AS4/3501-6 [±452/02]s 254 mm
span specimen indented to 930 N.
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Figure B.16 Convergence of force-bending strain curves for gage 2 (strain
gage scheme A) for an AS4/3501-6 [±452/021]s 254 mm span
specimen indented to 930 N.
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Figure B.18 Convergence of force-bending strain curves for gage 6 (strain
gage scheme A) for an AS4/3501-6 [±452/021]s 254 mm span
specimen indented to 930 N.
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Figure B.19 Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 444 N.

).16 0.20



-277-

1500

z
1000

0
U-

C)

4a 500
)

0 r0 I
0.00 0.04

I I

0.08 0.12 C
Indentation (mm)

Figure B.20 Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 549 N.
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Figure B.21 Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 930 N.

-278-

.16 0.20



-279-

1500

S1000

0

U.

40
C 500
0

0.00

Figure B.22

0.04 0.08 0.12 C
Indentation (mm)

).16 0.20

Force-indentation data for the specimen with a rigid backface
support and loaded to a maximum contact force of 1479 N.
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Figure B.23 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 444 N.
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Figure B.24 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 507 N.
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Figure B.25 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 549 N.
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Figure B.26 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 739 N.
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Figure B.27 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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Figure B.28 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 1183 N.
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Figure B.29 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 1479 N.
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Figure B.30 Force-indentation data for the specimen with a 32 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.

1500

z
0
aLLo

C
00

1000 -

5001-

AS4/3501-6
[±452/02] s

32 mm Span
Clamped-Clamped

0,,O I I~-- ----- --,,



-288-

1500
AS4/3501-6
[±45 s /0

63.5 mm Span
Z Clamped-Clamped

1000
00

LL

- 500

0
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Indentation (mm)

Figure B.31 Force-indentation data for the specimen with a 63.5 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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Figure B.32 Force-indentation data for the specimen with a 127 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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Figure B.33 Force-indentation data for the specimen with a 254 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.



-291-

1500

z
1000

0
LL

i- 500
0

0.04 0.06 0.08
ndentation (mm)

0.10 0.12

Figure B.34 Force-indentation data for the specimen with a 381 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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Force-indentation data for the specimen with a 508 mm span
tested with a clamped-clamped support and loaded to a
maximum contact force of 930 N.
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Figure B.36 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 444 N using a clamped-clamped
boundary condition.
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Figure B.37 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 507 N using a clamped-clamped
boundary condition.
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Figure B.38 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 549 N using a clamped-clamped
boundary condition.
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Figure B.40 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 930 N using a clamped-clamped
boundary condition.

1500

O)0

L.U-

4-
C

1000

500

0
25



-298-

0 5 10 15 20
Deflection (mm)

Figure B.41 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 1183 N using a clamped-clamped
boundary condition.
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Figure B.42 Force-deflection data for a 254 mm specimen loaded to a
maximum contact force of 1479 N using a clamped-clamped
boundary condition.
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Figure B.43 Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 32 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.44 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 32 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.47 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.50 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.55 Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.56 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Force-strain data from gages 1 and 2 (see Figure 3.2) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.

6000



-315-

1500

z
1000

OL.

0

oLL

E 500
0
0

n1
-4000

Figure B.58

I

-2000 0 2000

Strain (gstrain)
4000

Force-strain data from gages 3 and 4 (see Figure 3.2) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.59 Force-strain data from gages 5 and 6 (see Figure 3.2) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 930 N.
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Figure B.61 Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 32 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.62 Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 32 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.63 Force-strain data from gages 1 and 2 (see Figure 3.3) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.64 Force-strain data from gage 3 (see Figure 3.3)
specimen with a 63.5 mm span in a clamped-clamped
and tested to a maximum contact force of 1479 N.

4000

for the
support



-322-

1500

z
1000

LL

I.- 500
00

-4000

p

AS4/3501-6
[±45 /0) s

Clamped-Clamped /
63.5 mm Span

/
I

I

II

- Gage 4

- - - Gage 5

4000

I

-2000 2000
Strain (gstrain)

Figure B.65 Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.66 Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 63.5 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.67 Force-strain data from gages 1 and 2 (see Figure 3.3) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.



-325-

1500

z
S1000

(D

0
LL

C)
500

8000 12000
Strain (gstrain)

16000 20000

Figure B.68 Force-strain data from gage 3 (see Figure 3.3)
specimen with a 127 mm span in a clamped-clamped
and tested to a maximum contact force of 1479 N.
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Figure B.69 Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.70 Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 127 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.

AS4/3501-6
[±45 /0 ,

Clamped-Clamped
127 mm Span Ij

6000

I
I

I,

Gage
-- - Gage



-328-

1500 
AS4/3501-6
[±45 /0)s

iI Clamped-
Clamped

Z 1 254 mm Span
1000 I

oo+C 500-

%- Gage 1

% --- Gage 2

-4000 -2000 0 2000 4000 6000

Strain (gstrain)

Figure B.71 Force-strain data from gages 1 and 2 (see Figure 3.3) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.72 Force-strain data from gage 3 (see Figure 3.3)
specimen with a 254 mm span in a clamped-clamped
and tested to a maximum contact force of 1479 N.
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Figure B.73 Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 254 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.75 Force-strain data from gages 1 and 2 (see Figure 3.3) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.76 Force-strain data from gage 3 (see Figure 3.3) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.

4000



-334-

1500

z
(D1000
0

LL

500
00

0'
-4000

Figure B.77

-2000 0 2000

Strain (gstrain)
4000

Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.78 Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 381 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.79 Force-strain data from gages 1 and 2 (see Figure 3.3) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.80 Force-strain data from gage 3 (see Figure 3.3) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.81 Force-strain data from gages 4 and 5 (see Figure 3.3) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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Figure B.82 Force-strain data from gages 6 and 7 (see Figure 3.3) for the
specimen with a 508 mm span in a clamped-clamped support
and tested to a maximum contact force of 1479 N.
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APPENDIX C: PROGRAM STATIC1

An explanation of the input data file "Stiff.dat" for the program

STATIC1 is presented first, followed by a sample output file, "Solve.out".

The program listing for STATIC1, as described in Chapter 4, is provided at

the end of this Appendix.

This program has several redundant parts and parts which are not

used in normal operation. These parts were used in the development and

debugging of the program. These parts facilitate splitting the program into

parts which may be used as separate programs. This was done during

development to speed the evaluation and debugging of the latter parts of the

program. The stiffness matrix parts of the program may be used as one

program, outputting the matrices to stiffness data files (the names of which

are designated in the input file). The solution part may also be used as a

stand-alone program, reading the output files from the stiffness matrix

part and then solving the equations. Splitting the program this way has the

advantage that the stiffness matrices do not have to be recalculated every

time a solution of the equations is desired for a particular plate geometry.

This saves significantly on the total time to run multiple cases and adds

flexibility in terms of rerunning cases that may have had mistakes in the

input file without having to rerun the whole program. The drawback is

that appropriate storage space for the large nonlinear stiffness matrix

must be available - the matrices for a 9 by 9 odd modes only case would

require approximately 10 megabytes of storage space using this alternate

scheme.
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C.1 ~amDle Inlut

An example of the input data file "Stiff.dat" is provided here. The

input parameters outlined in Table 4.1 are utilized in this example. The

data listed is for an AS4/3501-6 [±452/02]s laminate of dimensions 254 by 89

mm, using 9 by 9 odd modes only, a f-factor of 0.030, clamped-clamped

boundary conditions in the x-direction, and free-free boundary conditions in

the y-direction. This file requests the program to output data at twenty

forces between 930 N and zero and for five locations on the x-direction

(longitudinal) centerline of the plate, at one-eighth span intervals (0, 1/8,

1/4, 3/8, and 1/2 span). Following the listing for the data file is a line by line

explanation of the required input data.

AS4/3501-6 [+-45 2/0 2]s 254 x 89 mm
Nonlinearity Factor beta = 0.030
9x9 Odd Modes only
Max. Contact Force 930N, Strain Gauge Scheme 1
Psx Psy u v w
1 1 0.030
3434743734
555555
1
0.254 0.089 0.001608
125547200.0 54249900.0 37682300.0 0.0 0.0 42568300.0
17.0715 15.3645 11.2721 5.121 5.121 12.3249
6920000.0 8060000.0 0.0 0.833
0.0
20
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
930. 20
0.000001
5
0.127000 0.095250 0.063500 0.031750 0.000000
0.044500 0.044500 0.044500 0.044500 0.044500
'5xStiffl', '5xStiff3'
'Solve. out'
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The format of the input data file, "stiff.dat", is described as follows:

line 1-5: comment lines (program does not read)
line 6: Ibx, Iby, beta
line 7: IBCX(N), IBCY(N)
line 8: NCX, NCY, NDX, NDY, NX, NY
line 9: IEO
line 10 : XL, YL, THICK
line 11 : All, A22, A12, A16, A26, A66
line 12: Dll, D22, D12, D16, D26, D66
line 13: G44, G55, G45, sc
line 14: cf
line 15: LOOP
line 16: E(I)
line 17 : F, NF
line 18: ERR
line 19: NKX
line 20: X(1,I)
line 21: X(2,I)
line 22: OSTR1,OSTR3
line 23 : OSTR4

where,

Ibx, Iby :

beta:

IBCX, IBCY :

NCX, NCY :
NDX, NDY :
NX, NY :

nonlinearity index numbers (integer) in the x and y direction
1 => include nonlinear effect
0 => do not include nonlinear effect (linear)

degree
0.0 =>
1.0 =>

of in-plane flexibility ranging from 0.0 to 1.0
perfectly sliding case
perfectly clamped case

index numbers for the boundary conditions in x and y
directions for the u, v, and w displacements followed by the Ix
and Ty rotation variables (input as x and y boundary conditions
for the u displacement, then x and y boundary conditions for
the v displacement, and so on)
1 => simply supported - simply supported
2 => clamped - free
3 => clamped - clamped
4 => free- free
5 => simply supported - clamped
6 => simply supported - free
7 => free - free even modes only (to be used when even modes

are needed for the free-free boundary condition during
odd modes only cases)

number of u modes in the x and y directions
number of v modes in the x and y directions
number of w modes in the x and y directions
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Note that if odd modes are used, the number input will be
(N+1)/2, or the number of odd modes, where N is the desired
number of modes

IEO : switch for turning off even modes
0 => both odd and even modes
1 => odd modes only

XL, YL : dimensions of plate in the x and y directions (m)

THICK : thickness of the plate (m)

A's : tensor components of A matrix (N/m)
D's : tensor components of D matrix (N-m)
G's : shear stiffness components (N/m)

sc : shear correction factor

cf: for point loading, let cf = 0.0 (This program is capable of
dealing with double-cosine type distributed patch loading,
although this has not been verified. In the case where patch
loading is used, this is the dimension, in (m), of the square
shape of the patched loading.)

LOOP: max. number of Newton-Raphson iterations allowed

E(I) : first guess at w amplitudes in Newton-Raphson - there must be
NX*NY guesses for the program to work

F: magnitude of contact force desired in (N)

NF: no. of force calculations (=1 just calculates for F) with interval
F/NF

ERR: convergence condition on percentage change between current
and previous guess in Newton-Raphson method

NKX : number of locations where data is to be calculated

X(1,I) : X coordinate of desired data location in (m)

X(2,I) : Y coordinate of desired data location in (m)

OSTR1&3: Input filename for stiffness matrices, 18 chars. max, must be
written within apostrophes like: 'xxxxxxx'

OSTR4: Output filename for final solution, 18 characters max, must be
written within apostrophes like: 'xxxxxxx'
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C.2 SamDIe Outut

A sample output data file, "Solve.out", as specified in the input file

"Stiff.dat" listed in section C.1, is provided here. The first three lines give a

heading summarizing some of the input information for future

identification of the file. The first line indicates the number of modes input,

in this case indicating the actual number of modes used. Since this is a 9 by

9 odd modes only case, the actual number of modes used will be five in each

direction. The other lines are self-explanatory. After the heading data.

comes a listing of the raw modal amplitudes, Ei and Ai, calculated by the

program. These may be useful in debugging the program or identifying

nonconvergence. After this comes the output data, which lists from left to

right, the x and y locations (in meters) at which the data is calculated, the

force (in Newtons) for which the data is calculated, the deflection (in

meters), the extensional strain (in m/m), and the bending strain (in m/m)

at the listed location and force. This is repeated for all the locations and

forces desired, as prescribed in the input file. The format of the output file

was designed for easy conversion to spreadsheet formats used on Apple

Macintosh@ computers for data reduction.

This is a 5 x 5 mode case
The beta factor is -> 0.03000
The initial guess vector is ->
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00

000000000000000
The E, A Vectors for force 930.0 are ->
0.1059D-01 -0.4612D-03 0.7354D-04 0.1577D-06 0.5737D-05

-0.5126D-04 0.4931D-06 -0.5085D-05 -0.3567D-06 -0.1273D-05
0.2300D-05 -0.9956D-06 0.5743D-06 -0.5755D-04 0.2548D-04

-0.9878D-06 0.4431D-04 -0.2312D-04 0.8012D-05 -0.5047D-05
0.9611D-05 -0.8586D-05 0.1505D-05 -0.2236D-05 0.2673D-06

-0.1056D-01 0.4439D-03 -0.7326D-04 -0.5251D-05 -0.8001D-05



0.4733D-04 -0.2721D-05 0.3281D-05 -0.1922D-05 -0.2758D-06
-0.2153D-05 0.2776D-06 -0.6818D-06 0.5922D-04 -0.2503D-04
0.7873D-07 -0.3999D-04 0.2126D-04 -0.7416D-05 0.3722D-05

-0.9229D-05 0.7516D-05 -0.1588D-05 0.1403D-05 -0.5354D-06

X-Coord
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250

Y-Coord
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044.500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500

Force
930.0
930.0
930.0
930.0
930.0
881.1
881.1
881.1
881.1
881.1
832.1
832.1
832.1
832.1
832.1
783.2
783.2
783.2
783.2
783.2
734.2
734.2
734.2
734.2
734.2
685.3
685.3
685.3
685.3
685.3
636.3
636.3
636.3
636.3
636.3
587.4
587.4
587.4
587.4
587.4
538.4
538.4
538.4
538.4
538.4
489.5
489.5
489.5
489.5
489.5
440.5
440.5

w
0.1967e-01
0.1515e-01
0.9348e-02
0.3709e-02
0.1013e-03
0.1921e-01
0.1481e-01
0.9134e-02
0.3610e-02
0.9896e-04
0.1873e-01
0.1447e-01
0.8912e-02
0.3507e-02
0.9656e-04
0.1824e-01
0.1411e-01
0.8682e-02
0.3401e-02
0.9408e-04
0.1772e-01
0.1373e-01
0.8442e-02
0.3291e-02
0.9150e-04
0.1718e-01
0.1334e-01
0.8193e-02
0.3177e-02
0.8880e-04
0.1662e-01
0.1293e-01
0.7931e-02
0.3058e-02
0.8598e-04
0.1603e-01
0.1250e-01
0.7657e-02
0.2934e-02
0.8302e-04
0.1541e-01
0.1204e-01
0.7368e-02
0.2805e-02
0.7991e-04
0.1475e-01
0.1156e-01
0.7063e-02
0.2669e-02
0.7661e-04
0.1405e-01
0.1105e-01

EpOll
0.5478e-19
0.4789e-03
0.4946e-03
0.4535e-03
0.5294e-07
0.5106e-19
0.4580e-03
0.4754e-03
0.4335e-03
0.5055e-07
0.4738e-19
0.4367e-03
0.4558e-03
0.4131e-03
0.4814e-07
0.4375e-19
0.4150e-03
0.4359e-03
0.3925e-03
0.4569e-07
0.4016e-19
0.3929e-03
0.4156e-03
0.3715e-03
0.4322e-07
0.3662e-19
0.3704e-03
0.3948e-03
0.3501e-03
0.4071e-07
0.3315e-19
0.3475e-03
0.3736e-03
0.3283e-03
0.3816e-07
0.2975e-19
0.3241e-03
0.3519e-03
0.3061e-03
0.3558e-07
0.2642e-19
0.3002e-03
0.3296e-03
0.2834e-03
0.3296e-07
0.2318e-19
0.2758e-03
0.3067e-03
0.2603e-03
0.3029e-07
0.2004e-19
0.2509e-03

Kapll
0.1149e-01

-0.6172e-03
-0.7001e-03
-0.1064e-02
-0.8494e-02
0.111le-01

-0.5510e-03
-0.6701e-03
-0.1067e-02
-0.8179e-02
0.1072e-01

-0.4831e-03
-0.6396e-03
-0.1069e-02
-0.7859e-02
0.1032e-01

-0.4135e-03
-0.6085e-03
-0.1072e-02
-0.7533e-02
0.9906e-02

-0.3422e-03
-0.5768e-03
-0.1074e-02
-0.7200e-02
0.9479e-02

-0.2692e-03
-0.5444e-03
-0.1076e-02
-0.6861e-02
0.9038e-02

-0.1945e-03
-0.5115e-03
-0.1078e-02
-0.6514e-02
0.8582e-02

-0.1182e-03
-0.4779e-03
-0.1078e-02
-0.6159e-02
0.8109e-02

-0.4038e-04
-0.4436e-03
-0.1078e-02
-0.5795e-02
0.7617e-02
0.3870e-04

-0.4088e-03
-0.1076e-02
-0.5422e-02

0.7106e-02
0.1187e-03



346-

0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000
0.127000
0.095250
0.063500
0.031750
0.000000

0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500
0.044500

440.5
440.5
440.5
391.6
391.6
391.6
391.6
391.6
342.6
342.6
342.6
342.6
342.6
293.7
293.7
293.7
293.7
293.7
244.7
244.7
244.7
244.7
244.7
195.8
195.8
195.8
195.8
195.8
146.8
146.8
146.8
146.8
146.8

97.9
97.9
97.9
97.9
97.9
48.9
48.9
48.9
48.9
48.9

0.0
0.0
0.0
0.0
0.0

0.6738e-02
0.2525e-02
0.7309e-04
0.1331e-01
0.1050e-01
0.6389e-02
0.2373e-02
0.6933e-04
0.1250e-01
0.9899e-02
0.6013e-02
0.2210e-02
0.6526e-04
0.1162e-01
0.9243e-02
0.5601e-02
0.2034e-02
0.6081e-04
0.1065e-01
0.8513e-02
0.5144e-02
0.1842e-02
0.5587e-04
0.9556e-02
0.7679e-02
0.4624e-02
0.1629e-02
0.5025e-04
0.8273e-02
0.6693e-02
0.4014e-02
0.1385e-02
0.4365e-04
0.6683e-02
0.5452e-02
0.3252e-02
0.1093e-02
0.3540e-04
0.4447e-02
0.3667e-02
0.2171e-02
0.7040e-03
0.2368e-04
0.4248e-14
0.3639e-14
0.2083e-14
0.5781e-15
0.2300e-16

0.2830e-03
0.2367e-03
0.2758e-07
0.1702e-19
0.2253e-03
0.2586e-03
0.2125e-03
0.2481e-07
0.1412e-19
0.1991e-03
0.2331e-03
0.1878e-03
0.2199e-07
0.1137e-19
0.1722e-03
0.2065e-03
0.1624e-03
0.1909e-07
0.8784e-20
0.1446e-03
0.1784e-03
0.1363e-03
0.1611e-07
0.6398e-20
0.1161e-03
0.1485e-03
0.1093e-03
0.1304e-07
0.4241e-20
0.8663e-04
0.1160e-03
0.8152e-04
0.9835e-08
0.2362e-20
0.5609e-04
0.7973e-04
0.5267e-04
0.6469e-08
0.8411e-21
0.2449e-04
0.3788e-04
0.2290e-04
0.2893e-08
0.2879e-45
0.2073e-28
0.4561e-28
0.1840e-28
0.2730e-32

-0.3733e-03
-0.1072e-02
-0.5038e-02
0.6571e-02
0.1991e-03

-0.3372e-03
-0.1066e-02
-0.4641e-02
0.6010e-02
0.2791e-03

-0.3005e-03
-0.1055e-02
-0.4231e-02
0.5419e-02
0.3570e-03

-0.2633e-03
-0.1039e-02
-0.3803e-02
0.4791e-02
0.4305e-03

-0.2255e-03
-0.1014e-02
-0.3354e-02
0.4117e-02
0.4952e-03

-0.1873e-03
-0.9757e-03
-0.2878e-02
0.3381e-02
0.5426e-03

-0.1484e-03
-0.9147e-03
-0.2364e-02
0.2553e-02
0.5530e-03

-0.1084e-03
-0.8104e-03
-0.1788e-02
0.1550e-02
0.4679e-03

-0.6486e-04
-0.6024e-03
-0.1092e-02

0.9964e-15
0.8017e-15

-0.6573e-16
-0.7981e-15
-0.7280e-15
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C. Proram isting
C

PROGRAM STATIC1
C ==
C
C Program developed by Stephen A. Thomas,
C Adapted from the program GLOBAL1 developed by Hiroto Matsuhashi,
C Technology Laboratory for Advanced Composites,
C Department of Aeronautics and Astronautics, MIT, 1993.
C
C Copyright c1993 Massachusetts Institute of Technology
C
C Permission to use, copy, and modify this software and its
C documentation for internal purposes only and without fee is hereby
C granted provided that the above copyright notice and this permission
C appear on all copies of the code and supporting documentation.
C For any other use of this software, in original or modified form,
C including but not limited to, adaptation as the basis of a commercial
C software or hardware product, or distribution in whole or in part,
C specific prior permission and/or the appropriate licenses must be
C obtained from MIT. This software is provided "as is" without any
C warranties whatsoever, either express or implied, including but
C not limited to the implied warranties of merchantability and fitness
C for a particular purpose. This software is a research program, and
C MIT does not represent that it is free of errors or bugs or suitable
C for any particular task.
C
C
C
C This program analyzes both linear and nonlinear global response
C of a shear deformable composite laminated plate subjected to static
C contact loading. The deflection, extensional strain and bending
C strain are output for any given point on the plate
C

- -------------==----------==.=====-- = =

C
C [ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION M1,M2,M3,

Klaa,Klab,Klae,Klbb,Klbe,Klee,
KiggrKI,KIII

PARAMETER
DIMENSION

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
CHARACTER

(N1=7, N2=N1**2, N4=N2**3,
N5=N2*2, Pi=3.14159265 )

IBCX(5),IBCY(5)
THETAX(5),THETAY(5) ,AX(5) ,AY(5)
BETAX(5, NI),BETAY(5, N1), BX(5,NI),BY(5, NI)
CX(5,N1), CY (5,N1),DXD(5,N11) ,EX(5,N1) ,EY (5,N1)
M1 (N2),M2 (N2),M3 (N2)
Klaa(N2,N2) ,Klab(N2,N2) ,Klae(N2,N2)
Klbb(N2,N2),Klbe(N2,N2), Klee(N2,N2)
Kigg(N5,N5)
KI (N2,N2), Ri (N2)
KIII(N2,N4)
OSTR1*18,OSTR3*18
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c
C
C

C * Main Program

C
C

CALL INPUT(IEO,Ibx,Iby,IBCX,IBCY,NX,NY,XL,YL,
& NCX,NCY,NDX,NDY,
& A11,A22,A12,A16,A26,A66,
& D11,D22,D12,D16,D26,D66,
& G44,G55,G45,cf,OSTR1,OSTR3)

C
NXY - NX*NY
NC = NCX*NCY
ND - NDX*NDY
NEN - NC+ND

C
C

IF(IEO .EQ. 0) THEN
C

WRITE(6,*)'ASSIGNING FULL X BEAM FUNCTIONS...'
CALL BOUND(IBCX,NX,AX,THETAX,BETAX,BX,CX,DX,EX)

C
WRITE(6,*)'ASSIGNING FULL Y BEAM FUNCTIONS...'

CALL BOUND(IBCY,NY,AY,THETAY,BETAY,BY,CY,DY,EY)
C

ENDIF
C
C

IF(IEO .EQ. 1) THEN
C

WRITE(6,*)'ASSIGNING ODD MODE X BEAM FUNCTIONS...'
CALL BOUND1(IBCX,NX,AX,THETAX,BETAX,BX,CX,DX,EX)

C
WRITE(6,*)'ASSIGNING ODD MODE Y BEAM FUNCTIONS...'

CALL BOUND1(IBCY,NY,AY,THETAY,BETAY,BY,CY,DY,EY)
C

ENDIF
C
C

CALL INGRL1(NX,NY,NCX,NCY,NDX,NDY,IEO,
& AX,AY,THETAX,THETAY,
& BETAX,BETAY,BX,BY,
& CX,CY,DX,DY,EX,EY,
& A11,A22,A12,A16,A26,A66,
& D11,D22,D12,D16,D26,D66,
& G44,G55,G45,XL,YL,
& M1,M2,M3,Ri,cf,
& Klaa,Klab,Klae,Klbb,Klbe,Klee,Kigg)

C
C

CALL ARRANG(NX,NY,iKaa,iKab, jKab,iKae,iKbb,iKbe,
& M1,M2,Klaa,Klab,Klae,Klbb,Klbe)

C
C

CALL CONDEN(NX, NY, iKaa,iKab,jKab,iKae,iKbb,iKbe,
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Klaa,Klab,Klae,Klbb,Klbe,Klee,KI)

CALL INTGRL3(Ibx, Iby,NX,NY,AX,AY,THETAX,THETAY, IEO,
BETAX,BETAY,BX,BY,
CX,CY,DX,DY,EX,EY,
A11,A22,A12,A16,A26,A66,
XL,YL,KIII)

WRITE(6,*)'Now lets solve this puppy...'
CALL NRSOL(Ri,KI,KIII,AX,AY,THETAX,THETAY,

BETAX,BETAY,BX,BY,CX,CY,DX,DY,EX,EY)

WRITE(6,*)'DONE...'
C

STOP
END

C
C
C == ===-========

C

c SUBROUTINE LIBRARIESC

C
C
C
C

C ----------------------------------------------------------------------C
SUBROUTINE INPUT(IEO,Ibx,Iby,IBCX,IBCY,NX,NY,XL,YL,

& NCX,NCY,NDX,NDY,
& All,A22,A12,A16,A26,A66,
& D11,D22,D12,D16,D26,D66,
& G44,G55,G45,cf,OSTR1,OSTR1)

C ----------------------------------------------------------------------
C
C This subroutine reads data from the existing input data file called
C "stiff.dat". The format of the "stiff.dat" is described as follows;

line 1-5:
line 6 :
line 7 :
line 8 :
line 9 :
line 10 :
line 11 :
line 12 :
line 13 :
line 14 :
line 15 :
line 16 :
line 17 :
line 18 :
line 19 :
line 20 :
line 21 :

comment line (program does not read)
Ibx, Iby, beta
IBCX(N), IBCY(N)
NCX, NCY, NDX, NDY, NX, NY
IEO
XL, YL, THICK
All, A22, A12, A16, A26, A66
D11, D22, D12, D16, D26, D66
G44, G55, G45, sc
cf
Data
Data
Data
Data
Data
Data
Data

not used
not used
not used
not used
not used
not used
not used

here
here
here
here
here
here
here



C line 22 : OSTR1,OSTR3
C line 23 : Data not used here
C
C where,

Ibx, Iby

IBCX, IBCY

NCX, NCY
NDX, NDY
NX, NY

IEO

C XL, YL
C
C THICK

A's
D's
G's
sc

cf

OSTR1&3

: non linearity index numbers (integer) in the x and y
direction
1 => include nonlinear effect
0 => do not include nonlinear effect (linear)

: index numbers for the boundary conditions in x and y
directions for each displacement or rotation variable
1 => simply supported - simply supported
2 => clamped - free
3 => clamped - clamped
4 => free - free
5 => simply supported - clamped
6 => simply supported - free

: number of u modes in the x and y directions
: number of v modes in the x and y directions
: number of w modes in the x and y directions

: switch for turning off even modes
0 => both odd and even modes
1 => odd modes only

: dimensions of plate in the x and y directions (m)

: thickness of the plate (m)

: tensor components of A matrix (N/m)
: tensor components of D matrix (N-m)
: shear stiffness components (N/m)
: shear correction factor

: dimension of the square shape of the patched loading
for point loading, let cf = 0.0
(This program is capable of dealing with double-cosine
type distributed patch loading, although this has not
been verified yet.)

: Output filenames for stiffness matrices, 18 chars max,
must be written within apostrophes like: 'xxxxxxx'

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION IBCX(5),IBCY(5)
CHARACTER OSTR1*18,0STR3*18

OPEN( UNIT=10, FILE='stiff.dat', STATUS='OLD' )
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READ (10,*)
READ (10,*)
READ (10, *)
READ(10,*)
READ (10,*)
READ (10,*)
READ (10,*)

&
READ(10, *)
READ (10,*)
READ (10, *)
READ(10, *)
READ(10, *)
READ (10,*)
READ (10, *)
READ (10,*)
READ (10, *)
READ (10, *)
READ(10,*)
READ (10,*)
READ (10,*)
READ (10,*)
READ (10, *)
READ(10,*)

Ibx,Iby,beta
IBCX(1),IBCY(1),IBCX(2) IBCY(2) IBCX(3) IBCY(3),
IBCX(4),IBCY(4),IBCX(5),IBCY(5)
NCX, NCY, NDX, NDY, NX, NY
IEO
XL,YL,THICK
A11,A22,A12,A16,A26,A66
D11,D22,D12,D16,D26,D66
G44,G55,G45, sc
cf

OSTR1,OSTR3

G44 = sc*sc*G44
G55 = sc*sc*G55
G45 - sc*sc*G45

CLOSE( UNIT=10
C
C

RETURN
END

C
C
C ---------------------------------------------------------------------

SUBROUTINE BOUND(IBC,N,A,THETA,BETA,B,C,D,E)
C ---------------------------------------------------------------------
C
C This subroutine determines the euler beam elastic mode shape
C parameters depending on the boundary condition of each x and y
C direction based on the Generalized Beam Functions described in
C Appendix A.
C
C ---------------------------------------------------------------------

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER IBC,N

PARAMETER ( N1=7, PI = 3.14159265 )

DIMENSION IBC(5)
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DIMENSION THETA(5), A (5)
DIMENSION BETA(5,N1),B(5,N1),C(5,NI),D(5,N),E(5,N1)

C
C

DO 10 ki=1,5
J=0
IF(IBC(ki) .EQ. 1) THEN

A(ki) = 0.

THETA(ki) = 0.

DO 201 I=1,N
BETA(ki,I) = (1.*I)*PI
B(ki,I) - 0.
C(ki,I) = 1.

D(ki,I) = 0.
E(ki,I) = 0.

201 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 2) THEN
A(ki) = 1.

THETA(ki) = -PI/4.
DO 202 I=1,N

BETA(ki,I) = (1.*I-0.5)*PI
B(ki,I) = (-l.)**(I+1)
C(ki,I) = 1.

D(ki,I) = 0.
E(ki,I) = 0.

202 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 3) THEN
A(ki) = 1.

THETA(ki) = -PI/4.
DO 203 I=1,N

BETA(ki,I) = (1.*I+0.5)*PI
B(ki,I) = (-l.)**(I+1)
C(ki,I) = 1.

D(ki,I) = 0.
E(ki,I) = 0.

203 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 4) THEN
A(ki) = 1.

THETA(ki) = 3.*PI/4.
BETA(ki,1) = 1.

BETA(ki,2) = 1.

B(ki,l) = 0.
B(ki,2) = 0.

C(ki,l) = 0.

C(ki,2) = 0.

D(ki,l) = 0.

D(ki,2) = 1.

E(ki,l) = 1.

E(ki,2) = 1.



DO 204 I=1,N-2
J-I+2
BETA(ki,J) - (1.*I+0.5)*PI
B(ki,J) - (-l.)**(I+1)
C(ki,J) = 1.
D(ki,J) = 0.
E(ki,J) = 0.

204 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 5) THEN
A(ki) - 0.
THETA(ki) = 0.
DO 205 I=1,N

BETA(ki,I) = (1.*I+0.25)*PI
B(ki,I) - (-l.)**(I+1)
C(ki,I) = 1.
D(ki,I) = 0.
E(ki,I) = 0.

205 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 6) THEN
A(ki) = 0.
THETA(ki) = 0.
DO 206 I=1,N

BETA(ki,I) = (1.*I+0.25)*PI
B(ki,I) = (-1.)**(I)
C(ki,I) = 1.
D(ki,I) = 0.
E(ki,I) = 0.

206 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 7) THEN
A(ki) = 0.
THETA(ki) = PI/2.
BETA(ki,1) = 1.
BETA(ki,2) = 1.
B(ki,l) = 0.
B(ki,2) = 0.
C(ki,l) = 0.
C(ki,2) = 0.
D(ki,l) = 1.
D(ki,2) = 0.
E(ki,l) = 1.
E(ki,2) = 1.
DO 207 I=1,N-2

J=I+2
BETA(ki,J) = (1.*I)*PI
B(ki,J) = 0.
C(ki,J) = 1./(1.*I)**2.
D(ki,J) = 0.
E(ki,J) = 0.

207 CONTINUE
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ENDIF
10 CONTINUE

C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE BOUND1(IBC,N,A,THETA,BETA,B,C,D,E)
C ----------------------------------------------------------------------
C
C This subroutine determines the euler beam elastic mode shape
C parameters for the odd modes only case depending on the boundary
C condition of each x and y direction based on the Generalized Beam
C Functions described in Appendix A.
C
C ----------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER IBC,N

C
PARAMETER ( N1-7, PI - 3.14159265 )

C
DIMENSION IBC(5)
DIMENSION THETA(5),A(5)
DIMENSION BETA(5,N1),B(5,N1),C(5,N1),D(5,N1),E(5,N1)

C
C
C

DO 10 ki-1,5
J=0
IF(IBC(ki) .EQ. 1) THEN

A(ki) - 0.
THETA(ki) - 0.
DO 201 I=1,N

BETA(ki,I) = ((I*2.)-1.)*PI
B(ki,I) - 0.
C(ki,I) = 1.
D(ki,I) = 0.
E(ki,I) = 0.

201 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 2) THEN
A(ki) - 1.
THETA(ki) = -PI/4.
DO 202 I=1,N

BETA(ki,I) = (1.*((I*2.)-1.)-0.5)*PI
B(ki,I) = (- .)**(((I2)- )+ )
C(ki,I) = 1.
D(ki,I) = 0.
E(ki,I) = 0.

202 CONTINUE
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ENDIF
C
C

IF(IBC(ki) .EQ. 3) THEN

A(ki) - 1.

THETA(ki) = -PI/4.
DO 203 I-1,N

BETA(ki,I) = ((I*2.-1.)+0.5)*PI
B(ki,I) = (-1.)**((I*2-1)+1)
C(ki,I) = 1.

D(ki,I) = 0.

E(ki,I) = 0.

203 CONTINUE
ENDIF

C
C

IF(IBC(ki) .EQ. 4) THEN
A(ki) - 1.

THETA(ki) = 3.*PI/4.
BETA(ki,1) = 1.

B(ki,l) = 0.

C(ki,l) = 0.

D(ki, l) = 0.

E(ki, 1) = 1.

DO 204 I=1,N-1
J=I+1
BETA(ki,J) = (((I*2.-1.))+0.5)*PI
B(ki,J) = (-1.)**(((I*2-1))+1)
C(ki,J) = 1.
D(ki,J) = 0.

E(ki,J) = 0.
204 CONTINUE

ENDIF
C
C

IF(IBC(ki) .EQ. 5) THEN
A(ki) = 0.
THETA(ki) = 0.

DO 205 I=1,N
BETA(ki,I) = ((I*2.-1.)+0.25)*PI
B(ki,I) = (-l.)**((I*2-1)+1)
C(ki,I) = 1.
D(ki,I) = 0.

E(ki,I) = 0.
205 CONTINUE

ENDIF
C
C

IF(IBC(ki) .EQ. 6) THEN
A(ki) = 0.

THETA(ki) = 0.

DO 206 I=1,N
BETA(ki,I) = (1.*I+0.25)*PI
B(ki,I) = (-1.)**(I)
C(ki,I) = 1.

D(ki,I) = 0.

E(ki,I) = 0.
206 CONTINUE



ENDIF
C
C

IF(IBC(ki) .EQ. 7) THEN
A(ki) - 0.
THETA(ki) - PI/2.
BETA(ki,1) - 1.
B(ki,1) - 0.
C(ki,1) = 0.
D(ki,1) - 1.
E(ki,1) = 1.
DO 207 I-1,N-1

J=I+1
BETA(ki,J) = ((2.*I)-1.)*PI
B(ki,J) = 0.
C(ki,J) = 1./((2.*I)-1.)**2.
D(ki,J) = 0.
E(ki,J) = 0.

207 CONTINUE
ENDIF

10 CONTINUE
C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE INGRL1(NX,NY,NCX,NCY,NDX,NDY, IEO,
& AX,AY,THETAX,THETAY,
& BETAX,BETAY,BX,BY,
& CX,CY,DX,DY,EX,EY,
& A11,A22,A12,A16,A26,A66,
& Dll,D22,D12,D16,D26,D66,
& G44,G55,G45,XL,YL,
& M1,M2,M3,Ri,cf,
& Klaa,Klab,Klae,Klbb,Klbe,Klee,Kigg)

C ----------------------------------------------------------------------
C
C This subroutine computes each matrix component for the stiffness
C matrix [K] (the linear term).
C
C ----------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION l,m,n,M1,M2,M3,

& Kaa,Kab,Kae,Kbb,Kbe,Kee,
& Klaa,Klab,Klae,Klbb,Klbe,Klee,
& Kigg

C
PARAMETER ( N1=7, N2=N1**2, N4=N2**3,

& N5=N2*2, Pi=3.14159265 )
C

DIMENSION THETAX(5),THETAY(5),AX(5),AY(5)
DIMENSION BETAX(5,N1),BETAY(5,N1),BX(5,N1),BY(5,N1)
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DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

CX(5,N1),CY(5,N1) ,DX(5,N), ,DY(5,N1),EX(5,N),EY(5,N1)
M1 (N2) ,M2 (N2) ,M3 (N2)
Klaa(N2,N2),Klab(N2,N2),Klae(N2,N2)
Klbb(N2,N2),Klbe(N2,N2),Klee(N2,N2)
Kigg(N5,N5)
Ri(N2)
DUMMY (N2)

C
C -----------------------------------------------------------
C * Defining Beam Functions & Derivatives of Beam Functions
C -----------------------------------------------------------
C
C

f(i,x) = ((BETAX(1,i)*SQRT(2.)*COS(BETAX(1,i)*x+THETAX(1))
& -BETAX(1,i)*AX(1)*EXP(-BETAX(l,i)*x)
& +BETAX(1,i)*BX(,i)*EXP(-BETAX(1,i)*(1.-x)))*CX(1,i)
& +DX(1, i)*(-2.))/XL

C
C

df(i,x) =((-(BETAX(1,i)**2)*SQRT(2.)*SIN(BETAX(l,i)
& *x+THETAX(1))
& +(BETAX(1,i)**2)*AX(1)*EXP(-BETAX(1,i)*x)
& +(BETAX(l,i)**2)*BX(1,i)*EXP(-BETAX(1,i)
& *(1.-x)))
& *CX(, i))/(XL*XL)

C
C

g(i,y) = (SQRT(2.)*SIN(BETAY(1,i)*y+THETAY(1))
& +AY(1)*EXP(-BETAY(1, i)*y)
& +BY(l,i)*EXP(-BETAY(1,i)*(l.-y)))*CY(1,i)
& +2. *EY (1,i) * (DY (1,i) * (-y) +0.5)

C
C

dg(i,y) =((BETAY(1,i)*SQRT(2.)*COS(BETAY(1,i)*y+THETAY(1))
& -BETAY(1,i)*AY(1)*EXP(-BETAY(1,i)*y)
& +BETAY(li)*BY(,ii)*EXP(-BETAY(l,i)*(1.-y)))
& *CY(1,i)+DY (1,i) * (-2.) )/YL

C
C

h(i,x) = (SQRT(2.)*SIN(BETAX(2,i)*x+THETAX(2))
& +AX(2)*EXP(-BETAX(2,i)*x)
& +BX(2,i)*EXP(-BETAX(2,i)*(l.-x)))*CX(2,i)
& +2.*EX (2, i) * (DX (2, i) * (-x) +0.5)

C
C

dh(i,x) =((BETAX(2,i)*SQRT(2.)*COS(BETAX(2,i)*x+THETAX(2))
& -BETAX(2,i)*AX(2)*EXP(-BETAX(2,i)*x)
& +BETAX(2,i)*BX(2,i) i)*EXP(-BETAX(2,i)*(.-x)))
& *CX(2,i)+DX(2,i)* (-2.)) /XL

C
C

1(i,y) = ((BETAY(2,i)*SQRT(2.)*COS(BETAY(2,i)*y+THETAY(2))
& -BETAY(2,i)*AY(2)*EXP(-BETAY(2,i)*y)
& +BETAY(2,i)*BY(2,i)*EXP(-BETAY(2,i)*(l.-y)))
& *CY(2,i)+DY(2,i)*(-2.))/YL
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dl(i,y)
&
&
&
&
&

m(i,x)
&
&
&

dm(i,x)
&
&
&

( (-(BETAY (2, i) **2)*SQRT(2.)*SIN(BETAY(2,i)
*y+THETAY(2))

+(BETAY(2, i) **2)*AY(2)*EXP(-BETAY(2,i)*y)
+(BETAY(2,i) **2)*BY(2, i)*EXP(-BETAY(2, i)

*CY (2, i) ) / (YL*YL)

- (SQRT(2.)*SIN(BETAX(3,i)*x+THETAX(3))
+AX(3)*EXP(-BETAX (3,i)*x)
+sX(3,i)*EXP(-BETAX(3,i)*(1.-x)))*CX(3,i)
+2.*EX(3,i)* (DX(3,i)*(-x)+0.5)

= ( (BETAX(3, i)*SQRT(2.)*COS(BETAX(3,i)*x+THETAX(3))
-BETAX(3,i)*AX(3)*EXP(-BETAX(3,i)*x)
+BETAX(3,i)*BX(3,i)*EXP(-BETAX(3,i)*(l.-x)))
*CX(3,i)+DX(3,i)*(-2.) )/XL

n(i,y) = (SQRT(2.)*SIN(BETAY(3,i)*y+THETAY(3))
+AY(3)*EXP(-BETAY (3,i)*y)
+BY(3,i)*EXP(-BETAY(3,i)*(*( .- y)))*CY(3,i)
+2.*EY(3,i)*(DY(3,i)*(-y)+0.5)

dn (i,y) = ((BETAY(3,i)*SQRT(2.)*COS(BETAY(3, i)*y+THETAY(3))
-BETAY (3,i*AY(3i)*AY(3)*EXP(-BETAY(3,i)*y)
+BETAY(3,i)*BY(3,i)*EXP(-BETAY(3,i)*(1.-y)))
*CY(3,i)+DY(3,i) * (-2.) /YL

o(i,x) = (SQRT(2.)*SIN(BETAX(4,i)*x+THETAX(4))
+AX(4) *EXP (-BETAX (4,i) *x)
+BX(4,i)*EXP(-BETAX(4,i)*(l.-x)))*CX(4,i)
+2.*EX(4,i)*(DX(4,i) * (-x)+0.5)

do(i,x) =((BETAX(4,i)*SQRT(2.)*COS(BETAX(4,i)*x+THETAX(4))
-BETAX(4,i)*AX(4)*EXP(-BETAX(4,i)*x)
+BETAX(4,i)*BX(4,i)*EXP(-BETAX(4,i)*(l.-x)))
*CX (4, i)+DX (4,i) * (-2.) /XL

p(i,y) = (SQRT(2.)*SIN(BETAY(4,i)*y+THETAY(4))
+AY(4)*EXP(-BETAY (4,i)*y)
+BY(4,i)*EXP(-BETAY (4,i) * (.-y)) ) *CY(4,i)
+2. *EY (4, i) * (DY (4 i*(DY) * (-y) +0.5)

dp(i,y) =((BETAY(4,i)*SQRT(2.)*COS(BETAY(4,i)*y+THETAY(4))
-BETAY(4, i)*AY(4)*EXP(-BETAY(4, i)*y)
+BETAY(4i)*BY(4,i)*EXP(-BETAY(4,i)*(1.-y)))
*CY (4,i)+DY (4, i) * (-2.) /YL

q(i,x) = (SQRT(2.)*SIN(BETAX(5,i)*x+THETAX(5))
+AX(5)*EXP(-BETAX(5, i)*x)
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& +BX(5,i)*EXP(-BETAX(5,i)*(l.-x)))*CX(5,i)
& +2.*EX(5,i)*(DX(5,i)*(-x)+0.5)

C
C

dq(i,x) ( (BETAX(5,i)*SQRT(2.)*COS(BETAX(5, i)*x+THETAX(5))
& -BETAX(5,i)*AX(5)*EXP(-BETAX(5,i)*x)
& +BETAX(5,i)*BX(5,i)*EXP(-BETAX(5,i)*(l.-x)))
& *CX(5,i)+DX(5,i) * (-2.))/XL

C
C

r(i,y) - (SQRT(2.)*SIN(BETAY(5,i)*y+THETAY(5))
& +AY(5)*EXP(-BETAY(5,i)*y)
& +BY(5,i)*EXP(-BETAY(5,i)*(1.-y)))*CY(5,i)
& +2.*EY(5,i)*(DY(5,i)*(-y)+0.5)

C
C

dr(i,y) -((BETAY(5,i)*SQRT(2.)*COS(BETAY(5,i)*y+THETAY(5))
& -BETAY(5,i)*AY(5)*EXP(-BETAY(5,i)*y)
& +BETAY(5,i)*BY(5,i)*EXP(-BETAY(5,i)*(1.-y)))
& *CY(5,i)+DY(5,i)*(-2.))/YL

C
C

xunit - XL/20.
yunit = YL/20.
NXY = NX*NY
NC = NCX*NCY
ND - NDX*NDY

C
C
C -----------------------------------------------------
C * Calculations help determine if zeros will occur on
C the diagonals in the stiffness matrices.
C -----------------------------------------------------
C

i = 0
DO 310 ix = 1, NX

DO 311 iy = 1, NY
i = i+1

C
j=0
DO 312 jx - 1, NX

DO 313 jy = 1, NY

j - j+1
C

xM1 = 0.
xM2 = 0.
xM3 = 0.

C
yM1 = 0.
yM2 = 0.
yM3 = 0.

C
x = -0.05
y = -0.05

C
IF(IEO .EQ. 1) NNN = 11
IF(IEO .EQ. 0) NNN = 21



DO 314 II - 1, NNN
C

x - x+0.05
y - y+0.05

C
rc = 1.
IF((II .EQ. 1) .OR. (II .EQ. 21)) rc = 2.
IF(IEO .EQ. 1) THEN

IF((II .EQ. 1) .OR. (II .EQ. 11)) rc=2.
ENDIF

C
xM1 = xMl+f(ix,x)*f(jx,x)*xunit/rc
xM2 = xM2+h(ix,x)*h(jx,x)*xunit/rc
xM3 - xM3+q(ix,x)*q(jx,x)*xunit/rc

C
yM1 = yMl+g(iy,y)*g(jy,y) *yunit/rc
yM2 - yM2+l(iy,y) *1 (jy,y) *yunit/rc
yM3 - yM3+r(iy, y)*r(jy,y) *yunit/rc

C
314 CONTINUE

C
IF(i .EQ. j) THEN

Ml(i) = xM1 * yM1
M2(i) = xM2 * yM2
M3(i) = xM3 * yM3

ENDIF
C

IF(IEO .EQ. 1) THEN
IF(i .EQ. j) THEN

Ml(i) = xM1 * yM1 * 4.
M2(i) - xM2 * yM2 * 4.
M3(i) - xM3 * yM3 * 4.

ENDIF
ENDIF

C
313 CONTINUE
312 CONTINUE

C
311 CONTINUE
310 CONTINUE

C
C
C -------------------------------------------------------
C * Calculating stiffness matrix components by numerical
C integration using "Extended Trapezoidal Rule"
C -------------------------------------------------------
C

WRITE(6,*)'CYPHERIN UP THAT THERE STIFFNESS THINGY...'
C

i- 0
DO 300 ix = 1, NX

DO 301 iy - 1, NY
i = i+1

C
j=0
DO 302 jx = 1, NX

DO 303 jy = 1, NY
j = j+1
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yKddl = 0.
yKdd2 = 0.
yKdd3 = 0.
yKdd4 = 0.
yKeel = 0.
yKee2 = 0.
yKee3 = 0.
yKee4 = 0.

C
x = -0.05
y = -0.05

C
NNN - 21
IF(IEO .EQ. 1) NNN = 11

C
DO 304 II = 1, NNN

x = x+0.05
y = y+0.05

C
rc = 1.
IF((II .EQ. 1) .OR. (II .EQ. 21)) rc = 2.

C
IF(IEO .EQ. 1) THEN

IF((II .EQ. 1) .OR. (II .EQ. 11)) rc=2.
ENDIF

C
xKaal = xKaal+df(ix,x)*df(jx,x)*xunit/rc
xKaa2 = xKaa2+df(ix,x)*f(jx,x)*xunit/rc
xKaa3 = xKaa3+f(ix,x)*df(jx,x)*xunit/rc
xKaa4 = xKaa4+f(ix,x)*f(jx,x)*xunit/rc

C
xKabl = xKabl+df(ix,x)*h(jx,x)*xunit/rc
xKab2 = xKab2+df(ix,x)*dh(jx,x)*xunit/rc
xKab3 = xKab3+f(ix,x)*hd(jx,x)*xunit/rc
xKab4 = xKab4+f(ix,x)*dh(jx,x)*xunit/rc

C
xKael = xKael+f(ix,x)*dq(jx,x)*xunit/rc
xKae2 = xKae2+fdh(ix,x)*q(jx,x)*xunit/rc

C
xKbbl = xKbbl+h(ix,x) *h(jx,x)*xunit/rc
xKbb2 = xKbb2+dh(ix,x)*h(jx,x)*xunit/rc
xKbb3 = xKbb3+h(ix,x)*dh(jx,x)*xunit/rc
xKbb4 = xKbb4+dh(ix,x)*dh(jx,x)*xunit/rc

C
xKbel = xKbel+h(ix,x)*dq(jx,x)*xunit/rc
xKbe2 = xKbe2+h(ix,x)*q(jx,x)*xunit/rc

C
IF(ix.GT.NCX.OR.jx.GT.NCX) GOTO 100
xKccdl = xKccl+dm(ix,x)*dm(jx,x)*xunit/rc
xKcc2 = xKcc2+m(ix,x)*dm(jx,x)*xunit/rc
xKcc3 = xKcc3+dm(ix,x)*m(jx,x)*xunit/rc
xKcc4 = xKcc4+m(ix,x)*m(jx,x)*xunit/rc

100 CONTINUE
C

IF(ix.GT.NCX.OR.jx.GT.NDX) GOTO 110
xKcdl = xKcdl+dm(ix,x)*o(jx,x)*xunit/rc
xKcd2 = xKcd2+dm(ix,x)*do(jx,x)*xunit/rc
xKcd3 = xKcd3+m(ix,x)*o(jx,x)*xunit/rc



xKcd4 = xKcd4+m(ix,x)*do(jx,x)*xunit/rc
110 CONTINUE

C
IF(ix.GT.NDX.OR.jx.GT.NDX) GOTO 120
xKddl = xKddl+o(ix,x)*o(jx,x)*xunit/rc
xKdd2 = xKdd2+do(ix,x)*o(jx,x)*xunit/rc
xKdd3 = xKdd3+o(ix,x)*do(jx,x)*xunit/rc
xKdd4 = xKdd4+do(ix,x)*do(jx,x)*xunit/rc

120 CONTINUE
C

xKeel = xKeel+dq(ix,x)*dq(jx,x)*xunit/rc
xKee2 = xKee2+dq(ix,x) *q(jx,x)*xunit/rc
xKee3 = xKee3+q(ix,x)*dq(jx,x)*xunit/rc
xKee4 = xKee4+q(ix,x)*q(jx,x)*xunit/rc

C
C

yKaal - yKaal+g(iy,y)*g(jy,y)*yunit/rc
yKaa2 - yKaa2+g(iy,y)*dg(jy,y)*yunit/rc
yKaa3 = yKaa3+dg(iy,y)*g(jy,y)*yunit/rc
yKaa4 = yKaa4+dg(iy,y)*dg(jy,y)*yunit/rc

C
yKabl = yKabl+g(iy,y)*dl(jy,y)*yunit/rc
yKab2 = yKab2+g(iy,y) *1(jy,y)*yunit/rc
yKab3 = yKab3+dg(iy,y)*dl(jy,y)*yunit/rc
yKab4 = yKab4+dg(iy,y)*l(jy,y)*yunit/rc

C
yKael = yKael+g(iy,y)*r(jy,y)*yunit/rc
yKae2 = yKae2+g(iy,y)*dr(jy,y)*yunit/rc

C
yKbbl = yKbbl+dl(iy,y)*dl(jy,y)*yunit/rc
yKbb2 = yKbb2+1(iy,y)*dl(jy,y)*yunit/rc
yKbb3 = yKbb3+dl(iy,y)*l(jy,y)*yunit/rc
yKbb4 = yKbb4+1(iy,y)*l(jy,y)*yunit/rc

C
yKbel = yKbel+n(iy,y)*r(jy,y)*yunit/rc
yKbe2 = yKbe2+1dn(iy,y)*dr(jy,y)*yunit/rc

C
IF(iy.GT.NCY.OR.jy.GT.NCY) GOTO 130
yKccl = yKccl+n(iy,y)*n(jy,y)*yunit/rc
yKcc2 = yKcc2+dn(iy,y)*n(jy,y)*yunit/rc
yKcc3 = yKcc3+n(iy,y)*dn(jy,y)*yunit/rc
yKcc4 = yKcc4+dn(iy,y)*dn(jy,y)*yunit/rc

130 CONTINUE
C

IF(iy.GT.NCY.OR.jy.GT.NDY) GOTO 140
yKcdl = yKcdl+n(iy,y)*dp(jy,y)*yunit/rc
yKcd2 = yKcd2+n(iy,y)*p(jy,y)*yunit/rc
yKcd3 = yKcd3+dn(iy,y)*dp(jy,y)*yunit/rc
yKcd4 = yKcd4+dn(iy,y)*p(jy,y)*yunit/rc

140 CONTINUE
C

IF(iy.GT.NDY.OR.jy.GT.NDY) GOTO 150
yKddl = yKddl+dp(iy,y)*dp(jy,y)*yunit/rc
yKdd2 = yKdd2+p(iy,y)*dp(jy,y)*yunit/rc
yKdd3 = yKdd3+dp(iy,y)*p(jy,y)*yunit/rc
yKdd4 = yKdd4+p(iy,y)*p(jy,y)*yunit/rc

150 CONTINUE



yKeel = yKeel+r(iy,y)*r(jy,y)*yunit/rc
yKee2 - yKee2+r(iy,y)*dr(jy,y)*yunit/rc
yKee3 = yKee3+dr(iy,y)*r(jy,y)*yunit/rc
yKee4 = yKee4+dr(iy,y)*dr(jy,y)*yunit/rc

CONTINUE

asm=l.
IF(IEO .EQ. 1) asm=4.

Klaa (i, j)

Klab (i, j)

Klae (i, j)

Klbb(i, j)

Klbe(i, j)

=(D11 * xKaal
+D16 * xKaa2
+D16 * xKaa3
+D66 * xKaa4
+G55 * xKaa4

=(D12 * xKabl
+D16 * xKab2
+D26 * xKab3
+D66 * xKab4
+G45 * xKab3

* yKaal
* yKaa2
* yKaa3
* yKaa4
* yKaal)*asm

* yKabl
* yKab2
* yKab3
* yKab4
* yKab2)*asm

=(G55 * xKael * yKael
+G45 * xKae2 * yKae2)*asm

=(D22 * xKbbl
+D26 * xKbb2
+D26 * xKbb3
+D66 * xKbb4
+G44 * xKbbl

* yKbbl
* yKbb2
* yKbb3
* yKbb4
* yKbb4)*asm

=(G45 * xKbel * yKbel
+G44 * xKbe2 * yKbe2)*asm

IF(i.GT.NC.OR.j.GT.NC) GOTO 160
Kigg(i,j) =(All * xKccl * yKccl

+A16 * xKcc2 * yKcc2
+A16 * xKcc3 * yKcc3
+A66 * xKcc4 * yKcc4)*asm

CONTINUE

IF(i.GT.NC.OR.j.GT.ND) GOTO 170
Kigg(i,j+NC) =(A12 * xKcdl * yKcdl

+A16 * xKcd2 * yKcd2
+A26 * xKcd3 * yKcd3
+A66 * xKcd4 * yKcd4)*asm

Kigg(j+NC,i) = Kigg(i,j+NC)
CONTINUE

304

160

170



C
C

IF(i.GT.ND.OR.j.GT.ND) GOTO 180
Kigg(i+NC,j+NC) =(A22 * xKddl * yKddl

& +A26 * xKdd2 * yKdd2
& +A26 * xKdd3 * yKdd3
& +A66 * xKdd4 * yKdd4)*asm

180 CONTINUE
C
C

Klee(i,j) =(G55 * xKeel * yKeel
& +G45 * xKee2 * yKee2
& +G45 * xKee3 * yKee3
& +G44 * xKee4 * yKee4)*asm

C
C
303 CONTINUE
302 CONTINUE
C
301 CONTINUE
300 CONTINUE
C
C

NEN = NC + ND
CALL INVERS(Kigg,NEN)

C
C
C -----------------------------------------------------
C * Compute force vector terms for concentrated loading
C -----------------------------------------------------
C

WRITE(6,*)'CYPHERIN UP THAT THERE FORCE THINGY...'
C

x - 0.5
y - 0.5

C
i = 0

C
DO 330 ix = 1, NX

DO 331 iy = 1, NY
i = i+1
Ri(i) = q(ix,x)*r(iy,y)

C
C
331 CONTINUE
330 CONTINUE

C
IF(cf .EQ. 0.) GOTO 345

C
C
C -----------------------------------------------------------------
C * Compute force vector terms for cosine distributed patch loading
C -----------------------------------------------------------------
C
C

af = cf/XL
bf = cf/YL



aunit - cf*cf/100.
C

pO - (Pi**2)/(4.*cf*cf)
C

ij = 0
C
C

DO 335 ix - 1, NX
DO 336 iy = 1, NY

C
x - 0.5-af/2.
SUM - 0.

C
DO 340 I - 1, 10

y = 0.5-bf/2.
x = x+af/10.

C
DO 341 J - 1, 10

y - y+bf/10.
C

PR - COS(Pi/af*(x-0.5))*COS(Pi/bf*(y-0.5))
& *q(ix,x) *r (iy,y) *aunit

C
SUM - SUM+PR

C
341 CONTINUE
340 CONTINUE

C
ij = ij+l
Ri(ij) = p0*SUM

C
336 CONTINUE
335 CONTINUE

C
C
345 CONTINUE

C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE ARRANG(NX,NY,iKaa,iKab,jKab,iKae,iKbb,iKbe,
& M1,M2,Klaa,Klab,Klae,Klbb,Klbe)

C ----------------------------------------------------------------------
C
C This subroutine rearranges the stiffness matrix [K], if there is any
C singularity due to using the free-free beam boundary condition.
C
C ----------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION M1,M2,

& Klaa,Klab,Klae,Klbb,Klbe
INTEGER NX,NY,NXY
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PARAMETER ( N1-7, N2=N1**2 )

DIMENSION M1 (N2) ,M2 (N2)
DIMENSION NM1(N2),NM2(N2)
DIMENSION Klaa(N2,N2),Klab(N2,N2),Klae(N2,N2)
DIMENSION Klbb(N2,N2),Klbe(N2,N2)

NXY - NX*NY

WRITE(6,*)'DOIN THE ARRANGE THING...'

DO 250 i = 1, NXY

NM1(i) = 0
IF(M1(i) .EQ.

NM2(i) - 0
IF(M2(i) .EQ.

0.) NM1(i) = 1

0.) NM2(i) = 1

250 CONTINUE
C
C

iKaa = NXY
iKab - NXY
jKab = NXY
iKae = NXY
iKbb - NXY
iKbe = NXY

ii - 0
DO 251 i = 1, NXY

iKaa = iKaa-1
iKab = iKab-1
iKae = iKae-1
IF(NM1(i) .EQ.
ii = ii+l
iKaa = iKaa+l
iKab = iKab+l
iKae - iKae+1
DO 252 j = 1,

Klaa(ii, j)
Klab(ii, j)
Klae(ii,j)

CONTINUE
CONTINUE

1) GOTO 251

NXY
= Klaa(i,j)
= Klab(i,j)
= Klae(i,j)

IF(iKaa .EQ. NXY) GOTO 253

jj = 0
DO 254 j = i, NXY

IF(NM1(i) .EQ. 1) GOTO 254

jj = jj+l
DO 255 i = 1, iKaa

Klaa(i,jj) = Klaa(i,j)

252
251
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jj - 0
DO 258 j - 1, NXY

jKab - jKab-1
IF(NM2(j) .EQ.
jKab - jKab+1
jj = jj+1
DO 259 i = 1,

Klbb(i, jj)
CONTINUE
DO 261 i = 1,

Klab(i,jj)
CONTINUE

CONTINUE

CONTINUE

RETURN
END

1) GOTO 258

iKbb
= Klbb(i,j)

iKab
= Klab(i,j)

C
C
C ----------------------------------------------------------------------

SUBROUTINE CONDEN(NX,NY,iKaa,iKab,jKab,iKae,iKbb,iKbe,
& Klaa,Klab,Klae,Klbb,Klbe,Klee,KI)

C ----------------------------------------------------------------------
C
C This subroutine performs static condensation in order to reduce the
C system of equations.
C
C ----------------------------------------------------------------------
C
C [ Variables ]

CONTINUE
CONTINUE

CONTINUE

ii = 0
DO 256 i - 1, NXY

iKbb - iKbb-1
iKbe - iKbe-1
IF(NM2(i) .EQ. 1) GOTO 256
ii - ii+1
iKbb - iKbb+1
iKbe - iKbe+l
DO 257 j - i, NXY

Klbb(ii,j) = Klbb(i,j)
Klbe(ii,j) - Klbe(i,j)

CONTINUE
CONTINUE

IF(iKbb .EQ. NXY) GOTO 260

253
C
C

257
256

259

261
258

C
C
260

C
C
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IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION Klaa,Klab,Klae,Klba,Klbb,Klbe,
& Klea,Kleb,Klee,
& KK,KI
INTEGER NX,NY,NXY

C
PARAMETER ( N1-7, N2=Nl**2, N4-N2**3, N5=N2*2 )

C
DIMENSION Klaa(N2,N2),Klab(N2,N2),Klae(N2,N2)
DIMENSION Klba(N2,N2),Klbb(N2,N2),Klbe(N2,N2)
DIMENSION Klea(N2,N2),Kleb(N2,N2),Klee(N2,N2),KK(N2,N5)
DIMENSION KI(N2,N2),A(N5,N5)
DIMENSION DUM(N2)

C
C

NXY - NX*NY

WRITE(6,*)'NOW ON TO STATIC CONDENSATION...'
C
C
C -----------------------------

C * Obtain transpose of matrix
C -----------------------------
C
C

DO 404 I = 1, iKab

DO 405 J = 1, jKab

Klba(J,I) = Klab(I,J)
405 CONTINUE
404 CONTINUE

C
C

DO 406 I = 1, iKae

DO 407 J = 1, NXY

Klea(J,I) = Klae(I,J)
407 CONTINUE
406 CONTINUE

C
C

DO 408 I = 1, iKbe

DO 409 J = 1, NXY

Kleb(J,I) = Klbe(I,J)
409 CONTINUE
408 CONTINUE

C
C
C ----------------------------------

C * Compute inverse of [ K I matrix
C ----------------------------------

C
WRITE(6,*)'INVERSE STIFFNESS...'

C
DO 424 I = 1, iKaa

DO 425 J = 1, iKaa
A(I,J) = Klaa(I,J)

425 CONTINUE
DO 426 J = 1, jKab

A(I,iKaa+J) = Klab(I,J)
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426 CONTINUE
424 CONTINUE

C
DO 427 I - 1, iKbb

DO 428 J - 1, iKab
A(iKaa+I,J) - Klba(I,J)

428 CONTINUE
DO 429 J - 1, iKbb

A(iKaa+I,iKab+J) = Klbb(I,J)
429 CONTINUE
427 CONTINUE

C
NN - iKaa+iKbb

C
C

CALL INVERS(A,NN)
C
C ----------------------------------------
C * Recovering A&B from static condensation
C ----------------------------------------

CALL REMAT(A,NN,Klae, iKae, Klbe, iKbe,NXY)
C
C ---------------------------------- ------

C * Static condensation for [ K* ] matrix
C ----------------------------------------
C

WRITE(6,*)'STATIC CONDENSATION - JUST DO IT...'
C

DO 440 I = 1, NXY
DO 441 J = 1, NN

SUM = 0.
DO 442 JJ = 1, iKaa

PR - Klea(I,JJ)*A(JJ,J)
SUM = SUM+PR

442 CONTINUE
DO 443 JJ = 1, iKbb

PR - Kleb(I,JJ)*A(JJ+iKaa,J)
SUM = SUM+PR

443 CONTINUE
KK(I,J) - SUM

441 CONTINUE
440 CONTINUE

C
C

DO 444 I = 1, NXY
DO 445 J = 1, NXY

SUM = 0.
DO 446 JJ = 1, iKaa

PR = KK(I,JJ)*Klae(JJ,J)
SUM = SUM+PR

446 CONTINUE
DO 447 JJ = 1, iKbb

PR = KK(I,JJ+iKaa)*Klbe(JJ,J)
SUM = SUM+PR

447 CONTINUE
A(I,J) = SUM

445 CONTINUE
444 CONTINUE
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c
C

DO 448 I - 1, NXY
DO 449 J - 1, NXY

KI(I,J) - Klee(I,J) - A(I,J)
449 CONTINUE
448 CONTINUE

C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE INVERS(A,N)
C ----------------------------------------------------------------------
C
C This subroutine calculates the inverse of a given NxN matrix [A].
C Taken from "Numerical Recipes for FORTRAN77"
C
C ----------------------------------------------------------------------
C

C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C
PARAMETER ( N1=7, N2=Nl**2, N5=N2*2 )

C
DIMENSION A(N5,N5),Y(N5,N5),INDX(N5),Bl(N5)

C
C

DO 340 I = 1, N
DO 341 J = 1, N

Y(I,J) = 0.
341 CONTINUE

Y(I,I) = 1.
340 CONTINUE

C
C

CALL LUDCMP (A, N, INDX)
C
C

DO 342 J = 1, N
DO 345 I = 1, N

Bl(I) = Y(I,J)
345 CONTINUE

C
C

CALL LUBKSB (A, N, INDX, B1)
C

DO 346 I = 1, N
Y(I,J) = Bl(I)

346 CONTINUE
C
342 CONTINUE

C
C

DO 343 I = 1, N
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DO 344 J I, N
A(I,J) = Y(I,J)

344 CONTINUE
343 CONTINUE

C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE LUDCMP(A,N,INDX)
C ----------------------------------------------------------------------
C
C This subroutine performs LU decomposition.
C Taken from "Numerical Recipes for FORTRAN77"
C
C ----------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C

PARAMETER ( N17, N2=N1**2, N5=N2*2 )
PARAMETER ( TINY=1.OE-16 )

C
DIMENSION A(N5,N5),INDX(N5) ,VV(N5)

C
C

D - 1.
C
C

DO 350 I = 1, N
AAMAX = 0.
DO 351 J = 1, N

IF(ABS(A(I,J)) .GT. AAMAX) AAMAX=ABS(A(I,J))
351 CONTINUE

IF(AAMAX .EQ. 0.) AAMAX=TINY
VV(I) = 1./AAMAX

350 CONTINUE
C
C

DO 352 J = 1, N
C

DO 353 I = 1, J-1
SUM = A(I,J)
DO 354 K = 1, I-1

SUM = SUM - A(I,K)*A(K,J)
354 CONTINUE

A(I,J) = SUM
353 CONTINUE

AAMAX = 0.
C

DO 355 I = J, N
SUM = A(I,J)
DO 356 K = 1, J-1

SUM = SUM - A(I,K)*A(K,J)
356 CONTINUE
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A(I,J) = SUM
DUM = VV(I)*ABS(SUM)
IF(DUM .GE. AAMAX) THEN

IMAX = I

AAMAX - DUM

ENDIF
355 CONTINUE

C
IF(J .NE. IMAX) THEN

DO 357 K = 1, N

DUM = A(IMAX,K)
A(IMAX, K) = A(J,K)

A(J,K) = DUM

357 CONTINUE
D = -D

VV(IMAX) = VV(J)
ENDIF

C
INDX(J) = IMAX

C
IF(A(J,J) .EQ. 0.) A(J,J)=TINY

C
IF(J .NE. N) THEN

DUM = 1./A(J,J)
DO 358 I = J+1, N

A(I,J) = A(I,J)*DUM
358 CONTINUE

ENDIF
C
352 CONTINUE

C
C

RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE LUBKSB (A, N, INDX, Bl)
C ----------------------------------------------------------------------
C
C This subroutine performs LU back-substitution.
C Taken from "Numerical Recipes for FORTRAN77"
C
C ----------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C

PARAMETER ( Nl=7, N2=N1**2, N5=N2*2 )
C

DIMENSION A(N5,N5),INDX(N5) ,B(N5)
C
C

II = 0

C
C

DO 360 I = 1, N
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LL = INDX(I)
SUM = B1(LL)
B1(LL) - B1(I)

C
IF(II .NE. 0) THEN

DO 361 J - II, I-i

SUM - SUM - A(I,J)*B1(J)
361 CONTINUE

ELSE IF (SUM .NE. 0.) THEN
II = I

ENDIF
C

B1(I) = SUM
360 CONTINUE

C
C

DO 362 I - N, 1, -1

SUM - B1(I)
DO 363 J = I+1, N

SUM - SUM - A(I,J)*B1(J)
363 CONTINUE

B1(I) = SUM/A(I,I)
362 CONTINUE

C
C

RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE REMAT(A,NN,Klae,iKae,Klbe,iKbe,NXY)

C ----------------------------------------------------------------------
C This subroutine calculates the matrix for backing the A & B
C amplitudes out of E and writes it to the output file. The
C subroutine name stands for "REcovery MATrix." The matrix KUN,
C which is written row by row, will be used in the solution program
C to complete the operation of recovering A & B, which ultimately
C allow the calculation of Yx and Yy.
C ----------------------------------------------------------------------

DOUBLE PRECISION A,Klae,Klbe,SUM,PR,KUNrow
C

PARAMETER ( N1=7, N2=N1**2, N5=N2*2 )
C

DIMENSION A(N5,N5),Klae(N2,N2),Klbe(N2,N2),KUNrow(N2)
C

OPEN( UNIT=9, FILE='KUNMAT', STATUS='NEW' )
C

WRITE(6,*)'WRITING Psi x & Psi y Recovery Matrix...'
C

WRITE(9,*)NN,iKae,iKbe
DO 10 I = 1, NN

DO 20 J = 1, NXY
SUM = 0.

DO 30 K = 1, iKae

PR = -A(I,K)*Klae(K,J)
SUM = SUM+PR

30 CONTINUE
DO 40 K = 1, iKbe

PR = -A(I,iKae+K)*Klbe(K,J)
SUM = SUM+PR
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40 CONTINUE
KUNrow (J) -SUM

20 CONTINUE
WRITE(9,*) (KUNrow(L) ,L-1, NXY)

10 CONTINUE
WRITE(9,*)

C
CLOSE( UNIT-9

C
RETURN
END

C
C
C ----------------------------------------------------------------------

SUBROUTINE INTGRL3(Ibx,Iby,NX,NY,AX,AY,THETAX, THETAY, IEO,
& BETAX,BETAY,BX,BY,
& CX,CY,DX,DY,EX,EY,
& A11,A22,A12,A16,A26,A66,
& XL,YL,KIII)

C ----------------------------------------------------------------------
C
C This subroutine computes the stiffness matrix for the nonlinear cubic
C term. Note that this matrix is a non-square matrix.
C
C ----------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KIII
INTEGER NX,NY,NXY,i,j

C
PARAMETER ( N1-7, N2-N1**2, N4-N2**3 )

C
DIMENSION THETAX(5),THETAY(5),AX(5),AY(5)
DIMENSION BETAX(5,N1),BETAY(5,N1),BX(5,N1),BY(5,N1)
DIMENSION CX(5,N1),CY(5,N1),DX(5,N1),DY(5,N1),EX(5,N1),EY(5,N1)
DIMENSION KIII(N2,N4)

C
C
C -----------------------------------------------------------
C * Defining Beam Functions & Derivatives of Beam Functions
C -----------------------------------------------------------
C
C

q(i,x) = (SQRT(2.)*SIN(BETAX(5,i)*x+THETAX(5))
& +AX(5)*EXP(-BETAX(5,i)*x)
& +BX(5,i)*EXP(-BETAX(5,i)*(l.-x)))*CX(5,i)
& .+2.*EX(5,i)*(DX(5,i)*(-x)+0.5)

C
C

dq(i,x) =((BETAX(5,i)*SQRT(2.)*COS(BETAX(5,i)*x+THETAX(5))
& -BETAX(5i)*AX(5)*EXP(-BETAX(5,i)*x)
& +BETAX(5,i)*BX(5,i)*EXP(-BETAX(5,i)*(1.-x)))
& *CX(5,i)+DX(5,i)* (-2.))/XL

C
C
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r(i,y) = (SQRT(2.)*SIN(BETAY(5,i)*y+THETAY(5))
& +AY(5)*EXP(-BETAY(5,i)*y)
& +BY(5,i)*EXP(-BETAY(5,i)*(l.-y)))*CY(5,i)
& +2.*EY(5,i)*(DY(5,i)*(-y)+0.5)

C
C

dr(i,y) =((BETAY(5,i)*SQRT(2.)*COS(BETAY(5,i)*y+THETAY(5))
& -BETAY(5,i)*AY(5)*EXP(-BETAY(5,i)*y)
& +BETAY(5,i)*BY(5,i)*EXP(-BETAY(5,i)*(l.-y)))
& *CY(5,i)+DY(5,i) * (-2.))/YL

C
C
C ---------------------------------------------------------

C * Calculating non-square stiffness matrix components for
C nonlinear (cubic) term by numerical integration using
C "Extended Trapezoidal Rule"
C ---------------------------------------------------------

C
WRITE(6,*)'CYPHERIN UP THAT NON-LINEAR STIFFNESS THINGY...'

C
xunit = XL/20.
yunit = YL/20.

C
C

IF(Ibx .EQ. 0) THEN
All = 0.

ENDIF
C

IF(Iby .EQ. 0) THEN
A22 = 0.

ENDIF
C
C

i = 0
DO 320 ix = 1, NX

DO 321 iy = 1, NY
WRITE(6,*)'Ho Hum...'

i = i+l

j = 0
DO 322 kx = 1, NX

DO 323 ky = 1, NY

DO 324 lx = 1, NX

DO 325 ly = 1, NY

DO 326 mx = 1, NX
DO 327 my = i, NY

j = j+l
C

xKeel = 0.

xKee4 = 0.

C
yKeel = 0.

yKee4 = 0.

C
x = -0.05
y = -0.05

C
IF(IEO .EQ. 1) NNN = 11
IF(IEO .EQ. 0) NNN = 21
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c
DO 328 KK = 1, NNN

C
x - x+0.05
y = y+0.05

C
C

rc = 1.
IF((KK .EQ. 1) .OR.

& (KK .EQ. 21)) rc = 2.
IF(IEO .EQ. 0) THEN

IF((KK .EQ. 1) .OR.
(KK .EQ. 11)) rc=2.

ENDIF
C
C

xKeel - dq(ix,x)*dq(kx,x)
& *dq(lx,x)*dq(mx,x)
& *xunit/rc + xKeel

C
C

xKee4 - q(ix,x)*q(kx,x)
S*q (lx,x) *q(mx,x)
& *xunit/rc + xKee4

C
C
C

yKeel = r(iy,y)*r(ky,y)
& *r(ly,y) *r(my,y)
& *yunit/rc + yKeel

C
C

yKee4 - dr(iy,y)*dr(ky,y)
& *dr(ly,y) *dr(my,y)
& *yunit/rc + yKee4

C
C
328 CONTINUE

C
asm=l.
IF(IEO .EQ. 1) asm=4.

C
KIII(i,j) = (0.5 * All * xKeel

& * yKeel
& +0.5 * A22 * xKee4
& * yKee4)* asm

C
C
327 CONTINUE
326 CONTINUE
325 CONTINUE
324 CONTINUE
323 CONTINUE
322 CONTINUE
321 CONTINUE
320 CONTINUE

WRITE(6,*)'Finally...'
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C
RETURN
END

C
C
C ==========- ===-======= =

SUBROUTINE NRSOL(Rhold,KI,KIII,AX,AY,THETAX,THETAY,
& BETAX,BETAY,BX,BY,CX,CY,DX,DY,EX,EY)

C ===-========= = = = ==========--------

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KE,KdE,KI,Kigg,KiiS
DOUBLE PRECISION Kiige,Kiieg, KIII,KUN
PARAMETER ( N1=7, N2-N1**2, N3-N2**2, N4=N2**3,

& N5=N2*2, N6=N2*2, N7=N3*2 )
DIMENSION A(N2),B(N2),C(N2),D(N2),E(N2),X(2,20)
DIMENSION KUN(N5,N2),KE(N2),KdE(N2,N2)
DIMENSION KI(N2,N2)
DIMENSION KIII(N2,N4),R(N2),Rhold(N2)
DIMENSION THETAX(5),THETAY(5),AX(5),AY(5)
DIMENSION BETAX(5,N1),BETAY(5,N1),BX(5,N1),BY(5,N1)
DIMENSION CX(5,N1),CY(5,N1),DX(5,N1),DY(5,N1),EX(5,N1),EY(5,N1)
CHARACTER OSTR1*18,OSTR3*18,OSTR4*18, OSTR5*18

C
CALL INPUT2(beta,NCX,NCY,NDX,NDY,NX,NY, XL,YL,

& THICK,NKX,X,LOOP,E,F,NF,ERR,
& OSTR1,OSTR3, OSTR4)
NXY = NX*NY
NC = NCX*NCY
ND = NDX*NDY
NEN = NC+ND

C
C Psi x & Psi y Recovery Matrix
C

WRITE(6,*)'Reading stiffnesses...'
OPEN( UNIT=9, FILE='KUNMAT', STATUS='OLD'

READ(9, *)NN, iKae, iKbe
DO 15 I = 1, NN

READ(9,*) (KUN(I,L),L=1,NXY)
15 CONTINUE

READ(9, *)
CLOSE( UNIT=9 )

C
C Write header for output data
C

WRITE(6,*)'Open Write File ... '
OPEN( UNIT=12, FILE=OSTR4, STATUS='NEW ' )

C
WRITE(6,*)'The initial guess vector is ->'
WRITE(6,210) (E(I),I=1,NXY)
WRITE(6,*)
WRITE (12,221) NX,NY
WRITE (12, 222) beta
WRITE(12,*)'The initial guess vector is ->'
WRITE(12,210) (E(I),I=1,NXY)

221 FORMAT(1X,'This is a ',12,' x ',12,' mode case')
222 FORMAT(1X,'The beta factor is ->',F8.5)

C
C Loop for calculating deflection at a succession of forces
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C
Q-F
DO 150 K - 1,NF

C
WRITE (6,102) K
WRITE(6, *)

102 FORMAT(' ','Force Number',I6)
C

DO 160 I=1,NXY
R(I) - 2*Rhold(I)*F

160 CONTINUE
C
C Goto Newton-Raphson subroutine to get E
C

CALL NEWRAF(E,KI,KIII,R, NXY,NEN,LOOP, K, ERR,beta)
C There is a good reason for this K^

C
C Goto Recover subroutine to get A & B
C

CALL RECOVR(KUN,NN,NXY,E,A, B,iKae,iKbe)

C Write more header for output data
C

IF(K.EQ.1)THEN
WRITE(12, *) '000000 0000 0 '
WRITE (12,200) F
WRITE(12,210) (E(I),I=1,NXY)
WRITE(12,210) (A(I),I=1,NXY)
WRITE(12,210) (C(I),I=1,NC)
WRITE(12,210) (D(I),I=1,ND)
WRITE(12,*) '==============

WRITE(12,*)' X-Coord Y-Coord
& Kapll Kapllw'
ENDIF

200 FORMAT(1X,'The E, A, C,& D Vectors
210 FORMAT(9D12.4)

Force EpO11

for force ',F8.1,' are ->')

C Goto Mode Shape subroutine to get final answer & output

CALL MODSHP(F,E,A,C,NX,NY,NXY,NC,ND,NEN,XL,YL,
beta,NKX,X, THICK,
AX,AY, THETAX, THETAY,
BETAX,BETAY,BX,BY,
CX,CY,DX,DY,EX,EY)

C Increment Force
C

IF(NF.EQ.1)GOTO 150
F - F - Q/(NF - 1)

150 CONTINUE

CL
STOP
END

OSE( UNIT=12 )

-=--



C
C SUBROUTINE LIBRARIES
C
C

C
C
C ----------------------------------------------------------------------

SUBROUTINE INPUT2(beta,NCX,NCY,NDX,NDY,NX,NY,XL,YL,
& THICK,NKX,X,LOOP,E,F,NFERR,
& OSTR1,OSTR3,OSTR4)

C ----------------------------------------------------------------------
C

C This subroutine reads data from the existing input data file called
C "stiff.dat". The format of "stiff.dat" is described as follows:
C
C line 1-5: comment lines (program does not read)
C line 6 : Ibx,Iby,beta
C line 7 : Data not used here
C line 8 : NCX, NCY, NDX, NDY, NX, NY
C line 9 : Data not used here
C line 10 : XL, YL, THICK
C line 11 : Data not used here
C line 12 : Data not used here
C line 13 : Data not used here
C line 14 : Data not used here
C line 15 : LOOP
C line 16 : E(I)
C line 17 : F, NF
C line 18 : ERR
C line 19 : NKX
C line 20 : X(1,I)
C line 21 : X(2,I)
C line 22 : OSTR1,OSTR3
C line 23 : OSTR4
C
C where,
C
C beta : degree of non linearity ranging from 0.0 to 1.0
C 0.0 => linear case
C 1.0 => perfectly nonlinear case
C
C NCX, NCY : number of u modes in the x and y directions
C NDX, NDY : number of v modes in the x and y directions
C NX, NY : number of w modes in the x and y directions
C
C XL, YL : dimensions of plate in the x and y directions (m)
C
C LOOP : max. number of Newton-Raphson iterations allowed
C
C E(I) : first guess at w amplitudes in Newton-Raphson
C
C F : magnitude of contact force desired
C
C NF : no. of force calculations (=1 just calculates for F)
C
C ERR : error between current and previous guess in
C Newton-Raphson
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C NKX
C
C X(1,I)

X(2,I)

: number of locations where data is to be calculated

: X coordinate of desired data location

: Y coordinate of desired data location

OSTR163 : Input filename for stiffness matrices, 18 chars. max,
must be written within apostrophes like: 'xxxxxxx'

OSTR4 : Output filename for final solution, 18 characters max,
must be written within apostrophes like: 'xxxxxxx'

C ---------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER ( N1=7, N2=N1**2 )
DIMENSION E(N2),X(2,20)
CHARACTER OSTR1*18,OSTR3*18,OSTR4*18

C
WRITE(6,*)'Reading input file...'

OPEN( UNIT=14, FILE='stiff.dat', STATUS='OLD' )

READ (14, *)
READ(14,*)
READ(14,*)
READ(14,*)
READ (14, *)
READ(14,*) Ibx, Iby,beta
READ(14,*)
READ(14,*) NCX,NCY, NDX,NDY,NX,NY
READ(14, *)
READ(14,*) XL,YL,THICK
READ(14,*)
READ(14, *)
READ(14,*)
READ(14, *)
READ(14,*)LOOP
NXY-NX*NY
READ(14,*) (E(I), I=1, NXY)
READ (14, *)F, NF
READ (14, *)ERR
READ(14, *)NKX
READ(14,*) (X(1, I), I=1,NKX)
READ(14,*) (X(2,I),I=1,NKX)
READ(14,*) OSTR1,OSTR3
READ(14,*) OSTR4

CLOSE( UNIT-14 )

RETURN
END

C----------------------------------------------------------------------
SUBROUTINE NEWRAF(E,KI,KIII,R,NXY,NEN,LOOP,K,ERR,beta)
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C Subroutine uses the Newton-Raphson method to solve the non-linear
C system of equations for the modal amplitudes, E.
C We're using the Newton-Raphson method:
C [J]{E' - E} = -{G)
C Which is of the form Ax = b
C We have A: [J] = KdE We have b: -{G) = -KE
C And we want x: {E' - E)
C We use LU decomposition to solve for x which is assigned to KE.
C Since KE - {E' - E) we solve for the next guess: E' = KE + E.
C Actually the program just reassigns it to E for the next loop.
C Convergence is checked by comparing the absolute value of the
C difference between the current guess and the updated guess
C (Abs(KE)) against a pre-determined error value, ERR. The number
C of Newton-Raphson iterations is limited to LOOP as a safety valve
C against divergence.
C ----------------------------------------------------------------------

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KE,KdE,KI,KIII,R
PARAMETER ( N1=7, N2=Nl**2, N3=N2**2, N4=N2**3,
& N6=N2*2, N7=N3*2 )
DIMENSION INDX(N6),E(N2),KE(N2),KdE(N2,N2)
DIMENSION KI(N2,N2),KIII(N2,N4),R(N2)

C
WRITE(6,*)
WRITE(6,*)'Newton-Raphsoning...'
WRITE(6,*)

C
DO 1 I=1,NXY

KE(I)=O.O
DO 2 J-1,NXY

KdE (I, J) =0.0
2 CONTINUE
1 CONTINUE

C
C Newton-Raphson Loop
C

DO 100 L = 1,LOOP
WRITE(6,101) L

101 FORMAT('+','Newton-Raphson Step Number ',I6)
C
C Get the equations from this subroutine
C

CALL EEQS(E,KE,KdE,KI,KIII,R,NXY,NEN, beta)
C
C Do LU decomposition and solve for x (KE)
C

CALL LUDCM2(KdE,NXY,N2,INDX)
CALL LUBKS2(KdE,NXY,N2,INDX,KE)

C
HOLD = 0.0

C
C Calculate next guess from current guess
C

DO 10 I = 1,NXY
E(I) = KE(I) + E(I)

10 CONTINUE
C
C Check to see if the guesses have converged to within ERR
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C
DO 20 I - 1,NXY

KE(I) - ABS(KE(I))
IF(KE(I).GT.HOLD) HOLD = KE(I)

20 CONTINUE
IF(HOLD.LT.ERR) GOTO 25

100 CONTINUE
25 CONTINUE

C
C End of Newton-Raphson Loop
C

RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE EEQS(E,KE,KdE,KI,KIII,R,NXY,NEN,beta)

C ----------------------------------------------------------------------
C This subroutine determines the non-linear equations (g) and the
C components of the Jacobian matrix (J) for use in the Newton-Raphson
C root finding method as shown:
C
C J [x - x] = -g
C k k+1 k k
C ----------------------------------------------------------------------

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KE,KdE,KI,KIII,R
DOUBLE PRECISION E,dEldE,dE2dE,dE3dE
PARAMETER ( N1=7, N2=N1**2, N3=N2**2, N4=N2**3,

& N5=N2*3, N6=N2*2, N7=N3*2 )
DIMENSION E(N2),KE(N2),KdE(N2,N2)
DIMENSION KI(N2,N2),KIII(N2,N4),R(N2)

C
C Initialize Variables
C

DO 1 I=1,NXY
DO 2 J=1,NXY

KE(I)=0.0
KdE (I,J) =0.0

2 CONTINUE
1 CONTINUE

C
DO 10 1 = 1,NXY
n - 0
ms - 0
KE(1) = R(1)

DO 20 i = 1,NXY
C
C -> Linear Terms <-
C
C Calculate a linear term in the equation (-g).
C

KE(1) = (-1.)*KI(l,i)*E(i) + KE(1)
C
C Determine the derivative of a linear term.
C

IF (1.EQ.i)THEN
dEldE = 1.0

ELSE
dEldE = 0.0
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ENDIF
C
C Calculate a linear term in the Jacobian (J).
C

DO 25 il = 1,NXY
KdE(il,l) - KI(il,i)*dEldE + KdE(il,l)

25 CONTINUE
C
C -> Non-Linear Terms <-
C

DO 30 j - 1,NXY
DO 40 k = 1,NXY
n -n+ 1

C
C Calculate a non-linear term in the equation (-g).
C

KE(1) = (-l.)*beta*KIII(l,n)*E(i)*E(j)*E(k) + KE(1)
C
C Determine the derivative of a non-linear term.
C

IF(1.EQ.i.AND.l.EQ.j.AND.l.EQ.k)THEN
dE3dE - 3.*E(i)**2.
GOTO 50
ENDIF

IF(1.EQ.i.AND..EQ. j)THEN
dE3dE = 2.*E(i)*E(k)
GOTO 50
ENDIF

IF(1.EQ. j.AND..EQ.k) THEN
dE3dE = 2.*E(j)*E(i)
GOTO 50
ENDIF

IF(1.EQ.i.AND.l.EQ.k)THEN
dE3dE = 2.*E(i)*E(j)
GOTO 50
ENDIF

IF (1.EQ.i) THEN
dE3dE = E(j)*E(k)
GOTO 50
ENDIF

IF(1.EQ.j)THEN
dE3dE = E(i)*E(k)
GOTO 50
ENDIF

IF(1.EQ.k)THEN
dE3dE = E(i)*E(j)
GOTO 50
ENDIF

dE3dE = 0.0
50 CONTINUE

C
C Calculate a non-linear term in the Jacobian (J).
C

DO 45 in = 1,NXY

KdE(in,l) = beta*KIII(in,n)*dE3dE + KdE(in,l)
45 CONTINUE

C
40 CONTINUE
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30 CONTINUE
20 CONTINUE
10 CONTINUE

C
RETURN
END

C ------------------------------------------------------
SUBROUTINE LUDCM2(A,N,NP,INDX)

C ------------------------------------------------------
C
C This subroutine performs LU decomposition.
C Taken from "Numerical Recipes for FORTRAN77"
C
C ------------------------------------------------------
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER ( N1-7, N2-N1**2, N6-N2*2 )
PARAMETER ( TINY=1.OE-16 )
DIMENSION A(NP,NP),INDX(NP) ,VV(N6)

C
D = 1.

C
DO 350 I = 1, N

AAMAX = 0.
DO 351 J = 1, N

IF(ABS(A(I,J)) .GT. AAMAX) AAMAX=ABS(A(I,J))
351 CONTINUE

IF(AAMAX .EQ. 0.) AAMAX=TINY
VV(I) = 1./AAMAX

350 CONTINUE
C

DO 352 J - 1, N
C

DO 353 I = 1, J-1

SUM = A(I,J)
DO 354 K = 1, I-1

SUM = SUM - A(I,K)*A(K,J)
354 CONTINUE

A(I,J) = SUM

353 CONTINUE
AAMAX = 0.

C
DO 355 I = J, N

SUM = A(I,J)
DO 356 K = 1, J-1

SUM = SUM - A(I,K)*A(K,J)
356 CONTINUE

A(I,J) = SUM
DUM = VV(I)*ABS(SUM)
IF(DUM .GE. AAMAX) THEN

IMAX = I

AAMAX = DUM
ENDIF

355 CONTINUE
C

IF(J .NE. IMAX) THEN
DO 357 K = 1, N



DUM = A(IMAX,K)
A(IMAX,K) - A(J,K)
A(J,K) = DUM

357 CONTINUE
D - -D
VV(IMAX) - VV(J)

ENDIF
C

INDX(J) - IMAX
C

IF(A(J,J) .EQ. 0.) A(J,J)-TINY
C

IF(J .NE. N) THEN
DUM - 1./A(J,J)
DO 358 I - J+1, N

A(I,J) - A(I,J)*DUM
358 CONTINUE

ENDIF
C
352 CONTINUE

C
RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE LUBKS2(A,N,NP,INDX,B1)

C ----------------------------------------------------------------------
C
C This subroutine performs LU back-substitution.
C Taken from "Numerical Recipes for FORTRAN77"
C ----------------------------------------------------------------------
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER ( N1=7, N2-N1**2, N6=N2*2 )
DIMENSION A(NP,NP),INDX (NP) ,B1 (N6)

C
II - 0

C
DO 360 I = 1, N

LL = INDX(I)
SUM = B1(LL)
Bl(LL) = Bl(I)

C
IF(II .NE. 0) THEN

DO 361 J = II, I-1
SUM = SUM - A(I,J)*B1(J)

361 CONTINUE
ELSE IF (SUM .NE. 0.) THEN

II = I
ENDIF

C
B1(I) - SUM

360 CONTINUE
C

DO 362 I = N, 1, -1
SUM = B1(I)
DO 363 J = I+1, N

SUM = SUM - A(I,J)*B1(J)
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363 CONTINUE
B1(I) - SUM/A(I,I)

362 CONTINUE
C

RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE RECOVR(KUN,NN,NXY,E,A,B,iKae,iKbe)

C ----------------------------------------------------------------------
C This subroutine recovers A & B from E using the matrix KUN,
C calculated as a step of static condensation in the stiffness program.
C A & B allow the calculation of Yx and Yy.
C ----------------------------------------------------------------------

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KUN,E,A,B,SUM,PR

C
PARAMETER ( N1-7, N2-N1**2, N5-N2*2 )

C
DIMENSION KUN(N5,N2),E(N2),A(N2),B(N2)

C
DO 10 I - 1, NN

SUM = 0.
DO 20 J - 1, NXY

PR - KUN(I,J)*E(J)
SUM - SUM+PR

20 CONTINUE
IF (I.LE.iKae) THEN
A(I)=SUM

ELSE
B (I-iKae) =SUM

ENDIF
10 CONTINUE

RETURN
END

C
C ----------------------------------------------------------------------

SUBROUTINE MODSHP(F,E,A,C,NX,NY,NXY,NC,ND,NEN,XL,YL,
& beta, NKX,XY,THICK,
& AX,AY,THETAX,THETAY,
& BETAX,BETAY,BX,BY,
& CX,CY,DX,DY,EX,EY)

C ----------------------------------------------------------------------
C This subroutine calculates the deflection and strain at a series of
C points on the plate. It uses the assumed mode shapes and the modal
C amplitudes solved for in the Newton-Raphson subroutine.
C ----------------------------------------------------------------------

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION Kapll,n,m,KapllO
PARAMETER ( N1=7, N2=N1**2, N5=N2*2, N6=N2*2 )
DIMENSION E(N2),C(N2),A(N2),XY(2,20)
DIMENSION THETAX(5),THETAY(5),AX(5),AY(5)
DIMENSION BETAX(5,N1),BETAY(5,N1),BX(5,N1),BY(5,N1)
DIMENSION CX(5,N1),CY(5,N1),DX,N)DX(5N1),DY(5,N1),EX(5,N1),EY(5,N1)

C
C

q(i,x) - (SQRT(2.)*SIN(BETAX(5,i)*x+THETAX(5))
& +AX(5)*EXP(-BETAX (5,i)*x)
& +BX(5,i)*EXP(-BETAX(5,i)*(l.-x)))*CX(5,i)
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& +2.*EX(5,i) * (DX(5,i) * (-x)+0.5)
C
C

r(i,y) = (SQRT(2.)*SIN(BETAY(5,i)*y+THETAY(5))
& +AY(5)*EXP(-BETAY (5,i)*y)
& +BY(5,i)*EXP(-BETAY(5,i)*(1.-y)))*CY(5,i)
& +2.*EY(5,i) * (DY(5,i)* (-y)+0.5)

C
C

dq(i,x) =((BETAX(5,i)*SQRT(2.)*COS(BETAX(5,i)*x+THETAX(5))
& -BETAX(5,i)*AX(5)*EXP(-BETAX(5,i)*x)
& +BETAX(5,i)*BX(5,i)*EXP(-BETAX(5,i)*(1.-x)))
& *CX(5,i)+DX(5,i)*(-2.))/XL

C
C

n(i,y) = (SQRT(2.)*SIN(BETAY(3,i)*y+THETAY(3))
& +AY(3)*EXP(-BETAY(3,i)*y)
& +BY(3,i)*EXP(-BETAY(3,i)*(l.-y)))*CY(3,i)
& +2.*EY(3,i) * (DY(3,i)* (-y)+0.5)

C
C

m(i,x) = (SQRT(2.)*SIN(BETAX(3,i)*x+THETAX(3))
& +AX(3)*EXP(-BETAX(3,i)*x)
& +BX(3,i)*EXP(-BETAX(3,i)*(l.-x)))*CX(3,i)
& +2.*EX(3,i)*(DX(3,i)*(-x)+0.5)

C
C

dm(i,x) =((BETAX(3,i)*SQRT(2.)*COS(BETAX(3,i)*x+THETAX(3))
& -BETAX(3,i)*AX(3)*EXP(-BETAX(3,i)*x)
& +BETAX(3,i)*BX(3,i)*EXP(-BETAX(3,i)*(1.-x)))
& *CX(3,i)+DX(3,i)*(-2.))/XL

C
C

ddq(i,x) = CX(5,i)*((AX(5)*BETAX(5,i)**2.)/EXP(x*BETAX(5,i))
& + (BETAX(5,i)**2.*BX(5,i))/EXP((1. - x)*BETAX(5,i))

& - SQRT(2.)*BETAX (5,i)**2.
& *SIN(THETAX(5) + x*BETAX(5,i)))/(XL*XL)

C
C

df(i,x) =((-(BETAX(1,i)**2)*SQRT(2.)*SIN(BETAX(1,i)
& *x+THETAX(1))
& +(BETAX (i)**2) *AX(1)*EXP(-BETAX (, i)*x)
& +(BETAX (, i)**2)*BX(1,i)*EXP(-BETAX(1,i)
& *(1.-x)))*CX(1, i) )/(XL*XL)

C
C

g(i,y) = (SQRT(2.)*SIN(BETAY(1,i)*y+THETAY(1))
& +AY(1)*EXP(-BETAY (1, i)*y)
& +BY(1,i)*EXP(-BETAY(1,i)*(1.-y)))*CY(1,i)
& +2.*EY(1,i)*(DY(1,i)* (-y)+0.5)

C
C
C Cycle through x and y locations
C

DO 10 KX = 1,NKX
u = 0.0
w = 0.0
dw = 0.0
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du - 0.0
dpsi - 0.0
ddw - 0.0
NW - 0
x - XY(1,KX)/XL
y - XY(2,KX)/YL
DO 30 I = 1,NX
DO 40 J = 1,NY
NW = NW + 1

C
C Calculate deflection
C

w - w + E(NW)*q(I,x)*r(J,y)
C
C Calculate derivatives of deflection in x direction (for strain)
C

dw - dw + E(NW)*dq(I,x)*r(J,y)
dpsi - dpsi + A(NW)*df(I,x)*g(J,y)
ddw = ddw + E(NW)*ddq(I,x)*r(J,y)

C
IF(NW.GT.NC) GOTO 200
du - du + C(NW)*dm(I,x)*n(J,y)
u = u + C(NW)*m(I,x)*n(J,y)

200 CONTINUE
C
40 CONTINUE
30 CONTINUE

C
C Calculate extensionsal strain, bending strain on top of plate,
C and total strain on top and bottom of plate
C

Ep011 = beta*(1./2.)*(dw*dw)
Kapll - (THICK/2.)*dpsi
Kapll0 = (THICK/2.)*ddw

C
WRITE(12,100)XY(1,KX),XY(2,KX),F,w,Ep011,Kap11,Kap110

C
10 CONTINUE
100 FORMAT(1X,2(F8.6, ','),F7.1,4(',',D12.4))

RETURN
END


