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ABSTRACT

The purpose of this thesis is to examine the nature of aircraft surface motion on
the airport surface during normal operations. Twelve hours of radar data, gathered by
MIT Lincoln Laboratories from Logan airport in Boston, were made available for this
study. Specifically, the data included target position reports from the ASDE-3 surface
surveillance radar and the ASR-9 radar from the near terminal airspace information. This
data covers a variety of runway configurations, weather conditions, traffic levels and high
or low visibility conditions.

The study is divided into three sections. The first one focuses on the runway, and
examines occupancy times, exit velocities, exit usage and velocity profiles of the final
approach and landing phase. The second section, analyzes fourteen runway-taxiway
intersections. Results are presented for the crossing times and usage of these
intersections. The analysis also focuses on relating crossing times and usage to crossing
direction, runway configuration and aircraft size. Finally, average taxiway velocities and
the overall taxiway usage is measured. Additionally, the role that the location of the
taxiway segment as well as its length, plays in the variation of these velocities are
examined. Where possible, this study includes means, standard deviations and sample
sizes of the variables in question.

Thesis Supervisor :  Dr. Robert W. Simpson
Director, Flight Transportation Laboratory
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Chapter 1

Introduction

1.1 Background

After forty years of regulation by the Civil Aeronautics Board, in 1978 Congress enacted
the Airline Deregulation Act, which phased out economic regulation of the industry. In
the years following deregulation many new carriers entered the airline industry. The old
and the new airlines soon started servicing new city-pair markets, offering expanded
services and competitive fares. These developments resulted in a significant increase in
the overall traffic levels. In order to provide higher schedule frequencies and more
efficient use of their fleet, the airlines soon abandoned the point-to-point route networks

and adopted hub and spoke network systems that concentrated traffic around hub airports.
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The increased passenger traffic coupled with the concentration of this traffic around, led

to congestion within the available airspace and subsequent delays in these hub airports.

Due to the aforementioned reasons, the need to develop means for greater
efficiencies in aircraft operations became apparent. Major efforts are undertaken today,
focusing on the use of advanced technologies for airborne and ground traffic control
systems in a concentrated effort to decrease the unused airspace and increase airport
capacity while simultaneously maintaining or even increasing safety levels. One such
area of focus is the airport surface, where especially in periods of low visibility, aircraft
experience significant delays on their way to the gate or departing runway. During the
last decade, various systems have been conceptualized and are currently under
development which deal with problems controllers and pilots face every day on the

airport surface.

The major objective of these surface traffic systems is to enhance the safety,
capacity, and productivity of these airports, while at the same time reducing delays and
the workload of both controller and pilot. This is accomplished via the development of
advanced communications, surveillance and automation techniques for use in the control
towers of major airports. Various subsystems address isolated probiems such as runway

incursions, taxiway guidance and surface traffic surveillance.

Airport safety is intrinsically linked to capacity. The spacing between aircraft
necessarily reduces with increasing capacity, and safety suffers unless the reduction in
spacing is done carefully. The suggested long term solution is a surface traffic
management system that will address all these subsets of problems in an integrated
manner and safely control the airport surface area. Such a system must address the

capacity issues of ground congestion and effective departure sequencing through the
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implementation of efficient routing and sequencing of aircraft on the surface, thereby the
system would decrease delays and increase airport safety. In order for such a system to be
successfully developed and implemented, information about the nature of aircraft motion

on the airport surface must be detailed.

1.2 Motivation

Few studies have been conducted to date on aircraft motion on the airport surface during
normal operations. In 1960 the Airborne Instruments Laboratory at Cornell University
published a series of reports about velocities and accelerations of aircraft at Kennedy
Airport in New York. Later, in 1972 the Flight Transportation Laboratory at MIT studied
the air-side activity of Boston Logan and Atlanta airports. Measurements were taken for
runway occupancy times, velocity profiles along the runways, taxiway speeds and
intersection delays. Unfortunately, most of the aircraft that operated during those years
are not in service today. Additionally, the data was gathered solely in periods of good
visibility and therefore the data of these reports is of little value today. It is therefore of
vital interest to measure the surface movements of today's aircraft as completely and

effectively as possible.

1.3 Scope

An aircraft engages in a series of non-uniform and complex maneuvers on its way
to the gate or the departing runway. A departing aircraft for example, after getting the
clearance to push back from the gate, has to follow a taxi route that will lead it to the

takeoff runway. This path varies depending on the layout of the taxiway system, the
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current runway configuration, and the location of the gate. It might be short or long and
might involve a considerable number of turns, stops, taxiway and runway crossings, and
varying length segments of straight taxing. Along this route, the pilot must be constantly
be aware of the position, not only of his own aircraft, but also of nearby aircraft, ground
vehicles (or even terminal buildings) in order to taxi safely and avoid any collisions. The
ability of the pilot to successfully taxi along the path depends on various factors. These
include the type (size) of aircraft that the pilot operates, the amount of traffic at that
particular instant at the airport, the surface visibility, the weather and surface conditions,
and the familiarity that the pilot might have with the specific taxiway system. We must
remember also, that the pilot during his taxi, is usually assisted by the ground controller
who directs him along his taxi route and provides him with information about
surrounding obstacles. It is important to note though, that the pilot is the one who makes
the final decisions and may override the controllers directions. For example, a controller's
request for a landing aircraft to use the first available exit can be ignored, or the pilot may
insist on taxiing to the starting end of a runway rather than start from an intermediate

point.

Such factors as the human element cannot easily be quantified and often introduce
variance into the events that we want to measure, and therefore must be taken in to
account in the final analysis. Among many surface motion variables that can be
measured, those of interest are: the approach speed of a landing aircraft,. its landing speed
profile during roll-out, the runway occupancy time, the exit used, the exit velocity, the
time required to cross runway intersections, and the taxiing velocities on different
segments of the taxiway system. The analysis of these variables in conjunction with the

major factors that affect them will be the focus of this thesis.
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Chapter 2

The Measurement Task

2.1 Introduction

The first section of this chapter describes the existing runway and taxiway system
at Logan airport in Boston so the reader can get a better understanding of the airport
layout and better relate the measured variables. The second section, discusses the main
elements of the data collection method that was employed. Finally, the last section
provides information about the different days that the data was collected. Included in this
information, is a description of the weather and surface conditions as well as any
particular events that occurred during the collection period and which might be of interest

in the later stages of the analysis.
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capable of handling large transport aircraft. Three of these runways (4R, 33R and 27)
have instrument landing capability. The configuration of the runways is rather complex

(Figure 2.2.2), as they intersect six times with each other.

1 T 1

Full View ) Redraw) Display v) Editv) Quit)

Developed by the Flight Transportation Laboratory, MIT, Cambridge, Massachusetts.

Rotate ) Zoom In) ZoomOut)

Zooming out by 1.50...

JRINTY.

Figure 2.2.2
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Typically, peak hour demand is 100 operations per hour. The serving capability
depends on the runway operating configuration, and can vary from 46 operations per hour
during the most restrictive IFR conditions to 120 operations per hour during good VFR
weather? . This fluctuation is primarily due to the lack of parallel runways within
adequate spacing between them for simultaneous IFR approaches under certain weather
conditions. Consequently, at certain times all landings must be sequenced into a single
arrival stream, thus lowering the airport serving capability. The high proportion of
commuter aircraft operations at Logan further deteriorates the airport effective capacity,
as larger separations maybe needed under certain runway configurations to safely
accommodate these smaller sized aircraft due to the wake turbulence considerations
during mixed (in terms of size) operations. In addition, in order to keep the noise levels
that the nearby communities experience within reasonable levels, the Massachusetts Port
Authority has imposed certain regulations that further complicate aircraft operations.
Specifically, only certain runway configurations can be used at night and airlines are

required to conduct a specific portion of their Logan operations in Stage 3 equipment3 .

The configurations# that are used most often at Logan are:

Table 2.2
Configuration VFR IFR
Arrivals Departures Arrivals . Departures
1 4L & 4R 4L, 4R & 9 4R 4L,4R & 9
2 22L & 27* 22R & 22L 22L 22R & 22L
3 33L & 33R 27 & 33L 33L 33L
4 9, 15R & 15L* 1SR &9 15R ISR &9

* These configurations employ hold-short procedures.

24 Boston Logan International Airport Capacity Enhancement Plan, October 1992 published by the FAA.
Summary of Logan's Noise Abatement Rules and Regulations published by Massport.
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Due to the complexity of the runway system, various procedures for intersection

departures and hold-short arrival are often used.

The taxiway system (Figure 2.2.3) consists of two main circumferential taxi lanes
(inner & outer) around the perimeter of the terminal building area with smaller taxiway
segments supporting the traffic towards the gate area. Longer taxiways also exist to feed
the outbound traffic to the departure runways, and the incoming traffic to the terminal
area. Runways 4R, 33L/15R and 27 have additional high speed exits conveniently located
so that the landing aircraft can vacate the runway as soon as possible, and then there are
various common taxi paths from these exits to the gate areas. For example, the high speed
exit most commonly used for runway 4R is exit 12 (link A29-A56) , and crosses runway
4L (used only for turboprop landings and takeoffs in this case) before joining taxiway N

(link A74-A75) to return to the terminal area.
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2.3 Data Collection

In the past, the techniques used to study the aircraft motion on the surface of
airports fell into two major categories : those that involved direct observation of the
traffic through a number of observers out in the airfield (the MIT study) and those
involving indirect observation through the use of radar or other types of monitoring

equipment.

Each one of the two methods has its own advantages and disadvantages. The
indirect radar method is more complex and requires expensive equipment but is fairly
accurate, imposes no interference in the traffic, and once operational can be employed for
long time periods. On the other hand, the other method (direct observation) is less
complex but requires a large number of observers, often in coordination with each other,
which involves intense manual effort and as one might suspect, and provides changing
levels of accuracy. Nevertheless, both methods require the authorization and cooperation

of the local FAA and airport authorities.

Luckily, in our case the MIT Lincoln Laboratories had installed an experimental
ground surveillance system that gathered data from Logan airport in Boston. Speciﬁcally,
the data included target position reports from the ASDE-3 surface surveillance radar and
the ASR-9 radar from the near terminal airspace traffic information. These two outputs of
the surveillance sensors were integrated by a combined tracking system that also provided
derived information about the velocity, heading and acceleration of the targetsl. A
simultaneous interface with the ARTS computer was often used and then information

about the aircraft type and flight number was made available.
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2.4 Available Data

gathering system at Logan airport in Boston in 1993 for the development and testing of a
runway status lights network (ASTA-1) to help prevent runway incursions. As much as
ninety hours of traffic data were collected for this purpose. Approximately twelve of
these ninety hours were preprocessed by Lincoln Labs, and made available to this study
for further processing and analysis of the aircraft surface movements. These twelve hours
came in the form of 10 separate blocks of data, each corresponding to an individual data
gathering session. These blocks cover a variety of runway configurations, weather

conditions, traffic levels, and high or low visibility conditions. A brief description of the

As mentioned earlier, Lincoln Laboratory had installed a surface traffic data

available blocks of data follows :

Block-1
Day: Thursday, April 1, 1993
Time: 16:00-17:15 Local
Runway Configuration Table 2.4.1
Arrivals Departures | Switched to | Arrivals Departures
4R 9, 4L 4R 4R
Weather / ATIS Table 2.4.2
Temp | Ceiling Visibility | Wind Comments
n/a 500ft ovc | 2 miles | 50°@15knots | Rain & Fog
n/a 1800ft ovc | 2 miles 40°@24knots | Rain & Fog --> Thunderstorms
n/a 1100ft ovc | 2 miles 40°@ 20knots | Rain & Fog --> Thunderstorms
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Block-2

Day: Friday, March 26, 1993
Time: 10:35-11:35 Local

Runway Configuration Table 2.4.3
Arrivals Departures | Switched to | Arrivals Departures
4 9 33L, 27 33L, 22R
Weather / ATIS Table 2.4.4
Temp | Ceiling | Visibility | Wind Comments
55 ° F | 800ft. scat| 7 miles 160°@7knots | Heavy Traffic, All Taxiways OK.

Block-

Day: Wednesday, April 21, 1993
Time: 17:35-18:35 Local

Runway Configuration Table 2.4.5
Arrivals Departures
27 22R
Weather / ATIS Table 2.4.6
Temp | Ceiling Visibility | Wind Comments
65 ° F | 2500ft ovc | 15miles | 180°@17knots | Heavy Traffic.
Block-4
Day: Tuesday, March 26, 1993
Time: 13:15-14:15 Local
Runway Configuration Table 2.4.7
Arrivals Departures
15R 9
Weather / ATIS Table 2.4.8
Temp | Ceiling | Visibility | Wind Comments
50 ° F | Sunny 12 miles | 140°@7knots | Busy Traffic, later quieting down
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Block-5
Day: Thursday, March 11, 1993
Time: 14:50-16:10 Local

Runway Configuration Table 2.4.9
Arrivals Departures
33L 22R, 33L
Weather / ATIS Table 2.4.10
Temp | Ceiling Visibility | Wind Comments
40 ° F | 55001t 15 miles | 300°@ 15knots | Snow in the morning
Block-6

Day: Wednesday, March 31, 1993

Time: 19:15-20:15 Local

Runway Configuration Table 2.4.11
Arrivals Departures
4R, 4L 9,4L
Weather / ATIS Table 2.4.12
Temp | Ceiling Visibility | Wind Comments
42 ° F | 65001t 15 miles | 110°@ 8knots ] Snow in the morning
Block-7

Day: Saturday, March 13,1993
Time: 09:45-10:45 Local

Runway Configuration Table 2.4.13
Arrivals Departures
15R 9, 15R
Weather / ATIS Table 2.4.14
Temp | Ceiling | Visibility | Wind Comments
31 ° F | 5000 ft S miles 127° @ 8knots | ILS approaches 15R
33°F | 3800 ft 12 miles | 110°@17knots | ILS approaches 15R, light snow
32 ° F | 1500ftovc |1 mile 110°@ 15knots | ILS approaches 4R, light snow
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Block-8
Day: Wednesday, April 21, 1993
Time: 19:50-20:50 Local

Runway Configuration Table 2.4.15
Arrivals Departures
221, 27 22R, 22L
Weather / ATIS Table 2.4.16
Temp | Ceiling Visibility | Wind Comments

59 ° F | 2500ft scat | 15 miles |225°@11knots | n/a

Block-9
Day: Tuesday, March 30, 1993
Time: 07:45-08:45 Local

Runway Configuration Table 2.4.17
Arrivals Departures
4 9
Weather / ATIS Table 2.4.18
Temp | Ceiling Visibility | Wind Comments
43 °F | 700 ft 2 miles 40°@ 12knots | Light drizzle & Fog
Block-1

Day: Wednesday, April 21, 1993
Time: 09:00-10:02 Local

Runway Configuration Table 2.4.19
Arrivals Departures
22L,27 22R, 27
Weather / ATIS Table 2.4.20
Temp | Ceiling Visibility | Wind Comments

60 ° F | 2500ftovc | 15 miles |225°@ 16knots | n/a
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Chapter 3

Data Analysis

3.1 Introduction

The first section of this chapter describes the preliminary data processing that was
undertaken along with various problems that were encountered due to several data
irregularities. The second section, provides a detailed runway analysis that includes
information about occupancy times, exit velocities, exit use, and landing velocities
profiles. The next section analyzes the intersection crossing times and the particular level

of use of each intersection. Finally, an analysis of the taxiway system is presented.
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3.2 Preliminary Data Processing

As soon as the ten blocks of collected data were received, all the possible ways to
process and analyze the available information were considered. Each block of data
consisted of information about all the targets that were picked up by the ASDE-3 and
ASR-9 radar during each gathering session. Every target had its own ASDE and target ID
and contained among other things, position information in terms of x and y coordinates
with respect to the radar location, its derived velocity, acceleration, and heading, and the

| corresponding time stamp for specific data items, measured in seconds from 0:00 GMT.
In addition, some targets included information about the aircraft type and airline flight

number (Table 3.2.1).

Tgt:11584_| Length: 287 | Start time: 579953 | End time: 58588.6 | States: DEP TAX STP
l | (deg) l(knots)] (g's)

Target|[ASDE] Time |Stamp [State] ASF Position Heading| Speed | Accel. | Flight |Type
ID ID ID Num

11584 | 5575 157995375 TAX| g93 |North: -827.07] East: 242.13 § 10.7 13.9 ]0.0874 | SR188 |B747

11584 | 5575 ] 57997.126 TAX] 93 | North: -827.22 East: 249.34 | 31.3 10.1 |-0.0552{SR188 |B747

11584 | 5575 ] 57998.878 TAX] 293 |North: -802.69] East: 252.97 | 14.8 17.9 | 0.113 |SR188 |B747

11584 | 5575 | 58000.629 TAX] £93 | North: -793.17 East: 256.41 | 14.9 15.1 ]0.0166 | SR188 |B747

11584 | 5575 ] 58002.382 TAX] 76 | North: -783.10] East: 258.79 | 12.3 12.5 ]-0.042 |SR188 |B747

11584 | 5575 | 58004.134 TAX] £76 | North: -769.83] East: 263.59 | 17.1 14 10.0116 | SR188 [B747

11584 | 5575 | 58005.885 TAX]| g76 |North: -756.49 East: 267.36 | 169 15.2 ]0.0215 |SR188 |B747

11584 | 5575 158007.637 TAX] g76 |North: -742.40] East: 271.39 | 164 16.4 10.0215 | SR188 |B747

Ojoo|dan|wn|&lwitog—

11584 | 5575 | 58009.388 TAX]| g76 |North: -732.36] East: 276.04 | 22 13.9 ]-0.0348| SR188 |B747

Table 3.2.1 : Typical sample information about a target inside a block of data.

The individual position reports for every target, constituted a very large amount of
information, and in order to be useful, had to be related again to the surface layout of the
airport. A graphical replay of the information of the available data was needed since it
would enable us to visualize the actual aircraft motion, check the analysis output, and

explain any possible counterintuitive findings.
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Recently, the Flight Transportation Laboratory at MIT had designed and
developed an aircraft Ground Motion Simulator (GMS) to realistically simulate airport
ground activity. The GMS simulates the environment at any arbitrary airport and provides
high quality graphic views, in color on UNIX workstations. This system has an internal
aircraft position generator that provides the simulation with motion updates. It was
decided to use the GMS system for visualization purposes, after bypassing its position
generator function and writing the necessary code to provide it with the actual aircraft

motion information from the Lincoln Laboratory data.

As a second step, the Logan airport geometrical layout along with its features
(terminal buildings, hangars, etc.) had to be inputted in the GMS system (Figure 3.2.1).
Next, the underlying network of nodes and links had to be inserted in GMS format data
files in order to define the runways and taxiways of the airport (Figure 3.2.2). Table 3.2.2
lists the series of nodes that define every taxiway. The next step was to write the
computer code that will associate every aircraft position with an airport link in order to be
able to automate the data reduction process. Various computer subroutines were also
written to perform other preliminary analyses of the recorded data. As a result, computed
values were obtained for approach speeds, exit velocities, intersections crossing times,
and various taxiway velocities. A more complete discussion of these values, and their
significance will start in the next chapter. During the analysis procesé various routines

had to be modified in order to overcome sorne irregularities in the collected data.

l Series of Nodes

BO8 [A92
B09 [A93 ||
> AS0 [A20 [A42 JA35 [A36 ||
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A56 |A29
NNER A98 |AS0 |A99 [BOO |BO1 |BO2 |BO3 BO4 |BO5 |BO6
BO8 |B09 |A95 |A9
UTER A79 |A81 [B10 [A82 |A83 |A84 |AS85 A6 |AT0 |A60
Al0 [A20 |AS0 |A91 |A92 |A93 |[A94 A95 [A96
BI0 |B1I
2 AT2
A40 N2 |A39 |[A37 |[A31 |A25
1 Bl4 |A38
A60 |Ad6 [A24 [AI8 |Al7 [Al6 [AI2
2 A32 |A3l
Al9 |AOL |AO2 |AO4 |AO7 |A90 |AO06
A A59 |
Al0 |A43 |A44 |[A09 |AO8
B A64
2A A26 jl
BO3 |A70 |A47 |A48 |A23 |A2
A21 |Al8
01 Bl4 |BI3
Ad49 |A48
A48 |Al4
A98 |A81 |A78
AT9 |AT77
BOO |A83 |A75 |A74 |A73 |AT1 |A69 |A66 A63 |A62
A A02  |AO3
Add  |Ad5
B A04  |AOS n
B02 |A86 |A51 |AS2 |
A66 | A65 |
00 A99  |AS82
BO5 |AO0 |[A43 |A35 [B13 |A34 [A33 |A27
01 B06 |ASO
B02 |A86 |A85 |A53
==#=======
Runway
R 22l [A61 [A62 JA64 |A65 |AS7T |A29 |Al14 |A23 [A49 [A24
A45 [A09 [A28 [A27 |A26 |A25 |A87 [4R
L 22R |A68 [A67 [A72 |AS9 |A54 [AS3 |ASI [A47 [Ad46 [A43 |
A42 |A88 N1 ]A39 |
15R 33L [All |A12 [AIl3
B1l |[A78 |A77 |A76
15L 33R |AS8 |AS57 [ASS
27 |A15 [A06 [AO5
A38 [B14 |N1 [N2
Table 3.2.2
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3.3 Data Irregularities

Due to the performance of the radar tracking system on the surface of the airport,
frequently during the gathering session, an aircraft target was dropped and then picked up
later on by the radar. The result was that in the data file, two different targets with
separate IDs (identification numbers) could in fact have been the same aircraft, and the
intermediate information about the aircraft movement between the time that the aircraft
was dropped from the radar and then picked up again was not available. Another
irregularity was the fact that not all targets had information about the aircraft type or
flight number. This limited the classification of results according to aircraft size to only
those targets where that information was available. In addition, this prevented us from
identifying targets that were not aircraft but rather other ground vehicles moving on the
airport surface and therefore might have infected our results if they were on the runways
or taxiways. Indeed, Blocks 3, 8 and 9 did not include any information about aircraft
types and flight number because the required computer tap was not in service during the

collection period.
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3.4 Runway Analysis
3.4.1 Runway Occupancy Time During Landing

Runway occupancy time is the time over which a runway is effectively blocked
(occupied) to any other traffic by a single landing or departing aircraft. As such, it
potentially affects the traffic capacity of that runway. In the case when the runway is used
only for landings, the runway occupancy time and its potential variations currently do not
significantly affect the overall runway capacity as the inter-arrival radar separation
standards of the approaching aircraft cause spacing which is almost always greater than
the occupancy time. On the other hand, if the runway is used for mixed arrivals and
departures, the landing occupancy time becomes more critical. In that case, the shorter the
landing occupancy time, the more the time allowed to insert a takeoff between landings.
This results in higher runway operational capacity, and smaller delays for the departing

aircraft.
Average Occupancy Time During Landing

[ Runway | ata Block

kd

Table 3.4.1.1

The following tables (3.4.1.2 to 5) correlate each exit link of every runway from

the GMS airport layout (Figure 3.4.1.1 to 3) to an exit number for the graphs that follow.
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Exit Number Link

| Runway27 | Runway9 | |
2 [ 11T ] A05-A04
3 | 10 | A03-A02

[ 4 9 [ _AB-AOL |

6 I 7 [ A08A0O |

[ 7 6 T A0OAZR |
&5 | A3A3 |
S 4 | A3BI3
10
11

Table 3.4.1.2

Exit Number Link
Runway 33L | Runway 15R

— 5 |10 | AxA» |
6 9o AlTA |
C_ 7 |8 | AldAds
8 | 7 | A52AsI

9 [ 6 1] A53-A51

10 5 AS53-A85

Table 3.4.1.3
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Exit Number
| RunwaydL |Runway22R| |
I
3
%% AST-A%6
9 |6 ] A53-A75

14 1 A67-69

Table 3.4.1.4

Exit Number
Runway2L|

Al2-Al6
A26-A32
14 A27-A33
4 13 | A28-A36
6 [ 11 [ AdAH

7 10 A24-A46

8 | 9 [ A49-Adg |

—
Al14-A48

A65-A66
A64-A63

Table 3.4.1.5
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The occupancy time during landing is measured from the moment the aircraft is
over the runway threshold until the time it has turned in the exit and its tail has crossed
the runway edge. Since our aircraft motion data was in the form of a series of discrete
radar hits (approximately every 1.7 sec on the surface), the time between the first hit
inside the first runway link and the first hit inside the exit link was used. In this way the
size of the error was minimized. As expected before the analysis of the results, occupancy
time tends to increase with the distance of the exit location from the runway threshold.
This is normally true except in some cases ( Figure 3.4.1.4 Exit 12 in Runway 4R and
Figure 3.4.1.7 Exit 11 in Runway 22L) where the particular angle of these exits allow
aircraft to exit with higher speeds, and therefore maintain a higher average landing
velocity resulting in occupancy times similar to exits that are located much closer to the

threshold.

Figures 3.4.1.4 through 3.4.1.16 are graphs of the average occupancy time during
landing for all aircraft types over a single runway and exit for every block of collected
data. It seems there exits a relationship between aircraft weight and occupancy time. We
observe that usually, the standard deviation of the occupancy times are quite small (5-10
seconds) for aircraft using the first exits, unlike for those using exits that are located
further down the runway. Runway 27 under configuration 2 (arrivals 27 and departures
22R) displayed the lowest occupancy time (35 seconds) for aircraft exiting at high speed
from exit 6 (Figures 3.4.1.9, 10, 12). In data block 8 (Figure 3.4.1.11), with similar weather
conditions but at night (20:00-21:00), most aircraft used exit number 8 (low speed) and
the occupancy times were significantly larger (53 seconds). The heavier aircraft tend to
land with higher velocities and require longer landing distances and therefore exit further
down the runway resulting in higher occupancy times. However aircraft using a given

exit have similar occupancy times, independent of aircraft size.
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3.4.3 Exit Velocities

The angle of every exit plays a significant role in the exit velocity of the aircraft.
As figures 3.4.3.1 through 3.4.3.13 show, whenever the landing aircraft are using the
obtuse angled exits the exit velocities are significantly higher than the other ninety
degrees or acute angled exits. However, this is only true for high speed exits which are
accompanied with long exit segments and give the pilot room to brake (exit 6 runway 27:
38 knots and exit 5 runway 33L : 40 knots). Exit 8 of runway 4R, although it is obtuse
angled, the short exit segment that follows does not allow high exit velocities. Each
figure presents, using columns the average exit velocity, and with a line, one high and
one low value which corresponds to the average exit velocity plus or minus one standard

deviation (see figure legend). The letter H denotes a high speed exit.

Average Exit Velocity All Classes Runway 4R Block 1

60 ~ O Avg. Exit Vel.
m
g 50+ AEV.+SD
=
= 40 + AEV.-SD
@
=) - .
s 304 Avg. Exit Vel. +
=
= 20T Landing Direction
%
E 10 +
< H H

0 e e e n bl |- e}

Exit
Figure 3.4.3.1
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Average Bxit Velocity All Classes Runway 4R Block 6

O Avg. Ex. Vel.
60 +
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e 50 +
< AEV.-SD
z 40T -
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Z Landing Direction
=2 20 4 >
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Exit
Figure 3.4.3.2
Average Exit Velocity All Classes Runway 4R Block 9
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Exit
Figure 3.4.3.3

59




Average Exit Velocity All Classes Runway 22l Block 8
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Average BExit Velocity All Classes Runway 22L Block 10
60 -
O AvgExVel
)
é 50 T AEV.+SD
= 40 T AEV.-SD
E
> 30 ¢ Landing Direction + AvgExVel
2 >
= 20 +
; +
.
s 10 +
>
«
0 -——di- : } } t i t t { t t —t—
Exit
Figure 3.4.3.5
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Average Exit Velocity All Classes Runway 27 Block 2
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Figure 3.4.3.6
Average Bxit Velocity All Classes Runway 27 Block 3
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Average Exit Velocity All Classes Runway 27 Block 8
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60 +
- O AvgExVel
12
o
= 0 AEV.+SD
= 40 + AEV.-SD
|
; 30 + Landing Direction l = AvgExVel
5 > |
= 20 4 |
%
= 10 +
»
< H
0 t $ —=—ri t t } + } } } {
4 5 6 7 8 9 10 11 12
Exit
Figure 3.4.3.9




Average Exit Velocity All Classes Runway 33L Block 2
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Average Bxit Velocity All Classes Runway 1SR Block 4
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Figure 3.4.3.13
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3.4.4 Velocity Profiles

3.44.1 Landing Velocity Profiles

Figures 3.4.4.1.1 through 3.4.4.1.13 show the landing profiles of all aircraft that
landed in each runway. The aircraft that used a particular exit are grouped together. We
can observe the different exit velocities and the higher or lower deceleration that occur,
depending on the angle and the location of each exit. We must note the fact that some

aircraft actually speed up after the runway threshold.
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Landing Velocity Profile Runway 4R Block &
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Landing Velocity Profile Runway 4R Block 9
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Landing Velocity Profile Rumway 22L Block 10
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Landing Velocity Profile Runway 33L Block 2
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Velocity Profile Runway 33L Block 5
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3.44.2 Final Approach Velocity Profiles

In the final approach velocity profile figures ( 3.4.4.2.1 through 3.4.4.2.13) we
observe that in most runways, there is a small deceleration during the final approach. In
some runways, 27 in particular, this deceleration is quite significant (Figure 3.4.4.2.6). In
the same runway, during night operations (Figure 3.4.4.2.8) we see much more smooth
final approach velocity. In runway 15 R, we note that even under different weather

conditions, aircraft seem to accelerate before the runway threshold.

Overall, the standard deviations of the landing velocities fall between a value of
0.2 for a period of approximately 10 radar hits before the threshold and from then on it
increases significantly. This could be due to the changing size of the available number of
data points (radar hits), as further away from the threshold some aircraft target are not
picked up by the surface radar.
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accurately as possible a distance of fifty meters before and after the intersecting runway
or taxiway centerline was chosen. Since the radar hits are skin returns from the center of
the aircraft' s fuselage, such a distance would ensure that the calculated crossing time
would include the initial crossing of the front part of the aircraft and will end after its tail

has cleared the crossing runway or taxiway (Figure 3.5.1.1).

The calculated crossing time was split in two segments. The first (time 1) being
the time from the start until the aircraft crosses the intersecting centerline and the second
segment (time 2) from the centerline until the aircraft clears the runway or taxiway. The

following table lists the series of airport links corresponding to each intersection number.

Series of Links

_ AIGAITAIS

A02 AO1 A19

A22 A23 A48
A18 A24 A46

A08 A09 A44

|

AT4AT5A83

A52 AS51 A86

AdBAATATO
A24 A46 A60

A44 A43 A00 |

A44 A43 A10
_ A35A43 AO0

A35 A43 A10

| A35 A42 A20

Table 3.5.1
Figures 3.5.1.3 through 3.5.1.12 show the average crossing times along with the

standard deviations for every intersection in the ten blocks of collected data. As figures
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3.5.1.13 and 14 show there is a significant difference in average crossing time depending
in the runway configuration and thus in the direction of use of some intersections. For
example, when intersections 10, 11, 12, 13 and 14 are used in the inbound direction
(towards the terminal area), usually after arrivals in runway 27, the crossing times seem
to be much smaller compared to those of departing aircraft which use the same
intersections but in the opposite direction (outbound), and often have to form a queue
while waiting to depart from runway 9 and thus cross these intersections very slowly.
Similarly in intersection 6 the inbound direction of crossing is much quicker (aircraft
landing on runway 4R) that the outbound one (aircraft waiting to depart from 22L and

22R).

Comparing the crossing times of the two different segments of each intersection
(time 1 and time 2), we observe that usually when an intersection is used in the inbound
direction time 2 is larger than time 1 and when it used in the outbound time 1 is larger.
This could be possibly due to the fact that when a pilot is on his way to the gate, after
crossing the intersection it has to slow down since the connecting taxiway segments
A75-A83, A51-A86, A47-A70 etc. are short as they intersect with the circuferential outer
taxi lane which is often congested. On the other hand, in the outbound direction usually
time 2 is smaller than time 1 probably because the connecting taxiways that lead away

from the terminal area are longer and therefore the pilot accelerates faster.

Figures --- through --- show the average crossing times per aircraft class (size) for
intersections where ten or more aircraft crossed them. Larger aircraft are heavier and
logically should have longer crossing times but the graphs show this is the case only in

few blocks of data (block 1).
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3.6 Taxiway Analysis
3.6.1 Taxiway Average Velocity

The average velocity of an aircraft moving on an airport taxiway system depends
on many factors. Before the analysis of the collected data, we expected that the distance
of the taxiing segment would be a significant determinant of this velocity. Usually when
pilots are moving on a short segment, prefer to taxi slowly since they expect soon to
arrive at an intersection and might be instructed by the controller to stop for crossing
traffic. On the other hand when a pilot sees that he has a long stretch in front of him with

no imminent intersection, he taxies at higher speeds.

The location of the taxiway segment should also play an important role. Taxiways
far away from the terminal area are more likely to exhibit higher average velocities since
they tend to be less congested and their surrounding areas are usually free of obstacles.
Other variables that affect the taxiway velocities, are the complexity of the taxiway
system at the particular airport and the level of familiarity that each pilot, who operates
there, has with the system. The first variable usually remains constant while the second

one can vary, and cannot be very easily quantified.

Trying to test if the taxiway length and location relates to the average taxiway
velocity, we categorized each taxiway link that did not belong to a runway or was not an
exit link, into two groups. Those links that were shorter than 500 meters were assigned a
letter S and those that were longer a letter L. Each taxiway was also assigned either a

letter C (close) if it was located inside the outer taxilane, or a letter F (far) otherwise.
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3.6.2 Taxiway Use

Figure 3.6.2.1 through 3.6.2.10 present the use of the taxiway segments that
constitute the inner and outer taxilanes. All data blocks show an almost identical taxiway
use no matter what is the runway configuration. The most often used taxiway links are
B03-B04 and B04-B0S5 of the inner taxilane. Only block 3 demonstrates a higher
percentage wise use of the outer taxilane, probably due to the heavy surface traffic of that

day.

In figure 3.6.2.11 through 3.6.2.20 the use of the supporting taxiways is presented.
As supporting taxiways are classified all the taxiway links that do not belong to either a
runway or the inner and outer taxilanes, but feed traffic to the terminal and runway areas.
A very strong relationship between the use of the these taxiway links and the particular
runway configuration seem to exist, as figures of data blocks with the same configuration

seem identical.
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Taxiway Use Inner and Cuter Taxilane Block 3
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Block 5

Taxiway Use Inner and Outer Taxilane
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Chapter 4

Conclusions

4.1 Introduction

In this chapter the major observations of the previous analyses are discussed and
final conclusions are drawn. These conclusions are divided into three sections; runways,
intersections and taxiways. Finally, the last part provides some directions for future

research.
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4.2 Runways

The runway analysis showed some interesting results. The occupancy time on
landing does vary, as expected, with aircraft size but this variation is mainly due to the
fact that heavier aircraft tend to exit further down the runway, resulting in higher
occupancy times. However, aircraft using a given exit have similar occupancy time,
independently of aircraft size. The particular angle of the exit used also plays a very
significant role. Aircraft that use obtuse angled exits, usually exit at higher speeds, and
therefore maintain a higher average landing velocity resulting in similar occupancy times
compared to exits that are located much closer to the runway threshold. The standard
deviation of the occupancy time is usually smaller for aircraft using the first exits, than
those exiting further down the runway. Visibility also affected the occupancy time,
mainly due to the increased use of exits located further down the runway. In similar
weather conditions, aircraft using exit 6 (high speed) of runway 27, in day light had
average occupancy times of 35 seconds (lowest overall), while at night, in similar
weather conditions, most aircraft used exit 8 (low speed) and their occupancy times were

significantly increased (53 seconds).

In the analysis of exit usage, as mentioned above, heavier aircraft tend to use exits
located further away from the threshold, while smaller sized ones require shorter landing
distances and exit earlier. The specific turning angle of the exit was also a determinant
factor of its use. As a result, independently of runway, most aircraft tended to prefer the

use of obtuse angled (high speed) exits.

Exit velocities, as expected, were closely related to the angle of the exit, and
whenever aircraft where using obtuse angled exits they exited at significantly higher

speeds. However, this was only true, for high speed exits that were accompanied with
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long exit segments and allowed the pilot enough distance to brake. The exit velocity did
not vary uniformly between aircraft classes and it seemed that exit velocity does not

depend on aircraft size.

The landing velocity profiles showed a close relationship between the amount of
deceleration and the type of exit (high or low speed) used after landing. In the final
approach, we observed a slight deceleration as the aircraft were approaching the
threshold. Data from runway 27, illustrated the importance of visibility, as in day light,
this deceleration was quite significant whereas during night operations we saw a much
smoother final approach profile. In runway 15R, under different weather conditions,

aircraft seem to even accelerate before the threshold.

4.3 Intersections

There is a significant difference in average crossing time depending(n the runway
configuration and thus in the direction of use of some intersections. For example, when
intersections 10, 11, 12, 13 and 14 are used in the inbound direction (towards the terminal
area), usually after arrivals;in runway 27, the crossing times seem to be much smaller
compared to those of departing aircraft which use the same intersections but in the
opposite direction (outbound), and often have to form a queue while waiting to depart

from runway 9 and thus cross these intersections very slowly.

Comparing the crossing times of the two different segments of each intersection
(time 1 and time 2), we observe that usually when an intersection is used in the inbound
direction time 2 is larger than time 1 and when it used in the outbound time 1 is larger.

This could be due to the fact that often pilots slow down and approach the terminal area
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cautiously, while on their way to the departing runway, they accelerate faster out of an
intersection since the taxiways that lead away from the terminal are usually longer.
Aircraft size did not seem to be a determinant of crossing times as larger size aircraft had
longer crossing times only in few blocks. Exit usage was closely tied to the operating

runway configuration.

4.4 Taxiways

In the taxiway analysis we saw that there exists a close relationship between the
length of the taxiway and its velocity. Taxiways far away from the terminal almost
always exhibit higher average velocities since they tend to be less congested and free of
surrounding obstacles. We must note though, that in periods of heavy traffic the
differences in speed between lon.ger and shorter taxiways become smaller. The use of the
inner and outer taxilanes under different configurations is almost identical. However, a
very strong relationship between the use of the supporting taxiways around the terminal

area, and the particular runway configuration seems to exist.

4.5 Directions for Future Research

Although after the analysis of the data many questions regarding the motion
characteristics of aircraft moving on the surface of Logan airport have been answered,
many more have been raised. More research should be done on the factors that affect

airport surface traffic in order to successfully develop and implement future surface
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traffic automation systems. This study was limited to only Logan airport but a future one

should include and compare data from a wide variety of airports.

Such a study could include analysis of other variables that affect surface traffic
such as -=_c‘ongesti9£1ﬁ and examine in further detail their potential effects. Most importantly,
a much larger size of data must be gathered. This requires some form of radar
surveillance at the airport. In our case, even though almost 12 hours of airport operation
data were made available for this study, after the breakdown of all aircraft by aircraft
type, runway and exit used we were left with very small sample for each variable that we
wanted to measure, limiting the accuracy of our results. There is much more data

available for Logan if further confidence in the measurements is required.

Hopefully, the content of this thesis will act a catalyst in attracting interest and
consequently, more studies will be under taken in the future, for a more complete
understanding of the surface traffic variables and a more efficient use of the airport

surface.
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