
MEETING U.S. DEFENSE NEEDS IN THE INFORMATION AGE: AN
EVALUATION OF SELECTED COMPLEX ELECTRONIC SYSTEM

DEVELOPMENT METHODOLOGIES

by

Alexander C. Hou

S.B. Aeronautics and Astronautics
Massachusetts Institute of Technology (1991)

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degrees of

MASTER OF SCIENCE IN TECHNOLOGY AND POLICY

AND

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

© 1995 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Department of Aeronautics and Astronautics

November 30, 1994

Certified by
Martin L. Anderson, Research Associate

Thesis Advisor, Center for Technology, Policy and Industrial Development

Certified by
Professor John J. Deyst

Thesis Advisor, Department of Aeronautics and Astronautics

Certified by
/ - . Dr. James G. Ling, Research Associate

Thesis Advisor, Center for Technology, Policy and Industrial Development

Accepted by
/ Professor Richard de Neufville

Chairman, Technology and Policy Program

Accepted by _
Professor Harold Y. Wachman

Chairman, Department Graduate Committee

FE B 1 1995

MEETING U.S. DEFENSE NEEDS IN THE INFORMATION AGE: AN EVALUATION OF

SELECTED COMPLEX ELECTRONIC SYSTEM DEVELOPMENT METHODOLOGIES

by

Alexander C. Hou

Submitted to the Department of Aeronautics and Astronautics on November 30, 1994 in
partial fulfillment of the requirements for the Degrees of Master of Science in Technology

and Policy and Master of Science in Aeronautics and Astronautics

ABSTRACT

The proliferation of advanced information and communications technologies has
significantly enhanced U.S. military capabilities and is creating a revolution in warfare.
However, this proliferation has also created a new set of development problems-
interoperability problems. To gain a better understanding of how interoperability issues
can affect the overall performance of a theater of operations, a general theater system
model is developed and then mapped into the domain of electronic systems. Analysis of
the resulting theater electronic system model indicates that interoperability is critically
important to the performance of the theater system. Documented real world evidence
validates this point.

A cross-system integration methodology is needed to adequately address
interoperability problems. A selected set of five complex electronic system development
methodologies was investigated for possible application to the cross-system integration
role. Criteria for an ideal cross-system integration methodology were defined and then
used to evaluate the five methodologies. While none of these methodologies can
satisfactorily address interoperability problems in its current state, combining two of the
methodologies could form a core from which to develop a true cross-system integration
methodology.

Current development and integration strategies are inadequate for developing the
tightly coupled theater systems required for warfare in the information age. Adoption of a
theater system product concept is recommended. The theater system product concept
enables development of subsystems and upgrades to be decoupled from platform
development while providing an integrated plan to guide cross-system integration
activities.

Thesis Advisor: Martin L. Anderson
Center for Technology, Policy and Industrial Development

Thesis Advisor: Professor John J. Deyst
Department of Aeronautics and Astronautics

Thesis Advisor: Dr. James G. Ling
Center for Technology, Policy and Industrial Development

ACKNOWLEDGMENTS

First and foremost, I would like to thank the members of my virtual thesis
committee: Marty Anderson, John Deyst, and Jim Ling for providing guidance and
lending time and effort to the development and distillation of the ideas in this thesis.
Although the logistics were non-trivial, all three contributed valuable insights and a
wealth of real world experiences and knowledge. The Long Distance Award goes to Jim
who continued to advise me even though he left MIT and moved to Alabama before I was
able to complete this work. Professor Deyst wins the Zero Defects Award for not
accepting anything but the best from me. Marty wins the Awesomely Unconventional
Advisor award for ordering me to take some time off when I was getting too stressed even
though the schedule was tight. Marty also displayed dedication beyond that of typical
advisors by taking time out of his vacation to read my earliest drafts and give me
feedback-electronically, of course. I hope that we can work together again in the future.

I am also indebted to the many engineers and managers in industry and
government who took time out of their busy schedules to speak with me. Special thanks
go to the engineers at GritTech. I am particularly indebted to Mark Richards, Terry
Courtwright, and Wayne Sherer of ARPA. Their insights and expertise were invaluable.

I would also like to thank the Lean Aircraft Initiative for providing the financial
support for this work. Many thanks also go to Gail, Rene, Su, and Agnes for putting up
with me all these years. I would also like to acknowledge the creators of the Internet and
the World Wide Web. Thanks to them, I was able to find a wealth of relevant research
information on-line and maintain communications with people all across the nation.

Special thanks go to my family-Mom, Dad, Ted, Laura, Amy, and Sara-for their
unwavering support of me and my graduate school endeavors.

I am also grateful for the friendship and support of the other Lean Aircraft
Initiative RAs--especially Todd Stout. You helped keep me sane. Go Cowboys!!!

Last, but not least, I am profoundly grateful for the support of Kara Callahan who
never stopped believing in me.

Alexander C. Hou
November 30, 1994

Note: This material is based upon work supported by the Lean Aircraft Initiative. Any opinions, findings,
conclusions, or recommendations expressed in this publication are those of the author and do not
necessarily reflect the views of the Lean Aircraft Initiative or the Massachusetts Institute of
Technology.

The dogmas of the quiet past are inadequate to the stormy
present. The occasion is piled high with difficulty, and we
must rise to the occasion. As our case is new, so we must
think anew and act anew. We must disenthrall ourselves and
then we shall save our country.

Abraham Lincoln
Annual Message to Congress
December 1, 1862

Like true Skunk Workers, the aerospace industry as a whole
must start thinking in new directions.

Ben Rich
Skunk Works

TABLE OF CONTENTS

1 INTRODUCTION ... 15

1.1 O verview 15

1.2 Outline of Thesis ... 17

1.3 The New Calculus .. 18

1.4 Importance of Hardware and Software .. 22

1.5 A Revolution in Warfare ... 24

1.6 Sum m ary 37

2 THE NEW INTEGRATION CHALLENGE 39

2.1 Theater System M odel ... 40

2.2 Validation of the Interoperability Problem ... 48

2.3 C onstraints 52

2.4 Resulting Development Challenges and Benefits of Better Integration 53

3 NEW METHODS FOR COMPLEX ELECTRONIC SYSTEM DEVELOPMENT 55

3.1 Rapid Development DC-X Style 58

3.2 Rapid Development the GritTech Way .. 63

3.3 Hardware/Software Codesign 72

3.4 Cleanroom Software Engineering 86

4 EVALUATING THE NEW METHODS 101

4.1 The C riteria 10 1

4.2 The Rating Scheme ... 114

4.3 The Evaluations .. 114

4.4 Conclusions .. 124

10 Table of Contents

5 NEW PROBLEMS, NEW SOLUTIONS ... 127

5.1 Tackling the Interoperability Challenge 128

5.2 The Context of Cross-System Integration ... 130

5.3 Centralized Topsight, Decentralized Development 134

5.4 Multiple Theater Systems .. 137

5.5 Implementation Issues 137

5.6 Conclusions and Recommendations 139

APPENDIX A
CLEANROOM ENGINEERING EXTRAS 143

APPENDIX B

RECOMMENDATIONS FOR FURTHER STUDY ... 153

REFERENCES .. 159

LIST OF FIGURES

Figure 1.1: Shipments of U.S. Military Aircraft (1980-1994) 22

Figure 1.2: Electronic Content Variation for Selected Systems, 1990-2001 23

Figure 2.1: General Theater System Model 42

Figure 2.2: Theater Electronic System Model 43

Figure 3.1: RAPIDS Spiral Development Process 61

Figure 3.2: Integrated Development Environment 69

Figure 3.3: Incremental Development 70

Figure 3.4: Generic Hardware/Software Codesign Process 75

Figure 3.5: Model Year Design vs. Point Design 81

Figure 3.6: RASSP Design Flow ... 84

Figure 3.7: Box Structure Diagrams 93

Figure 3.8: Cleanroom Engineering Spiral Development Process 96

12

LIST OF TABLES

Table 3.1: Soyuz Simulation Project Metrics 63

Table 3.2: Software Rapid Development Results 72

Table 3.3: Hardware Rapid Development Results 72

Table 3.4: A Comparison of Software Development Practices 89

Table 3.5: Sample of Cleanroom Results 98

Table 4.1: Ideal Cross-System Integration Methodology Criteria 102

Table 4.2: Process Criteria M atrix ... 115

Table 4.3: System Design Criteria Matrix 116

14

CHAPTER 1
Introduction

1.1 OVERVIEW

Since the first flight of a heavier-than-air aircraft at Kitty Hawk on December 17, 1903,

aircraft designers have achieved tremendous performance gains in speed, altitude,

payload, and range. While these improvements are impressive, evaluating the progress of

aeronautics merely in terms of these performance measures would not provide an

adequate description of the technology's evolution. In recent years, revolutionary

developments in digital electronics and communications have altered basic concepts in

military aircraft design and operation. For instance, in the past, with only mechanical

flight controls at their disposal, engineers had no choice but to design inherently stable

aircraft. Today, digital fly-by-wire control systems make possible the design of highly

agile aircraft which are unstable-and would otherwise be uncontrollable by a pilot. The

impact of information technologies on weapons systems is even more pronounced. Early

air combat involved pilots from opposing sides shooting at each other with infantry arms

they had carried in their cockpits. Today, engagements can take place beyond visual range

and bombs can follow laser beams to their targets.

The advent of information technologies has enabled the Department of Defense

(DoD) of the United States to acquire systems with capabilities far beyond what had been

state-of-the-art just a few years earlier or had not even existed. Between 30 and 40 percent

16 Introduction

of the cost of a new weapon system can be attributed to the development of the necessary

electronics and software. As systems get "smarter", this percentage will only increase.

With the declining level of defense expenditures driving industry to adopt lean production

practices, the development process for hardware/software systems must be a focal point of

efforts to get more "bang for the buck".

The goal of lean development of hardware/software systems poses complex

acquisition challenges for DoD and American industry. Currently, the development of

hardware and software in the defense industry faces the following factors: 1

* "Material needs" can be satisfied by many combinations of mechanical and

electronic systems (hardware and software).

* Technology development processes are heavily influenced by the DoD

acquisition process.

* This DoD acquisition process, which evolved to procure mechanical systems,

is mechanically-oriented and frequently has difficulty when developing

information-based weapons systems.

* The administratively driven development process of defense electronic

systems is often slower than the evolution of basic electronic technologies,

which means that the final program result may be more costly than similar

commercially available systems (Richards, 1994).

The combination of these factors and the proliferation of advanced information

and communications systems has created a new set of development problems-

interoperability problems. For instance, the modem fighter aircraft is a component of a

larger "theater system" encompassing the munitions, platforms, and command and control

assets in a theater of operations. Hence, it must be interoperable with other elements of the

theater system. A cross-system integration methodology is needed to ensure

interoperability. Planning for these considerations is essential to avoid costly and time

consuming modifications late in the development cycle or after deployment.

1 These factors were identified in the course of field research conducted by Martin Anderson and Alex Hou
in support of the Lean Aircraft Initiative consisting of numerous interviews with both government and
industry officials. The interview sample included officials from both sponsoring and non-sponsoring com-
panies and government agencies.

Outline of Thesis

As part of the Lean Aircraft Initiative, a research program studying the

applicability of lean production principles to the defense aircraft industry sponsored by the

Air Force and over 20 aerospace companies, this thesis evaluates a set of five complex

electronic system development methodologies for applicability as a cross-system

integration methodology and analyzes the technical and policy implications of the

evaluation results.

1.2 OUTLINE OF THESIS

This thesis is based upon a combination of extensive literature review, including the most

contemporary public documents from the Department of Defense, and upon field and

phone interviews conducted under the auspices of the Lean Aircraft Initiative.

The remaining sections of this chapter discuss the challenge of reconciling the

strategic needs of the American military with the declining level of defense expenditures

in the post-Cold War world and the increasing importance of electronics and software in

military systems. In addition, the role of electronics and software in the emergence of a

new form of warfare is described through lessons learned during Operation Desert Storm.

Chapter 2 builds upon the earlier discussion of the emergence of a new form of

warfare and develops a general model of a theater system which is then mapped into the

electronic systems domain. This exercise provides a framework for understanding the

nature of the interoperability problem. Documented real world examples are used to

validate the existence of the interoperability problem. Externalities are used to help define

the new integration challenge, and potential benefits of addressing this challenge are

detailed.

A set of new methodologies for complex electronic system development is

discussed in Chapter 3. Each of these methodologies has demonstrated significant

improvements in development performance or shows potential for similarly significant

improvements.

Chapter 4 describes the criteria that were developed to evaluate the methodologies

for possible application as a cross-system integration methodology. Each methodology is

18 Introduction

evaluated, and the results are discussed. Details of each individual evaluation are also

included.

Chapter 5 discusses the technical and policy-oriented implications of the

evaluation results. In addition to describing a possible foundation for a cross-system

integration methodology, a new development and acquisition strategy is detailed. The

chapter ends with a summary of conclusions and recommendations.

Appendix A contains a more detailed technical description of the practices behind

one of the complex electronic system development methodologies evaluated in this thesis.

Recommendations for further study are contained in Appendix B.

1.3 THE NEW CALCULUS

The end of the Cold War injected a high degree of uncertainty into the national security

planning process of the United States. For decades, the subject of how to defeat the

numerically superior forces of the Soviet Union and its Warsaw Pact allies in wartime had

been the focus of defense planners, strategists, and wargamers in the U.S. and the other

North Atlantic Treaty Organization (NATO) countries. Suddenly, our sworn enemies had

become our new friends, triggering euphoria over the promise of a new world order and a

peace dividend. The de-polarization of the world left defense planners without a clear

threat to replace the Soviet Union.

However, while the collapse of the Soviet Union has fundamentally altered U.S.

strategy and force planning, the need for powerful and decisive U.S. military capabilities

endures. If the United States is to remain engaged in world affairs, the ability to bring

military power to bear when appropriate to protect its interests, as well as those of its

allies, must be maintained. Although there are a wide range of potential military threats to

American interests, regional conflicts have become the new focus of U.S. military

planning. These types of conflicts present several challenges for the U.S. military

including numerous potential locales, smaller forward deployments, short warning times,

distant deployments, and increasingly capable weapons in the hands of adversaries.

As a part of the reexamination of U.S. national military strategy, the Joint Chiefs of

Staff (JCS) recommended that the United States should field forces capable of defeating

The New Calculus 19

aggressors in two concurrent, geographically separated major regional conflicts (MRCs). 2

Recently, an evaluation of the capability of U.S. forces to achieve key operational

objectives in future major regional conflicts was published by RAND. This study, called

The New Calculus: Analyzing Airpower's Changing Role in Joint Theater Campaigns,

took the two-MRC requirement as a given element of national military strategy and

assessed U.S. military capabilities to fulfill the mission-focusing particularly on possible

means of enhancing airpower's capabilities in joint operations.

The end of the Cold War greatly reduced the size of potential threats facing the

United States. Instead of having to plan for engaging a massive force of 55,000 tanks, a

large blue-water navy, and 7,500 combat aircraft, current planning for joint operations in a

major regional conflict is focused on defeating an aggressor force composed of between

3,000 and 5,000 tanks, an equal number of armored personnel carriers (APCs), between

500 and 1,000 combat aircraft, and possibly ballistic missiles (Bowie et al., 1993).

Currently, there are several nations in the world who either field forces matching this

threat profile or possess the means to build up to these levels (Bowie et al., 1993).

Considering potential threats of this size, RAND's analysis concluded that the

projected capabilities of U.S. forces would enable it to satisfy the two-MRC requirement,

although the effectiveness of forces in the second theater would be highly dependent on

the degree of concurrency of the two conflicts as well as the outcome of the first MRC.

Regarding the role of airpower, it concluded that "the calculus has changed and

airpower's ability to contribute to the joint battle has increased" (Bowie et al., 1993, p.

83). The combination of modem airpower's lethality in conventional operations, which

has been greatly enhanced by the employment of advanced precision-guided munitions

and modem C4I (Communications, Command, Control, Computers and Intelligence)

systems, and its strategic mobility and survivability make it a good match for the needs of

short-warning MRCs.

To fully exploit the potential of airpower, the RAND study made a number of

recommendations aimed at ensuring that U.S. forces could establish and maintain air

superiority and enhance its ability to contribute to other aspects of the joint battle. Detailed

2 In this context, concurrent major regional conflicts are conflicts that erupt sequentially but overlap so that
they must be prosecuted simultaneously at times.

20 Introduction

simulations indicated that equipping current fighters with AMRAAM (Advanced Medium

Range Air-to-Air Missile) would ensure air superiority until some time around the year

2000. However, to ensure air superiority over the long term, simulations indicated that a

next generation platform, such as the F-22, would be needed in addition to the continued

development and procurement of advanced air-to-air missiles (Bowie et al., 1993).

The recommendation to equip our future air forces with more advanced munitions

extended beyond the air superiority role to the strategic air offensive and ground

campaigns as well. To supplement existing U.S. capabilities-based mainly on fighters

and sea-launched cruise missiles-in strategic air offensive operations, the study

advocated equipping long-range bombers with precision-guided munitions and standoff

weapons, significantly increasing both the effectiveness of early attacks on strategic assets

and the rate of destruction of these targets. To enhance the ability of U.S. forces to halt the

advance of enemy ground forces and establish an assured defense, RAND's analysis

indicated that employment of dispensers equipped with smart anti-armor submunitions,

such as the Sensor Fuzed Weapon (SFW), could stop a force of 10 armored and

mechanized divisions in approximately half the time required by the same forces armed

with current weapons. Furthermore, B-2 bombers equipped with inertially-guided

dispensers filled with smart submunitions could be used to provide additional anti-armor

capability in the early stages of the conflict and further decrease the time required to halt

an armored invasion (Bowie et al., 1993).

The analysis also indicated a need to procure additional fighters such as the F-15E,

whose long range, heavy payload, and modern avionics make it a highly effective and

versatile asset. Finally, a rapidly deployable theater C4I system--a goal believed to be

achievable through the integration of current systems provided that planned upgrades

materialize-was deemed essential to the effective and efficient prosecution of

airpower's missions within the joint operations framework (Bowie et al., 1993).

Although equipping our forces with advanced munitions, advanced fighters, and

rapidly deployable theater C4I systems would allow a smaller force structure to support

U.S. national military strategy, these enhancements would surely require a considerable

investment. Appropriating funds for this purpose could be difficult since changes in the

international security and economic environments have created momentum for the

The New Calculus

downsizing of the U.S. military and decreasing levels of defense expenditures. This is

perhaps the real "new calculus"-cost is now as important as system performance. With

the major budgetary impact being felt in procurement which is estimated to be down 47

percent from the peak years of the buildup during the 1980's, the greatest challenge for

DoD in the post-Cold War era may be how to maximize its "bang for the buck".

If achieving greater efficiency has become an imperative for DoD, it has become

a matter of survival in the aerospace industry. Aerospace industry shipments in 1993 fell

11 percent in real terms and were also expected to fall 11 percent in 1994 from 1993 levels

(DoC, 1994). Historically, the industry earned at least half of its revenues from military

sales. The worldwide decline in defense spending has reduced the demand for military

aircraft, missiles, avionics, and other related equipment from U.S. suppliers. The most

recent DoD budget request represented a cumulative real decline in defense spending of

more than 40 percent since the peak of the buildup in 1985 (DoC, 1994).

Unlike past downturns in defense spending, the commercial sector has experienced

a concurrent slump in demand for its products and is unable to sustain the industry's

current level of capacity. Adding to the overcapacity problem are aircraft manufacturers

from the former Soviet Union--currently operating at production rates less than one-third

of capacity-who have joined the fray in vying for military aircraft sales in the export

market (DoC, 1994).

While the aerospace industry in general has suffered greatly during the recent

downturn, the military aircraft sector, where the U.S. Government historically accounts

for 80 percent of all sales with Foreign Military Sales and direct exports collectively

accounting for the remaining 20 percent, has been particularly hard hit by declining

defense procurements (DoC, 1994). The resulting downward trend in total shipments of

complete U.S. military aircraft is shown in Figure 1.1. While intensifying competition for

shrinking defense procurement dollars has driven some companies to diversify into

commercial markets or sell off their defense businesses entirely, many have decided to

remain focused on the defense market and outlast the competition. For these companies,

improving the efficiency and the effectiveness of their operations through the

reengineering of business processes and implementation of leaner practices is paramount.

22 Introduction

Figure 1.1: Shipments of U.S. Military Aircraft (1980-1994)

1400

1200

S1000
C

800
C)

) 600E

! 400

00-

'80 '82 '84 '86 '88 '90 '92 '94
Year

Estimates and forecasts for years 1993 and 1994 by International Trade Administration.
Source: U.S. Department of Commerce, U.S. Industrial Outlook 1994.

1.4 IMPORTANCE OF HARDWARE AND SOFTWARE

Electronic hardware and software are important elements in all the key factors for

dramatically increasing U.S. capabilities for destroying enemy forces cited in The New

Calculus: advanced munitions, avionics, and aircraft and enhanced and rapidly deployable

theater C4I capabilities, such as those provided by AWACS and JSTARS (Bowie et al.,

1993).

Another indicator of the importance of electronic hardware and software is the

high electronic content of the components of a theater system. A chart illustrating the

forecasted range of variation of electronic content for some typical defense systems is

shown in Figure 1.2. Here, electronic content is the percentage of defense procurement

and RDT&E (Research, Development, Test and Evaluation) outlays that are devoted to

electronics hardware and software. Clearly, the data in Figure 1.2 indicate that all of the

selected systems possess a substantial level of electronic content. Even aircraft, which

have the lowest level of electronic content of the set of selected systems, are expected to

have an electronic content of 30 to 35 percent. Missiles contain a higher level of electronic

Importance of Hardware and Software 23

Figure 1.2: Electronic Content Variation for Selected Systems, 1990-2001

100%

90% Elec. & Comm.

80%
ARSV

S70%
SSpace

o 60%
0 Missiles
o 50%
C

- 40% Aircraft

w 30%

20%

10%

00/0

Electronic content was calculated as percentage of procurement and RDT&E outlays devoted to software
and electronic hardware. Forecasts for the years 1992-2001 by Electronic Industries Association.
Source: EIA (1991).

content, and the theater C4I systems-ARSV (Airborne Reconnaissance, Surveillance &

Verification) systems, electronics and communications systems, and space systems3 -

possess the highest electronic content levels of all. Overall, the substantial levels of

electronic content indicate that electronic hardware and software are integral elements of

our military capabilities.

As evidenced by Defense Secretary Perry's recent statement that future battles

could be won by the ability to gather, process and distribute battlefield information, the

revolutionary impact of information on warfare has not gone unnoticed by top officials

(Aldinger, 1994).

The confluence of two sometimes conflicting forces of change-the information-

based revolution in warfare and shrinking defense budgets-means that the capability to

develop and field high-quality hardware and software in a timely and affordable manner

will be critical to the ability of our future armed forces to accomplish their missions.

3 Space systems include C4I assets such as early warning satellites and communications satellites.

24 Introduction

Moreover, maximizing the performance of a theater system requires these systems to be

interoperable where appropriate.

The next section discusses how information and communications technologies

have revolutionized warfare. The description is based on lessons learned during Desert

Shield and Desert Storm and provides the context for our discussion of theater system

models in Chapter 2. The description is particularly pertinent to the discussion of the

theater electronic systems model which is used to explore theater system performance

issues.

1.5 A REVOLUTION IN WARFARE

The United States and its coalition allies unleashed a radically new form of warfare in the

night skies over the Persian Gulf on January 17, 1991. The prosecution of combat

operations under this new war-form devastated the world's fourth largest military

machine. By leveraging knowledge and information, U.S. and allied forces demonstrated

an unprecedented degree of flexibility, precision, synchronization, and speed and achieved

one of the most one-sided victories in history (Campen, 1992e).

It is ironic to realize that many of the ideas that led to such a stunning military

victory were borne out of a combination of the American military's demoralization after

the Vietnam War and its desire to be able to defeat an invasion of western Europe by

numerically superior Warsaw Pact forces without having to resort to nuclear weapons. The

Israeli victory against the overwhelming numerical superiority of Egyptian and Syrian

forces in the 1973 Yom Kippur War provided clear evidence to American strategists that

the starting ratios of forces do not necessarily determine the outcome of a battle and the

side which seizes the initiative would have the advantage, regardless of who was

strategically on the defensive. These lessons sparked an intense doctrinal debate within the

defense community which culminated with the adoption of AirLand Battle doctrine in

1982 (Toffler and Toffler, 1993).

AirLand Battle emphasized deepening the battle to strike at the second, third, and

subsequent echelons, deep strikes to knock out communications systems, air defenses,

A Revolution in Warfare 25

command centers, and logistics lines, and urged officers and troops to seize the initiative

and go on the offensive even when on the defensive strategically. In the event of an enemy

breakthrough, counterattacks should be mounted at the weak points rather than frontally at

the point of breakthrough (Toffler and Toffler, 1993).

Updated AirLand Battle formed the doctrinal underpinnings for operations in the

Gulf. This was clearly evident from the outset of Desert Storm. Even before F-117A

Nighthawk stealth fighters made their first strike against Baghdad, three Pave Low

Helicopters from the U.S. Air Forces's Special Operations Wing led nine army attack

helicopters in a streak across the Iraqi border with Saudi Arabia (Toffler and Toffler,

1993). Flying at thirty feet above the desert, they took out two early-warning radar sites

with laser-guided Hellfire missiles. Moments later, an interceptor control station was

destroyed by a laser-guided bomb delivered by a F-117A. These strikes created a blindspot

in the Iraqi air defense network through which 668 coalition aircraft streaked toward their

targets. Long-range interdiction strikes by air and ground forces disrupted the formation

and movement of enemy follow-on forces. Cruise missiles and coalition aircraft armed

with precision-guided munitions destroyed Iraqi command and communications systems

blocking the flow of information up or down the chain of command. Some of the earliest

strikes targeted microwave relay towers, telephone exchanges, switching rooms, fiber

optic nodes, and bridges which carried coaxial communications cables. In addition, some

Tomahawk cruise missiles dispensed ribbons of carbon fibers over Iraqi electrical power

switching systems, creating power disruptions and wholesale shutdowns of power systems

(Fulghum, 1992). A premium was placed on synchronized combined operations while

frontal assaults on the strength of enemy forces were avoided.

1.5.1 Information as a Force Multiplier

During the Gulf War, information was leveraged as a force multiplier by three different

classes of systems. These classes included precision-guided munitions, enabling systems,

and theater C41 systems.

26 Introduction

Precision-Guided Munitions

Perhaps the most poignant images of the war for the general public were formed by

viewing news footage of Tomahawk after Tomahawk being launched by American naval

forces, Iraqi gunners trying in vain to shoot down cruise missiles as they flew overhead on

their way to strike targets with precision, and laser-guided bombs hitting their targets with

pinpoint accuracy. The development of these and other precision-guided weapons-

weapons based on information-was one of the most significant advances since the

Vietnam War. Whereas collateral damage was accepted as an unavoidable consequence of

military action in past conflicts, the advent of precision-guided munitions now enables

targets to be destroyed with much greater accuracy, minimizing collateral damage. Sheer

mass of firepower is now outweighed in importance by accuracy.

To fully appreciate the significance of this capability, it is useful to consider the

past. During World War II, it required 4,500 sorties by B-17 bombers and 9,000 bombs to

accomplish what a F-117A can do on one sortie with a single bomb (Toffler and Toffler,

1993). During the Vietnam War, accomplishing the same mission required 95 sorties and

190 bombs (Toffler and Toffler, 1993). While attempting to destroy the Thanh Hoa bridge,

American pilots flew 800 sorties and lost ten planes without achieving success. The bridge

stood intact until a flight of four F-4s armed with some of the earliest smart bombs

accomplished the task in a single pass (Toffler and Toffler, 1993).

Enabling Systems

While smart weapons have proven to be an important force multiplier, the development

and fielding of other enabling systems such as advanced avionics, ranging and targeting

systems, electronic countermeasures, navigation aids, and night vision devices have also

significantly enhanced the combat capabilities of our forces. These information-based

systems enhance or extend the ability of the equipped asset to accomplish its mission and

were another critical element of the success of coalition forces in Desert Storm.

Again, it is useful to look briefly backward to gauge these enhancements. Whereas

the crew of a Vietnam-era M-60 tank had to find cover and come to a stop before firing,

the crew of a modem M-1 Abrams tank can fire while on the move (Toffler and Toffler,

1993). Similarly, while the chances of a M-60's crew being able to hit a target 2,000 yards

A Revolution in Warfare 27

away at night are slim, night-vision devices, laser ranging systems, and computerized

targeting systems which compensate for heat, wind, and other conditions assure that the

M-1 crew will score hits nine times out of ten (Toffler and Toffler, 1993). Clearly, the

armored groups whose tanks are equipped with these enabling systems have a significant

edge over forces that are not. As was the case with the early smart bombs, the Vietnam

War also demonstrated the utility of advanced avionics. Before the fielding of advanced

bombing systems, pilots could not do much "jinking" (erratic flight) and still have any

chance of delivering their payload on target. The advanced bombing systems compensated

for altitude, speed, and a moderate amount of jinking, affording the pilot a significantly

higher degree of protection while enhancing his accuracy (Momyer, 1978). Modern

systems can enable a pilot to use dumb bombs with a high degree of accuracy.

While some of the information-based capabilities such as smart bombs, advanced

avionics, electronic countermeasures, and night-vision devices were available to some

degree during the Vietnam War, the war in the Gulf marked the first combat use of the

Global Positioning System (GPS). Whereas in Europe soldiers had been able to get their

bearings relative to roads, towns, forests, and other landmarks, the desert was devoid of

landmarks--even the sand dunes shifted. The precise position information provided by

GPS receivers to coalition forces proved to be indispensable in allowing the desert sands

to be navigated with a high degree of confidence (Schwarzkopf, 1992).

During the initial deployments of U.S. troops to Saudi Arabia, the Department of

Defense was still in the process of evaluating portable commercial GPS receivers.

However, early experiences of coalition troops with the receivers were so positive that the

procurement processes were dramatically accelerated. By February, Trimble Navigation

had supplied more than 3,000 commercial receivers and was rushing to fulfill orders for

another 6,000. Magellan Systems Corporation had supplied approximately 2,500 hand-

held receivers. It is estimated that well over 12,000 personal receivers were used by

coalition forces. Priced around $3,000, the commercial hand-held receivers were compact

and rugged enough for battlefield use. Their appeal was so high that some American

troops had their relatives buy them at home and mail them to Saudi Arabia (Anson and

Cummings, 1992).

28 Introduction

Magellan GPS receivers were carried in air crew survival kits, enabling some

remarkable rescue operations. GPS receivers could also be found on ships and landing

craft and in tanks and other armored vehicles. Significantly, they were also used by

forward observers who were directing air and artillery strikes. A soldier on the ground

could locate his position with a hand-held GPS receiver, determine the range and bearing

of a target with a laser range finder, and relay the precise target information to an air

control officer for close air support or ground attack aircraft. Using its own GPS

equipment, an aircraft could offset its bombing instruments and attack with surprise and

precision. Thus, a $3,000 hand-held device could provide an inexpensive but highly

effective force multiplier for a $30 million dollar aircraft as well as enhance its

survivability (Anson and Cummings, 1992). The capability enhancing potential of GPS

was clearly demonstrated in the first strike of the war by the successful helicopter raid on

the Iraqi early-warning radar sites. According to the Pentagon's final report on the Gulf

War, the raid was made possible because of night- and low-light vision technologies and

the precise navigational capability afforded by the Global Positioning System (DoD,

1992).

Theater C4I Systems

While the media made the public aware of the capabilities of precision-guided weapons

and other enabling technologies such as night-vision goggles and GPS receivers, two of

the most powerful information weapons of all-AWACS and JSTARS-were relegated to

relative obscurity. The E-3 Sentry, otherwise known as AWACS (Airborne Warning and

Control System), is a modified Boeing 707 aircraft, crammed with computers, radar,

communications gear, and sensors. In both Desert Shield and Desert Storm, the AWACS

aircraft scanned the skies in all directions to detect enemy aircraft or missiles, sending

targeting data to ground units and interceptors.

The ground-scanning counterpart of AWACS was the Joint Surveillance Target and

Attack Radar System (JSTARS). The E-8A JSTARS aircraft is a modified Boeing 707

equipped with a multi-mode radar for detection and tracking of enemy forces, processing

equipment, mission crew work stations, and command and control interfaces. Data

collected on board are then relayed to six ground station modules that receive radar data

A Revolution in Warfare 29

processed by the aircraft in real time. The data can then be analyzed by ground

commanders for battlefield application (Swalm, 1992).

At the start of the Gulf crisis, the JSTARS system was still in development testing

and at least three years remained before an initial production decision was to be made.

However, its potential for locating Iraqi tanks was so impressive that the only two existing

prototypes were deployed to Saudi Arabia. After JSTARS was declared operational, one of

the aircraft flew every day with missions logging an average of 13 hours of flight time

while covering the entire theater of operations with one orbit. At times, Joint STARS

aircraft operated around the clock in the worst weather the Middle East had seen in

decades (Swalm, 1992).

JSTARS was initially limited in operations to performing a surveillance role. After

only two days, this limitation was removed and a weapons allocation officer was assigned

to control his own F-15Es, especially in the campaign against tactical ballistic missile

sites. Over the course of operations, Joint STARS evolved to serve in a C41 (Command,

Control, Communications, Computers and Intelligence) capacity as part of an

interconnected network of these assets, which included AWACS, the RC-135 Rivet Joint

electronic eavesdropping aircraft, the Airborne Command and Control Center (ABCCC),

and various Army and Air Force command and intelligence centers. Linking JSTARS and

AWACS together provided coalition commanders with a comprehensive picture of enemy

tactical movements on the ground and in the air (Swalm, 1992).

By all accounts, JSTARS was a boon for coalition forces. Ground commanders

could track the movements of enemy forces on a real-time basis, from as far away as 155

miles, under all weather conditions. Aircraft directed by Joint STARS had a 90 percent

success rate in finding targets on the first pass (Swalm, 1992). For interdiction missions,

Joint STARS could use its synthetic aperture radar to provide real-time damage

assessment and direct immediate re-attacks. On one occasion, two A-10s and an AC-130

directed by JSTARS destroyed 58 out of 61 vehicles in convoy (Swalm, 1992). In another

instance, an Iraqi unit mustering to attack VII Corps was 80 percent disabled before it

could engage any of the corps's units (Swalm, 1992). In a similar scenario, a unit of the

Republican Guard preparing to launch a counterattack was detected by JSTARS and

targeted from a ground station and destroyed by Army Apache attack helicopters (Swalm,

30 Introduction

1992). During the early days of the war when the Iraqis attacked the Saudi town of Khafji,

Joint STARS provided intelligence data indicating that the attack was conducted by only a

small Iraqi force. JSTARS also played a significant role in hunting mobile Scud launchers,

first locating their positions and then passing that information on to ground-based and

airborne strike assets (Swalm, 1992). JSTARS further proved its worth as a C41 asset in

the deconfliction role as well as in the detection and targeting of enemy forces. At one

point early in the ground campaign, the JSTARS mission commander intervened to

prevent U.S. Marine Corps forces from committing fratricide on the right flank of the

British armored thrust into Kuwait (Swalm, 1992).

By the end of the war, the two JSTARS aircraft had flown 49 sorties, logging 535

hours of flight time, successfully detected over 1,000 targets, and controlled 750 fighters.

The effectiveness of this developmental system was evidenced by the fact that close air

support and interdiction aircraft consistently ran out of ammunition before they ran low on

fuel once JSTARS became operational (Swalm, 1992). Attesting to the system's

revolutionary capabilities, Air Force Chief of Staff General McPeak said, "We will never

again want to fight a war without a Joint STARS kind of system."

While the precision-guided weapons and information-based enabling systems

discussed earlier were important force multipliers for individual units or weapons

platforms, the capabilities provided by AWACS and JSTARS were perhaps the greatest

force multipliers of all because their extraordinary command and control capabilities

enabled them to coordinate and synchronize the actions of multitudes of these individual

assets and serve as force multipliers for the theater.

1.5.2 Synchronization and Speed

Facilitated by the proliferation and integration of computers, telecommunications

equipment, networks, and satellites, operations in the Gulf War were prosecuted with

unprecedented synchronization, speed, and intensity. One example of the degree of speed

and synchronization that characterize warfare in the information age was General

Schwarzkopf's famous end-run flanking maneuver. The fact that this sort of envelopment

was attempted was not as astonishing as the speed with which it was executed. In

retrospect, it appears that efforts by coalition forces to convince Iraqi commanders that a

A Revolution in Warfare 31

frontal assault was imminent were aided by the enemy's belief that allied ground forces

could not possibly advance at the high speeds required to accomplish an end-run (Toffler

and Toffler, 1993). 4

The management of airspace in the air campaign was another good example of the

contribution of information technology to the increased level of synchronization and

speed of modem warfare. Effective and efficient airspace management was a key factor in

the success of the air war, keeping the 900 or so coalition aircraft in the air at any given

time from running into each other without reverting to the wasteful block allocations of air

volume and time that were used during the Vietnam War. In the Gulf, airspace

management was heavily supported by automation, enabling airspace managers to

visualize how the air volume from ground level to 100,000 feet was being used by mission

planners and to deconflict airspace by location, altitude, and time (Campen, 1992a).

Effective and efficient deconfliction is critical to achieving a high level of synchronization

and integration of air operations. Without it, the effectiveness and intensity of an air

campaign would be seriously degraded (Campen, 1992a).

Airspace management functions in the U.S. Ninth Air Force were performed with

the aid of its Combat Airspace Deconfliction System (CADS) (Campen, 1992a). Running

on commercial computer hardware, CADS depicted, analyzed, and deconflicted airspace

by location, altitude, and time. Subsequently, an Air Control Order would be automatically

generated and then inserted into Computer Assisted Force Management System (CAFMS)

4 Fully aware that the end-run would require the largest maneuver of armor in the desert in the history of the
U.S. military, General Schwarzkopf nevertheless adopted the strategy believing that it was the most likely
way to end a ground war quickly and decisively (Schwarzkopf, 1992). While the movement of the attack-
ing coalition units to their pre-attack forward locations within the allotted time involved daunting chal-
lenges including the crossing of VII and XVIII Corps at a point in the desert called the "Mother of All
Intersections", the logistical challenge of keeping the coalition forces supplied with ammunition and fuel
was a potential Achilles heel of the flanking maneuver. These challenges were met by effective scheduling
and traffic control, both of which were enabled by computers, telecommunications, and satellites. The
level of synchronization and speed achieved in supporting the movement of the corps and the ground
offensive was staggering. During the movement of the corps, supply routes saw a constant flow of traffic
for 24 hours a day, seven days a week. The effort was perhaps best described by the words of the man
responsible for logistics in the Gulf, Lt. General William G. Pagonis:

By the time the pipeline was flowing at full speed, an average of eighteen trucks per
minute was crossing through a single point on the northern route. This rate was sustained
for an entire month. At one point, I had my helicopter land on the west side of the highway
to check out a transportation movement-control point. The traffic was so dense that I
couldn't get across to the east side of the road. We were finally forced to crank up the
helicopter and fly to the other side (1992, p. 146).

32 Introduction

and became part of the Air Tasking Order. CADS made use of enhanced graphics

capabilities and a database containing maps of the entire world. Once the airspace

requirements of each weapon system were manually entered, the system enabled the

airspace manager to visualize airspace utilization over the combat area by location, by

time, and in three dimensions. By enabling airspace managers to detect conflicts during

mission planning, safe alternate routes could be proposed, minimizing the risk of fratricide

by deconflicting airspace before the aircraft took off (Campen, 1992a).5

While the information systems in the Gulf were taxed to their limits in support of

coalition operations, the degree of synchronization and speed displayed by allied forces

during Desert Storm would have been much more difficult to achieve without their

contributions. Neither the air campaign nor the ground war could have been executed as

smoothly with such a high level of coordination and intensity. Once again, it is apparent

that information has become paramount to the effective and efficient conduct of military

operations.

1.5.3 Information Differential

A key factor behind the victory in the Gulf was the information differential. Allied forces

had the capability to gather, communicate, and leverage information while the Iraqis did

not. From the earliest moments of the war, the Iraqi command and control system was

5 During Desert Shield and Desert Storm, daily tasking to all the bases and units supporting the theater air
campaign was provided by an Air Tasking Order (ATO). Containing a huge amount of information, the
ATO provided units with detailed instructions including specifications of targets, TOTs (time on target),
ordnance loads, fuzing, and rules of engagement. The ATO also specifies details such as IFF (identify
friend or foe) squawks, radio frequencies, identification routes and procedures, and air refueling times,
altitudes, and contact points (Hyde et al., 1992). Lt. General Homer, designated as Joint Forces Air Com-
ponent Commander, chose CAFMS (Computer Assisted Force Management System) to help generate and
distribute the ATO. CAFMS provided just enough capability to get the job done-after extensive modifi-
cations and enhancements in hardware and software were made, that is. Ultimately, these enhancements
allowed the system to perform just well enough to do the job. During Desert Storm, the system generated
ATOs ranging in length from 900 pages to a peak of 982 pages during the ground war and distributed them
to more than 175 addressees (Hyde et al., 1992).

Contained within the ATO were precise instructions to mission planners called the Air Control Order
(ACO), which often exceeded 100 pages in length during the course of Operation Desert Storm. As many
as 980 sorties per day had to be deconflicted during Desert Shield. During the 100 hours of the Desert
Storm ground campaign, the deconfliction need was much greater with over 2,800 sorties being flown
each day. These sorties were spread over an area of 93,600 square miles and utilized 122 different air refu-
eling tracks, 660 restricted operating zones, 312 missile engagement zones, 78 strike corridors, 36 training
areas, and 92 combat air patrol points. In addition, the coalition's air operations had to be thoroughly coor-
dinated with the constantly shifting civil air routes of six independent nations (Campen, 1992a).

A Revolution in Watfare 33

severely degraded, seriously disrupting the ability of the vaunted Iraqi war machine to

function on both the tactical and strategic levels. Information differentials were the key to

success during the conflict at all levels from the smallest tactical units to the highest levels

of command. Military aircraft were central elements in this information-based war.

The concept of creating strategic advantage by degrading the enemy's control

structure is not new. Ironically, Iraq's prime supplier of military hardware as well as its

primary source of training and doctrine, the Soviet Union, first advocated the belief that

the balance of military power in war could be tipped by attacking the enemy's control

infrastructure (Campen, 1992b). Drawing from the wealth of experience gained during the

Great Patriotic War, the Soviets developed a theory of information warfare known as

Radio Electronic Combat. The objective of the doctrine was to degrade the enemy's

command and control infrastructure by at least 50 percent through combinations of

physical destruction, jamming, and deception. In Desert Storm, coalition air forces easily

met that goal and in some instances achieved nearly 100 percent degradation of the

command and control assets of the Iraqi military machine (Campen, 1992b).

The role of the F-117A Nighthawk stealth fighter in Desert Storm provided a good

example of the information differential in practice. The stealth technology incorporated

into the F- 117A created an information differential by denying the enemy air defenses the

knowledge needed to track and intercept or shoot down the plane. While other methods

such as jamming may produce a similar end result, these methods utilize electromagnetic

emissions to accomplish their task--emissions which can themselves be monitored and

tracked. Thus, the information differential produced by stealth is greater because it

accomplishes the task without creating alternative sources of information that the enemy

could leverage. The F-117A's ability to use its information advantage to penetrate high-

threat areas and deliver precision-guided bombs made it the platform of choice for

attacking heavily defended high-value targets. In fact, the Nighthawks were the only

planes to attack targets in downtown Baghdad, focusing on well-protected air defense

centers and military command and control facilities. While the F-117As flew only two

percent of total sorties, they accounted for 40 percent of strategic targets attacked and did

not incur a single loss (Toffler and Toffler, 1993). The inherent tactical information

differential employed by the F-117As was exploited to produce an even greater

34 Introduction

information differential by attacking command and control facilities with precision-guided

weapons.

There were other sources of information differential at the tactical level as well.

First, the coalition forces had wide access to GPS receivers-many were of the hand-held

variety-while the Iraqis did not. Thus, it was possible for allied forces to navigate the

desert terrain quickly and accurately-a definite advantage in modem maneuver warfare.

Coalition operations were also aided by the intimidation of Iraqi forces. Iraqi prisoners

reported they were so afraid of being attacked by anti-radiation missiles they refused to

turn on electronic equipment. Some were convinced that even receiving equipment would

act as a magnet for instant death (Campen, 1992b). Allied forces had an additional

advantage because of the large scale production, distribution, and utilization of battlefield

"templates," overlays of Iraqi troop dispositions and barrier construction produced from

satellite photos. In many instances, the templates revealed Iraqi positions down to the

level of individual fighting positions. The information provided coalition forces with

accurate knowledge of Iraqi positions, facilitating their destruction with precision at

maximum range. Some even attribute the destruction of the 48th Guards with minimal

allied casualties to the use of battlefield templates (Campen, 1992c).

At the strategic level, the Coalition also possessed a tremendous information

advantage. Coalition commanders had access to satellites which provided high-resolution

reconnaissance photographs and early warning of Scud missile launches; the Iraqis had no

similar capability. AWACS and JSTARS could be linked to provide a "God's eye view" of

the battlefield providing coalition commanders with a complete picture of all enemy

movements on and over the area of operations; Iraqi commanders had no similar

capability. While the allied C4I infrastructure was allowed to operate freely, early strikes

targeting the Iraqi command and control structure disabled a highly centralized control

network leaving the enemy forces deaf, dumb, and blind. Iraqi units in Kuwait, having

been cut off from the ultimate source of authority in Baghdad, were further hampered by

their inability to communicate with each other. Iraqi battalions were equipped with 14

different types of radios-none of which could communicate with each other. For

instance, one battalion would be equipped with a British system while the adjacent

battalion would be equipped with a Soviet system (Campen, 1992b).

A Revolution in Warfare 35

To make matters worse, communications were often networked in a classic star

archetype. One unit had eleven pairs of radios operating on eleven different frequencies.

This allowed a central commander to control the flow of information to the individual

elements under his command and, hence, the panic button. This configuration was

dramatically different from that of a comparable U.S. Marine Corps unit where

commanders shared the same frequency and information could flow in upward,

downward, and lateral directions. The isolation was so severe that Iraqi commanders often

had no idea that adjacent units had been attacked and were consequently surprised by the

pace of the attack by coalition forces who had suddenly arrived on their doorstep without

warning (Campen, 1992b).

It is clear that the ability to effectively and efficiently manage information is now

and will continue to be a key for the successful prosecution of wartime operations.

However, the availability of information is not enough by itself. Military forces must be

able to effectively and efficiently gather, process, analyze, and distribute the information

required for it to accomplish its objectives while denying that ability to enemy forces. To

ensure success, forces must be capable of creating and sustaining an information

differential.

1.5.4 A Dual War

While Desert Storm offered our first glimpse of warfare in the information age, the new

war-form is still in its infancy. In fact, while some aspects of the war exhibited the

precision and speed of information-based warfare, other aspects of the war were

conducted with the same style of mass destruction that were characteristic of previous

wars. The relentless carpet-bombing of the Republican Guards and other bunkered Iraqi

front-line units by B-52s exemplified the older form of warfare employed during Desert

Storm. As in previous wars, dumb iron bombs were used to wreak widespread havoc and

destruction. This was the same sort of bombing campaign that had been conducted half a

century ago during World War II (Toffler and Toffler, 1993).

It is likely that we have only witnessed the beginning of this revolution in warfare.

While the older methods of mass destruction will continue to be employed in war for the

foreseeable future, the world has witnessed a paradigm shift in warfare from

Introduction

indiscriminate mass destruction toward selective targeting and precise destruction.

Intrinsic to this shift has been a shift in strategic thinking away from "total war"-an

extension of Clausewitz's notion of "absolute war"--toward an ideal of defeating an

enemy without leveling the entire nation, an ideal expressed in the venerable writings of

Sun Tzu who believed that "Generally in war the best policy is to take a state intact; to

ruin it is inferior to this" (1971, p. 77).

The planning of offensive operations in the Gulf displayed just this sort of strategic

thinking. Although no one had explicitly stated that Iraq was not to be destroyed as a

nation, General Schwarzkopf assumed that the United States might still need Iraq to serve

as a regional counterbalance to Iran and instructed his planners to devise a strategy that

would cripple Iraq's military without laying waste to the country (Schwarzkopf, 1992).

This emphasis on the precision destruction of military assets is further illustrated by the

following passage from Schwarzkopf's own account of the war:

We were driving the enemy into the pocket across the Euphrates from
Basra, which our Air Force had begun referring to matter-of-factly as the
"kill box." We bombed the hell out of every convoy we could find-but
between air strikes we flew over the battlefield with Black Hawk
helicopters equipped with loudspeakers. We kept telling the Iraqis in
Arabic, "Get out of your vehicles, leave them behind, and you will not die.
We will let you go home." A lot of them had already figured that out for
themselves. A tank battalion commander who surrendered eventually told
our intelligence officers: "During the Iran-Iraq war I loved my tank because
it was the one thing that protected me. But during this war I hated my tank
because it could kill me. It was drawing fire. I stayed out of it as much as I
could and slept as far away as possible" (1992, p. 466).

While information warfare is still in its infancy and elements of the old mass

destruction paradigm remain in use, the trend toward finer precision in warfare is

unmistakable. Even dumb iron bombs, a ubiquitous tool of mass destruction and a

mainstay of strategic bombing, will be "smartened" in the future with the addition of a

guidance system being developed by the Joint Direct Attack Munition (JDAM) program

(Fulghum, 1993c). Given this drive toward greater precision, the gathering, processing,

analysis, and dissemination of information will continue to grow in importance in the

future.

Summary 37

1.6 SUMMARY

The discussion in the previous section of the revolution in warfare suggests the idea that

the new war-form raises the focus of performance from the level of individual units, tanks,

or aircraft to the level of the theater. The emergence of this new form of warfare raises

new complex systems issues related to improving the performance of the theater system.

Currently, aircraft are important, but relatively autonomous, components of a theater

system. Electronics and software are the keys to integrating aircraft into a synchronized,

interoperable theater system. In the following chapters, we will explore some current

issues in developing complex electronic systems for this environment.

38

CHAPTER 2
The New Integration Challenge

The impressive achievements of the U.S. military and its coalition allies during Desert

Shield and Desert Storm heralded the dawn of a new form of warfare whose revolutionary

impact will be felt for some time to come. Many old concepts regarding numerical

advantages in troops and materiel necessary for mounting a successful campaign, long

accepted as veritable laws of war, were shattered by the overwhelming success of the

allied forces. The speed with which allied operations were conducted stunned both

television viewers at home and hapless Iraqi soldiers in the field. News footage showing

laser-guided bombs striking targets with pinpoint accuracy dazzled the public with the

wizardry of high technology.

While the full extent of the implications of Desert Storm and the change in warfare

that it portends will likely be the subject of debate in the foreseeable future, one thing is

certain. The ability to acquire, process, fuse, analyze, and disseminate information

effectively and efficiently is vital to military operations in the information age and will

continue to grow in importance as new ways of exploiting information for military

advantage are conceived and developed.

To understand the technical and policy issues resulting from the increasing

presence of information technologies in military operations, a number of actions were

taken as a part of this thesis effort. First, to develop a framework for understanding the

40 The New Integration Challenge

role of electronic systems in a theater campaign, a simple conceptual model of a general

theater system was formulated. The general model was then mapped into the electronic

system domain. Analysis of the resulting model raised a set of issues associated with the

proliferation of electronic systems in a theater of operations. Evidence was gathered from

documented real world experiences, including experiences from Desert Shield and Desert

Storm, to validate that these problem areas did in fact pose significant challenges. These

challenges were then refined in light of current constraints.

2.1 THEATER SYSTEM MODEL

To help comprehend the ramifications of the information revolution on warfare, it is useful

to develop a general model of a theater system. Once a general model has been established

and general categories of systems defined, the model can be mapped into the domain of

electronic systems. After mapping the general theater system model into the electronic

system domain, the interconnections among the different categories can then be studied to

develop an understanding of the possible implications of the use of electronic systems and

information technology for military operations.

2.1.1 General Model Logic

One approach to developing a general theater system model is to define it in terms of the

desired result of the use of military power at a localized tactical level. For instance, why

does a gunner launch the Hellfire missile at an enemy tank? The gunner fires a missile to

disable or destroy a piece of the enemy's military capability. Hence, we can posit that the

desired outcome is to degrade or destroy an enemy military capability. A true theater

system will have many desired outcomes.

Once a set of desired outcomes has been established, the rest of the model

formulation process can be accomplished by backing away, step-by-step, from the desired

objective and considering what is needed at each point in the chain to achieve the goal.

The procedure is a generalization of the "dynamic programming" approach used in

optimizing control problems. The first question to consider is fairly evident.

Theater System Model 41

What degrades or destroys enemy military capabilities?

The degradation or destruction of an enemy capability is accomplished through the

use of weapons. Munitions are the actual instruments that are used and expended to fulfill

the desired objective. Having identified one category of systems, we can now take another

step back to identify the next category.

How are weapons and munitions brought to bear against enemy capabilities?

Weapons must be employed within a range of effectiveness to have utility. Thus,

this issue concerns the means by which a weapon can be transported to the battlefield so

that it may be employed within its effective range. Tanks, aircraft, ships, and foot soldiers

are all examples of "platforms" which bring weapons to bear on enemy capabilities. Now

that two elements of a theater system-munitions for degrading enemy capabilities and

platforms for bringing munitions to bear within an effective range-have been identified,

the means by which platforms and munitions are brought to bear against the enemy must

be explored.

How are the actions of the platforms directed, controlled and coordinated?

The use of platforms must be managed to ensure that the desired enemy

capabilities are targeted by the platforms' munitions while minimizing the chances for

friendly forces to accidentally attack each other. Command and control assets are required

to fulfill this role. These systems allow platforms and their munitions to be used in a

systematic, rational manner.

The answers to these questions provide the basis for three broad system categories

that compose the generalized theater system model-munitions, platforms, and command

and control assets. A depiction of the general model is shown in Figure 2.1.

Munitions

Munitions are expended to accomplish the objective of the mission. They directly effect

the degradation or destruction of enemy capabilities and are also destroyed in the process.

This category includes all sorts of expendables such as grenades, bullets, artillery shells,

conventional bombs, and many kinds of missiles. While munitions may exhibit features

characteristic of systems included in other categories (e.g., some may consider cruise

42 The New Integration Challenge

Figure 2.1: General Theater System Model

Command and Control Assets

direct

Platforms

which employ

Munitions

-o dg.........
to degrade enemy
ca p ab ilitie s

missiles as platforms), the employment of these systems as expendables differentiates

munitions from the platform and command and control asset categories in this theater

system model, which are designed to be used more than once.

Platforms

Platforms are systems that are used to bring munitions into an effective space for

employment against an enemy capability. This category covers a range of systems

including fighter and bomber aircraft, tanks, battleships, helicopters, and even individual

soldiers. Their single most defining characteristic is that they are not expendable and are

used many times to deliver munitions.

Command and Control Assets

Command and control assets are systems that are used to direct, control and coordinate the

use of platforms (and occasionally munitions) with the aim of enhancing the chances for

successfully and efficiently achieving the desired objective. This category encompasses a

....:

• ; . .-. ,,:-... .
". . :. . , , , ..-

Theater System Model 43

range of systems from couriers and signal flags to high performance asynchronous transfer

mode broadband communication systems and JSTARS.

2.1.2 The Electronic Systems Domain

The electronic systems domain is an important part of the theater system model. Since this

domain is essentially a subset of the general model formulated in the previous section, the

mapping of the general categories into the electronic systems domain is fairly

straightforward. The general categories of munitions, platforms, and command and

control assets correspond to the electronic systems categories of precision-guidance

systems (PGSs), platform enablers, and theater C4I systems, respectively. A depiction of

the theater electronic system model is shown in Figure 2.2.

Figure 2.2: Theater Electronic System Model

/

I

enable more
effective and
efficient use of...

\.

[

Theater C41 Systems

u :': :: enable more effective and
efficient use of...

Platform Enablers

:...: enable more effective and
efficient use of...

Precision-Guidance Systems

i . enable more effective and
efficient degradation of
enemy capabilities

44 The New Integration Challenge

Precision-Guidance Systems

Precision-guidance systems reside at the bottom of this domain and are a subset of the

munitions category. Precision-guided munitions (PGMs) are munitions equipped with

these electronic systems. PGSs include such systems as laser-guidance systems, fire-and-

forget systems, sensor fuzing, and the proposed "brilliant" systems of the future.

Platform Enablers

Platform enablers are systems carried by platforms which allow them either to use their

weapons or to use them more effectively. They can also provide basic platform

functionality (e.g., digital flight control systems) or enhance platform capabilities (e.g.,

GPS receivers). A prime example of the enabling power of this category of systems was

the opening strike by helicopters against Iraqi early warning radar sites. The Pentagon's

final report on the Gulf War indicated that the raid was made possible by platform

enablers. GPS receivers afforded the crews a precise navigational capability, and the

night- and low-light vision devices allowed the helicopters to operate under the cover of

darkness (DoD, 1992). Other examples of platform enablers include advanced radar

systems, inertial navigation systems, laser target designators, and LANTIRN navigation

and targeting systems.

Theater C41 Systems

This category of electronic systems enables platforms to use their enabling systems-and,

consequently, their munitions-more effectively. These systems monitor the status and

movements of opposing forces and direct and synchronize the use of platforms to insure

that the appropriate targets are attacked. Moreover, these systems also help keep friendly

forces out of each other's way. In the future, a theater C4I system may be able to directly

influence the performance and employment of precision-guidance systems. This effect is

represented by the dashed curve shown in Figure 2.2. This kind of capability is already in

process with the planned Block 4 upgrade for the Tomahawk cruise missile (the upgrade

program is also known as the Tomahawk Baseline Improvement Program), which will

include a data link so that a missile could be retargeted or rerouted in-flight (Kandebo,

1994). New concepts, such as the Shark (Silent Hard Kill) weapon which is intended to

locate and destroy both emitting and non-emitting radars, make use of sensor data from

Theater System Model 45

JSTARS, AWACS, and satellites to provide guidance into the general vicinity of a target

(Fulghum, 1993a). Examples of theater C4I systems include Joint STARS, AWACS, and

airspace deconfliction systems.

2.1.3 Theater Electronic System Dynamics

Within the theater electronic system model, the dynamics of the theater electronic system

and the importance of electronic systems becomes clear. While conventional munitions

such as dumb bombs or rockets can be effective, precision-guidance systems provide a

force multiplier by enabling more effective and efficient degradation or destruction of

enemy capabilities.1 Platform enablers support more effective and efficient use of

precision-guidance systems. Theater C4I systems coordinate platforms and their enabling

systems, which allows them to be employed more effectively and efficiently. The effective

and efficient use of platforms and their enabling systems produces, in turn, more effective

and efficient employment of precision-guidance systems. Moreover, in the future theater

C4I systems will be able to bypass the platform enablers in some instances and directly

enhance the performance of precision-guidance systems. 2

Clearly, the theater system will perform at a peak level when all the component

systems and interconnections are working effectively and efficiently. We can better

understand the importance of complex system integration by investigating how the total

system degrades when the interconnections break down. Problems can arise when

component systems from any category or the interconnections within and among

categories are not functioning well.

Component System Problems

Precision-Guidance System Problem

For example, assume that the precision-guidance systems are not performing up to par. In

fact, consider what would happen if the PGS-equipped precision-guided munitions

performed no better than dumb munitions. While platforms (and C4I systems in the

future) would no longer be able to leverage the force multiplier afforded by PGSs, the

1 Evidence of this is available in Section 1.6.1 of Chapter 1.
2 Examples include the Shark weapon and the Block 4 Tomahawks discussed in the previous section.

46 The New Integration Challenge

performance of the enablers and the theater C4I assets as a system could still facilitate

more effective and efficient detection and targeting of enemy military assets.

Platform Enabler Problem

Problems with platform enablers could hamper the use of PGMs (or any kind of munition

for that matter) and significantly diminish the chances of completing the mission

successfully even if the functioning enabling systems could make use of data from C4I

systems. In the worst case, failures in enablers providing basic platform functionality, such

as digital flight control systems, would result in the destruction of the platform itself and

perhaps the death of the crew.

Theater C41 System Problem

Problems with C4I systems can have dire consequences for the overall performance of the

theater system. Consider the predicament of the Iraqi forces during Desert Storm when

their highly centralized control structure was severely degraded from the outset of the air

campaign. Without an effective command and control system, units belonging to one of

the world's largest military machines could do little except defend themselves or surrender

in the face of highly synchronized coalition military operations. Having the finest

platforms equipped with the best enablers and precision-guided munitions may make little

difference in shaping the ultimate outcome of the theater campaign if the actions of the

platforms cannot be synchronized and directed against opposing forces.

Interconnection Problems

A crucial dimension of a well coordinated system is its "interoperability"-the ease of

integration among many otherwise discrete system components. The effects of

interoperability problems are discussed in the subsections that follow.

Intracategory Interoperability Problem

While these linkages are not explicitly shown in Figure 2.2, they can be very important to

the overall performance of the theater system. For instance, the utility of JSTARS during

Desert Storm would have been greatly diminished if it were not capable of communicating

directly with coalition commanders on the ground or other theater C4I systems such as

AWACS and ABCCC (Airborne Command and Control Center).

Theater System Model 47

PGS-Platform Enabler Interoperability Problem

If a problem occurs with the connection between PGSs and platform enablers, the

consequences are similar to the effects of having a faulty PGS. The effectiveness of PGMs

could be seriously impaired-perhaps even preventing the platform from using the

munition at all. A problematic connection could result in the shelving of a more advanced

precision-guided munition in favor of a less capable weapon that can interface more

seamlessly and reliably with the platform and its enablers.

Platform Enabler-Theater C41 System Interoperability Problem

Even if the other elements of the theater system are still performing well, a defective

connection between platform enablers and C4I systems could degrade the overall

performance of the theater system. The effect of poorly performing or faulty

communication links between theater C4I systems and platforms on the ability to

effectively and efficiently employ platforms against enemy capabilities can be just as

deleterious as enemy degradation of theater C4I assets. Consider an extreme case where

the communication link is of such poor quality that C4I assets are essentially unable to

influence the use of platforms against opposing forces. For the purposes of accomplishing

the objectives of a specific sortie or mission, the C4I systems might as well have been

destroyed by enemy forces. Although the consequences are not as dramatic if the problems

with the communication link are less severe, an inadequate level of interoperability

between platform enablers and theater C41 systems can affect theater operations in the

same way as enemy jamming and is tantamount to a self-inflicted degradation of C4I

capabilities.

PGS-Theater C41 System Interoperability Problem

While the utility of this linkage has yet to be widely exploited or even explored,

inefficiencies in this interconnection could create significant problems for theater forces

who had hoped to exploit this link. Again, inadequate interoperability can be just as

deleterious to theater system performance as enemy jamming.

48 The New Integration Challenge

2.1.4 Implications of the Theater Electronic System Model

The analysis of the theater electronic system model detailed in the preceding section

yields two main implications:

* The ability to develop high-quality precision-guided munitions, platform

enablers, and theater C4I systems is critical to the performance of the overall

theater system.

* Interoperability among the different categories of systems involved in a theater

campaign is just as vital to the capability of the theater system as the

performance of discrete systems in isolation. In fact, it may actually be more

vital.

Currently, the lion's share of development energies and system integration

activities are focused on optimizing the performance of individual systems or platforms

(Rich and Dews, 1986). However, the analysis of the simple theater system model

suggests that there may be a greater challenge-the interoperability problem-that needs

to be addressed.

2.2 VALIDATION OF THE INTEROPERABILITY PROBLEM

Evidence of interoperability problems can also be found in the documented real world

experiences of U.S. and allied forces during Desert Shield and Desert Storm. For instance,

the Pentagon's Conduct of War report stated that the transmission process for the air

tasking order (ATO) was slow and cumbersome because of inadequate interoperability

among the different systems deployed by the Army, Navy, and the Air Force (DoD, 1992).

During Desert Shield and Desert Storm, the U.S. Air Force used CAFMS (Computer-

Assisted Force Management System) to generate the ATO, but this was not a system used

by the other services. In fact, CAFMS was not even standardized among all USAF tactical

units. Communications interoperability problems made the situation more difficult. Some

Army aviation units obtained the ATO by collocating with or commuting daily to Air

Force units with CAFMS connections. For some Navy units, the fastest, most reliable and

effective means of ATO distribution was shuttling it in hardcopy or by floppy disk each

Validation of the Interoperability Problem 49

night from the Tactical Air Control Center to command carriers in the Red Sea and the

Persian Gulf. Copies of the ATO were then flown to other carriers and ships by helicopter

(Hyde et al., 1992).

The difficulty of the complex systems integration task was compounded by the

deployment of several generations of analog and digital tactical communications

equipment. The Army itself deployed three different generations of tactical

communication systems: the digital Mobile Subscriber Equipment (MSE), the Tri-Service

Tactical Communications (TRI-TAC) system with both analog and digital capability, and

an older analog system known as the Improved Army Tactical Communications System

(IATACS). TRI-TAC interoperated with the other two systems, but MSE and IATACS

were not interoperable. Thus, TRI-TAC had to serve as an interoperability bridge between

the two systems (Wentz, 1992).

The tactical, service-unique systems were linked to long-haul communications by

the TTC-39A automatic circuit switch and the TYC-39 automatic message switch (Toma,

1992). However, network interface problems were encountered between the TTC-39A

tactical switch in Riyadh and a commercial gateway switch in Dranesville, Virginia. It

required a team of government engineers working with their commercial counterparts

from AT&T and GTE almost three months to isolate and remedy an incompatible

interswitch signaling problem. Switch interface problems were also experienced between

the U.S. Marine Corps Unit Level Circuit Switch and the TTC-39A circuit switch. The

problem was resolved by a software modification (Wentz, 1992).

The rapid buildup of air forces in Desert Shield quickly overwhelmed the quick

reaction communications capabilities that accompanied the deployment of air units. While

there were plans for air operations in the Gulf, there were no plans for data

communications networks for the air units that were deploying to the theater with their

laptops and PCs. The communications resources of the U.S. Tactical Air Command were

quickly exhausted by the pace and magnitude of the buildup of air forces, which

ultimately used up virtually all of the Air Force's tactical communications assets as well as

some of its strategic communications resources (Campen, 1992a).

Tactical communications planners had substantially underestimated the volume

and variety of data transmission that would be required by automated combat support

50 The New Integration Challenge

systems. Plans based on experiences with telephones and teletypes were inadequate to

meet the needs of data communications required by the thousands of PCs deployed to the

Gulf. To support the scope and scale of the combined air operations in the Gulf, troops in

the field engineered and improvised the largest tactical military network ever built over a

five month period, using many components to perform tasks for which they were never

intended (Campen, 1992a).

Even the airborne communications network that was vital to the success of the air

campaign had to be improvised. Ultimately, the network provided the capability to plan,

execute, and monitor operations through tactical data links that enabled real time

exchange of voice and radar displays. However, communications connectivity problems

between the Tactical Communications Center (TACC) in Riyadh and the growing fleet of

theater C41 aircraft-some of which were orbiting at distances from Riyadh that were far

beyond UHF radio range-had to be solved first. This was especially important since the

far-ranging aircraft included AWACS, JSTARS, Rivet Joint (signals intelligence), and

ABCCC aircraft, which control and employ fighter and strike aircraft. To resolve the

problem, the Air Force inserted communications relay aircraft into the network, including

EC-135L aircraft that were borrowed from the Strategic Air Command, and installed

remote radio ground stations in the forward combat zones (Campen, 1992a).

Ground-based and airborne command and control assets were connected to form

an integrated command and control network. This was accomplished through the use of a

system known as TADIL (Tactical Digital Information Link). U.S. and Saudi AWACS,

Navy E-2C aircraft and Aegis cruisers, Army Hawk and Patriot air defense sites, and other

ground-based surveillance radars were a few of the systems which were made

interoperable. When JSTARS was deployed to the theater, it too was integrated into the

Air Operations Network through the use of an Airborne Interface System (AIS) buffer.

This integration activity made several generations of technologies interoperable for

airspace control, producing a complex integrated system that supported up to 3,000

combined air sorties per day and controlled more than 25 air defense sites and six carrier

battle group air defense platforms (Toma, 1992).

Validation of the Interoperability Problem 51

While these achievements are indeed impressive, we cannot expect that our next

adversary will allow us to spend five months integrating our disparate systems and make

them interoperable after deploying to the theater.

Although the evidence discussed thus far has focused on theater C4I systems, they

were not the only ones that experienced interoperability problems. There were also

interoperability problems between platforms enablers and munitions. For example,

the pilots in one squadron of F-16As wanted to use the CBU-87 cluster bomb unit in its

attacks against second echelon Republican Guards forces in Kuwait since they felt it was

one of the best weapons for that mission. Unfortunately, they were not able to deliver the

munition with the desired accuracy because the F-16A's computer did not have the

software to employ the weapon effectively. To use the weapon, a pilot had to "lie" to the

computer by telling it that it was carrying CBU-52s, which the computer was programmed

for, and then trying to compensate manually for the difference in weapon characteristics

by guessing an amount to offset from the aimpoint the computer would determine for a

CBU-52 (Lenorovitz, 1991b). Predictably, the accuracies were less than desired, and they

had to stop equipping the fighters with CBU-87s. This is a good example of a munition-

platform enabler interoperability problem, which degraded the effectiveness of one of the

best-suited munitions for the mission to the point that the squadron stopped arming its

fighters with it.

Interoperability problems also accounted for the only failure out of six flight tests

which performed operational concept demonstrations of an all-weather, Inertial

Navigation/Global Positioning System (INS/GPS) precision-guided munition. Conducted

between early February and late March 1993, this testing was intended to help evaluate

technologies for possible use in the JDAM program. The only failure occurred during the

third test when the munition did not separate properly from the Block 40 F-16C test

aircraft because of a data bus problem (Fulghum, 1993b).

While there are more real world examples where interoperability was a problem, it

is clear from these examples that the interoperability problem is all too real and that

measures need to be taken to deal with it.

52 The New Integration Challenge

2.3 CONSTRAINTS

In the process of devising a solution to the interoperability problem, it is also necessary to

consider other factors that could constrain possible solutions. The following is a list of

some of the factors which need to be accounted for in a solution:

a) No clear adversary. The U.S. does not have a clear adversary in today's

uncertain world. Our forces must be prepared to handle a range of

contingencies since there is great uncertainty about who and where they might

have to fight, who might be our allies, and how large the conflict might be.

b) Declining defense outlays. Cuts in the defense budget will likely result in lower

levels of procurement, a smaller force structure, and less overseas basing and

pre-positioning of troops and equipment than in the past.

c) Long service lives. Historically, defense systems tend to have longer service

lives than were originally intended at the outset of development. In addition,

since DoD will not be able to afford as many new systems as it has in the past,

fielded systems and newly developed systems may have their service lives

stretched out even longer than in the past.

d) Rapid improvement of technology. Theater systems and their constituent parts

have a high degree of electronic content. The performance of electronic

hardware and software technologies continues to advance rapidly and shows

no signs of slowing down. The performance of these technologies that are such

an integral part of theater systems can improve dramatically over the service

lifetime of a fielded system.

Factors a and b mean that an integrated theater system should be both flexible and

rapidly deployable and that cross-system integration activities should be able to be

performed rapidly if necessary. Factors c and d point to the need for newly developed

theater and component systems to be upgradable, evolvable, and maintainable.

Resulting Development Challenges and Benefits of Better Integration 53

2.4 RESULTING DEVELOPMENT CHALLENGES AND
BENEFITS OF BETTER INTEGRATION

The theater system model indicates that there are two classes of problems that are

important to the overall performance of a theater system:

* Single system development problems.

* Cross-system integration or interoperability problems.

Single system development problems associated with the development of

hardware/software systems are well documented and are the subject of numerous studies

and research programs. However, while single system development has long been the

focus, interoperability is critical to the performance of the overall theater system. In fact,

inadequate interoperability is just as, if not more, important to theater system performance

and amounts to self-inflicted degradation of military capabilities.

Any solution to the interoperability problem needs to consider the budgetary

climate and international security environment resulting from the rise of the "new world

order". Thus, the new development challenge is to ensure the interoperability of

systems through rapid cross-system integration while producing a theater system

that is flexible, rapidly deployable, upgradable, evolvable, and maintainable.

Enhanced interoperability holds great promise for increasing U.S. military

capabilities. The following list provides a sample of the possible benefits.

1. More information could be transmitted by secure data link rather than voice communi-

cations which are easier to intercept.

2. Good PGM-C4I interoperability could allow platforms to operate with greater stealth

since the platform would not have to use its own emitters to guide the munition to its

target.3

3. Better interoperability can enable in-flight retargeting or rerouting of munitions, such

as cruise missiles, to minimize collateral damage and ensure that primary targets are

struck.

3 Coarse guidance could be provided by systems such as JSTARS, and terminal guidance could be per-
formed by the munition's on-board systems.

54 The New Integration Challenge

4. Platforms could employ the best munitions for their missions.4

5. U.S. forces could operate more seamlessly with forces from other services and

different countries.

6. Theater systems could deploy rapidly with a ready information infrastructure.

7. "Buddy system" tactics could be more easily employed since data and information

from a specific platform enabler could be shared with other platforms that were not

similarly equipped.

8. Intelligence could be placed in the hands of the warfighters in a timely and efficient

manner.5

9. Tactical and strategic situational awareness would be significantly enhanced.6

10. Enhanced interoperability would enable more efficient planning and dissemination of

orders and plans such as the Air Tasking Order.7

4 This would significantly increase the flexibility and robustness of the capability of multi-role platforms.
5 For instance, the most recent satellite imagery of a target area could be provided to pilots enroute to the

objective.
6 Fighter pilots could use AWACS- and JSTARS-supplied data as well as its own sensor data to provide a

more complete tactical picture of the space around them and enable better discrimination between friend
and foe. Data fusion could be used to display the information in a more intuitive manner. Theater com-
manders could be provided a "God's eye view" of all movements of enemy and friendly forces on or
above the battlefield.

7 This would enable faster planning cycles and, hence, a faster pace of operations.

CHAPTER 3
New Methods for Complex Electronic
System Development

This chapter contains descriptions of the methodologies for complex electronic system

development which were selected for evaluation in this thesis. This set included the

following methodologies:

* The rapid development process used to develop the flight control software for

the DC-X

* The GritTech rapid development process

* Ptolemy-supported hardware/software codesign

* The RASSP (Rapid Prototyping of Application Specific Signal Processors)

design methodology1

* Cleanroom software engineering

"Complex electronic system" is an umbrella term used to denote any system or

group of systems which contain a large amount of electronic 2 hardware and software.

Complex electronic systems can range from RAM-based field programmable gate arrays

1 Note that both Ptolemy-supported hardware/software codesign and the RASSP design methodology are
grouped together loosely under Section 3.3, "Hardware/Software Codesign."

2 For the purposes of this thesis, other types of systems, such as photonic or optoelectronic, could also fall
under the broad category of "electronic systems."

56 New Methods for Complex Electronic System Development

or digital signal processors running assembly code algorithms to JSTARS and beyond to

include what we have denoted as "theater systems".

These systems are inherently "complex" because of the dramatic increase in the

complexity of the hardware and software that are used in the development of even

"simple" products. Consider, for instance, the development of a printed circuit module.

The number of semiconductor gate equivalents contained by a typical (6 inch x 9 inch)

printed circuit module increased by a factor of 20 between the 1980s and the 1990s. In the

1980s one of these modules ran at clock speeds between one and five megahertz. In the

1990s a module of similar size might run at clock speeds of 50 MHz or more. The size and

complexity of the software contained : the modules has also displayed a similarly

explosive rate of growth. Today, one of these modules may store more than four

megabytes of code and/or data.

This growth in complexity is also evident at the avionic system level. The F-4s that

saw combat in Vietnam did not have a digital computer on board and had no software. The

first fighter aircraft equipped with digital computers were developed in the 1960s. These

systems, which performed fire control tasks, required between 100 and 200 four- to eight-

bit words of assembly language code. In the 1980s the software requirement had grown to

approximately 400,000 eight- to sixteen-bit words of a combination of assembly language

and higher-order languages to perform more complex functions including fire control,

navigation, engine control, built-in-test, electronic warfare, flight control, stores

management, and controls and displays (EIA, 1988).

This shift from solving relatively simple problems in software to solving problems

of much greater complexity occurred during the mid 1970s. The F-16As, developed

during the 1970s, were equipped with seven computer systems, 50 digital processors, and

135,000 lines of code (EIA, 1988). Produced in the late 1980s and early 1990s, the F-14D

has 15 computer systems, 300 digital processors, and 236,000 lines of code. The B-2

reportedly has over 200 processors and approximately 5 million lines of code (Anderson

and Dorfman, 1991). Currently, the F-22 has approximately 1.3 million lines of code on

board, and has 4 million lines of code when the fighter's support systems are included. 3

Even transport aircraft exhibit this explosive growth in hardware and software complexity.

3 Telephone interview with Chris Blake, Avionics IPT leader, F-22 SPO. July 16, 1994.

The C-17, which is the most computerized, software-intensive, transport aircraft ever

built, has 56 computerized avionics subsystems which use 19 different types of embedded

computers incorporating over 80 microprocessors and nearly 1.36 million lines of code

(GAO, 1992).

The explosive growth in the complexity of hardware/software systems has made

the development of these systems all the more difficult. The rate of increase in difficulty of

system design and integration problems threatened to outstrip the rate of improvement of

methods developed within existing paradigms. This realization provided the impetus for

the creation of the methodologies discussed at length in the remaining sections of this

chapter.

Accompanying this explosion in hardware/software system complexity has been a

similarly rapid rate of adoption of information and communications technologies by

nearly every combat and support function performed in a joint theater of operations. This

proliferation of computational power on the modem battlefield has created both new

opportunities and new development and integration challenges.

The widespread distribution of computational and communications technologies

throughout combat and support functions has fueled the growth of an ever-expanding

complex web of linkages among physically-distinct hardware/software systems. However,

the desire to exploit the potential benefits of leveraging these linkages-such as the

effective and efficient formulation and distribution of an air tasking order and the

enhanced situational awareness provided by fusing on-board and off-board sensor

information-has been tempered by the difficulty of making the various hardware/

software systems involved interoperable.

The exploration and discussion of the theater electronic system model in Chapter 2

highlighted the vital importance of ensuring the interoperability among the different

elements of a theater system. Analysis of the model revealed the intrinsic importance of

interoperability in maximizing the overall performance of a theater system. In fact,

inadequate interoperability is tantamount to a self-inflicted degradation of theater system

capabilities. Documented experiences from Desert Shield and Desert Storm indicated that

interoperability was indeed a real problem for coalition forces, who were fortunate enough

58 New Methods for Complex Electronic System Development

to have had the luxury of five months to improvise systems that provided just enough

capability, just in time (Hyde et al., 1992).

To ensure interoperability among the different elements of a theater system, a

methodology for performing cross-system integration and, hence, developing complex

electronic theater systems needs to be devised. With this in mind, a set of complex

electronic system development methodologies was investigated with the hope of finding a

methodology that could be directly applied in the cross-system integration role or could at

least provide a starting point for the development of a suitable methodology. Each of the

methodologies described in this chapter has produced significant improvements in the

development of complex electronic systems or shows great potential for producing

similarly significant improvements. These methodologies will be evaluated in Chapter 4

for their applicability to cross-system integration in order to address the interoperability

problem.

3.1 RAPID DEVELOPMENT DC-X STYLE 4

For the past several years, McDonnell Douglas Aerospace-West (MDA-W) has been

developing a flight software development process known as RAPIDS (Rapid Prototyping

and Integrated Design System). McDonnell Douglas Aerospace has applied RAPIDS to

more than 15 projects including several flight and ground test programs including Single

Stage Rocket Technology (SSRT) and Ground Based Interceptor. Phase II of the SSRT

Program, awarded to MDA-W in August 1991, provided another opportunity to

demonstrate the effectiveness of this methodology.

As a result of customer insight, software development, cost, schedule and

reliability issues were closely scrutinized early in the program. This provided MDA-W

with the opportunity to propose the use of a non-traditional process based on an integrated

system level approach to the Guidance, Navigation, and Control (GN&C) design.

The entire Operational Flight Program (OFP) used by the Delta Clipper

Experimental (DC-X1) was designed, coded, integrated, and tested in 24 months. The

4 This section is based upon phone interviews with Mr. Matt Maras of MDA-W and Dr. Jo Uhde-Lacovara
of JSC's Rapid Development Laboratory and publications which they provided (Maras et al., 1994; Uhde-
Lacovara et al., 1994).

Rapid Development DC-X Style 59

66,000 source lines of Ada code were used by the DC-X 1 to complete nine system level

static fire tests and three fully successful flight tests. Encompassing an autonomous

GN&C capability, the flight control portion of the OFP was developed entirely within the

integrated design and rapid prototyping environment.

In addition to the flight software (FSW) developed with this approach, test code,

representing high fidelity models of the vehicle, its aerodynamics, sensors and actuators,

and winds were also designed by employing the same methodology. Almost 70 percent of

the new vehicle software developed for the DC-X1 program was produced with the

integrated design environment, using automated code generation (Maras et al., 1994).

3.1.1 The Traditional Approach

The traditional approach to developing flight software displays the symptoms of what

Hammer and Champy (1993) refer to as "process fragmentation". Engineers skilled in

particular problem domains formulate detailed requirements for the systems and

subsystems. During the requirements design phase, engineers develop and test candidate

GN&C algorithms. A non-real-time engineering simulation is created to compare the

performance of different algorithms. Several reviews are scheduled during this phase

resulting in the elimination of some algorithms from further consideration. Following the

selection of an algorithm or a set of algorithms, a requirements document is written.

These requirements are then passed on to other organizations which interpret the

requirements and translate them into actual computer code. Once the code is written and

tested, it is delivered to organizations responsible for the integration of the hardware with

the software and testing of the resulting system. Typically, this is where many unforeseen

problems arise-late in the schedule where problems are most difficult and costly to fix.

Corrections are especially costly when changes to the requirements must be made. For

example, a change in the mission requirements may necessitate changing the flight

software requirements. These changes can require extensive modifications to the FSW. To

make matters worse, the change process is usually conducted in the same fragmented,

sequential manner as the original design iteration.

60 New Methods for Complex Electronic System Development

3.1.2 The RAPIDS Process

RAPIDS is a highly iterative process utilizing rapid prototyping techniques. Each rapid

prototyping cycle develops a complete GN&C system from requirements definition

through design and implementation on a target processor. Processor-in-loop (PIL) testing

is performed once the initial working FSW prototype is developed.

This approach allows problems with software design, implementation, or hardware

selection to be discovered early in the development cycle. This cycle of concurrent

requirements and software development and PIL testing is repeated until FSW with the

desired performance and quality is produced. The approach employed by RAPIDS is a

spiral development approach where developers "build a little, test a little". This process is

illustrated in Figure 3.1.

Each RAPIDS design cycle involves phases which can be found in a traditional

process-requirements, design, development, and integration and test-that are

performed with varying degrees of concurrency. Cycle time decreases with each iteration

while the quality of the FSW increases. Whereas a traditional approach may require years

to complete a single design cycle, initial iterations of a RAPIDS process may require

months and then only weeks as the design matures. Ultimately, the design cycle may be on

the order of a few days or less. However, regardless of the length of the design cycle,

configuration control and complete software validation testing are maintained.

A designer in a RAPIDS process is part of a small, integrated team and is involved

for the whole design, development, and validation process. Using an integrated team of

system designers means that the distinctions between systems engineering, GN&C

engineering, and software engineering break down-a single team member may be asked

to perform any of these functions over the course of a development program. Whereas in

the past each functional discipline would own only a portion of the final design and only a

certain phase of the program, the RAPIDS design team has ownership of the entire process

and end product. Indicators are that end-to-end ownership of the product and process tends

to be more efficient and promotes a more productive work environment for the designers

(Maras et al., 1994).

Rapid Development DC-X Style 61

Figure 3.1: RAPIDS Spiral Development Process

Note: Hardware-in-loop testing involves the actual flight hardware. Processor-in-loop testing is
performed with commercially equivalent hardware.

3.1.3 RAPIDS Toolset

The RAPIDS toolset integrates requirements analysis through hardware and software

testing in a workstation environment using an integrated set of commercial off-the-shelf

software development and simulation tools. The graphical user interface toolset captures

62 New Methods for Complex Electronic System Development

design details being implemented by GN&C experts and then automatically generates

source code and documentation that can be targeted to the actual flight vehicle computer

system. The environment is currently based on commercially available products including

ISI's (Integrated Systems, Inc.) MATRIXx/SystemBuild/AutoCode/AC- 10 0 TM and Cadre

Teamwork.

MATRIXx/SystemBuild is a graphical software tool that enables users to develop

data flow block diagrams of the desired system using elementary building blocks. These

elementary blocks can be organized into "Superblocks" which become procedures or

subtasks. This construction process yields highly modular software designs which can

facilitate the development of generic software libraries and the reuse of software. After

construction is completed, the software data flow diagrams can be interactively tested in a

non-real-time environment. Time and frequency domain analyses can also be performed

interactively.

The AutoCode tool can automatically translate the block diagram representations

into FORTRAN, C, or Ada source code. The source code can then be integrated with other

interfacing software-software necessary for the code to run on the target processor such

as a real-time operating system device driver, compiled and run on the AC-100 real-time

computer to verify real-time and PIL performance.

3.1.4 Benefits of the RAPIDS Process

The ultimate benefit of this approach is a cost reduction because of the smaller software

development staff necessary to support initial requirements definition through test and

integration. The reduction in software development staffing is possible since the

application or GN&C designer does the majority of these activities within an integrated,

graphical workstation environment. Other benefits of the methodology include the

following:

* Software is not a schedule critical item, and the best design can be

implemented at flight time because it is not limited by the typical six to twelve

month lead time required by a traditional process to make software changes.

The design that flies can be based on the best available data and algorithms

from all previous testing.

Rapid Development the GritTech Way 63

* Challenging milestones, which are typical of fast paced programs, can be met

while maintaining or enhancing the quality of the final software product.

* The rapid prototyping process allows major errors and design flaws to be

discovered earlier in the program when they are cheaper and easier to correct.

* Requirements can be verified early in the development program.

* Metrics tracked during DC-X1 software development indicated that the

RAPIDS process can result in productivity improvements greater than 25

percent.

The Navigation, Control & Aeronautics Division at NASA's Johnson Space Center

employed a similar process to construct a simulation of the Soyuz Assured Crew Return

Vehicle flight software and demonstrated substantial productivity gains when compared to

COCOMO model estimates. The data are shown in Table 3.1.

Table 3.1: Soyuz Simulation Project Metrics

Phase 1 Phase 2

Number of Superblocks 55 371

Number of SLOC 4102 25045a

COCOMO Estimated Total Staff-Hours 3400 11658

Estimated Total Staff-Hours 1830 7720

SLOC per Staff-Day 18 22 b

Productivity Increase (Actual vs. COCOMO) 85% 50%

Source: Uhde-Lacovara et al. (1994)

a. This figure includes the lines of code produced in Phase 1.
b. Reuse of Phase 1 software is assumed. Thus, the number of SLOC from Phase 1

was not included in calculating this value.

3.2 RAPID DEVELOPMENT THE GRITTECH WAY

Recognizing that the rate of complexity growth in electronic hardware and software was

rapidly outdistancing the ability of its engineers to keep pace, GritTech 5 began to

experiment with rapid development processes and enabling technologies to determine if

64 New Methods for Complex Electronic System Development

dramatic improvements in productivity could be made. The basic question addressed in

formulating a rapid development process was how to change the traditional process to

exploit more fully the potential of design automation tools.

At GritTech the traditional development process for a typical module involved 30

or more discrete steps which were performed in a sequential, isolated fashion. Experience

with this process taught the designers that the traditional process would often lead to the

propagation of flaws which would remain undiscovered until late in the development

cycle where rework can be a most costly and time consuming process. For instance, a

small misinterpretation of the customer's specifications on the part of the contractor early

on in the development process could embed a flaw in the design that could escape

detection until field tests are conducted at the end of the development chain. Corrective

action in this case could very well be a lengthy and expensive process. Even when errors

remain undetected for only a few steps in a sequential process, the result could be

significant budget and schedule overruns.

GritTech's answer to the productivity problem was to search for development

processes which tightly integrated the diverse tasks so that they could be performed in

parallel with rapid feedback and feedforward of information among all tasks. They

believed that productivity would increase dramatically if the person doing a task could see

the impact of a contemplated change on the results of all other tasks within minutes, rather

than months.

3.2.1 General Process Characteristics and Philosophy

The rapid development process is composed of several technical and procedural elements.

The relative importance of an individual element depends on the type of development

project at hand. Reflecting a kind of "skunk works" approach to project management, the

designers responsible for the undertaking are given a wide degree of latitude in tailoring

the process to the needs of the current project.

In addition, designers involved in rapid development projects generally have more

responsibility for the project than designers working on a more traditionally managed

5 This is a pseudonym for a defense electronics firm's rapid development group whose practices were stud-
ied for this thesis. The pseudonym is being used, at the request of the firm, in the interests of preserving
confidentiality.

Rapid Development the GritTech Way 65

program. For instance, the actual system designers are often personally involved in

meetings with the customer. Project managers are also more involved with the day-to-day

work of the designers, often getting involved in actual design activities themselves. The

combination of broader responsibility for designers and more involvement by project

managers facilitates better assessment of the current status and rate of completion of

project work.

The rapid development designers are all high caliber engineers. If some "ilities" 6

are not required to satisfy customer requirements and are tailored out of the official project

process in order to meet tight scheduling constraints, the individual designers will still try

to account for them informally as a part of exercising "good engineering practice". For

instance, consider a technology demonstration project under such time pressure that tasks

such as explicit design activities, which are meant to ensure a certain degree of

expandability, are tailored out of the official project process. However, a project engineer

may still include some spare pin locations on a board in order to easily accommodate the

addition of more memory or processing power in case it becomes necessary to increase the

functionality of the system in the future.

A major tenet of the rapid development operating philosophy is to utilize all

available means to enhance productivity and to allow the designers to experiment with

new technologies to accomplish this. This tenet manifests itself operationally in a number

of ways. For instance, designers in the rapid development group at GritTech utilize the

Internet to get advice from outside experts. Frequently, assistance and advice can be

obtained for free from the many technically-oriented newsgroups on UseNet. Source code

applicable to a project at hand can also be found via ftp (file transfer protocol) or gopher

sites. This tenet has also manifested itself in the willingness of designers to experiment

with and adopt new design tools. In several instances designers have even adopted new

design tools and used them for the first time on actual projects that were already in

process, believing that the tools would help them perform their tasks better and faster.7

Typical rapid development projects do not attempt to extend the state-of-the-art in

electronic hardware and software technologies. Most involve exploiting state-of-the-shelf

6 "ilities" is shorthand for a class of design considerations such as manufacturability, affordability, support-
ability, scalability, upgradability, producibility.

66 New Methods for Complex Electronic System Development

technologies in new ways to produce a desired capability or set of capabilities. Demanding

schedules are part of the norm.

To reduce the risks involved with development projects, the group does not usually

attempt projects unless it has had some prior experience with the technologies involved. In

some cases the group has even conducted some rapid prototyping activities before

submitting a bid to ensure that risks are understood. Sometimes even hardware

components will be part of the rapid prototyping effort. To further reduce risks involved in

a development project, rapid development engineers will use real data whenever it is

available since simulated data can be imperfect.

3.2.2 Examples of Rapid Development

As previously mentioned, GritTech's rapid development process and operating philosophy

allow engineers extensive latitude in tailoring the process to the particular needs of the

project. Moreover, most of the projects performed by the rapid development group at

GritTech do not involve product line systems. Hence, it is useful to briefly examine a

couple of rapid development projects-one hardware/software system and one software

application-to gain a better understanding of the methodology.

Hardware/Software System Development

A good example of the application of GritTech's rapid development philosophy to

hardware/software system development involved the design and development of an

acoustic processor. The objective was to take a power-hungry, computation intensive

system and develop a portable, low-power system providing equivalent functionality.

Since the chosen low-power processor provided only a fraction of the original system's

computational power, it was necessary to decrease the computational load of the

algorithms without appreciably degrading the performance of the system. Adding to the

challenge was a four month development schedule.

7 Another aspect of this constant search for new tools and methods is the group's resistance to standardiza-
tion of tools and processes. According to rapid development engineers, the traditional usage of standard-
ization-one in which tools and processes that are standardized remain the company's standard even
though much better tools and processes may exist--overly constrains the ability of a designer to use the
best available tools and methods.

Rapid Development the GritTech Way 67

Since simulation models were not available for some components that had been

chosen for use, the hardware design needed to be prototyped and verified before the actual

printed circuit board was fabricated. While wire wrapping-the traditional prototyping

technology-can be relatively inexpensive, it was not flexible enough for the project's

demanding schedule. The wrapping of the initial design can take a week, and corrections

to the design can be time consuming and are often not properly documented, which can

cause significant problems during hardware debugging. Consequently, a new, flexible

prototype technology was chosen-Field Programmable Interconnect (FPIC) devices and

Field Programmable Circuit Boards (FPCBs).8

Utilizing the flexible prototyping technology, the prototype could be dynamically

reconfigured based on changes to the schematic-a capability that proved its worth on

many occasions. For instance, an easily-acquired SRAM (Static Random Access Memory)

was used initially instead of the desired SRAM since the special, low-power SRAM

selected for the design was unavailable at the start of hardware development. When the

desired components were delivered, the design schematics were updated to account for the

different packaging and pin layout, and the new netlist was downloaded to the FPCB

within minutes. In the course of development, a bit-swap error was detected which could

have forced an entire bus change and a one day delay if wire wrapping had been used.

Instead, the FPCB-FPIC combination enabled a corrected design to be up and running

within minutes.

The flexibility of the prototype technology allowed the hardware design to be

completely debugged in one week without the aid of computer simulations. A

conventional printed circuit board layout was performed concurrently with the hardware

design verification effort, and schematic changes made as a result of the debugging effort

were automatically included in the printed circuit board (PCB) layout. After only one

week of testing, the PCB was shipped for fabrication using the identical netlist that had

8 The FPIC is a commercially-available RAM-based passive routing device, containing over 900 usable
input/output pins. The FPCB is a multilayer circuit board accommodating an array of pin sockets and a
mounting area for one or more FPICs. A circuit is constructed by placing components on the board and
configuring the FPICs. The FPIC also has a dedicated logic-analyzer diagnostic port. Extensive software
tools for translating netlist information into component placement, FPIC internal routing, and logic-ana-
lyzer configuration information are also available from the vendor. FPIC and FPCB are trademarks of
Aptix Corporation.

68 New Methods for Complex Electronic System Development

been validated on the prototype. When the bare PCB was delivered, the components were

dropped in, and the system was thoroughly tested. After two days of testing, no defects

were discovered, and the board was declared finished with no cuts or jumpers required. No

problems have been reported in subsequent operational use.

While the PCB was being fabricated, the application software was being coded and

tested using the integrated development environment, which included the FPCB-FPIC

prototype, an in-system processor emulator, networked logic analysis instruments, a

"reference design" from a previous project, and additional signal processing analysis tools

running on a workstation. A depiction of this environment is shown in Figure 3.2. The

combination of the ability to control the hardware and test equipment from the

workstation by downloading and uploading code, data, and sequencing information and

the ability to orchestrate the use of the various assets with operating system scripts

provided designers with a powerful, integrated rapid development environment.

Moreover, having a completed printed circuit board in a little more than one month

enabled the designers to focus their efforts on developing more sophisticated algorithms

during the remaining three months and achieve better field-test results.

In addition to the speed of development afforded by the integrated environment,

application software development was further accelerated through the use of several

routines that were obtained from bulletin boards on the Internet. These routines provided

the needed throughput with minimal modification.

According to the designers, the success of the rapid development project could be

attributed to the use of a combination of newer technologies which resulted in a major

reduction in development time. Compared to estimates of traditional development effort

based on a benchmark of 15 staff-months/board for typical module development

productivity, the hardware/software effort required only 16 percent of the engineering

staff-months. Thus, by combining an integrated development environment with

programmable prototype methods, the GritTech rapid development engineers achieved a

factor of six improvement in productivity.

Rapid Development the GritTech Way 69

Figure 3.2: Integrated Development Environment

Data Stimulus/Capture

PROTOTYPE BOARD

Incremental Software Development

Another example of rapid development in action was the use of the process in the

development of a launch data visualization and advising system. This particular project

arose from the customer's desire to exploit newly available data visualization capabilities

for a launch vehicle program in 1991. Over 50,000 pressure, temperature, wind direction,

and other sensors were in use during launch preparations. The data stream from these

sensors was being preprocessed and displayed to operating personnel in the form of

instantaneous numeric values. The customer identified a need to display this information

70 New Methods for Complex Electronic System Development

graphically, provide trend information at a glance, enable comparisons to past launches,

and perform related functions.

Rapid development engineers developed a core analysis and display system in

about a month after project launch. This initial release was then installed for evaluation on

computers at the launch facility, off-line from actual launch operations. Incremental

release of the most recent version for customer evaluation occurred approximately every

five weeks. Feedback included the suggestion to add capability to call up video views of

the launch vehicle and the launch pad. The GritTech engineers discovered that the

incremental development and release approach also helps to build a good working

relationship with the customer in addition to speeding up the development process. Design

cycles tend to get progressively shorter with each iteration, partly because the integration

of software modules is performed many times and gets progressively easier.

The incremental development process is depicted in Figure 3.3. Incremental

development utilizes a series of quick low cost field trials of progressively more complete

systems. This approach differs considerably from the traditional approach which defers

field testing until the end of a multi-year, full scale development program.

Figure 3.3: Incremental Development

Develop Refine, Iterate
Specification Extend Iterate If

NeededNucleus Specification L J

Design Refine, r
System 1 Extend
Nucleus Design L

Conduct Conduct
Field Test Field Test

MONTHS

Rapid Development the GritTech Way 71

In the incremental development process, software design and development can

begin as soon as some part of the system specification has been developed. Typically, the

specification or portion of a specification is translated into a field-testable design in about

a month. The customer is then supplied with a copy of the current software for operational

or test range evaluations of the design with the GritTech designers providing support. This

field testing is especially important for evaluating the design of user interfaces and

displays. Based on the results of the joint evaluation, the specification is extended or

revised, and the design is incrementally expanded and/or refined during the next cycle.

The rapid development group has found from past experiences that the optimum

time period for providing customers with opportunities for hands-on evaluation is

approximately once every four to ten weeks. The result is a design that rapidly evolves

into a well-suited, highly functional system with minimal need to expend resources on

performing rework resulting from erroneous assumptions and interpretations of

requirements.

As was the case with the acoustic processor example, using a highly integrated set

of software development tools facilitated a substantial reduction in the time and effort

required for system development. One tool allowed software engineers to design the

graphical user interfaces (GUIs) by manipulating basic GUI building blocks available

from a palette. Once the elements were arranged to the satisfaction of the engineer, the

actual source code was produced through automatic code generation. As a rule the

generated code was not touched unless problems could be explicitly traced to it. Another

tool which helped speed development enabled designers to execute the code and see how

it worked without having to compile it first. Software libraries also facilitated the reuse of

previously developed and verified software modules.

Since the launch data visualization system uses virtually all commercial off-the-

shelf workstation and video hardware, development productivity was only measured with

respect to the software development benchmark of 10 standard lines of code per staff-day.

By using a highly integrated suite of software development tools in conjunction with an

incremental development approach, the rapid development team was able to develop this

system and demonstrate an 8:1 improvement in productivity in spite of having to absorb a

significant revision to the performance requirement.

72 New Methods for Complex Electronic System Development

3.2.3 Rapid Development Productivity Performance

To date, the rapid development process has been used on 20 different small to medium

sized projects at GritTech, demonstrating significant productivity improvements over a

traditional process in each case. The improvements in productivity afforded by the rapid

development methodologies and tools for these projects are summarized in Table 3.2 and

Table 3.3 for software and hardware development, respectively. The rapid development

projects have consistently exhibited two to four times the productivity that would be

expected of a traditional process.

Table 3.2: Software Rapid Development Results

Productivity Improvement
Environment (versus benchmark)

Tailored DoD-STD-2167A 3 to 4:1

Other 3 to 8:1

Table 3.3: Hardware Rapid Development Results

Productivity Improvement
Module Size Type (versus benchmark)

6 inches x 9 inches6 inches x 9 inches Microprocessor-Based 2 to 6:1
(54 square inches)

8 inches x 16 inches
Logic-Based 2 to 4:1

(128 square inches)

3.3 HARDWARE/SOFTWARE CODESIGN

Methodologies to support the codesign of hardware/software systems were developed in

response to problems with the traditional process for developing these systems. The

traditional process partitioned the problem into hardware and software elements early in

the development cycle, and then proceeded to develop the two designs in parallel with

very little or no interaction until the end of the process when they were integrated for

system testing. Predictably, the classic approach exhibits many symptoms of a fragmented

process.

Hardware/Software Codesign 73

Typically, the integration of the hardware and software near the end of the

development cycle is laden with unforeseen problems-many of which can be attributed

to the lack of interaction between the hardware and software design groups. Any design

changes at this point in the process are likely to significantly impact the system's cost and

development schedule. In many instances, even when integration itself does not reveal any

problems, the overall system performance can be disappointing. Frequently, the blame is

laid at the feet of the programmers. However, in many cases, the real fault may lie in the

design of a development process which imposes an artificially crisp distinction between

hardware and software design.

3.3.1 Generic Hardware/Software Codesign Process

An alternative approach is to recognize the high degree of coupling that exists between

hardware and software for most complex electronic system design problems and employ a

more flexible design process, where hardware and software development proceed in

parallel with feedback and interaction between the two as the overall system design

matures. The final hardware/software partitioning decision can be made after evaluating

alternate design architectures with respect to such factors as performance,

programmability, reliability, and manufacturability. This type of approach may be termed

"hardware/software codesign".

According to Kalavade and Lee (1992), hardware/software codesign strategies can

be applied to different levels of design problems including:

* Processor Design. An optimized application-specific processor can be

developed by tailoring both the instruction set and the program for the

application. This type of codesign problem is very difficult.

* System-Level Design. Hardware/software codesign can also be performed at

the system level, where an algorithm is partitioned between custom hardware

and software running on programmable components. The hardware would

typically include discrete components, application-specific integrated circuits

(ASICs), DSP cores, microprocessors, microcontrollers, or semi-custom logic

developed using FPGAs or logic synthesis tools. Since there are many possible

74 New Methods for Complex Electronic System Development

ways to partition a given design between hardware and software components,

evaluating design configurations with system-level simulation of hardware and

software allows the design space to be more thoroughly explored and is an

integral part of codesign.

Application-Specific Multiprocessor System Design. The codesign of an

application-specific multiprocessor system is challenging since it involves

choosing a suitable number of processors, an interprocessor communication

(IPC) strategy, and the design of the application software. Since software

synthesis requires partitioning and scheduling the code among the processors,

scheduling techniques must be capable of adapting to changing hardware

configurations. Thus, developing an application-specific multiprocessor system

is an iterative process, involving tradeoffs associated with selecting an optimal

hardware configuration and software partitioning.

A generic hardware/software codesign process is shown in Figure 3.4. The

objective of a codesign methodology is to produce a hardware/software system design that

meets a given set of specifications while satisfying a set of design constraints. Given a

system specification, a designer can utilize high-level functional simulations to develop a

suitable algorithm without making any assumptions concerning specific implementation

details. The next step is to partition the algorithm into hardware and software while

satisfying requirements such as speed, complexity, and flexibility. Operations that are

computationally intensive with fixed operations are usually allocated to hardware.

Algorithm components that may vary for different situations, are less computationally

intensive, may require field programmability, or are not likely to change with time can be

allocated to software (Kalavade and Lee, 1993).

Once the initial partitioning has been performed, the process of synthesizing the

hardware, software, and interface designs can begin. These three activities are tightly

coupled. Changes in one synthesis area significantly affect the others. Hardware synthesis

activities include selecting the programmable processor, which directly impacts the

software synthesis activity of selecting a code generator, and determining the appropriate

number of processors and their connectivity, which, in turn, influences the code

Hardware/Software Codesign 75

Figure 3.4: Generic Hardware/Software Codesign Process

System Specification

Hardware

partitioning decision and hardware/software interface synthesis. Choices involved in

custom hardware synthesis can range from generating custom data paths to generating

masks for FPGAs. As a part of custom data path design, the register word lengths must be

selected (Kalavade and Lee, 1993).

76 New Methods for Complex Electronic System Development

Depending on the chosen hardware configuration, software synthesis can involve

partitioning and scheduling the code across multiple processors and synthesizing the code

for interprocessor communication-decisions which depend heavily upon the selected

architecture. Partitioning among different processors may be performed with the intent of

optimizing cost functions such as communication cost, memory bandwidth, and local and

global memory sizes. In addition, if the hardware configuration includes use of fixed-point

processors, some algorithmic modifications might be required to minimize finite precision

effects, such as limit cycles and quantization errors (Kalavade and Lee, 1993).

Interface synthesis involves adding latches, FIFO (first in, first out) registers, or

address decoders in hardware and adding code to handle input/output operations and

semaphore synchronization in software. Iterating to explore different design options is the

common method for solving this cyclic problem (Kalavade and Lee, 1993).

After the hardware, software, and interface synthesis tasks have been

accomplished, the hardware/software system design can be simulated within a

heterogeneous simulation environment. Since the simulated hardware must run the

generated software, the simulation environment should allow for the interaction of a

number of different simulators in the event that various specification languages are used.

Simulation results can then be used to verify that the design works as intended and

meets the given system specifications. If the specifications are not satisfied, another

iteration will be needed. Whether it is necessary to perform another iteration of the entire

codesign process or just portions of the process will depend on the nature of the

shortcoming. The simulation results and the hardware and software configurations chosen

for the specific system design can also be used to evaluate the system in terms of

performance and estimates of other factors including power requirements, die area,

component and bus utilization, and manufacturing costs. After using these estimates to

evaluate the design, the designer may choose to repartition the system and experiment

with different designs (Kalavade and Lee, 1993).

Currently, there are several programs that are developing design environments

which support hardware/software codesign or are attempting to incorporate those ideas

into a larger system engineering methodology while developing the enabling tools. The

next two sections provide a sample of these efforts.

Hardware/Software Codesign 77

3.3.2 The Ptolemy Project

Developed at the University of California at Berkeley, Ptolemy is an environment for

prototyping and simulating heterogeneous systems.9 Heterogeneous systems are systems

involving subsystems having different models of computation and, hence, fundamentally

different approaches to design and simulation. According to Dr. Mark Richards of ARPA,

Ptolemy's framework allows a designer to mix and match multiple models of computation

more effectively than most design systems. Ptolemy facilitates the interaction of diverse

models of computation through the use of object-oriented principles of polymorphism and

information hiding.

Since the start of the Ptolemy project in 1990, there have been numerous advances

in design, simulation, and code generation. Many of these advances have been

incorporated in Ptolemy in the realms of dataflow modeling of algorithms, synthesis of

embedded software from such dataflow models, animation and visualization,

multidimensional signal processing, hardware/software partitioning, VHDL (VHSIC

Hardware Description Language) code generation, and managing complexity through the

use of higher-order functions. 10

Ptolemy employs object-oriented software principles in attempting to achieve the

following goals (Buck et al., 1994):

* Agility. The Ptolemy environment should support distinct computational

models to enable each subsystem to be simulated and prototyped in a manner

that is appropriate and natural to that subsystem.

* Heterogeneity. Ptolemy should enable distinct computational models to coexist

seamlessly in order to investigate interactions among subsystems.

9 The Ptolemy software is available for the Sun 4 (sparc), DecStation (MIPS), and HP-PA architectures.
System installation requires 90MB of disk space and at least 8MB of physical memory. A scaled-down
demonstration version, called Ptiny Ptolemy, is also available for the same architectures but only requires
12MB of disk space. A copy of Ptolemy can be obtained on tape by calling (510) 643-6687 or via
anonymous ftp from ptolemy.eecs.berkeley.edu. Other on-line information resources can be found in the
newsgroup comp.soft-sys.ptolemy and on the World Wide Web at http://ptolemy.eecs.berkeley.edu.

10The project joined ARPA's RASSP program, the subject of the next section, in 1993 as a technology base
developer.

78 New Methods for Complex Electronic System Development

* Extensibility. Ptolemy should support seamless integration of new

computational models and allow them to interoperate with existing models

with no modifications to the Ptolemy environment or existing models.

* Friendliness. Ptolemy should employ a modem graphical interface with a

hierarchical block diagram style of representation.

Ptolemy has been used for a wide range of applications including signal

processing, telecommunications, parallel processing, wireless communications, network

design, radio astronomy, real-time systems, and hardware/software codesign.

In the hardware/software codesign application area, Ptolemy is a very powerful

tool since all parts of a hardware/software system can be modeled using the various

domains included in the environment. Modeling both hardware and software within a

single framework allows a designer to explore tradeoffs between hardware and software

implementations of different functions (Buck et al., 1994). Another advantage of being

able to develop hardware and software simultaneously in a design and simulation

environment is that software development does not have to wait for a hardware prototype

to be ready in order to start. In fact, if the manufactured hardware configuration is the

same as the simulated hardware/software system, the actual production software code will

have already been developed and verified.11

3.3.3 Rapid Prototyping of Application Specific Signal Processors12

Initiated in 1993, the Rapid Prototyping of Application Specific Signal Processors

(RASSP) program is a four-year ARPA/Tri-Service initiative aimed at creating a new

process for the development of military signal processors. The program's objective is to

dramatically improve the process for the development of complex digital systems-

l A good example of how Ptolemy can be used in hardware/software codesign to explore the design space
can be found in Kalavade (1991).

12Although this program is really just getting started, RASSP's concepts merit discussion since they provide
a glimpse of design methodologies and capabilities that could be available in the near future. In fact,
according to Dr. Mark Richards, RASSP program manager, substantial progress has already been made
during the program's first year. This description is based on many interviews (live, phone, and email) with
Dr. Richards and others at ARPA as well as the papers referenced herein.

Hardware/Software Codesign 79

particularly embedded digital signal processors13-in the areas of specification, design,

documentation, manufacturability, and supportability.

Major Goals

The major goals of the RASSP program are:

* 4x reduction in concept-to-fielding cycle time

* Commensurate improvements in quality, life cycle cost, and supportability

* State-of-the-art at the time of fielding

* Systematic design capability at all levels from concept to manufacture

* Commercialization and promulgation of the RASSP process

RASSP Approach

The RASSP approach has three key thrust areas-design methodology, processor

architecture, and design automation. The first key thrust is an incremental refinement of

the design methodology. As currently envisioned, the design methodology will be based

on concurrent engineering practices, using a top-down, VHDL-based design approach.

The methodology will also seek to involve users early and often throughout the design

process.

The second thrust is in the area of processor architecture. RASSP will foster the

use of modular hardware and software architectures through the separation of

communication, computation, and control functions and scalable interconnects.

The final thrust is the development of a seamlessly integrated and comprehensive

set of CAD tools. Tools to support all the "ilities" are to be included as well as

manufacturing and system engineering. 14 The design environment would also facilitate

true hardware/software codesign and hardware and software synthesis. Hardware and

software reuse libraries and an enterprise framework would also be incorporated into the

EDA (Electronic Design Automation) infrastructure.

13 While signal processors were chosen as a focal point for the RASSP program, it is hoped that the pro-
cesses and tools developed during the program will be broadly applicable to the domain of complex digi-
tal systems.

14"ilities" is shorthand referring to a broad set of design considerations including manufacturability, afford-
ability, supportability, upgradability, and many others.

80 New Methods for Complex Electronic System Development

RASSP Design Methodology

Two major components of the design methodology being explored by the RASSP

developers are top-down concurrent design and the model year concept of design. The

RASSP design methodology is derived from a top-down approach to system engineering,

starting with a formal specification which is successively refined to finer and finer levels

of detail until the design is finished. Concurrent engineering concepts are applied to

modernize the traditional top-down approach and are expected to contribute significantly

to the goal of reducing design cycle time by a factor of four. Through the use of EDA

tools, RASSP hopes to be able to provide the designer with estimates of factors such as

size, weight, power, cost, and reliability early in the design cycle while the designer is still

experimenting with different algorithms and system architectures.

The RASSP design methodology is also experimenting with a model year

approach to design. Traditionally, DoD has emphasized the development of the best

possible technology at the time of initial concept development. The development of

military signal processors is no exception. The result of this point design approach is

usually the development of highly optimized custom hardware, interfaces, and software in

an attempt to maximize performance. Moreover, insisting on the use of custom design

requirements frequently results in very long development cycles. Not only does this

introduce a significant delay in the delivery of prototypes to potential users for operational

evaluation, but it can also lead to the procurement of systems that are already obsolete by

the time they are fielded. Typically, upgrading point designs is also a difficult and

expensive proposition because of the highly optimized design of the original system.

In contrast to this traditional approach, the model year design methodology-

derived from the practices of top commercial electronics companies-primarily utilizes

existing hardware and software technology to rapidly develop a baseline system based on

a subset or relaxed set of specifications. The resulting prototype can be delivered to the

user for test and evaluation earlier than with the traditional approach, which also allows

the designers to get user feedback faster. Subsequently, the design can be upgraded to

correct any functional problems and insert more recent technology into the system. Over

the length of time required to field a point design, a hardware/software system designed

according to the model year philosophy may evolve through several design cycles

Hardware/Software Codesign 81

Figure 3.5: Model Year Design vs. Point Design

32

1 2 3 4 5 6
Year

Source: Richards (1994).

(Richards, 1994). Thus, the model year approach to design can place a capability in the

hands of the user earlier and enable the fielded system to keep pace with the rate of

technological advance. A conceptual depiction comparing the point design and model year

design approaches is shown in Figure 3.5.

As illustrated in Figure 3.5, the model year methodology assumes the performance

of commercially available technology improves rapidly. As long as commercial

technology continues to improve rapidly, the successive refinement of a system design

through the use of several short design cycles will produce better performance than the

point design approach even if the original model year design sacrifices some desired

performance. Moreover, the improved level of performance can be achieved with a

markedly decreased dependence on costly, hard-to-maintain custom hardware and

software (Richards, 1994).

Use of a model year approach also creates a number of benefits for the user. First, a

higher-performance signal processor can be acquired for a lower design cost. Second,

82 New Methods for Complex Electronic System Development

since the processor is based on standard supportable technology, life cycle support costs

are lower. Evolving model year prototypes supply the user with prototype hardware and

software early and often, providing a means for discovering flaws in the system

specifications while they are still correctable. The result is a product that is well suited to

the needs of the user (Richards, 1994).

RASSP Architectural Concepts

The RASSP architectural concepts do not prescribe a specific processor design. Rather,

they form a flexible framework for DSP design and provide architectural guidelines to be

observed in order to realize the full potential of the model year design paradigm. The

architectural concepts include scalability, modularity, flexible interfaces, heterogeneity,

and life cycle support (Richards, 1994).

* Scalability. Although the program is focusing on the embedded DSP domain,

the performance range that must be addressed is still sizable. To meet the

objectives of the RASSP program, architectural ideas should be scalable to

satisfy performance requirements ranging from a few megaflops to tens or

possibly hundreds of gigaflops.

* Modularity. An efficient model year development process cannot be achieved

unless each succeeding design cycle is able to build upon the work of previous

cycles. Thus, processor architectures must facilitate the design and reuse of

hardware and software in a modular fashion to allow portions of the processor

to be upgraded without a wholesale redesign of the system.

* Flexible Interfaces. The processor subsystems should employ interfaces based

on scalable, open hardware designs and software communication protocols.

Since the interfaces to the actual sensor and to displays or data processors will

generally be beyond the control of the RASSP designer, flexibility in interface

capabilities will be a must. The combination of modularized hardware with

standard interfaces between modules will localize the impact of design

changes to the portions of the system being redesigned or upgraded.

Hardware/Software Codesign 83

* Heterogeneity. A key point is that RASSP is not biased toward any one

particular implementation technology, such as ASICs or programmable

devices. Instead, it is assumed that the RASSP design system must be able to

handle combinations of custom, hardware programmable, and software

programmable implementation techniques. In terms of the hardware mix, a

RASSP processor could include custom ASICs, FPGAs, and a fully

programmable embedded processor composed of commercial off-the-shelf

DSPs, RISC processors, and high performance computing modules. This mix

of computing elements illustrates the need for architectures (and a design

system) capable of managing heterogeneity.

* Life Cycle Support. This architectural requirement addresses concerns related

to upgradability and testability. The use of modular hardware and software and

flexible interfaces within a model year design framework will ensure that the

system will be upgradable. RASSP processors will be designed for extensive

hierarchical testability from the start as part of the concurrent engineering

thrust to improve product quality and reduce the cost of field maintenance and

support.

RASSP Development Environment

As currently envisioned, the RASSP development environment will support the designer

from the earliest phase of requirements capture to the most detailed board and ASIC

design, enabling full requirements traceability, virtual prototyping, and a smooth transition

into manufacturing. A streamlined depiction of the RASSP design flow is shown in

Figure 3.6. The development process starts with requirements capture during the system

definition phase. RASSP is currently investigating the feasibility of using VHDL-based

simulatable specifications as a portion of the processor requirements specification. A

VHDL specification would implicitly represent both hardware and software functionality

and could then be expanded, refined, and partitioned into explicit hardware and software

modules. 15 Ultimately, the VHDL specification could be used as an input to synthesis

15 Technology base contractors have already released a version of a VHDL-based specification language
incorporating area, speed, and power constraints. In addition, work has already begun on developing
VHDL libraries of common microprocessor models.

Figure 3.6: RASSP Design Flow

................. I. I -XGR USAAR-M & ND::::D ASE"""" :... 'A ::........................... * id Z_........................ -- --- *
..... I -ry p r- rily hafdware... p r ifm--........ : rII W:I -X ,

7 q X 7-................
...::

.................
...

..........................* , , * , , * , * . * ,
.::

:::: :::: ::::::: : :: :,: : r

......-.-.-.-. : :::::::: ... 1.H A R D W A R E/S O FT W A R E C O D E S IG
.......... I r::* - -..... IFABD E S IG N

... r.,...............,.,. ..,. z.............FUNC INTEGSYSTEM TIONAL HW/SW System RATION:...,.. c on...D esign R TDEFINITION :7.. DESIGN PARTITION & TP co
................................I r r- I - .S W S I WrI D E S IG N C O D E

...

....

..........

..
...........

.... ..
...

....
...

.......
........... j:::::*::::::::

.................. -
.......

USER

Hardware/Software Codesign 85

tools or reuse libraries. In addition, a simulatable specification could be used to specify a

test bench at the highest level of system definition. More detailed tests could then be

derived from this "master test" as the design matures while maintaining traceability to the

original system-level test (Richards, 1994).

After the system requirements are specified, a functional design of the system

comprising algorithms and control is developed to satisfy the requirements without

allocating specific functions to hardware or software. The next step is to partition the

functional design into hardware and software implementations. At this point major

architectural tradeoffs are investigated to determine how the functionality should be

divided between hardware and software and how the allocated functionality should be

implemented, such as which parts of the algorithm need to be implemented in FPGAs

rather than in code on an embedded processor or which parts of the software must be

written in assembly language instead of a higher-order language. Other tradeoffs could

involve choosing between a single or a multiple processor configuration or choosing a

particular microprocessor or DSP for use in the system. These architectural choices will

have major downstream implications for performance, cost, and supportability. Once the

partitioning of the system design into hardware and software has been completed, the

hardware and software designs are then refined and evaluated. The hardware/software

codesign process-functional specification, partitioning, and hardware and software

design and evaluation-is iterated as required in order to obtain a solution which meets

performance requirements while satisfying constraints such as cost, form factor, and

power. To this end, tools capable of providing early estimates of performance, cost, and

physical characteristics need to be available to the designer to enable the development of a

robust processor design (Richards, 1994).

The hardware/software design process is augmented through the use of design

databases and virtual prototyping. In order for the model year design methodology to be

both efficient and effective, synthesis and reuse of both hardware and software modules

must be promoted and facilitated by the design environment. This requirement implies the

need for a comprehensive database system capable of displaying multiple views of the

design data throughout the development process. To further enhance the efficiency and

effectiveness of the design process, virtual prototyping is used to explore design options

86 New Methods for Complex Electronic System Development

and ensure specifications compliance and traceability. The virtual prototype is comprised

entirely of software during the early stages of the process, but increases in hardware

content as the design matures. Advanced hardware and software co-simulation

technology, such as the ability to mix different models of computation and the ability to

allow simulation tools, emulators, and hardware interact through simulation backplanes, is

required for the potential of virtual prototyping to be realized (Richards, 1994).

A full-fledged RASSP development environment will also include many high-

level systems engineering tools not shown in Figure 3.6. Examples of such tools include

workflow management tools, cost models, advisors to assist the designer in making early

architectural decisions, "ilities" analysis tools to aid in evaluating designs for such

concerns as reliability and manufacturability, and documentation and report generation

tools (Richards, 1994).

Although current computer-aided design and computer-aided software engineering

tools for hardware and software development are relatively mature, integrating these tools

across design levels and vendors is still a non-trivial task. Further, while some tools exist

for higher level tasks such as requirements capture, functional specification, and algorithm

development, they are not as mature as the lower level tools or as well integrated with one

another as the lower level tools. In addition, efforts to integrate these higher level tools

with the lower level tools are in their infancy. Consequently, while the integration of the

lower level tools will certainly be addressed, the development, refinement, and integration

of the high level system engineering tools will likely engage a larger portion of the

program's efforts (Richards, 1994).

3.4 CLEANROOM SOFTWARE ENGINEERING

Early software development was based entirely on craft practices, characterized by a

reliance on trial-and-error methods and the talents of individual programmers. This sort of

development, which is still in use in many organizations, designs software in an

unstructured, bottom-up manner. The conventional wisdom is that no program can be

developed defect free. Rather, debugging is the standard method of getting software to

work properly. The ensuing rapid growth in demand for additional functionality has led to

Cleanroom Software Engineering 87

tremendous growth in the complexity of software designs, complicating the already

difficult task of writing correct programs.

A significant advance in software development capabilities came with the advent

of structured programming techniques in the 1970s. This improvement was precipitated

by Dijkstra (1969) who advocated eliminating the use of GOTO statements and restricting

control logic to just three forms: sequence (begin-end), alternation (if-then-else), and

iteration (while-do). The arbitrary branching allowed by the GOTO statement provided

programmers with great freedom in designing control structures and was considered to be

the mainstay of programming ingenuity and creativity (Mills, 1986). However, this

freedom was a double-edged sword. Undisciplined use of GOTO statements frequently

resulted in the development of "spaghetti code"-programs with extremely complicated

control structures. Up to this point, writing spaghetti code seemed to be necessary to

satisfy the demands of the customer, and the three control structures appeared inadequate

compared to the power of GOTO statements. Rank and file programmers were surprised to

discover that the control logic of any flowchartable program-even spaghetti code-could

be replicated by utilizing combinations of the three primitives. Furthermore, in contrast to

spaghetti code, the structured programming approach defined a natural hierarchy among

its instructions (Mills, 1986). Adopting this approach allowed developers to write

structured programs in a top-down fashion. Many organizations also implemented code

reviews to augment debugging. Implementation of structured programming produced

significant quality and productivity improvements over the traditional trial-and-error

methods, as shown in Table 3.4.

However, even with the aid of structured programming practices, software

development remains largely dependent on craft-based practices. Conventional methods

can be categorized as follows (SET, 1993):

Process-oriented. These methods were strongly influenced by the sequential

flow of computation supported by traditional programming languages, such as

COBOL and FORTRAN. Identifying the principal processes of the system and

the data flows among these processes is the focus of these methodologies.

Yourdon's Structured Analysis and Structured Design is an example of a

process-oriented system development method.

88 New Methods for Complex Electronic System Development

* Data-oriented. These methods are based on the importance of data files and

databases in large business and industrial applications. In data-oriented

methodologies, system processes are designed to support the data processing

requirements of the application. Information Engineering is an example of a

data-oriented method.

* Object-oriented. These system development methods focus primarily on

objects and classes. A system is developed by designing the interaction of

objects-identifiable entities encapsulating states and behavior-to generate a

desired outcome. Coad-Yourdon object-oriented analysis and design is an

example of this type of methodology.

Unfortunately, the use of these methods has not significantly elevated software

development above its craft origins. Similarly, the introduction of advanced SEEs

(software engineering environments), new life cycle models, and maturity models have

yielded some improvements in quality and productivity, but not the quantum leaps that

were hoped for. While these innovations are important, they do not address the root cause

of the problem-the lack of a science base for software development (SET, 1993).

Cleanroom engineering addresses the quality and productivity problems by

applying rigorous practices to achieve intellectual control over the project. It also

establishes an "errors are not acceptable" attitude and makes quality a team responsibility.

Furthermore, the software's reliability is certified through the application of statistical

quality control methods. When compared to traditional and structured programming

methods, the number of defects encountered during development and operational use is

dramatically lower for software developed with Cleanroom engineering practices.

Moreover, Cleanroom practices yield major improvements in productivity. Data

comparing the defect densities and productivities of traditional, structured programming,

and Cleanroom practices are shown in Table 3.4.

3.4.1 Fundamental Principles of Cleanroom Engineering

Cleanroom engineering, developed at IBM's Federal Systems Division in the 1980s, is

named after the cleanrooms used to fabricate VLSI (Very Large Scale Integrated) circuits.

Cleanroom Software Engineering 89

Table 3.4: A Comparison of Software Development Practices

Productivity
Development Operational (LOC/Staff-

Development Practices Defects/KLOC Defects/KLOC Month)

Traditional 50 - 60 15 - 18 unknown

Structured Programming 20 - 40 2 - 4 75 - 475

Cleanroom < 5 << 1 > 750

Source: SET (1993).

Like its namesake, Cleanroom engineering has no tolerance for defects. The ultimate

objective of Cleanroom software engineering is to develop error-free software that

functions perfectly from the first time it is tested to the end of its operational life.

The following sections describe four fundamental principles behind Cleanroom

engineering: defect prevention, intellectual control, separation of development and testing,

and certification of the software's reliability.

Defect Prevention

Cleanroom engineering espouses a "get it right the first time" attitude. Defects are not the

result of bugs in the source code. Defects are the result of faults in one or more aspects of

the development process. In fact, if the defect density of the software under development

exceeds five defects per thousand lines of code, the offending software is discarded. The

defects are examined to determine how the process failed and how the process can be

improved to prevent the failure from recurring. The improved process is used to develop

replacement software. 16

Intellectual Control

Intellectual control is the ability to clearly understand and describe the present problem at

the desired level of abstraction (SET, 1993). Schedule overruns, cost escalation, high

defect densities, and the labor-intensive, craft nature of current software development

practices are all symptoms of a process that is not under intellectual control. To achieve

intellectual control, engineers must be equipped with theoretically sound intellectual tools

16 Dr. Harlan Mills, one of the originators of Cleanroom engineering, has suggested that perhaps the most
important tool for Cleanroom is the wastebasket (Mills and Poore, 1988).

90 New Methods for Complex Electronic System Development

and processes that give them a high probability of producing a correct solution. Enabling

engineers to achieve and maintain intellectual control over projects is at the heart of the

Cleanroom philosophy.

Separation of Development and Testing

Cleanroom engineering principles dictate that development and testing functions must be

separated. Designers are not allowed to execute or test their own code. Only testers can

compile and executed the software being developed. This may seem counterintuitive at

first, but the reasons behind the separation are sound. First, since the developer cannot rely

on debugging as a development crutch, he or she will focus more attention on writing

correct software, rather than on finding and fixing errors. Second, debugging frequently

imbeds deeper errors that are difficult to detect. Adams (1984) studied every failure report

for nine of IBM's most widely used software products over several years and tracked each

to its origin. In most cases the cause of the failure had been introduced by a fix for another

failure. 17 The defects introduced by the fixes may not be found until the integration testing

phase or during operational use by the customer. Debugging tends to produce software

that is locally correct but globally incorrect.

Reliability Certification

Software reliability certification in Cleanroom engineering provides scientifically valid

data that can be used to write warranty statements for software product quality. Reliability

certification also provides feedback to development and management regarding the

effectiveness of the software development process. Software is not released unless it

meets or exceeds the mandated level of reliability.

3.4.2 Cleanroom Engineering Practices

The concepts expressed in the principles of Cleanroom engineering are reflected in its

practices. The following sections describe some of the key practices behind Cleanroom

engineering.

17The problem of bad fixes is well documented. In addition to the Adams study, Endres (1975), Fagan
(1976), Jones (1978), Myers (1976), Shooman (1983), and Thayer (1978) all address the topic.

Cleanroom Software Engineering 91

Structured Data

Increasing demands for software capability have resulted in the explosive growth of a data

flow jungle that is just as tangled as the control flow jungle that existed before the advent

of structured programming. Since arrays and pointers represent arbitrary access to data

just as GOTO statements represent arbitrary access to instructions, Cleanroom practices

recommends that randomly accessed arrays and pointers should not be used (Mills, 1986).

These data structures should be replaced with such structures as queues, stacks, and sets.

These structures are considered safer since their access methods are more disciplined

(Head, 1994). In addition, while it may take more thinking to design programs without

arrays, the resulting designs are better conceived and usually have more function per

instruction than programs that utilize arrays. According to Mills (1986), independent

estimates indicate that programs utilizing structured data flows have up to five times as

much function per instruction than would be expected of programs utilizing arrays.

Incremental Development

Incremental development is used to help give designers intellectual control over the

problem as well as maintain focus on the task at hand. By partitioning the development

problem into manageable increments (usually less than 10,000 lines of code and less than

eight staff months of effort), intellectual control over the development of complex systems

can be established. Each increment defines a complete, user-executable system with added

functionality over previous increments. Once an initial understanding of the requirements

is achieved, the system is partitioned into increments based on criteria such as increment

size, component reuse, and development team skills. While the requirements for

unprecedented systems may not be entirely known, the portions that are known should be

stable. Additional requirements can be brought under control and introduced at reasonable

intervals. Increments may also be left open in certain aspects for later updates. Thus,

further steps of requirements determination can be performed with each increment

specification (SET, 1993).

92 New Methods for Complex Electronic System Development

Team Organization

Cleanroom projects involve three different types of teams: specification, development, and

certification. Specification teams are responsible for preparing and maintaining the system

specifications. Configuration management is the responsibility of the specification team.

Development teams design and build one or more of the software increments. The

resulting source code is handed over to the certification team who compiles and tests the

software. Development teams are also responsible for isolating and making any necessary

changes to the increment. The number of development teams used on a project depends on

the size of the system to be developed.

Each certification team prepares test cases for an increment. When the increment is

submitted for certification, the team performs the testing and prepares the certification

report. A certification team executes and tests the code but does not modify it in any way.

Failures are reported to the appropriate development team for correction. As was the case

with development teams, the number of certification teams depends on the size of the

system to be developed.

Engineers can serve on more than one team. For instance, an engineer may work

on the specification team and the development team. However, engineers are not normally

members of the development and certification teams because of the principle of separation

of development and testing (SET, 1993).

Box Structure Design

Cleanroom provides a rigorous basis for developing software by exploiting the fact

that programs are rules for mathematical functions. The specification for a program

must define a function that completely describes the behavior required for the

software to fulfill its intended role. Finding and documenting this function is a

specification task. Designing and implementing a correct procedure for the specified

function is a development task.

The mathematical nature of software is leveraged in Cleanroom through the

application of box structure mathematics to software specification and development. In

fact, the underlying mathematical foundations of box structures permit the scale-up

of analysis and design to systems of arbitrary size. Consequently, specifiers and

Cleanroom Software Engineering 93

Figure 3.7: Box Structure Diagrams

....................... .-- -................ I _ -I
.. I-

..................- ..

......................................
.. I ...

.
..
..

.

. ..
......

S .. II II

r

R

..................._I I -..1 ...
...............I

...
...
.................. 400- R

Note: The clear box structure is shown with a sequence process structure.

developers only need to work with three classes of functions: black boxes, state boxes, and

clear boxes. Each of these box structures exhibits identical external behavior, but with an

increasing degree of internal visibility. Figure 3.7 depicts the three box structures.

The technical details of box structure design are crucial for understanding the

implications of this method. Details are provided in Appendix A. Important elements of

the methodology will be highlighted below.

A black box provides an implementation-free, object-oriented description of

software. This box structure only describes the software's external behavior in terms of a

Clear Box

State Data I --- --

- I

94 New Methods for Complex Electronic System Development

mathematical function that maps a stimulus history, S*, to a response, R. Since the black

box view excludes all details of internal structures and operations, it also provides a

description of the user's view of system behavior.

A state box provides a data-oriented view that begins to define implementation

details by modifying the black box to represent responses in terms of the current stimulus,

S, and state data that contains the stimulus histories.

A clear box provides a process-oriented view that completes the implementation

details by modifying the state box view to represent responses in terms of the current

stimulus, state data, and invocations of lower level black boxes.

The effective use of box structure design methods for the development of systems

is guided by the application of six basic box structure principles: referential transparency,

transaction closure, state migration, common services, correct design trail, and efficient

verification.

Referential Transparency. Each object is logically independent of the rest of the system

and can be designed to satisfy a well defined "local" behavior specification.

Transaction Closure. The principle of transaction closure defines a systematic, iterative

specification process to ensure that a sound and complete set of transactions is identified

to achieve the required system behavior.

State Migration. State data is identified and stored in the data abstraction at the lowest

level in the box structure hierarchy that includes all references to that data. The result is

that state data can easily be transferred to the lowest feasible level.

Common Services. System parts with multiple uses are defined as common services for

reusability. In the same way, predefined common services, such as database management

systems and reuse objects, are incorporated into the design in a natural manner. The results

are smaller systems and designs which accommodate reuse objects.

Correct Design Trail. It is important to insure consistency in the entire design trail when

correcting an error.

Efficient Verification. It is only necessary to verify what is changed from one refinement

to the next since all elements of the design are referentially transparent.

Cleanroom Software Engineering 95

Designing software with box structures is performed in a top-down manner. Once

the top-down design is completed, the clear boxes can be implemented in code. The

software code is verified by demonstrating the equivalence of the program and the design

represented by the clear box refinement. While system design proceeds in a top-down

fashion, the implementation of the design is accomplished in a bottom-up fashion.

Designing top-down and then coding bottom-up allows the developers to exploit fully the

principle of common services during the design phase and generalize the common

services as much as possible during the coding phase.

Functional Verification

In Cleanroom engineering, functional verification is used instead of unit debugging. 18

These functional verifications typically yield surprising improvements in design, even for

the best software engineers. As a result, the developed software can be smaller and faster

than previously thought possible, delivering more functionality per instruction. In

addition, using functional verification allows quality to be designed into the software.

According to Cobb and Mills (1990), functional verification leaves only two to five

defects per thousand lines of code to be fixed in later phases of the life cycle whereas

debugging leaves 10 to 30 defects per thousand lines of code. In contrast to functional

verification, debugging attempts to test quality into the product. However, since more than

15 percent of the corrections merely introduce newer, deeper errors, testing quality into

software is not possible (SET, 1993). 19

Statistical Testing

Cleanroom engineering makes use of statistical usage testing to certify the reliability of

the developed software in terms of its MTIF (Mean Time To Failure). The application of

rigorous statistical theory allows both quality control of the software being developed and

process control over the development of the software. 20

18 A more detailed discussion of functional verification practices is available in Appendix A.
19DeMarco (1982) contains an excellent analysis which demonstrates the validity of this point. Testing

seems to be capable of eliminating half of the software defects. However, this factor of two improvement
is overwhelmed by the extreme variability in the quality of software being produced today.

20 A more detailed discussion of statistical testing practices is available in Appendix A.

96 New Methods for Complex Electronic System Development

3.4.3 Cleanroom Engineering Process

Cleanroom projects follow a defined process which details the control structure between

all processes and practices to be used in the project. Organizations which practice

Cleanroom software engineering typically possess a set of defined processes where each

defined process is intended for use with a different class of development project. Each of

these defined processes, in turn, can be tailored to satisfy the specific needs of the project

at hand.

Large development projects employ a spiral development process which partitions

the problem into smaller, more manageable projects or spirals. Decomposing a large

problem into smaller pieces reduces risk by establishing intermediate evaluation points.

This allows projects to be redirected if necessary. Partitioning the development problem

also enables the use of intermediate deliveries. This practice can be used to keep

development efforts focused, elicit user feedback, and help assess the progress of the

project. Figure 3.8 depicts the Cleanroom spiral development process.

Each spiral is divided into four quadrants or phases: planning, specification,

development and certification, and analysis. The planning phase is where the project

blueprint is devised. During this phase, the appropriate defined process model is chosen

and tailored to the needs of the current development project. If an appropriate process

model does not exist, a suitable process must be designed. Other planning activities

include conducting risk analyses and setting objectives for each spiral (SET, 1993).

Figure 3.8: Cleanroom Engineering Spiral Development Process

Planning Specification

Development
and Certification

Cleanroom Software Engineering 97

During the specification phase, system specification development activities are

performed. Typically, this involves close cooperation between the specification team and

the customer and system users. Specification development tasks include analyzing the

problem and solution domains. Problem domain analysis involves reverse engineering

similar systems, developing the usage profile in the form of a Markov model, and

formulating black box specification models. The formulation of black box functions is a

critical task since it defines the functional behavior of the system to be developed. By

defining the functional behavior of the system, the specification establishes what is to be

done, not how. Solution domain analysis can involve such activities as reuse analysis and

rapid prototyping. In Cleanroom engineering, the rapid prototyping process is similar to

the standard Cleanroom process. The rapid prototyping process also includes planning,

specification, development, and certification phases. However, once these phases have

been completed, experiments can be conducted to acquire any additional information that

may be necessary for specification development. While the specification team is

responsible for prototype development and experimentation, development and

certification teams are also typically involved in the process. When the prototyping effort

ends, system modules that were developed and certified are placed in the project reuse

repository and can be used by the development team to design and build the final product.

The construction plan for the spiral is also produced during the specification phase.

Its purpose is to lay out a plan for the activities of the development and certification teams.

The construction plan contains the actual modules and functions that are to be developed

for each increment. Since each increment is integrated with the previous ones, the plan

also defines the cumulative functionality that will need to be certified following the

development of each increment.

The third phase of a spiral is the development and certification phase.

Development and certification activities are performed in parallel. Development activities

include designing each increment top-down with box structures, implementing the design

in code, and verifying the correctness of the code through functional verification.

Typically, design languages and automated code generation are used as much as possible

to translate designs into code. During this time, the certification team formulates test

cases. Once the development team delivers the source code for the current increment, it is

integrated with the previous increments and tested. If defects are detected, it is reported to

the development team for correction. The corrected code is delivered to the certification

team for re-evaluation.

Analysis is the final phase of the Cleanroom spiral. The results of the development

cycle are analyzed in this phase. In addition, system demonstration and follow-up

appraisals can be conducted (SET, 1993). The results of the work performed in this portion

of the development cycle serve as inputs to the planning activities of the next spiral.

Each successive spiral builds on the work of the previous spirals. For instance, the

specification for the overall system is developed in an iterative spiral. Each specification

iteration further extends and/or refines the system specification.

3.4.4 Proven Benefits

Cleanroom is not a blue sky concept. The methodology is currently in use by many

software engineering organizations across the United States and internationally as well.

The implementation of Cleanroom engineering methods has consistently produced

significant improvements in quality and productivity. A sample of the results of some

Cleanroom projects is shown in Table 3.5.

Table 3.5: Sample of Cleanroom Results

Project

Flight control
33 KLOC (Jovial)

Commercial product
80 KLOC (PL/I)

Satellite control
30 KLOC (Fortran)

1990 Research project
12 KLOC (Ada and ADL)

Source: Cobb and Mills (1990), Mills (1991)

Results

* Completed ahead of schedule
* < 2.5 defects/KLOC before any execution
* Defect-fix effort reduced by a factor of five

* Certification testing failure rate of 3.4 defects/KLOC
* Deployment failures of 0.1 defects/KLOC
* Productivity of 740 LOC/staff-month

* Certification testing failure rate of 3.3 defects/KLOC
* 50% quality improvement
* 80% productivity improvement
* Productivity of 780 LOC/staff-month

* Certified to 0.9978 reliability
* Certification testing failure rate of 1.7 defects/KLOC

Year

1987

1988

1989

.

Cleanroom Software Engineering 99

A technology transfer effort implemented Cleanroom engineering processes and

practices at a Picatinny Arsenal software engineering center and achieved impressive

improvements immediately. The Picatinny software engineers improved their productivity

by a factor of three on the very first increment on which the new methodology was used.

The failure rate also displayed dramatic improvement. The failure rate for the first

increment was only 0.24 failures per thousand lines of code (Sherer et al., 1994).

Even partial implementation of Cleanroom processes and practices seem to make

substantial improvements. Head (1994) reported significant improvements from

implementing just a few of the Cleanroom practices at Hewlett-Packard. A defect density

of one defect per thousand lines of code was achieved on the first application of these

practices to a project.

100

CHAPTER 4
Evaluating the New Methods

Now that we have described some of the fundamental ideas and practices behind a

selected set of complex electronic system development methodologies, we must define a

set of criteria by which to assess their utility for cross-system integration. Once a set of

criteria and a rating scheme have been devised, the evaluations can be conducted to

determine which methodology, if any, can be used to address the interoperability problem.

4.1 THE CRITERIA

To define a set of criteria that would characterize an ideal cross-system integration

methodology, general characteristics of high performance product development processes

were considered as well as relevant system design and interoperability issues. The

characteristics of lean product development and high performance software engineering

processes were considered along with the system design issues associated with the types

of interoperability problems discussed in Chapter 2. Successive rounds of distillation

removed criteria that were thought to be redundant or nonessential for the purposes of this

thesis. The final set of criteria is not a comprehensive checklist of everything necessary to

solve the interoperability problem and successfully integrate disparate systems. It does,

however, define a key set of process traits, which have been widely associated in other

contexts with successful product development processes, and system design issues that

101

Evaluating the New Methods

Table 4.1: Ideal Cross-System Integration Methodology Criteria

Process Characteristics

System Design Issues

Defined
Configuration management
User involvement
Transparent
Tailorable
Rapid development cycle
Scalable methodology
Defect-free
Continuous improvement & lessons learned

Security
Robustness
Manufacturability
Supportability
Upgradability
Scalable architecture
Intrasystem HW/SW codesign
Cross-system HW/SW codesign
Munition-platform interoperability
PGM-C4I interoperability
Cross-platform interoperability
Platform-C4I interoperability
Cross-C4I interoperability
Cross-service interoperability
Multinational interoperability
Military-commercial interoperability
Integrated master requirements
Integrated master requirements traceability

should be encompassed by an ideal cross-system integration methodology. The final set of

criteria is shown in Table 4.1.

The first nine criteria fall into the category of process characteristics. The rest of

the criteria are system design issues that should be accounted for by an ideal cross-system

integration methodology. The criteria are defined and the reasons behind their selection

are discussed in the subsections that follow.

102

4.1.1 Process Characteristics

Defined

A cross-system integration methodology should follow a defined process. Experience has

shown that developing hardware/software systems with an ad hoc approach usually results

in poor project performance. Poor system performance and the all too familiar schedule

and cost overruns are usually the results of a poorly defined process. Even if the project is

successful, the lack of a defined process diminishes the chances that the success can be

repeated (Boehm, 1976; Cusumano, 1991; Paulk et al., 1993a and 1993b).

Configuration Management

The system design configuration must be kept up-do-date so that designers can have the

most current information at their disposal. This is a basic function for hardware/software

system development (Paulk et al., 1993a and 1993b; Cusumano, 1991). Configuration

management activities include identifying the design configuration at certain points in

time, systematically controlling changes to the design configuration, and maintaining the

integrity and traceability of the configuration throughout the development cycle.

User Involvement

Users must be involved throughout the development process to ensure that the system

meets their needs, which are often different from the stated requirements (SAF/AQK,

1992; IBM, 1990). A higher degree of user involvement enables the designers to gain a

better understanding of the users' "true" requirements. This is particularly true for

programs where man-machine interfaces are a factor.

An example of the utility of user involvement can be found in the discussion of

GritTech's rapid development process located in Chapter 3. Without user involvement, the

rapid development engineers would not have known to address the unstated requirement

for a capability to call up video views of the launch vehicle and the launch pad. Adding

this functionality to the system would have been significantly more problematic and costly

to accomplish later in the development cycle.

The design of AH-64 Apache crew station provides another example of the utility

of user involvement in the development process. Conforming to MIL-STD-704A, the

Apache's electronic systems were interconnected with its two onboard generation systems

The Criteria 103

Evaluating the New Methods

so that a single generator could supply power for all the electronic systems in case one of

the generators failed or was switched off. No one had anticipated that both generators

could be switched off in-flight, which happened once inadvertently while flying nap-of-

the-earth during the flight test phase. The pilot's partially rolled up sleeve caught both

generator switches, switching off electrical power for all onboard systems except for the

few items powered by battery. Only the skillful reactions of the crew averted a tragedy.

Accordingly, the generator switches were subsequently redesigned to be lever-locked in

the "on" position (Amer et al., 1992).

Transparent

The methodology should be easily understood by designers and managers alike. In

addition, the process should allow development progress to be easily measured and

tracked on a continuous basis. Transparency allows problems to be identified earlier in the

development cycle when they are not as costly to fix. A lack of transparency is a

commonly cited problem for project management, particularly in the development of

software-intensive systems (Paulk et al., 1993a and 1993b; SAF/AQK, 1992; Cusumano,

1991).

Tailorable

A single, defined process cannot be appropriate for all possible development projects.

SDC's (System Development Corporation) experiments with a factory approach to

software development in the mid-1970s, documented in Cusumano (1991), failed in part

from the use of the standardized process on projects with widely varying needs.

Predictably, the factory approach worked well on the types of development projects for

which it was designed but produced disappointing results when applied to projects that

were beyond the intended scope of the process (Cusumano, 1991). Attempting to define a

single standard process to handle all situations typically results in a non-transparent,

byzantine process that is unwieldy at best (Hammer and Champy, 1993). Thus, an ideal

process should be tailorable to meet the particular needs of a project.

104

Rapid Development Cycle

A rapid development cycle, a basic element of lean or total quality product development

processes (Womack et al., 1991; Ling, 1993; Clausing, 1994), is important for a number of

reasons. First, a rapid development cycle places new capabilities in the hands of the

warrior faster. Moreover, rapid development cycles are needed to insure that systems are

state of the art when fielded. Currently, development cycles are so lengthy that some

systems can be obsolete by the time they are fielded. Rapid development cycles can also

facilitate timely upgrading of current systems to keep their capabilities at or near the

rapidly improving state of the art in hardware and software technology. In addition, if it is

necessary to perform any cross-system integration tasks after our forces have deployed to

a theater of operations, those tasks must be accomplished as quickly as possible.

Scalable Methodology

An ideal methodology would be efficient and effective for both relatively simple and

extremely complex systems integration. For instance, there are processes that appear

extremely efficient and effective for developing small systems. However, when applied to

a larger development project, information flows which were crucial to the success of the

process for smaller projects can break down-particularly the informal channels,

primarily due to the larger number of people involved.1 Similarly, design methods that

work well for small problems can be swamped by the number of constraints and variables

involved in solving larger, more complex design problems. Moreover, a scalable

methodology is needed to keep pace with the increasing complexity of cross-system

integration problems.

Defect-Free

An ideal methodology should aim to "get it right the first time" and develop a high-quality,

defect-free finished product. Unfortunately, while this is usually the goal, the finished

product has not always lived up to these expectations in the past. In spite of the myriad

process and product standards that have been imposed on defense contractors, systems

have been deployed with known defects. For instance, CAFMS, a computer system used

1 This sort of problem is well documented in the literature by Lawrence and Lorsch (1967), Lawrence et al.
(1976), and Lawrence and Lorsch (1986).

The Criteria 105

Evaluating the New Methods

to develop air tasking orders, was deployed to the Gulf with several known software

defects. In all, there were 81 major software changes made during Desert Shield and

Desert Storm. While some were the result of the growing scale of operations, many

changes were made to fix known problems that had been brought to the field and others

that appeared during Desert Shield (Hyde et al., 1992).

Defect prevention practices must be a part of a methodology to fully satisfy this

criterion. In the absence of defect prevention practices, methodologies which aim to

produce a defect-free product can only partially satisfy this criterion since they tend to rely

on substantial amounts of testing to detect defects for subsequent removal rather than

preventing their introduction. Defect prevention is significantly more effective for

assuring product quality than testing (Head, 1994).

Continuous Improvement & Lessons Learned

Continuous improvement, an essential element of total quality development (Clausing,

1994), should be part of an ideal cross-system integration methodology. Continuous

improvement and documenting lessons learned are critical for fostering organizational

learning.2 While defect prevention activities are covered by the defect-free criterion, there

are certainly numerous other process aspects that could be improved. For instance, it may

be possible to accelerate the pace of development activities by rearranging certain

elements in the workflow. In addition, technical and process-related lessons learned during

each project should be documented so that they are not forgotten. Subsequent projects

should benefit from this knowledge, not just the individuals who participated. Toyota's

"lessons learned" books provide a good example of this (Ward et al., 1994). For example,

one book is comprised of lessons learned in fender design and contains approximately 60-

72 different key ranges of specifications that would ensure the manufacturability of fender

designs. These lessons learned books, which exist for every body part, allow Toyota

designers to ensure their designs are manufacturable from the start (Ward et al., 1994).

2 The subjects of learning organizations and organizational learning are well documented by Senge (1990)
and Argyris (1991 and 1993).

106

4.1.2 System Design Issues

Security

Information systems and communications should be secure from enemy tampering and

eavesdropping. Considering the ad hoc nature of the coalition information infrastructure

and our widespread use of computers for operations and logistics planning and

management, serious damage could have been inflicted by computer viruses or other kinds

of tampering. Communications must also be secure to deny the enemy information about

our activities and movements. Evidence indicates that Iraqi forces did monitor the radio

channels used by allied airborne forward controllers to vector attack aircraft into "killing

boxes". The Iraqis were able to capitalize on the reluctance of the air forces to change call

signs and frequencies and keep some of their assets out of harm's way. In one reported

case, coalition monitors heard the commander of a mobile Scud unit radio his superior that

he was pulling units because F-16s were coming after him (Campen, 1992c). 3

Robustness

Our systems must be able to operate as well as possible in the face of enemy attempts to

degrade our capabilities, such as jamming. If the Iraqis had utilized the jammers they

possessed, the Navy fleet satellite communications system and its piggy-backed Air Force

satellite communications system might have been severely disrupted, if not silenced. The

Iraqis possessed four Soviet-made UHF jammers that were capable of generating from 1

to 2.5 kilowatts. This would have been more than enough to close down the links that

carried 95 percent of wartime traffic to and from the U.S. Navy (Campen, 1992c).

Manufacturability

An ideal methodology should produce a design that is manufacturable. Manufacturing

processes should be able to produce the integrated system and all its components in an

3 There were also some instances when Iraqi eavesdropping was leveraged to the advantage of allied forces.
In some cases U.S. F-15Es would use Wild Weasel (radar suppression aircraft) call signs to confuse Iraqi
air defenses. F-4G Wild Weasel call signs were based on beer names, and F-4G crews would call out
"Magnum" to alert other friendly aircraft that they had launched a HARM antiradiation missile. One case
involved an F-15E crew that was being tracked by an Iraqi surface-to-air missile (SAM) radar. Since there
were no F-4Gs in the area to attack the SAM site, the F-15E crew called out "Michelob...Magnum!"
whereupon the Iraqis immediately shut down the radar without firing ("Radio Deception Used to Trick
Iraqis," Aviation Week & Space Technology, April 22, 1991).

The Criteria 107

Evaluating the New Methods

efficient, affordable manner. Since the design of a product can, by some estimates,

determine as much as 70 to 80 percent of manufacturing productivity, it is critical to

address manufacturability issues during the design phase (Suh, 1990). Design for

manufacturability is another basic element of lean product development (Womack et al.,

1991; Ling, 1993; Clausing, 1994).

In the past, manufacturability problems have required costly redesign efforts to

correct. Printed wiring boards, used extensively throughout the LANTIRN system (Low-

Altitude Navigation Targeting Infrared for Night), had to be redesigned because the hand-

made boards tended to fracture when machined and could not pass the required acceptance

tests (Bodilly, 1993b). Manufacturability problems with the AMRAAM (Advanced

Medium-Range Air-to-Air Missile) missile led to the establishment of the $330 million

AMRAAM Producibility Enhancement Program (Mayer, 1993). Manufacturability

problems and a failed aluminum casting process forced a very costly redesign of the

stealthy TSSAM (Tri-Service Standoff Attack Missile), and have provided ammunition to

those calling for the cancellation of the program (Morrocco, 1993; Fulghum, 1994e;

Fulghum and Morrocco, 1994).

Supportability

Systems should also be easy to maintain in the field. Historically, maintenance costs of

hardware/software systems exceed that of original system development. If operations and

maintenance costs are included in a software life cycle cost breakdown, they account for

67 percent of the total life cycle cost (Cusumano, 1991).4 From the hardware perspective,

maintenance tests and diagnostics should be easy to perform and crucial areas should be as

easily accessible as possible. Similarly, software components should be easy to access,

test, and replace.

Supportability has become an increasingly important consideration in the

development of weapon systems and their subsystems. Both the Air Force's Advanced

Tactical Fighter and the Army's Light Helicopter competitions placed great emphasis on

supportability issues (Nordwall, 1993; Bond, 1991; Kandebo, 1991). Supportability

4 This usually reflects the costs imposed by a defective product and a flawed process that developed it.
Activities in this portion of the life cycle are needed to fix errors that escaped detection during
development and to give it the functionality that users really wanted.

108

problems with Pratt & Whitney's F100-PW-100 and -200 engines-used in the Air

Force's F-15 and F-16 fighters, respectively-provided a major part of the motivation for

the initiation of the Alternative Fighter Engine (AFE) competition. In addition to

addressing the stall-stagnation problem, the AFE competition addressed the F100's

extremely short lifetime-the period of time between depot overhauls-and its high

maintenance requirements which drove up operating costs (Camm, 1993a).

Upgradability

Considering the typically lengthy service lives of many defense systems5 and the rapid

pace of improvement in hardware and software technology, an ideal methodology should

yield an upgradable product. This would allow a fielded system to keep pace with

technology over its service lifetime with greater ease and less expense than is required by

current approaches.

Scalable Architecture

An ideal methodology should produce a system architecture that can be extended to fulfill

the evolving needs of the user over the service life of the system. Typically, systems will

be called upon to perform functions that were not part of the original design requirements

or are much larger in scope. An ideal methodology should yield an architecture that can

scale up to meet the new challenges. Recent events point to the need for scalable

architectures. CAFMS was not designed to handle the number of air bases or the size of

the ATO required in Desert Storm. Fortunately, we had the luxury of five months with

which to enhance the system with additional processors and storage devices, some of them

newly acquired, and with software changes engineered in the desert (Hyde et al., 1992).

Current efforts to add data fusion capabilities and other enhancements to AWACS

presents another example where non-scalable architectures are causing problems.

Although AWACS performed brilliantly during the Gulf War, the demands of the scope

and pace of allied operations were beginning to push the system to the limits of its

capabilities (Lenorovitz, 1992a). Unfortunately, the aging centralized mainframe

computer architecture makes it more difficult to enhance system capabilities or add the

5 For example, the F-4 has been in service since the 1960s, and the F-15 and F-16 fighters have been in
service since the 1970s.

The Criteria 109

Evaluating the New Methods

latest in distributed computer hardware. For instance, the 1500 lb. electronics unit that

drives the AWACS displays is not programmable which makes it difficult to devise and

implement better ways to display data with software modifications. Making similar

enhancement or upgrades for JSTARS aircraft is much easier because of its distributed,

open architecture which utilizes high-speed commercial off-the-shelf engineering

workstations (Hughes, 1994a; 1994b).

Intrasystem HW/SW Codesign

An ideal methodology should allow for interaction and tradeoffs between hardware and

software development to balance flexibility, performance, and cost within each separate

system. Traditionally, system functionality is partitioned between hardware and software

early on in the development process, and subsequent development activities are pursued

with little or no interaction between the groups responsible for the implementations. The

result is often unsatisfactory performance. Codesign allows more interaction and tradeoffs

between hardware and software implementations. This allows a more thorough

exploration of the "design space" which yields an end product that provides a better

balance of single system flexibility, performance, and cost.

Cross-System HW/SW Codesign

Hardware/software codesign is useful in the cross-system integration context as well.

Cross-system hardware/software codesign would allow for tradeoffs among component

systems to produce an integrated system that better balances flexibility, performance, and

cost.

Munition-Platform Interoperability

Platforms must be able to use the best munitions available for their mission. Therefore,

munition-platform interoperability must be ensured. The F-16A/CBU-87 case discussed in

Chapter 2 is a good illustration of the need for this class of interoperability problem to be

addressed. Had the decision not been made to take enough F-4Gs out of desert storage to

equip an active and a reserve squadron, the Air Force would not have had a viable SEAD

(suppression of enemy air defenses) capability until the planned 1995 procurement of

Block 50D/52D F-16Cs (Fulghum, 1993a). These aircraft will be equipped with a

110

targeting system which will allow it to use the HARM missile (Fulghum, 1993a). The

HARM missile is vital to the SEAD role, but only a few types of aircraft are equipped

with the platform enablers that are necessary to use the munition.

Assuring munition-platform interoperability is extremely important since even

"minor" problems can significantly degrade overall system performance. The AMRAAM

program experienced both the difficulties involved in integrating AMRAAM software

with various aircraft systems and the adverse effects of minor software problems. For

instance, in one four-on-four test, all four missiles failed to hit their targets. Three missiles

failed because the radar detected false targets. The failure of the fourth missile was caused

by a software problem-a constant that the missile's computer used in some calculations

was wrong-that required only a few lines of code to be changed (Mayer, 1993).

PGM-C4I Interoperability

This criterion reflects the possible development of a capability where precision-guided

munitions (PGMs) could be guided, targeted, and re-targeted by theater C4I systems. The

Block 4 upgrades for the Tomahawk cruise missile will provide this type of capability

(Kandebo, 1994). Similarly, the AGM-154 JSOW (Joint Stand Off Weapon) is expected to

achieve this type of capability through a preplanned product improvement which will add

data links for input from off-board sensor systems such as those on board JSTARS and

AWACS aircraft (Fulghum, 1994d). An ideal cross-system integration methodology would

ensure that this kind of interoperability is achieved.

Cross-Platform Interoperability

This type of interoperability could allow platforms to share data with each other to provide

a more complete picture of the operating environment. This type of capability could also

provide a redundant source of information in case on-board systems are knocked out or

malfunction. This type of interoperability would also enable platforms to make use of

information provided by sensors located on other platforms. Before cutbacks removed the

five-year line of funding for the F-4G from the budget, SEAD planners had hoped to equip

F-4Gs and F-16Cs with an Improved Data Modem (IDM) so that targeting information

provided by the F-4G's sophisticated sensors could be passed to HARM-equipped F-16Cs

that were not similarly equipped (Fulghum, 1993a; 1994a). Although the elimination of

The Criteria 111

Evaluating the New Methods

the F-4G's line of funding forced the cancelation of the planned IDM upgrade6 , the

potential benefits of cross-platform interoperability have been recognized and should be

addressed by an ideal cross-system integration methodology (Fulghum, 1994a).

Platform-C41 Interoperability

Platforms must be able to interact with C41 assets. The utility of systems such as AWACS

and JSTARS would be greatly diminished if they could not communicate effectively with

platforms and vice versa. This type of interoperability can also help platforms distinguish

friend from foe.

The F-16 HTS (HARM Targeting System) and JTIDS (Joint Tactical Information

Distribution System) are good examples of how platform-C41 interoperability can

significantly enhance the performance of the theater system. The performance of newly

fielded AN/ASQ-213 HTS-equipped, F-16 Block 50/52D aircraft in the SEAD role has

exceeded prior expectations to such a degree that the USAF believes the future

development of a radar-killing version of the F-15 will be unnecessary. Air Combat

Command is particularly pleased with the ability of the HTS to interact with off-board

sensors such as Rivet Joint. 7 Although the HTS was originally intended as an interim

system, planned upgrades should make the F-16 HTS system as capable as the radar-

killing F-15 at a far lower cost (Morrocco and Fulghum, 1994).

JTIDS allows pilots to receive and view AWACS data on a color multifunction

display in the cockpit (Morrocco, 1994). JTIDS allows a pilot to see the whole battlefield.

For instance, instead of being limited to an F-15 radar's 120-degree forward field of view,

a JTIDS-equipped F-15C provides its pilot with the ability to see all around his aircraft,

including the locations of enemy surface and air threats (Fulghum, 1993e). With the

JTIDS-enhanced situational awareness, the 390th Fighter Squadron, the only F-15C unit

currently equipped with JTIDS, expects to be able to adopt the line abreast formation

6 Since the IDM upgrade was canceled for the F-4G, target information will have to be passed verbally from
F-4Gs to other aircraft (Fulghum, 1994b).

7 The F-16 HTS system is considered proof of concept that with additional refinement, a single-seat aircraft
can perform the SEAD role almost as well as a two-seat design. In the future, the electronic warfare officer
could be on board an AWACS or Rivet Joint aircraft instead of in the cockpit of a Wild Weasel aircraft
(Morrocco and Fulghum, 1994).

112

instead of flying in trail (Fulghum, 1993e). This allows forward firepower to be

maximized and should result in greater lethality and fewer U.S. and Coalition losses.

Cross-C4I Interoperability

During the air campaign, AWACS and JSTARS were networked to provide coalition

commanders with a complete picture of enemy movements on and over the battlefield.

This sort of capability will certainly be expected of future systems. Moreover, success in

the air battle depends heavily on the successful integration of battle control assets such as

AWACS, JSTARS, and Rivet Joint (Bowie et al., 1993).

Cross-Service Interoperability

Systems deployed by services should be interoperable with the systems of other military

services. A good example of the importance of this class of interoperability problem is

provided in Chapter 2 in the discussion of air tasking order generation and distribution

problems encountered during Desert Shield and Desert Storm.

Multinational Interoperability

U.S. forces fought alongside the forces of many other nations in Desert Storm. It is likely

that similar situations will arise again in the future. Hence, our forces will need to be able

to interface as smoothly and rapidly as possible with forces of different nations.

Interoperability with some coalition partners was achieved much more easily because of

the development of some systems with common technical standards. Developing

interoperability with the forces of other nations was more problematic (Wentz, 1992).

Thus, this class of interoperability problem should be addressed by an ideal cross-system

integration methodology.

Military-Commercial Interoperability

As demonstrated during the Gulf war, the capacity of dedicated military communications

systems is dwarfed by the wartime demands of its forces. This necessitated the leasing of

commercial capacity for military use during Desert Storm (Wentz, 1992; Campen, 1992d).

Care must be taken to insure that this supplementary capacity can be utilized efficiently

and effectively in the future. The recent reengineering of military space strategy reflects

this reality. For instance, the new proposed military space strategy calls for the initiation

The Criteria 113

Evaluating the New Methods

of cooperative, robust technology demonstration projects to ensure compatibility between

military and civil space requirements and services, especially in the areas of

communications and remote sensing. It would also seek to develop interface standards that

would suit both commercial and military needs (Scott, 1994).

Integrated Master Requirements

Cross-system integration should be conducted with an integrated master set of

requirements for the entire system. Consequently, an ideal methodology should

incorporate some mechanism for master requirements traceability. The formulation of

master development plans by the F-16 SPO through meetings with representatives of the

LANTIRN, PLSS (Precision Locator Strike System), GPS, AMRAAM, ASPJ (Airborne

Self Protection Jammer), SEEK TALK, and JTIDS SPOs was one of the elements integral

to the success of the F-16 Multinational Staged Improvement Program (MSIP), which is

widely viewed as a great success (Camm, 1993b; Glennan et al., 1993).8

Integrated Master Requirements Traceability

If there is a set of integrated master requirements, an ideal methodology should also

provide for integrated master requirements traceability.

4.2 THE RATING SCHEME

The rating scheme chosen to evaluate the different methodologies is fairly

straightforward. For each criterion, three different ratings are possible: satisfies, partially

satisfies, and does not satisfy.

4.3 THE EVALUATIONS

This section contains the evaluations of each of the methodologies described in the

previous chapter. The results of the evaluations are shown in two matrices corresponding

to the two categories of criteria. Table 4.2 shows how the methodologies rated according

8 The F-16 MSIP is the development program that has been utilized to move beyond the F-16A/B. The
primary product of the F-16 MSIP has been the F-16C/D, an aircraft whose design has evolved over time
as new technological capabilities have been incorporated into its design (Camm, 1993b).

114

Table 4.2: Process Criteria Matrix

0

Defined 0 0

Configuration
Management

User Involvement 0 0 O *

Transparent 0 0 0

Tailorable 0 0 0

Rapid Development Cycle 0

Scalable Methodology 0O O O

Defect-Free))) 0

Continuous Improvement
& Lessons Learned

- Satisfies O - Partially Satisfies 0 - Does Not Satisfy

to the process characteristics criteria. Table 4.3

according to the system design issues criteria. The

in the subsections that follow.

4.3.1

shows how the methodologies rated

reasons behind the ratings are provided

DC-X Rapid Development

The reasons behind the ratings of this methodology are discussed in this section on a

criterion-by-criterion basis.

Satisfies. This process follows a defined process.

The Evaluations 115

Defined

Evaluating the New Methods

Table 4.3: System Design Criteria Matrix

^00

Security 00 0 0 0

Robustness

Manufacturability

Supportability O O O

Upgradability O O O 4 4

Scalable Architecture O O))

Intrasystem HW/SW
Codesign

Cross-System HW/SW
Codesign

Munition-Platform
Interoperability

PGM-C4I Interoperability O O O O O

Cross-Platform
Interoperability

Platform-C4I
Interoperability

Cross-C4I
Interoperability

Cross-Service
Interoperability

Multinational
Interoperability

Military-Commercial
Interoperability

Integrated Master
Requirements

Integrated Master Req.
Traceability

0 - Satisfies O - Partially Satisfies O - Does Not Satisfy

116

The Evaluations 117

Configuration Management

User Involvement

Transparent

Tailorable

Rapid Development Cycle

Scalable Methodology

Defect-Free

Continuous Improvement &
Lessons Learned

Satisfies. The process has mechanisms for configuration

management.

Satisfies. The process allows simulations, which can be

tested by users, to be produced in parallel with the flight

software.

Satisfies. Designers and managers have a good sense of the

status of the project and the rate of progress.

Satisfies. The process is tailorable to the needs of the

project.

Satisfies. The process is characterized by a rapid

development cycle and fully utilizes rapid prototyping.

Does not satisfy. The methodology is not scalable. The

process is highly dependent upon a toolset which seems to

"break" when applied to large problems.

Partially satisfies. The process seeks to develop a defect-

free product, but does not practice defect prevention.

Does not satisfy. This process has no provisions for

continuous improvement or documenting lessons learned.

The DC-X rapid development process does not satisfy any of the criteria

pertaining to the system design issues since there is no provision in the process for the

consideration of these issues.

4.3.2 GritTech Rapid Development Evaluation

The reasons behind the ratings of GritTech's rapid development methodology are

discussed in this section on a criterion-by-criterion basis.

Defined Satisfies. The GritTech rapid development group has a

defined process.

The Evaluations 117

Evaluating the New Methods

Configuration Management

User Involvement

Transparent

Tailorable

Rapid Development Cycle

Scalable Methodology

Defect-Free

Continuous Improvement &
Lessons Learned

Security

Robustness

Satisfies. The process has mechanisms for configuration

management.

Satisfies. User involvement is integral to the success of the

incremental software development approach practiced by

GritTech.

Satisfies. Designers and managers have a good sense of the

status of the project and the rate of progress.

Satisfies. The GritTech rapid development process is highly

tailorable. Designers have great freedom over tailoring the

process to the needs of the project in question.

Satisfies. The process is characterized by a rapid

development cycle.

Does not satisfy. The methodology relies heavily on

informal communication among team members. Since the

information flows would break down for large projects, the

methodology is not scalable.

Partially satisfies. The process seeks to develop a defect-

free product, but does not practice defect prevention.

Partially satisfies. Since activities associated with

continuous improvement and documenting lessons learned

are conducted at the discretion of the development team,

they are not always performed.

Does not satisfy. Security design considerations are not

included in the GritTech rapid development methodology.

Does not satisfy. Robustness considerations are not included

in the GritTech rapid development methodology.

118

The Evaluations 119

Manufacturability

Supportability

Partially satisfies. The process can include this

consideration, but it can be (and has been) tailored out of the

process in the interests of speeding up the development

cycle.

Partially satisfies. Again, this consideration can be a part of

the process, but it can be tailored out of the process.

The GritTech rapid development process does not satisfy any of the remaining

system design criteria since the methodology has no provision for the consideration of

these issues.

4.3.3 Ptolemy Hardware/Software Codesign Evaluation

The reasons behind the ratings of a Ptolemy-supported hardware/software codesign

methodology are discussed in this section on a criterion-by-criterion basis.

Defined

Configuration Management

User Involvement

Transparent

Tailorable

Rapid Development Cycle

Satisfies. This process follows a defined process.

Satisfies. The process has mechanisms for configuration

management.

Does not satisfy. HW/SW codesign does not involve the

user in the design process, partially due to the fact that it

relies on other methods to perform requirements capture.

Satisfies. Progress is easy to monitor with this methodology.

Satisfies. The process is tailorable depending on the type of

codesign problem involved. Different types of problem

require the application of different design methodologies.

Satisfies. The process is characterized by a rapid

development cycle.

The Evaluations 119

Evaluating the New Methods

Scalable Methodology

Defect-Free

Continuous Improvement &
Lessons Learned

Security

Robustness

Manufacturability

Supportability

Upgradability

Scalable Architecture

Intrasystem HW/SW
Codesign

Partially satisfies. The methodology is scalable for a large

range of design problems, but it is not capable of including

the use of high-level languages in the codesign process.

Partially satisfies. The process seeks to develop a defect-

free product, but does not practice defect prevention.

Does not satisfy. This methodology does not currently

include activities for continuous improvement and

documenting lessons learned.

Does not satisfy. Security is not currently considered by

Ptolemy-supported codesign.

Does not satisfy. Robustness is not currently considered by

Ptolemy-supported codesign.

Partially satisfies. Depending on the specific development

project, estimates of the cost to manufacture a design are

considered.

Does not satisfy. Supportability is not currently considered

by Ptolemy-supported codesign.

Does not satisfy. Upgradability is not currently considered

by Ptolemy-supported HW/SW codesign.

Partially satisfies. Depending on the specific development

project, scalable architectures can be developed.

Partially

between

software

Satisfies. The design method is limited to tradeoffs

hardware and low-level software. High-level

is not included in the codesign process.

Ptolemy-supported hardware/software codesign does not satisfy any of the

remaining system design criteria since there is no provision for the consideration of these

issues.

120

4.3.4 RASSP Evaluation

RASSP was evaluated even though its work is still in its infancy. This evaluation will help

see what future improvements (if any) there may be. The reasons behind the ratings of

RASSP development methodology are discussed in this section on a criterion-by-criterion

basis.

Defined Satisfies. This process follows a defined process.

Configuration Management

User Involvement

Transparent

Tailorable

Rapid Development Cycle

Scalable Methodology

Defect-Free

Continuous Improvement &
Lessons Learned

Satisfies. The process has mechanisms for configuration

management.

Satisfies. Users become a part of the development process in

the model year design concept.

Satisfies. Virtual prototyping and the workflow management

features of the RASSP development environment provide a

high level of transparency in the development process.

Satisfies. The RASSP process will be tailorable to the needs

of the project at hand. Some of the tailoring will come

naturally as a result of the design methodologies required to

solve the current design problem.

Satisfies. The process is characterized by a rapid

development cycle.

Satisfies. The methodology is applicable to a broad range of

digital systems design.

Partially satisfies. The process seeks to develop a defect-

free product, but does not practice defect prevention.

Satisfies. The methodology utilizes continuous

improvement and documents the lessons learned from each

model year design.

The Evaluations 121

Evaluating the New Methods

Security

Robustness

Manufacturability

Supportability

Upgradability

Scalable Architecture

Intrasystem HW/SW
Codesign

Does not satisfy. Security is not currently considered by the

RASSP design methodology.

Does not satisfy. Robustness is not currently considered by

the RASSP design methodology.

Satisfies. This is a design consideration of the RASSP

design methodology.

Partially Satisfies. While RASSP does satisfy this criterion

for embedded digital systems, it does not ensure

supportability for the range of systems that a cross-system

integration methodology would need to address.

Partially Satisfies. The model year concept of design

emphasizes the development of upgradable designs.

However, while RASSP does satisfy this criterion for

embedded digital systems, it does not ensure upgradability

for the range of systems that a cross-system integration

methodology would need to address.

Partially Satisfies. While RASSP does satisfy this criterion

for embedded digital systems, it does not ensure scalable

architectures for the range of systems that a cross-system

integration methodology would need to address.

Partially Satisfies. While RASSP does satisfy this criterion

for embedded digital systems, the design method is limited

to tradeoffs between hardware and low-level software.

High-level software is not included in the codesign process.

RASSP design methodology does not satisfy any of the remaining system design

criteria since there is no provision in the methodology for the consideration of these

issues.

122

4.3.5 Cleanroom Engineering Evaluation

The reasons behind the ratings of the Cleanroom engineering methodology are discussed

in this section on a criterion-by-criterion basis.

Defined Satisfies. This process follows a defined process.

Configuration Management

User Involvement

Transparent

Tailorable

Satisfies. The process has mechanisms for configuration

management, which is performed by the specification team.

Satisfies. In the least, users are deeply involved in the

specification phase of each project spiral.

Satisfies. The detailed specifications and top-down design

with box structures provide a good sense of project status

and progress. Metrics tracked during the project also usually

provide an accurate gauge of progress.

Satisfies. Project planning tasks include

process to the needs of the current project.

tailoring the

Rapid Development Cycle

Scalable Methodology

Defect-Free

Continuous Improvement &
Lessons Learned

Security

Satisfies. The process is characterized by high productivity

and a rapid development cycle.

Satisfies. Box structure design and functional verification

practices are scalable.

Satisfies. This methodology involves defect prevention.

Satisfies. Activities related to continuous improvement and

documenting lessons learned are performed in the analysis

phase of each project spiral as well as at the end of the

development project.

Does not satisfy. Security is not currently considered in

Cleanroom engineering.

The Evaluations 123

Evaluating the New Methods

Robustness Does not satisfy. Robustness is not currently considered in

Cleanroom engineering.

Manufacturability Does not satisfy. Manufacturability

considered in Cleanroom engineering.

is not currently

Supportability

Upgradability

Scalable Architecture

Partially Satisfies. Referential transparency and box

structure design produce a supportable software design.

However, Cleanroom does not ensure the design of

supportable hardware.

Partially Satisfies. Referential transparency and box

structure design produce an upgradable software design.

However, Cleanroom does not ensure the design of

upgradable hardware.

Partially Satisfies. Referential transparency and box

structure design produce a software design that can be

easily extended and enhanced. However, Cleanroom does

not ensure the design of scalable hardware architectures.

Cleanroom engineering does not satisfy any of the remaining system design

criteria since there is no provision in the process for the consideration of these issues.

4.4 CONCLUSIONS

In terms of process characteristics, only Cleanroom engineering satisfied all the criteria.

RASSP also scored very well, but fell just short on the defect-free criterion. The other

methodologies all displayed shortcomings on multiple counts (see Table 4.2). Thus, it

appears from this standpoint that methodologies exist that have general process

characteristics that could provide a good foundation for a cross-system integration

methodology.

Unfortunately, a glance at the system design criteria matrix in Table 4.3 indicates

that none of these methodologies are directly applicable to the interoperability problem in

124

Conclusions 125

their current form. Very few of the system design issues are addressed by any of these

methodologies. Moreover, when these issues are addressed at all, the methodologies

usually only partially satisfy the criteria.

Based upon these evaluations, we can make the following conclusions:

* There are methodologies that possess general process characteristics that

would provide a good basis for a cross-system integration methodology.

* Very few of the system design issues are addressed by these methodologies.

* None of the complex electronic system development methodologies in their

current forms can meet the need for a cross-system integration methodology.

126

CHAPTER 5
New Problems, New Solutions

Operation Desert Storm demonstrated the power of information-based warfare. Sheer

numbers of troops and materiel are no longer the primary determinants of success. On the

digital battlefield of the information age, supremacy in the acquisition, analysis, and

exploitation of information will be the prime determinant of success. During the Gulf War,

nearly all coalition combat and support operations were supported by computerized

information and communications systems. Electronic hardware and software systems

performed vital functions at all levels of theater operations. Our ability to gather, process,

analyze, and disseminate large volumes of information-especially in digital form-

enabled our combat forces to conduct operations with unprecedented speed,

synchronization, and precision. The air campaign-choreographed by C4I systems such as

AWACS and JSTARS and executed with precision by avionics-laden aircraft, many of

which carried precision-guided munitions-provided dramatic proof of the advantages

that can be gained through the leveraging of information.

Unfortunately, while these technologies have enabled significant advances in

military capabilities, the proliferation of advanced information and communication

technologies has also created a new class of development problems-interoperability

problems. Resolving these problems requires an effective cross-system integration

methodology to address this new system integration challenge.

127

New Problems, New Solutions

Several methodologies for developing complex electronic systems were evaluated

in the previous chapter to determine if any could be employed directly as a cross-system

integration methodology. The results indicated that while there are development

methodologies that possess the process characteristics of an ideal cross-system integration

methodology, very few of the important system design issues are addressed. In fact, not

one design consideration related to interoperability is addressed by any of the

methodologies. Thus, none of the complex electronic system development methodologies

is capable in its current state of adequately addressing the cross-system integration

challenge. This finding has major technical and policy implications.

5.1 TACKLING THE INTEROPERABILITY CHALLENGE

To adequately address the complex system integration challenge represented by the

interoperability problem, an effective cross-system integration capability must be

developed. While none of the methodologies evaluated in the previous chapter is currently

adequate for cross-system integration, the process criteria matrix shown in Table 4.2

indicates that a some of them exhibit process characteristics that could provide a good

foundation for an effective cross-system integration methodology. Specifically, this

foundation could be provided by Cleanroom engineering, the RASSP design

methodology, or a combination of the two methodologies.

Cleanroom engineering fully satisfied all the criteria related to process

characteristics. However, it only partially satisfied the system design criteria of

supportability, upgradability, and scalable architecture since it does not adequately address

these aspects of hardware design. The strengths of Cleanroom engineering include a

scalable design methodology that exploits the benefits of common services, referential

transparency, functional verification, and statistical testing to produce nearly defect-free

software. The originators of Cleanroom emphasize that it is applicable to system

engineering as well as software engineering. Using box structure design, the system can

be designed in a top-down manner. Once the design is completed, the clear boxes can be

implemented in hardware or software. Since Cleanroom engineering is practiced primarily

by the software engineering community, the process of implementing clear boxes in

128

Tackling the Interoperability Challenge

software is well understood. The process of implementing clear boxes in electronic

hardware is not as mature. Cleanroom engineering does not adequately address digital

hardware design issues, nor is it equipped to deal with tradeoffs between hardware and

software. For instance, while Cleanroom engineering ensures the development of an

upgradable software design, it does not ensure the development of upgradable electronic

hardware.

The RASSP design methodology fully satisfied all but one of the criteria related to

process characteristics. Moreover, it addressed more system design criteria-

manufacturability, supportability, upgradability, scalable architecture, and intrasystem

hardware/software codesign-than any other methodology evaluated. It fully satisfied the

manufacturability criterion, but only partially satisfied the others since the program is

focused on the domain of embedded digital signal processors and may not provide an

adequate scope to form a solid foundation for an effective cross-system integration

methodology. In addition, since the methodology is still under development, it is not

certain that the methodology-especially its system engineering aspects-will be as

scalable as hoped.

The third alternative would involve a combination of the Cleanroom and RASSP

approaches. This option, suggested by the results of the system design criteria evaluation

discussed in Chapter 4, combines the strengths of the two methodologies while addressing

the shortcomings of each. A synergistic combination of aspects of Cleanroom engineering

and the RASSP design approach could provide a solid foundation for cross-system

integration. Cleanroom offers a rigorous approach to system engineering and software

development, and RASSP provides design methodologies and tools for hardware/software

codesign of embedded digital systems.

Developing a methodology that synergistically combines different aspects of

Cleanroom engineering and the RASSP design methodology would not be a trivial

undertaking. Many issues would have to be resolved to accomplish this fusion

successfully. Some of these issues include:

* Can the Cleanroom principle of separation of development and testing be

reconciled with the RASSP approach of rapid prototyping and simulation of

hardware/software systems?

129

New Problems, New Solutions

* Can the RASSP capabilities of designing hardware that is manufacturable,

supportable, upgradable, and scalable be integrated into the Cleanroom process

of refining black boxes into clear boxes?

* Are the Cleanroom and RASSP approaches to ensuring supportability,

upgradability, and scalability compatible with each other?

Assuming that a synergistic combination of Cleanroom and RASSP

methodologies is feasible, the next step in developing a full fledged cross-system

integration methodology would be to expand this foundation to include system design

considerations for all classes of interoperability problems, security, and robustness. In

addition, mechanisms would have to be incorporated to establish and maintain a set of

integrated master requirements and to allow for integrated master requirements

traceability. Finally, an integrated system engineering environment should be developed to

support cross-system integration activities.

All of these technical issues must be resolved to produce an effective cross-system

integration capability. However, to insure the development of a sound methodology, it is

necessary to determine the context in which cross-system integration will be performed.

5.2 THE CONTEXT OF CROSS-SYSTEM INTEGRATION

For cross-system integration activities to be successful, the methodology and its

supporting design environment should be appropriate for the context in which it is to be

applied. For instance, a methodology which assumes a stable set of requirements would

have great difficulty in accomplishing its task if the requirements are changed frequently.

Similarly, if the operating context provides for a stable set of requirements, a methodology

designed to be robust to requirements volatility may not be very efficient.

Proliferation of information and communications technologies in the military

environment has generated a significant need for adequate interoperability among

resources and across services. This need can be addressed by creating an integrated theater

system across interconnected command and control assets, platforms, and munitions. At

present, the military development community is using a variety of methods to tackle this

130

The Context of Cross-System Integration

integration problem. Analysis of the methods described earlier suggest several policy and

technical options.

There are three main approaches to conducting cross-system integration and,

hence, developing theater systems: 1

1. Continue to develop and procure individual systems and then perform cross-

system integration after deployment, using increasingly sophisticated

decentralized development management approaches.

2. Continue to develop individual systems but try to address interoperability

issues early in the development process, using increasingly integrated team

approaches, but not modifying the basic development paradigm that keeps

portions of interoperable systems independent.

3. Adopt a comprehensive theater system product concept as the dominant

development paradigm for most complex systems, defining programs in terms

of theater systems (dominated by information and communication

technologies) instead of objects (dominated by mechanical specifications).

The first approach essentially maintains the status quo where system integration

efforts are primarily focused on platforms. Cross-system integration may alleviate

interoperability problems somewhat, but the integrators will have little leverage since the

success of their work will depend largely on design decisions made early in the

development cycles of the different systems. Integrating disparate systems would likely be

a difficult, costly, and time consuming task. It is also likely that the integrated solutions

would not be very effective or efficient. In addition, the bottom-up development of a

theater system without an integrated plan to guide its development significantly increases

the risk that the theater system will not have the appropriate mix of elements.

While the second approach still involves the development of individual systems

and integrating them after deployment, it improves on the status quo by addressing

1 Note that, broadly defined, a "theater system" includes both equipment and personnel. Theater systems
would then be the product of more than just development and acquisition activities. Strategic and
organizational planning, training, and doctrine would be certainly also be involved. However, in this
thesis, we have focused more narrowly on the equipment-electronic hardware and software systems in
particular. Thus, "theater system development" refers to the development of the technology component of
a theater system.

131

New Problems, New Solutions

interoperability considerations early in the development cycle. This "design for

interoperability" approach could enable the individual systems to be integrated more

easily. This would decrease the amount of time and money required to perform cross-

system integration. Moreover, a design for interoperability approach would likely result in

more efficient integration solutions. While this bottom-up approach to theater system

development would produce better results than the first, it could result in relatively

isolated groups of interoperable systems since there is no integrated plan for developing

the theater system. Again, the lack of an integrated plan to guide theater system

development significantly increases the risk that the theater system will not have the

appropriate mix of elements.

The third possible approach is to adopt a development paradigm based centrally

on theater systems, or a derivative. Since the current paradigm regards platforms and other

individual systems as the ultimate products, this approach would represent a paradigm

shift. To understand the reasons behind the shift, it is useful to compare an automobile

with a fighter. An automobile is a system for transporting people from one place to

another. It is operated largely as an individual system, interacting with its "theater" only at

places like the gas pump, the toll booth, or the traffic light, where it does not require much

a priori design integration. It is only loosely coupled with its "theater" and does not

require much "interoperability" in its design. Thus, an automobile is an appropriate

product concept. A modern fighter, however, rarely operates solo in a theater of

operations. In fact, it must be interoperable across many system elements to accomplish

many of its missions. Here, a fighter is just one element of a larger whole-a theater

system-that is used to conduct military operations. Thus, the theater system, not the

fighter, is the ultimate product of development and procurement activities.

Using the automobile as a metaphor for a theater system, it is easy to understand

why the cross-system integration task is so challenging when performed within its present

context. Imagine having three or four people choose their favorite automobile components

and hoping that they will be able to assemble an automobile that runs smoothly and

provides the desired functionality. 2 Imagine further the complexity if an automobile were

2 The number of people involved depends on the relative autonomy of the acquisition activities of the U.S.
Marine Corps relative to those of the U.S. Navy.

132

The Context of Cross-System Integration

required to be unpredictably integrated with a wide variety of external data

communication environments, many of which had no standards or agreed protocols. The

number of fundamental design variables would increase dramatically. Even if the selected

parts provide all the required functionality, the task of assembling the automobile is likely

to be very difficult and extremely time consuming.

According to a number of military acquisition-related organizations grappling with

the "infowar" phenomenon, the theater system is increasingly (and may have always been)

the ultimate product of the development and acquisition processes. The essential phase

shift that has occurred within the past 10 to 15 years is that the widespread use of

information and communication technologies simultaneously increases the number of

elements in the theater system and requires that they be coupled more tightly. While

focusing on platforms might have been appropriate when electronic contents were small

and theater system elements were loosely coupled, high electronic system content and

tight coupling indicate that the platform-based integration model is no longer appropriate.

Adopting a theater system product concept shifts the system integration focus from

platforms to the theater system. This enables the top-down design of a theater system

which would help ensure an appropriate mix of theater system elements. Matching the

needs of theater system with present capabilities in a bottom-up fashion would also help

identify capabilities that need to be developed. Moreover, by recognizing the critical

importance of information technology and interoperability, this approach would provide

an integrated plan to guide cross-system integration and design for interoperability

activities. The combination of these factors simplifies the cross-system integration task

and enables it to be performed effectively and efficiently.

Extending the current development and acquisition model to include cross-system

integration, as suggested by the first approach, is inadequate for developing the tightly

coupled theater system elements required for warfare in the information age. The second

approach represents a marginal improvement over the first, but may produce islands of

interoperability rather than an integrated theater system. Only the third approach, adopting

the theater system product concept, offers the promise of effective and efficient theater

system development.

133

New Problems, New Solutions

5.3 CENTRALIZED TOPSIGHT, DECENTRALIZED
DEVELOPMENT

Adopting the theater system product concept represents a sea-change in the prevailing

defense development and acquisition paradigm. Establishing the theater system as the

integration model acknowledges and embraces the integrating power of information

technology. Electronic hardware and software form the links that integrate physically

disparate systems into a synchronized theater system.

A major implication of the combination of top-down theater system design and

bottom-up implementation is that the approach allows decentralized development while

providing centralized topsight.3 It is this topsight-an understanding of the big picture-

that should allow the complexity of a theater system to be managed successfully,

facilitating effective and efficient cross-system integration. Without topsight, the theater

system product concept would not be able to exploit the benefits of an integrated plan to

guide the cross-system integration and design for interoperability tasks. Topsight is the

key to lean development and integration of theater system elements.

Since the theater system is the focus of integration efforts in this paradigm instead

of a platform, product development can be even more decentralized than before. In the

context of aircraft, subsystems whose development were traditionally tied to the

development of the platform can be decoupled from the airframe. While they are still

"integrated" through the logic of the overall theater system product model, upgrades could

also be decoupled for development, yet remain "integrated" for interoperability.

Decoupled subsystems and upgrades could be driven to completion as quickly as possible

with a set of short-cycle rapid development projects. Top-down theater system design

allows these subsystem and upgrade development projects to be decoupled from the

airframe, rapidly developed, and then re-integrated with the airframe upon completion.

Theater system design naturally incorporates cross-system integration issues, and

automatically incorporates design for interoperability into the decoupled development

programs. Once the systems (subsystems or elements) are developed and reintegrated with

3 Topsight is a term used by Gelernter (1991) and Arquilla and Ronfeldt (1992) to denote a central under-
standing of the big picture that enhances the management of complexity.

134

Centralized Topsight, Decentralized Development

the airframe, integrating the aircraft with the other existing theater system elements should

be nearly automatic.

The decoupled development approach has several benefits. First, development

times can be significantly reduced. For electronic systems and software, the decoupled

systems can take advantage of fast cycle development methodologies such as Cleanroom

engineering and the RASSP design methodology. This should dramatically cut

development times while producing high-quality products that are scalable, upgradable,

and supportable. Accelerating the development of these systems through decoupling

would also place needed capabilities in the hands of the warfighters earlier. Moreover, the

fielded systems would be much closer to the state-of-the-art at the time of deployment.

Under current development and acquisition practices, the performance of commercially-

available systems can surpass the projected performance of a defense system before its

development is completed.

Second, decoupled development allows new and existing systems to keep pace

with the rate of technological advance. Obsolescence is especially a concern in electronics

and software because of the rapid rate of performance improvement of these technologies.

Since the products of these decoupled development projects are upgradable and scalable,

product capabilities would be much easier to enhance and extend. Decoupled development

would also facilitate the application of the model-year design concept, which would

further enhance the ability to keep pace with technological advance.

The benefits of decoupled development would extend to airframes as well. Since

most new development programs are paced by the development of electronics and

software, decoupling these elements should allow an airframe to be developed in less

time.

The higher productivity of the decoupled development projects translates into

lower development costs, resulting in a more affordable final product once the decoupled

subsystems are integrated. In addition, since the subsystems would be upgradable,

scalable, and supportable, life cycle costs would also be significantly reduced (Richards,

1994). Further cost savings could be generated through reuse of software and hardware

designs and off-the-shelf components. Moreover, applying the principle of common

135

New Problems, New Solutions

services during the top-down theater system design process would facilitate substantial

cost savings through the identification and exploitation of economies of scope.

In addition to these benefits, the fast cycle decoupled development approach offers

the benefits of enhanced robustness to budgetary instability and enhanced risk reduction.

The primary vehicle for both of these benefits is speed. Projects that can be completed

rapidly are less likely to experience the effects of budgetary instability since there would

be fewer opportunities for budgetary changes during development. Maximum robustness

would be achieved by projects that could be completed within a single budget cycle. Risk

would be reduced in two ways. First, rather than conducting numerous risk assessments

and analyses, a real system or prototype would be rapidly developed which would provide

more accurate estimates of the risks involved based on actual experience and data. In

addition, producing real hardware and software provides a more tangible result than the

traditional risk reduction approach of extensive analyses, documentation, and milestone

reviews. With all other factors equal, a project that can demonstrate working hardware or

software is less likely to experience budget cutbacks than a project that only has reams of

analyses and documentation to show for its money.

Thus, the benefits of centralized topsight and decentralized development provided

by the theater system product concept enables the lean development of theater systems

and theater system elements while simultaneously improving robustness to budgetary

instability and reducing development risks.

To summarize, centralized topsight and decentralized development provide the

following benefits:

* Decoupled development of subsystems and upgrades

* Natural incorporation of cross-system integration issues in theater system

design

* Smooth integration of theater system elements

* Rapid development of needed capabilities

* State-of-the-art operational systems

* Greater affordability

136

Multiple Theater Systems

* Enhanced robustness to budgetary instability

* Reduced development risk

5.4 MULTIPLE THEATER SYSTEMS

During our efforts to preserve military capabilities in the face of the defense drawdowns,

we must not become too focused on preserving and enhancing capabilities needed for a

particular type of conflict. Theater systems must be designed for each class of operations

in which our national military strategy envisions the use of military capabilities. This

could include peacekeeping, conducting humanitarian missions, defeating regional

aggression in two concurrent major regional conflicts, and countering insurgencies. Each

of these types of operations begets its own operational strategy and, hence, its own theater

system design. We must design our theater systems to fit reality rather than fit reality into a

particular theater system.

Designing each of these theater systems in a top-down manner would enable the

identification of common services among theater systems as well as within each theater

system. This could facilitate the realization of remarkable economies of scope. We may

also discover that we could fulfill our missions with a smaller force structure than ever

thought possible.

5.5 IMPLEMENTATION ISSUES

Although analyzing and recommending solutions to implementation issues is a task that is

beyond the scope of this thesis, it would not be complete without a discussion of some of

the issues involved. There are numerous implementation issues that need to be resolved

for the theater system product concept approach to work. These issues can be summarized

by two broad questions:

* Who should design theater systems?

* How can theater systems be designed?

137

New Problems, New Solutions

Who should design theater systems?

This is a difficult question to answer. Industry possesses the technical knowledge

required to develop theater system components. However, few companies, if any, possess

technical knowledge in all of the required disciplines. Hence, it may not be appropriate for

industry to design and integrate theater systems. On the other hand, while the government

possesses the knowledge of desired theater system capabilities, it lacks the technical

knowledge required for implementation. One option could be to form a government-

industry partnership to design theater systems. This could produce designs that would

benefit from operational and technical knowledge. Alternatively, theater systems could be

designed jointly by the services in a Joint Theater System Center. This center could

operate under the Joint Requirements Oversight Council, which oversees wargaming and

seeks ways to improve military coordination among the services. Clearly, only a few of

the relevant factors have been discussed here. There are many other questions to consider

before a decision can be made.

How can theater systems be designed?

The methods and tools to support theater system design need to be developed.

These include the methodology for theater system design and an integrated design

environment to support it. Box structure design offers one possible method for designing

theater systems since its underlying mathematical foundations permit the scale-up of

analysis and design to systems of arbitrary size. Moreover, the use of black boxes to

specify behavior in an implementation-free manner provides the designer with great

freedom in devising a means to implement the required functionality. An integrated design

environment that usefully supports theater system design must also be developed.

Wargaming technology must also be improved. Ironically, although wargaming

has been enhanced through the use of computers, the military use of information

technology has rendered much of wargaming obsolete since it is primarily focused on

modeling attacks and defenses with conventional force structures. Wargaming is not

adequate to model information-based warfare (Cava, 1993). In fact, current wargaming

tools are not capable of satisfactorily modeling the effects of changes in C4I support

(Bowie et al., 1993). Limited wargaming capabilities can prejudice our theater system

138

Conclusions and Recommendations

designs toward force structures that can be modeled. Improvements in wargaming are

necessary so that we may design our force structures to fit reality as opposed to trying to fit

reality to our force structure (Steele, 1993).

5.6 CONCLUSIONS AND RECOMMENDATIONS

This thesis is the start of a study of how to address the new integration challenge-to

ensure the interoperability of systems through rapid cross-system integration while

producing a theater system that is flexible, rapidly deployable, upgradable, evolvable, and

maintainable. This problem is very complex, but there are concepts and methodologies-

some of which are unconventional-that point the way to a solution. New problems

require new solutions. The information revolution is producing remarkable advances in

military capability and is transforming warfare in the process. The development and

acquisition of defense systems must adapt to this new reality.

5.6.1 Conclusions

* The ability to acquire, analyze, disseminate, and exploit battlefield information

is critical to military success.

* The proliferation of information and communications systems in all aspects of

theater operations has created an interoperability problem.

* To address the classes of interoperability problems, a cross-system integration

methodology is needed.

* Although there are complex electronic system development methods that meet

some of the criteria of a good cross-system integration method, none of the

methods studied can adequately perform cross-system integration in their

current form.

* Cleanroom engineering and the RASSP design methodology rated the best in

terms of process characteristics, but satisfy only a fraction of the relevant

system design criteria.

139

New Problems, New Solutions

* Cleanroom engineering and the RASSP design methodology could be

combined to form a foundation for cross-system integration.

* The current model of developing disparate systems and focusing system

integration efforts on platforms is not suited to the development of the tightly

coupled theater system elements required for warfare in the information age.

* A theater system is the product of defense development and acquisition

activities. Consequently, theater systems should be the focus of system

integration activities. Platforms are elements of theater systems.

* The theater system product concept enables lean development of theater

system elements and, hence, theater systems.

5.6.2 Recommendations

* Combine Cleanroom engineering and RASSP design practices synergistically

to form a core from which to develop a cross-system integration methodology.

Cleanroom engineering offers a rigorous methodology for system and software

engineering that can scale-up to permit the design of systems of arbitrary size.

The RASSP design methodology offers a scalable approach to designing

embedded hardware/software systems.

* Adopt the theater system product concept. This continues to permit

decentralized development of theater system elements, but provides an

integrated design of a theater system to guide development and cross-system

integration activities. Cross-system integration activities are essentially

absorbed into theater system design. The actual integration would be much

simpler than performing cross-system integration within the context of the

current development and acquisition framework. Designing theater systems

top-down also enables the identification and exploitation of common services

for economies of scope.

* Decouple development of subsystems and upgrades from the platforms. The

centralized topsight of the theater system product concept is provided by the

top-down theater system design. This topsight enables subsystem and upgrade

140

Conclusions and Recommendations

development work to be decoupled from the platform. Fast cycle methods like

Cleanroom engineering or the RASSP design methodology can be applied to

rapidly develop these subsystems and upgrades. For electronics and software,

the benefits are systems which are state-of-the-art at the time of deployment,

upgradable, scalable, supportable, and more affordable. Needed capabilities

are fielded faster. Airframes can also be developed faster. Decoupled rapid

development also provides for improved robustness to budgetary instability

and risk reduction.

* Design theater systems for the different classes of military operations. This

should help develop a force structure that fits reality. Designing multiple

theater systems also provides greater opportunities to exploit common services

and take advantage of economies of scope that exist among theater systems.

* Specify functional requirements, not implementations (i.e., specify black box

behaviors of subsystems). This provides designers with maximum flexibility in

devising a solution to provide the required functionality.

* Develop an integrated design environment to support theater system design

and cross-system integration.

* Develop a comprehensive wargaming toolset to simulate theater systems and

the benefits of C4I systems and the effects of degradations of C4I capabilities.

This technology does not currently exist and is required to support theater

system definition activities.

* Resolve issues pertaining to who should design theater systems.

141

142

APPENDIX A

Cleanroom Engineering Extras

This appendix contains more detailed discussions of three aspects of Cleanroom

engineering. Box structure design is discussed first. The following section discusses

functional verification. The last section provides a more detailed description of the

statistical testing practices of Cleanroom engineering.

A.1 BOX STRUCTURE DESIGN

This section provides a more detailed discussion of box structure design methods.

The different box structures-black boxes, state boxes, and clear boxes-are described

first. The guiding principles of box structure design are discussed next. Finally, the box

structure design algorithm is described. As a reminder, diagrams of the three box

structures are shown again in Figure A. 1.

A black box provides an implementation-free, object-oriented description of

software. This box structure only describes the software's external behavior in terms of a

mathematical function that maps a stimulus history, S*, to a response, R. Since the black

box view excludes all details of internal structures and operations, it also provides a

description of the user's view of system behavior.

A state box provides a data-oriented view that begins to define implementation

details by modifying the black box to represent responses in terms of the current stimulus,

143

Figure A.1: Box Structure Diagrams

S*

.............: ::-::-:
.... ::: :: :
.:: : : :

..: :

....................r-iii~....-:: :: :: :......................:.: :: :: :..........I ...I.: :-:: :.....................: : : :..:-:: :: :..:: :: :: :
...iiii jliillii j..- ::- :: ::.: :: :: :
... :: :: ::...~iiiiiii

.....................I ::-:.- 1 : :: :
....::::::::.................:
.

......................
......................:

.

.

R

..........-......

...........! :'. : ~
....
........-

Note: The clear box structure is shown with a sequence process structure.

S, and state data that contains the stimulus histories. To form a state box, a black box is

expanded by adding state data and state machine transitions to black box transitions. Thus,

the state box contains a black box that accepts the external stimulus and the internal state

data as its stimulus and produces both the external response and the new internal state

which replaces the old state as its response. State box behavior can be described in the

transition formula

(Stimulus, Old State) -4 (Response, New State)

Clear Box

State Data , " " -
I

Li i

144 Appendix A

Cleanroon Engineering Extras

A clear box provides a process-oriented view that completes the implementation

details by modifying the state box view to represent responses in terms of the current

stimulus, state data, and invocations of lower level black boxes. To form a clear box, a

state box is expanded by adding procedure structures and delegating parts of the process to

component black boxes. The processing can be defined in terms of three possible

sequential structures-sequence, alternation, and iteration-and a concurrent structure.

The relationships among the black box, state box, and clear box descriptions of a

system or subsystem precisely define the tasks of expansion and derivation. Whereas it is

an expansion task to design a state box from a black box or to design a clear box from a

state box, it is a derivation task to abstract a black box from a state box or to abstract a

state box from a clear box. An expansion does not produce a unique product since there

are many state boxes that behave like a given black box and many clear boxes that behave

like a given state box. A derivation, however, produces a unique product since there is

only one black box that behaves like a given state box and only one state box that behaves

like a given clear box (Mills et al., 1987). Expansion and derivation are the basis for box

structure design and verification, as shown in Figure A.2.

The effective use of box structure design methods for the development of systems

is guided by the application of six basic box structure principles: referential transparency,

transaction closure, state migration, common services, correct design trail, and efficient

verification.

Referential Transparency. This condition occurs when a black box is encapsulated by

the clear box at the next higher level of the usage hierarchy. Each object is logically

independent of the rest of the system and can be designed to satisfy a well defined "local"

behavior specification. Referential transparency simplifies development and produces

designs that are easy to enhance.

Transaction Closure. The transactions of a system or subsystem should be sufficient for

acquiring and preserving all its state data, and its state data should be sufficient for

completing all its transactions. The principle of transaction closure defines a systematic,

iterative specification process to ensure that a sound and complete set of transactions is

identified to achieve the required system behavior. The result is that the required stimuli,

145

Figure A.2: Box Structure Expansion and Derivation

Black Box
Verify

i
Derivation:
Eliminate

State

Derivation:
Eliminate
ProcedureI

State Box

Clear Box

data, and transactions are available

behavior.

at each stage of the design to generate the desired

State Migration. State data is identified and stored in the data abstraction at the lowest

level in the box structure hierarchy that includes all references to that data. The result is

that state data can easily be transferred to the lowest feasible level.

Common Services. A common service is a data abstraction which is described in a

separate box structure hierarchy, and used in other box-structured systems. System parts

with multiple uses are defined as common services for reusability. In the same way,

predefined common services, such as database management systems and reuse objects, are

incorporated into the design in a natural manner. The results are smaller systems and

designs which accommodate reuse objects.

Correct Design Trail. It is important to insure consistency in the entire design trail when

correcting an error. If the changes to a previous design document are trivial, the

Expansion:
Introduce

State

Expansion:
Introduce
Procedure

I Design
Design

146 Appendix A

Cleanroom Engineering Extras

corrections can be performed right away without stopping the current design process.

However, if the necessary changes are major, the design process should be stopped until

all the corrections to the previous design documents are made.

Efficient Verification. It is only necessary to verify what is changed from one refinement

to the next since all elements of the design are referentially transparent. In addition, if the

design refinements are conducted in small steps instead of large leaps, each refinement can

be shown to be correct by direct assertion.1 Otherwise, verification might require the use

of rigorous proofs which are significantly more time intensive than the direct assertion

approach.

The box structure design algorithm begins with defining and verifying the black

box function for the system. This task is usually accomplished by the specification team

who delivers it to the development team. Once the black box has been defined and

verified, the design is refined by expanding the black box into a state box. Before the state

box is expanded into a clear box, a black box is derived from the state box by eliminating

references to state data in the state box functions and comparing it to the original black

box. If the two black boxes are equivalent, then the state box design is verified as correct.

Otherwise, the state box design must be corrected.

After the state box refinement has been verified, the design is refined once more by

expanding the state box into a clear box. Again, the clear box design must be verified by

deriving a state box from the clear box by eliminating references to procedure and the

internal black boxes it encapsulates and comparing it with the original state box. If the

state boxes are the same, the design process can continue. Otherwise, clear box design

must be iterated until a design can be verified successfully.

Following verification of the refinement, this same process is repeated for each of

the internal black boxes in a stepwise refinement process that ends when all the remaining

internal black boxes represent either single commands of the destination language or

subsystems that have been implemented in a previous increment. This top-down design

process produces a box structure hierarchy, such as the one shown in Figure A.3.

1 Refining designs in small steps typically creates simple software designs that are typically correct. Refin-
ing designs in large leaps can increase the chance that errors will be introduced into the design.

147

Figure A.3: Box Structure Hierarchy

After the top-down box structure design is completed, the clear boxes can be

implemented. Depending on the nature of the system under development, the actual clear

box implementation could be accomplished through an integration of hardware, software,

and human behavior (SET, 1993). For software development, clear boxes are translated

into code through stepwise refinement. The implementation must be verified as correct

and consistent with the clear box design. The software code is verified by demonstrating

the equivalence of the program and the design represented by the clear box refinement.

While system design proceeds in a top-down fashion, the implementation of the design is

accomplished in a bottom-up fashion. Designing top-down and then coding bottom-up

allows the developers to exploit fully the principle of common services during the design

phase and generalize the common services as much as possible during the coding phase.

148 Appendix A

Cleanroom Engineering Extras

A.2 FUNCTIONAL VERIFICATION

In Cleanroom engineering, functional verification is used instead of unit debugging. Once

a clear box has been refined into code, the development team uses functional verification

to help structure a proof that the refinement correctly implements the clear box design. If

multiple steps were taken to refine the clear box design to code, the current refinement

would be verified against the last refinement. The principle of referential transparency

allows these smaller proofs to be easily accumulated into a proof for a large program.

Unlike the unit debugging practices that are traditionally used, functional verification is

scalable. Experience demonstrates that people are able to master these ideas with little

difficulty and construct proofs for very large software systems (Cobb and Mills, 1990).

These functional verifications typically yield surprising improvements in design,

even for the best software engineers. As a result, the developed software can be smaller

and faster than previously thought possible, delivering more functionality per instruction.

In addition, using functional verification allows quality to be designed into the software.

According to Cobb and Mills (1990), functional verification leaves only two to five

defects per thousand lines of code to be fixed in later phases of the life cycle whereas

debugging leaves 10 to 30 defects per thousand lines of code. In contrast to functional

verification, debugging attempts to test quality into the product. However, since more than

15 percent of the corrections merely introduce newer, deeper errors, testing quality into

software is not possible (SET, 1993).2

Functional verification and testing seem to exhibit a high degree of synergy.

Functional verification eliminates defects that tend to be difficult to detect with testing.

The defects that remain after inspections and functional verification are generally the type

that can be easily detected with testing. The combination of inspections, functional

verification, and testing can eliminate more than 99 percent of all defects (Head, 1994).

Table A.1 summarizes the defect removal performance for a range of different defect

detection strategies.

2 DeMarco (1982) contains an excellent analysis which demonstrates the validity of this point. Testing
seems to be capable of eliminating half of the software defects. However, this factor of two improvement
is overwhelmed by the extreme variability in the quality of software being produced today.

149

Table A.1: Defect Removal Percentages of Different Strategies

Detection Strategy % Defects Removed

Testing 50%

Inspections 60%

Inspections + Testing 85%

Inspections + Functional Verification 90%

Inspections + Functional Verification + Testing >99%

Source: Head (1994).

A.3 STATISTICAL TESTING

Cleanroom engineering makes use of statistical usage testing to certify the reliability of

the developed software in terms of its MTTF (Mean Time To Failure). The application of

rigorous statistical theory allows both quality control of the software being developed and

process control over the development of the software.

The testing approach used in Cleanroom projects differs from the prevailing

approach of coverage testing. The goal of Cleanroom testing is to maximize the expected

MTTF of the software under development. Since coverage testing is just as likely to

discover rare execution failures as it is to discover frequent execution failures, an

alternative strategy that focuses on detecting frequent failures is needed. This need is

satisfied by usage testing since its utilization of a statistical usage profile allows the

formulation of tests that are representative of expected usage. In fact, for the purposes of

increasing the MT'F of software, usage testing has been determined to be 21 times more

effective than coverage testing (Cobb and Mills, 1990). Usage testing also typically takes

less time than coverage testing.

The usage profile is represented by a Markov model specifying the probability of

moving from each usage state to all other usage states. The model describes every possible

state that a system can be in, identifies all the different actions that the user could take in

each state, and assigns probabilities to each possible action in each state. The usage profile

can be expressed in a state transition diagram or a matrix.

150 Appendix A

Cleanroom Engineering Extras

The requirement specifications and usage profile, which are developed by the

specification team, are used by the certification team to develop a set of random test cases

which are representative of the expected usage. After the current increment is coded and

delivered to the certification team, the current increment is integrated with previous

increments, if any, and the test scenarios are executed. The error history is evaluated with

a mathematical model designed to predict how many more defects the user might

encounter in a certain period of time with a certain number of uses (Head, 1994). As soon

as the reliability model indicates that the developed software meets or exceeds the desired

quality level with a sufficiently small degree of uncertainty, testing is considered

complete, and the product can be safely released.3

Software must be minimally reliable for statistical testing to be valid. Applying

statistical testing to software developed with typical defect densities would cause the

statistical reliability models to blow up. If the model does not blow up, its predictions are

usually extremely unfavorable (Head, 1994). According to Cobb and Mills (1990), defect

densities of five defects per thousand lines of code or less can be tolerated without

invalidating the application of statistical MTTF estimation.4

3 Currit et al. (1986) describes several statistical models for certifying the reliability of software.
4 The reader may recall that this figure of 5 defects/KLOC was mentioned earlier during a description of the

Cleanroom principle of defect prevention. Apparently, discarding software with high defect densities is
done not only to motivate designers to develop defect-free software but for statistical reasons as well.

151

152

APPENDIX B
Recommendations for Further Study

The subject of this thesis is an important topic that is too wide-reaching to be studied

adequately in a single master's thesis. In the course of researching this thesis, a number of

interesting possibilities for further study were identified. Some of these topics are

important subjects related to cross-system integration and the theater system product

concept that were beyond the scope of this thesis. Other suggestions include further study

of some of the methodologies that were selected for evaluation in this thesis. Some topics

are interesting ideas that were encountered during the research process that may have

potential for application in the aerospace industry.

B.1 CROSS-SYSTEM INTEGRATION AND THEATER

SYSTEMS

There are many interesting subjects for further study related to cross-system integration

and the theater system product concept. This section contains just a sample of the topics

related to implementing the theater system product concept. While these topics were

beyond the scope of this thesis, two important questions were identified:

* Who should design theater systems?

* How should theater systems be designed?

153

There are a myriad of interesting subjects for further study encompassed by these

two seemingly innocent questions. The first concerns determining the optimal mix of

government and industry participation in the theater system design process and defining

the mechanisms for that participation.

Another interesting topic concerns the organizational aspects of performing theater

system design. The transforming effect of information technology is already being felt in

the business world. Clearly, an appropriate organizational structure will need to be devised

to handle the task of designing theater systems.

This question is closely coupled to the second which concerns the actual

methodology for designing theater systems. Clearly, more work is necessary to develop a

good cross-system integration methodology. This is a must if we are to successfully

address the interoperability problem.

Also included under the second question is the issue of how to develop an

integrated design environment to support the design of theater systems. In the near term,

one subject that definitely requires further study is how to develop a comprehensive

wargaming technology. This is needed to allow the benefits of C4I systems and the effects

of degraded C4I capabilities to be modeled explicitly in wargaming simulations.

Otherwise, we may limit our ability to design innovative theater systems.

B.2 FURTHER STUDY OF SELECTED METHODOLOGIES

While none of the methodologies are directly applicable to the cross-system integration

function, many of them could produce significant improvements in the development of

theater system components. The following is a list of recommended actions for this

purpose:

Maintain contact with the ARPA/Tri-Service RASSP program. Draw upon the

findings and the development work being conducted under its auspices.

Monitor the progress of benchmarking activities and the evolution of the

design process. At minimum, the Initiative would benefit from increased

insight into the benefits and problems associated with integrated electronic

design environments and collaborative design.

154 Appendix B

Recommendations for Further Study

* Maintain contact with the ARPA STARS (Software Technology for Adaptable,

Reliable Systems) program. Currently, this ARPA program is conducting

multiple technology and process demonstration projects, some of which

involve the Cleanroom engineering methodology described in this thesis. The

Initiative would benefit from the insights generated by these demonstration

projects as well as the wealth of software development data that will be

produced and collected for analysis.

* Conduct an F-22 avionics development case study. It appears from several

phone interviews conducted with former and current members of the avionics

integrated product team that there were a number of substantial improvements

over past programs in the development of avionics and software for the F-22.

Among the innovations is a systems/software engineering environment that

allows the designer to simulate the avionics system from high-level Ada code

down to gate-level hardware functionality. Preliminary research indicates that

a derivative of hardware/software codesign has been used. Other interesting

aspects include the use of common hardware modules and the application of

data fusion to integrate information and display it to the pilot in a more

understandable form rather than requiring integration to take place "between

the headphones".

B.3 OTHER INTERESTING TOPICS

B.3.1 Architectural Innovation and Transformation

New technologies are usually applied initially as substitutes for old technologies to

enhance performance or increase the efficiency of a product, process, or system. Typically,

the new technologies are substituted without changing the overall framework or

architecture of the product, process, or system. Some technologies, however, can also be

transformational. Transformational technologies disrupt old ways of thinking and

operating and provide the capability to do things differently with greater effectiveness and

efficiency, leading to the creation of radically different frameworks and architectures as a

result. It is this architectural innovation that unlocks the true potential of the technology.

155

The transformational effect of information technologies is already being felt in

several aspects of society, including the conduct of modem warfare. In the future, many

institutions are expected to evolve from traditional hierarchical structures to new flexible

models of organization resembling networks.' These transformational effects are expected

to influence the structure of military organizations as well (Arquilla and Ronfeldt, 1992;

Krepinevich, 1994). What new doctrines, organizations, and force structures will arise as a

result of the current military-technological revolution? What form will the "sunrise"

systems take? Will future defense systems function like distributed networks with sensors

being separated from smaller weapons platforms, as some experts predict? What elements

of today's military are destined to become "sunset" systems? These issues must be studied

to ensure that our military does not follow the path of the British Army during the 1920s

and 1930s, which failed to effect the organizational changes necessary to develop its own

blitzkrieg capability even though it had developed the necessary enabling cutting-edge

technologies (Krepinevich, 1994).

B.3.2 Set-Based Design

As documented by Ward et al. (1994), Toyota's product development process, which is

seemingly incongruent with widely accepted models of concurrent engineering, provides a

second Toyota paradox. Contrary to conventional wisdom on concurrent engineering,

delaying decisions and making many prototypes can make better cars faster and cheaper

(Ward et al., 1994). Toyota's multidisciplinary development teams are neither co-located

nor dedicated to a single project. Instead of trying to freeze specifications as rapidly as

possible, Toyota engineers and managers deliberately delay decisions and provide

deliberately ambiguous information to their suppliers. Moreover, instead of seeking to

minimize the number of prototypes, Toyota and its suppliers produce a seemingly

excessive number of prototypes (Ward et al., 1994).

The key to understanding this development approach is "set-based design". While

more traditional processes utilize an iterative "point-to-point" design approach, in which

the state of the design moves from one point to another in the "design space", the Toyota

i The literature on the transformational effect of information technologies is vast. Examples include
Arquilla and Ronfeldt (1992), Bankes and Builder (1992), Malone and Rockart (1991), Ronfeldt (1991),
Sproull and Keisler (1991), and Toffier (1990).

156 Appendix B

Recommendations for Further Study

development approach uses a set of specifications to achieve a solution. Using set-based

design, engineers and managers can test and evaluate numerous prototypes, which allows

a more robust exploration of the design space and enables them to devise a combination of

specifications to produce the most robust car or truck. Moreover, if problems are

encountered during development, a set of possible alternatives exists (McElroy, 1994).

This research provides a number of interesting topics for further study. Could a set-

based concurrent engineering approach be applicable in the aerospace industry? How

would a set-based approach be implemented? What changes would be necessary to

successfully implement a set-based development approach?

B.3.3 Robust Technology Development

Robust technology development during the research and development phase can simplify

and accelerate the product development process. Developed by Dr. Genichi Taguchi, the

originator of quality engineering, Technology Development reduces the risks involved in

introducing new technologies into a product and can significantly reduce the amount of

time devoted to "tweaking" in a product development process (Ealey, 1994; Clausing,

1994). Technology Development ensures that a technology is capable of overcoming

downstream forces that can introduce variability in the end product (Ealey, 1994).

According to Dr. Taguchi, ensuring "origin quality" through Technology

Development is the most powerful application of quality engineering, providing the

greatest leverage for saving cost and time in the product development process (Ealey,

1994).2 Since less funding is being allocated for developing and procuring new defense

systems, the quality of the output of research and development activities has become even

more important. It is important for our technology development programs to engage in

robust Technology Development so that designers can merely "tune" the technologies to

yield the desired outcome when it is desired to incorporate the technologies in a new

product. For instance, since JAST (Joint Advanced Strike Technology) seeks to develop

"bins of technology", a robust Technology Development approach would certainly benefit

future aircraft development programs seeking to employ JAST-developed technologies.

2 Taguchi's Technology Development has already been applied successfully for several years at Nissan's
Reliability Engineering Center. An example of its application can be found in Ealey (1994).

157

158 Appendix B

Clearly, the potential benefits and barriers to the application of Taguchi's Technology

Development concepts during research and development activities merit further study.

REFERENCES

Adams, Edward N. (1984). Optimizing Preventive Service of Software Products. IBM
Journal of Research and Development, January 1984.

Alberts, D. S. (1976). The Economics of Quality Assurance. National Computer
Conference.

Aldinger, Charles (1994). Perry Promises Arms Acquisition Reform. Article posted in
clari.news.usa.military. Reuters, May 12, 1994.

Amer, Kenneth B., Raymond W. Prouty, Greg Korkosz, and Doug Fouse (1992). Lessons
Learned During the Development of the AH-64A Apache Attack Helicopter. Santa
Monica: RAND. RP-105.

Anderson, Christine and Merlin Dorfman (1991). Preface. In Anderson, Christine and
Merlin Dorfman, editors, Aerospace Software Engineering. Volume 136. Progress
in Aeronautics and Astronautics. Washington, DC: AIAA.

Anderson, Michael G. (1992). The Air Force Rapid Response Process: Streamlined
Acquisition During Operations Desert Shield and Desert Storm. Santa Monica:
RAND. N-3610/3-AF.

Anson, Sir Peter and Dennis Cummings (1992). The First Space War: The Contribution of
Satellites to the Gulf War. In Campen, Alan D., editor, The First Information War.
Fairfax: AFCEA.

Argyris, Chris (1991). Teaching Smart People How to Learn. Harvard Business Review.
May-June.

Argyris, Chris (1993). Education for Leading-Learning. Organizational Dynamics.
Winter.

Arquilla, John and David Ronfeldt (1992). Cyberwar Is Coming! Santa Monica: RAND.
P-7791.

159

Bankes, Steve and Carl Builder (1992). Seizing the Moment: Harnessing the Information
Technologies. The Information Society, Vol. 8, 1992.

Bodilly, Susan J. (1993a). Case Study of Risk Management in the USAF B-lB Bomber
Program. Santa Monica: RAND. N-3616-AF.

Bodilly, Susan J. (1993b). Case Study of Risk Management in the USAF LANTIRN
Program. Santa Monica: RAND. N-3617-AF.

Boehm, Barry W. (1976). Software Engineering. IEEE Transactions on Computers. C-25,
December 12, 1976.

Boehm, Barry W. (1981). Software Engineering Economics. Englewood Cliffs: Prentice-
Hall, Inc.

Boehm, Corrado and Giuseppe Jacopini (1966). Flow Diagrams, Turing Machines, and
Languages with Only Two Formation Rules. Comm. ACM, Vol. 9, No. 5, May
1966.

Bond, David F. (1991). Cost, Supportability Key to Boeing Sikorsky LH Award. Aviation
Week & Space Technology, April 15, 1991.

Bowen, H. Kent, Kim B. Clark, Charles A. Holloway, and Steven C. Wheelwright (1994).
Development Projects: The Engine of Renewal. Harvard Business Review,
September-October.

Bowie, Christopher, Fred Frostic, Kevin Lewis, John Lund, David Ochmanek, and Philip
Propper (1993). The New Calculus: Analyzing Airpower's Changing Role in Joint
Theater Campaigns. Santa Monica: RAND. MR-149-AF.

Buck, Joseph, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt (1994). Ptolemy:
A Framework for Simulating and Prototyping Heterogeneous Systems.
International Journal of Computer Simulation, special issue on Simulation
Software Development, January 1994.

Camm, Frank (1993a). The Development of the F1 00-PW-220 and F110-GE-100 Engines:
A Case Study of Risk Assessment and Risk Management. Santa Monica: RAND. N-
3618-AF

Camm, Frank (1993b). The F-16 Multinational Staged Improvement Program: A Case
Study of Risk Assessment and Risk Management. Santa Monica: RAND. N-3619-
AF.

Campen, Alan D. (1992a). Information Systems and Air Warfare. In Campen, Alan D.,
editor, The First Information War. Fairfax: AFCEA.

160 References

Campen, Alan D. (1992b). Iraqi Command and Control: The Information Differential. In
Campen, Alan D., editor, The First Information War. Fairfax: AFCEA.

Campen, Alan D. (1992c). Electronic Templates. In Campen, Alan D., editor, The First
Information War. Fairfax: AFCEA.

Campen, Alan D. (1992d). Communications Support to Intelligence. In Campen, Alan D.,
editor, The First Information War. Fairfax: AFCEA.

Campen, Alan D. (1992e). Introduction. In Campen, Alan D., editor, The First Information
War. Fairfax: AFCEA.

Cava, Jeffrey (1993). I-War. In Cava, Jeffrey, writer, Soft Kill. CD-ROM. Xiphias.

Clark, Kim B. and Takahiro Fujimoto (1991). Product Development Performance:
Strategy, Organization, and Management in the World Auto Industry. Boston:
Harvard Business School Press.

Clausing, Don (1994). Total Quality Development: A Step-by-Step Guide to World-Class
Concurrent Engineering. New York: ASME Press.

Cobb, Richard H. and Harlan D. Mills (1990). Engineering Software under Statistical
Quality Control. IEEE Software, November 1990.

Currit, P. Allen, Michael Dyer and Harlan D. Mills (1986). Certifying the Reliability of
Software. IEEE Transactions on Software Engineering, Vol. SE-12, No. 1, January
1986.

Cusumano, Michael A. (1991). Japan's Software Factories: A Challenge to U.S.
Management. New York: Oxford University Press.

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press.

Department of Commerce (1994). U.S. Industrial Outlook 1994. Washington, DC: U.S.
Government Printing Office.

Department of Defense (1992). The Conduct of the Persian Gulf War. Washington, DC:
U.S. Government Printing Office.

Dijkstra, Edsger W. (1969). Structured Programming. In Buxton, J. N. and B. Randell,
editors, Software Engineering Techniques, NATO Science Committee, Rome.

Ealey, Lance (1994). Robust Technology. Automotive Industries, Vol. 174, No. 8, August.

References 161

Electronic Industries Association (1991). Balancing National Security With Realities of
the 1990s: Ten-Year Forecast of Defense Electronic Opportunities (FYs 1992-
2001). Washington, DC.

Electronic Industries Association (1988). DoD Computing Activities and Programs: Ten-
Year Market Forecast Issues, 1985-1995. Washington, DC.

Endres, A. B. (1975). An Analysis of Errors and Their Causes in System Programs. IEEE
Transactions on Software Engineering, June 1975.

Fagan, M. E. (1976). Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, Vol. 15, No. 3.

Fulghum, David A. (1992). "Secret Carbon-Fiber Warheads Blinded Iraqi Air Defenses."
Aviation Week & Space Technology, April 27, 1992.

Fulghum, David A. (1993a). Major Changes Planned for Wild Weasel Force. Aviation
Week & Space Technology, July 5, 1993.

Fulghum, David A. (1993b). USAF Holds Pre-JDAM Test. Aviation Week & Space
Technology, July 5, 1993.

Fulghum, David A. (1993c). Loh Outlines Bomber Plans. Aviation Week & Space
Technology, July 5, 1993.

Fulghum, David A. (1993d). Talon Lance Gives Aircrews Timely Intelligence from Space.
Aviation Week & Space Technology, August 23, 1993.

Fulghum, David A. (1993e). USAF Wing Takes Innovations Overseas. Aviation Week &
Space Technology, December 13/20, 1993.

Fulghum, David A. (1994a). New Air Defenses Worry SEAD Experts. Aviation Week &
Space Technology, January 17, 1994.

Fulghum, David A. (1994b). Specialists Debate Merits of Wild Weasel Replacements.
Aviation Week & Space Technology, January 17, 1994.

Fulghum, David A. (1994c). JAST Plans Envisions ASTOVL Prototype. Aviation Week &
Space Technology, February 28, 1994.

Fulghum, David A. (1994d). New Wartime Roles Foreseen for JSOW. Aviation Week &
Space Technology, February 28, 1994.

Fulghum, David A. (1994e). Stealthy TSSAM Aces Tests But Faces Budget Battle.
Aviation Week & Space Technology, September 12, 1994.

162 References

Fulghum, David A. and John D. Morrocco (1994). Deutsch Demands Cuts, Services
Scramble Anew. Aviation Week & Space Technology, August 29, 1994.

Gebman, J. R., D. W. McIver, and H. L. Shulman (1989). A New View of Weapon System
Reliability and Maintainability. Santa Monica: RAND. R-3604/2-AF.

Gelernter, David (1991). Mirror Worlds, or the Day Software Puts the Universe in a
Shoebox...How It Will Happen and What It Will Mean. New York: Oxford
University Press.

General Accounting Office (1992). Embedded Computer Systems: Significant Software
Problems on C-i17 Must Be Addressed. Washington, DC: U.S. Government
Printing Office. GAO/IMTEC-92-48. May 1992.

Glennan, Thomas K., Susan J. Bodilly, Frank Camm, Kenneth R. Mayer, and Timothy J.
Webb (1993). Barriers to Managing Risk in Large Scale Weapon System
Development Programs. Santa Monica: RAND. MR-248-AF.

Hammer, Michael and James Champy (1993). Reengineering the Corporation: A
Manifesto for Business Revolution. New York: HarperBusiness.

Head, Grant (1994). Six-Sigma Software Using Cleanroom Software Engineering
Techniques. Hewlett-Packard Journal, June 1994.

Hughes, David (1994a). AWACS Data Fusion Under Evaluation. Aviation Week & Space
Technology, March 7, 1994.

Hughes, David (1994b). Mitre, Air Force Explore Data Fusion for Joint-STARS. Aviation
Week & Space Technology, March 7, 1994.

Hyde, John Paul, Johann W. Pfeiffer, and Toby C. Logan (1992). CAFMS Goes to War. In
Campen, Alan D., editor, The First Information War. Fairfax: AFCEA.

IBM (1990). Software-First Life Cycle: Final Definition. STARS CDRL No. 01240.
January 5, 1990.

Jones, T.C. (1978). Measuring Programming Quality and Productivity. IBM Systems
Journal, Vol. 17, No. 1.

Jones, T. C. (1981). Defect Removal: A Look at the State of the Art. ITT ComNet, Vol. 1,
No. 3. December 1981.

Kalavade, Asawaree (1991). Hardware/Software Codesign Using Ptolemy: A Case Study.
UC Berkeley Master's Thesis.

References 163

Kalavade, Asawaree and Edward A. Lee (1992). Hardware/Software Co-Design Using
Ptolemy-A Case Study. Proceedings of the First International Workshop on
Hardware/Software Codesign. September 1992.

Kalavade, Asawaree and Edward A. Lee (1993). A Hardware-Software Codesign
Methodology for DSP Applications. IEEE Design & Test of Computers. September
1993.

Kandebo, Stanley W. (1991). Boeing Sikorsky LH Technologies Will Increase Army
Combat Capability. Aviation Week & Space Technology, April 15, 1991.

Kandebo, Stanley W. (1994). Cruise Missile Updates Pending. Aviation Week & Space
Technology, January 17, 1994.

Krepinevich, Andrew F. (1994). Keeping Pace with the Military-Technological
Revolution. Issues in Science and Technology, Summer 1994.

Larson, Eric V. (1990). Technological Risk: The Case of the Tomahawk Cruise Missile.
Santa Monica: RAND. P-7672-RGS.

Lawrence, Paul R. and Jay W. Lorsch (1967). Differentiation and Integration in Complex
Organizations. Boston: Graduate School of Business Administration, Harvard
University.

Lawrence, Paul R. and Jay W. Lorsch (1986). Organization and Environment: Managing
Differentiation and Integration. Boston: Harvard Business School Press.

Lawrence, Paul R., Louis B. Barnes, and Jay William Lorsch (1976). Organizational
Behavior and Administration: Cases and Readings. Homewood, IL: R. D. Irwin.

Lenorovitz, Jeffry M. (1991a). AWACS Played Critical Role in Allied Victory Over Iraq.
Aviation Week & Space Technology, March 4, 1991.

Lenorovitz, Jeffry M. (199 1b). F-16As Prove Usefulness in Attack Role Against Iraqi
Targets in Desert Storm. Aviation Week & Space Technology, April 22, 1991.

Leonard-Barton, Dorothy, H. Kent Bowen, Kim B. Clark, Charles A. Holloway, and
Steven C. Wheelwright (1994). How to Integrate Work and Deepen Expertise.
Harvard Business Review, September-October.

Ling, James G. (1993). Principles of Lean Manufacturing. Internal Lean Aircraft Initiative
Memorandum. October 1993.

Lorell, Mark A. (1989). The Use of Prototypes in Selected Foreign Fighter Aircraft
Development Programs: Rafale, EAP Lavi, and Gripen. Santa Monica: RAND. R-
3687-P&L.

164 References

Malone, Thomas W. and John F. Rockart (1991). Computers, Networks and the
Corporation. Scientific American, September 1991.

Maras, M. et al. (1994). Rapid Protoyping and Integrated Design System for Software
Development of GN&C Systems. 17th Annual AAS Guidance and Control
Conference. February 2-6, 1994.

Martin, J. (1982). Application Development Without Programmers. Englewood Cliffs:
Prentice-Hall, Inc.

Mayer, Kenneth (1993). The Development of the Advanced Medium Range Air-to-Air
Missile: A Case Study of Risk and Reward in Weapon System Acquisition. Santa
Monica: RAND. N-3620-AF.

McElroy, John (1994). Toyota's Product Development Paradox. Automotive Industries,
Vol. 174, No. 8, August.

Mills, Harlan D. (1986). Structured Programming: Retrospect and Prospect. IEEE
Software, November 1986.

Mills, H. D., Linger, R. C., and Hevner, A. R. (1987). Box Structured Information
Systems. IBM Systems Journal, Vol. 26, No. 4.

Mills, Harlan D. and Jesse H. Poore (1988). Bringing Software Under Statistical Quality
Control. Quality Progress, Vol. 21, No. 11, November 1988.

Mills, Harlan D. (1991). Cleanroom: An Alternative Software Development Process. In
Anderson, Christine and Merlin Dorfman, editors, Aerospace Software
Engineering. Volume 136. Progress in Aeronautics and Astronautics. Washington,
DC: AIAA.

Momyer, General William W. (1978). Air Power in Three Wars. Washington, DC: U.S.
Government Printing Office.

Morrocco, John D. (1993). Pentagon Pushes TSSAM Despite Technical Problems.
Aviation Week & Space Technology, October 18, 1993.

Morrocco, John D. (1994). U.S. Trains for Peacekeeping. Aviation Week & Space
Technology, April 25, 1994.

Morrocco, John D. and David A. Fulghum (1994). Radar-Killing F-15 May Fall to Budget
Ax. Aviation Week & Space Technology, September 12, 1994.

Nordwall, Bruce D. (1993). Companies Reduce Solder to Increase Reliability. Aviation
Week & Space Technology, December 6, 1993.

References 165

Myers, G. J. (1976). Software Reliability: Principles and Practices. New York: John
Wiley & Sons, Inc.

Pagonis, Lt. General William G. (1992). Moving Mountains. Written with Jeffrey L.
Cruikshank. Boston: Harvard Business School Press.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber (1993a). Capability
Maturity Model for Software, Version 1.1. CMU/SEI-93-TR-24. February 1993.

Paulk, Mark C., Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, and Marilyn
Bush (1993b). Key Practices of the Capability Maturity Model, Version 1.1. CMU/
SEI-93-TR-25. February 1993.

Rich, Ben R. and Leo Janos (1994). Skunk Works. Boston: Little, Brown & Company.

Rich, Michael and Edmund Dews (1986). Improving the Military Acquisition Process:
Lessons from Rand Research. Santa Monica: RAND. R-3373-AF/RC.

Richards, Mark A. (1994). The Rapid Prototyping of Application Specific Signal
Processors (RASSP) Program: Overview and Accomplishments. July 1994.

Ronfeldt, David (1991). Cyberocracy, Cyberspace, and Cyberology: Political Effects of
the Information Revolution. Santa Monica: RAND. P-7745.

SAF/AQK (1992). Guidelines for the Successful Acquisition of Computer Dominated
Systems and Major Software Developments. February 20, 1992.

Schwarzkopf, General H. Norman (1992). It Doesn't Take a Hero. Written with Peter
Petre. New York: Bantam Books.

Scott, William B. (1994). Military Space "Reengineers". Aviation Week & Space
Technology, August 15, 1994.

Senge, Peter M. (1990). The Fifth Discipline: The Art and Practice of the Learning
Organization. New York: Doubleday.

Sherer, S. Wayne, Paul G. Arnold, and Ara Kouchakdjian (1994). Successful Process
Improvement Effort Using Cleanroom Software Engineering.

Shooman, M. L. (1983). Software Engineering-Design Reliability and Management.
New York: McGraw-Hill, Inc.

Software Engineering Technology, Inc. (1993). Cleanroom System and Software
Engineering: A Technical and Management Abstract. April 1993.

166 References

Sproull, Lee and Sara Keisler (1991). Connections: New Ways of Working in the
Networked Organization. Cambridge: MIT Press.

Steele, Robert D. (1993). The Transformation of War and the Future of the Corps. In Cava,
Jeffrey, writer, Soft Kill. CD-ROM. Xiphias.

Suh, Nam P. (1990). The Principles of Design. New York: Oxford University Press.

Sun Tzu (1971). The Art of War. Translated by Samuel B. Griffith. New York: Oxford
University Press.

Swalm, Thomas S. (1992). Joint STARS in Desert Storm. In Campen, Alan D., editor, The
First Information War. Fairfax: AFCEA.

Thayer, T. A. et al. (1978). Software Reliability: A Study of Large Project Reality. New
York: North Holland.

Toffler, Alvin (1990). Powershift: Knowledge, Wealth, and Violence at the Edge of the
21st Century. New York: Bantam Books.

Toffler, Alvin and Heidi Toffler (1993). War and Anti-War. Boston: Little, Brown and
Company.

Toma, Joseph S. (1992). Desert Storm Communications. In Campen, Alan D., editor, The
First Information War. Fairfax: AFCEA.

Uhde-Lacovara, Jo, Daniel Weed, Bret McCleary, and Ron Wood (1994). The Rapid
Development Process Applied to Soyuz Simulation Production.

Ward, Allen, Jeffery K. Liker, John J. Cristiano, and Durward K. Sobek, II (1994). The
Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster.
August 26, 1994.

Wentz, Larry K. (1992). Communications Support for the High Technology Battlefield. In
Campen, Alan D., editor, The First Information War. Fairfax: AFCEA.

Womack, James P., Daniel T. Jones, and Daniel Roos (1991). The Machine That Changed
the World. New York: HarperPerennial.

References 167

168

S' i>"

