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Abstract

The calibration of the error terms in strapdown system accelerometers due to
angular motion is performed using a three-axis gimbaled test table simulation. The
sensitivities of the accelerometers to angular velocities and angular accelerations are
reduced to accelerometer error coefficients so that a linear estimation can be performed.
Linear covariance analysis, using a square root Kalman filter, is used to predict the error
dynamics for the simulation.

Various test table gimbal trajectories are implemented to reduce the errors in the
accelerometer coefficients. The effects of increasing either the sensitivities or the
observabilities of the accelerometer coefficients are compared. The time the gimbals are
held at their maximum rates and the initial gimbal angles are varied to observe their effects
on the resulting errors in the accelerometer error coefficients. The effects of the
displacements between the gimbal axes of the test table are also investigated and shown to
be small. The performances of all the trajectories are compared to a previously existing
trajectory, resulting in errors that are up to 87.8% lower. The best trajectory found in this
research is one that is locally optimized over three trajectory characteristics.
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Chapter 1

Introduction

1.1 Background and Motivation

Many platforms that navigate using inertial navigation systems (INS's) experience

some sort of angular motion. This angular motion may consist of an aircraft rolling, a

spacecraft tumbling or a missile spinning. If the instruments used to measure the inertial

forces are rigidly attached to the vehicle, then angular rates and angular accelerations of

the vehicle will produce linear accelerations in the accelerometers. The internal

characteristics of these accelerometers, as well as their placement in the vehicle, will

dictate to what extent the vehicular angular motion will affect their outputs.

Accurate navigation of ballistic missile reentry bodies is essential in determining

the effect of deployment from the missile bus on the trajectory of the reentry body. For

the case of ballistic missile reentry bodies, the angular motion effects on navigation are

very important. When the reentry bodies are released from the missile bus they are spun

up about their longitudinal axes at very high accelerations. When the reentry bodies move

away from the missile bus they are spinning at very high angular rates. Deployment from

the missile bus also results in forces on the reentry body that must be measured accurately

in order to navigate properly. One of these forces is the impingement of the missile bus

firing on the reentry body. Errors in both measured position and velocity will result if the

angular motion effects on the navigation system are not compensated out. Therefore, an

accurate model of the angular motion effects on the navigation system must be developed.

This thesis calibrates the error terms due to angular effects on strapdown inertial

navigation system accelerometers. The INS can be mounted on a three-gimbal test table



and rotated about the three gimbal axes to measure the errors introduced through angular

motion.

1.2 Inertial Navigation Systems

1.2.1 Basic Inertial Navigation Systems

An inertial navigation system (INS) is a set of instruments that allow position and

velocity of a vehicle to be determined solely from internal measurements. While other

navigation systems may make use of external measurements, such as radar ranging,

Doppler shifts, or GPS pseudoranges, an INS merely measures the inertial angular rates

and forces on the vehicle. For a properly initialized INS, these measurements can be

processed to provide a continuous navigation solution. This allows the INS to navigate

without any external sensors that either transmit or receive radiation (radars, lasers, radio

waves, etc.).

In order for an INS to navigate, it must be capable of performing four distinct

functions [1]:

* Instrument a reference frame

* Measure a specific force

* Have knowledge of the gravitational field

* Time integrate the specific force data to obtain velocity and position information

These functions are performed by the four basic components of any INS: three

gyroscopes, three accelerometers, a gravity calculator, and an onboard digital computer

used to integrate the equations of motion.

Gyroscopic instruments are used to accomplish the first function. The three

gyroscopes (assumed to have a single-degree-of-freedom) can either be placed on a

gimbaled platform or rigidly attached to the vehicle. If they are placed on a gimbaled

platform, they define an inertially nonrotating cartesian frame. Angular motion of the

vehicle about a gyros input axis will cause the gimbal supporting the spin axis to precess



about the output axis. Torques can then be applied to the gyro-supporting gimbals in

order to keep the gyro spin axes pointing along the same inertial axes. This maintains an

inertially stable platform in which the gyro spin axes maintain their orientation with

respect to inertial space. The torques that are required to keep the gimbal supports from

precessing are taken as the measurements and used to determine the orientation of the

vehicle. If the gyros are rigidly attached to the vehicle, then they will no longer be

nonrotating with respect to inertial space. Instead, they are used as sensing elements

using a closed-loop servo system. The resulting torques applied to each gyro are then

proportional to the particular gyro's inertially referenced angular velocity. The torques

can be used to determine the orientation of the gyros with respect to their original

orientation. Systems that use rigidly attached gyros instead of placing them on a

gimbaled platform are called strapdown systems.

The second function of the INS is performed by devices called accelerometers.

The accelerometers are an integral part of either gimbaled or strapdown INS's. The

accelerometers are the instruments that actually measure the forces acting on the body.

This is accomplished by using three orthogonal accelerometers. Each accelerometer has a

proofmass that is constrained to move in one direction. When a force acts on the body,

the body accelerates. If the force has a component along a particular accelerometer's

input axis, then the proofmass of that accelerometer will deflect. By measuring the

deflection of all the proofmasses, the acceleration magnitude and direction can be

determined. Unfortunately, the accelerometer measurements also include the effects of

the gravitational field. An accelerometer at rest with no external forces acting on it will

read Ig down due to gravity. In order to determine the motion of the vehicle, the gravity

accelerations must be removed from the accelerometer outputs. The third function of the

INS is then required to accurately compensate the accelerometer outputs for the local

gravity forces.



The final function of the INS, performed by an onboard navigating computer, is

the integration of the measured forces. The data obtained from the accelerometers and

gyros is processed, resulting in the accelerations in the inertial frame. These accelerations

may then be integrated once to provide velocity information. The velocity information is

then integrated once more to provide position information.

1.2.1.1 Gimbaled Systems vs. Strapdown Systems

Two forms of inertial navigation systems are the gimbaled system and the

strapdown system. The difference between the two systems is the way in which the

instruments are mounted on the vehicle. In gimbaled systems, the instruments maintain

their orientation in an inertially nonrotating frame. In strapdown systems, the instruments

are rigidly attached to the vehicle and experience the same angular motion as the vehicle.

Strapdown systems have both advantages and disadvantages over gimbaled

systems. The greatest advantage of strapdown systems is their smaller size. Current

systems are so small that their weight is almost negligible. Also, the power consumption

for these small devices is significantly less than that of the gimbaled systems. With these

advantages comes the disadvantage of a larger computational burden in computing a

navigation solution. The gyro data must now be processed to determine the orientation of

the vehicle with respect to an inertial frame. Also, since the instruments are rotating with

the vehicle, there will be errors introduced due to angular motion. These angular motion

errors are only present in strapdown systems.

1.2.2 Accelerometer Structure

There are many different ways to mechanize an accelerometer [2]. Popular

designs include unbalanced cylinders, integrating unbalanced gyros, and pendulous

accelerometers. One of the most common types is the pendulous accelerometer. This

type of accelerometer is similar to a pendulum, consisting of a proofmass that is

constrained to rotate about one axis. Accelerations experienced by the instrument are



determined by measuring the current necessary to produce a restoring torque when the

pendulum deflects. The Bell XI-79 pendulous accelerometer will be used as the primary

example of a strapdown system accelerometer throughout this thesis. However, all

strapdown accelerometers, regardless of their design, will experience errors due to

angular motion of the vehicle.

The structure of a pendulous accelerometer is shown in Figure 1.1. The ring-

shaped proofmass is constrained to rotate only about the hinge (or output) axis. An

acceleration along the input axis causes an angular deflection of the proofmass about the

hinge axis. An electrical pickoff is used to sense the angular deflection. A current

proportional to the angular deflection is produced and passed through a coil that is

Pendulum

Input Axis

Springs

Pendulous Axis

Coil

Output Axis

Figure 1.1: Pendulous Accelerometer Structure

wrapped around the proofmass. The coil is situated in a magnetic field, so a current

passed through the coil produces a restoring force that drives the proofmass back to its

null (undeflected) position. The acceleration is determined by measuring the current

necessary to restore the proofmass to its null position.



Accelerometers are designed such that the relationship between the input

acceleration and the output torquing current is as linear as possible [3]. This linear

relationship means that the input acceleration may be measured accurately by simply

measuring the current required to restore the proofmass to its null position. Many

physical aspects of the accelerometer contribute to this linear relationship. For example,

the pendulum is made of an alloy with a high modulus of elasticity. This prevents

unwanted deflections that would change the input-output characteristics of the

accelerometer.

The two thin cantilever springs used to attach the pendulum to the hinge axis also

help maintain a linear input-output relation. By using two supports, the pendulum is

prevented from rotating about the input or pendulous axes. These two springs may also

be used to carry the torquing current to the coil wrapped around the outside of the

pendulum [3]. The springs may be insulated from the pendulum structure with the epoxy

used to attach them. By passing the current to the coil through the springs, the problems

associated with flex leads are eliminated. These flex lead problems include errors due to

flex lead deflections and fatigue of the leads over the lifetime of the accelerometer.

Another feature that keeps the accelerometer characteristics linear is a constant

magnetic field through the center of the coil. Figure 1.2 shows how the pendulum

structure is situated within the magnets, flux plates, and capacitive bridge pickoff. The

magnetic field is generated using two axially-symmetric magnets separated by a pair of

flux plates [3]. The flux plates are placed in the center of the coil carrying the torquing

current. The flux plates maintain a constant, radial, high-density magnetic field through

the coil by concentrating and redirecting the magnetic flux lines from the two magnets.

The deflection of the pendulum is measured through a capacitive bridge pickoff

[3]. In its undeflected or null position, the pendulum lies centered between two plates of

a capacitor. This effectively creates two equal capacitors. When the pendulum is

deflected, the balance between the capacitors is disrupted and a phase shift results in the



Input Axis

Flux

Capacitive Plates
Pickoffs

Pendulous , .
Axis

Proofmass

Springs

Pendulum

Figure 1.2: Simplified Pendulous Accelerometer Cross Section

a.c. signal passing through the bridge circuit. The shifted signal is then demodulated and

used in the servo loop to generate the restoring current. The pendulum is forced back to

its null position and the restoring current is measured.

1.2.3 Errors in Accelerometers

Although accelerometers are designed for linearity, there are many sources of

error that prevent a simple linear relationship between the input acceleration and the

restoring current. Some error sources appear in both strapdown systems and gimbaled

systems. These errors include biases, scale factors, g-squared terms, misalignments, and

higher order terms. Other error sources are dynamic in nature and only appear in

strapdown systems. These dynamic error sources include anisonertia terms, output axis

coupling terms, and size effects. Still other error sources are introduced when testing or



calibrating the accelerometers. The two error sources due to testing are lever arms to the

center of the table and non-incident gimbal axes.

1.2.3.1 Static Errors

Although the accelerometers are built very carefully, they are not perfect. Even if

there are no forces acting on the body, the accelerometers may still show an output, called

a bias. This output exists because the proofmass may actually have a null position that is

offset from the assumed null position. If the bias is known it may be subtracted from the

output to arrive at the true acceleration.

Another error source is the scale factor of the accelerometer. The scale factor is

the proportionality constant between the measured acceleration and the actual acceleration.

This proportionality constant may not be known precisely. Also, the scale factor for a

positive acceleration may be different than the scale factor for a negative acceleration. The

difference between the two scale factors arises from the torque rebalance loop in the

accelerometer. Therefore, there are generally two separate scale factors for a given

accelerometer.

G-squared terms are one more source of error for both strapdown and gimbaled

systems. "G-squared" means the terms depend on either the square of a single

acceleration, or the product of two orthogonal accelerations. The squared acceleration

terms are a result of nonlinearities in the accelerometer. These errors are usually observed

when the acceleration along the input axis is very large. The large input accelerations will

cause the pendulum to deflect significantly, producing nonlinear characteristics. G-cubed

terms, which depend on the cube of the input acceleration, are also a result of

nonlinearities in the accelerometer.

The g-squared error terms are also sensitive to two orthogonal accelerations. For

example, suppose the body is being accelerated along the pendulous axis of one of the

accelerometers. Since the acceleration is orthogonal to the input axis, there will be no

output for that particular accelerometer. However, the pendulum itself will be slightly



stretched and the center of mass of the pendulum will move along the pendulous axis.

The relationship between an acceleration along the input axis and the restoring current will

now be different for this accelerometer, because the moment arm of the pendulum has

changed.

Another contributing factor to the g-squared error is that the pendulum never

actually makes it back to the null position. In order to measure an acceleration at all, the

pendulum must deflect slightly. Ideally, the pendulum is restored to its null position.

This would be true if there were an infinite loop gain. Since the gain is finite, there will

always be a null offset that is a function of the input acceleration. This creates a moment

arm upon which an acceleration along the pendulous axis may act, causing an error in the

measurement. This error mechanism is shown in Figure 1.3. There are other g-squared

terms as well. Some of these can be described from a mechanical standpoint, while

others are measured experimentally.

Input Axis

Pendulous Axis

Figure 1.3: Null Offset Error Mechanism

Misalignments between the accelerometer axes and the body axes will also result

in errors in both strapdown and gimbaled systems. If the three accelerometers are

perfectly aligned with the body axes, then the accelerometer outputs will represent the

accelerations along each of the body axes. However, if the accelerometer input axes are



misaligned, then the accelerometer outputs will be combinations of the accelerations along

the body axes. If these small misalignment angles are known, then the accelerations

along the body axes may be computed from the accelerometer outputs.

1.2.3.2 Angular Motion Errors

Some of the error sources in accelerometers only appear in strapdown

configurations. These errors are a result of body angular rates and angular accelerations.

In strapdown systems, the accelerometers experience the same angular motion as the

body because they are rigidly attached to the body. This angular motion produces errors

in the indicated accelerations. The error terms due to this angular motion are anisonertia

terms, output axis coupling terms, and size effect terms.

When the INS unit is spun about some axis with a constant angular velocity, there

will be some indicated linear acceleration. This indicated acceleration will be due, in part,

to the centripetal acceleration of the center of mass, which will typically have some

component along the input axis of one or more of the accelerometers. For certain spin

axes, the resultant acceleration output will be minimized. The point on the pendulous axis

through which these minimum acceleration axes pass is called the center of spin. The

distance from this point to the hinge depends on the difference between two of the

moments of inertia of the pendulum. Hence, these error terms are called anisonertia

terms.

Similarly, when the INS unit is subjected to an angular acceleration, there will be

an output that depends on the location and the orientation of the axis of angular

acceleration. Once again, there is a point along the pendulous axis through which any

axis of angular acceleration will result in a minimum output acceleration. This point is

defined as the center of angular acceleration. When the system experiences an angular

acceleration about this point, the torque developed at the hinge enables the pendulum to

keep up with the angular acceleration of the encasement. Hence, no error torques are

developed and there will be no indicated acceleration. Since this error depends on the



acceleration about the output axis, the corresponding error terms are called output axis

coupling terms.

Size effects are another error source for strapdown systems. These terms refer to

the distances between the three accelerometers, their orientations to one another, and the

small internal distances within the accelerometers. In a gimbaled system, these distances

are unimportant because the rotation of the body does not affect the output of the

accelerometers. However, in a strapdown system the accelerometers are subjected to

angular velocities and angular accelerations. These angular motions will translate into

error torques and indicated accelerations that are functions of the size effect terms.

Therefore, the distances between the accelerometers and both the spin and angular

acceleration axes are significant error sources.

1.2.3.3 Testing Errors

A group of accelerometers may be calibrated by placing them on a three-axis test

table and rotating the body about all three axes. Calibrating the accelerometers will

accurately determine all the error terms. However, still more error terms are introduced

by using a test table. The test table provides two major error sources: lever arms to the

center of the table and non-incident gimbal axes.

The lever arm terms dictate how the table's angular rates and accelerations affect

the output of the accelerometers. The errors due to the table's angular motion will be

greater for accelerometers that are farther away from the center of the table. These

distances must be determined accurately in order to calibrate the other error terms of the

accelerometer.

Ideally, all three axes of the test table intersect at one point. This provides a center

of rotation that is the same for all of the table axes. However, the gimbal axes do not

intersect at one point. The nominal calibration test consists of mounting the INS on the

inner gimbal such that the reference point in the INS is at the center of the test table. If

the axes all intersected at one point, then the INS reference point would experience no



motion, and the position outputs of the navigator could be compared to a nominal zero

position. However, if all the gimbals are being rotated, every point in the inner gimbal

frame will experience some type of motion due to the displacements between the gimbal

axes. Therefore, the navigator position must be compared to the estimated displacement

of the navigation reference point.

1.2.4 Error Terms Calibrated in This Thesis

This thesis calibrates the dynamic error terms of a group of strapdown

accelerometers. It is assumed that the accelerometer's static error terms are already

calibrated. The static terms include the biases, scale factors, and the g-squared terms.

These are the terms present in both gimbaled and strapdown systems. Static error

sources may be calibrated without using a dynamic test table. If the static error terms are

already calibrated, then the navigator can compensate for these errors. The only

remaining errors will be depend solely on angular motion.

In addition to calibrating the dynamic error terms, the thesis must also address the

errors introduced during testing. These errors include the lever arms to the axes of

rotation as well as the small displacements between the gimbal axes. The displacements

between the gimbal axes must be measured accurately because the accelerometers will be

used on a body that experiences very high angular rates and accelerations. Therefore, the

test table will be spun at high rates with correspondingly high angular accelerations.

These large angular rates and accelerations will produce noticeable errors even if the

displacements between the gimbal axes are very small.

1.3 Previous Work

Calibration of inertial navigation systems has been a heavily studied area. Error

models for both gyros and accelerometers are developed in many references [1,4,5]. The

application of optimal estimation to the calibration problem, using Kalman filtering and

optimal smoothing techniques, has been investigated [6,7,8]. Both in-flight calibration



and laboratory testing have been addressed [9]. However, most of these calibration

studies focus on the effects of accelerometer biases and scale factors, while either

ignoring the angular motion errors or lumping them into a general error term. It is true

that the scale factors and biases are the dominant error terms in most applications.

However, the errors induced by angular motion become significant when the vehicle

experiences very large angular accelerations and velocities.

Some recent work has been done on calibrating the angular motion errors [10,11].

Test table trajectories were developed in order to observe some or all of these error terms.

However, these trajectories were either not optimal or only designed to calibrate one of

the error terms.

The goal of this thesis was to develop a trajectory that allowed calibration of all

the error terms introduced due to angular motion. The trajectories developed in the thesis

were designed to reduce the uncertainties in the error terms compared to a previous

trajectory. The effects of changing various trajectory characteristics were also

investigated. The tradeoff between observability and sensitivity of the error terms was

performed by designing trajectories that emphasized either the observabilities or the

sensitivities and analyzing the effects on the uncertainties of the error terms. The

trajectories that produced the lowest uncertainties were identified. By applying the testing

techniques described in these trajectories, the effects of angular motion on an INS may be

compensated out with a greater degree of accuracy. The end result will be more accurate

navigation in the presence of large angular rates and accelerations.
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Chapter 2

Analytic Development

2.1 Accelerometer Error Model

An accurate error model must be derived in order to calibrate the set of

accelerometers. This error model will be used in the simulation to relate the accelerometer

error coefficients to the errors in navigation. Once the accelerometer error coefficients are

accurately estimated, the effects of angular motion on the accelerometer outputs can be

compensated out, providing the true linear accelerations experienced by the vehicle.

2.1.1 Assumptions on Previously Calibrated Quantities

Static calibration tests will already have been completed before the dynamic testing

of the accelerometers is performed. Optimum test table positions for calibration of the

static error terms are described in [12]. These tests calibrate the accelerometer error terms

that are independent of angular motion. These error terms include the positive and

negative scale factors, g-sensitive terms, g2-sensitive terms, and the accelerometer biases.

These are the error terms that produce errors in the indicated accelerations due to linear

accelerations of the vehicle. The uncertainties of these initially calibrated values are also

given in [12].

Since the error terms associated with linear accelerations are assumed to be

calibrated, the only errors in the navigator will be due to the accelerations developed as a

result of angular motion.



2.1.2 Angular Effects on Accelerometer Output

The dynamic error terms relate angular motion of the vehicle to errors in the

indicated accelerations. In order to determine the errors in the navigation solution, an

equation that relates angular velocity and angular acceleration to errors in indicated

acceleration must be developed. The following development of the error acceleration

equations follows the derivation contained in [3].

2.1.2.1 Angular Velocity Sensitivity

Figure 2.1: Angular Velocity Acting on Accelerometer

In this section we determine the effects of angular spin on the output of the

accelerometers. Referring to Figure 2.1 we define a point P through which the spin axis

passes. The direction of the spin axis given in terms of the pendulum coordinate frame is

wo= i + 0,j+owk, where i, j, and k are the unit vectors in the X, Y and Z

directions, respectively. As shown in Figure 2.1, the X, Y, and Z axes represent the

accelerometer's pendulous, input, and output axes, respectively.



We need an equation that relates angular velocity to the error torque developed

about the accelerometer's output axis. This equation can be derived by summing the

torques developed, due to angular rotation, of each mass element of the pendulum. Some

preliminary definitions are needed:

r, = xi+ Yj+ Zk

r,= (X, -a)i +(Y, - b)j+ (Z i - c)k

where

ri = position vector from the accelerometer frame origin to the ith mass element

r = position vector from point P to the ith mass element

w = angular velocity vector in the accelerometer frame

The force on the ith mass element due to the centripetal acceleration produced by

the angular velocity vector w is:

f i = mi ) x (( X r')

where mi is the mass of the ith element. This can also be written as:

f, = m,[g(, r") - r (o -o))]

The torque about the origin of the accelerometer frame is then:

", = r xf, = m,[r, x co(qo-r)-r, x r"'(, t)] (2.1)

where we note that:

CO -O) = (02 = 2 2 2

_ lr' = (Xi -a)ox +( Yi - b)(, +(Z, - c)(o z

ri x =o x, Y, Z=(Y(Oz -zo,)i - (Xwo - Z,&o)j+ (Xoyo - )k

O (V 1Z



i j k +[Y, (Zi -c)- Z,(Y -b)]i

r, r,'= X, Z, = -[x,(Z -c)- Z,(X, -a)]j
X,-a Y,-b Z,-c +[X(Y -b)-Y (X, - a)]k

The error in indicated acceleration will be due to the torque developed about the

output axis of the accelerometer as a result of the angular velocity. Therefore, we are

only interested in the torque about the Z-axis. Substituting the above relations into

equation (2.1), we have:
Tz = m, {[(X, - a)o, +(Y, -b)w, +(Z, -c)(WO](XOW - Yw x)

- W 2(aY - bX)} (2.2)

We sum over all the mass elements to determine the total resultant torque. When

summing over all the mass elements we note that:

I mi (X + )= lyy

I m, (Yi2 + Z2) IXX

I, = m,X,Yr, , I.z = mYZi , I, = Y m,Z,X,

Mlo = mX

where

Ixx, Iyy = pendulum moments of inertia about the X and Y axes

Iij = product of inertia with respect to the i and j axes

M = total mass of the pendulum

10 = distance along the X axis between the hinge and the center of mass of the

pendulum

Performing the indicated substitutions, we arrive at the general formula for the torque

about the Z-axis:
Tz = (Iy, - Ix -aMl o + bm,Y,)(ox, +(Ixz - cMlo) (yo.

+(c mlY, - Ivz)( OxO z + lxy( 2 - 02)+ a(xmiY, (2.3)

-b Mlo + bo2 - ao2 m, IY,



The pendulum is designed to be symmetrical about the origin of the accelerometer

frame along both the input and output axes. Therefore, the products of inertia and Im, Y,

are very small. Eliminating these terms we arrive at:

"r = (I, - xx - aMlo)wxo, - cMlowoyo - bMlow + bMloo 2

or

Tz = (Iy, - Ix - aMlo0 )xw - cMloawoz + bMlo(w2 + 0)

Writing this equation in terms of the accelerometer's pendulous, input, and output axes

we have:

,, = (I,i - Ipp - aMlo)tcoip - cMlowoo,, +bMlo (w + , ) (2.4)

This is the expression for the error torque developed about the pendulum's output axis

due to the angular velocity vector (o. This equation is valid for all three accelerometers,

as long as the orientation of the pendulous, input, and output axes are the same as those

defined in Figure 2.1.

If the spin axis is defined to go through the pendulous axis (b=O, c=O), then the

only term left in equation (2.4) will depend on the difference of two moments of inertia

and the angular velocities about the input and pendulous axes. This error term is then

referred to as an anisonertia term. In order to minimize the error torque, the value for a

can be chosen so that,
Ii -I

a = I = X,
Mo

This point is called the center of spin, because no error torques are developed if the spin

axis passes through this point on the pendulous axis.

2.1.2.2 Angular Acceleration Sensitivity

The pendulum will also experience a torque about the output axis when an angular

acceleration is applied. This angular acceleration can be represented in the accelerometer

frame as:
d

--dto = = i + oyj + ozk
dt -



The force on the ith particle due to the angular acceleration will act in the tangential

direction to the angular acceleration and is given by:

f = m,, xr

Therefore, the torque about the origin is:

", = r, x f, = mir, x (a x r')

or

T, = m,[a(ri -r') - r'(a -r,)] (2.5)

where

r, .r, = X,(X,-a)+ Y,(Y,-b)+ Z,(Z, -c)

a -r i = axX, + aY, + a,Z ,

Once again, we are only interested in the torque about the Z-axis. Therefore, we

substitute the above expressions into equation (2.5) and get:

Z, = m,[(X2 -aX, + Y,2 -bY, + Z -cZ)Oaz -(axXi + avY, + cxzZ,)(Zi -c)] (2.6)

Summing over all the mass elements and using the previous definitions for the moments

and products of inertia we obtain:

7 = (Iz - aMlo - bm, Y, )oa - (Ixz - cMlo0 )x - ( vz - cm, Y, ) a,

Eliminating the products of inertia and the Xm, Y, terms and expressing the result in terms

of the accelerometer's pendulous, input, and output axes we have:

T,, = (I,,,, - aMlo )a, + cMlo , (2.7)

This is the expression for the error torque about the pendulum's output axis that results

from the angular acceleration vector a.

If the spin axis is defined to pass through the pendulous axis (b=O, c=O) in this

case, then the error torque will depend only on the output axis moment of inertia and the

angular acceleration about the output axis. This error term is referred to as an output axis

coupling term. Once again, an appropriate value for a can be chosen to minimize the error

torque. Specifically, for the case of angular acceleration, the minimizing value for a is
I

a = . - Xa
Mlo0



This point is referred to as the center of angular acceleration or the effective center of

mass, because no error torques are experienced if the angular acceleration axis passes

through this point on the pendulous axis.

2.1.2.3 Total Sensitivity to Angular Motion in Accelerometer Frame

Using the definitions for the centers of spin and angular acceleration, the total

error torque developed due to angular motion in the accelerometer frame can be written as:
,.tort, = Mlo[(X, - a)Wiop - ci ,, + b( o + 0, ) + (X - a),, + ca]

Since the error in indicated acceleration due to the error torque is given by:

"o,total
aerror - " otal

P

where P is the pendulosity of the pendulum and is defined as M1o, then the acceleration

error is:

aerr,,r =(X - a)co, O)-COio)O +b(~ ) + (X - a)a,, + ca, (2.8)

This acceleration error was determined assuming that the pendulum frame was

identical to the frame in which the spin axis was defined. However, the angular velocity

will be known in the accelerometer case frame rather than the pendulum frame. Since the

pendulum may not be aligned with the accelerometer case's pendulous axis, additional

errors will be generated. These errors are due to the resultant torque components along

the pendulum's output axis. The orientation of the pendulum's axes (p', i', o') to the

accelerometer case axes (p, i, o) is shown in Figure 2.2, where Pp, Bi, and Po are the

small misalignment angles about the case pendulous, input, and output axes, respectively.

The transformation of a vector from case coordinates (p, i, o) into pendulum coordinates

(p', i', o') can be done using the small angle rotation matrix CP [13]:

VP = C v

= [I - X(f' )]v'

= v( - Pc X Vc



where X(P) is the cross product matrix of the misalignment angles. The additional error

in indicated acceleration is a function of the resultant torque component about the

pendulum's output axis [3,14]:

Saerror = (AXa - 1,cp)a, + [f,,c - , (Xa - a)l]a, - ,ba,,

+( ,c - f,, X,,,)(0 + [p,,c + f,,(X, - a)]0 ,2 - floaw,

+flobo ,o, + [,,c + p(X,, - a)k],wp(, - (f,b - fl,,,)oo

0o

Misalignment of Pendulum Axes About Case Axes

Combining the errors in (2.8) and (2.9), an equation for the total acceleration

error that takes angular velocity, angular acceleration, and misalignments into account can

be written:

8aloua = (c + iXa - ,Oc)a,, + [/,,c - ,,(Xa - a)]a, + (X, - a - fb)a,,

+(b +,,c - ,,o,,) + [P,,c + P,,(X,O - a)] , + (b - #,,a) ( (2.10)

+(X,O - a + fob)o,,po, + [0,,c + fl,,(X,, - a)] o,, ,, - (c + P,,b - , Xo,) OiO,,

(2.9)

o p

Figure 2.2:



2.1.3 Reduction of Parameters into Angular Dependent Coefficients

The dynamic error terms are represented in this thesis by nine coefficients for each

of the three accelerometers. The nine error coefficients are combinations of error

parameters arising from lever arm effects, size effects, anisonertia effects and output axis

coupling effects. The general equation for acceleration error in a given accelerometer can

be written as:
ai = Cil ax + C 2, y + Ci3a z

+c )4 2+ 2 c, 16  2 (2.11)

+Ci7 )x + Ci8 x z + C 9 0y o z

where

Sai = acceleration error in the ith (X, Y, or Z) accelerometer

cij = jth error coefficient for the ith (X, Y, or Z) accelerometer

(x, 0y, xz = angular acceleration along the accelerometer case X, Y, and Z axes

Ox, Wy, O z = angular velocity along the accelerometer case X, Y, and Z axes

The error coefficients of (2.11) are obtained from (2.10) and the orientation of the

accelerometers to the accelerometer case.

In order to write the acceleration error equations for all three accelerometers, the

orientation of the accelerometers to the case must be defined. The orientation shown in

Figure 2.3 [14] was used for the simulation, where p, i, and o denote the pendulous,

input and output axes for each of the accelerometers. This orientation was based on the

assumption that the maximum angular velocities and angular accelerations will be along

the X-axis of the case. In order to minimize the effects of the output axis coupling terms,

none of the output axes of the accelerometers were placed along the X-axis [15]. Table

2.1 summarizes the relations between the case axes and the axes for the X, Y, and Z

accelerometers. The coefficients for each accelerometer, as represented in (2.11) were

determined using equation (2.10) and Table 2.1. Table 2.2 lists the combinations of

accelerometer parameters that make up the error coefficients. Note that the lever arm

distances a, b, and c were replaced with Rij terms, where the "i" subscript refers to the
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Figure 2.3: Orientation of Individual Accelerometer Axes to Case Axes

accelerometer (X, Y, Z) and the "j" subscript refers to the appropriate case axis (X, Y,

Z).

The combination of accelerometer parameters into error coefficients was done for

two reasons. First, many of the error terms are not separable. For example, referring to

equation (2.10), an angular acceleration about the case's output axis (co) would produce

an indicated acceleration because of an output axis coupling term (Xa-a) and a

Table 2.1: Accelerometer Axes to Accelerometer Case Axes Relations

Accelerometer Individual
Axes Accelerometers

X Y Z
Pendulous +Yc +Xc +Xc

Input +Xc +Yc +__
Output -Zc +Zc -Yc



Table 2.2a: X-Accelerometer Error Coefficients

cl _ x 3xzRxz-oxyXax+ 3xyRxy

C12 Y -Rxz+pxxXax+ 3 xyRxz

C13 az -Xax+Rxy-pxzRxx

C14 1 x2  -PxyRxz-pxzXox+xzRxy

C15 YO2 Rxx-IxyRxz+PxzXcox

c16 (z2 Rxx+pxzRxy

c17 Oxoy Xox-Rxy-xzRxx

C18s OxOz -Rxz+oxyRxx-pxxXox

c19 Y0x Oz -xzRxz-xyXox+xyRxy

Table 2.2b: Y-Accelerometer Error Coefficients

C21 ax Ryz+PyyXay-iyxRyz

c22 V X PYzRyz-pyxXay+pyxRyx

c23 _ z XOay-Ryx-iyzRyy

c24 )x2  Ryy+yxRyz-yzXy

c25 _ Y2 _ yxRyz+yzXoy-yzRy x

c26 Oz2  Ryy-pyzRyx

C27 (OXCOY Xoy-Ryx+yzRyy

C28 oxOz _yzRyz+yxXoy-yxRyx

c29 __y_-Oz -Ryz- vxRyy+yyXoy

misalignment and lever arm term (-Pob). The errors due to these two terms cannot be

determined individually, but rather as a combination of their effects.



Table 2.2c: Z-Accelerometer Error Coefficients

c31 0x_ -Rzy+PzzXaz+pzxRzy

c32  , -Xaz+Rzx- 3 zyRzz

c33 0z PzyRzy-I3zxXaz+p3zxRzx

c34 Cx 2  Rzz-pzxRzy+pzyXoz

c35 Y2 Rzz+pzyRzx

c36 0z 2  -PzxRzy-]zyX oz+pzyRzx

c37 COxWyY -PzyRzy+pzxXoz- pzxRzx

c38 0xOz Xoz-Rzx-zyRzz

c39 0ycoz -Rzy+PzxRzz-pzzXoz

The second reason the accelerometer parameters were combined into error

coefficients is that by grouping the parameters into nine coefficients, the estimation

problem becomes a linear filtering problem. The coefficients are actually sensitivities of

the acceleration error to the angular accelerations, angular velocities squared, and the

products of the angular velocities in the accelerometer case frame. The final result of

processing the error acceleration equations using the coefficients will be accurate

estimates of the sensitivities of the acceleration error to angular motion. These

sensitivities may then be used to compensate out acceleration errors due to vehicular

angular motion.

2.2 Simulation Model

This section describes the tools used to perform the simulation. The testing

method using a three-gimbal test table is outlined. The equations are presented for the

covariance analysis using a Kalman filter. The unique characteristics of the Kalman filter

are described in detail.



2.2.1 Test Table

The test table used in the simulation is a three-axis motion simulator. The three

orthogonal axes allow control over the dynamic motion of the INS system, which is

rigidly mounted inside the innermost gimbal of the table. Figure 2.4 is a picture of a

typical three-axis gimbal test table.

Mounting
Plate

Pitch

Figure 2.4: Three-Axis Gimbal Test Table

Figure 2.4 shows that the outer, middle, and inner gimbals control deflections about the

yaw, pitch, and roll axes, respectively. For the configuration shown, the yaw and roll

angles are zero and the pitch angle is 90 degrees.

The control inputs to the test table were individual gimbal angular accelerations.

By controlling the gimbal angular accelerations, a wide range of angular motions for the

system inside the test table were developed. The type and limitations of the specific table

assumed for this thesis are detailed in Section 3.1.2.



2.2.2 Navigator Position

A static calibration of the INS will already have been performed. This calibration

allows the INS to navigate in the absence of angular motion. Since the test table

subjected the INS to angular motions, and no linear motions, the nominal navigator

position output was zero. This assumed that the reference point in the INS was at the

intersection of all three table gimbal axes. Also, it was assumed that the navigator

compensated for the gravity vector effects. However, the angular motion of the INS

would produce nonzero outputs in the accelerometers. These outputs would then be

integrated in the navigator, yielding a nonzero position. Therefore, the outputs of the

navigator were assumed to be the errors due solely to angular motion.

The navigation reference point must lie at the intersection of all three gimbal axes

in order for the navigator to have a nominal position output of zero for all possible gimbal

motion. However, as mentioned in Section 1.2.3, the gimbal axes of the test table do not

intersect at a point. The table manufacturer specifies a small sphere, inside of which the

table axes intersect. The gimbal axis displacements will result in motion of the navigation

reference point, regardless of where it is placed inside the inner gimbal. To compensate

for the effects of the gimbal axis displacements, the position vector from the origin of the

local level frame to the origin of the inner gimbal frame must be estimated. The equations

that give this position vector as a function of the displacements and the gimbal angles are

derived below [16].

2.2.2.1 Gimbal Axis Displacements

The origin of the local level frame and the outer gimbal frame may be defined to

be the same point, 00. This point was defined to be the intersection of the outer gimbal

axis and the plane of the middle gimbal frame, as shown in Figure 2.5. The outer gimbal

coordinate axis og 1 was defined to be perpendicular to the middle gimbal spin axis, and

pointing toward the middle gimbal spin axis in the plane of the middle gimbal frame.



Then, the position vector from the origin of the outer gimbal frame to the origin of the

middle gimbal frame was constant in outer gimbal coordinates and was given by:

r,, = (PoMI, 0, 0) (2.12)

where POMI is the displacement between the outer and middle gimbal axes. The

subscript "OM" denotes the position vector from the outer gimbal origin to the middle

gimbal origin, and the superscript "og" denotes the vector is expressed in outer gimbal

frame coordinates.

og3, outer gimbal spin axis

mg3

em

middle gimbal
spin axis

ogl

Figure 2.5: Middle Gimbal Origin in Outer Gimbal Frame

Similarly, the origin of the inner gimbal frame was displaced from the origin of

the middle gimbal frame, as shown in Figure 2.6. The position vector from the middle

gimbal origin to the inner gimbal origin was constant in middle gimbal coordinates and

was given by:

rM, = (0, PMI2 PM13) (2.13)

where PMI2 and PMI3 are the displacements of the inner gimbal origin from the middle



mg3

mgl

middle gimbal
spin axis

Figure 2.6: Inner Gimbal Origin in Middle Gimbal Frame

gimbal origin along the middle gimbal mg2 and mg3 axes, respectively. As before, the

subscript "MI" means the vector is from the middle gimbal origin to the inner gimbal

origin, and the superscript "mg" means the vector is expressed in middle gimbal frame

coordinates.

The position vector from the origin of the local level frame to the origin of the

inner gimbal frame was then expressed in the middle gimbal frame as:

mg mg + rmg

Cmg"r" + rm

og OM MI

cos ,O 0 -

= 0 1

sin Om 0 c

[ POMI COS em

= PM12

;in em Pomi 1 0
0 O + PM12

oS [m 0 PM13

MI3

This vector was expressed in inner gimbal coordinates by multiplying by the middle to

inner gimbal frame transformation matrix, C'~:

(2.14)



roi = rmR
OI mg 01

1 0 0 POMI CosO 1
=0 cos 6, sin e, PMI2

O -sine, cos Oi JLPoM sin Om + PM!3  (2.15)

POMI COS Om
= PMI2 COs , +(poM sin 0m + PMi3)sin e,

L-PM2 Sin 0, + (PoM, sin m, + p,,3) cos 0,

Therefore, the vector r, was a function of the gimbal axis displacements and the gimbal

angles and was written as:

r, = A p (2.16)

where
cos Om 0 0

Ao"' = sin Om sin 0, cos 0, sin 0,

[sinem cose, -sin e, cos e,

POMI

_PM13LPMI3

The position of the inner gimbal origin as a function of time was estimated using

equation (2.16), where p was added to the original state vector. This position was then

used to more accurately model the measurements incorporated in the filter. The state

vector and measurements are described in Section 2.2.3.

2.3 Measurements and the Kalman Filter

The primary tool for analysis of the uncertainties of the accelerometer error

coefficients was linear covariance analysis using a continuous Kalman filter incorporating

discrete time measurements. The instruments in the INS take measurements that provide

information about the position and velocity of the system. The Kalman filter weighs

these measurements, according to their accuracy, and uses them to estimate the states in



an optimal way [17,18]. If the measurements contain enough information about the

states, then the state uncertainties may be systematically decreased to the level of accuracy

of the measurements. However, the errors in some of the states due to the dynamics of

the system may outweigh the effects of the measurements. These dynamic effects may

cause the state uncertainties to remain unchanged or even increase with time.

For the case of calibrating the accelerometers, the position and velocity states were

affected by the dynamics of the system, but the error coefficients were not. Therefore, if

no measurements were taken, the uncertainties in the position and velocity states would

increase while the uncertainties of the error coefficients would remain unchanged. The

error coefficients were unaffected by the dynamics of the system because they were

defined as constants, based on parameters of the accelerometers.

2.3.1 Covariance Analysis

A covariance matrix is a statistical representation of the errors in the state estimates

and the correlations between them. The terms along the diagonal of the covariance matrix

represent the variances of the corresponding states, while the off diagonal terms represent

the cross correlations between states. The cross correlations are symmetric about the

main diagonal. The covariance matrix is defined as

P = E[(x- i)(x- ])T]

where x is the true state, £ is the state estimate, and E[] is the expected value function.

By taking appropriate measurements, the state uncertainties will decrease. It is the

goal of this thesis to determine what trajectory of the gimbals will result in the smallest

state uncertainties at the end of the simulation.

2.3.2 States and the Dynamics Equation

The states estimated in the baseline simulation include the position and velocity

errors in the local level frame, and the nine error coefficients for each accelerometer:



r

V

x= ci (2.17)

c 2

C3

where

x = system state vector (33x1)

r = position error vector in the local level frame (3x1)

v = velocity error vector in the local level frame (3x1)

cl = X-accelerometer error coefficient vector (9x 1)

c2 = Y-accelerometer error coefficient vector (9x 1)

c3 = Z-accelerometer error coefficient vector (9x 1)

The accelerometer error coefficients are defined in terms of the accelerometer parameters

in Table 2.2.

When the gimbal axis displacements were included for determining the nominal

navigator position, the state vector was augmented with p., the vector of axis

displacements defined in equation (2.16). This added three more states to the end of x.

The system dynamic equation relates the change in the states to the states

themselves and is given by:

x(t) = F(u(t);t)x(t) + w(t) (2.18)

where

F(u(t);t) = dynamics matrix

u(t) = control vector consisting of three gimbal angle accelerations

w(t) = modeling noise vector

As indicated, the dynamics matrix depends on time and the control inputs. Since the

accelerometer error coefficients were constants, a large portion of F consisted of zeros:

'. ~..--.-IUI



03x3 i3x3 0 3x27

F(u(t);t)= 03,3 03x3 CM(u(t);t)G(u(t);t)3x 27  (2.19)

027x3 0 27x3 0 27x27

where

I3x3 = identity matrix (3x3)

C (u(t);t) = transformation matrix from the body frame (inner gimbal frame) to

the local level frame

G(u(t);t) = matrix used to calculate error acceleration in the body frame

For the case where x was augmented with p, the dynamics matrix was appended with

three more columns and three more rows of zeros, because the gimbal axis displacements

were constants.

The model assumed that the INS system compensated for all errors in the

indicated accelerations except for angular motion effects. Therefore, the error acceleration

in the body frame was defined by equation (2.11). The matrix G was then specified as:

Wb (U(t);t)X9  0 1x9 O1x9

G(u(t); t) = O1x9 Wb (u(t);t)X9  01x9 (2.20)

O1x9 0Ix9 Wb T (U(t);t)lx9

and by multiplying by C' the acceleration errors were determined in the local level

frame. The vector wbT depended on the angular velocities and angular accelerations in

the body frame and was defined as:
w,(u(t);t)= [ax Oy a 0) ) 2 ( x ( x z O y0 ] )(2.21)

The angular accelerations and angular velocities in the body frame are functions of the

gimbal angles, angular velocities, and angular accelerations. These transformation

functions were written as:

ah = f (0",9 ), g; t) (2.22)

o" = A ^'  (2.23)

where



Sb, _b = body frame angular acceleration and angular velocity vectors

a', o g, 0 = gimbal angular acceleration, angular velocity, and angle vectors

A b = transformation matrix from gimbal angular velocities to body frame

angular velocities

The transformations indicated in equations (2.22) and (2.23) are derived in Appendix C.

Note that the gimbal angular accelerations were the control inputs to the test table. The

gimbal angular velocities were obtained by simply integrating the gimbal angular

accelerations. Similarly, the gimbal angles were the integrals of the gimbal angular

velocities. For this simulation, all the gimbal state vectors were ordered outer gimbal,

middle gimbal, and inner gimbal. For example, the gimbal angular acceleration vector

was defined as:

qg= aM
O

The dynamics matrix F was then computed at a given time using equations (2.19)

- (2.23). The gimbal controls, gg, had to be specified as functions of time. These

controls were then integrated to solve for cog and 0g as functions of time.

2.3.3 Modeling Noise

The modeling noise vector, w, accounts for modeling effects that are not

contained in the filter equations. For this simulation, w was assumed to be a zero mean,

Gaussian white noise process in the accelerations in the local level frame. This modeling

noise produced a random walk in velocity in the navigator. Therefore, w was written as

0[3xl 1

w(t) = w,(t)3xl (2.24)

027xl

with a covariance matrix given by



E[w(t)w() T ] = Q(t)b(t - )

0
3 x 3  

03x3 03x27 (2.25)

Q(t)= 03x3 cIww3x3 03x27

027x3 027x3 027x27

where Q(t) was the power spectral density matrix of w and 8(t-'t) is the Dirac delta

function with units of l/time. For small time steps, the discrete covariance matrix is

given by the approximation [17,18]

Qk = Q(t)At (2.26)

The matrix Qk represents the increase in state uncertainties after propagating the

covariance matrix forward in time by At. Since the process noises in acceleration

included in Q(t) were assumed to be uncorrelated, Dww was a diagonal matrix whose

elements had units of (ft/s2) 2/Hz. For the baseline simulation, the elements of w,, were

all assumed equal to 0.01 (ft/s 2)2/Hz. These values resulted in a random walk in velocity

with a standard deviation growth of 0.10 ft/s per sec.

2.3.4 Measurements and the Measurement Equation

The position outputs of the INS navigator were used as measurements in the

simulation. As mentioned previously, the ideal position outputs would be zero if the

reference point of the INS were placed at the center of the test table. The lever arms from

the center of the test table to the reference point in the INS were assumed to have been

previously calibrated in the static calibration. Therefore, even if the reference point of the

INS is offset from the center of the table, the position outputs should remain zero. The

measurement equation was:

zk = HXk + Vk (2.27)

where



Zk = measurement vector (3x 1)

H = measurement geometry matrix (3x33)

Vk = measurement noise vector (3x 1)

Since the measurements were position in the local level frame, H was simply written as:

H =[I3x3 I 03x30] (2.28)

When the gimbal axis displacements were included the H matrix had to be

extended. The nominal navigator position was corrected for the gimbal axis

displacements by subtracting out ro,, the vector from the origin of the local level frame to

the origin of the inner gimbal frame presented in equation (2.16). Before r'o could be

subtracted out, it had to be expressed in local level coordinates. When the state vector

was augmented by adding p, the H matrix became:

H=[I3x3 I03 I -C'Aro' 3 3 ] (2.29)

The gimbal axis displacement effects could have been included in the dynamics

matrix and omitted from the H matrix. This would account for the acceleration errors

produced by the small displacements, with the navigator position error still referenced to

the nominal zero position. By including the effects of the displacements in the H matrix

rather than the F matrix, the filter avoids having to integrate the effects of the acceleration

errors due to the displacements. This integration should yield a position error equivalent

to the displacement of the inner gimbal origin from the outer gimbal origin. This position

vector is the one subtracted out in the H matrix of equation (2.29). Therefore, rather

than integrating the acceleration errors due to the displacements, the equivalent error

position was subtracted out from the measurements.

2.3.4.1 Measurement Noise

The measurement noise was assumed to be a white sequence with known

covariance structure. It was also assumed that there was no cross correlation between the

measurement noise and the modeling noise[17,18]:



Rk, i=k
E[vkV,']= 0 ,  i k (2.30)

E[w(t)v] = 0, for all t and k

The diagonal elements of R were the variances of the individual position measurement

errors. The off diagonal terms of R were assumed to be zero, indicating no cross

correlation between the measurement errors. The variances of the measurement errors

were assumed to be the same, and therefore, R was written as:

o'2 0 0

R= 0 3-2 0 (2.31)

0 0 O2

The subscript was dropped on R, because the measurement errors were considered to be

independent of time. For this simulation, the standard deviations in the position

measurement errors were assumed to be 0.01 ft.

2.3.5 Filter Propagation and Update Equations

The covariance matrix tends to grow over time when no measurements are taken.

The propagation of the covariance matrix P for the continuous filter case is described by

the matrix Ricatti equation [17,18]:

P = FP + PF' + Q (2.32)

This equation can be used to determine the changes in the covariance matrix between

measurement times.

When a measurement is taken, the Kalman filter incorporates it into the state

estimation process in a way that minimizes the variances. The error covariance update

equation for a discrete measurement is given as [17,18]:

P+ = [I - KHk ]P (2.33)

where the "+" indicates immediately after the measurement and the "-" indicates just

before the measurement. The matrix Kk is called the Kalman gain matrix and represents



the optimal weighting of the measurement information to obtain the smallest variances.

The Kalman gain matrix is given as [17,18]:

Kk = P-HT[HkP-H +Rk ]- (2.34)

Equations (2.33) and (2.34) show how the Kalman filter weighs the measurements based

on the relative accuracy of the measurements and the previous state estimates. If the

measurements are poor (Rk large) then K will be comparatively small and the

measurements will not significantly alter the previous state estimates. On the other hand,

if the measurements are very accurate (Rk small) then K will be large, weighing the

measurements more heavily.

2.3.5.1 Square Root Filter Implementation

The measurement incorporation equation (2.33) contains a matrix subtraction.

For an ill-conditioned calculation, this can result in a nonpositive covariance matrix. For

the simulation in this thesis, the errors were expected to be numerically very small. The

standard deviation in the measurements was 0.01 ft, which resulted in a variance of

0.0001 ft2 . The numerically small measurement uncertainties combined with the initially

coarse state estimates produced filter equations that were ill conditioned. In ill

conditioned problems, the roundoff errors in the computer may cause the filter to produce

incorrect results. As expected, a nonpositive covariance matrix was produced when the

filter was run in this simulation using the standard Kalman filter equations. Therefore,

another form of the Kalman filter equations was required to perform the covariance

analysis.

Square root methods of formulation were developed to eliminate the problem of a

nonpositive covariance matrix [19,20,21]. These methods use the square root of the

covariance matrix in computations, assuring that the covariance matrix remains positive

definite. In [21] Carlson introduced a square root method that maintained the square root

of P in triangular form. This resulted in computation times that were much faster than

previous square root formulations. This thesis used the measurement incorporation



algorithm of Carlson's square root method to update the covariance matrix with a

measurement. The propagation of the square root of the covariance matrix was

performed using an algorithm due to Andrews [20]. These equations are summarized

below where W represents the square root of P:

Covariance Matrix Square Root: P = WWT  (2.35)

Measurement Incorporation: f = WT h (2.36)

a = r +f T f (2.37)

W = W[I - ffT / a]l/2  (2.38)
1

Propagation: W = FW + -Q(W T ) -' (2.39)
2

Equations (2.36) through (2.38) replaced equation (2.33) while equation (2.39) replaced

equation (2.32). Note that in equations (2.36) through (2.38) the measurements are

processed one at a time. This method of processing the measurements was equivalent to

vector measurement processing, because the measurement noise matrix Rk was diagonal.

To begin the filter, the initial square root of the covariance matrix was determined using a

Cholesky square root decomposition method. The filter equations and the Cholesky

decomposition are presented in Appendix D in more detail.

2.3.5.2 Propagation of the Covariance Matrix

Propagation of the covariance matrix was done by numerically integrating

equation (2.39). A classic fourth order Runge Kutta integrator was used for the

numerical integration. The dynamics matrix F varied significantly with time, because it

depended on gimbal angular accelerations, angular rates, and angles. Therefore, very

small step sizes were used for the integration. In most cases, twenty Runge Kutta

integrations were used to propagate between every two measurements. Since the

measurements were taken every 0.05 seconds, the Runge Kutta step size was 0.0025

seconds. The simulation was also run using other Runge Kutta step sizes in order to



verify that the numerical integrator was accurate. The effect of the number of Runge

Kutta integrations per measurement on the filter is described in section 4.4.1.
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Chapter 3

Implementation

3.1 Initial Assumptions

Some initial assumptions were made for the simulation in this thesis. The system

being tested underwent no net linear accelerations on the test table, because it was

subjected to angular motion only. Also, the scale factor, bias, and misalignments were

assumed to be perfectly compensated from the static calibration tests. Therefore, the

position errors in the navigator were assumed to be completely due to the effects of

gimbal angular motion on the accelerometers. Since the INS was traversing a wide range

of orientations while being tested, the compensation of the force due to gravity was also

important. The gravity vector in the local level frame was assumed to be constant over all

the table orientations. The gimbal angles, angular velocities, and angular accelerations

were assumed known from the test table output. Therefore, the transformation between

the inner gimbal frame and the local level frame was known. This allowed the navigator

to compensate for the gravity vector in the accelerometer outputs. With the gravity force

compensated, the errors in acceleration were due solely to angular motion of the gimbals.

3.1.1 Initial Covariance

In order to start the simulation at a realistic point, it was necessary to initialize the

covariance matrix properly. Since the accelerometer error coefficients were combinations

of the accelerometer parameters, the statistics of the initial coefficient errors were

calculated from the statistics of the initial parameter errors. The assumed initial

accelerometer parameter errors are given in Table 3.1. Note that the standard deviations

for each group of parameters were assumed to be the same among all three



accelerometers. The initial position and velocity errors are also included in Table 3.1 and

were based on the initial position fix of the INS navigator.

As shown in Table 2.2, the accelerometer coefficients were combinations of

accelerometer parameters and products of the parameters. All the accelerometer parameter

errors were assumed to be independent, zero mean, Gaussian random variables with the

standard deviations given in Table 3.1. Since the parameter errors were all independent

and zero mean, the coefficient errors were also zero mean. Therefore, the initial variances

of the coefficients were determined by taking the expected value of the square of the

coefficients:

The initial coefficient variances were therefore functions of the mean square errors

in the parameters. A summary of the initial standard deviations in the accelerometer error

coefficients is provided in Table 3.2, where all the coefficient standard deviations are in

units of inches.

Table 3.1: Initial Standard Deviations

State/Accelerometer Parameter Standard Deviation (a)

Position (rii) 0.01 ft

Velocity (via) 0.01 ft/s

Lever Arm (Rii) .25 in

Misalignment (3ij) 600 arcsec

Size Effect (Xai,X(oi) .125 in

There were significant correlations among the coefficients because the same

combinations of parameters appeared in more than one coefficient. Therefore, the initial

covariance matrix was assumed to have a number of non-zero off-diagonal terms. These



covariances were determined by taking the expected value of the products of the

coefficients. Similar to the variances, the covariances were merely functions of the mean

square errors of the parameters.

Table 3.2: Initial Accelerometer Coefficient Standard Deviations (Inches)

Accelerometer X Y Z

Coefficient Accelerometer Accelerometer Accelerometer
cl 0.0011 0.250 0.250
c2 0.250 0.0011 0.280
c3 0.280 0.280 0.0011
c4 0.0011 0.250 0.250
c5 0.250 0.0011 0.250
c6 0.250 0.250 0.0011
c7 0.280 0.280 0.0011
cg 0.250 0.0011 0.280
c9 0.0011 0.250 0.250

The smaller standard deviations of .0011 inches were due to the misalignment

angles of the accelerometers. The standard deviation for the misalignment angles was

assumed to be 600 arc sec, or 2.90 mrad, as shown in Table 3.1. All the standard

deviations of 0.0011 inches in Table 3.2 were due to products of the misalignment angle

errors and either the size effect errors or the lever arm errors. This multiplication resulted

in coefficient errors that were significantly smaller than those that weren't dominated by

misalignment error products.

3.1.2 Test Table Setup

3.1.2.1 Type and Geometry of Table

The specifications of the test table state that the gimbal axes intersect within a

sphere of a specified radius. The test table assumed for this simulation was a Contraves

Model 53M-3C Three-Axis Motion Simulator. The manufacturer specification for gimbal

axis intersection was a sphere of radius 0.01 inches. Acceptance testing showed that the

gimbal axes actually intersected within a 0.0085 inch radius sphere [22]. Figure 2.4 is a



diagram of the test table. The middle gimbal was assumed to be initially deflected

positive 90 degrees from its position in Figure 2.4. This provided an initially orthogonal

set of gimbal axes. Figure C. 1 in Appendix C shows that the outer, middle, and inner

gimbal rotations resulted in a 3-2-1 transformation from the local level frame to the body,

or inner gimbal, frame.

3.1.2.2 Table Constraints

The test table had inherent limitations in the gimbal angular accelerations and

angular velocities achievable. These constraints limited the maximum angular velocities

and angular accelerations experienced in the body frame. Limitations in the body angular

velocities and angular accelerations resulted in limitations of the error accelerations due to

angular motion. Therefore, the test table constraints dictated limits on the sensitivities of

the accelerometer error coefficients defined in equation (2.11). The constraints for the

Contraves 53M-3C are given in Table 3.3 [23].

Table 3.3: Test Table Constraints

Gimbal Axis cOmax (deg/sec) amax (deg/sec 2 )

Inner + 1000 ± 1600

Middle ± 750 + 400

±750 +10

Outer ±700 ±120

±600 ±340

+500 +540

The outer gimbal had different angular velocity constraints for different angular

accelerations. It was possible to combine these constraints in a single trajectory. For

example, the outer gimbal could be accelerated at +540 deg/sec2 up to an angular velocity

of +500 deg/sec. From that point, the gimbal could be further accelerated at +340

deg/sec 2 up to +600 deg/sec, and so on. The angular velocity constraint used for most of



the trajectories in this thesis was the ±600 deg/sec constraint, using a maximum angular

acceleration of ±340 deg/sec 2. It was felt that this combination allowed for a high

maximum angular velocity, while assuring that the gimbal could reach that velocity in a

relatively short amount of time. The higher acceleration of ±540 deg/sec2 possible up to

500 deg/sec was only used for trajectories that required high outer gimbal acceleration,

but did not require high outer gimbal rates. The higher acceleration was not used for

most of the trajectories, because it involved twice the number of commanded acceleration

switches. Furthermore, the higher acceleration only saved 0.54 seconds in reaching

±600 deg/sec. Finally, the outer gimbal acceleration did not have to be high for the

trajectories that required a high outer gimbal rate, because for these trajectories the outer

gimbal acceleration was not a driving factor in the sensitivities of the accelerometer

coefficients.

The Contraves test table also had an input bandwidth limitation of 200 Hz [23].

This meant that the controls could be changed up to 200 times per second. Smooth

gimbal angular accelerations could be achieved with this bandwidth. The 200 Hz

bandwidth was more than adequate for this simulation, because the fastest changes in

commanded angular accelerations were on the order of one second.

3.1.2.3 Table Accuracies

In addition to the gimbal axis displacement specification, the test table also had

specifications for axes orthogonality, position accuracy, position resolution, rate stability,

and rate resolution. These specifications for the Contraves table are given in Table 3.4.

For this simulation, the gimbal angular accelerations, angular rates, and angles

were all assumed to be known. From Table 3.4, it can be seen that these assumptions are

valid when operating the table in the precision rate mode. The position errors given in

Table 3.4 were significantly less than the initial errors assumed for the simulation. Also,

since the rates were near their maximums for most of the simulation, the rate resolution



Table 3.4: Test Table Performance Specifications

Performance Specification Accuracy

Axes Orthogonality 0.01 mrad

Position Accuracy 0.005 mrad RSS

Position Resolution 0.002 mrad

Rate Stability Precision Rate Mode +0.001% over 360 deg

Tach Rate Mode +0.1% over 360 deg

Rate Resolution in to 200 deg/sec 0.0001 deg/sec

Precision Rate Mode above 200 deg/sec 0.001 deg/sec

was certainly adequate. The angular rates of the gimbals were assumed to be stable based

on the high accuracy of the rate stability specification.

3.2 Initial Trajectories

Initial heuristic gimbal trajectories were determined for comparison with later

trajectories. The first trajectory implemented in the simulation was the trajectory outlined

in [10]. The next initial trajectories were combinations of individual gimbal trajectories

that maximized the gimbal angular velocities and angular accelerations. Plots for some of

the trajectories described in this chapter are included in the text. All the trajectories

described in this thesis are shown graphically in Appendix A. While this chapter presents

the basic trajectories used and their characteristics, the results obtained by implementing

the trajectories are described in Chapter 4.

3.2.1 Previous Trajectory

The dynamic calibration segment of the trajectory described by Riegsecker in [10]

involved nine distinct segments. Each of these nine segments was designed to produce a

specific angular velocity or angular acceleration profile in the body frame. The INS was

reoriented at the beginning of each segment, after which the outer gimbal was accelerated

to a high angular rate. The INS was left spinning at the high angular rate and was



eventually decelerated to the same angular rate, but in the negative direction. Once again,

the outer gimbal was left spinning, then finally accelerated to a zero angular velocity. The

gimbal angular accelerations, angular velocities, and angles for this trajectory are given in

Figure 3.1. These plots also appear in Figure A.1. This trajectory is referred to as

"GTO" throughout this thesis.

The reorientation of the INS for each segment can be seen in the plot of the gimbal

angles in Figure 3.1. Note that the plot for the gimbal angles is in radians, so the

reorientations appear small compared to the deflection of the outer gimbal. The middle

and inner gimbal angles were set to specific values so that a desired accelerometer error

coefficient was excited by angular motion in the body frame. The middle and inner

gimbal angles for each of the nine segments are given in Table 3.5.

Table 3.5: INS Orientation For GTO Trajectory

Segment Middle Gimbal Inner Gimbal

Number Angle (deg) Angle(deg)
1 0 -90
2 180 -90
3 180 180
4 0 0
5 90 0
6 -90 180
7 0 -45
8 90 -45
9 45 0

These test table orientations, combined with the outer gimbal angular motion developed

angular accelerations and angular velocities in the body frame. These body frame angular

rates and accelerations were determined using equations (2.22) and (2.23) and are shown

graphically in Figure 3.2.
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GTO BODY FRAME SENSITIVITIES
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3.2.1.1 Testing Time Modifications

The time period for each segment in Figures 3.1 and 3.2 was 26.25 seconds,

whereas each segment in the original trajectory described in [10] lasted for approximately

200 seconds. The segments were modified to last a total of 26.25 seconds each for

comparison purposes. This reduction in testing time was done by changing two

characteristics of the original testing segments. First, the two 30 second static holding

periods before and after the dynamic motion were eliminated. Second, the period of time

for which the outer gimbal was held at its maximum angular velocity was reduced from

60 seconds to 4.375 seconds. These changes are outlined in Table 3.6. Note that

Figures 3.1 and 3.2 show the gimbal trajectory and the body frame angular dynamics up

to 250 seconds. This time was chosen so that all nine of the 26.25 segments in GTO

could be displayed in each figure.

Table 3.6: Testing Time Modifications to Previous Trajectory

Segment Portion Description Original Testing Modified Testing

Time (sec) Time (sec)

Hold INS stationary 30.000 -

Accelerate outer gimbal at +160 4.375 4.375
deg/s 2 to gimbal rate of +700 deg/s

Rotate outer gimbal at +700 deg/s 60.000 4.375

Accelerate outer gimbal at -160 8.750 8.750
deg/s 2 to gimbal rate of -700 deg/s

Rotate outer gimbal at -700 deg/s 60.000 4.375

Accelerate outer gimbal at +160 4.375 4.375

deg/s2 to gimbal rate of zero

Hold INS stationary 30.000

TOTAL SEGMENT TEST TIME 197.50 26.25

The testing time reduction was expected to reduce the errors in the accelerometer

coefficients more quickly than the original GTO trajectory. While the original trajectory
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put the gimbals through each segment once, the reduced-time trajectory actually went

through each segment a number of times. As shown in Figure 3.1, once the ninth

segment was completed, the first segment was entered again. Each segment tended to

produce a large initial decrease in the uncertainties of the specific coefficients it was

designed to observe. Thereafter, the uncertainties continued to decrease, but at a much

lower rate. Therefore, by shortening the trajectories, the initial drop in uncertainties was

still present, but the long periods where the uncertainties slowly decreased were

eliminated. The smaller decreases in uncertainties would be made when the segments

were cycled through again, later in the simulation.

The GTO trajectory used an angular acceleration of ±160 deg/sec2 and an angular

velocity of ±700 deg/sec for the outer gimbal. According to the table specifications in

Table 3.3, an angular velocity of ±700 deg/sec can only be achieved with a maximum

angular acceleration of +120 deg/sec 2. Since the outer gimbal could actually accelerate to

±700 deg/sec in just over two seconds by using the multiple constraints in Table 3.3, it

was assumed that ±160 deg/sec 2 was a feasible "average" angular acceleration that

remained within the table constraints.

3.2.2 Heuristic Trajectories

From equation (2.11) it can be seen that in order to maximize the observability of

the accelerometer error coefficients, the angular velocities and accelerations experienced

by the body must be large. High angular rates and accelerations caused the errors due to

the dynamic accelerometer error coefficients to be more pronounced, and hence more

sensitive to these coefficients. Therefore, it was assumed that trajectories designed for

maximum sensitivity to the error coefficients involved the highest possible gimbal angular

velocities and accelerations. Instead of accelerating only the outer gimbal, all gimbals

were accelerated in the initial trajectories described below. By accelerating the other

gimbals, the trajectory took advantage of the higher angular accelerations and angular

velocities achievable with the inner and middle gimbals.



The first trajectory (GT1) was similar in form to the trajectory described in

Section 3.2.1 (GTO), and is shown in Figure 3.3. The GTI trajectory is also shown in

Figure A.2. Only the first 25 seconds of GT1 were shown in Figure 3.3, because they

represent the pattern of gimbal motion for the entire simulation. For the GT 1 trajectory,

each gimbal was subjected to a trajectory similar to the individual segments of GTO, using

the individual gimbal velocity and acceleration constraints. All the gimbals were

accelerated at their maximum angular accelerations to their maximum angular velocities.

The amount of time it took for each gimbal to reach its maximum angular velocity by

accelerating at its maximum acceleration was defined as the characteristic time for the

gimbal, T:

= omx 600 deg / sec 1.765 sec

a, max 340 deg / sec 2

Tm Om,max 750 degsec 1.875 sec (3.1)
am,max 400 deg / sec 2

, = ,,max = 1000 deg/ sec =0625 sec
a,,max 1600 deg / sec 2

Each gimbal was then left spinning at its maximum angular velocity for its characteristic

time period. Next, the gimbals were decelerated to their maximum angular velocities in

the negative direction, allowed to spin for their characteristic time periods, and finally

accelerated to zero velocity. This sequence of accelerations and decelerations was

repeated continuously for each gimbal.

The different characteristic time periods for the three gimbals resulted in a

trajectory that covered many combinations of gimbal rates and accelerations. These

varied combinations resulted in excitation of all the accelerometer error coefficients, by

producing large body angular velocities and angular accelerations. These body frame
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angular accelerations and angular velocities were determined as before from equations

(2.22) and (2.23) and are shown graphically in Figure 3.4. Only the first 4 seconds of

simulation time were plotted, because they are representative of the body angular rates

and accelerations over the entire simulation. Note that although the time scale for these

plots only goes to 4 seconds, the body angular rates and accelerations change repeatedly

in that time span. This high frequency oscillation was a result of the gimbal angles

changing very rapidly, forcing the transformation from the gimbal angular accelerations

and rates to body angular accelerations and rates to also shift rapidly.

In general, the maximum acceleration error sensitivities to the accelerometer

coefficients occurred when the gimbal rates were at their maximum magnitudes. This can

be seen in the interval between 2.0 and 3.6 seconds in Figure 3.4. In this interval, the

body frame angular accelerations approached 350 rad/sec 2, the squares of the angular

velocities reached near 800 (rad/sec) 2, and the products of the angular velocities were

near 400 (rad/sec) 2 . From the gimbal trajectory plots in Figure 3.3, it is seen that the

gimbals are all near their maximum angular velocities for this same interval.

Although the GT I1 trajectory held the gimbals at their maximum angular rates, it

only held the inner gimbal for 0.625 seconds before accelerating or decelerating back to

zero. For the second heuristic trajectory (GT2), the inner gimbal was left spinning at its

maximum rate for 1.250 seconds (twice its characteristic time period, Ti). This was done

so the effects of the inner gimbal rate could be observed. The middle and outer gimbals

were accelerated and decelerated just as in GT1. The GT2 trajectory is shown in Figure

A.3.

The final initial trajectory (GT3) did not leave the gimbals spinning at their

maximum rates. All the gimbals were simply accelerated to their maximum angular

velocities, then immediately decelerated to their maximum negative velocities, and so on.

This trajectory was used to see what the effects were of pure angular acceleration on the
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gimbals and to use as a comparison for the other initial trajectories. The GT3 trajectory is

shown in Figure A.4.

3.3 Improved Trajectories

3.3.1 Objective of Improved Trajectories

The goal of the simulation was to estimate the accelerometer error coefficients as

accurately as possible for a given amount of testing time. Another way of stating this

goal was to minimize a cost function based on the errors in the accelerometer error

coefficients. One possible cost function was written as:

J = trace(P ) (3.2)

where Pc is the portion of the covariance matrix that contains the errors in the

accelerometer error coefficients. Since the diagonal elements of Pc were the variances of

the accelerometer error coefficients, minimizing the cost function of equation (3.2) was

equivalent to minimizing the sum of all the accelerometer coefficient variances. The

minimization of the cost function was to be performed over all possible trajectories. The

gimbal trajectories were also required to satisfy the table constraints where the constraints

in this case were given by:

l- max (3.3)I col- (0max

The gimbal angular velocities and gimbal angles were integral functions determined from

the commanded gimbal accelerations:

(t)= a(t) dt (3.4)
(3.4)

0(t) = f(t) dt

The inequality constraints given in equation (3.3) had to be satisfied for each gimbal at all

times throughout the simulation.



Ideally, a gimbal trajectory could be found that would minimize the cost function

over all control histories while satisfying all the constraints. However, optimizing the

cost function of equation (3.2) over all possible trajectories was a highly nonlinear

problem. The change in the covariance matrix over time was governed by equation

(2.32), or equation (2.39) for the square root filter case. Both of these equations show

that the dynamics matrix F and the process noise matrix Q determine how much P

changes over time. The process noise matrix was independent of the controls, while the

dynamics matrix was a nonlinear function of the controls. The transformation matrices

and the vector wbT were all nonlinear functions of either the commanded gimbal angular

accelerations, or the gimbal angular velocities and gimbal angles resulting from the

integrations in equation (3.4). Therefore, in order to reduce the cost function, small

changes were made in the gimbal trajectories. These small changes in the initial

trajectories were the basis for the improved trajectories described in this section. It was

assumed that the initial heuristic trajectories described in the previous section resulted in

cost functions that were reasonably close to the minimum, since all the initial trajectories

involved maximum gimbal angular rates and accelerations.

3.3.2 Effects of Small Changes in Characteristics of Trajectory

3.3.2.1 Time at Maximum Rate

The first way in which the trajectories were modified was by varying the amount

of time that the gimbals were held at their maximum angular velocities. As mentioned in

Section 3.2.2, this was the only difference among the initial trajectories, with the

exception of GTO. The tradeoff involved with these trajectory perturbations was how the

gimbal angular accelerations differed from the gimbal angular velocities in affecting the

uncertainties. There was assumed to be a point at which decelerating some of the

gimbals, rather than leaving them at their maximum angular velocities, would result in a

more significant decrease in the uncertainties .



The GT3 trajectory represented one end of the spectrum, where the gimbals were

always either being accelerated or decelerated at their maximum positive or negative

angular accelerations. The GT1 trajectory held the gimbals at their maximum rates for

their characteristic time periods, amounts of time that depended on the constraints of each

of the gimbals and given in equation (3.1). This meant that the inner gimbal was

accelerating or decelerating about three times as often as the middle and outer gimbals.

GT2 increased the time at maximum rate for the inner gimbal to twice its characteristic

time. The GT4 trajectory was similar to the GT2 trajectory, except the middle and outer

gimbals were also held at their maximum rates for twice their characteristic time periods.

The GT4 trajectory is shown in Figure A.5.

The GT5 trajectory was designed to represent the other end of the spectrum from

GT3. In GT5 all the gimbals were accelerated to their maximum angular velocities and

left there for the entire simulation. Therefore, the gimbal angular accelerations only

affected the sensitivities in the first two seconds of the simulation. Thereafter, the

sensitivities were driven by the gimbal rates and angles. The GT5 trajectory is given in

Figure A.6.

3.3.2.2 Initial Angles

Another perturbation made to the initial trajectories was a change in the initial

gimbal angles. These initial gimbal angles produced corresponding changes in the body

frame angular dynamics, because the transformations between the gimbal motion and the

body frame dynamics were altered. These effects were expected to be small over an

extended period of time, because although the body frame dynamics were altered, they

had basically the same characteristics.

The initial outer gimbal angle was not varied, because the body frame angular

dynamics were unaffected by the outer gimbal angle. This can be seen from equations

(2.22) and (2.23), which have no dependence on 00. Therefore, the INS would

experience the same angular motions, regardless of what the initial outer gimbal angle



was. Hence, the only initial angle perturbations were of the inner and middle gimbal

angles.

3.3.3 Maximizing Body Frame Angular Rates and Angular Accelerations

In order to better observe the navigation errors due to the accelerometer error

coefficients, the angular velocities and angular accelerations in the body frame were

increased. Equation (2.11) shows that increasing these angular rates and accelerations in

the body frame results in larger errors in acceleration, and therefore larger position errors

in the navigator.

Although maximizing the sensitivities of the accelerometer error coefficients was a

priority, the loss of observability among the coefficients also had to be considered.

Those trajectories that were able to force the body frame angular rates and accelerations to

their maximums, and thus drive the accelerometer coefficient sensitivities higher, used

combinations of high gimbal rates and accelerations. By using these combinations of

gimbal motion, all the coefficients were excited with similar oscillatory characteristics.

This made it more difficult for the filter to separate the effects of one coefficient from

another. This tradeoff between maximizing the coefficient sensitivities and loss of

observability had to be addressed in each of the trajectories described below. For most

cases, two trajectories were developed. One provided for maximum sensitivities, while

the other provided maximum observability at the cost of a significantly reduced

sensitivity.

The equations relating the gimbal angular accelerations and angular velocities to

the body frame angular accelerations and velocities are equations (2.22) and (2.23),

respectively. Expressions for the sensitivities of the accelerometer error coefficients to

the gimbal angle accelerations and rates were obtained from these two equations. These

sensitivities were then examined in order to determine what gimbal trajectory would

provide an increased sensitivity for each group of coefficients. The trajectories developed

to increase the accelerometer coefficient sensitivities were called extended trajectories and



were named GTX1 through GTX9, based on which coefficient sensitivity they were

designed to "maximize". For example, GTX 1 was designed to increase the sensitivity of

the first coefficient of each accelerometer. The sensitivities of the first coefficients were

the same for all the accelerometers and are shown in equation (2.11) to be a(, the angular

acceleration along the body frame X-axis. Therefore, the goal of GTX 1 was to develop

large angular accelerations about the body frame X-axis.

Secondary extended trajectories were also developed to maximize the

observability, rather than the sensitivity, of specific coefficients. These trajectories were

similarly named GTXlb, GTX2b, and so on. The criteria used for maximum

observability was that the trajectory produced a minimum number of non-zero

sensitivities. For example, the GTXlb trajectory was designed to produce large

accelerations along the body frame X-axis. Of course, accelerations along this axis

resulted in angular velocities along the same axis, so the coefficient whose sensitivity

depended on ox (C14) was also excited. However, the GTX lb trajectory assured that

no other coefficients beside C 1 and C 14 were excited.

All the extended trajectories were designed to begin and end with all the gimbal

rates and gimbal accelerations set to zero. However, they were able to begin at any set of

initial angles. This was done so that the extended trajectories could be combined together

in sequence or added to an already existing trajectory.

3.3.3.1 Sensitivities to Body Angular Accelerations

The sensitivity term for the first coefficient of each of the accelerometers was the

angular acceleration along the body frame's X direction, cx. The expression for ax,

obtained from equation (2.22), was:

ax = -o,0mcO, - a,sO, + ax, (3.5)



Maximizing this function of the gimbal angles, gimbal rates, and gimbal accelerations

over all trajectories proved to be difficult, because both the gimbal rates and accelerations

had inequality constraints imposed on them. Therefore, a trajectory that provided a

comparatively large sensitivity was determined by examining equation (3.5) and making

appropriate choices for the gimbal accelerations and rates. These gimbal accelerations and

rates then determined the gimbal velocities and gimbal angles through the integrations of

(3.4).

The products of the gimbal angular velocities are the dominant terms in equation

(3.5). If these angular velocities are set to their maximums, then the gimbal angles will

be changing rapidly and ax will oscillate at a high frequency with a magnitude of O)OOm.

It can also be seen from the last term of equation (3.5) that ax depends directly on the

inner gimbal angular acceleration. Since the maximum angular acceleration for the inner

gimbal was large, the inner gimbal could be accelerated back and forth between its

maximum and minimum rates to increase ax. Also, the additive effect of the inner gimbal

angular acceleration was not affected by the orientation of the INS, whereas the products

of the gimbal rates oscillated between their positive and negative maximums.

The gimbal trajectory that are used to produce a large ax sensitivity consisted of

setting the outer and middle gimbals to their maximum angular velocities. Since xai

affected the (x sensitivity whereas wi did not, the inner gimbal was commanded to follow

the same trajectory it had in GT3. This meant that the inner gimbal was accelerated and

decelerated at its maximum angular acceleration, but it was not left spinning at its

maximum angular rate, because ax was unaffected by wi. This trajectory, called GTX 1,

is shown in Figure A.7 in Appendix A. Note that the first coefficient sensitivity cx

oscillated back and forth between values that were close to the maximums obtained in the

GT 1I trajectory. This implied that the GTX 1 trajectory did manage to force cx to near its

maximum since the GT 1 trajectory covered almost all possible gimbal configurations and

was assumed to reach the maximum sensitivities at some point in the trajectory.



Although the trajectory GTX1 described above forced ax to high values, similar

oscillations were produced in the sensitivities of all the other coefficients. This resulted in

a loss of observability among the coefficients. Therefore, another trajectory was

designed to maximize the observability of the first coefficient. The goal of this trajectory,

called GTXlb, was to produce the highest ax while minimizing any other coefficient

sensitivities. This trajectory involved setting the middle gimbal angle to -90 degrees,

which aligned the outer and inner gimbal axes. The inner gimbal was then commanded to

follow the GT3 trajectory, where it was accelerated and decelerated without any time

spent at its maximum rate. The outer gimbal was also accelerated and decelerated at its

highest maximum acceleration of 540 deg/sec 2 along with the inner gimbal, switching

from acceleration to deceleration when the inner gimbal switched. The highest maximum

angular acceleration was used to provide the largest ax sensitivity. Since this acceleration

acted for only Ti=0.625 seconds, the outer gimbal rate reached 337.5 deg/sec, which was

well below 500 deg/sec, the angular rate constraint at an acceleration of 540 deg/sec 2 .

The GTXlb trajectory is shown in Figure A.8. Although only the ax and COx 2

sensitivities were produced, the maximum ax went from on the order of 130 rad/sec2 to

only 37 rad/sec 2.

The sensitivity terms for the second and third error coefficients of the

accelerometers were the angular accelerations along the body Y-axis and Z-axis (ay and

Oz), respectively. The expressions for these terms were obtained from equation (2.22)

and were given as:

y = (OO,ceicOm, - o )m.ssms - wmisOi, + aosOicOm + amCO i  (3.6)

a z = -oW,,sOcOm - wo,,.mC,s,OOm - ow)iCO, + acc, - a,si (3.7)

As with ax, these body angular accelerations are dominated by the products of the

gimbal angular velocities. However, the gimbal angular accelerations do not enter these



equations in a purely additive manner as the inner gimbal angular acceleration entered

equation (3.5). Therefore, the trajectory used to increase these sensitivities set all the

gimbals to their maximum rates for the entire trajectory. This trajectory was called GTX2

and is shown in Figure A.9.

Although the GTX2 trajectory produced large sensitivities for ay and az, it also

produced large sensitivities to all the other coefficients. This trajectory excited all the

coefficients by producing large angular accelerations and rates in the body frame. This

led to a loss of observability among the coefficients, because the body angular rates and

angular accelerations were subjected to similar oscillations. The maximizing effects of

this trajectory on the sensitivities had to be weighed against the loss of observability

among the coefficients. The GT5 trajectory described in Section 3.3.2 was actually a

GTX2 trajectory that was never brought back to zero gimbal rates. GT5 was used to

investigate how the loss of observability affected the cost function over time.

The GTX2b trajectory was designed to produce the maximum sensitivity to the

second accelerometer coefficient while keeping all the other sensitivities to a minimum.

This trajectory was similar to the GTXlb trajectory, where the INS was oriented such

that the applied gimbal angle accelerations produced a body frame angular acceleration

along only the body frame X-axis. In this case, the INS was reoriented with the inner

and middle gimbal angles set to 90 degrees and zero, respectively. Angular accelerations

and decelerations were then applied to the outer gimbal axis, resulting in corresponding

accelerations along the body Y-axis. The highest maximum angular acceleration of 540

rad/sec 2 was used, because the sensitivity was a function of the outer gimbal acceleration

and not the outer gimbal rate. This angular acceleration could only be applied for 0.926

seconds, because the outer gimbal rate constraint using the 540 rad/sec 2 acceleration was

500 rad/sec. The GTX2b trajectory is shown in Figure A. 10. While only the oy and 0)y2

sensitivities were produced, the magnitude of the maximum Oy dropped from just over

300 rad/sec 2 to only 9.4 rad/sec2.



The third extended trajectory, GTX3, was designed merely for comparative

purposes to the first two extended trajectories. GTX3 was similar to GTX 1, except the

outer gimbal was subjected to accelerations and decelerations while the inner gimbal was

left at its maximum angular rate. This was done to observe the effects of the outer gimbal

accelerations. The GTX3 trajectory is plotted in Figure A. 11.

The GTX3b trajectory was developed in the same way as GTXlb and GTX2b.

The INS was oriented and gimbal angular accelerations were applied to isolate az. The

inner and middle gimbal angles were set to zero so that the outer gimbal could be used to

apply the acceleration. Once again, the outer gimbal acceleration of 540 deg/sec 2 was

used to provide the highest sensitivity. The GTX3b trajectory is shown in Figure A. 12.

The effects on the sensitivities was similar to the effects of GTX1b and GTX2b. Only

the z and oz2 sensitivities were non-zero, but the magnitude of az decreased from 350

rad/sec 2 to 9.4 rad/sec 2.

All the body angular acceleration sensitivities were expressions involving gimbal

angles, rates, and accelerations that were difficult to maximize due to the inequality

constraints on all the gimbals. By setting the gimbals to their maximum rates, these

sensitivities oscillated between values that were close to their maximums. However,

since the gimbals produced a highly dynamic environment for the INS, all the other error

coefficients were excited as well. These large gimbal dynamics reduced the observability

of the individual coefficients, yet also provided information on all of them rather than just

one or two. The tradeoff between observability and maximizing the sensitivities was

investigated by observing the effects of the two separate trajectories for each sensitivity

on the cost function of equation (3.2).

3.3.3.2 Sensitivities to Squares of Body Angular Velocities

The sensitivity of the fourth coefficient for each accelerometer was the square of

the angular velocity along the body X-axis, cx 2. The expression for ox, from equation

(2.23) was:



Wx = -0o sin 0,,, + i (3.8)

The magnitude of this term was easily maximized by setting the middle gimbal angle to

-90 degrees and setting the outer and inner gimbals to their maximum rates. This

trajectory (GTX4) developed an cOx2 of 16002 (deg/s) 2 or 780 (rad/sec) 2 . This was

equivalent to the maximum ox 2 produced by GT1, as shown in Figure 3.4. The plot for

the GTX4 gimbal trajectory is given in Figure A. 13.

The sensitivities of the fifth and sixth coefficients for each accelerometer were the

squares of the body frame angular velocities along the Y and Z axes, respectively. These

body frame angular velocities, computed from equation (2.23), were:

(, = (0, sin 0, cos ,, + to,. cos 0, (3.9)

OZ = ,, cos 0, cos 0, - (,O sin 6, (3.10)

These equations show that to maximize Oy and 0oz, the outer and middle gimbals will

probably have to be set to their maximum angular rates. For both equation (3.9) and

(3.10) a time history for Oi as a function of Om was determined such that the two terms in

each equation were additive, producing the largest possible angular velocity in the body

frame. Unfortunately, the gimbal angular acceleration required to implement either time

history was proportional to the square of the maximum middle gimbal angular velocity.

This required an inner gimbal angular acceleration that was well outside the inner gimbal

constraint of 1600 deg/sec 2

As shown in Figure 3.4, the maximum squares of the Y and Z body frame

angular velocities produced by GT1 were near 225 (rad/sec) 2 , corresponding to a

maximum body frame angular velocity of 15 rad/sec. This was close to the middle

gimbal maximum rate of 750 deg/sec or 13.1 rad/sec. Therefore, to develop large

squares of the Y and Z body angular velocities, the middle gimbal was set to its maximum



rate and the inner gimbal angle was set to align either the Y or Z body axis with the

middle gimbal axis. The outer gimbal angle did not affect the sensitivity and was

therefore left unchanged. The GTX5 trajectory used an inner gimbal angle of zero so that

an angular velocity along the body Y-axis was developed. The GTX6 trajectory used an

inner gimbal angle of -90 degrees so that the angular velocity was along the body Z-axis.

The GTX5 and GTX6 trajectories are plotted in Figures A. 14 and A. 15, respectively.

3.3.3.3 Sensitivities to Products of Body Angular Velocities

The last three coefficients for each accelerometer were sensitive to products of the

body frame angular velocities. These products were obtained using equations (3.8)-

(3.10). Multiplying these equations and performing some simplification led to the

following expressions for the body angular velocity products:

OxOy = tosin,( (, sin0m -+ wo sin 20,,)+ o,.cosO8,(, - o,,sinm) (3.11)

Wx Wz = tom sin 0, (, sin 0 ,,, - o,) + wo cos Oi(oi cos ,,, - + o, sin 2,m) (3.12)

(,0( = +sin20,(,o cos 2 ,m m_ ( ) + Wo), cos20i cos 0m  (3.13)

Once again, maximizing these equations was difficult due to the inequality

constraints. The products of the body frame angular velocities were similar to the body

frame angular accelerations in that the products of the gimbal rates were the driving terms.

These gimbal rate products were modulated by the gimbal angles, again producing high

frequency oscillations in the body frame angular velocity products. Each equation (3.11)

through (3.13) was examined individually to find a trajectory that would produce large

body angular rate products.

The trajectory that produced maximum values for all three equations involved

setting all the gimbals to their maximum rates. This was the same as the trajectory called

GTX2 described above. As mentioned above, this trajectory led to poor observability



among the coefficients. Therefore, three trajectories that had better observability

characteristics were developed.

The GTX7 trajectory was designed to excite the seventh coefficient, whose

sensitivity was the body frame angular velocity product oxOy. In order to reduce the

other coefficient sensitivities, one of the gimbal rates was set to zero. Since the inner

gimbal had the highest possible rate, and thus contributed the most to the magnitude of

OXoy, it was kept at its maximum rate. For the same reason, it was assumed that a larger

sensitivity would be developed if the middle gimbal was left at its maximum rate and the

outer gimbal rate was set to zero rather than the other way around. Equation (3.11)

shows that when the outer gimbal rate is set to zero, the sensitivity oscillates between the

product of the inner and middle gimbal rates. On the other hand, when the middle gimbal

rate was set to zero and the outer gimbal rate was set to its maximum, the sensitivity

became:

ox = 0, sin 0,(o, sin 0 - + o,, sin 20m) (3.14)

An optimum middle gimbal angle was chosen to maximize equation (3.14), which led to

an oscillation in oxcy. However, this oscillation was smaller in magnitude than the

oscillation obtained from setting the middle gimbal to its maximum rate and the outer

gimbal rate to zero. Therefore, GTX7 was the trajectory obtained by setting the middle

and inner gimbal rates to their maximums and the outer gimbal rate to zero. This

trajectory was plotted in Figure A. 16.

The GTX7 trajectory was designed to exhibit somewhat better observability than

the GTX2 trajectory, because it produced a zero sensitivity for the first coefficient (OCx

was zero) and the resulting Ox2 sensitivity was constant over nearly the entire trajectory.

The maximum magnitude of the xwy sensitivity was reduced from above 300 (rad/sec) 2

to about 230 (rad/sec)2 . Even though GTX7 had better observability of the seventh



coefficient effects, other coefficients were still being excited in similar oscillations.

Therefore, a secondary trajectory was developed, GTX7b, that produced the highest

observability of the seventh coefficients.

To produce the highest observability by isolating the ox0y, sensitivity, the outer

gimbal was set to its maximum rate while the inner and middle gimbal angles were set to

+90 and -45 degrees, respectively. This provided equal components of angular velocity

along both the body X and Y axes. The resulting oxwy sensitivity was constant at + 0o2

or 55 (rad/sec) 2 . The GTX7b trajectory is shown in Figure A. 17.

The extended trajectories GTX8 and GTX9 followed the same development as

GTX7. In the case of GTX8, the objective was to maximize the oxOz sensitivity, while

maintaining better observability than GTX2. Following the procedure that was used to

find GTX7, it was determined that the best trajectory for the eighth coefficient sensitivity

resulted when the inner and middle gimbal rates were set to their maximums and the outer

gimbal rate was set to zero. Therefore, GTX7 and GTX8 were identical trajectories.

This demonstrates that although the observability was better than GTX2 and the

sensitivities were still rather high, there was some room for improvement in the

observability of both the seventh and the eighth coefficients.

The secondary trajectory GTX8b was designed to produce the best observability

of the oxcoz sensitivity. This was done by keeping the outer gimbal at its maximum rate

and setting the middle gimbal angle to -45 degrees. This trajectory was similar to

GTX7b, except equal angular velocities were produced along the body X and Z axes

rather than the X and Y axes. This produced a sensitivity of 55 (rad/sec) 2 , the same

sensitivity magnitude as GTX7b. The plot of the GTX8b trajectory is shown in Figure

A.18.

Equation (3.13) shows that the ninth coefficient sensitivity, o2yOz, did not depend

on the inner gimbal rate. As a result, when the middle gimbal rate was set to zero and the

outer gimbal rate was set to its maximum, the resulting maximum sensitivity was 0,, 2



When the outer gimbal rate was set to zero and the middle gimbal rate was set to its

maximum rate, the resulting maximum sensitivity was + Om2. The second set of

conditions was used for GTX9, because the maximum middle gimbal rate was larger than

the maximum outer gimbal rate. To provide the maximum sensitivity, the inner gimbal

angle was set to +45 degrees, which produced an Oywz of -+ 0,2 or -86 (rad/sec) 2 . The

GTX9 trajectory is shown in Figure A. 19. The GTX9 trajectory only excited the cy, Coz,

and oyOz sensitivities. Hence, this trajectory generated the best observability for the

ninth coefficient and a secondary trajectory was not necessary.

The gimbal characteristics for each of the extended trajectories are summarized in

Table 3.7. Note that a "**" entry indicates the specific quantity varied and could be

computed by integrating either the angular acceleration or the angular velocity. A "-"

entry in the outer gimbal angle column indicates that this gimbal angle was not specified

by the particular trajectory, and that it could take on any value. The outer gimbal angle

was not important for any of the trajectories, because it did not affect the body angular

rates or accelerations.

3.3.4 Use of Extended Trajectories

The extended trajectories described in the previous section were developed in

order to produce better estimates of specific accelerometer error coefficients. GTX 1 and

GTX lb were designed to reduce the errors in the first coefficient for each accelerometer,

GTX2 and GTX2b were designed to reduce the errors in the second coefficient for each

accelerometer, and so on. These extended trajectories were used in two ways.

One way to utilize the extended trajectories was to piece them together

sequentially. Each of the extended trajectory segments could be run for a specified

amount of time, resulting in a reduction in a specific coefficient error. By piecing all nine

extended trajectories together, the errors in all the accelerometer coefficients could be



Table 3.7: Extended Trajectory Gimbal Accelerations, Velocities, and Angles

Extended Angular Acceleration Angular Velocity Gimbal Angle
Trajectory (deg/sec 2  (deg/sec) (deg)

Name (Xo am i 10 1m M i 0o im i

GTX1 0 0 ±1600 600 750 ** ** ** **

GTXlb ±540 0 ±1600 ** 0 ** ** -90 **

GTX2 0 0 0 600 750 1000 ** ** **

GTX2b ±540 0 0 ** 0 0 ** 0 +90

GTX3 ±340 0 0 ** 750 1000 ** ** **

GTX3b ±540 0 0 ** 0 0 ** 0 0

GTX4 0 0 0 600 0 1000 ** -90 **

GTX5 0 0 0 0 750 0 - ** 0

GTX6 0 0 0 0 750 0 - ** -90

GTX7 0 0 0 0 750 1000 - ** **

GTX7b 0 0 0 600 0 0 ** -45 +90

GTX8 0 0 0 0 750 1000 - ** **

GTX8b 0 0 0 600 0 0 ** -45 0

GTX9 0 0 0 0 750 0 - ** +45

reduced, one at a time. This was the approach used in GTO. However, the extended

trajectories described in the previous section produced larger sensitivities than the

segments in GTO. The trajectory that pieced together all the extended trajectories GTX 1

through GTX9 was GT6. For GT6, the time for each segment was set to 10 seconds.

The GT6 trajectory continued to cycle through the nine extended trajectories for the entire

simulation. Therefore, after the GTX9 segment was finished, it began again at GTX 1.

The GT6 gimbal trajectory is given in Figure A.20, and is seen to be merely a sequential

combination of extended trajectories GTX1 through GTX9. The resulting body

sensitivities, shown in Figures B.1 through B.3, were also a sequential combination of

the sensitivities derived from the individual extended trajectories.



Figures B.1 through B.3 show that sensitivities were excited with similar

oscillatory characteristics for some of the segments of the GT6 trajectory. The secondary

trajectories (GTXlb, GTX2b, etc.) were designed to eliminate the problem of exciting

multiple coefficients in the same way. The GT6b trajectory was similar to the GT6

trajectory, except it used the secondary extended trajectories. This trajectory was plotted

in Figure A.21, and the body frame sensitivities are shown in Figure B.4. Note that

some of the sensitivities are the same as those for the GT6 trajectory. This was because

some of the segments in the GT6b trajectory were identical to those of the GT6 trajectory.

A third trajectory, called GT6c, was also developed and is shown in Figure A.22.

This trajectory was the same as GT6b, except the order of the extended trajectory

segments was changed. Since specific segments of GT6b require specific gimbal angles,

the test table had to be reoriented between each segment. This reorientation was modeled

in the simulation by accelerating and decelerating the required gimbals for two seconds in

order to bring the gimbals to the desired positions. Table 3.7 shows that the GTX lb and

the GTX4 segments both require a middle gimbal angle of -90 degrees. Therefore, these

two segments were placed adjacent to each other. This meant that the table did not have

to reorient between these two segments. Similarly, the GTX3b and the GTX5 segments

both require an inner gimbal angle of zero. Since the GTX3b segment also requires a

middle gimbal angle of zero, the GTX5 segment was placed directly after the GTX3b

segment. These were the only two differences between the GT6b and the GT6c

trajectories. The difference in segment orders is shown in Table 3.8.

Another way of using the extended trajectories was to append them to an already

existing trajectory. If a trajectory significantly reduced the cost function in a short period

of time, but then didn't improve it much further, it was assumed to be a perfect candidate

for appending an extended trajectory. The initial trajectory could be run out to where the

cost function ceased to be improving. Then, the individual accelerometer coefficient



Table 3.8: Segment Orders for GT6b and GT6c
GT6b GT6c

GTXlb GTXlb
GTX2b GTX4
GTX3b GTX2b

Segment GTX4 GTX3b
Order GTX5 GTX5

GTX6 GTX6
GTX7b GTX7b
GTX8b GTX8b
GTX9 GTX9

errors could be examined to determined which of them was known with the least amount

of accuracy. An extended trajectory could then be applied that was designed to reduce the

errors in that specific accelerometer coefficient. If there wasn't one specific coefficient

error that was the worst, then many extended trajectory segments could be appended to

the initial trajectory to minimize all the coefficient errors that remained high. The first

appended trajectory was called GT4x, because it was identical to trajectory GT4 up to 120

seconds and then switched to the GT6 trajectory thereafter. By adding the GT6

trajectory, all the extended trajectories GTX 1 through GTX9 were added. The gimbal

trajectory for GT4x is shown in Figure A.24. The time scale is around 120 seconds, so

that the switch from GT4 to GT6 can be seen.



Chapter 4

Results

The following sections present the results for all the trajectories used in the

simulation. These trajectories include those developed in Chapter 3, as well as some new

trajectories introduced in this chapter. These new trajectories were developed after

analyzing the results and determining what factors affected the cost function most.

All of the gimbal trajectory profiles are presented graphically in Appendix A.

These profiles include all full length gimbal profiles (such as GTI and GT2) as well as

the extended trajectory segment profiles (such as GTX 1 and GTX2b). For the full length

trajectories, a representative portion of the trajectory is shown. These full length

trajectories continue to follow the pattern shown in the representative portion.

All of the extended trajectory segments are shown starting from zero initial

conditions and spanning a period of 60 seconds, where the period of each segment was

taken to be 20 seconds. Therefore, each extended trajectory plot shows three of the same

segments. In some cases, the first segment appears different from the other two. This

was due to the required angles for some of the extended trajectories. If the required

gimbal angles for a particular extended trajectory were different than the initial angles,

then the first two seconds of the segment were used to reorient the system. This

reorientation is discussed further in Section 4.3.

Plots of the cost functions for each trajectory are given in Appendix B. These

provide a basis of comparison between the various trajectories and were used to

determine which trajectories were best for reducing the errors in the accelerometer

coefficients. Some plots of specific coefficient errors are included in this chapter to show

the effects of the trajectories on these individual coefficient errors. Finally, some body



frame sensitivity plots are included in the text to show the sensitivities developed by

certain trajectories.

4.1 Initial Trajectories

This section discusses the results obtained from the previously implemented

trajectory GTO, as well as the initial heuristic trajectories that were developed in Section

3.2. These initial trajectories included GT I, GT2, and GT3.

4.1.1 Previous Trajectory

As discussed in Section 3.2.1, the GTO trajectory was designed to excite

individual accelerometer coefficients in each segment. The GTO trajectory is plotted in

Figure A. 1. Note that the body frame sensitivities developed in the GTO trajectory were

plotted in Figure 3.2. The cost function for this trajectory is shown in Figure B.5.

Although a sensitivity for each coefficient was produced in at least one segment of

the trajectory, there was some redundancy among the segments. For example, the only

difference between the first two segments was a 180 degree shift in the middle gimbal

angle. This resulted in body frame sensitivities that were identical, except that the ay

sensitivity started out negative in the first segment and positive in the second segment.

Figure 3.2 also shows that there was no difference between the sensitivities of the third

and fourth segments. The same was true for the second and sixth segments, which

developed identical sensitivities.

The effects of the segment redundancy can be seen in Figure B.5. Notice that

during the second segment, the cost function does not decrease significantly. Since the

sensitivities were essentially the same as the first segment, the same coefficient errors

were being reduced. Although the second segment further reduced the coefficient errors

reduced in the first segment, other coefficient errors remained at their initial values. This

was why the cost function made no noticeable change during the second segment. The



cost function did actually decrease, but the magnitude of the unimproved errors

overshadowed the small improvements made by the second segment.

The effects on the X-accelerometer coefficient errors are shown in Figure 4.1.

The reduction of specific errors in Figure 4.1 was compared to the body frame

sensitivities shown in Figure 3.2. As expected, the first and second segments reduced

the errors of the second (C 12) and the fifth coefficients (C 15), whose sensitivities were

oy and oOy2, respectively. These coefficient errors were reduced because the trajectory

resulted in angular accelerations and angular velocities along the body frame Y-axis.

The third and fourth segments of GTO (between simulation times of 52.5 and 105

seconds) produced angular accelerations and angular velocities along the body frame Z-

axis. This resulted primarily in the reduction of the errors in the third (C13) coefficient.

The errors in the sixth (C16) coefficient were also reduced, but only very slightly. The

errors in the sixth coefficient were already very low, because the fifth and sixth

coefficients of the X-accelerometer were highly correlated. Recall that the coefficients

were composite functions of the accelerometer parameters, as shown in Table 2.2. Some

of the coefficients had common expressions of the parameters in their definitions, and

were therefore highly correlated. The initial covariances were computed and included in

the initial covariance matrix. Since the errors in the fifth coefficient were reduced by the

first two segments, the errors in the sixth coefficient were also reduced. As shown in

Figures 4.1 through 4.3, many of the errors were reduced in pairs. This was due to

similar correlations among these coefficients. Further reduction in specific coefficient

errors were a result of the corresponding sensitivities being developed during the GTO

trajectory.

The coefficient errors for both the Y-accelerometer and the Z-accelerometer were

reduced in the same manner as the X-accelerometer coefficients. The plots for these

accelerometer coefficient errors are given in Figures 4.2 and 4.3. The major difference
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Y Accelerometer Coefficient Errors for GTO
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Z Accelerometer Coefficient Errors for GTO
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among the three accelerometers were the coefficients that were correlated, and the

coefficient errors that started out small. These differences were due to the different

orientations of the three accelerometers defined in Table 2.1. Note that the errors that

started out small for each accelerometer were errors in the coefficients that depended

solely on the products of misalignments and distance terms. Since the initial

misalignment errors were very small, these coefficient errors also started out small. For

example, from Table 2.2 it can be seen that the Y-accelerometer coefficients that were

functions of products of misalignments and distance terms were C22, C25, and C28.

Therefore, the errors in these coefficients started out at .0011 inches, as shown in Table

3.2.

4.1.2 Initial Heuristic Trajectories

The initial trajectories presented in Section 3.2.2 were GT 1, GT2, and GT3. The

cost functions for all three of these trajectories are shown in Figure B.6. The cost

functions are plotted over the whole simulation time interval of 270 seconds, but the cost

axis was scaled so that only the results from 50 seconds on can be seen. This scale was

used because the cost function decreased rapidly in the first 50 seconds for all three

trajectories. If the first 50 seconds were plotted, the scaling would have made

comparison of the trajectories at the final time difficult.

Figure B.6 shows that there was very little difference in the cost function between

the GT1 and the GT2 trajectories. Recall that the difference between the two trajectories

was in the amount of time that the inner gimbal was held at its maximum rate. GTI held

the inner gimbal at its maximum rate for 0.625 seconds, whereas GT2 held it for 1.25

seconds.

Figure B.6 also shows that the cost function was higher for the GT3 trajectory

than it was for the GTI and GT2 trajectories. This result was expected, because the

sensitivities that were developed in GT3 were generally smaller than those developed by

GT1 and GT2. Figures 4.4 and 4.5 show the sensitivities developed along the body Y-
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Body Frame Y-Axis Sensitivities for GT3

2 3 4 5 6

Simulation Time (sec)
7 8 9

400

300

c 200
.2

c) 1000

3-200

< -100

S-400
m 0

0

0 300

250

m 200

S150

S100

,50

0
0

3

p 400

v 300

200

a)
0

.-100

S-200

> -300

S-400
0 1 2 3 4 5

Simulation Time (sec
6 7 8 9 10

Figure 4.5: Representative GT3 Body Frame Y-Axis Sensitivities

. ....... ... ..\. ... .. 

.... .. ... ................ ..... .. ... ............ o

1 2 3 4 5 6 7 8 9 10

Simulation Time (sec)

. . ..~ ..... . ..-.. . .. .x.. ......... .o z
.. . . . .... .. .. .. .

•• ... ....... .... ......

..... . .....

,-

6



axis for the GTI and the GT3 trajectories. These sensitivities were representative of the

sensitivities produced along the body X and Z axes, as well. Figures 4.4 and 4.5

demonstrate that all the sensitivities were greater for the GTI trajectory. As shown in

Section 3.3.3, the angular accelerations and products of angular velocities in the body

frame were dominated by products of the gimbal rates. Since the GT3 trajectory did not

hold the gimbals at their maximum rates, these sensitivities were generally less than those

developed in the GT1 and GT2 trajectories. As a result, the cost function was noticeably

higher for GT3 throughout the simulation.

An example of how the accelerometer coefficient errors were reduced in GT 1 is

given in Figure 4.6. This is a plot of the coefficient errors in the Y-accelerometer, but it

was representative of all three of the accelerometers. The reduction of the coefficient

errors was much smoother than it was for GTO (as shown in Figures 4.1 through 4.3).

This was because specific coefficients were not individually excited. Instead, the highly

dynamic trajectory of GT1 produced angular accelerations and angular velocities in the

body frame that excited all the coefficients. Since the periods of the gimbal motion were

different, the sensitivities of the coefficients were modulated in different ways throughout

the trajectory. For example, there were points where all the gimbals were spinning at

their maximum rates, as well as points where only one or two of the gimbals were

spinning at their maximum rates. These separate points in the trajectory excited separate

coefficients. By following the GT trajectory, the gimbals apparently excited all of the

coefficients in such a way that all the errors were steadily diminished.

4.2 Trajectory Characteristic Effects

This section describes the effects of two types of trajectory characteristic

perturbations on the cost function. The first type of perturbation made to the trajectories

was a change in the time that the gimbals were set to stay at their maximum spin rates.

The second type of perturbation was a change in the initial gimbal angles. First, a

"holding period" at the maximum rate was determined that provided a locally minimum

100



Y Accelerometer Coefficient Errors for GT1

50 100 150 200 250

Simulation Time (sec)

50 100 150 200 250

Simulation Time (sec)

Figure 4.6: Y Accelerometer Coefficient Errors for GT1
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final cost. Using this holding period, the initial middle gimbal was varied until another

locally minimum final cost was found. Finally, using the holding period and initial

middle gimbal angle from above, the initial inner gimbal angle was varied to produce

another minimum in the final cost.

The effects of varying the trajectory characteristics were observed using the GT3

trajectory as the baseline. The GT3 trajectory was used as the baseline, because it did not

hold the gimbals at their maximum rates, but continuously accelerated or decelerated

them. The GT3 trajectory was also started at zero initial angles, so the effects of

variations in the initial angles could be observed.

4.2.1 Time at Maximum Rate Effects

The initial trajectories GTI through GT3 all accelerated and decelerated the

gimbals at their maximum angular accelerations to their maximum angular velocities. The

difference between these trajectories was the amount of time that the gimbals were set to

stay at their maximum rates before they were accelerated or decelerated again. The GT4

and GT5 trajectories were designed to increase these holding periods for all of the

gimbals. The cost functions for these two trajectories were plotted in Figure B.7. The

cost function of GT5 shows that keeping the gimbals at their maximum rates for the

whole trajectory did not produce the best results.

In order to investigate the effects of the holding period, variations were made to

the GT3 trajectory so that the gimbals would be held for a specified amount of time at

their maximum rates. The results of the different holding periods are shown in Figure

B.8. The legend on each plot indicates the holding time in seconds for each simulation

run. Note the scale for the second plot was reduced to magnify the differences between

the various runs. Recall that GT3 had no holding period and that GT5 held the gimbals at

their maximum rates for the entire simulation. These trajectories were then used as the

two extremes for comparison to the holding period variations. The holding periods tested

ranged from 0.05 seconds to 6.0 seconds.
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From Figure B.8, it can be seen that as the holding period increased from 0 to 2.0

seconds, the cost function decreased. However, when the holding period was increased

beyond 2.0 seconds, the cost function became larger. Simulation runs were performed at

various holding times and the final costs were plotted versus these holding times in

Figure 4.7. The final costs were defined to be the value of the cost function at a

simulation time of 270 seconds. Note that the relation between the final costs and the

holding times was not smooth, especially near the 2.0 second holding period interval. A

third degree polynomial was fitted to the lower portions of the curve in Figure 4.7 in

order to determine which holding period would produce a local minimum. This holding

period was then used in the simulation to generate another data point, and the cycle was

repeated. A locally minimum final cost of 4.2200 x 10-7 (ft)2 at a holding period of 2.02

seconds was found using this iterative process. Hence, the locally optimum holding time

for the GT3 type of trajectory was determined to be 2.02 seconds.

4.2.2 Initial Angle Effects

All the initial gimbal angles were varied using the locally optimized trajectory

determined in the previous section as the baseline. The initial variations were in

increments of 45 degrees, starting at zero initial conditions and going up to 315 degrees.

The final costs for each trajectory were plotted together to compare the effects of the initial

angles on the cost function at the end of the simulation. Note that the variations of a

given initial gimbal angle were done while holding the other two initial angles at zero.

The first angle that was varied was the outer gimbal angle. As mentioned in

Chapter 3, the initial outer gimbal angle was not expected to affect the cost function,

because the body frame sensitivities did not depend on the outer gimbal angle. When the

initial outer gimbal angle was varied, the simulation produced cost functions that were

identical over all the angle variations. These results validated the assumption that the

initial outer gimbal angle did not affect the cost function.
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When the initial inner gimbal angle was varied, there was very little effect on the

final cost function. These results seemed non-intuitive, because the body frame

sensitivities were very dependent on the initial inner gimbal angle. The results for these

angle variations were not shown, because the effects on the final cost function were

negligible.

When the initial middle gimbal angle was varied, there were corresponding

variations in the cost function. These results are shown in Figure B.9, where the legend

indicates the initial middle gimbal angle in degrees for each run. Note that the effects on

the cost function were very small, and therefore the scale for the plot in Figure B.9 was

adjusted to display the differences more clearly. Variations in the middle gimbal angle

produced some cost function values that were better and some that were worse than the

cost function for zero initial conditions. A plot of the final cost versus the initial middle

gimbal angles is given in Figure 4.8. Recall that the baseline started at zero initial angles

and had a holding period of 2.02 seconds.

The 45 degree variations in initial middle gimbal angle showed that lower final

costs could be obtained by changing the initial conditions. Once again, polynomials were

fitted to the lower portions of the curve in Figure 4.8. The initial angles that produced

minimums in the polynomials were then used to perform more simulation runs. These

extra data points were also included in Figure 4.8. The results of this local optimization

showed that an initial middle gimbal angle of 159.5 degrees produced a minimum final

cost of 4.2070 x 10-7 (ft)2.

Using the initial middle gimbal angle of 159.5 degrees and the holding period of

2.02 seconds, the initial inner gimbal angle was varied once again to determine if it

affected the final cost. In this case, the initial angle did affect the final cost. The effect of

the initial inner gimbal angle on the cost function is shown in Figure B.10, where the

legend indicates the initial inner gimbal angles in degrees for each run. The final cost is

plotted versus the initial inner gimbal angle in Figure 4.9. The same procedure as above
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Final Cost vs Initial Inner Gimbal Angle

Initial Middle Gimbal Angle = 159.5 deg
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was used to find what initial inner gimbal angle resulted in the lowest final cost. The data

points produced by the extra simulation runs were also used in Figure 4.9. The

variations of initial inner gimbal angle showed that the final cost could be further reduced

if an angle of 96.0 degrees was used. This initial inner gimbal angle resulted in a final

cost function of 4.1983 x 10-7 (ft)2 .

4.2.3 Summary of Trajectory Characteristic Effects

A locally optimal trajectory was found by varying the holding times at the

maximum rate and the initial gimbal angles of GT3. First, a holding time was determined

that resulted in the lowest final cost. Then, the initial middle gimbal angle was varied

until another minimum in the final cost was found. Finally, the final cost was minimized

over all initial inner gimbal angles. This trajectory was called GT3opt and is shown in

Figure A.23. A summary of the effects on the final cost function is given in Table 4.1.

Table 4.1: Effects of Successive One-Dimensional Optimizations on Final Cost

Characteristics of GT3 Trajectory

Holding Time Initial Middle Gimbal Initial Inner Gimbal Final Cost (ft) 2

(sec) Angle (deg) Angle (deg)

0 0 0 4.6738 x 10-7

2.02 0 0 4.2200 x 10-7

2.02 159.5 0 4.2070 x 10-7

2.02 159.5 96.0 4.1983 x 10-7

Table 4.1 shows that the final cost for the GT3 trajectory was reduced over ten

percent by performing local optimizations over the holding time and the initial gimbal

angles. Note that each of these local optimizations was one dimensional in nature because

only one parameter was varied at a time. An optimization performed over all three of
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these parameters would require an extensive number of simulation runs. Since each

simulation run took approximately one and a half hours, an optimization over all three

parameters was impractical. Therefore, the results of Table 4.1 indicate only one possible

minimum for the final cost over all holding times and initial angles.

4.3 Extended Trajectories

This section discusses the results obtained from using the extended trajectory

segments introduced in Section 3.3.3. Recall that the segments were used in two ways.

First, they were used to develop an entire trajectory that excited individual coefficients.

Second, they were appended on to other trajectories.

4.3.1 Full Extended Trajectories

The trajectories that used only the extended trajectory segments were GT6, GT6b,

and GT6c. The purpose of these trajectories was similar to that of GTO. They were

designed to decrease the uncertainties in a specific coefficient by producing a large

sensitivity for that coefficient while minimizing the sensitivities of the other coefficients.

The cost function for all three of these trajectories are plotted in Figure B. 11. Note that

three different scales were used for the cost function so that the results of the three

trajectories could be compared over the entire interval.

Figure B. 11 shows clearly that the GT6 trajectory results in a smaller final cost

than both the GT6b and the GT6c trajectories. The GT6 trajectory reduced the cost

function to under 4 x 10-6 (ft)2 in 30 seconds. The GT6b trajectory required 150 seconds

and GT6c required 125 seconds to produce the same decrement in the cost. The major

difference between the GT6 trajectory and the GT6b and GT6c trajectories was the

emphasis placed on maximizing either the sensitivities or the observabilities of the

coefficients. GT6 produced larger sensitivities, but also excited other coefficients.

Apparently, the larger sensitivities rather than the higher observabilities were more

beneficial to the filter in reducing the uncertainties in the coefficients .
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The effects of each trajectory on the errors in the Z-accelerometer coefficients are

shown in Figures 4.10 through 4.12. The Z-accelerometer was representative of all three

accelerometers. Note that the errors were reduced relatively smoothly for the GT6

trajectory, whereas the GT6b and GT6c trajectories resulted in step-wise reductions.

This difference was due to the segments of GT6 that excited more than one coefficient.

The plot for GT6 also shows a step-wise reduction in errors between simulation times of

30 and 60 seconds. Recall that this portion of GT6 consisted of the three segments

designed to increase the body frame angular rates (GTX4, GTX5, GTX6). These same

segments were used in the GT6b and GT6c trajectories, because they did not excite any

extra coefficients and therefore provided the best observabilities.

The step-wise reductions in the coefficient errors for GT6b and GT6c indicate that

each segment was exciting a minimum number of coefficients, making them very

observable. It can be seen from Figures 4.11 and 4.12 that the extended trajectory

segments were indeed decreasing the errors in the coefficients they were designed to

excite. For example, the 30 to 40 second interval of GT6b consisted of the GTX4

extended trajectory segment. This segment was designed to reduce the errors in the

fourth coefficient. As shown in Figure 4.11, the errors for the fourth coefficient do

indeed drop in this interval. The errors in the fifth coefficient also drop, because the

fourth and fifth coefficients were highly correlated for the Z-accelerometer. Similarly, the

80 to 90 second interval of GT6c consisted of the GTX9 extended trajectory segment.

The GTX9 segment was designed to reduce the errors in the ninth coefficient, and Figure

4.12 shows that this is exactly what happened.

The difference in results between the GT6b and the GT6c trajectories could be

attributed to the order of the segments. The order of the segments dictated how many

reorientations needed to be performed throughout the trajectory. The GT6c trajectory was

designed to have fewer reorientations. For the first 60 seconds of the simulation the cost

for the GT6b trajectory was less than that for the GT6c trajectory. This can be attributed
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Figure 4.10: Z Accelerometer Coefficient Errors for GT6
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Z Accelerometer Coefficient Errors for GT6b
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Figure 4.11: Z Accelerometer Coefficient Errors for GT6b
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Z Accelerometer Coefficient Errors for GT6c
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to the same type of redundancy noted in the GTO trajectory. In this case, the GTXlb and

GTX4 trajectories were placed adjacent to each other. Since the GTX lb segment was

designed to produce an angular acceleration along the body frame X-axis and the GTX4

trajectory was designed to produce an angular velocity along the same axis, both

segments developed similar sensitivities. The final costs indicated that the GT6c

trajectory was better over the whole simulation in reducing the cost. This was a result of

the GT6c trajectory spending less time reorienting the test table and more time actually

within the extended trajectory segments.

All three of the full extended trajectories produced results that were considerably

worse than the results of GT 1. The lowest final cost was 5.1996 x 10-7 (ft)2 for the GT6

trajectory. This was twenty percent higher than the final cost for the GT1 trajectory,

which was 4.3415 x 10-7 (ft)2 . Therefore, the highly dynamic trajectories in which all

the gimbals were moving were considered better candidates for calibrating the

accelerometers than the full extended trajectories.

4.3.2 Extended Initial Trajectories

Another way in which the extended trajectories were used was to append them

onto the initial trajectories. The extended trajectory segments were appended to the GT4

trajectory, since GT4 produced the best results out of the first five trajectories. For GT4,

all the gimbal angular rates were near zero at a simulation time of 120 seconds.

Therefore, this time was chosen to be the point at which the extended trajectories were

appended, since the gimbal rates and accelerations could be started at zero.

The extended trajectories were originally designed to target specific coefficients

that the filter had difficulty in estimating. However, the results of the GT4 trajectory at

120 seconds showed that none of the coefficient errors were significantly greater than any

of the others. For this reason, two trajectories were developed that consisted of

appending the extended segments onto GT4. The first trajectory appended all of the
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segments in sequential order onto GT4, while the second trajectory appended the GTX 1

trajectory onto GT4 and repeated this segment until the end of the simulation.

The first trajectory, called GT4x, started at 120 seconds with GTX1 and then

went through each 10 second segment in the same order as GT6. This trajectory is

shown in Figure A.24. Note that the time frame shown goes from 100 to 160 seconds of

simulation time. This was done so the transition between the original GT4 trajectory and

the extended trajectory segments could be observed.

The second extended initial trajectory that was developed was called GT7 and is

shown in Figure A.25. This trajectory was the same as GT4 up to 120 seconds, then it

ran the GTX 1 extended segment over and over for the rest of the simulation. The GTX 1

segments were repeated, because this segment seemed to reduce the cost function most in

the GT6 trajectory. The GTX 1 segment also excited all of the coefficients. If only one

coefficient was targeted, the reduction of the errors in that specific coefficient would not

reduce the cost by much. The cost would not be affected much since many of the

coefficient errors were of the same magnitude at the end of 120 seconds in the GT4

trajectory.

The results of both GT4x and GT7 are plotted with the results of GT4 in Figure

B.12. Two plots are shown in order to observe the initial effects of the extended

segments on the cost functions. The second plot shows that for the first 30 seconds after

the transition, both GT4x and GT7 result in lower cost functions. However, at 150

seconds, the cost function for the GT4x trajectory levels out. This was due to the

segment that excited the angular velocity along the body frame X-axis. Similar flat

portions of the cost function curves were observed in the GT6 trajectory. These level

portions of the curve were due to the filter only getting information on two of the

coefficients (one that depends on the angular velocity and one that depends on the angular

acceleration, both along the body frame X-axis). The GT7 trajectory produced a very

similar cost function reduction to that of GT4. This was expected, because the GTX 1
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trajectory segment was very similar to the gimbal motion in GT4. However, the final

cost for the GT4 trajectory was 4.2981 x 10-7 (ft) 2, which was slightly lower than the

final cost for the GT7 trajectory (4.3377 x 10-7 (ft)2).

4.3.3 Summary of Extended Trajectories

The extended trajectories discussed in this section were similar in design to the

original trajectory GTO. Each segment was designed to excite one specific coefficient. In

the case of the GT6 trajectory, other coefficients were also excited in some of the

segments. The other coefficients were excited because these segments were designed to

maximize the body frame sensitivities. In maximizing a particular sensitivity, some of the

other coefficient sensitivities were also produced. The GT6b and GT6c trajectories were

more similar to the GTO trajectory in that maximum observability of a specific coefficient

was achieved in each segment. However, the results from all the full extended

trajectories indicate that producing more than one sensitivity at a time can provide better

results.

A major difference between the full extended trajectories and the GTO trajectory

was the reorientation between segments. The GTO trajectory does not explicitly include

the time to reorient the test table between segments. Therefore, the actual testing time for

the GTO trajectory would be somewhat longer than indicated. The full extended

trajectories defined in this thesis do incorporate short reorientations between segments.

Measurements are still taken during the reorientation and are used in the filter. The

difference between the GT6b and the GT6c trajectories indicate that these short

reorientation periods play a significant role in the reduction of the estimate errors.

4.4 Modeling Effects

This section discusses the results of modifications made to the model or the filter

used in the simulation. These modifications included changes in the step size used in the

116



Runge Kutta integration, changes in the frequency of measurements, and the addition of

the three states used to characterize the gimbal axis displacements.

4.4.1 Runge Kutta Integration Step Size Effects

Since the dynamics matrix was changing rapidly for most of the simulation, small

step sizes had to be used for the numerical integration. In order to verify the accuracy of

the numerical integrator, the GTI trajectory was run with variations in the number of

Runge Kutta integrations per measurement. The measurements were assumed to be taken

every 0.05 seconds. The resulting cost functions of these runs are shown in Figure

B. 13. This plot shows that there were significant differences among the trajectories that

used less than twenty integrations between measurements. However, the results using

twenty and forty integrations per measurement were identical. Therefore, the use of

twenty integrations per measurement was validated. This resulted in a Runge Kutta step

size of 0.0025 seconds.

4.4.2 Measurement Frequency Effects

The number of measurements taken in a given time period was varied in order to

observe the effects of measurement frequency on the cost function. The GTI trajectory

with measurements taken every 0.05 seconds, a measurement frequency of 20 Hz, was

used as the baseline. Only two variations were run, using measurement frequencies of 10

Hz and 100 Hz. The results of these variations are shown in Figure B. 14, where the

legend indicates the time between measurements in seconds for each run. The final cost

for the 100 Hz measurement frequency was 1.1215 x 10-7 (ft)2 and the final cost for the

10 Hz measurement frequency was 8.3670 x 10-7 (ft) 2 . As expected, the higher

measurement frequency produced much better results. This was due to more information

being processed by the filter. Also, the process noise acted over a smaller interval of time

before another measurement was made.
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4.4.3 Incorporation of Gimbal Axis Displacements

Three more states were included in order to model the effects of the small gimbal

axis displacements. The incorporation of the errors due to these states was performed by

modifying the measurement matrix H as shown in Section 2.2.2.1. The results of

including these three extra states are shown in Figure B. 15, where the GT3 trajectory was

used as the baseline. Note that the scales on Figure B. 15 are small in order to show the

differences between the two runs. The results for the GT3 trajectory were representative

of the results for all the high dynamic trajectories. It can be seen that the difference

between the 33-state results and the 36-state results was quite small. For the GT3

trajectory, the final cost without incorporating the gimbal axis displacements was 4.6738

x 10-7 (ft) 2 and the final cost with the displacements was 4.7065 x 10-7 (ft) 2 . The

difference between the cost functions is more easily seen in Figures 4.13 and 4.14.

These plots show the additional cost that resulted when the gimbal axis displacement

states were used in the GTO and GT3 trajectories, respectively. The additional cost was

obtained by subtracting the cost of the 33-state simulation run from the cost of the 36-

state simulation run at every time along the trajectory.

Both Figures 4.13 and 4.14 show that the additional cost was larger in the

beginning of the simulation than at the end. This could be attributed to the filter gaining

more information about the gimbal axis displacements as the simulation progressed. Note

that the discrete jumps in the plot of Figure 4.13 occurred between the segments of the

GTO trajectory. The errors in the gimbal axis displacements versus the simulation time

for the GT I trajectory are plotted in Figure B. 16. It can be seen that the filter was able to

estimate the displacements between the middle and inner gimbal axes better than the

displacement between the outer and middle gimbal axes. By reducing the errors in the

gimbal axis displacements, the filter was better able to assign error accelerations to the

effects of specific coefficients. Although the difference in coefficient errors between the

33 and the 36-state runs became smaller, the 36-state errors were still larger. This was

118



Extra Cost Due to Gimbal Axis Displacements vs Time

GTO Trajectory

4E-06

3.2E-06

2.4E-06

1.6E-06

8E-07

0
50 100 150 200 250

Simulation Time (sec)
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Extra Cost Due to Gimbal Axis Displacements vs Time

GT3 Trajectory
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Figure 4.14: Extra Cost Due to Gimbal Axis Displacements for GT3
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expected, since running the 33-state filter was analogous to running the 36-state filter

with zero uncertainties in the gimbal axis displacement states.

4.5 General Error Estimation Trends

This section summarizes the results presented in the previous sections of this

chapter. The costs at the final simulation time of 270 seconds are presented for each

trajectory. Table 4.2 summarizes the results obtained from all the basic trajectories. The

results obtained by performing the one-dimensional optimizations on the GT3 trajectory

are shown in Tables 4.3 through 4.5. This section also describes general aspects of the

results. These aspects include how the position and velocity errors changed during the

simulation and which coefficients were the most difficult to estimate.

4.5.1 Summary of Results

Table 4.2: Final Costs for All Basic Trajectories

Trajectory Group J Trajectory Name Final Cost (ft)2

Previous Trajectory GTO 3.4417 x 10-6

GTI 4.3415 x 10-7

Initial Heuristic Trajectories GT2 4.3201 x 10-7

GT3 4.6738 x 10-7

Improved Trajectories GT4 4.2981 x 10-7

GT5 8.2769 x 10-7

GT6 5.1996 x 10-7

Full Extended Trajectories GT6b 1.8697 x 10-6

GT6c 1.7193 x 10-6

Extended Initial Trajectories GT4x 4.6393 x 10-7

GT7 4.3377 x 10-7

GTO 36 3.4678 x 10-6

Trajectories Including GT1_36 4.3629 x 10-7

Gimbal Axis Displacements GT3_36 4.7065 x 10-7

GT6_36 5.2461 x 10-7
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Table 4.3: Final Costs for Variations in Holding Times on GT3 Trajectory

Holding Time (sec) Final Cost (ft) 2

0.00 4.6738 x 10-7

0.50 4.3705 x 10-7

1.00 4.3169 x 10-7

1.60 4.3286 x 10-7

2.00 4.2369 x 10-7

2.02 4.2200 x 10-7

2.40 4.2748 x 10-7

3.00 4.2663 x 10-7

4.00 4.3065 x 10-7

6.00 4.3744 x 10-7

Table 4.4: Final Costs for Variations in Initial Middle Gimbal Angle for GT3

Initial Middle Gimbal Final Cost (ft)2

Angle (deg)

0 4.2200 x 10-7

45 4.2781 x 10-7

90 4.2823 x 10-7

135 4.2243 x 10-7

159.5 4.2070 x 10-7

180 4.2195 x 10-7

225 4.2779 x 10-7

270 4.2776 x 10-7

315 4.2228 x 10-7

360 4.2200 x 10-7
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Table 4.5: Final Costs for Variations in Initial Inner Gimbal Angle for GT3

Initial Middle Gimbal Final Cost (ft)2

Angle (deg)

0 4.2070 x 10-7

45 4.2095 x 10-7

90 4.1986 x 10-7

96.0 4.1983 x 10- 7

135 4.2061 x 10-7

180 4.2076 x 10-7

225 4.2097 x 10-7

270 4.2097 x 10-7

315 4.2050 x 10-7

360 4.2070 x 10-7

Table 4.2 shows that all the new trajectories provided significant improvements

over the previous trajectory of GTO. Even the fully extended trajectories of GT6, GT6b,

and GT6c resulted in costs that were approximately half that of the GTO trajectory. Table

4.2 also shows that the high dynamic trajectories, where all the gimbal axes experienced

motion simultaneously, produced lower costs than the fully extended trajectories, where

typically only one or two gimbals at a time were subjected to motion. The best trajectory

before any optimizations were done was the GT4 trajectory.

Tables 4.3 through 4.5 show that by performing a series of one-dimensional

optimizations over the trajectory parameters, an even lower final cost can be obtained.

The improvement over the GT3 trajectory was significant (10% reduction in final cost),

but the improvement over the GT4 trajectory was small (2.3% reduction in final cost).

Most of the improvement was realized by optimizing over the holding time, while the

initial gimbal angles had a relatively small effect.

123



4.5.2 Position and Velocity Errors

The errors in the local level positions and velocities were also reduced throughout

the simulation. The time history of the position and velocity errors for the GTI trajectory

are shown in Figure B.17. As shown in the plots, these errors oscillated with a

decreasing amplitude and approached steady state values. The oscillations were due to

the dynamics of the trajectory. At some points in the trajectory the gimbals were barely

moving. This resulted in a nearly zero dynamics matrix, so the increase in the errors was

due solely to the process noise matrix Q. At other times, however, the gimbals produced

a highly dynamic environment for the INS system, which resulted in a large growth in

errors. The standard deviations of the position and velocity approached steady state

values of 3.17 x 10-3 ft and 4.80 x 10-3 ft/s, respectively.

4.5.3 Worst Coefficient Estimates

In all the simulations run there were specific coefficients that were consistently

more difficult for the filter to estimate. Looking at Figures 4.1 through 4.3 once again,

we can see that for the GTO trajectory, each accelerometer had a few coefficients whose

standard deviations remained higher than all the others. For the X and Y-accelerometers,

these were the third and seventh coefficients (C13, C17 and C23, C27). For the Z-

accelerometer, the second and eighth coefficients (C32 and C38) both had high standard

deviations relative to the other Z-accelerometer coefficients. Further investigation of the

coefficient error plots in Figures 4.6, 4.10, 4.11, and 4.12 show that these specific

coefficients remained the hardest to estimate. However, the difference between the errors

in these coefficients and the other coefficients was not as noticeable for the high dynamic

trajectories.

The significance of these particular coefficients is that they are the ones that

contain the anisonertia and output axis coupling terms. Referring to the diagram in Figure

2.3, we see that the output axis for both the X and Y-accelerometers are parallel to the

case frame Z-axis, while the output axis for the Z-accelerometer is parallel to the case Y-
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Y-axis. Therefore, an angular acceleration along the body frame Z-axis (which is the

same as the case Z-axis) will produce an error due to output axis coupling effects in the X

and Y-accelerometers. Similarly, an angular acceleration about the body frame Y-axis

will produce errors due to output axis coupling in the Z-accelerometer. The sensitivities

to these effects are the C13, C23, and the C32 coefficients for the X, Y, and Z-

accelerometers, respectively.

The anisonertia errors are due to the product of the angular velocities along the

input and pendulous axes. For the X and Y-accelerometers, this becomes the product of

the angular velocities along the body frame X and Y-axes. For the Z-accelerometer, this

is the product of the angular velocities about the body frame X and Z-axes. The

sensitivities to these angular velocity products are the C17, C27, and C38 coefficients for

the X, Y, and Z-accelerometers, respectively.

The larger errors in these coefficient estimates were due to the higher initial errors

in these terms. Table 3.2 shows that the initial standard deviations of these terms were

the highest at 0.280 inches. This was due to the dependence of these coefficients on both

a lever arm distance and a size effect distance. The other coefficients were mostly

functions of products of misalignments and distance terms, with some of the coefficients

also depending on a single lever arm distance.

The effects of isolating the anisonertia and output axis coupling coefficients can be

seen in the cost function plot for the full extended trajectories (Figure B. 11). Looking at

the plot for the GT6b trajectory, we note that the C 13 and C23 coefficients were targeted

in the 110 to 120 second and the 200 to 210 second intervals. These portions of the cost

plot show that very small decreases in the cost were realized in these intervals. The C 17

and C27 coefficients were targeted in the 150 to 160 second and 240 to 250 second

intervals. The results in these intervals show that a more significant reduction in the cost

function was obtained. The intervals that targeted the C32 coefficient were 100 to 110

seconds and 190 to 200 seconds, while the intervals that targeted the C38 coefficient were
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160 to 170 seconds and 250 to 260 seconds. The cost was reduced very slightly in the

100 to 110 interval, but was not noticeably affected in the other intervals.

The largest reduction in the cost function was realized when the C17 and C27

coefficients were targeted by applying the GTX7b trajectory. One possible reason for the

better results obtained using the GTX7b trajectory was that both the X and Y-

accelerometers were being targeted. This allowed for a reduction in the errors of two

coefficients at the same time. On the other hand, targeting the Z-accelerometer anisonertia

or output axis coupling coefficients only targeted one coefficient. Note, however, that the

overall effects of targeting the anisonertia and output axis coupling coefficients were quite

small.
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Chapter 5

Conclusions

5.1 Summary

The goal of this thesis was to develop a trajectory that resulted in more accurate

estimation of the error terms that related angular motion of a strapdown system to errors

in the accelerometers. This was done by defining a cost function that was the sum of all

the accelerometer error coefficient variances. Various trajectories were then implemented

to measure their effects on the final cost. The results indicate that all the trajectories

developed in this thesis provide a significant improvement over the previously existing

trajectory. The best overall trajectory tested was the GT3opt trajectory, resulting in a final

cost of 4.1983 x 10-7 (ft) 2 , which was an 87.8% decrease from the original GTO

trajectory results of 3.4417 x 10-6 (ft)2.

Another goal of the thesis was to investigate the effects of trajectory characteristics

on the uncertainties of the error coefficients. One of the major tradeoffs between

trajectories was whether to develop high sensitivities or to assure high levels of

observability. The trajectories that produced the highest sensitivities did not have the best

observability characteristics. The gimbal motion in these cases produced similar

oscillations among many of the error coefficients. However, the trajectories that had the

highest levels of observability produced sensitivities that were much smaller. The

decrease in sensitivities resulted in smaller measurable acceleration errors, which made

estimation of the accelerometer coefficients more difficult. The results indicate that the

highly dynamic trajectories that produced large sensitivities were better than the

segmented trajectories that assured the greatest observabilities.

Other trajectory parameters were varied to measure the effects they had on the

uncertainties of the accelerometer error coefficients. The variations were done using one
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of the high dynamic trajectories as a baseline. The two types of variations were the time

the gimbals were commanded to stay at their maximum rates and the initial gimbal angles

before the simulation was started. Variations in the holding times at maximum rate

showed that a one-dimensional optimization could be performed that resulted in a final

cost that was lower than that of the previously best trajectory by 1.8%. The improvement

was so small because the trajectory that was optimized over all the holding times was very

similar to the previously best trajectory (GT4). The holding time that resulted in the

minimum final cost was 2.02 seconds. The variations in holding time were a measure of

the tradeoff between the sensitivities developed by accelerating the gimbals and the

sensitivities developed by leaving the gimbals at their maximum rates. Varying the

holding times also changed the way in which the body frame sensitivities were

modulated, producing variations in the observabilities of the error coefficients. This

effect was more difficult to analyze, because a small change in the holding period

produced body frame sensitivities that were significantly different as the simulation time

increased.

Further improvements were made to the final cost by varying the initial gimbal

angles. A locally optimum initial middle gimbal angle of 159.5 degrees was found such

that the final cost was minimized. The initial middle gimbal angle variations were made to

the trajectory that used the holding period of 2.02 seconds, obtained from the holding

period optimization. After the initial middle gimbal angle was optimized, the initial inner

gimbal angle was varied, keeping the holding time constant at 2.02 seconds and the initial

middle gimbal angle at 159.5 degrees. This one-dimensional optimization resulted in a

further reduction of the final cost when the initial inner gimbal angle was set to 96.0

degrees. The result of all three of these local, one-dimensional optimizations was the

GT3opt trajectory, which produced the best results of all the trajectories.

The effect of modeling the small displacements between the test table gimbal axes

was also investigated. There was very little difference between the results obtained when
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the gimbal axis displacements were incorporated and when they were not. The small

differences may be attributed to the magnitudes of the displacements. Since the

displacements were known to be less than .0085 inches, the lever arm and size effect

errors were expected to dominate any errors due to the gimbal axis displacements.

5.2 Proposed Future Work

One area of work that could be expanded further is the optimization of the

dynamic trajectories. Since the best trajectory developed in this thesis was due to the

optimizations, this method warrants further work. As mentioned, three one-dimensional

optimizations were performed over three different parameters of the trajectory. This

method provided one local minimum in the final cost. However, many such

optimizations could be performed, resulting in a number of local minimums. A more

global optimization, performed over all important characteristics of the trajectory could be

implemented.

There were no specific requirements on the final accuracies to which the

coefficients were determined. The best trajectory for reducing the cost function depended

on what time the simulation was stopped. Some of the trajectories that did not provide

the lowest cost at the final time of 270 seconds, actually provided superior results for

shorter time intervals. Therefore, the best trajectory was a function of how long the

simulation was run. The final time of 270 seconds was chosen as an arbitrary stopping

point. A more realistic simulation would stop once the errors were reduced to an

acceptable level. The time to reach that point would then be taken as the cost function to

be minimized. Of course, the trajectories would have to be capable of calibrating the

accelerometer coefficients to the desired accuracy.

Another area of further research could involve the separation of the test table

errors from the accelerometer errors due to angular motion. This was partly

accomplished by separating out the gimbal axis displacements, which did not appear in

the accelerometer coefficients. However, the lever arms from the center of the test table
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to the accelerometers were a part of the definition of every accelerometer coefficient.

Ideally, the calibration would result in the distances between the accelerometers in the

INS. If the lever arm from the axis of angular motion to the navigation reference point is

known, the distances between the accelerometers could then be used to predict the

accelerometer errors for any angular motion experienced by the INS. In laboratory tests,

the lever arm from the center of the test table to the reference navigation point will be

different for each mounting on any test table. Since the coefficients defined in this thesis

are functions of these lever arms, then the calibration will produce different results for

different mounts. To produce consistent calibrated quantities, the functional dependence

of the coefficients on the lever arms must be removed. At the same time, the lever arms

must also be calibrated separately, because they are still required to determine the

acceleration errors.
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Appendix A

Test Table Gimbal Trajectories
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132

50 100 150 200

Simulation Time (sec)

inner

-.- .middle

-0- outer

0 50 100 150 200 25(

Simulation Time (sec)



GT1 GIMBAL TRAJECTORY
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Figure A.2: GT1 Gimbal Trajectory
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GT2 GIMBAL TRAJECTORY
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GT3 GIMBAL TRAJECTORY
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GT4 GIMBAL TRAJECTORY
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GT5 GIMBAL TRAJECTORY
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GTX1b EXTENDED GIMBAL TRAJECTORY
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GTX2 EXTENDED GIMBAL TRAJECTORY
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GTX2b EXTENDED GIMBAL TRAJECTORY
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GTX3 EXTENDED GIMBAL TRAJECTORY
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GTX3b EXTENDED GIMBAL TRAJECTORY
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GTX4 EXTENDED GIMBAL TRAJECTORY
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GTX5 EXTENDED GIMBAL TRAJECTORY
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GTX6 EXTENDED GIMBAL TRAJECTORY
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Figure A.15: GTX6 Extended Gimbal Trajectory
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GTX7 EXTENDED GIMBAL TRAJECTORY
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GTX8b EXTENDED GIMBAL TRAJECTORY
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GTX9 EXTENDED GIMBAL TRAJECTORY
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GT6 GIMBAL TRAJECTORY
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GT6b GIMBAL TRAJECTORY
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Figure A.21: GT6b Gimbal Trajectory
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GT6c GIMBAL TRAJECTORY
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Figure A.22: GT6c Gimbal Trajectory
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GT3opt GIMBAL TRAJECTORY
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Figure A.23: GT3opt Gimbal Trajectory
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Figure A.24: GT4x Gimbal Trajectory
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Body Frame X-Axis Sensitivities for GT6
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Body Frame Y-Axis Sensitivities for GT6
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Body Frame Z-Axis Sensitivities for GT6
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Body Frame Sensitivities for GT6b
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Cost Function vs Time

GTO Trajectory
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Cost Function vs Time

Initial Heuristic Trajectories
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Figure B.6: Cost Function for Initial Heuristic Trajectories
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Cost Function vs Time

GT4 and GT5 Trajectories
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Figure B.7: Cost Function for GT4 and GT5 Trajectories
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Cost Function vs Time

Holding Time Effects on Cost Function
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Cost Function vs Time
Initial Middle Gimbal Angle Effects on Cost Function
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Cost Function vs Time
Initial Inner Gimbal Angle Effects on Cost Function

Holding Period = 2.02 sec
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Figure B.10: Initial Inner Gimbal Angle Effects on Cost Function
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Cost Function vs Time

Full Extended Trajectories
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Figure B.11: Cost Function for Full Extended Trajectories
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Cost Function vs Time

Extended Initial Trajectories
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Figure B.12: Cost Function for Extended Initial Trajectories
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Cost Function vs Time

Runge Kutta Step Size Effects
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Figure B.13: Runge Kutta Step Size Effects on Cost Function
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Cost Function vs Time

Measurement Frequency Effects
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Figure B.14: Measurement Frequency Effects on Cost Function
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Cost Function vs Time

Gimbal Axis Displacement Effects for GT3
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Figure B.15: Gimbal Axis Displacement Effects on Cost Function for GT3
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Gimbal Axis Displacement Errors vs Time

GT1 Trajectory
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Figure B.16: Gimbal Axis Displacement Errors vs Time for GT1
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Position and Velocity Errors vs Time
GT1 Trajectory
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Figure B.17: Position and Velocity Errors for GT1 vs Time
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Appendix C

Gimbal to Body Transformations

The transformations from the gimbal angular velocities and angular accelerations

to the body frame angular velocities and angular accelerations are derived in this

Appendix. The methodology described in [24] is used to derive the transformation from

gimbal angular rates to body frame angular velocities. The transformations are given by

equations (C.7) and (C.12), which are the same as equations (2.23) and (2.22) in the

text.

Figure C. 1 shows the transformation between the local level frame and the body

frame. The body frame is fixed to the inner gimbal, and is therefore the same as the inner

gimbal frame. Note that the transformation shown in Figure C. 1 is a typical 3-2-1 Euler

transformation through angles 4, 0, and W, respectively. For this transformation it was

assumed that the middle gimbal of the test table, or the pitch axis, was initially deflected

Z1" zz'
w

0- v'I,

x x

x",u

Figure C.1 Local Level Frame to Body Frame (3-2-1) Transformation
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by positive 90 degrees. This deflection provided three gimbal axes that were initially

orthogonal. The middle gimbal angles throughout the simulation are measured from this

initially deflected position.

The transformation matrix C"", which transforms a vector from the local level

frame (x,y,z) to the body frame (u,v,w) is given as a function of the Euler angles:

cOcO cO6s -sO

CUM = -cY/sO + s Ys/c cYcO + sY/sOsO sYcO
syfsO + cYsOcO -sycO +cYssO cyfcoj

where c() and so indicate the cosine and the sine of the appropriate angle. For the case of

the test table used in this simulation, the angles , 0, and y were represented by the

outer, middle, and inner gimbal angles (00, 0m, 0i). Therefore, the transformation is

written as:

ComCo comSo -sO]

C" = -cOsO,, + sOisOmcO,, cOicO,, + sO,sOMs,,O sO,cO, (C.1)

sO,sO,, + cOismcO,, -sOicO,, +cO,sems ,, cOcom

Angular Velocity Transformation

The Euler rates are given as the yaw rate, pitch rate, and roll rate. For the test

table simulation these rates correspond to the outer gimbal rate, middle gimbal rate, and

inner gimbal rate, respectively. From Figure C. 1 the total angular rate is given by:

0 = + 0' + ti (C.2)

where i, y', and i are unit vectors along the indicated axes of Figure C.1 and
S= 0,, = outer gimbal angular velocity

S= ow, = middle gimbal angular velocity

t = o, = inner gimbal angular velocity

To find the angular velocity in the body frame, components of o are taken along the body

axes:
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= 0^ .+ ^ a + f

0 = 0. i + '.- (C.3)

c= OW + 6'

Using the transformation matrix given in (C. 1) we have

-i U= C3, = -sin 0

Z V = C23 = sin igcos6 (C.4)

Z W = C33 = cos yCOs O

The transformation from (x',y',z') coordinates to (u,v,w) coordinates is accomplished

using C"' with 4 set to zero. The rotation is now a simple 2-1 rotation through the

angles 0 and iy and the following relations can be written:

Y' ;= c,2( = 0) = 0

'Y = C22(0 = 0) = cos (C.5)

Y'. W = C32(~= 0)= -sin Vy

Substituting (C.4) and (C.5) into (C.3) we obtain:

(o, = -0 sin 0 + ~t

(O, = Osin ycos 0 + Ocos y (C.6)

o, = cos ycos 0 - Osin V

Substituting the table gimbal rates in for the Euler angle rates we obtain equation (2.23),

the transformation from the gimbal rates to the body rates:

b NO)g__ = Ag~" (C.7)

where

oh = ov, = angular velocity vector in the body frame (u,v,w)
CO0W
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0) = 0), =gimbal angular velocities

-sin O 0 1
A" = sin 0, cos 0. cos6, 01

cos 0 cos0m -sin6, 0

Angular Acceleration Transformation

To derive the angular acceleration transformation, the derivative of equation (C.2)

is taken:
do) (C.8)S--= o +i +0' + 0+ 9 + VUV (C.8)dt

First, the three time derivatives of the unit vectors are analyzed. The time

derivative of Z is zero, because Z is a local level axis that doesn't move with time. Since

y' is affected only by 0 and not by 0 or y, we can write:

, d5' d ' do d^1
y =- -

dt do dt do

where from Figure C. I1 we have:

y = -sin4 + cos 5

Therefore,

5' = -(cos 0 . + sin ) (C.9)

Similarly, the body frame unit vector ui is affected by both # and 0, so the time derivative

is written as:
d i d do di de di du =-- +--= + -
dt do dt dO dt do dO

From Figure C. 1 we have:

u = cos 0 ^' - sin 0 Z'

and
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z =z

x = cos 0 . + sin Y

Therefore,
S= cos cos + sin cos 8 - sin 8

= -sin cos# 0^ + cos 0 cos y

= - cos # sin 0 - - sin 0 sin 8 y - cos 09
dO

The resulting i is then

U = (-sin . + cos ~ )cos 0 - [sin 6 (cos - + sin 4 Y) + cos8 0 ]0 (C. 10)

Substituting (C.9) and (C. 10) into (C.8), and taking components along the body axes we

obtain the transformation from gimbal angular accelerations to body frame angular

accelerations:

ah = C gal(_ , g )+ a2(0", ) (C.11)

where C, . is defined in (C. 1) and al and a2 are vector functions of the gimbal angular

accelerations, angular velocities, and angles. Substituting 00, 0 m, and 0i for the Euler

angles 0, 0, and W, and using o = 0 and a = 6, the expressions for al and a2 are:

--,, cos 0,, - w,, sin 0, cos 06 - (o, t, sin 0m cos 0,,

al = -o, w, sin ,, + wo, cos O, cos O, - wo m , sin Om sin ,,
a, - ,mO icos Om

a2= amcosOi

[-am sin 0,

The first term in equation (C.11) can be multiplied out and simplified into a vector

function that depends on the gimbal angles, products of the gimbal angular rates, and the

gimbal angular accelerations. Combining this vector function with the vector a2 we

arrive at the desired expression for the angular accelerations in the body frame:

179



-O (McOm - a,,sO, + ai

ab = o JiciCO m -omOO - (O Sm OiS + a,,sOicOm + OmCO i  (C. 12)

L-~,,sO,cOm - wo(mCOisO. - WmoCOi + a,cOcOm - asO,

Equation (C. 12) was used for equation (2.22) in the text.
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Appendix D

Square Root Filter

The Cholesky decomposition algorithm and square root filter formulas presented

in this appendix were taken from [21]. Also, the square root filter propagation equation

of Andrews was taken from [20].

Cholesky Decomposition

Cholesky decomposition creates a triangular square root A of a symmetric nxn

positive semi-definite matrix B such that AAT=B. A is determined by equating the terms

of AAT and B. The columns of A can be solved for sequentially, starting with the nth

column. The following recursive algorithm produces an upper triangular square root

matrix A where Aji=O for all j>i. For i=n to 1 compute:

n 1/2

A,, = B,, - A, k2  (D. 1)
k=i+l J

A i= B1 - XAJAi i j= i-l, 1 (D.2)
k=i+l

Square Root Filter Equations

For the square root formulation of the Kalman filter equations the measurements

are incorporated one at a time as scalars. In this case, z, hT, and r replace z, H, and R.

The covariance measurement update equation (2.33) can be rewritten as:

W+W+T = W-[I - ff T/a](W-) T  (D.3)

where W is the square root of the covariance matrix P defined by:

P= WWT
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Carlson's optimal measurement incorporation equations in square root form are

written as:

f = (W-)Th (D.4)

a = r + f f (D.5)

W ' = (W-)[I - ffT / a]'/2 (D.6)

Z' = - + (W-)f Az/a (D.7)

where W- is assumed to be upper triangular. In order for equation (D.6) to yield a

product in upper triangular form, an upper triangular square root of the matrix [I-ffT/a]

must be used. This upper triangular square root matrix is determined through an analytic

Cholesky decomposition described above, using equations (D.1) and (D.2). If A is

prescribed to satisfy the relation

AAT=[I-ffT/a]=B (D.8)

then the elements of B are given by

Bii = 1-fi2/a (D.9)

Bji = -fjfi/a (D.10)

The expressions for the elements of A can be reduced to:

Ai = (at- t)1/2 (D. 11)

Aji = -fjfi/(at-la1) 1/2 j=i-l, 1 (D.12)

where at represents a sequence of partial differences, which can also be expressed as a

sequence of partial sums using equation (D.5):

a, - a - f,2 ..... fi+12 1 r + f2 +_..+ f2 (D.13)

where a, - a. The values a,were computed with no loss of precision due to

subtraction using:
a= r

(D.14)
i =a _+fi2  i=l,n

The extrapolation equation used to propagate the square root of the covariance

matrix was given by Andrews as:
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W=FW+ Q(WT)-' (D. 15)
2

This equation can be verified by expanding the time derivative of the covariance matrix P:

P = Ww T + WW T

1 1
= [FW+ Q(WT ) - ' ]WT + W[WTFT + -'Q]

2 2
1 1

= F(WW T)+-Q+(WW T )FT +-Q
2 2

= FP+ PFT + Q

which is the matrix Ricatti equation (2.32). Equation (D.15) is numerically integrated

between measurement times to propagate W forward in time.
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