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Abstract

We present an experimental and theoretical investigation of the connections between
classical and quantum descriptions of Rydberg atoms in external electric fields. The
technique of recurrence spectroscopy, in which quantum spectra are measured in a
manner that maintains constant classical scaling laws, reveals the actions of the closed
orbits in the corresponding classical system. We have extended this technique with
the addition of a weak oscillating electric field. The effect of this perturbing field is
to systematically weaken recurrences in a manner that reveals the ac dipole moments
of the unperturbed orbits, at the frequency of the applied field. We outline a version
of closed orbit theory developed to describe these experiments, and show that it is in
good agreement with the measurements. The experiments also show good agreement
with semiquantal Floquet computations. We describe a computational method that
diagonalizes a Floquet Hamiltonian to compute spectra of both hydrogen and lithium
in oscillating fields.

We use this new type of recurrence spectroscopy to measure classical trajectories
of two closed orbits in the lithium Stark system. We extract the classical trajectories
by evaluating the inverse Fourier transform of the ac dipole moment measured over
some range of frequencies. Within the resolution of the experiment, the measured
trajectories show excellent agreement with computed classical trajectories.
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Chapter 1

Introduction

Two different theories in physics are employed to describe the physical world: clas-

sical mechanics and quantum mechanics. Classical mechanics is used to describe the

motion of "large" objects: tops, baseballs, planets. Quantum mechanics is used to

describe the world of the very small: atoms, molecules, crystals. Quantum mechanics

is incredibly successful: it describes much more than it was ever expected to, includ-

ing, it is believed, the classical world. However, it is seldom obvious how to extract

information about classical motion from quantum mechanics. This thesis attempts

to take another step toward this goal through an experimental and theoretical study

of the behavior of lithium Rydberg states in external static and oscillating electric

fields. The central result is the demonstration that the signature of a classical orbit in

a quantum spectrum is diminished in an oscillating field, and that the diminishment

can be related to the magnitude of the ac dipole moment of the classical trajec-

tory. We further demonstrate how the motion of an electron in an orbit, if it moved

classically, can be found from a study of its spectrum in the oscillating field.

1.1 The Semiclassical Limit

The Correspondence Principle expresses the belief that information about classical

motion can be extracted from quantum systems in the so-called semiclassical limit.

As originally expressed by Bohr [Boh67], the Correspondence Principle asserts the



equivalence of the frequency spectrum emitted by a quantum system and the fre-

quencies of its classical counterpart. As discussed by Liboff [Lib84], this "frequency"

correspondence is distinct from "configuration" correspondence, which asserts that in

the semiclassical regime quantum probability densities correspond to their classical

probability distributions. The belief that the Correspondence Principle assures that

quantum mechanics reduces to classical mechanics in some limit has never been rig-

orously justified. Essentially, it is taken as a matter of faith. For this reason, the goal

of extracting classical information from quantum systems is worth exploring.

A further subtlety is the meaning of "the semiclassical limit". This is used in

various texts to mean the limit h -+ 0 or the limit of large quantum numbers. The two

limits are not equivalent [Lib84]. For example, the fine structure constant a = e2 /hc

would become infinite only in the h -+ 0 limit. Here, we use "semiclassical limit" to

refer to some limit, loosely defined, in which the system exhibits classical behavior.

An attempt at achieving correspondence can be made by examining the solution

of the Schr6dinger equation in the limit of small h [Tab89]. Because any complex

quantity can be expressed as a real quantity times a phase, the wave function can be

written as I(q, t) = A(q)eiS(q t)/h. This is a natural form to choose because it leads

to a physical interpretation that the probability amplitude A 2 (q) obeys a continuity

equation while the probability flux is proportional to the spatial variation of the

phase, VS. For simplicity we can choose A(q) = 1 because the amplitude A drops

out in the limit below [Sak85]. With this ansatz, the Schr6dinger equation becomes

dS 1 ihs = -VS - VS + V(q) V2S. (1.1)at 2m 2m

In the limit that the term on the right is small (formally, when h -+ 0), the equation

reduces to the classical Hamilton-Jacobi equation of motion,

aS p2
= + V(q), (1.2)

Ot 2m

where

p = VS, (1.3)



S(qt) = ] L(q,4, t')dt', (1.4)

and L(q, 4, t) is the Lagrangian. This appears to establish a direct connection between

classical and quantum mechanics. However, the formal limit of small h is singular

because the exponent of the ansatz T (q,t) = eiS(q,t)/ h oscillates rapidly as h -+ 0.

Because of the subtlety of the circumstances for which the above approximation is

valid, a general conclusion about correspondence cannot be made.

1.1.1 WKB and EBK Quantization

More can be learned by restricting the problem to one-dimensional time-independent

systems. Assuming a solution 4'(x) = eis(x)/h where S(x) = So + hS 1 + --- leads to

a series of equations that can be solved to give the wave function. The result of the

first order of approximation is of the form [Tab89]

A( = exp p(x')dx') + exp i p(x)dx, (1.5)

where x0 is the initial point of the trajectory. Equation (1.5) holds in the case that

the de Broglie wavelength A = h/p is small compared with the length scale over which

the potential varies [Sak85]. For a system with bound states, it can be shown that

this leads to the Bohr-Sommerfeld quantization condition,

2m(E - V())dx = 2h(n + ). (1.6)

This condition establishes a method for computing the quantum spectra of one-

dimensional systems in terms of their classical motion.

Einstein discussed the extension of these methods to higher-dimensional systems

in 1917 [Einl7]. A particle described by a Hamiltonian with n degrees of freedom can

be viewed as moving in a 2n-dimensional phase space (ql,... , q, Pl, ... , P,). Classi-

cal motion is no longer bound to one-dimensional trajectories as for Bohr-Sommerfeld

quantization, but in general wanders in the multi-dimensional phase space. For in-

tegrable systems (systems for which there is a constant of motion for each degree of



freedom), the dimensionality of the problem is essentially reduced because the mo-

tion is confined to "tori" in phase space [Tab89]. The motion on these tori can be

quantized with a method similar to the WKB method. Einstein realized, however,

that this method could not be extended to non-integrable (chaotic) systems because

tori do not exist on which to perform the quantization. In such systems, the motion

wanders through all of phase space. Surprisingly, this paper was ignored for many

years until it was rediscovered by Keller [Kel58, Gut90O].

Shortly after Bohr's quantization of the hydrogen atom, much effort was devoted

to quantizing the helium atom in a similar manner. However, the helium atom is a

three-body system, composed of two electrons and a nucleus. The general motion

of these particles is chaotic [Gut90O], and the early attempts at quantization failed

because investigators had not understood that the semiclassical quantization would

not work for a chaotic system [HT93]. However, interest in this problem diminished

with the introduction of the quantum mechanics of Heisenberg and Schr6dinger.

1.1.2 Periodic Orbit Theory

Concern about the failure to quantize complex systems was forgotten as quantum

theory developed in the 1920's and 1930's and provided other ways to understand

these systems. Interest in the problem redeveloped several decades later. Great

progress was made in 1970 with the introduction of the Gutzwiller Trace Formula

[Gut70, Gut71, Gut90]. The quantum-mechanical solution to a time-independent

Hamiltonian is given by the Green's function, G(E, q, q') [Gut70]. It is the probability

amplitude for a particle with energy E to travel from position q' to q, and is related

to the eigenfunctions qj(q) by [Gut70]

G(E, q, q') (q)(q') (1.7)= E-E '

where Ej are the eigenvalues of the Hamiltonian.

Gutzwiller's approach was to examine the semiclassical approximation to the trace



of the Green's function,

g(E) = G(E, q, q)dq = EEj (1.8)

The result, g(E), is the density of states of the system. Information about the wave

function that was contained in G(E, q, q') is lost in the trace process, but the positions

of the energy levels remain within g(E), as the right hand side of Eq. (1.8) expresses.

To proceed, the semiclassical approximation to G(E, q, q') is needed. This can be

shown to be given by a sum over all classical trajectories with energy E going from

q' to q [Gut90],

Gc(E, q, q') = Ae i'S (E q q ')/h - ip 7r/2,  (1.9)
n

where A, is related to the classical density of the trajectory, S, is its classical action,

and P, is its Maslov index [DD88a, Gut90]. Although a rigorous derivation of this

is difficult (it can be shown to follow from the Feynman path integral in the limit

h -+ 0 [Gut90]), its basic form should not be surprising, for it is the same as that

which arises for the wave function in WKB quantization.

The semiclassical approximation to g(E) is found by taking the trace of the semi-

classical approximation to the Green's function, Gc(E, q, q'). After the trace, only

the periodic orbits contribute to the sum. After much consideration and math, the

result can be expressed as [Gut90]

g(E) = 1 Tk eiSk/hpkr/2 , (1.10)
h k 2 sinh (Xk/ 2)

where the sum is over all periodic orbits k in the system, Tk is the period of an orbit,

and Xk is a measure of its stability [Gut90]. Although challenging to implement,

this formula establishes a fundamental connection between classical and quantum

descriptions for both chaotic and regular systems. In contrast to EBK quantization,

which gives the energy level spectrum in terms of classical action integrals, the trace

formula relates modulations in the density of states to the actions of periodic orbits.

There is no correspondence between an individual eigenstate and an individual orbit.



Periodic orbit theory presents a way to extract quantitatively certain properties

of the classical motion. The density of states can in principle be inverted to yield

the action, period, and stability of the periodic orbits through Eq. (1.10). Knowledge

of the structure of the periodic orbits is key to understanding the general nature of

the classical motion in a system. The trace formula therefore provides a fundamental

link between quantum systems and their classical counterparts. We will learn that

it also provides the motivation for the semiclassical description of Rydberg atoms in

external fields.

1.2 Rydberg Atoms

The realization that highly excited "Rydberg" states of an atom can serve as an

experimental testing ground for the investigation of the Correspondence Principle

transformed the nature of the study of semiclassical systems. A seminal study was

carried out by Garton and Tomkins in 1969 [GT69]. They measured the absorption

spectrum of barium vapor in a strong magnetic field at energies above the ionization

limit. They observed so-called "quasi-Landau" resonances, with an energy spacing

between peaks of 1.5 times the cyclotron frequency, which is the spacing of the Landau

levels of a free electron in a magnetic field. This discovery stimulated much of the

subsequent work on Rydberg atoms in external fields.

Edmonds [Edm70] proposed a WKB approach to explain the quasi-Landau mod-

ulation. The idea is that while the electron can escape along the field axis, its motion

is bound in the cylindrical-radial direction. WKB quantization of this radial motion

gives levels whose spacing at the ionization limit is 1.5huwv This discovery motivated

the quest for better semiclassical descriptions of these systems.

The introduction of the laser and atomic beam technology enabled detailed exper-

imental studies of the structure of Rydberg atoms in electric and magnetic fields, ei-

ther separately or together in parallel and perpendicular geometries. The experiments

stimulated new methods for solving the quantum problem, which became increasingly

feasible as computer technology advanced. However, the thrust of the research took



a new direction when Welge's group in Bielefeld, Germany, deepened the ability to

understand quantum spectra in terms of classical orbits. They discovered that there

were many modulations in the spectrum of hydrogen in a magnetic field, each related

to a different classical orbit [MWHW86]. The first measurements were limited in the

size of action (or period) of an orbit that could be resolved because the action of an

orbit changed as the laser energy was scanned, and therefore the frequency at which

it modulated the spectrum changed over a measurement. A breakthrough occurred

in the late 1980's when the same group developed the technique of scaled energy

(recurrence) spectroscopy [HMW+88]. The idea was to measure quantum spectra

while simultaneously varying the laser energy and external fields so as to maintain

classical scaling laws constant. A theoretical framework for interpreting such experi-

ments, built upon the ideas of periodic orbit theory, was introduced by Delos and his

collaborators [DD88b, DD88a] and by Bogomol'ny [Bog89].

A number of groups have conducted recurrence spectroscopy on hydrogen and sev-

eral other atoms in a variety of external fields [ERWS88, RFW91, VWH93, MWW+94,

CSJK95]. Methods for measuring the action of orbits with high precision and to high

action were developed by this group at MIT [CJSK94], which carried out studies of

the bifurcation structure of lithium in an electric field [MWW+94, CJS+95]. How-

ever, knowledge of the orbits was essentially limited to measurements of their action,

period, and stability. Little could be learned about their initial conditions or trajec-

tories. To fulfill the promise of the Correspondence Principle, new techniques were

needed to learn more about the classical motion in these systems. This thesis will

demonstrate that the introduction of a field that oscillates near the frequencies of the

classical motion yields information that moves one closer to fulfilling this goal. The

technique makes it possible to extract the classical orbit along the direction of the

oscillating field.

1.2.1 Wave-Packet Experiments

For completeness, we cite here a body of work which is complementary to this study.

These are time-domain experiments in which an atom is excited by a short laser



pulse. Known as wave-packet experiments, they study classical motion by localizing

the electron in a region of space and following its motion. Wave packets are created

by exciting an electron to a superposition of Rydberg states so that the wave function

is localized to some region of space. The motion of the wave packet can follow the

classical motion for short times. However, there are some problems associated with

using wave packets to recover classical motion. Because there is no equivalent to

scaled energy experiments, the wave packets quickly disperse and the experiments

typically reveal only a few recurrences of the electron. The experiments measure the

return of the wave packet to the nucleus, but do not follow its motion while it is

away from the nucleus. Wave packets were first created by localizing the electron in

angular coordinates [YS88] and radially [WNLH88]. More recent experiments have

observed recurrences at times corresponding to motion of wave packets localized to

Kepler ellipses [GNS94] and along quasi-Landau orbits [YRM+93]. Although there

is no known reason that these time-domain experiments should not be able to yield

more information, it appears that new methods or ideas, similar to those of scaled

energy spectroscopy, are necessary to achieve this.

1.3 Other Time-Dependent Systems

Among the very first systems used for experimental studies of the Correspondence

Principle was a hydrogen atom exposed to a microwave field [BK74]. This work

attempts to relate the ionization rate with the classical dynamics of the electrons. The

basic idea is that chaotic motion explores large areas of phase space, and therefore

a chaotic trajectory is more likely to ionize [BS87]. A review has been presented by

Koch [KL95]. This is discussed further in Sec. 3.2.2.

The kicked rotor has been a paradigm in the study of chaos because it is a simple

system that undergoes a transition to chaotic motion as the kicking strength becomes

strong [Haa91]. This system has recently been realized experimentally using samples

of ultra-cold atoms [MRB+94, RBM+95]. The momentum distributions of atoms

exposed to modulated standing waves of light can be measured and compared with



classical and quantum descriptions.

1.4 Outline of the Thesis

The work here is an experimental and theoretical study of Rydberg atoms in static

and oscillating electric fields. We will show that recurrences of closed classical orbits

are weakened by an oscillating field, and that the extent of the weakening is related

to the ac dipole moment of the orbit. Consequently, recurrence spectra recorded in

oscillating fields enable the measurement of the ac dipole moment of the orbit. Such

a measurement allows new information about the classical motion-in some instances

the classical trajectory itself--to be experimentally determined.

Chapter 2 presents an overview of closed orbit theory for a time-independent

system, and then discusses the recent extension of the ideas to the time-dependent

system. Some details of the classical behavior of Rydberg atoms in electric fields are

discussed to support the interpretation of experimental recurrence spectra.

Chapter 3 describes the structure of Rydberg atoms in oscillating fields from a

quantum perspective. Knowledge of the quantum behavior enhances the understand-

ing of the recurrence spectra. Computational methods based on Floquet analysis are

presented, enabling the computation of recurrence spectra of hydrogen and lithium

atoms in oscillating fields in some regimes. The results of these computations are

described in Chapter 6.

Chapter 4 describes the experimental apparatus for measuring recurrence spectra

of lithium Rydberg atoms in oscillating fields. Chapters 5 and 6 discuss the exper-

imental results and compares them with theory. Chapter 7 demonstrates how the

techniques described in the previous chapters can be used to measure with finite

time-resolution the motion of two closed orbits.
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Chapter 2

Semiclassical Mechanics of

Rydberg Atoms in Oscillating

Fields

In this chapter, we discuss a semiclassical description of a Rydberg atom in external

static and oscillating electric fields. We present the Hamiltonian and show how to

solve for the classical motion in this time-dependent system, continue with an overview

of closed orbit theory for time-independent systems, and then describe its extension

to time-dependent Hamiltonians. We conclude by examining some details of the

classical dynamics of a Rydberg atom in an electric field, and discuss the effect of an

oscillating field on the classical dynamics.

2.1 Hamiltonian and Classical Motion

A Rydberg atom in an external field corresponds classically to an electron moving

in a Coulomb potential and external field. In this section, we consider only hydro-

gen. Alkali-metal atoms such as lithium can be described with the addition of a

core potential due to the closed-shell electrons. However, such a description adds

much complication and little insight for the purposes here. A classical, quantum, or

semiclassical description of a Rydberg atom begins with the Hamiltonian. Here we



describe the Hamiltonian and discuss its classical scaling properties. To implement

a semiclassical approximation to the spectrum, it is necessary to find the classical

motion. Some details of this straightforward task are described at the end of this

section.

We apply a static electric field F along the z axis and an oscillating electric field

F cos(wt + a), also along the z axis. The Hamiltonian is

p2 1
H = + Fz + Fiz cos(wt + a), (2.1)

2 r

where atomic units are used, w is the angular frequency of the oscillating field and a

is its phase. For comparison with classical mechanics, it is convenient to scale' the

Hamiltonian with the transformations

f = rF 1/2  (2.2)

= pF- 1/4 . (2.3)

Because time obeys the scaling rule t = tF3/4, we define a scaled frequency & =

wF - 3 / 4 . The oscillating field amplitude scales linearly with the static electric field F.

We define f = F,/F as the scaled oscillating field amplitude. This procedure yields

the scaled Hamiltonian,

2 =+ (1 + jcos(Otv+ a)) = Eo/F1 /2 . (2.4)

Energy is no longer conserved in this time-dependent system. We define the scaled

energy as E = EoF - 1 /2 , where E is the initial energy of the electron near the nucleus,

where the applied fields have negligible effect.

Despite its innocuous appearance, Eq. (2.4) allows complex motion. Numerical in-

tegration of the motion is difficult because of the Coulomb singularity. This difficulty

is alleviated by transforming to semi-parabolic coordinates. These were first intro-

'See Appendix A for a more detailed discussion of scaling.



duced in this field to study diamagnetic hydrogen [DG84]. In addition to providing a

friendlier equation for integration, the semi-parabolic coordinates reveal an intimate

link between this system and the system of two uncoupled anharmonic oscillators.

We define p = (F + i)1/2 and v = (F - i)1/2 and transform time in Eq. (2.4) as

= p + V . (2.5)
dT

The transformed Hamiltonian is

1= p 2 + 2 1P,+2 1 L4 _ 4) )- 2 2) -2. (2.6)

In this thesis we consider only m = 0 states, for which p. = 0.

The scaled action of an orbit is defined2 as

= - fPi -d (2.7)

=- 2 (p,dy + pdv) (2.8)

= F/4 S, (2.9)

where S = f p. dq and the integrals are evaluated over the path of the orbit.

The Hamiltonian is integrated to find the classical motion using Hamilton's equa-

tions of motion [Go180],

__ = h (2.10)
Or Op
Op = h (2.11)
OT Oq'

where the coordinates (p, q) represent both (p,, p) and (p1 , v). We have carried out

the integration using a fifth-order Cash-Karp Runge-Kutta method [PTVF92]. The

2 The factor 1/27r is special to the recurrence spectroscopy community (apparently first used in
[MWHW86]). Despite the more complicated notation, we use it here because it reduces the action
of the primary orbits conveniently close to 1. Note that some of our publications do not include this
factor.



initial conditions for the closed orbits discussed in this thesis are A. = 0, v = 0,

pp = 2 cos(0o/2), and p, = 2 sin(O0/2), where 0o is the initial angle of the momentum

vector measured relative to the z axis.

2.2 Closed Orbit Theory for a Time-Independent

System

In this section we outline the derivation of closed orbit theory, a semiclassical ap-

proximation for the photoabsorption spectrum of a Rydberg atom in external fields.

Our discussion follows that of [DD88b, DD88a]. This section addresses the time-

independent system described by the Hamiltonian (2.1) with F = 0. The following

section will discuss a modified theory designed to describe the time-dependent case

F $ 0. Periodic orbit theory cannot be directly applied to Rydberg atoms because

the semiclassical approximation breaks down when the electron is near the Coulomb

singularity. Closed orbit theory is a variation of periodic orbit theory that incor-

porates a quantum description in the region near the nucleus and connects it with

a semiclassical treatment that is valid in regions far from the core. While periodic

orbit theory computes a quantity (the density of states) that is difficult or impossible

to measure experimentally, closed orbit theory incorporates the limited resolution of

experiments by computing a finite-resolution oscillator strength.

The oscillator strength of a transition between an initial (ground) state i and an

excited state f is [DD88b, BS57]

2m
ffi = " (E - Ei)I<VCfuD|i>I2, (2.12)

where Ei and Ef are the energies of the initial and final states, respectively. (In

atomic units, me and h are both 1, but we include them here for clarity.) D is the

dipole moment operator along the polarization direction of the excitation laser. 1,>

and JVf> are the state vectors of the initial and final states, respectively.

Any experimental measurement of the spectrum has a limited resolution arising



from laser linewidth, excited state lifetime, Doppler broadening, or similar mecha-

nisms. This limited resolution is incorporated by calculating a finite-resolution oscil-

lator strength,

Df(E) = flp(Ef)g(E - Ef)dEf, (2.13)

where p(E) is the density of states (the number of states per unit energy) and g(E -

Ef) is a convolution function (typically a Gaussian) representing the resolution of the

measurement.

Before making a semiclassical approximation to Df, we reintroduce the Green's

function G(E, q, q') described in Chapter 1. This is the wave function generated at

q by a steady source of outgoing waves at q'. A finite-resolution Green's function

?(E, q, q') is related to G(E, q, q') by the equation

?(E, q, q') = / G(E, q, q')g(E - Ef)dEf. (2.14)

?(E, q' q') is in turn related to the oscillator-strength density by [DD88b]

Df(E) = 2m (E - Ef)Im< D llDi>. (2.15)

Equation (2.15) motivates a physical picture of the excitation process. Laser light

excites the electron into an outgoing wave IDbi>. This wave propagates from the

nucleus in a manner governed by the Green's function, and a fraction returns to the

nucleus at later times. The oscillator strength density is proportional to the overlap

of the returning wave with the continuously excited outgoing wave IDVi>.

The development of closed orbit theory proceeds with a semiclassical approxima-

tion to the Green's function. It can be shown that this is

G(E, q, q') = E p, (E, q, q') 11/2e 'iS(E,q,q')/ h- in7r/2, (2.16)
n

where S,(E, q, q') is the action of a classical trajectory connecting points q and q',

1P, is the Maslov index [DD88a, Gut90], p, is the classical density, which can be



found from the classical trajectories and their initial conditions [DD88b], and the

index n runs over all classical trajectories with energy E that connect the two points.

This approximation to G(E, q, q') gives the value of the wave function at some final

point q in terms of its value at an initial point q' and all of the trajectories with

energy E that connect the two points. A similar approximation to G(E, q, q') can

be made. However, because long-period orbits in Eq. (2.16) produce high-frequency

oscillations that average to zero when G is calculated, the approximation includes only

the shorter-period orbits. As the resolution of a measurement increases, longer-period

orbits must be included to compute the spectrum.

The question of the conditions for which the above semiclassical approximation is

valid is subtle. Near the nucleus, the potential is dominated by the Coulomb singu-

larity, and a quantum-mechanical solution (the outgoing Coulomb wave) is necessary.

At some distance (typically 50 ao), the semiclassical approximation becomes valid.

Note that this distance is somewhat arbitrary, as there is no rigorous definition of the

conditions under which the semiclassical approximation holds. Reference [DD88a] has

a detailed discussion showing that the semiclassical approximation does indeed hold

at large distances from the nucleus. It uses the criterion that the rate of change of the

de Broglie wavelength should be small relative to the length-scale of the potential. It

shows that this is true everywhere away from the nucleus.

The calculation of the semiclassical approximation to the finite-resolution oscilla-

tor strength (2.13) proceeds by inserting the finite-resolution companion of Eq. (2.16)

into Eq. (2.15) and simplifying. The details of the calculation are complicated and

we present only the physical picture here. The outgoing wave propagates from the

nucleus following classical trajectories. Two types of paths contribute to the sum.

'Direct' paths arise from trajectories that never leave the vicinity of the nucleus. 'Re-

turning' paths arise from closed orbits that go far from the nucleus, turn back towards

the nucleus under the influence of the external field, and close. The excitation prob-

ability is proportional to the overlap between the returning wave and the outgoing

wave.



As Du and Delos show, the eventual result is

Df (E) = Dfo(E) + , Cksin(Sk(E)/h + yk), (2.17)
k

where Yk includes the Maslov index and other details of the orbit [GD92], Ck is a

measure of the overlap of the returning wave with the outgoing wave, and Dfo(E) is

the contribution from the direct paths. The index k in this sum is over all closed orbits,

those orbits that begin and end at the nucleus. Note that there is no requirement that

these orbits be periodic. In a static electric field, because of time-reversal symmetry

any closed orbit with period T is also a periodic orbit with period 2T. However, in

some fields (such as crossed electric and magnetic), that symmetry does not exist and

at least some of the closed orbits are not periodic [RFW91].

If the photoabsorption spectrum is measured by scanning the laser energy E,

the action Sk(E) changes during the scan. This means that a Fourier transform

of the spectrum (2.17) will show a few peaks at low action, but the higher-action

orbits will be washed out because their action varies across the scan. The solution,

discovered by the Bielefield group [HMW+88], is to measure the spectrum by varying

both the energy E and electric field F to maintain the scaling laws obeyed by the

classical system constant, as shown by Eq. (2.4). In such a case, the scaled action

S = (F1/4/27r)S is also constant. To describe such recurrence spectra, Eq. (2.17)

must be recast in scaled variables. The result of a straightforward calculation is

Df(w) = Dfo() + Ck sin(2wrw + yk), (2.18)
k

where w = F - 1/ 4 . It is important to emphasize that this formula relates modulations

in the oscillator strength to the actions of the closed orbits. Similarly to periodic

orbit theory, it does not relate individual eigenstates to individual closed orbits.

The result (2.18) and variations that describe Rydberg atoms in other types of

external fields have been extensively tested in the last decade. It provides a firm

foundation for interpreting recurrence spectra in static fields.



2.3 Closed Orbit Theory for a Time-Dependent

System

This section discusses the theory underlying the central goal of this thesis: an un-

derstanding of recurrence spectra in oscillating fields. Closed orbit theory, discussed

in the last section, was developed for time-independent systems. The work presented

in this thesis stimulated its extension to describe time-periodic Hamiltonians. The

presentation in this section is based on a description given to us at MIT by Prof.

John Delos in the summer of 1996 and by the subsequent papers [SKH+97, HD97].

We consider an electron moving in a Coulomb potential plus static field subject

to a high-frequency laser field and a lower-frequency oscillating electric field. The

electron is excited from a low-lying state (3s for lithium) into a highly-excited state.

The derivation of closed orbit theory begins as in the time-independent case by ex-

pressing the excitation rate or photoabsorption cross section using a purely quantum-

mechanical description. A semiclassical approximation is then made that results in

an expression for the photoabsorption spectrum in terms of the classical closed orbits,

which now propagate in the oscillating field.

In contrast with the time-independent system, the Green's function cannot be used

because energy is not conserved in a time-dependent system. Instead, this derivation

uses the propagator [Sak85] to solve the time-dependent Schr6dinger equation. While

most of the formulas are rewritten in terms of the propagator, the underlying physical

picture remains.

To find the excitation rate, we begin by expressing the excited state wave function

of as

(q, 1t) = -i dt' Jdq'K(q, t; q', t')HL (t'),i(q', t')e- iEit'/ (2.19)
t oo

- dt'F(q t'), (2.20)

where

F(q, t') = h dq'K(q, t; q', t')HL(t')i (q', t')e- iE 'l/h. (2.21)F~~q IL) II



The propagator K(q, t; q', t'), which is related to the Fourier transform of the Green's

function [DD88a], describes the evolution of the wave function of a particle that was

localized at q' at time t' as it develops under the influence of a (time-dependent)

potential. The term HL = De- i Lt' is the dipole moment operator associated with

the laser field, and E is the energy of the initial state 0i.

The probability of finding the electron in an excited state is

Pf(t) = Jl (q, t)2dq (2.22)

= J f(q,t)o*(q,t)dq. (2.23)

The excitation rate Rf(t) is the rate of increase of probability in the excited state.

Consequently,

R(t) dPf (d
Rf(t) + f ") dq (2.24)

2Re dq d ;fLOf (2.25)

- 2Re dqF* (q, t) dt'F(q, t') . (2.26)

Equation (2.26) results from the substitution of Eq. (2.20) and its derivative into

Eq. (2.25).

We use Dirac notation to express the propagator as K(q, t; q', t') = < qK(t, t') q'>.

Then Eq. (2.21) becomes

F(q, t') = f dq'<qK(t, t') q'>Di(q', t')e-i(E+hL)t'/h (2.27)

+ dq'<qK(t, t') jq'>< q'Di(t') > e-i(Ei+t WL)t' / h. (2.28)

Because the states Iq> form a complete basis, Eq. (2.28) reduces to

F(q, t') = -<qjK(t, t')lD(t') > e - i(Ei+ h w L)t' / h. (2.29)
ih



Substitution of Eq. (2.29) into Eq. (2.26) and some algebra gives

R (t)= 2Re dq [<qK(tt)jD (t) > e-i(Ei+ki)t/h x

t dt'-< qjK(t, t') jD4i(t') > e-i(E +h )t'/h (2.30)
2 t- Re- dt' dq < D?(t)jq><qjK(t,t')jDP,(t') > x

ei(Ei+ 'L )(t- t')/h (2.31)

-~ReJ dt'<Di(t(t)lK(tt')ID (t') > eiEo(t - t ')/h. (2.32)

We have used K(t, t) = 1 and have defined Eo = Ei + hWL to be the energy of the

excited "outgoing" wave.

Equation (2.32) has a simple physical interpretation similar to that of Eq. (2.15).

The laser light launches the electron in an outgoing wave that propagates along many

paths, some of which return to interfere with the outgoing wave. Now, however,

this propagation occurs in the presence of an oscillating field. As before, we make

a semiclassical approximation, this time to the propagator rather than the Green's

function. The approximation takes a form similar to Eq. (2.16), which approximated

the Green's function with a sum over all closed orbits with energy E. Because the

constraint of energy conservation is lifted, the sum for the propagator is over orbits

with any energy arriving at time t that left the nucleus at some earlier time t'.

Furthermore, the action is now defined in a generalized time-dependent phase space

(p, q, E, t) by

Sk(t) = qtp dq - [H(7) - H(ti)] dr}. (2.33)
Jqi,ti

Note that this definition reduces to the previous definition of action in a time-

independent system, fp - dq.

A long series of manipulations again leads to the semiclassical approximation to

the now time-dependent excitation rate,

Rf(t) = Ro + E Ck(t) sin(Sk(t)/h - 7k). (2.34)
k



yk is a phase including the Maslov index and other details of the orbit [GD92]. An

orbit k now modulates the spectrum with an action Sk(t) that varies periodically in

time. Equation (2.34) reduces, as it must, to the result of time-independent closed

orbit theory, Eq. (2.17). Because Rf(t) has a periodic component arising from H(7)

in Eq. (2.33), this excitation rate varies periodically with a frequency equal to that

of the applied oscillating field. Because the experiment, which employs cw laser

spectroscopy, measures a time-averaged excitation rate, the result (2.34) must be

averaged over a cycle of the field to find the experimentally measured excitation rate.

The result is

R f = Ro + Ck(t) sin(Sk(t)/h - 7k), (2.35)
k

where the bar indicates a time average over a cycle of the field. This result provides a

general description of the photoabsorption spectrum of a Rydberg atom in an external

oscillating electric field. The physical picture is fundamentally the same as for the

time-independent case. Closed orbits continue to produce sinusoidal modulations in

the absorption spectrum. However, the oscillating field introduces a new variable on

which the closed orbits depend. In the next section, we study some of these properties

in the limit that the oscillating field is weak.

2.3.1 Behavior at Small Oscillating Field Amplitude

In this section we study Eq. (2.35) in the limit that the oscillating field amplitude

is small. "Small" here means that the perturbation to the action of an orbit caused

by the oscillating field is small relative to the unperturbed action and the action

resolution of the experiment.

Before developing rigorous results, let us see what can be learned by simple con-

siderations. All dynamical quantities (and in particular the action) must vary peri-

odically with period 27r/w. Furthermore, the amplitude of this variation must vanish

as F -+ 0. Thus, it is reasonable to guess that Sk(t) = SO + S 1 sin(wt + Ok), where

SO is the unperturbed action of an orbit k, Si oc F1, and Ok is a phase. We will now

show this is true, and find S 1 and Ok.



The theory outlined in the previous section describes the absorption spectrum at

a given time t, and then averages that result over a cycle of the oscillating field. At

time t, orbits return to the nucleus that left at time t - Tk, where Tk is the period

of each orbit. Here, we calculate the action of these returning orbits as a function of

time, and then average over a cycle of the field.

To find Sk(t), an identity which follows from classical perturbation theory is useful

[DD88a]. If a Hamiltonian depends on a parameter a, then

dSk _ 8H
=da - dt, (2.36)

where Sk is the action of an orbit. In our case we have [HD97]

dSk OH
S - - dt. (2.37)

dF - J aF

This formula relates the perturbation to the action to an integral over the trajectory

of the unperturbed orbit k. This is a great simplification because it makes it possible

to calculate the action without taking the oscillating field into account. Consequently,

the numerical calculations are simpler and faster. We write the Hamiltonian (2.1) as

H(t) = Ho + Fiz(t) cos(wt + a). Evaluating the derivative in Eq. (2.37) gives

dSk ft z(T') cos(wr' + a)dr'. (2.38)
dF1 -i- ITk

The function z(r') is the distance along the z axis of an electron on the orbit k

which left the nucleus at time r' = t - Tk and returns at time T' = t. We make the

substitution r = 7' - t + Tk and define the displaced function zk(r) = z(T + t - Tk)

for 0 < 7 < Tk with Zk(7 = 0) = Zk ( = Tk) = 0. After this substitution, integration

of Eq. (2.38) with respect to F yields

Sk (t) = S - F1  Zk(T) cos[w(r - Tk + t) + a]dr (2.39)

= S - FRe zk(,r)i[w(T-Tk+t)+dr (2.40)



= Sk- F1Re {ei[W(tTk)+] l T zk(rT)eirdT}

= Sk - F IZk(w)I cos(wt + Ok),

(2.41)

(2.42)

where Zk(w) is the time-integrated ac dipole moment3 of the unperturbed orbit,

Zk(w) = Tk zk(r)e-'dr, (2.43)

and the phase qk is defined by

k = -wTk + a - arg Zk(w) . (2.44)

Substituting Eq. (2.42) into Eq. (2.35) gives

Rf = Ro + E Ck(t) sin [Sol/h + (FIZk ()llh) cos(wt + Ok) - 7k] , (2.45)

where the sum is over all of the closed orbits of the unperturbed (time-independent)

system. In scaled variables the excitation rate is

Rf = Ro + Z Ck(t) sin [27r w + (I12k(CV)Iw) COS(it + kk) - Yk],
k

where4

Zk (w) = Tk (rT)e-dr.

Equation (2.46) is simplified by expanding the sine term, averaging, and using the

identities [AS72]

1 12r
Jo(z) =2r 0 cos(z sin O)dO = -2 cos(z cos 0)d

Tv
(2.48)

3 A factor 1/Tk used in our publications is not included here. With the definition here, there is
no need to know Tk to compute Zk(w). Furthermore, many of the formulas are simpler.

4 The convention is to use the symbol Zk to represent the ac dipole moment in unscaled coordinates
and Z in scaled coordinates.

(2.46)

(2.47)



and

jsin(zcosO)dO = 0, (2.49)

yielding

Rf= Ro + CkJo(f Zk((C)Iw) sin(21rSw - 7k). (2.50)
k

In the spectra described in this thesis, the average value of w = F-1/4 is much larger

than the range of w over which a spectrum is measured. Consequently, w can be

replaced by its average value. Because the recurrence spectrum is the absolute square

of the Fourier transform of R1 , the effect of the oscillating field on the recurrence

strength of an orbit k is to reduce it by a factor

J02(f|2k(,)lw) ak = J2(Ck f), (2.51)

where

ck - 1Zk() w. (2.52)

This result plays the principal role in interpreting our experimental results. In un-

scaled coordinates, ak = J02(F, Zk(w)j/h). Note that this makes sense dimensionally:

h has units of action, or energy-time, while the product of F and the ac dipole

moment Zk(w) is also an energy-time.

In the next section, we will compare this prediction, which is based on perturbation

theory, with exact classical calculations of the motion of an electron in an oscillating

field. It will be shown that perturbation theory is valid at all field strengths studied

experimentally. There will also be a brief discussion of behavior at stronger fields F "

F. Equation (2.51) will be tested experimentally and computationally in Chapter 6.

It will be shown to give a good description of spectra in all of the regimes examined.

2.4 The Parallel Orbit

In this section we illustrate the ideas of Sec. 2.3.1 using the parallel orbits-the orbits

confined to the z axis-of a Rydberg atom in an electric field. These are primitive



0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35 -

0.3

0.25
-6 -5 -4 -3 -2 -1 0

Figure 2-1: Scaled action S of the parallel orbits U1 (solid line) and D 1
(dashed line) vs. scaled energy e. The downhill orbit ionizes for E > 2.
The uphill orbit exists for E > 0, although it is unstable [GD94].

orbits of the system. Other orbits, including those we will study experimentally,

bifurcate from them at particular values of the scaled energy. The family of parallel

orbits is comprised of both the "downhill" orbit-the orbit that moves along the

-z axis-and the "uphill" orbit-the orbit that moves along the +z axis. The first

closure of these orbits is defined as the first repetition, denoted U and D 1 for the

uphill and downhill orbits, respectively. Multiple repetitions, denoted Uk and Dk,

where k is the repetition number, are also closed orbits with action and period equal

to an integer k times the values of the fundamental. We often use the term uphill

and downhill orbit to refer to any unspecified repetition of the fundamental.

We begin with an overview of the parallel orbits in a static field. Figure 2-1

shows the scaled action of the fundamental uphill and downhill orbits, computed

from Eq. (2.7), as a function of the scaled energy. The downhill orbit exists only

below the saddle point energy, E < -2, while the uphill orbit exists for all energies,

including E > 0. Figure 2-2 shows the period of the uphill and downhill orbits as
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Figure 2-2: Period T of the parallel orbits U1 (solid line) and D 1 (dashed
line) vs. scaled energy E. The period of the downhill orbit becomes
infinite as E approaches -2. These data are related to those in Fig. 2-1
by T = 27r8S/&E.

a function of the scaled energy. The period and action were computed numerically.

However, they are related by T = 2rS/cc. The period of the downhill orbit becomes

infinite as E approaches -2, while the action approaches a finite value of 0.60.

Equation (2.42) predicts that the action of an orbit k in a weak oscillating field has

the form Sk = --,1 Cos(a + k), where a is the relative phase between the field and

the orbit, and Ok = - arg Zk. Here we examine the robustness of this approximation,

and briefly discuss the effect of non-perturbative field strengths. Our method is to

compare the predictions of perturbation theory, obtained by examining the motion

only in a static field, with the results of direct numerical integration of the motion

that is accurate for all oscillating field strengths. The points in Fig. (2-3) show the

action of the second repetition of the uphill orbit, U2 , in an oscillating field with

strength f = 0.001 and frequency Jt = 0.32, computed by direct integration. One

set of points shows the action defined by Eq. (2.7) in the time-independent phase
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Figure 2-3: Action of the uphill orbit U2. Circles show the action
computed in the time-dependent phase space (p, q, E, t). Squares show
the action defined in the phase space (p, q). Data are calculated for
E = -0.4, Co = 0.32, and f = 0.001. Solid line is the prediction of
classical perturbation theory, S = 1.38049 - 2.52 x 10- cos(a + 0.432).

space (p, q) while the other set is the generalized action defined by Eq. (2.33) in the

time-dependent phase space (p, q, E, t). Both curves show a periodic variation of the

action with respect to the phase of the oscillating field. However, we will see that only

the one generated from the generalized action agrees with the prediction generated

from the ac dipole moment, and, as shown in Chapter 6, with the experiment.

The ac dipole moment of this orbit, computed by numerically integrating Eq. (2.43),

is Z = 1.436 - i0.663, and its magnitude is IZI = 1.581. Consequently, the action

should vary sinusoidally with an amplitude S' = 121f/27r = 2.52 x 10- 4, and its phase

should be q = - arg Z = 0.432. This prediction from perturbation theory, plotted

in Fig. 2-3, shows good agreement with the numerical integration. Table 2.1 shows

the action, Sk, and variation of action, Si, of several repetitions of the uphill parallel

orbit found by fitting the results of numerical integration to a sine function, and com-



Repetition, k so S 27rS/ IZkI
1 0.6902 1.29 x 10- 4  0.810 0.810
2 1.3805 2.52 x 10- 4  1.583 1.581
3 2.0707 3.63 x 10- 4  2.281 2.278
4 2.7610 4.57 x 10- 4  2.871 2.872
5 3.4512 5.30 x 10- 4  3.330 3.330
13 8.9732 1.95 x 10- 4  1.225 1.223

Table 2.1: Action of several repetitions of the uphill orbit Uk for E =
-0.4, C = 0.32, and f = 0.001. The right column is computed by
evaluating Eq. (2.43). Perturbation theory predicts I1k = 2rS'/f.

pares the results with the computed ac dipole moment. Agreement within numerical

error is found. Calculations at higher field strengths indicate that the perturbation

approximation remains valid to fields of strength f , 0.1 at & = 0.32.

As the oscillating field strength increases, perturbation theory breaks down and

S(a) no longer varies sinusoidally. Figure 2-4 shows the generalized action of the

5th repetition (chosen because I21 is particularly large for this repetition) of the

parallel orbit as f increases. For f small, S(a) varies sinusoidally, as previously

shown. The smallest amplitude curve for C& = 0.32, which corresponds to f = 0.4,

reveals sinusoidal-like behavior under close examination. As f increases, the sinu-

soidal behavior breaks down, and S(a) evolves initially into a distorted sine wave

before showing complex behavior at even stronger fields. The trajectories ionize for

some phases and frequencies of the field. In the limit that the action-resolution of

a measurement of a recurrence spectrum is less than the amplitude of variation in

action, the strength of a recurrence would be calculated by performing the average

over phase in Eq. (2.46). This regime has not been studied experimentally.

2.5 Bifurcations

Understanding the structure of classical bifurcations is key to interpreting recurrence

spectra in the Stark system because the creation of new orbits through bifurcations
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generates strong recurrences in the spectra and determines the evolution of the spectra

as the scaled energy changes. Bifurcations, described in detail in [GD94], are easiest

to understand in the oscillator representation discussed in Sec. 2.1, in which the

Hamiltonian separates in semi-parabolic coordinates into two anharmonic uncoupled

oscillators. Motion along the bp axis corresponds to motion along +z-the uphill orbit,

while motion along v corresponds to motion along -z-the downhill orbit.

The general motion of a trajectory corresponds to simultaneous motion along p

and v. Over certain ranges of scaled energies, orbits launched at an appropriate angle

make exactly m cycles of motion along v for every n cycles of motion along ,P. These

orbits are labeled by the ratio of their periods, m/n. As the energy is decreased, each

particular closed orbit springs into existence at a specific value of energy in a process

known as a bifurcation. Just after the bifurcation, the orbit is nearly identical to

the uphill orbit. As the energy is further decreased (made more negative), the orbit

fattens out in the radial direction, and then stretches out along the -z axis, until it

disappears in a bifurcation into the downhill orbit.

Figure 2-5 illustrates the generation of new orbits by bifurcations, and gives a

simple overview of the evolution of orbits in the spectrum. It shows the action of

several closed orbits in an electric field, found by numerical integration of the classical

equations of motion. A trajectory is launched from the nucleus at some angle 0, and

then again at 0 + dO. As the electron propagates, it passes near the nucleus, and its

distance along the p or v axis is recorded. If this distance changes sign, it means

the orbit closes when launched at some angle between 0 and 0 + dO. This angle is

subsequently converged on. The success of this method is determined by the step size

in 0. For these calculations, a fairly coarse step size was taken, so not all the orbits

(for instance, the 1/3) are found at all energies.

As E decreases, the m/n orbit approaches the downhill orbit and eventually collides

with the mth repetition Din, where it disappears in a bifurcation. The values of

allowed period ratios as a function of E are given in Fig. 2-6, which is reproduced

from [GD94, CSJK95]. (Alternatively, as the energy is increased, the mth repetition

of the downhill orbit fans out into the orbits with period ratio m/n with n > m.
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Figure 2-5: Scaled actions 5 of orbits vs. scaled energy E. The squares
are the actions found by numerically searching for orbits. The solid
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the bifurcated orbits, and the labels 1/n,2/n,. . indicate individual
families of bifurcated orbits.

Each of these orbits eventually collides with a repetition of the uphill orbit. From

this perspective, Dn generates all the orbits with period ratio m/n where n > m.)

An enhancement of recurrence strength is associated with a bifurcation. Indeed,

closed orbit theory diverges at a bifurcation, and quantum-mechanical diffraction-like

effects must be incorporated. This is examined in detail in [CJS+95, GD97]. There

is a simple physical way to understand this enhancement in recurrence strength. The

strength is related to the stability of an orbit. If the initial angle of an orbit changes

slightly, the orbit still returns close to the nucleus if the orbit is stable. Measuring

the stability of the nth repetition of the uphill orbit means launching it at a slight
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angle to the z axis, so there is a small component of motion along the v direction.

The orbit returns close to the nucleus after n cycles of motion along P. If the energy

is near a bifurcation point, then orbits with period ratios m/n close, so the m cycles

of v motion bring the perturbed uphill orbit back near the nucleus, and it has a

large recurrence strength. The return of orbits at the bifurcation corresponds to the

focusing of light in optics. The intensity of light in a focus in geometrical optics is

infinite. This intensity is reduced to a finite value in any real system by diffraction

effects. The recurrence strength at a bifurcation is similarly reduced to a finite level

by quantum-mechanical diffraction effects of the waves returning to the nucleus.

2.6 Chaos

The classical dynamics of hydrogen in a static electric field is regular because the

Hamiltonian is separable. However, the fundamental nature of the system is changed

when the Hamiltonian is time-dependent. Energy is no longer a constant of motion,

and in some circumstances the motion can be chaotic. Because the electron moves
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in a 6-dimensional phase space (p, q, E, t), it is challenging to achieve a simple un-

derstanding of its behavior. A standard technique for characterizing motion in a

time-independent system is the Poincard surface of section. A surface of section is

generated by launching trajectories with many initial conditions and taking a slice

through the phase space by recording say (v, P,) when the electron crosses the (v, P,)

plane. Here we choose to extend this method to a time-dependent system by ignor-

ing (projecting out) the coordinates (E, t) and recording (v, P,) when the trajectory

crosses the (v, P,) plane with P, > 0. (An alternate method is to stroboscopically

record the position and momentum of the particle at one point in each cycle of the

oscillating field [GK87]. Although this method works well in systems with only one

spatial degree of freedom, its application here would require that one of the spatial

degrees of freedom be projected out, and therefore does not provide a simplification

for our system.)

Figure 2-7 shows surfaces of section generated for a particular energy and fre-
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quency as f is increased. Trajectories were launched from the nucleus at 45 different

initial angles uniformly distributed between [0, 7r]. For f < 0.1, the tori on which the

motion is bound for = 0 are not noticeably affected by the oscillating field. As f

approaches 1, some tori break up, suggesting chaotic motion. For f = 10, all the tori

have been destroyed. Note that at large f, most of the trajectories ionize.

The development of chaos in this problem is likely to be similar to that in hydrogen

in an oscillating field with no static field, for the problems are the same for f > 1. The

microwave ionization of hydrogen and the role of chaos has been extensively studied in

[KL95]. Chaos arises in the following way. In a static field the motion of an electron is

composed of a set of Fourier components. If a periodic perturbation is resonant with

one of these components, the motion is affected. However, the system is a non-linear

oscillator because the period of motion depends on the energy. As the electron is

resonantly affected, its motion moves away from the frequency of the perturbation,

and nonlinear stabilization occurs [CCSG87]. In these circumstances, the motion

remains close to the original orbit. However, if the perturbation is strong enough, the

motion can be driven into another resonance region (a harmonic of the perturbation).

This process can repeat, generating both chaotic motion and ionization.

In lithium, a second process can cause chaos. The core electrons generate chaos

through the process of core-scattering. An electron incident on a pure Coulomb po-

tential perfectly back-scatters, whereas an electron incident on the non-hydrogenic

lithium core can scatter into another orbit with some other initial angle. Such a pro-

cess generates new sets of orbits at all combinations of hydrogenic orbits. This results

in a proliferation of orbits as the action increases. Such a proliferation is a signature

of chaotic motion. This effect was first seen experimentally and computationally in

diamagnetic helium [DMDT95, HMW95] and in the lithium Stark system [CJSK94].

This effect is of little importance in the experiments; it is most apparent at high

action and low energy, whereas the experiments here concentrate on high energy or

low action. Section 6.4 examines computed recurrence spectra for lithium in a region

of core-scattering.



Chapter 3

Quantum Mechanics of Rydberg

Atoms in Oscillating Fields

We have discussed the classical and semiclassical behavior of a Rydberg atom in

static and oscillating fields, but it is essential to understand the quantum-mechanical

behavior in order to perform the experiment and interpret the results. The discussion

here begins with the thoroughly investigated Stark structure of a Rydberg state,

continues with Stark structure in an oscillating field, and concludes with a description

of the Floquet method for computing the structure of hydrogen and alkali-metal

Rydberg atoms in parallel or perpendicular oscillating fields.

3.1 Stark Effect

An isolated Rydberg atom has energy levels given by E, = -1/[2(n - 61)2], where n is

the principal quantum number and 61 is the angular-momentum-dependent quantum

defect. In hydrogen, for which 6 = 0, each of these levels is n2 degenerate (ignoring

spin). In an alkali-metal atom, for which the value of J1 is often significant only for

the lowest few I values, this complete I-degeneracy is lifted. An electric field shifts the

energy levels and lifts the degeneracy (or remaining degeneracy for an alkali-metal

atom) for states with a given value of Iml, where m is the component of angular

momentum along the z axis. For a state in hydrogen with principal quantum number



n, the energy to first order in the electric field F is [BS57]

1 3
E,(ni, n2 ) = 2 n(n, - n2)F, (3.1)

and nl and n2 are the parabolic quantum numbers, which satisfy the relation

n = ni + n 2 + Im + 1, (3.2)

where n1 , n2 > 0. Higher-order terms become important at higher field strengths.

The energy to second order in F is [BS57]

E(F) = En(nl, n 2 ) - 1F2n4[17n2 - 3(nl - n 2) 2 - 9m 2 + 19]. (3.3)

This formula and higher-order formulas (up to 10th order) have been tested exten-

sively and show good agreement with experiments [Koc78], although the perturbation

analysis is complicated by the need for sophisticated summation techniques to incor-

porate the divergence of high-order terms.

The Stark structure of alkali-metal atoms is similar to hydrogen, but there are

some important differences. At low field strengths, the low I states, depressed to lower

energy by the quantum defects, exhibit a second-order Stark shift for weak fields. The

shift becomes linear only after F has become large enough that the state mixes with

the higher I states. Figure 4-12 illustrates this mixing for the n = 31 state of lithium.

3.2 Ionization

In an electric field a Rydberg atom always ionizes on some time scale because there

are no stationary solutions of the Hamiltonian. In many cases, however, the time

scale is so long that ionization can be neglected. An oscillating electric field can

drastically change the ionization behavior. There have been many detailed studies

of the behavior of Rydberg atoms in strong microwave fields, a subject known as

microwave ionization. We will see that such effects are largely unimportant for the



regimes studied in this thesis. The discussion here is based on that in [Ga192, Gal94].

We begin, however, by discussing ionization in a static electric field.

3.2.1 Static Field Ionization

The potential produced by an electric field along the z axis is unbound for z -+ -oo.

Hydrogen ionizes classically when its energy is high enough that the electron can

travel out along the -z axis over the saddle point, a local maximum in the potential

created by the combination of the electric and Coulomb potentials. For m = 0 states,

which lack a centrifugal barrier, classical ionization occurs when F > E 2/4.1 If the

energy shift produced by the electric field is ignored, this simple model implies a

critical field F,p = 1/16n4 . Actual ionization processes are more complicated than

this classical analysis suggests. The ionization rate depends on the spatial distribution

of the wave function of a state. For example, high-energy 'blue' states, localized away

from the saddle point, are harder to ionize than low-energy 'red' states localized near

the saddle point. Ionization can occur at fields below the classical saddle point by

tunneling through the potential barrier.

The ionization properties of alkali-metal atoms in electric fields differ markedly

from those for hydrogen atoms. In addition to the presence of hydrogenic ionization

processes, there is a second type of ionization process created by the ionic core.

Because the core destroys the separability of the Schrodinger equation, ni and n2

are no longer good quantum numbers. The high-energy blue state of one n-manifold

interacts with the low-energy states of the higher-lying manifolds. Consequently, a

blue state that may be stable in hydrogen may ionize in an alkali-metal atom.

3.2.2 Microwave Ionization

A large body of literature exists describing Rydberg atoms exposed to oscillating

fields for which the frequency and field amplitude are scaled by the principal quantum

number n [LP78, KL95]. The characteristic frequency is the frequency of an electron

'This corresponds to a scaled energy E = -2.



moving in a Bohr orbit, w = 1/n 3 , and the characteristic field is the atomic field seen

by the electron, F = 1/n4 . This gives a scaled frequency wo = ngw and a scaled field

strength F = n'F [BD95]. The scaled frequency and field amplitude used in this

thesis are related to these scalings by cD = wo(2E)3/ 2 and f = 4E2Fo. Such scaling

laws are convenient for the ionization experiments because they typically focus on

behavior near a single n state, whereas recurrence spectroscopy involves scans over

many n states.

The ionization properties of alkali-metal atoms differ significantly from those of

hydrogen because of additional couplings introduced by the core. We first examine

the ionization properties of Rydberg atoms in a microwave field, and then consider

the effect of the presence of a static field.

When the frequency is smaller than the inter-manifold spacing (w < 1/n 3 ), hy-

drogen ionizes if the oscillating field is large enough to ionize the red state of a

Stark manifold. This occurs for an oscillating field amplitude equal to the static field

strength required for ionization, F = 1/9n4 . The other states in the manifold, which

would not ionize in a static field of this strength, ionize by coupling to the red state

through the second-order Stark effect. As the field oscillates, the population of a given

state is redistributed within the manifold. A fraction of the population is transferred

into the ionizing red state with each cycle of the field. After many cycles, the atom

will have ionized.

As w approaches 1/n 3 , electric dipole transitions connect adjacent n-manifolds.

Consequently, a state with low n makes transitions to higher n states. The atom

ionizes when n becomes large enough that the amplitude of the oscillating field equals

the static ionizing field strength.

States of alkali-metal atoms with non-negligible quantum defects ionize at much

smaller fields with amplitudes F = 1/3n5 . This can be understood in the following

way. The quantum defect introduces anti-crossings between extreme red and blue

states of adjacent Stark manifolds at field strengths F = 1/3n5 . The oscillating field

induces Landau-Zener transitions from the lower to higher state. Transitions can be

driven to yet higher states because the critical anti-crossing field grows smaller as n



increases. Eventually, n becomes large enough that the oscillating field amplitude is

large enough to directly ionize the state over the electric field saddle.

The presence of a static electric field can significantly change the ionization proper-

ties. The static field creates a first-order intra-manifold spacing 3nF. If the frequency

is close to this spacing, a weak field can drive electric dipole transitions between these

states, connecting a non-ionizing state to another ionizing state. This sets a condition

hw < 3nF for ionization rates to be small. We emphasize, however, that the present

work is at a low oscillating field strength regime, where microwave ionization is not

an important effect.

3.3 Stark Structure in an Oscillating Field

We need to understand Stark structure in an oscillating field because we use this

structure to calibrate our oscillating field strength. We begin by finding the energy

level structure of a Rydberg atom in a weak oscillating field parallel to the static field.

In such a field, the Stark Hamiltonian is diagonal in the parabolic basis. This regime

allows analytic solutions to be found that encapsulate the fundamental behavior of

Rydberg atoms in an oscillating field.

The description given here follows Gallagher [HKTG84, Ga194]. Consider a Ryd-

berg state of hydrogen in an external electric field F and an oscillating electric field

F1, both along the z axis. The Hamiltonian is

H = P2 - + Fz + Fiz cos(wt), (3.4)
2 r

where we have chosen the phase of the field to be zero without loss of generality. For

F1 = 0, the eigenstates of H are

1(r, t)> = I (r)>e- i(E+kF)t, (3.5)

where E is the energy of the state when F = 0 and k = E/F is the slope of the

Stark state. For hydrogen, k = n(nl - n2 ). For alkali-metal atoms, the slope can be



found through quantum computations similar to those described in the next section,

but done in a static electric field.

We make the approximation that the oscillating field does not couple states from

the same or other n-manifolds. Within this approximation, the time dependence of

a state in the oscillating field can be expressed as

IV)(r,t)> = I1(r)>T(t). (3.6)

The time evolution of k'(r, t)> is given by the time-dependent Schr6dinger equation,

HIO> = ih- I0>. (3.7)

Substitution of Eq. (3.6) into Eq. (3.7) yields

[E + kF + kF cos(wt)] T(t)l(r)> = ihT(t)|(r)>. (3.8)

This differential equation has a solution

T(t) = e- i f [E+kF+kF cos(wt')]dt'/h - ei[(E+kF)t/h+M- sin(wt)], (3.9)

from which it follows that

|I¢(r,t)> = I(r)>e- i[(E+kF)t/h+ sin(wt)].  (3.10)

The oscillating field modulates the energy of the state about its unperturbed value

with a frequency w. Just as FM modulation in radio adds side bands to the spectrum,

the oscillating field here adds side bands to the states. Using the relation [AS72]

+oo
eixsinwt = E J,(x)e- qwt, (3.11)

q=-oo



we can express the wave function as

I(r, t)> = I(r)>e- i(E+kF)t J I\ eiqwt (3.12)
q=-oo r o)

Several observations are appropriate. Each state is split into an infinite manifold of

states having the same spatial behavior, which is unaffected by the oscillating field.

The states have energies E + kF - qhw with amplitudes given by a Bessel function.

Because Jq(x) , 0 for IqI > x, sidebands are significant only for Iqlhw < kF.

3.4 The Floquet Method

The preceding section provides a useful framework for describing Rydberg atom be-

havior in an oscillating field, but is not adequate for describing alkali-metal Rydberg

atoms in realistic experimental circumstances. It does not treat situations in which

there is n-mixing, does not incorporate an ac Stark shift of the levels [STG88], and is

not easily adapted to more complex geometries such as an oscillating field perpendic-

ular to the static field. We now present a more general approach, known as Floquet

analysis [Shi65, Sam73, STG88, BGD94], that overcomes these limitations. The basic

idea, as in the previous section, is that the solution of the Schr6dinger equation for a

time-periodic Hamiltonian is itself time periodic. This means that the wave function

can be Fourier decomposed into components oscillating at the frequency of the oscil-

lating field and its harmonics. (The method can also be extended to the diamagnetic

system, although we do not discuss this here.)

We consider a time-periodic Hamiltonian H(t). Its solution I(r,t)> obeys the

time-dependent Schr6dinger equation, (3.7). We assume a solution j'(r,t)> =

e-it/hlIV(r, t)>. Upon substitution into Eq. (3.7), one finds an eigenvalue equation:

[H(t) - ih ]  (r, t)> = c|¢(r, t)>. (3.13)

The eigenvalue e is often known as the quasi-energy. Some properties of the quasi-

energy and its relationship to the mean energy of a system are discussed in [FMR78].



Now, let us specialize to a Rydberg atom, for which the Hamiltonian is

H(t) = Ho + Fz + Fz cos(wt). (3.14)

We separate the Hamiltonian in this form because the eigenstates of the field-free

Hamiltonian, Ho, are known for both hydrogen and alkali-metal atoms [ZLKK79].

We label the eigenstates of Ho as k>, i.e., Holk> = Eklk>, where k represents the

atomic quantum numbers n, 1, and m. (Note that the k used here is different from

the k used in the previous sections to represent the slope of a Stark state.)

Floquet's theorem [Shi65] asserts that any solution to Eq. (3.13) can be expressed

as

I0(r, t)> = C,,ke-'iwtlk>. (3.15)
r,k

This is merely saying that a system with a periodic Hamiltonian must have a periodic

solution and that this solution can be expressed as a discrete Fourier series. We

substitute Eq. (3.15) into Eq. (3.13) and multiply on the left by <j to find

S(Cr,jEYe-irw + E Fzj,kCr,keirwt
k

+ F j,kCr,kCOSwte-irwt - rhCr,je-irwt = E Cr,je- i rwt, (3.16)
k/ r

where zj,k =< jlzlk >.

We now remove the time-dependence from this equation. This is done by evaluat-

ing another inner product formed by multiplying by eiqwt and integrating with respect

to wt. The inner product is simplified with the orthogonality condition

0f d(wt)e""te-irwt = 27r6q,, (3.17)

where 6 q,r is the Kronecker delta function. A little algebra finally gives

(Ej - qhw) Cj + [Fz,kCqk + Fq-,k + Cq+l,k)] = ECqj (3.18)
k 12



The q + 1 and q - 1 terms result from the cosine term expressed as cos wt = (eiwt +

e- i"t)/ 2 . This equation defines a time-independent matrix that can be diagonalized to

yield eigenvalues E and eigenvectors {Cq,k}. In the spherical basis, the terms along the

diagonal are the energy of each state In, 1, m> minus the energy of q Floquet sidebands,

qhw. The basis needs to include only a single m value because the symmetry under

rotation about the z axis means that different m values are not mixed. Here, we

consider only m = 0 states. There are two types of off-diagonal terms. The first type

results from a coupling due to the Stark effect. The matrix elements zj,k vanish unless

the states differ by one unit of orbital angular momentum, Al = ±1. The second

type results from the oscillating field coupling states with Al = ±1 and Aq = ±1.

Diagonalizing a set of m = 0 states in a static electric field requires a basis size of

n, n N 2 /2, where N is the largest principal quantum number in the basis. The

total basis size required to solve Eq. (3.18) is thus (2qmax + 1)N 2/2, where qmax is

the number of Floquet sidebands included for each state. To estimate the number of

states needed for a well converged computation, we use the approximation in Sec. 3.3

that the number of sidebands with significant strength is kF 1/w where k is the slope

of the steepest Stark state. Then k < 3N 2/2, so qm ,, 3N 2 F1/2w and the required

basis size is approximately (1 + 3N 2F1/w)N 2/2. For N = 30 with F = 1 V/cm and

v = 300 MHz, about qm,, = 10 sidebands are needed, implying a basis of about 5000

states. Matrices of this size can be diagonalized on a desktop computer.

Once the Floquet eigenstates are found, the transition strength from a ground

state, say 13s>, to an excited state is easily calculated as follows. The inner product

used in Eq. (3.17) is more generally defined as [Sam73]

< 1 12 >= T dt dr* (r, t) (r, t), (3.19)

where T is the period of the oscillating field. The ground state is unperturbed by

the relatively weak oscillating fields considered here, and therefore does not develop

sidebands, implying a temporal dependence of eiot. For lithium excited from 13s>,



the transition rate is proportional to

2

<3sz>12  Cq,k1 jT dte'toeiqt<3s zk> (3.20)
q,k

2

= Z Cq=O,kZ3s,k . (3.21)
k

We have two different methods for diagonalizing the matrix (3.18). The Givens-

Householder method [Ort67, Coo61] diagonalizes the entire matrix, and can be used

to find the eigenvectors needed to compute oscillator strengths. This method is

seldom used because one rarely needs all the eigenvalues and eigenvectors, and it

is time consuming to calculate them. The other method is the Lanczos method

[Lan50, ER80] as implemented by Dominique Delande [DBG91]. This algorithm

computes a band of eigenvalues and eigenvectors near some selected energy. See

[Cou95] for more discussion about our implementation of these methods.

3.4.1 Numerical Results

To test this method we have applied it to the n = 31 Stark manifold in lithium.

Because this manifold is used to calibrate the amplitude of the oscillating field (de-

scribed in Sec. 4.8), it is important to thoroughly understand its behavior. Figure

3-1 shows the results of the diagonalization as a function of the amplitude of the os-

cillating field. The frequency is 580 MHz and the static field strength is 23.14 V/cm.

(These are typical experimental values.) The state near the left of the figure is the

31s state, which is depressed to lower energy by the quantum defect. The simple

method given in Sec. 3.3 can be used to compute the strength of the sidebands. To

do this, the slope of the states in lithium, which can be computed by diagonalizing

the Hamiltonian for lithium in a static field, are required. We do not do this in

detail here, but simply note that the strengths of the sidebands are consistent with

the slopes of the states. Because the middle states in the manifold have the smallest

slopes, they are the least perturbed by the oscillating field. The extreme states exhibit

sidebands with significant amplitude because they are the most highly sloped. Figure
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Figure 3-1: Computed spectra, lithium n = 31 Stark manifold. Ten
sidebands on both sides of every state are used. The static field strength
is F = 23.14 V/cm. The frequency of the applied field is 580 MHz.
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4-14 compares a computation done for a frequency of 300 MHz, a static field strength

of 23.6 V/cm, and an oscillating field amplitude of 0.44 V/cm with experimental

spectra. The agreement with experiment indicates that the Floquet description and

the numerical methods are consistent.

3.4.2 Stark Structure in a Perpendicular Oscillating Field

The method described in Sec. (3.4) is easily modified to calculate the effect of a

perpendicular oscillating electric field with amplitude F2 and angular frequency w.

For a field along the x axis, the term Flz cos(wt) in the Hamiltonian (3.14) is replaced

with Fix cos(wt). In addition to the matrix elements zj,k that are generated by the

static field F, there are additional matrix elements xj,k =< jIx k > that are generated

by the oscillating field. A derivation similar to that in Sec. (3.4) leads to a matrix

equation reminiscent of Eq. (3.18):

(E - qhw) C,j + Fz,kq,k + (Cq,k + Cq+,k)] = Eqj. (3.22)

Equation (3.22) is harder to solve computationally than Eq. (3.18) because the

perpendicular field breaks the cylindrical symmetry of the system. A much larger

basis including all m states must be used. For each n included in the basis, n2 states

are required, rather than n. Results presented here will be for a static field strength

small enough that there is no n mixing, so that a single n-manifold can be used and

computations are feasible.

The simple and intuitive picture given in Sec. 3.3 changes because the Stark

eigenstates of the time-independent system do not diagonalize a perturbing field Fj1

as they do a perturbing field FIz. A field along the z axis produces a first-order shift

in the energy because the Stark states have dipole moments along the z axis. A field

along the x axis produces at most a second-order shift to the energy of a single Stark

state. To compute the shift using perturbation theory is challenging. Instead, let us

simply assume that we know the size of the second-order shift and examine its effect

on Stark structure within the framework of Sec. 3.3.



With the supposition that the perpendicular oscillating field produces a second-

order perturbation to an m = 0 state, AE = kF 2 cos 2 (wt), where k now represents

the polarizability of the state, Eq. (3.8) becomes

[E + kF2 cos2(wt) T(t)14(r)> = ihT(t)jiP(r)> (3.23)

This has a solution

T(t) = e-if [E+ kF cos (wt')]dt'/h -i[(E+kF2)t/h+ sin(2wt)], (3.24)

yielding a wave function

I(r, t)> = IV(r)>e- i(E+ kF E)t/ h  , ) ei2 t. (3.25)

We arrive at the prediction that a second-order perturbation to the energy produces

only even sidebands with amplitudes given by Bessel functions.

We now use the brute force approach of diagonalizing Eq. (3.22) to examine the

n = 10 Stark manifold in hydrogen. A low n value allows a manageable calculation.

We compare and contrast the effects of parallel and perpendicular fields with a fre-

quency of 15 GHz in Fig. 3-2. It can be seen that a perpendicular field with amplitude

1000 V/cm produces sidebands of smaller amplitude than a parallel field with a much

smaller amplitude of 100 V/cm. This is expected because the parallel field produces

a first-order perturbation to each Stark state. A closer examination shows that the

positions of the large states and their sidebands for the perpendicular case do not

correspond to those for the parallel field. From comparison with the bottom spectra,

it appears that some of the sidebands are spaced by twice the frequency of the oscil-

lating field. For a deeper understanding, Figure 3-3 shows the spectral evolution as

the oscillating field strength changes. The states display a nonlinear shift in energy

as F1 increases. The strength of the sidebands increases as F1 increases. The non-

linear shift in the energy of the states is predicted using group-theoretical methods

in [FY91]. Among the cases they consider is the adiabatic or low-frequency limit, in
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Figure 3-2: Computed spectrum, n = 10 Stark manifold, hydrogen.
v = 15 GHz. Static field strength is 3000 V/cm, qmax = 6. Top: per-
pendicular oscillating field, 1000 V/cm amplitude. Bottom: parallel
oscillating field, 100 V/cm amplitude. The apparent discrepancies be-
tween the positions of the peaks in the top and bottom are explained
in the text.

which w is much less than the splitting between adjacent Stark states. They show

that the energy of a state is given by the familiar formula for the linear Stark effect,

E = -- + nkFo. However, the electric field is replaced by the average magnitude

of the electric field, which we call Fo. For our problem,

Fo = ~(F + F) 1 2dt. (3.26)

For F along the z axis, F = F. For F perpendicular to F , Fursa et al. show that

Fo = F2 (F2 + F 2)1/2 ) (3.27)

where I(x) is the whole elliptic integral of the second type. In the limit of a weak
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The lines in Fig. 3-4 show Eq. (3.27) plotted for m = 0 and m = 1 energy levels.

A close examination shows some discrepancy between the above result and the com-

putations at large F1 . This may be the result of the breakdown of the adiabatic

approximation. The m = 0 states exhibit sidebands with equal amplitudes separated

by 30 GHz from the m = 0 states. This corresponds to a frequency 2w. These po-

sitions agree with the prediction of Eq. (3.25). The m = 1 states develop sidebands

at w. These arise because the perpendicular field produces a first-order shift to an

m = 1 state. Note that the amplitudes of the sidebands are unequal.
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Figure 3-4: Enlargement of Fig. 3-3. The solid and dashed curved lines
are generated from Eq. (3.27) for m = 1 and m = 0 states, respectively.
The states to the left and right of the m = 1 state are spaced by hw,
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3.4.3 Recurrence Spectra in Oscillating Fields

To compare experiments or closed orbit theory with quantum theory, quantum spectra

must be computed along a line of constant scaled energy. Recall, from Sec. 2.1, that

along this line E = Ew- 2, w = Jw - 3, and F = fw - 4 , where w = F - 1/ 4 . The

Lanczos method is used to diagonalize the matrix (3.18) at many equally spaced

steps in w. At each point, an energy offset given by the above scaling laws is sent to

the routine, which returns several eigenvalues and transition strengths near the offset

energy. The result is a set of transition strengths to each state at several energies

near a line of constant scaled energy. These are interpolated with a cubic spline to

give the transition strength for the desired scaled energy. The recurrence spectrum

is the Fourier transform of the spectrum with respect to w. This method, applied

to computing recurrence spectra in static electric and magnetic fields, is described in



[Cou95], where it is shown to produce accurate results for both hydrogen and lithium.

This method is applied to hydrogen and lithium in oscillating fields at E = -6 and

E = -4 in Sections 6.3 and 6.4, respectively.
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Chapter 4

Experimental Method

This chapter describes the apparatus (see Fig. 4-1) used to perform high-resolution

laser spectroscopy on Rydberg states of lithium in external static and oscillating

electric fields. Lithium atoms traveling in an atomic beam are excited in a three-step

laser-excitation scheme (Fig. 4-2). This excitation scheme, which differs from those

used in previous experiments in this laboratory, is described in some detail. The laser

radiation is produced with two argon-pumped dye lasers and an external-cavity diode

laser. A static electric field parallel to the direction of the atomic beam is provided

by a pair of field plates in the interaction region. An oscillating electric field parallel

to the static field is applied by capacitively coupling rf radiation onto one of the

field plates. A frequency synthesizer generates rf radiation with frequency between

200 MHz and 1260 MHz. The experiment detects ionizing and non-ionizing Rydberg

states. Long-lived Rydberg states drift out of the interaction region into a detection

region where they are field ionized and counted. Ions produced by rapidly ionizing

states are accelerated from the interaction region by the static field and counted.

The wavelengths of two lasers are locked to the 2s -+ 2p and 2p -+ 3s transitions by

monitoring resonance fluorescence from the atomic beam. The wavelength of the third

laser, which is scanned to measure a spectrum, is determined absolutely with iodine

absorption lines and a calibrated Fabry-Perot etalon. The static and oscillating field

strengths are calibrated using the Rydberg atoms themselves. We perform recurrence

spectroscopy by simultaneously varying the laser energy, the static and oscillating field



To Etalon, Wavemeter,
and Iodine Cell

Figure 4-1: Overview of the experiment. The principal optical elements
are beam splitters (BS), mirrors (M), and dichroic mirrors (DM). Three
laser beams are generated with two dye lasers and a diode laser. Sam-
ples of each beam are sent to a Burleigh model WA-20 wavemeter. The
wavelengths of the 671 nm and 813 nm beams are stabilized from fluo-
rescence signals from the locking region. The wavelength of the yellow
laser, which operates from 610-620 nm, is scanned to measure a spec-
trum. A sample of the beam is directed into a temperature-stabilized
Fabry-Perot etalon and an iodine absorption cell for absolute wave-
length calibration. The main portions of the beams are overlapped
using dichroic mirrors. The combined beam is focused through a lens
into the interaction region.

strengths, and the frequency of the oscillating field in a manner that maintains the

classical scaling laws constant. The Fourier transform of such a spectrum reveals

peaks at the actions of the closed classical orbits.

The experimental apparatus is the result of many years of work by many people.

Various aspects of the experiment are described in depth in previous theses from

this group [Kas88, Wel89, Iu91, Cou95, Jia96]. This chapter describes in detail the

recent additions to the experiment and emphasizes a few other points of interest to

the author.
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4.1 Lasers

Lithium is excited from the ground state to Rydberg states with a newly-developed

three-step laser excitation scheme. The previous method used two-photon excitation

2s -+ 3s before the final excitation to the Rydberg state. The two photon excitation

demands intense laser beams (- 100 kW/cm2 ), whereas similar excitation rates can

be achieved with single-photon resonant transitions driven with much weaker laser

beams (; 1 mW/cm2). In contrast with previous experiments in a magnetic field,

the intermediate 2p state is unperturbed by the electric fields applied in these experi-

ments. Consequently, it is straightforward to lock lasers to the intermediate 2s - 2p

and 2p -4 3s transitions. Development of this excitation scheme was begun by Hong

Jiao,, and some aspects of it are described in his thesis [Jia96]. This thesis presents

the first experimental results obtained using this excitation process.



4.1.1 Red Laser

The 2s -+ 2p transition (see Fig. 4-2) is excited using 671 nm light produced by a

Coherent 699-21 ring dye laser. We drive the transition from the 2s1/2 F = 2 state to

the unresolved hyperfine states of 2P3/2. DCM laser dye is pumped by about 6 Watts

split from a Coherent Innova 100-10 argon ion laser. The laser is run in multi-line

mode (488 nm and 514 nm) because this allows a lower current for the same power

as in the single-line mode. The lower current reduces the demand for cooling water.

The laser reliably produces 300 mW of power when the dye is new. Because this is

much more power than is needed to drive the principal transition (typically a few

miliwatts), the time between dye changes can be infrequent. The laser requires little

maintenance and locks for many hours.

A sample of a few miliwatts is split from the main beam and directed into a

Burleigh model WA-20 wavemeter and to a spectrum analyzer while the main beam

is collimated, split, and directed into the interaction region and the locking region,

described in Sec. 4.2.

4.1.2 Diode Laser

The 2p -+ 3s transition is driven by 813 nm light from a New Focus model 6224

external-cavity diode laser. This laser delivers 18 mW of power single-mode and

tunes over 70 GHz without mode hopping. The beam path is similar to that of the

red laser beam. Samples are directed to the wavemeter and a spectrum analyzer while

the main beam is collimated and directed into the locking and interaction regions.

The laser excites the atoms into the 3s F = 2 hyperfine state.

Diode lasers have several advantages over dye lasers. They do not require an

expensive pump laser, cooling water, or laser dyes, and they use readily available 120

VAC. There are some disadvantages, however. In contrast to the Coherent dye lasers

which are actively locked to a temperature stabilized reference cavity, the diode laser

cavity is passive. Stabilization is necessary for the dye laser because of the instability

created by the dye jet. As a result, the dye laser is also stable against perturbations of



the environment-vibrations, changes in temperature, etc. The diode laser includes

no active stabilization. Rather than stabilize the diode laser against a cavity, we

chose to lock it to the atomic transition. The technique is described in Sec. 4.2.

The New Focus laser was a new model when we purchased it in 1995. As with

many new products, it experienced some rough days in the beginning. After a short

time, the laser could not scan more than about 1 GHz without mode hopping. The

problem was due to a weak epoxy used to attach the laser diode. Over a period of

weeks, the diode slowly slipped under gravity, until the cavity became completely

misaligned and could not be tuned. The laser was designed so that nothing could

be adjusted by the user without opening the cavity and voiding the warranty. It

therefore made a trip back to its birthplace in California, where a stronger epoxy was

installed. It has since given 1000 hours of use with no problems.

4.1.3 Yellow Laser

The final excitation to a Rydberg state uses light from another Coherent 699-21 dye

laser using Kiton-Red laser dye. Operation of this laser remains the same as described

in [Kas88]. The laser reliably produces 200 to 300 mW of power and scans 30 GHz

without mode hopping. For the work in this thesis, the polarization is adjusted to

excite m = 0 states.

4.2 Locking

Before the work reported here, the 3s state in lithium was populated by two-photon

excitation on the 2s -+ 3s transition using 735 nm light produced with a krypton-

pumped dye laser. This laser was locked to the transition by monitoring fluorescence

from either the 2p or 3s states at 671 nm or 813 nm, respectively. Because these

wavelengths were far from the laser wavelength, filters could be used to remove scat-

tered laser light, and low excitation rates could be measured. With the new excitation

scheme, the fluorescence must be resolved above any background of scattered laser

light because the scattered light has the same wavelength as the fluorescence. For



experiments in a magnetic field, where the excitation frequencies are magnetic field

dependent, it was necessary to lock the lasers at the point of Rydberg excitation. For-

tunately, for the electric field experiments, the 2s -+ 2p -+ 3s transition frequencies

are field independent, and the lasers can be locked to the atomic beam at any point.

This enabled the use of a separate locking region that could be designed to minimize

the scattered light without compromising other design constraints of the interaction

region.

The initial alignment of the three laser beams and the atomic beam in the inter-

action region would be extremely challenging if we could not monitor the fluorescence

from the intermediate states. For this reason, provision is made to monitor that flu-

orescence in the interaction region. Once the initial alignment is successful, the final

alignment is adjusted by maximizing the production of Rydberg atoms.

Figure 4-3 shows a diagram of the locking region. The mechanical design is simple.

A six-way 23 inch ConFlat cross is used. The atomic beam enters along one axis, laser

beams pass through a window on the second, and fluorescence is detected through

windows on the third, the vertical axis. The fluorescence is imaged onto the detectors

with lenses. The signal levels are large enough to employ a photodiode rather than

photomultiplier detectors, although the ability to use photomultipliers is maintained

with a light pipe emerging from the bottom of the locking region.

The locking region was originally placed between the oven and the interaction

region. Unfortunately, the 2s -+ 2p laser optically pumped the atoms into their upper

hyperfine state, effectively suppressing the Rydberg signal. It was thus necessary to

create the double atomic beam system described below.

The fluorescence was monitored with an EG&G model HUV-4000B photodiode.

The output of a built-in low-noise amplifier was used to lock the lasers with the elec-

tronic methods described in [Kas88]. The 671 nm and 813 nm laser energies were

modulated at different frequencies and the fluorescence from both transitions was

monitored with the single photodiode. The resulting electronic signal contained com-

ponents at both frequencies. The signals from the two transitions were individually

extracted with lock-in amplifiers tuned to the appropriate modulation frequency.
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Figure 4-3: Schematic of locking region. The region is constructed from
a 6-way, 21 inch ConFlat cross. 671 nm and 813 nm laser beams pass
through windows in the plane of the page and intersect the atomic
beam perpendicularly. Fluorescence is imaged onto detectors with
lenses through vacuum windows at the top and bottom. The signal
from the photodiode is sent to two lock-in amplifiers. The light pipe
connects to a split fiber bundle from which the light is detected with
two photomultiplier tubes.



4.3 Atomic Beam Source

The atomic beam source is described in the thesis of Michael Courtney [Cou95].

Lithium is stored in a reservoir in a stainless steel sleeve that holds several tube

heaters. To provide the second beam for laser locking, this design was modified by

machining a new stainless steel oven with apertures on both sides. The oven works as

well as the single aperture model, but with half the life. The oven produces a strong

flux, and runs reliably for many hours (we recharged it twice in the last year, a year

that has seen much activity in the lab).

The oven has one peculiarity. As the lithium level drops, it is necessary to use

higher and higher currents through the tube heaters to maintain the same lithium

flux, up to 20% higher. However, a thermocouple on the oven reveals that the upper

stainless steel part of the oven maintains the same temperature as the current is

increased. A possible explanation for this behavior is that when the oven is full,

the lithium acts as a conductive inner core which distributes heat to the upper part

of the oven. As the lithium level drops, the upper stainless part becomes cooler,

and hence it is necessary to heat the bottom more. This is plausible because the

thermal conductivity of lithium is about five times greater than stainless steel. The

explanation above supposes that the temperature of the lithium vapor is determined

by the temperature of the walls of the oven, rather than the temperature of the liquid

lithium. At a temperature of 700 'C, the density of lithium is 4.4 x 1015 cm - 3 [Kas88],

and the mean free path is A ; 3 mm. This means that a lithium atom undergoes

many collisions as it travels within the oven, and therefore should be in equilibrium

with the walls.

4.4 Stepwise Excitation Efficiency

Because the stepwise resonant excitation was new, we studied its behavior in some

detail in order to be confident that we understood it. This section presents an ex-

perimental study of the excitation as a function of the power of the 671 nm and 813
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nm lasers. This process can be understood using a density matrix. However, excita-

tion to a Rydberg state involves four levels of the atom, each of which has hyperfine

structure, so that the system is complex to model, even if the hyperfine structure is

ignored.

Here, we take a simpler approach, treating the three-level 2s-2p-3s system to find

the population of 3s. This population can be probed experimentally by measuring

the excitation rate into a Rydberg state. This is because the radiative lifetimes of

Rydberg states are so long that they move from the laser excitation point and are

detected before they can decay to the 2s or 3s levels.

We consider a three-level system with levels a, b, and c, as shown in Fig. 4-4. A

laser beam with frequency wi and electric field amplitude El excites the atom from the

ground state a to the intermediate state b. The second laser beam with frequency w2

and field amplitude E 2 completes the excitation to the upper state c. We define three

detunings: 6 1 = Wb- wa--l, 2 = wc-wb-W2, and A = wc-wa-(w +w2) = 61 +62.

Levels b and c decay radiatively with rates yb and y, respectively. The Hamiltonian

for the system is H = Ho - dab -E1 (t) - dbc - E 2(t), where dij is the dipole moment

between two levels i and j. The populations obey the density matrix equation of

motion,

,P-( 2+Pc ( 2 )Pcb 2P .

P= [HI p]- (-Yb-Yc)Pc 7Pbb -YcPcc pba . (4.1)

2 Pac 2 Pab -YbPbb



The term on the right describes the decay of the excited states. The off-diagonal

elements of this matrix are complex numbers. We express them as

Pb = (Zbc+ ibc)e-iwt (4.2)

Pac = (Xac + iyac)e - i (w ' +
2)t (4.3)

Pab = (ab + iyab)e-iwt, (4.4)

where x and y are real. Substituting these into the equation of motion (4.1) leads

to a set of nine equations. These are simplified by assuming a steady state solution,

= 0. Introducing the notation bc ( -y + 7c), we arrive at a 9 x 9 matrix equation:

-7c 0 0 0 0 0 0 0 2d 2  PcC 0

d2  -d 2  0 0 0 di 0 -52 bc Pbb 0

0 0 0 0 0 0 di -ybc -62 Paa 0

0 0 0 -d 2  0 -A 1yc dl 0 Xab 0

0 0 0 0 -d 2  -yC -A 0 di Yab = 0

0 di -di - 51 Yb -d 2  0 0 0 Xac 0

0 0 0 - Yb -1 0 -d 2  0 0 yac 0

-7 7b 0 0 -2dl 0 0 0 d2  Xbc 0

1 1 1 0 0 0 0 0 0 y 1
(4.5)

This equation can be solved numerically using standard routines such as Gauss-

Jordan elimination [PTVF92]. For lithium, - = 73s = 3.3 x 107 s- 1 and b = 72p =

3.7 x 107 s - 1. Because the excitation here is assumed to be resonant, A = 51 = 62 = 0.

Figure 4-5 shows the result of solving the above matrix equation. The population

saturates at laser intensities I2p ; 6 mW/cm2 and 13, e 9 mW/cm2, in agreement

with the saturation intensities found from the lifetimes of the states. For low 671

nm laser intensity, as the 813 nm laser intensity is increased beyond the saturation

intensity, the population decreases because of power broadening. For higher 671 nm

laser intensity, the population increases monotonically versus 813 nm laser intensity.
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Figure 4-5: Computed 3s population, pc, found by diagonalizing
Eq. (4.5). The 670 nm light drives the 2s -+ 2p transition, and the
813 nm light drives the 2p -+ 3s transition.

This occurs because a high 671 nm intensity means that any atom that decays from

3s is quickly driven to the ground state, so two photons are required to return it to the

3s level. Thus the excitation saturates at higher 813 nm intensity. When both lasers

are intense, the population nears 1/3. In this case, transitions are driven between all

levels, and they become equally populated.

To test this result and confirm that we understand the excitation process, we

probed the 3s population by tuning the yellow laser to excite atoms into the continuum

and measured the excitation rate. Variable attenuators were placed in the 671 nm

and 813 nm beam paths to adjust the beam powers, which were measured using a

UDT-Sensors model 10DP photodiode. The diode has a known linear relationship

between incident light power and current. The photoionization signal was measured

simultaneously with the current as the incident laser beams were attenuated.

Figure 4-6 shows the measured population and a fit to Eq. (4.5). Each point in the

figure is a measurement of the population. The scatter of points arises from counting

statistics. There are more points for some powers because the beam powers were not
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Figure 4-6: Experimental measurement of relative 3s population. The
dots are Rydberg atom counts and the lines are a fit to Eq. (4.5).

adjusted linearly in some regions. The fit has three free parameters: an overall scaling

that relates the Rydberg signal to the 3s population, and two factors that relate the

measured laser powers to the beam intensities. These last two numbers give effective

beam radii. The data give Reff(671 nm) = 0.90 mm and Reff(813 nm) = 0.65 mm.

These agree with a rough measurement of the beam sizes and are consistent with the

optical design, which uses a 671 nm beam radius that is about two times larger than

the 813 nm beam.

We have learned from this study that we can accurately model the excitation

process, and therefore we probably understand it and can control it. Note in particular

that we have sufficient power to saturate the transitions, which lets us maximize the

excitation efficiency.



Conducting Cylinder (V=O)

Copper
(-300V) -(

Beam

Electron
Multiplier L Rear Field j LFront Field
(-2000V) Plate (-V) Plate (+V)

Laser Beams

Figure 4-7: Schematic of the interaction region. Laser beams cross the
lithium atomic beam perpendicularly. Symmetrically biased aluminum
field plates spaced by 3/4 inch apply a static electric field parallel to the
atomic beam direction. The plates are coated with Acheson Aerodag
G graphite spray to reduce stray electric fields. The rf field with 200
MHz < v < 1260 MHz is capacitively coupled onto the negative field
plate (see Fig. 4-11). A copper mesh biased at -300 V provides a field
to ionize Rydberg atoms that emerge from the interaction region.

4.5 Interaction Region

The interaction region (Fig. 4-7) is similar to that described in [Cou95]. Field-

ionization signal is measured with a Detector Technology model 210-8 electron mul-

tiplier, which is biased negatively to detect positive ions. This provides a zero noise

background, in contrast to electron detection. The electron multiplier is located on

the atomic beam axis. The detector was originally placed off axis to avoid the atomic

beam, but there was little high-n and continuum signal. It was discovered that the

signal was much larger with the detector on axis. Surprisingly, the atomic beam cre-

ates no noise on the detector, and has not damaged it in two years of use. A Modern

Instrumentation Technology model F-100T preamplifier-discriminator converts the

signal to TTL pulses, which are counted by a data-acquisition board in a computer.
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Figure 4-8: Experimental spectrum near n = 100. The top window
is the iodine absorption spectrum, the middle window is the 300 MHz
etalon transmission, and the bottom window is the Rydberg signal.
The scan speed is 23 ms/point. A field of about 45 mV/cm has been
applied to cancel a stray electric field parallel to the atomic beam axis.

4.6 Excitation of Rydberg States

Figure 4-8 shows an experimental spectrum recorded near n = 100. The transmission

of the 300 MHz etalon used to linearize the scan is shown in the middle window of the

figure. The top window shows the absorption of a sample of the yellow laser beam

directed into an iodine absorption cell. The energies of catalogued iodine lines [GL78]

provide an absolute calibration of the laser wavelength and Rydberg state energy.

The scan rate in Fig. 4-8 was 23 ms/point, implying a resonant excitation rate into

n = 100 of 2.5 x 106 Rydberg atoms per second. Attenuation of the yellow laser beam

shows that the signal remains linear even at these high count rates. Stronger signal

levels are found at lower n states, consistent with the expected 1/n3 dependence of

oscillator strength [BS57]. Indeed, levels near n = 20 strongly saturate the detector.

As we move to higher n (Figs. 4-9 and 4-10), several effects become important.
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Figure 4-9: Same as Fig. 4-8, but at higher energy. The arrow labels
the n = 170 Rydberg state.

The signal level drops as 1/n3 . The density of states increases as n3 , so the states

eventually merge into a continuum as the energy increases. High n states become

visibly broadened into unresolved Stark manifolds due to residual stray electric fields.

The size of this broadening is related to the electric field strength by [Kas88]

AE , 3n 2F = (3.84 MHz/V/cm) n2F, (4.6)

where the last relation is in laboratory units. This broadening by a residual stray

field is visible in Fig. 4-10.

With the field plates grounded, there is usually a stray electric field of 30 to 60

mV/cm. The field is nearly anti-parallel to the atomic beam, pointing toward the

oven. The source of the field is believed to be lithium that has accumulated on the

detector-side field plate. The strongest evidence for this is that the stray field slowly

increases during a run. Furthermore, its size is related to the diameter of the atomic

beam and to the quality of the beam collimation. Because the stray field is anti-
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Figure 4-10: Same as Fig. 4-8, but at higher energy. The arrow labels
the n = 220 Rydberg state.

parallel to the static field, it can be almost entirely cancelled with an offset in the

static field strength. For example, the residual broadening of the states in Fig. 4-10

suggests a stray field of less than 4 mV/cm. During an experimental run, the stray

field is monitored by examining the Stark broadening of states near n = 100 and

the offset of the static field is adjusted. Consequently, the electric field uncertainty

is maintained to less than 10 mV/cm in a typical run. This is adequate for our

recurrence spectroscopy.

4.7 RF System

Recurrence spectroscopy in an oscillating electric field demands an rf system that

provides a level output over a large bandwidth. (The field we refer to as "rf" lies near

the microwave region.) This is challenging to achieve for several reasons. The need

for static field plates constrains the geometry of the interaction region and creates

cavity-like resonances in the system. These resonances will be present in any similar



Figure 4-11: Schematic of rf system. RF with v < 1260 MHz is gener-
ated by a computer-controlled HP8662A synthesizer. The signal is fed
to an amplifier for +30 dB of gain and then through a BNC vacuum
feedthrough. The signal is combined with a static voltage in a Mini-
Circuits model ZFBT-4R2G bias tee, from which the combined signal
travel overs a short wire connected to the detector-side field plate.

broadband system, resulting in an unmatched load for many frequencies. The capac-

itive loading of the field plates rules out any simple scheme for impedance matching.

Rather than attempt to impedance match, a different method was implemented in

which rf was merely capacitively coupled onto a field plate. The transfer function for

the rf field amplitude was measured using rf sidebands created on Stark states, as

described in the next section. The transfer function was then used to remove fluctu-

ations in amplitude by continuously adjusting the amplitude of the rf source as the

frequency was swept.

Figure 4-11 is a schematic of the elements used to generate and apply the oscillat-

ing field. The rf source is a Hewlett Packard HP8662A frequency synthesizer. This

is an extraordinary device: the resolution in frequency is 0.2 Hz, and the amplitude

is controllable with a relative resolution of 0.1 dBm. Furthermore, the frequency and

amplitude are scannable via a GPIB interface. The output is fed into a Mini-Circuits

model ZHL-42W amplifier for +30 dB of gain. This amplifier works between 10 MHz

and 4200 MHz and provides up to 30 dBm output power. The signal is directed

through a double-ended BNC feedthrough. To apply a field that is parallel to the

static field, we capacitively couple the rf directly onto the detector-side field plate

through a Mini-Circuits model ZFBT-4R2G bias tee. This device has a bandwidth

that extends from 10 MHz to 4200 MHz.



While it is straightforward to examine the effect of a field parallel to the static field,

it would be challenging to study the effect of a perpendicular field. The application

of a uniform perpendicular field requires metal surfaces parallel to the static field,

which would degrade its uniformity. A further problem is introduced by the physics

of Rydberg atoms in oscillating fields. As described in Sec. 3.4.2, a perpendicular field

produces a much smaller perturbation to the system than a parallel field because it is

only a second-order effect. Therefore, any method for applying a perpendicular field

must produce almost no component in the parallel direction. For these reasons, this

study is limited to the parallel field direction.

4.8 RF Field Amplitude Calibration

Accurate recurrence spectroscopy demands accurate knowledge of the oscillating field

amplitude. This amplitude is determined using the Rydberg states themselves to

produce a calibration (transfer function) of rf amplitude versus frequency.

Section 3.3 described the effect of an rf field on a state in a Stark manifold.

The oscillating field generates sidebands on each state in the manifold, spaced by

the frequency of the rf. A measurement of the amplitude of these sidebands can

be inverted to yield the amplitude of the rf field, according to Eq. (3.12). There

is some flexibility in choosing the static field strength. The best value is one large

enough that sidebands from neighboring Stark levels do not interfere but small enough

that neighboring n-manifolds do not cross. Additionally, the calibration requires an

accurate relative measurement of oscillator strength, and therefore it is desirable to

work at low n, where signal levels are high. We generally use the high-lying and

low-lying Stark states, which have the greatest slopes and therefore the largest side

bands. A region of the n = 31 Stark manifold, shown in Fig. 4-12, proved to be a

good place for satisfying these constraints.

The q = +1 sideband is the only sideband that has significant strength over the

range of field amplitudes and frequencies accessible with this apparatus. The ratio

of the strength of the first side band q = 1 to the central Stark state q = 0 is, from
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Figure 4-12: Computed energy levels, lithium n = 31, m = 0 Stark
manifold. The solid horizontal line marks the value of F used for the
measurement in Fig. 4-14. The solid dots mark the states with (ni-n 2)
between 24 and 14 labeled in Fig. 4-14. The energy of the left-most
state is depressed by the p-state quantum defect. The energy of the s
state is depressed even more by the larger s-state quantum defect, and
is not visible in this figure.
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Eq. (3.12),
j2(kFx/hw)

f = (kFIhw) (4.7)
J2(k F I /w)

By measuring f and inverting Eq. (4.7), F is found. The frequency w is known, and

the slope k, which equals 3n(n1 -n 2) for hydrogen, is found for lithium with quantum

computations done in a static electric field,

Figure 4-13 shows a plot of f, J2(x), and J2(x) as a function of x = kFI/hw. As

F1 increases, the q = 0 state loses strength, until it reaches zero at the first zero of

Jo(x). We generally work in the regime x < 1.5 because of limitations in the strength

of the rf source and because at larger values the central state becomes so small that

it is difficult to get good statistics in the measurement of the amplitude.

The field is calibrated at each rf frequency by scanning the laser over five or six

Stark states, measuring f for each state, and inverting Eq. (4.7) to find F1 . The rf

field amplitudes found for each state are combined to yield an average value and a

standard deviation.

Figure 4-14 shows an experimental spectrum of the region of the n = 31 Stark



8000

6000 - 24 22 20 18 16 14

4000

2000

2000

4000

6000

8000 I I I I

-115.4 -115.3 -115.2 -115.1 -115 -114.9 -114.8
Energy (cm )

Figure 4-14: Comparison between quantum Floquet computation and
experiment. The vertical axis is experimental counts. The upper plot
is an experimental measurement of part of the n = 31 Stark manifold
in a static plus rf field. The static field strength is F = 23.6 V/cm
and the frequency of the applied field is 300 MHz. The lower plot is a
diagonalization of Eq. (3.18) for an oscillating field amplitude of 0.44
V/cm. Its overall normalization is scaled for best agreement.

manifold marked in Fig. 4-12 with a 300 MHz applied rf field. The static field strength

is 23.6 V/cm. The states at the left of the figure are the lower energy (red) Stark

states. The field amplitude and frequency are such that several side bands are visible.

Table 4.1 summarizes the extraction of the field amplitude from the spectrum. Each

of the six states used to compute the amplitude gives a value consistent with the

others. Averaging yields F = 0.440 ± 0.007 V/cm. This 2% accuracy is typical.

The bottom spectrum in Fig. 4-14 is the result of diagonalizing Eq. (3.18) for a

field amplitude equal to that found in the calibration, 0.44 V/cm. The agreement be-

tween the experiment and computed spectra demonstrates the validity of the Floquet

computation.

Figure 4-15 shows the results of the calibration over a frequency range extending

from 200 MHz to 1260 MHz. The amplitude varies significantly as a consequence of



state (ni - n2) k (MHz/V/cm) f V~7 F1 (V/cm)
24 1.494 x 103 24.05 4.9 0.441
22 1.372 x 103 6.876 2.622 0.439
20 1.251 x 103 3.486 1.867 0.443
18 1.133 x 103 1.965 1.402 0.444
16 1.013 x 103 1.171 1.082 0.443
14 8.935 x 102 0.665 0.815 0.428

Table 4.1: Summary of the measurement of the rf field amplitude at 300
MHz. The slopes k are found from quantum-mechanical diagonalization
calculations for Li at F = 23 V/cm (Fig. 4-12). These differ slightly
from the value found assuming a linear Stark effect in hydrogen, k =
1.920n(nl - n2 ) MHz/V/cm. The calibration yields < F >= 0.440 +
0.007 V/cm.

the wild mismatch between the field-plate structure and the rf source. However, the

calibration is reproducible and constant over time. An individual point is calibrated to

a few percent, while between the calibration points the amplitude can be interpolated

with a cubic spline, yielding an amplitude accurate to at least 10%. This is adequate

for our recurrence spectroscopy.

Because F must be adjusted as a spectrum is measured, it is necessary to know

how F changes as the power level of the HP8662A changes. The synthesizer has a

resolution of 0.1 dBm and an absolute accuracy of 1 dBm. The absolute accuracy does

not matter; the relative accuracy does. It is straightforward to compute the power

level necessary to achieve a given amplitude if the entire rf system is linear. The

primary source of nonlinearity is the amplifier, which provides a gain of +30 dB with

a maximum output of +30 dBm. As the input power approaches this maximum, the

gain saturates. Figure 4-16 displays the results of measurements of rf field amplitude

at two frequencies as the power output is varied. The output power can be written as

P - yF 2 , where 7 is a constant proportional to the inverse of the effective impedance

of the field plate structure. The power in dBm is

PdBm = 10 log1 0o (P/lmW) = constant + 20 loglo F1. (4.8)
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Figure 4-15: Results of calibration of rf field amplitude. The error bars
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is a cubic-spline interpolation of the data. These values correspond to
the field amplitude when the HP8662A is set at -10 dBm.
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Therefore, we expect a linear relationship between the output power of the HP8662A

measured in dBm and logo0 F. Holding a ruler to the linear part of Fig. 4-16 indeed

reveals a slope of 1/20 = 0.05. The gain becomes nonlinear near -6 dBm. While a

correction for this nonlinearity could be included, we have chosen instead to work

below this level. This regime provides field amplitudes that are adequate for the

experiments.

4.8.1 Error Analysis

Here, we examine the accuracy and precision with which the synthesizer can set the

rf field amplitude. Assume that the field amplitude is given by F = aV, where V is

the voltage amplitude of the rf. The power in dBm is

PdBm = 10 logl 0 ( = 20 log1 0o = 20 loglo1 0 ( (4.9)
1mW Vo a Vo



where V2 = 50~2 x 1mW. The uncertainty in F is

6F1  In 10
= 2 PdBm (4.10)

F1  20

The HP8662A has a relative uncertainty of SPdBm = 0.1 dBm, so

6F1  2.3S= 2.30.1 = 0.011. (4.11)
F 20

This 1% uncertainty is a little better than the accuracy of the calibration.

4.9 Static Field Calibration

Accurate recurrence spectroscopy also demands an accurate calibration of the static

field strength. This is again best done using the Rydberg atoms themselves. Our

method is to make a number of measurements of some of the states in the n = 31

Stark manifold, shown in Fig. 4-17, as the voltage applied to the field plates is changed.

Comparison with computed energy levels for lithium gives the field strength at each

voltage. A least squares fit yields the field to voltage ratio, F/V, and an offset due

to the stray field along the beam direction. As expected, the relationship is linear, as

demonstrated in Fig. 4-18.

The voltage is generated starting with two 12 bit D/A boards in the data acquisi-

tion computer. These are directed into a summing amplifier. One of the inputs serves

as a DC offset, while the other channel is scanned by the computer as a recurrence

spectrum is recorded. The data acquisition program automatically measures the off-

set voltage and adjusts it as needed. The scanned channel is typically reduced, not

amplified, in the summing amplifier to give sufficient resolution. A 0 to 4095 control

changes the output of the D/A from 0 to 5 V, giving a step size of about 1 mV. This

is often too large a step, and so this channel is reduced in magnitude by up to a factor

of 10. The output of the summing amplifier is sent to a dual-channel 100 V amplifier

that outputs a symmetric positive and negative signal, amplified by a factor of ten.

It is convenient that this is a 100 V amplifier because it allows the application of
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larger voltages needed for field calibrations. Finally, the outputs are directed through

low-pass filters that remove 60 Hz noise and also smooth the voltage as it is swept

during the measurement of a recurrence spectrum.

A hardware calibration is done by measuring the output voltage as a function of

D/A value and doing a least squares fit. Thus there are four parameters relating the

electric field seen by the atoms to the setting of the data acquisition program: offset

and slope of voltage vs. D/A setting and offset and slope of field vs. voltage setting.

The advantage of this scheme is that the intermediate standard (Keithley model 2000

Digital Multimeter) does not need to be accurate. Its reading needs to be only linear

and constant over time.

4.10 Recurrence Spectroscopy

All of the above elements must be combined to measure recurrence spectra. The laser

energy, static electric field, rf field amplitude, and rf frequency must be simultaneously

varied to hold the classical scaling laws given in Sec. 2.1 constant. The process begins

with what we call a "prescan", in which the yellow laser is scanned over its range and

iodine and etalon peaks are recorded. The laser energy at each point is determined

from these data, and the static electric field, rf field amplitude, and rf frequency

required at each point are calculated. The rf field amplitude to be used at each point

is corrected according to the calibration. The spectrum is then recorded by scanning

the laser again while setting the external fields to their predetermined values. For

most of the experiments described in this thesis, the signal was measured for 200 ms

at each point.

Data acquisition is similar to that described in [Cou95], but modified for the

oscillating field. The HP8662A is controlled via a GPIB bus. The offset for the static

voltage is set by changing the appropriate D/A channel and simultaneously measuring

the voltage with the Keithley.



4.10.1 Error Analysis

The following analysis is for the spectra gathered at E = -0.4, which are described

in Chapter 6. The other experiments, near E = -2, were done at smaller static field

strengths, and have correspondingly larger errors. However, those experiments focus

on low-action behavior, so they have a larger tolerance for error.

The uncertainty in setting the scaled energy is

- = 2 + (4.12)e E 2F

= (10-)2 + (103) 2 "10-. (4.13)

The uncertainty in setting the scaled rf field amplitude is

-- += j + J (4.14)

= (10 ) 2 + (10-3 2 10- 1.  (4.15)

(The relative uncertainty in f is about 10-2). The uncertainty in setting the scaled

rf frequency is

& = -2+ (3 - (4.16)

= i-10 2 + (10 -3 2  10- 3 . (4.17)

The uncertainty in setting f and & is limited by knowledge of the static field, while

E is limited by knowledge of the laser energy.

The data in this thesis at e = -0.4 were obtained via single scans of the laser

covering 145 < w = F - 1/ 4 < 160. The quality of the Fourier transform is character-

ized by two quantities: the width of a peak and the maximum action. The width of



a peak is determined by the range of w,

1 1
6S = = 0.05. (4.18)27rAw 20

The maximum action is determined by the step size in w,

- _ 1

Smax = 30. (4.19)
2rwstep 2!wF't'p

(This equation arises from considering that an orbit produces oscillations in the spec-

trum if the phase 27rSw is uncertain to less than 7r [MWW+94].)

The scaling laws give flexibility in where to conduct the experiment. The spectrum

can be measured from say 100 < w < 120 or 200 < w < 220 with the same results.

(There are small difference associated with quantum-mechanical effects because these

two measurements have different effective values of Planck's constant. The measure-

ment with the larger w is more classical.) We use this flexibility in w advantageously

when measuring spectra in the oscillating field, for which the frequencies are limited

to below 1260 MHz, which are small compared to typical low-n electron orbital fre-

quencies of many GHz. By using small static electric fields and high energies, where

the orbital frequencies are lower, we are able to use the low frequencies and still ap-

proach the orbital period of the electron. The other constraint is the scaled energy

e. At small fields, the spectra become dense and the high resolution of the cw lasers

becomes critical.

Figures 4-19 and 4-20 plot the relationships between laboratory values of energy

and frequency and their scaled counterparts E and ~. Conducting recurrence spec-

troscopy at stronger electric fields, or in the diamagnetic system, is laborious with

our system because the lasers need to be manually mode-hopped over many wave

numbers. Pulsed experiments with low-resolution lasers such as the hydrogen exper-

iment at Bielefeld, Germany, are appropriate to study these systems. However, the

experiments described here require our high-resolution lasers and precise knowledge

of field strengths.
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Figure 4-19: Frequency of oscillating field w vs. static field strength
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Figure 4-20: Laser energy E vs. static field strength F. Each line shows
some constant scaled energy e = EF - 1/ 2, given on the diagram for some
of the lines. The lowest energy plotted is E = -4.0.



Chapter 5

Recurrence Spectroscopy in a

Static Electric Field

To provide a foundation for interpreting our experiment in a static and oscillating

field, in this chapter we describe recurrence spectra in a static electric field. Be-

cause much has been written on this subject [ERWS88, CSJK95, Cou95, GD97], the

principal goal here is to examine the quality and reproducibility of the experimental

data by comparing them with the predictions of closed orbit theory and semiquan-

tal computations. The discussion focuses on behavior at a scaled energy E = -0.4,

which is the energy at which spectra in an oscillating field are examined in Chapter

6. Experimental and computed spectra near the saddle point (E = -2) are also ex-

amined. The bifurcation structure in this region, not previously studied in detail, is

an interesting problem in itself. Furthermore, this investigation is necessary because

the orbit reconstruction discussed in Chapter 7 demands a detailed understanding of

behavior in this regime. A result of the analysis is a measurement of the periods of

the 2/3 and 3/4 orbits at an energy E = -2.05. The values of these periods are used

in Chapter 7.
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Figure 5-1: Untransformed experimental scaled spectrum of lithium
m = 0 states at E = -0.4. The horizontal axis is w = F- 1/ 4 , the
vertical axis is counts. At each point, signal was recorded for 200 ms.
The electric field was varied from F = 11.46 V/cm to F = 8.22 V/cm
while the energy was varied from E = -4.14 cm - 1 to E = -3.51 cm - 1.

5.1 Recurrence Spectra, E = -0.4

Figure 5-1 displays an untransformed experimental scaled spectrum of lithium m = 0

states collected in a electric field that varied along with the laser energy to maintain

e = -0.4. Because the energy is well above the electric field saddle point, there is

a large, slowly varying continuum background resulting from ionization of electrons

over the saddle point. Above this background are many narrow, long-lived states.

A recurrence spectrum, generated by computing the Fourier transform' of Fig. 5-

1, is shown in Fig. 5-2. The uphill parallel orbit and its repetitions create the primary

structure of equally spaced peaks because other more complicated orbits that con-

'The Fourier transform is computed numerically by explicitly summing the Fourier series over
all points in the spectrum and plotting the absolute-square. The measured spectrum is windowed
with a sine function before transformation.
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Figure 5-2: Experimental recurrence spectrum, E = -0.4. This is the
Fourier transform of Fig. 5-1. The large low-frequency component (S <
0.3) is not plotted in the other figures in this thesis.

tribute to the spectrum have actions that are close to the actions of repetitions of the

parallel orbit. The action of the parallel orbit at E = -0.4 is S = 0.690. The first

repetition is not easily visible because its strength is close to the background noise

level. The second repetition is enhanced by the proximity of the 1/2 bifurcation,

which occurs at E = -0.397.

5.1.1 Experimental Reproducibility

Several factors produce variations between experimental spectra measured under iden-

tical conditions. There can be spurious noise peaks, but these are rare and need not

be considered. Some fluctuations in the measured signal strength arise from statistical

counting noise. The spectra typically have around 1000 counts per point, implying

fluctuations of 3%. The largest effect results from the finite step size by which the

laser energy and electric field strength are changed, and so the intensity of narrow

peaks varies if the laser energy does not hit the maximum point in a peak. Fluctua-
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Figure 5-3: A section (compare with Fig. 5-2) of the average of nine
experimental recurrence spectra, E = -0.4. The standard deviation to
the average at each point is plotted as an error bar on each point. The
resulting thick line is an indication of the size of error in a measurement
of the spectrum.

tions in the laser energy also cause problems in two ways. The energy is calibrated

from the position of iodine absorption lines measured in the prescan before the recur-

rence spectrum is measured. The laser must not move in energy after the prescan. If

the laser does move, the result is an error in setting the scaled energy and following

the scaling law. Finally, the laser can move during a scan. Fortunately, this is a rare

event, and is usually noticeable in the spectrum.

To assess the reproducibility, Fig. 5-3 shows a section of a spectrum obtained by

averaging nine different recurrence spectra measured on four different occasions over

a one-month period. Standard deviations of the average are plotted as error bars on

each point. The strength of the stronger peaks is reproducible with a precision of

about 20%.

102



0.06

0.04 -

0.02 -

00

0.02

0.04

Semiquantal Computation (hydrogen)

0.06 I I
0 5 10 15 20

S

Figure 5-4: Comparison between the averaged spectrum from Fig. 5-3
and the semiquantal computation for E = -0.4. The scans are scaled
for best overall agreement.

5.1.2 Comparison with Computation and Theory

Figure 5-4 compares the average experimental recurrence spectrum, Fig. 5-3, with a

semiquantal computation for hydrogen developed by Vladimir Kondratovich [Kon].

The computational approach combines standard semiclassical methods that give quan-

tized energy levels in a static electric field with a recently developed semiclassical

formula [KD97b] that relates the oscillator strength to the square of the quantum

angular distribution of outgoing waves evaluated at the angle at which the electron

leaves the atom along a semiclassically quantized trajectory [KD97a]. Good agree-

ment is seen with the experiment. The largest discrepancy is for the weak first

repetition. A hydrogenic approximation to the spectra works well at this high energy

where core-scattering is weak. We will see in the next chapter that this semiquantal

computational method can be adapted to calculate spectra in the oscillating field.

Figure 5-5 compares the averaged spectrum with a closed-orbit-theory calculation

by Jing Gao [Gao]. The calculation includes quantum effects that are important near
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Figure 5-5: Comparison between the averaged spectrum and closed
orbit theory for hydrogen at E = -0.4. The scans are scaled for best
overall agreement. The needles show the contributions of individual
orbits.

bifurcations [CJS+95, GD97]. Agreement is good, although the strengths of the re-

currences at high action are a little larger than both the experiment and semiquantal

computation. The agreement with the strength of the first repetition is better than it

was for the semiquantal calculations. Both the semiquantal computation and closed

orbit theory predict a smaller amplitude for the 13th repetition than is seen in the

experiment. This may be the result of scattering from the lithium ionic core. Quan-

tum computations for lithium which could reveal core-scattering are unfortunately

unavailable to us in this continuum regime.

We have seen that the experiment produces recurrence spectra that agree with

semiquantal computations. Although similar agreement has been seen with closed

orbit theory [CJS+95], the spectra studied here were recorded at significantly higher

principal quantum numbers and much smaller electric fields.

The significance of these results is that we have a reliable experimental technique

by which a recurrence spectrum can be measured with a single laser scan. Because
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the high-n states have lower characteristic frequencies, the experiments in Chapters 6

and 7 could be performed with relatively low-frequency applied fields. Furthermore,

the speed and simplicity of a single laser scan enabled a deeper investigation of the

three-parameter oscillating field system.

5.2 Bifurcation Structure and the Measurement

of Orbital Periods

To analyze the measurements to be discussed in Chapter 7, we will need values for

the periods of the 2/3 and 3/4 orbits at E = -2.05. These quantities are easily

calculated classically, but are challenging to find quantum mechanically through re-

currence spectra. Nevertheless, because a central goal of this thesis is to extract

classical information from quantum spectra, we undertook such a measurement.

Classical mechanics relates the period of an orbit to its action by T = (27r)aS/E. 2

This formula is easily applied to isolated peaks in recurrence spectra by measuring

their action at several values of e and finding the slope. However, the procedure is

challenging to apply in regions where several orbits with similar action contribute to

a recurrence. Indeed, the method fails if the experimental resolution is not sufficient

to resolve individual orbits unless one can argue that only a single orbit contributes

significantly to the recurrence strength. A special experimental difficulty in the mea-

surements described here is that, because small electric fields were used, the actions

of recurrences are more sensitive to stray electric fields than they were in the E = -0.4

measurements described in Sec. 5.1.

Figure 5-6 shows low-action experimental recurrence spectra measured at energies

near the saddle point, E = -2. Two types of bifurcations occur in this region. One

is the bifurcation of an orbit from a repetition of the uphill orbit. These bifurcations

are described in [CJS+95], and are well understood. The 6/7 and 7/8 bifurcations

of this type produce the strong recurrences at the action of U7 and U8 in Fig. 5-6.

2The factor 27r results from our definition of S.
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Figure 5-6: Experimental recurrence spectra near E = -2. Laser energy
was scanned from E = -7.25 cm - 1 to E = -6.61 cm - 1 as the electric
field was varied to maintain a constant scaled energy. The spectrum at
e = -1.9 covers 240 < w < 251 while the spectrum at E = -2.1, which
needed a smaller electric field for the lower scaled energy, covers 252 <
w < 264. The intermediate spectra cover ranges of w intermediate
between these extremes. The dashed lines mark the actions of the
uphill parallel orbits Uk. The solid lines terminating at e = -2 mark
the actions of the downhill parallel orbits Dk. The strong recurrences
at the action of U7 and Us are caused by the 6/7 and 7/8 bifurcations,
respectively. The principal contribution to the recurrence at the action
of D2 is from the 2/3 orbit, while the principal contribution to the
recurrence at the action of D 3 is from the 3/4 orbit.
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The second type is the bifurcation of an orbit into the downhill orbit. As the energy

increases across the saddle point, complex infinite sequences of these bifurcations

occur (see Figs. 2-5 and 2-6). Spectra in this regime have been previously published

[CJS+95], but without detailed analysis. The peaks in Fig. 5-6 at the action of D 2

and D 3 are generated in this second type of bifurcation. The strength of the peak at

D 2 is primarily generated by the 2/3 orbit, while the peak at D 3 is generated by the

3/4 orbit, with some contribution from the 3/5 and 3/6 orbits.

The high-action peaks in Fig. 5-6 (e.g. U15 ) are shifted with respect to the classical

actions of repetitions of the uphill orbit. This may result from a residual stray electric

field of larger than usual size. The electric field in these spectra is quite small, typically

F P 1.2 V/cm. An error of 10 mV/cm corresponds to a shift in action of 0.02 at

S = 10. Comparison with the observed shift in Fig. 5-6 indicates that the error in

setting F must be 20 to 30 mV/cm. This is larger than expected, but not unthinkable.

Nevertheless, much information, qualitative and quantitative, can be extracted from

these spectra. The principal reason for this is that the effect of an error in field

strength is a shift in action proportional to the size of the error. The measured

period, which is found from the slope of the action, is sensitive to such an error only

to second order.

In conjunction with this study, V. Kondratovich computed the recurrence spec-

trum using the method of Sec. 5.1.2. Figure 5-7 shows the results [Kon]. The mea-

surements in Fig. 5-6 were augmented with a second data set collected on a different

day. The computed spectra are compared with this second set in the expanded plot

shown in Fig. 5-8. The absence of noise and the large range of w in the computed

spectra allow a more accurate analysis of the behavior than can be achieved from the

experimental results. In addition to the recurrences that are observed in the experi-

mental data, a few peaks are clearly visible at some of the higher repetitions of the

downhill orbit, such as D6 and D11. Note that because the strengths of these peaks

are small (compare with the strong 6/7 and 7/8 orbits at U7 and Us), small errors in

measurement cause relatively large fluctuations in the recurrence strength.

To analyze the data, the recurrences at D 2 and D 3 in the experimental and com-
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Figure 5-7: Computed recurrence spectra near E = -2. These spectra
cover 240 < w < 265. The dashed lines mark the actions of the uphill
parallel orbits Uk. The solid lines extending to E = -2 mark the ac-
tions of the downhill parallel orbits Dk. The labels Uk and Dk identify
recurrences discussed in the text. Compare with Fig. 5-6.
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Figure 5-8: Experimental (solid line) and computed (dashed line) re-
currence spectra near E = -2. The computed spectra are enlarged from
Fig. 5-7. The experimental spectra are a second data set complemen-
tary to that in 5-6. Solid lines extending to E = -2 mark the action
of the downhill orbits D2 and D3 . Dashed lines mark the action of the
uphill orbits U3 and U4 . Triangles are actions of recurrences extracted
by fitting the computed spectra to Gaussians. The fractions indicate
the locations of bifurcations listed in Table 5.1.
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Orbit up, edown
2/3 -0.795 -2.092
2/4 -0.397 -2.009
2/5 -0.244 -2.001
3/4 -1.113 -2.220
3/5 -0.608 -2.041
3/6 -0.397 -2.009

Table 5.1: Bifurcation energies for several orbits important in spectra
near e = -2. The energy at which the orbit m/n bifurcates from the
nth repetition of the uphill orbit is cup. The energy at which the orbit
m/n bifurcates into the mth repetition of the downhill orbit is Edown

puted spectra have been fitted to Gaussians to extract the actions of the recurrences.

The results for the computed spectra are shown in Fig. 5-8 and compared with the

results for the experimental spectra and classical computations in Figs. 5-9 and 5-10.

The peaks in the computed spectra are narrower because they are computed using a

larger range of w than for the experimental spectra. Consequently, they reveal the

presence of other orbits with greater clarity.

We begin by examining the recurrences near the action of the 2/3 orbit. As a

reference, Table 5.1 gives the bifurcation energies of several of the important orbits in

this region. The resolution of the experiment is so low that only a single recurrence

is visible in Fig. 5-8, whereas the computed spectra reveal that a small recurrence

develops near E = -1.95 and evolves to higher action as e increases to -1.9. However,

it is weak, and the primary contribution to the low-resolution measurement arises from

the 2/3 orbit. The classical calculation shown in the lower half of Fig. 5-9 reveals that

the 2/4 and 2/5 orbits bifurcate from the downhill orbit and evolve toward higher

action as E increases. Comparison between the top and bottom of the figure leads

to the conclusion that the secondary recurrence in the computed data is generated

by the 2/4 and 2/5 orbits. The computed spectra clearly reveal that the 2/3 orbit

produces the primary contribution to the recurrence strength. Although there is some

scatter in the positions, the experimental data are consistent with this conclusion.

The period is extracted by fitting the actions of the 2/3 orbit to a line and taking its
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Figure 5-9: Action of the 2/3 orbit in a bifurcation region: measurement

and theory. Top: Circles are experiment (solid and open represent two
data sets). Triangles are semiquantal computation. The solid line is a
fit to the experimentaldata. The dashed line is a fit to the semiquantal
computation. Bottom: Boxes are computed classical actions of some
orbits in this region. The curved line ending to is -2 is the action
of the downhill orbit D2 = 3.720. Th e other orbits are the 2/3, 2/4, 2/5, and
(at T = -1.99) the 2/6. The solid and dashed lines are the fit from the
upper plot. The fit to the experiment yields 5 = (0.60 ± 0.05)E +- 2.38,
implying T hboring 3.75 or 031. The fit to the semiquantal computation
yields 5 = (0.57 ± 0.02)E + 2.33, implying t = 3.60 ±- 0.12.

slope. The results plotted in Fig. 5-9 for the experimental data and for the computed

spectra agree well with eah other and unforwitunately the classical action of the 2/3 orbit.

The result of the least squares fit for the measured data is t = 3.75 ± 0.31, in good

agreement with the actual period, T = 3.720. The result for the computed spectra is

t = 3.60 ± 0.12. The uncertainties here are statistical, and do not include possible

effects from neighboring orbits or errors in field calibration.

Now, we turn to the 3/4 orbit. Our interest in this orbit developed after the

spectra were obtained, and unfortunately the measurements do not focus on its region
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Figure 5-10: Action of the 3/4 orbit in a bifurcation region: measure-
ment and theory. Top: Circles are experiment (solid and open represent
two data sets). Triangles are semiquantal computation. The solid line
is a fit to the experimental data. The dashed line is a fit to the semi-
quantal computation. Bottom: Boxes are computed classical actions.
The curved line ending to E = -2 is the action of the downhill orbit
D3 . The other orbits are the 3/4, 3/5, 3/6, and 3/7. The solid and
dashed lines are the fit from the upper plot. The fit to the experiment
for E < -2.05 yields S = (0.70+0.05)E+3.13, implying T = 4.40+0.31.
The fit to the semiquantal computation yields S = (0.62+0.02)E+ 2.97,
implying T = 3.91 ± 0.15.

of greatest strength, -2.25 < E < -2. The computed spectra in Fig. 5-8 reveal that as

E increases the 3/4 orbit loses recurrence strength more rapidly than did the 2/3 orbit

as E increased above -2. As the 3/4 orbit loses recurrence strength, others gain until

they have equal strength near e = -2.025, where a single recurrence with action equal

to the average of its constituents is visible. At higher E, the various orbits separate,

and the 3/4 orbit is again visible in the computed spectra. However, it is too small

to be seen in the experimental spectra. Figure 5-10 compares actions extracted from

the experimental and computed spectra with the classical calculations. Because of
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the superior resolution of the computations, we can use values of the action of the 3/4

orbit for E < -1.9 to extract the period, whereas we must limit the experimental data

to E < -2.05. A fit gives T = 4.40±0.31 for the experimental data and T = 3.91±0.15

for the computation. The computed result is in much better agreement with classical

value, T = 3.915, than is the experimental result.

Because of the problems of interpreting recurrence spectra, particularly in regions

of bifurcations, the critical reader might remain unconvinced that we have actually

observed the 2/3 and 3/4 orbits here. However, the measurement with an oscillating

field described in Chapter 7 will clearly show that these recurrences are primarily

generated by these orbits. The results of this section reveal that although one can in

principle measure classical quantities from quantum spectra, actually doing it may

not be easy.
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Chapter 6

Recurrence Spectroscopy in an

Oscillating Field

This chapter describes experimental recurrence spectra measured in parallel static

and oscillating electric fields. The results are compared with the semiclassical theory

described in Chapter 2 and with the results of approximate semiquantal Floquet com-

putations. Recurrence spectra generated with the computational methods described

in Chapter 3 are presented and compared with closed orbit theory. The results for

hydrogen show good agreement with closed orbit theory. A core-scattered orbit in

lithium is also examined, and an attempt to predict its interaction with the oscillating

field is discussed. Many of the results here have been published in the paper reprinted

in Appendix D.

6.1 Confrontation Between Experiment and The-

ory at e = -0.4

We chose to work at E = -0.4 for our first experimental studies of recurrence spectra

in a time-dependent field because the regime is experimentally accessible, many repe-

titions of recurrences at the action of the parallel orbit are strong and easily studied,

and because the proximity of the 1/2 bifurcation at c = -0.397 held the possibility
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of interesting behavior.

Figures 6-1 and 6-2 show recurrence spectra recorded at two fixed values of f as

& is varied. Among the prominent features in these spectra are the strong second

repetition at S = 1.4 that is largely unaffected as C changes, regions where all re-

currences are eliminated, and other band-like regions where the recurrences maintain

their strength. As will be explained, these bands exist close to where the period of a

repetition of the parallel orbit is an integer multiple of the period of the oscillating

field.

Because the frequency of the field is a variable in these plots, it is natural to

compare the periods of the orbits to the frequency of the field, for it is reasonable to

expect that the period of an orbit may determine how it interacts with a time-periodic

perturbation. However, a recurrence spectrum is plotted with respect to action, and,

because the period and action of an orbit are related by T = aS/OE, the action of

an orbit does not indicate its period. We choose to relate the action of a recurrence

to its period using the ratio of period to action for the uphill orbit U1, and use this

ratio to draw curves that mark the action accumulated by an orbit in the time that

the oscillating field completes an integer number of cycles.

Most of the orbits contributing to the recurrences have periods and actions similar

to some repetition of the uphill parallel orbit because they were created in bifurcations

from it. The ratio of action to period for any of the strong recurrences is therefore

close to the ratio for the uphill orbit because strong recurrences are typically close

to their bifurcation energy. From a classical analysis at E = -0.4, the orbit U1 has

$1 = 0.690 and T = 1.35. The time for the field to oscillate through n cycles is

1= (27r/c)n, and in this time an electron moving along the z axis accumulates action

S = (S1/T 1)t. Therefore, lines of constant time along which an orbit with a period

and an action equal to a repetition of the uphill orbit experiences a constant number

of field-cycles are given by the expression

=2. (6.1)
(Ti )S
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Figure 6-1: Experimental recurrence spectra, e = -0.4, f = 0.005,
0.12 < & < 0.6. Data come from measurements in the range 146 <
w < 158. The dashed lines are contours generated from Eq. (6.3),
marking where ak = 0.2. The solid curved lines mark the action at
which a repetition of the uphill orbit has a period that is an integer
multiple n (listed on the right) of the period of the applied field. The
axis on the top marks the number of repetitions k completed by the
uphill orbit.

This relation is plotted with solid curved lines in Figs. 6-1 and 6-2. The surviving

recurrences are clustered near these lines, meaning that trajectories with orbital pe-

riods that are an integer multiple of the period of the field are least perturbed. This

result was surprising, for we had expected that these orbits, which are in some sense

resonantly perturbed, would be the most affected.

For a deeper understanding of the behavior, Fig. 6-3 shows a slice through Fig. 6-1

at & = 0.32 for increasing f. All of the recurrences lose strength as f is increased.

Some fall off quickly while others persist to much stronger fields. The persistent

recurrences belong to the bands in Figs. 6-1 and 6-2. Additionally, most of the

recurrences show one or two small revivals as the field is made yet stronger. We will
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Figure 6-2: Experimental recurrence spectra, e = -0.4, f = 0.008,
0.12 < CD < 0.6. See the caption of Fig. 6-1 for a description of the
quantities plotted here. The overall scaling is the same as for the f =
0.005 data.
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Figure 6-3: Experimental recurrence spectra, E = -0.4, 1 = 0.32,
0.0 < f < 0.022. The solid lines mark the positions of the first zero in
the recurrence strength as predicted by closed orbit theory restricted
to the uphill parallel orbit.
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examine these data in two ways. The first approach uses the approximation that

all the orbits in the system have periods and actions equal to the uphill orbit. This

allows the derivation of simple analytic formulas which describe the overall spectral

structure. The second approach employs a detailed calculation using closed orbit

theory with an exact treatment of the properties of all the orbits in the system.

However, as a preliminary step to gain confidence in the accuracy of our data, we

present the results of semiquantal Floquet computations of the spectra.

6.1.1 Semiquantal Floquet Computations

Approximate semiquantal Floquet computations of these spectra were developed by

V. Kondratovich. These computations combine the ideas of Floquet analysis, dis-

cussed in Sec. 3.4, with the 'semiquantal' method outlined in Sec. 5.1.2. The de-

velopment of this computational method was motivated by the experimental results,

following the tradition in which experiments motivate computations, which in turn

give confidence in the experiments and suggest new directions. Once the computa-

tions are trusted, they can be better than the experiment for making detailed studies

because they do not suffer from limitations in resolution, calibration, and noise. The

computational method is described in [KD97a]. In contrast with the methods pre-

sented in Chapter 3, these computations do not take into account the lithium core.

However, we have seen in Chapter 5 that the hydrogenic calculations for a static field

work well at E = -0.4, and therefore should be valid here in the oscillating field.

Figures 6-4 and 6-5 show the results of these calculations [Kon], done over the

same range of w as the corresponding experimental spectra. The agreement with the

experimental spectra inspires confidence in both theory and experiment. Figure

6-6 is a mirror plot of experiment and Floquet computation for (c = 0.32 and f =

0.005. Although there are small discrepancies, the overall agreement is satisfying.

In particular, both show weak recurrences near S = 5 and S = 14, and strong

recurrences near S = 9 and S = 18. We will show later that the weak recurrences

have lost their strength because of their proximity to the first minimum in the Bessel

function, Eq. (2.51). Among other things, these results suggest that the calibration
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e 6-4: Semiquantal Floquet computation, E = -0.4, C = 0.32,
f 0.021. Compare with Fig. 6-3.
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0.60. Compare with Fig. 6-2.
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Figure 6-6: Recurrence spectra, e = -0.4, D = 0.32, f = 0.005. Top:
Floquet computation. Bottom: Experiment. Overall strengths are
scaled for best agreement.

of the rf field amplitude, described in Sec. 4.8, is accurate. Further comparisons with

the experiment and closed orbit theory at other frequencies and field amplitudes are

shown in Fig. 6-12.

6.1.2 A Test of Closed Orbit Theory

The spectra shown in the previous sections allow a detailed test of time-dependent

closed orbit theory, described in Chapter 2. In this section, we make the simplify-

ing approximation that each of the orbits has a period and an action equal to some

repetition Uk of the uphill parallel orbit. We refer to this approximation as the "re-

stricted" theory. With this simplification it is unnecessary to compute the recurrence

strength of each orbit, for we need only examine the change in its strength relative

to its unperturbed recurrence strength.

According to the discussion in [HD97], the magnitude of the ac dipole moment
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for the kth repetition of the parallel orbit is related to that for the first by

1Zk(w)I = IZ 1 P)I sin(kDtl/2)(62

sin(F;/2) I(6.2)

where T1 is the period of the first repetition, U1. It follows from Eq. (2.51) that as f

is increased at a fixed value of Co, each recurrence is weakened by a factor ak given by

ak = 1  I sin (k~Ti/2) ) J2(Ck ). (6.3)
sin(DTi/2)

Figure 6-7 shows the magnitude of the ac dipole moment, IZk() 1, as a function of

repetition number and frequency, calculated as outlined in Sec. 2.3 for the uphill orbit.

Because jZk(C) is proportional to the falloff coefficient ck, the factor ak can be found

from this surface using Eq. (6.3). Because ak has a maximum value of unity where

ck = 0, the curved valleys in Fig. 6-7 correspond to the peaks in Figs. 6-1 and 6-2.

The peaks in those recurrences are composed of orbits with small ac dipole moments

which interact weakly with the oscillating field. From Eq. (6.2), the locations of these

ridges are given by k&T1/2 = mr, where m is an integer. From this, the condition

Tk = kT1 = mt is found, where t is the period of the field. We have already observed

this result in Sec. 6.1, where we noted that recurrences with periods equal to an integer

multiple of the period of the field were least perturbed. The ridges in Fig. 6-7, where

orbits have large ac dipole moments, correspond to orbits that interact strongly with

the field and thus show little or no recurrence strength in the oscillating field. Note

that because Eq. (6.3) is just the factor by which the recurrence strength is reduced,

weak recurrences along the ridges in Figs. 6-1 and 6-2 (see, for example, the k = 10

and k = 11 recurrences) do not conflict with the prediction of Fig. 6-7.

The dashed lines in Figs. 6-1 and 6-2 are contours corresponding to ak = 0.2. Most

strong recurrences fall inside these contours. A few recurrences, however, lie outside

these regions. These are created by non-parallel orbits whose periods and shapes are

different from the parallel orbit. For these orbits the restricted theory is not a good

approximation. The treatment of these recurrences is discussed in the next section.
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Figure 6-7: Classical calculation of the ac dipole moment 12k(w) of
the uphill parallel orbits Uk for 1 < k < 40 and 0.12 < Co < 0.64 at
E = -0.4. Although we plot it as a continuous function, IZk()l is
defined only discretely at each closure.
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Equation (6.3) predicts that as f increases the recurrence strength of an orbit

drops to zero and then shows second and successive maxima. Figure 6-8 compares the

measured strength of the recurrence at U2 with the prediction of Eq. (6.3) at c~D = 0.32.

The experimental recurrence strength and the results of the Floquet computation are

in good agreement with each other and with closed orbit theory. Because the energy

E = -0.4 is close to the 1/2 bifurcation energy, E = -0.397, the 1/2 orbit contributes

significantly to the recurrence and has nearly the same properties (S, t, 2) as U2 ,

and therefore the restricted theory should apply well. Indeed, classical calculations

of ck for the two orbits differ by only a part in a thousand. (The values of IZkI for U2

and 1/2 are 1.5814 and 1.5801, respectively.)

The curved solid lines in Figs. 6-3 and 6-4 plot the location of the first zero

of the Bessel function (6.3) for the other repetitions of the uphill orbit. The overall

structure is contained within the restricted theory, but there are some clear systematic

differences. These are due to the approximation in the restricted theory and are

explained in the detailed calculation described below.

We conclude this section by noting the similarity between the effect of the oscillat-

ing field shown in Fig. 6-8 and the recent results from the crossed-fields experiments

in the Welge group [NUF+97]. They examine recurrence spectra of diamagnetic hy-

drogen as an electric field perpendicular to the magnetic field is turned on. They

observed that recurrences fall off as squared Bessel functions. The reason for the sim-

ilarity between these two seemingly different systems is that both involve symmetry

breaking. The crossed-fields experiments involve spatial symmetry breaking, while

the experiments here involve temporal symmetry breaking.

6.1.3 Detailed Closed Orbit Theory

Computing recurrence spectra in an oscillating field from time-dependent closed orbit

theory is a complicated task. The first step is to find the closed orbits and their

recurrence strengths in the time-independent system. Although these calculations

are difficult because uniform approximations must be included near bifurcations, they

have shown good agreement with experiments in electric fields [CJS+95]. Then, to
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Figure 6-8: Strength of recurrence at U2 vs. j for c = -0.4 and ; =
0.32. Squares: experiment. Circles: Floquet computation. Solid line:
prediction of closed orbit theory for the uphill orbit U2 . The prediction
for the 1/2 orbit is indistinguishable from that for U2 on this scale.
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orbit 00 S T I k(J = 0.32)1 lo = 2.4/(IZklw) Strength

U13  0 8.973 17.57 1.223 0.013 4.9 x 10-

6/13 14.086891 8.968 18.45 0.662 0.024 6.4 x 10- 3

5/13 20.510503 8.939 20.02 0.193 0.082 2.0 x 10-

Table 6.1: Orbits contributing to the recurrence with action near the
13th repetition of the parallel orbit. 00o is the initial angle in degrees, fo
is the field strength corresponding to the first zero in ak. The column
on the right is the relative recurrence strength of the orbits in a static
field [Gao]. The calculations use the value w = 152 for comparison with
the experiments.

incorporate the oscillating field, the ac dipole moment of each orbit at the frequency of

interest must be computed. Finally, contributions from individual orbits are summed

coherently and the result is convoluted with a Gaussian that matches the resolution

of the experimental recurrence spectrum. We do not describe the details of such

calculations here, but simply present results. A single orbit can dominate the strength

of a recurrence, in which case it is adequate to calculate the falloff rate ck of just that

orbit. Before presenting general results, we illustrate the method for such a case.

The recurrence with action near the 13th repetition of the uphill parallel orbit,

S = 8.973, is visible in Fig. 6-3, where it displays significant recurrence strength

beyond the predicted zero at f = 0.013. Three orbits make large contributions to

the strength of this peak: U13, the 6/13 orbit, and the 5/13 orbit. Their properties

are summarized in Table 6.1. The 6/13 and 5/13 orbits are illustrated in Figs. 6-9

and 6-10, respectively. They have similar actions, but periods that differ by more

than 10%. The differences in the periods and the shapes of the orbits are manifest in

their different ac dipole moments. The 6/13 orbit has the largest recurrence strength

because it is close to its bifurcation energy. Its ac dipole moment indicates that this

orbit should have a first zero at f = 0.024, and a glance at Fig. 6-3 shows that the

recurrence does indeed approach zero close to this value, rather than near f = 0.013 as

predicted for U13 . The small contribution from the parallel orbit quickly disappears,

while the contribution of the 5/13 should persist to I - 0.08. This is our first example
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Figure 6-9: 6/13 orbit. Left: Trajectory in
Trajectory in (p, v) coordinates.
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Figure 6-10: 5/13 orbit. Left: Trajectory in (i, 3) coordinates. Right:
Trajectory in (p, v) coordinates. Note that the scales differ from those
in Fig. 6-9.

128

I I I I I0.4

0.2

0

-0.2

-0.4 L--
-0.2

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
-0.2



0.022

0.02

0.018 A

0.016
A A

0.014 A A
A A

0.012 A A
f A A

0.01 A A
A A -

0.008 A

0.006 A A
A .A

0.004 A .A A

0.002 A A A A A A A A

0 A I
0 5 10

Figure 6-11: Closed orbit theory calculation of recurrence spectra, E =
-0.4, C = 0.32, 0.0 < f < 0.020. Compare with the experimental
spectra in Fig. 6-3 and the semiquantal computations in Fig. 6-4.

of how the oscillating field serves as a tool to study the classical motion underlying

these spectra: we clearly see that the 6/13 orbit is the primary constituent of the

recurrence peak. The use of the oscillating field as a tool to study the properties of

orbits is examined in greater detail in Chapter 7.

Figure 6-11 shows the results of detailed closed orbit calculations of the spectra at

D = 0.32 [Gao]. These calculations were carried out for the same range of w as in the

experiment. The needles are the strengths of each orbit, which are then convoluted

to match the widths of the experimental peaks. Figure 6-12 compares the experiment

with Floquet computation and closed orbit theory at several values of C. The Floquet

computation and closed orbit theory show the greatest difference in the amplitude of

the second repetition. for which the computation always predicts a larger amplitude.

Comparison with experiment does not resolve which model, if either, is correct.

An efficient way to compare and summarize the predictions of the theoretical

methods with the experimental data is to fit the peaks in Figs. 6-3, 6-4, and 6-11 to
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Figure 6-12: Comparison between closed orbit theory, Floquet compu-
tation, and experiment at E = -0.4, f = 0.005. Solid line: Closed
orbit theory. Dashed line: Floquet computation. Inverted line: exper-
iment. The values of C& from top to bottom are 0.32, 0.44, 0.48, 0.52,
0.56, 0.60. The dashed line is not visible in many places because of its
good agreement with closed orbit theory. The overall scaling among
the three approaches is adjusted for good agreement.
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Figure 6-13: Falloff coefficients: experiment and theory. Solid line:
Classical computation of IZk()w for uphill orbits Uk for & = 0.32 and
w=152. Points are fits of spectra at & = 0.32 to the form of Eq. (6.3).
Squares are from experimental measurement (Fig. 6-3), circles are from
Floquet computation (Fig. 6-4), and triangles are from closed orbit
theory (Fig. 6-11).
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the form of Eq. (6.3) and plot the resulting falloff coefficients ck, as we have done in

Fig. 6-13. Also shown is the prediction of the restricted theory, ck = IZk(w = 0.32)1w,

where 1Zk is computed for the uphill orbit. Note that many of the recurrences

have several contributing orbits with different falloff coefficients, and therefore the

general functional form is given by a sum of squared Bessel functions. Nevertheless,

fitting to a single function is a useful way to summarize the data. The results reveal

that while the restricted theory gives a good prediction of the overall behavior, an

even better description is given by the detailed theory (triangles) that treats all of

the orbits. The Floquet computations show excellent agreement with the closed

orbit calculations. In the experimental data several repetitions show smaller falloff

coefficients (e.g., k = 6, 7, 8). This is partially the result of noise. The recurrences with

the largest coefficients have the fewest strong peaks in the spectrum, and consequently

less averaging over noise occurs in the fitting process. The results could also indicate

a slight under-calibration of the oscillating field strength. The size of miscalibration

that this suggests is less than the estimated 10% accuracy of the calibration.

6.1.4 Untransformed Spectra

Recurrences arise from periodicities in the spectra, and so it is of some interest to

look at the spectra themselves. Raw, untransformed spectra are shown in Fig. 6-14.

As the strength of the oscillating field increases, the spectral lines develop sidebands

which can combine with sidebands from other states to generate complex structures.

Near f = 0.005, a pleasing orderly structure develops. This region is shown more

clearly in Fig. 6-15.

These structures are examined and explained in [KD97a]. Figure 6-16 displays

the development of the rf sidebands. Note that the step size in the experimental

scans is similar to the width of the peaks, creating the pointed, triangular shaped

peaks. Spectra with smaller step sizes can be obtained, but this time-consuming

process is unnecesary for collecting recurrence spectra because they examine low-

resolution behavior. In any case, the agreement between semiquantal computations

and experiment at this level of detail give confidence in both.
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Figure 6-14: Untransformed experimental spectra, e = -0.4, CD = 0.32,
0.0 < f < 0.022. Each scan is offset from its baseline value due to a
large continuum background.

Figure 6-3 reveals that many of the orbits do not contribute to the spectrum as

f becomes large. Indeed, there are just three sets of contributing orbits: the second

repetition, a group centered on the 14th repetition, and a group centered on the 27th

repetition. The uphill orbits Uk with action S = 0.69k contribute periodicities at

wavelengths Aw = 1/S = 1/(0.69k), where k is the repetition number. The second

repetition contributes to the spectrum with a wavelength of Aw = 0.72. The 14th

repetition contributes with a wavelength Aw = 0.1, so it is related to the evenly

spaced peaks. The 27th repetition contributes with a wavelength Aw = 0.053. It is

the source of the very narrow lines in the figure. As f becomes increasingly strong,

all of the orbits lose strength and the spectrum evolves into a uniform continuum. A

subject for further experimental study would be to perform detailed high-resolution

measurements of the positions and widths of the states as ionization effects develop.

This would be the energy-domain equivalent to time-domain microwave-ionization

experiments. It is unclear whether anything new would be learned.
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Figure 6-15: Untransformed experimental and computed spectra, e =
-0.4, & = 0.32, f = 0.005. Top: experiment. Bottom: Floquet com-
putation. A continuum background of 1200 counts is subtracted from
the experimental data, which are shifted to the left by 0.04 to account
for an offset resulting from a residual stray electric field.
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Figure 6-16: Untransformed experimental and computed spectra, plot-
ted as a function of w. (Figure courtesy of Vladimir Kondratovich).
The inverted spectrum is the computation. The upper spectrum is at
f = 0.0; the lower spectrum is at f = 0.005. Both are at E = -0.4 and

= 0.32. The solid vertical lines on the bottom mark the positions of
Stark states. The dotted lines indicate the positions of rf sidebands.
The pairs (nl, n2) are the parabolic quantum numbers of the states.
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6.1.5 High-Frequency Behavior of AC Dipole Moment

We learned in Sec. 6.1.2 that at low applied frequencies 12k(w)I is zero when the

period of the uphill orbit Uk is an integer multiple of the period of the field. Here

we examine the ac dipole moment of these orbits at frequencies up to and above the

orbital frequency of the fundamental, U1 . We will learn that when the period of the

applied field equals the period of U1, all the repetitions Uk are strongly perturbed by

the field.

Figure 6-17 shows IZk(w)t computed for the uphill orbit Uk as a function of D

and repetition number k using the method demonstrated in Sec. 2.4. Figure 6-18

shows slices through IZk(w) for several repetitions k with the computation extended

to C = 10. The frequency of U1 is 0o = 27r/T = 4.65. An examination of the results

for k = 1 and k = 2 reveals that Ak () I varies slowly as a function of & for low

repetition numbers. As the repetition number increases, IZk(O)I and IZk(0o)I increase

in a manner that appears linear in k in Fig. 6-17. This agrees with Eq. (6.2), which

predicts that IZk(m&o)j = kj1(m4o), where m is an integer. Furthermore, between

0 and Co, IZk(C)I shows small local maxima spaced by nodes in Fig. 6-18. The number

of nodes is one less than the repetition number of the orbit.

An examination of the result for k = 15 in Fig. 6-18 shows that as C& increases above

w0 , IZkj again decreases, until reaching another maximum at iC = 2 0o. Resonant-like

behavior in IZkI can be seen at C = CDo and C = 2 0 : as k increases, IZkI narrows

and increases in height. We now see that the general behavior of an orbit exposed to

an oscillating field is to interact strongly with it when the frequency of the field is a

multiple of the orbital frequency.

As the frequency increases more, jk(CD = mo)l slowly decreases. As discussed

in Chapter 7, Z(&) is the Fourier transform of the z(t) motion of an orbit. Because

the parallel orbit has high-frequency components resulting from sharp reflections off

the Coulomb potential, these maxima at multiples of the orbital frequency extend to

frequencies much higher than shown in the figures.
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Figure 6-17: AC dipole moment of the uphill orbit Uk vs. iC and repeti-
tion number k at E = -0.4. Although 12(C)) is plotted as a continuous
function, it is defined only discretely at each repetition.
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Figure 6-18: AC dipole moment for several repetitions of the uphill
parallel orbit, Uk. The 15th repetition extends off scale to 1Z15(0) =
12.21.
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Figure 6-19: Experimental recurrence spectra, E = -0.5, o = 0.32.
144.5 < w < 154.3. The solid lines mark the positions of the first zero
in the recurrence strength as predicted by closed orbit theory restricted
to the uphill parallel orbit.

6.2 Recurrence Spectra at e = -0.5

Data were also collected at E = -0.5 as an additional test of theory. Figure 6-19 shows

experimental recurrence spectra measured at C& = 0.32 as f is varied from 0 to 0.028.

There are no fundamental differences in the system at this energy compared with

C = -0.4, except that the 1/2 bifurcation energy, E = -0.397, is farther away. This

means that the 1/2 orbit moves farther off the z axis, and the restricted approximation

is less valid than at e = -0.4. The solid curved line in Fig. 6-19 is the location of

the first zero of ak for the uphill orbit. It reveals that the restricted theory gives

a good description of the overall structure of the system, although there are a few

recurrences in the figure that are not well described. Although the detailed theory

has not been applied at this energy, it is expected that it should be just as successful

here as it is at e = -0.4.

Figure 6-20 shows the strength of the recurrence at the second repetition, extracted
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Figure 6-20: Strength of the recurrence at the action of the parallel
orbit U2 , E = -0.5, wD = 0.32. Squares are the measurement. The lines
are plots of JO (ckf) for a fit to the experiment and for ck computed for
U2 and the 1/2 orbit.

from Fig. 6-19. The solid line is a fit to a squared Bessel function. The extracted

value 12(0.32)1 = 1.33 is close to the classical result for the orbit U2 , 122(0.32)1 = 1.43,

and for the 1/2 orbit, 121/2(0.32)1 = 1.37. Recall that these two orbits could not be

distinguished by the falloff rate at e = -0.4 because their values of IZI differed by

only a part in a thousand. Here, however, we begin to distinguish their contributions

to the recurrence strength. As expected from the proximity of the bifurcation, the

1/2 orbit gives the dominant contribution.

6.3 Computational Results, E = -6

We have seen in the previous sections that the experiment, closed orbit theory, and

semiquantal computations provide a consistent description of the behavior of Rydberg

atoms in oscillating fields at energies near e = -0.4. In the next chapter, spectra in

oscillating fields are examined at energies near the saddle point, c = -2. There are
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two other general regions of behavior, E > 0 and E < -2. We do not consider the

positive energy region in this thesis. At low energies, experimental measurements of

recurrence spectra are difficult because lower laser energies and higher rf frequencies,

extending into the microwave region, are required. Gathering recurrence spectra is

cumbersome at low energies because the classical scaling laws require that the laser

must be manually mode-hopped and scanned over more modes than are required

to measure a recurrence spectrum with equivalent action resolution at higher ener-

gies. For these reasons, experimental spectra for e < -2 have not been measured.

Although the semiquantal computations described in Sec. 6.1.1 should give a good

description of low-energy behavior in hydrogen, they do not treat alkali-metal atoms.

In contrast to behavior at high energy, core-scattering is an important effect at low

energies. Therefore, we turn to the quantum Floquet method described in Sec. 3.4

to compute recurrence spectra for hydrogen and lithium. We show that computa-

tions for hydrogen at E = -6 show good agreement with closed orbit theory before

considering lithium at E = -4 in the following sections.

The energy E = -6 was selected because, due to the absence of n-mixing, the

matrix to be diagonalized does not need to be excessively large. Additionally, the

oscillating field strength is kept below f = 0.1 to minimize the number of Floquet

sidebands. Up to ten sidebands on each side of each state were needed to produce

converged results at 90 < w < 110. We begin by discussing the spectrum in a static

field.

6.3.1 Static Field Recurrence Spectra

Figure 6-21 shows hydrogen recurrence spectra at E = -6. There are strong recur-

rences for S < 2 and 12 < S < 17. The uphill and downhill orbits have similar actions,

S. = 0.2858 and Sd = 0.2918, and similar periods, T, = 0.1435 and Td = 0.1594. The

actions of repetitions of these orbits are indicated by arrows along the bottom of the

figure. Strong recurrences are located where the action of a repetition of the uphill

orbit equals that of some repetition of the downhill orbit. This is a consequence of

the fact that orbits have a larger overlap with the nucleus under these circumstances,
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Figure 6-21: Computed recurrence spectra, hydrogen, E = -6. 90 <
w < 110. Down-pointing arrows mark the action of the downhill orbit.
Up-pointing arrows mark the action of the uphill orbit.

as described in Sec. 2.5. Recurrences are weak where the actions of the uphill and

downhill orbits are separated. While these weak regions would be difficult to study

experimentally because of experimental noise, they are easily studied with computed

recurrence spectra, which are noise free. For an examination of behavior in an oscil-

lating field, the isolated orbits simplify comparison with closed orbit theory because

they are composed of a single orbit.

6.3.2 Oscillating Field Recurrence Spectra

Figure 6-22 shows computed recurrence spectra in an oscillating field with frequency

C = 1.0 and amplitude up to f = 0.1. The Floquet computations use a maximum

of qm = 10 sidebands. The applied frequency is in the adiabatic regime, for the

frequency of uphill motion at this energy is Co = 43.8. The strong recurrences from

Fig. 6-21 interact weakly with the oscillating field, while the weak recurrences show

a significant decrease in strength as f increases.
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Figure 6-22: Computed recurrence spectra, hydrogen, e = -6, (o = 1.0,

f _ 0.1. 90 5 w < 110. The region within the dashed boxes is scaled
by a factor of 30.

Figure 6-23 shows the results of a classical computation of the ac dipole moments

IZk(1.0)I for the uphill and downhill orbits. Comparison with Fig. 6-22 reveals that

the weak recurrences have large values of 12k , while the strong recurrences have small

values. This is consistent with the observation from Fig. 6-22 that the weak recur-

rences are affected by the oscillating field more strongly than the strong recurrences.

Values for the falloff coefficients Ck, extracted from the computations by fitting to

Eq. (6.3), are compared with classical values of 1Zk(1.0)1 for repetitions of the uphill

and downhill orbits in Tables 6.2 and 6.3, respectively. Values are given only for some

isolated recurrences, for the strong recurrences contain both uphill and downhill or-

bits which obscure the analysis. The results agree with the classical values to about

2%.

We have now shown that we have a computational method that generates recur-

rence spectra that are consistent with closed orbit theory at low energies and weak

oscillating field strengths. Before examining results for lithium, we develop a theo-
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Figure 6-23: Classical computation of ac dipole moments IZk(CO)l at
E = -6 and <C = 1.0. Solid lines: uphill orbits Uk; dashed lines: downhill
orbits Dk. The values are plotted with impulses because IZk is defined
only for discrete values of the action. Note that large values of ZkI here
correspond to the recurrences in Fig. 6-22 that are strongly perturbed
by the oscillating field.
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Repetition, k Zk D = 1.0)j ck

10 0.1602 15.70
12 0.1848 18.35
13 0.1957 19.43
15 0.2143 21.30
20 0.2411 24.05
25 0.2370 24.10
30 0.2026 20.00
40 0.0638 6.118
60 0.2242 22.10
80 0.1231 11.37
120 0.1738 17.82

Table 6.2: Comparison between classical ac dipole moments, IZk(C)I,
and the falloff coefficient ck extracted from computed hydrogen spectra
at e = -6 and C& = 1.0. Values for several easily studied repetitions k
of the uphill orbit are given. Because T = 100 for the computations,
closed orbit theory predicts that ck = 100 x IZkI.

Repetition, k ,k (w = 1.0)1 ck

10 0.1846 18.47
15 0.2400 23.68
20 0.2577 26.01
25 0.2349 23.37
30 0.1751 17.41
66 0.2189 21.68
80 0.0264 2.579

120 0.0396 3.485

Table 6.3: Comparison between classical ac dipole moments, IZ(P),
and the falloff coefficient ck extracted from computed hydrogen spectra
at e = -6 and C = 1.0. Values for several easily studied repetitions k
of the downhill orbit are given. Because T = 100 for the computations,
closed orbit theory predicts that ck = 100 x 141k.
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retical framework for understanding the interaction of core-scattered orbits with an

oscillating field.

6.3.3 Interaction of Core-Scattered Orbits with an Oscil-

lating Field

Because core-scattered orbits can be viewed as combinations of hydrogenic orbits, it is

reasonable to expect that they should interact with an oscillating field through their

ac dipole moments, in the same way as hydrogenic orbits do. Here we outline the

computation of Z(D) for core-scattered orbits. The computational method developed

here is tested in the next section using a core-scattered orbit visible in computed

lithium spectra at E = -4.

Consider a core-scattered trajectory composed of three orbits with trajectories

zk (t) along the z axis. The z component of the composite trajectory can be written

z(t) = zi (t) + z2 (t - T1)+ z3 (t- T - T2), (6.4)

where zi(t) is zero unless 0 < t < T and T is the period of the orbit. From Eq. (2.43),

the ac dipole moment is

Z(w) = Z 1 + Z 2 e -i wT ' + Z 3 e -iw(T+T2), (6.5)

where Zk is the ac dipole moment of the trajectory zk(t). The predicted falloff rate for

the core-scattered orbit can then be found from the magnitude of Z. For z3 (t) = 0,

Z IJ satisfies

IZ12 = JZ,12 + 1Z212 + 2Re(ZiZ eT' ). (6.6)

In general, IZI depends on the order of the component trajectories. In principle,

the application of the oscillating field could reveal this order. A simple illustration of

this is at e = -4 and & = 1.0. Consider the (hypothetical) case of a core-scattered

orbit composed of two repetitions of the uphill orbit U1 and one repetition of the

downhill orbit D 1. Because these three different core-scattered orbits have the same
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action, they would be indistinguishable in static-field recurrence spectra. However,

they have different ac dipole moments: the orders U1 + U1 + D 1 and D 1 + U1 + U1 have

IZI = 3.84 x 10-2 while the order U1 + D 1 + U1 has 121 = 2.09 x 10-2. By examining

the reduction in recurrence strength as an oscillating field is turned on, it should be

possible to distinguish the orbit U1 + D1 + U1 from the other two.

6.4 Computational Results, E = -4

To examine the interaction of the oscillating field with core-scattered orbits, computa-

tions have been performed at E = -4. At lower energies near E = -6, core-scattering

is so strong that most recurrences have contributions from many core-scattered or-

bits. Because this complicates the analysis, we have chosen to work at E = -4, where

core-scattering is relatively weak but nevertheless present.

6.4.1 Static Field Recurrence Spectra

Figure 6-24 shows hydrogen and lithium recurrence spectra at E = -4. The uphill

and downhill orbits have similar actions, S, = 0.3459 and Sd = 0.3627. At low action

(S < 10), hydrogen and lithium have similar spectra. The positions of the peaks are

identical within the resolution of the calculation, and there are only small differences

in the recurrence strengths. The spectra differ at higher actions, where core-scattering

occurs.

The clearest example of a core-scattered orbit is at S = 14.8486, indicated with

the label (c) in Fig. 6-24. Table 6.4 lists the action, period, initial angle, and ac dipole

moment of this core-scattered orbit and its possible components. The combination

D1 9ig+U 23, with S = 14.8476, is in best agreement with the action of the core-scattered

orbit, and is therefore the most likely component. The two component orbits D 19 and

U23 are labeled in the figure with (a) and (b), respectively.
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Figure 6-24: Computed recurrence spectra, E = -4, 90 < w < 110.
Top: hydrogen; bottom: lithium. The label (a) marks the recurrence
D 19 , (b) marks the recurrence U23 , and (c) marks the core-scattered
recurrence discussed in the text, composed of D19 and U23.
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Orbit S T 80 2(p = 1.0)

U1  0.3459 0.2496 0 0.0437-i0.0055

U22  7.6104 5.4919 0 -0.1257-i0.0525

U23  7.9563 5.7415 0 -0.0911-i0.0253

U24  8.3024 5.9912 0 -0.0508-i0.0075
D1 0.3627 0.3168 180 -0.0629+i0.0100
D1 8  6.5286 5.7019 180 0.1107+i0.0003
D19 6.8913 6.0187 180 0.0526+i0.0070
D20 7.2540 6.3355 180 -0.0107+i0.0331

22/23 7.9542 5.9778 58.7096 -0.0241-i0.0037
19/20 6.8903 5.8324 135.576 0.0650+i0.0149
21/22 7.60304 5.93074 83.8946 -0.000637-i0.000113
23/24 8.30220 6.0236 20.9214 -0.0418-i0.00545
20/21 7.24846 5.8823 107.7504 -0.00588-i0.0296

D 19 + U23  14.8476 11.7602 - -
D 20 + U22  14.8643 11.8274 -
DIS + U24  14.8308 11.6931 - -

19/20 + 22/23 14.8445 11.8102 - -

(c) 14.8486 - -

Table 6.4: Properties of possible constituents of the lithium core-
scattered recurrence (c) in Fig. 6-24. These classical values are com-
puted for E = -4. 80 is the initial angle of an orbit in degrees. The
action listed for (c) is found from Fig. 6-24. It is in best agreement
with the action of the combination D 19 + U23.
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Figure 6-25: Computed recurrence spectra, hydrogen, E = -4, D = 1.0.
90 < w < 110. The spectra within the dashed boxes are scaled by a
factor 10 or 20, as indicated. The recurrences labeled (a) and (b) are
discussed in the text.

6.4.2 Oscillating Field Recurrence Spectra

Figure 6-25 displays the effect of the oscillating field on hydrogen recurrence spectra

at E = -4. The effects are much the same as at E = -6. Analysis reveals agreement

similar to that at E = -6 between classical computations of jZk and falloff coefficients

extracted from the spectra. Figure 6-26 displays the effect of the oscillating field on

lithium recurrence spectra in the same region. A fit to the recurrence strength of the

core-scattered orbit (c) gives 12(1.0)1 = 0.081. Table 6.5 gives the ac dipole moment

for several combinations of hydrogenic orbits using their properties listed in Table

6.4 and the method described in Sec. 6.3.3. These disagree with the result from the

lithium quantum computation for the core-scattered orbit (c) by close to a factor

of two. It is unknown if the disagreement results from problems with the quantum

computation or theory. More study is needed.
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Figure 6-26: Computed recurrence spectra, lithium, E = -4, D = 1.0.
90 < w < 110. The spectra within the dashed boxes are scaled by a
factor 20 or 40, as indicated. The labels (a), (b), and (c) are defined in
Fig. 6-24.

Combination j2(C = 1.0)_

D 19 + U2 3  5.02 x 10-2

19/20 + 22/23 4.49 x 10-2
D 19 + 22/23 3.05 x 10-

19/20 + U23  4.79 x 10-2

(c) 8.1 x 10-2

Table 6.5: Computed ac dipole moments for possible constituents of
the core-scattered recurrence (c) in Fig. 6-24. The value given for (c)
is found from a fit to the data in Fig. 6-25.

149

I I I
(a) (b) (c)

X40 X20 X20



150



Chapter 7

Quantum Measurement of a

Classical Trajectory

The previous chapters have shown that recurrence spectra measured in an oscillating

field yield the magnitude of the ac dipole moment Zk(C') of the classical trajectory

of a closed orbit along the direction of an oscillating electric field, at the frequency

of the field. Because Zk(C) is the Fourier transform of the classical trajectory zk(t),

measurements of 12k(@)I over a finite range of frequencies can be inverted to give

a finite-resolution reconstruction of the trajectory. This represents a fundamental

advance in semiclassical techniques. Previously, information that could be learned

about an orbit from recurrence spectra was limited to its existence, action, period, and

stability. In this chapter we describe the details of a measurement of the trajectories of

the 2/3 and 3/4 orbits, and discuss the promise of the method as a general technique

for measuring classical trajectories from quantum spectra.

7.1 Experimental Measurements

We demonstrate the method using the 2/3 and 3/4 orbits at e = -2.05. Their

trajectories are shown in Fig. 7-1 and some of their properties are listed in Table 7.1.

These orbits are well suited to the measurement because their motion is simple but not

trivial and they are experimentally accessible over a range of frequencies large enough
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Figure 7-1: Classical trajectories of the 2/3 (solid line) and 3/4 (dotted
line) orbits, e = -2.05.

Orbit S T 00
2/3 1.151 3.719 155.5
3/4 1.700 3.914 128.2
D 2  1.153 4.546 180
D 3  1.730 6.820 180

Table 7.1: Action §, period T, and initial angle Oo (degrees) for several
orbits which are important in the reconstruction at E = -2.05.

to extract meaningful results. We showed in Sec. 5.2 that the recurrence strengths of

these orbits at E = -2.05 are larger than those of the corresponding repetitions of the

downhill orbits D2 and D3 , whose actions are nearly indistinguishable from the 2/3

and 3/4 orbits, respectively. The 2/3 recurrence is near its maximum strength at this

energy, whereas the 3/4 recurrence is past its maximum. The ac dipole moments for

the 2/3 and 3/4 orbits were measured at 17 frequencies between & = 0.6 and & = 4.0.

Figure 7-2 shows a typical data set, revealing the effect of an oscillating field on the

recurrence strength of the orbits. The frequency is & = 1.4. The recurrence strength

falls off as predicted by Eq. (2.51), JO2(Cj). IZk(w)I is extracted by fitting the data
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Recurrence Strength
(arb. units)

,I

Figure 7-2: Experimental recurrence spectra, CD = 1.4, E = -2.05. The
two peaks are at the action of the 2/3 (S = 1.15) and 3/4 (S = 1.70)
orbits. The solid lines are fits to a squared Bessel function, Eq. (2.51).
The fits yield 122/ 3 (1.4)1 = 0.417 and 123/ 4(1.4)1 = 0.221. (The classical

values are 1Z2/ 3(1.4)j = 0.437 and 123/4(1.4)1 = 0.219.) These data were
recorded from w = 248.8 to w = 260.6.
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Figure 7-3: Experimental measurement of 1Zk(w)I for (a) 2/3 and (b)
3/4 orbits, 0.6 < w < 4.0, E = -2.05. The circles are the experimental
measurements and the solid lines are the classical values. To verify
that these orbits are not downhill orbits, the dashed line shows I Zk(C)l
calculated for the downhill orbits (a) D2 and (b) D3 . The points at
C = 0 are found from Eq. (7.1).

to the predicted form as described in Chapter 6. The fits yield 1Z2/3(1.4)I = 0.417

and 1i3/ 4 (1.4)1 = 0.221. These values are in good agreement with the classical values,

1Z2/3(1.4)1 = 0.437 and I3/4(1.4)1 = 0.219.

Figure 7-3 shows the results of fits to measurements for frequencies between & =

0.6 and & = 4.0. The experimental values are in good agreement with the results of

exact classical calculations also shown in the figure. Should there be any doubt that

these are not downhill orbits, the results are clearly inconsistent with the values of

IZk(Q)I computed for the downhill orbits D2 and D3, also shown in Fig. 7-3. This

provides strong support for the conclusion in Sec. 5.2 that the strengths of these

recurrences are dominated by the 2/3 and 3/4 orbits.

To measure jIk(C)j accurately, it is desirable to choose a step size Af between

scans small enough to provide five or six scans before reaching the first minimum of
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the Bessel function. When the measurements were made the primary interest was in

the 2/3 orbit, with only secondary consideration given to the 3/4 orbit. Therefore, at

some frequencies the strength of the 3/4 orbit was measured with only a few steps in f

before its first minimum. Furthermore, because the 3/4 orbit is a weak recurrence, the

measurement of its strength is relatively susceptible to noise. For these reasons, the

experimental values of 13/4 () are somewhat less accurate than those of 22/ 3(PJ) .

Nevertheless, the results for both orbits merit study.

The original motivation for examining this region was to study the downhill orbit

at energies close to the saddle point, E = -2. For energies sufficiently close to the

saddle point, the downhill orbit ionizes for phases of the field that lower the saddle

point, while it is more stable for other phases that raise the saddle point. However,

the importance of the 2/3 and 3/4 orbits was not understood until the oscillating field

was applied and disagreement with the predicted classical behavior of the downhill

orbit was observed. The original problem remains interesting, but needs to be studied

in a region (perhaps at higher action) where the downhill orbit is clearly visible.

The lowest measured frequency was c = 0.6. While frequencies Co < 0.6 affect

the overall structure of the orbit, they do not determine fine details. For example,

the & = 0 component, Zk(0), is just a DC offset to the trajectory. Fortunately, we

have two methods that determine the low-frequency components of Zk (C). The first

method, which we describe here, gives Zk( = 0). The second, described in Sec. 7.3,

incorporates approximate knowledge of the period to find low-frequency values of

Zk(w) in a fit to the data.

The static dipole moment of an orbit, Zk(w = 0), is a real quantity related to the

action and period of the orbit by

1 27rk
0k( = 0) 2e+ (7.1)

2 4

This relation is found [Hag] using Eq. (2.36), this time to find the perturbation to
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the action caused by the static field:

O =f- -dt = - zI k(t)dt = -Zk(w = 0). (7.2)
OF Jo OF o

This relation is expressed in unscaled coordinates. One arrives at Eq. (7.1) by ex-

pressing the derivative BS/OF in scaled variables through the relationship

S = S(E, F) = 27rS()F - /4 . (7.3)

We evaluate Eq. (7.1) using experimentally measured quantities. The action is

easily measured with a single recurrence spectrum. The experimental measurement

of periods is discussed in Sec. 5.2. At E = -2.05, for the 2/3 orbit the experimental

values S2/ 3 = 1.15 and T2/ 3 = 3.75 give Z2/ 3 (0) = -2.04. The exact classical value

is Z2/ 3 (0) = -2.004. For the 3/4 orbit, the values $3/4 = 1.70 and T3/4 = 4.4 give

Z3/ 4(0) = -1.84. The classical value is Z3 / 4(0) = -1.341. The agreement with

theory for the 2/3 orbit is good. The discrepancy for the 3/4 orbit reflects the poor

experimental measurement of T3/4.

7.2 Determining the Phase

Measurement in the oscillating field yields values for IZk(&C). However, Zk(w) is a

complex function, and information about its phase is required to invert the Fourier

transform. Fortunately, because the trajectories in an electric field are time-reversal

symmetric, there is a method for extracting this phase. The argument is as follows

[Hag]. The ac dipole moment of an orbit zk(t) is1

Zk(w) = j' zk(t)e-'dt. (7.4)

1We use unscaled variables for notational simplicity in the remainder of the chapter. The equa-
tions have identical forms in scaled variables.
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This can be written

Zk(w) = e-iwTk/ 2 {T zk(t)e-iw(t-T/2)dt} (7.5)

e-iwTk/2 k Tk/2 + t')e-it' . (7.6)
= z(Tk 2 /2l J-Tk/2

Because of the time-reversal symmetry, zk(Tk/2+t') is an even function of t'. Because

the Fourier transform of an even function is even and real, Zk(w) can be expressed as

Zk(w) = e-iwTk/ 2 ZkI(w), (7.7)

where ZR(w) is an even, real function. Because it is the finite-time Fourier transform

of a well-behaved function, ZkR(w) is smooth and continuous.

The real function Zf(w) is found from IZk(w) I as follows. The sign of ZkR(w) at

w = 0 is fixed using the value given by Eq. (7.1). Note that the accuracy of this value

is not critical because only its sign is needed. This is important because the period

is difficult to measure accurately. Values of ZR(w) for higher-frequency points are

found from the requirement that Zk~(w) be smooth and continuous. This criterion

removes the "kinks" in the measured function at a zero-crossing like the one visible

for the 2/3 orbit in Fig. 7-3 at CD = 1.6. The resulting values of ZR(w) are shown

in Fig. 7-6, which will be discussed in more detail later. We are now ready to invert

Eq. (7.4) to find the trajectory zk(t).

7.3 Extracting the Trajectory

We use two methods to find zk(t) by inverting Eq. (7.4). The first method directly

evaluates the inverse Fourier transform from the values of Zk~(w) found directly from

the experimental data, while the second method performs the inversion using a least

squares fit to the data using a set of functions that form a basis for ZkR(w). The

latter method is well suited for dealing with noise in experimental data and for data

collected over limited frequency ranges. The former method, which we now describe,
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is simple and illustrative.

The measured trajectory zk(t) is derived from the ac dipole moment using the

relation
1 / mx

Zk(t) = m Zk(w)e'wtdw, (7.8)
27r f-wmax

where m,, is the maximum measured frequency. Although this inverse transform

includes w < 0 terms, the symmetry of zk(t) guarantees that these are trivially related

to the w > 0 terms. From Eq. (7.7), ZZ(w) = Zk(-w), from which it follows that

Zk (t) 1 J f (Zk(w)ewt + ZZ(w)e-wt) dw (7.9)1 ..x

= zJWm Z W) (e iw(t-Tk/2) + -iw(t-T /2)) dw (7.10)
1 /Wmax

= 1 Z, z(w) cos[w(t - Tk/2)]dw. (7.11)
7r J0

It is unfortunate that the period Tk appears explicitly in Eq. (7.11) because Tk is

difficult to measure experimentally. We can avoid this problem by finding the function

Zk(t + Tk/2) rather than zk(t). From Eq. (7.11),

zk(t + Tk/2) =- Z(w) cos(wt)dw. (7.12)
=r 0O

The trajectory is found as follows. A cubic-spline interpolation to the measured

values of ZkR(w) shown in Fig. 7-6 provides values of ZnR(w) on a grid of points on

which Eq. (7.12), approximated by a finite discrete sum, is evaluated. The results of

this method, applied to the 2/3 and 3/4 orbits, are shown in Fig. 7-4. Note that the

reconstructed trajectories are symmetric because the time-reversal symmetry of the

orbits has been built into the calculations. The trajectories are centered about t = 0

with no beginning or end specified because exact knowledge of the periods Tk is not

used.

Because of the limited frequency range of the reconstruction, large differences

between the exact trajectories and the reconstructions are apparent, particularly for

the 3/4 orbit. These differences occur because the experimental frequency range is
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Figure 7-4: Reconstruction of zk(t + Tk/2) for (a) 2/3 and (b) 3/4
orbits at E = -2.05 using direct inversion. The light solid line is the
exact classical trajectory. The heavy solid line is the experimental
reconstruction. The dashed line (barely visible near the heavy solid
line) is the reconstruction generated using the exact classical values
over the experimental window of 0 < c < 4.0. The fine dashed line in
(b) (not to be confused with the x axis) is an exact reconstruction with
the frequency range extended to & < 6.0. Note the contrast with the
basis-function reconstruction, Fig. 7-7.

not sufficient to measure the high-frequency components that are characteristic of the

motion of the electron near the nucleus, where it undergoes a sharp bounce. To assess

the accuracy of the measurement, we have performed an identical Fourier transform

using the exact classical values of Zk(w), windowed to include only the experimental

frequency range C& 4.0. All other details of the process are the same. The results,

which are also shown in the figure, are in good agreement with the experimental

measurement. To illustrate the importance of higher frequencies, the exact windowed

inversion for frequencies & < 6.0 is shown for the 3/4 orbit.

The direct inversion of the Fourier transform is less successful at determining the

motion of the 3/4 orbit because, as a glance at Fig. 7-3 reveals, 1Z314 (w)l remains
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larger than IZ2/3 (w)I for C > 4. The direct inversion method can be sensitive to the

cut-off frequency as well as to errors in the experimental values of IZk(w) and the

measured period Tk. To alleviate these problems we turn to a more sophisticated

method developed by M. Haggerty [Hag]. We outline the method here and discuss

the results.

We begin by noting that zk (t) can be expressed as a discrete Fourier series:

00 00 inwot inot 0 7.10
Zk(t) = a, cos(nwot) = T + e ) I (7.13)

n=O n=O n=O

where wo = 27r/Tk, zk(t = 0) = zk(Tk) = 0, and zk(t) = zk(Tk-t). (Only cosine terms

are needed because zk(t) is even.) The functions M,(t) = cos(nwot) form a basis in

which the orbital motion is decomposed.

A series expansion for Zk(w) is found from Eq. (7.13) by evaluating the Fourier

transform (7.4). The result is

Zk(w) = 1  (_l)n T/2n(w = Z ()ei / 2 , (7.14)
n=O

where

sin[(nwo - w)Tk/2] sin[(nwo + w)Tk/2] (7.15)
(nwo - w)Tk/2 (nwo + w)Tk/2

and Zk~(w) is defined by Eq. (7.7). The time-domain basis functions 4, (t) are related

by a Fourier transform to the frequency-domain basis functions 4, (w), several of

which are shown in Fig. 7-5.

Equations (7.4) and (7.14) form the basis of the method of analysis. Values of

some number of coefficients an can be extracted from a least-squares fit of the basis

functions 4,n(w) to the measured values of ZR(w). The coefficients found in the fit

can then be used in Eq. (7.13) to find the approximation to zk(t). This technique

makes it possible to extract basis functions f, (w) that have significant amplitude at

frequencies higher than the experimental limit. Consider, for example, the n = 3

basis function, 43(w), at w = 4.0. Its value is large enough relative to the n = 2

function that a3 can be determined fairly accurately from the experimental data.
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Essentially, by oversampling Zk(w) for w < 4.0, higher n basis functions can be

1 /S2 4 6 s 10(t) = cos(not).

Figure 7-5:smooth Plots of the basis functions is not(w) (defined by Eq. (7.15))
for 0 < n <4.

Essentially, by oversampling Zk(w) for w < 4.0, higher n basis functions can furthbe

reconstructed. Additionally, because (,(w) vanishes at mwo unless n = m, IZk(w)l

needs to be measured only at mwi to find am. For experimental data, however, it is

better to make measurements at many frequencies in order to average over noise.

There are better basis functions to use than the functions two(t) cos(npecot).

The smooth variation of these functions is not well suited to a description of the

often sharp features that are characteristic of motion in an atomic system. A further

disadvantage of the basis is that it explicitly includes the period Tk = 2ir/wo. It would

be advantageous to choose a basis that does not require Tk. Before we introduce the

functions that we will use, we must consider that the period affects two other aspects

of the fit, the overall scaling and the phase (see Eq. (7.14)). The overall scaling

can be removed by absorbing it into the functions (, (w), and the phase disappears

if we use the same time-shifted trajectory zk(t + Tk/2) that we used earlier in this

section. Any basis function 4,(w) can be used to decompose the real function Zk(w)
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as C, a,4 ,(w). The trajectory is then given by zk(t) = , an(t), where

O,(t) = - 4,.n(w)e'wtdw. (7.16)
27r f oo

For the measurements here, the following temporal basis functions have been used:

O (t) = 1 _ {e(t-tn)2/22 + /2 (7.17)

The t, are equally spaced time offsets chosen so that the functions extend a little

beyond the period Tk. The width a is chosen so that neighboring 4, (t) overlap. The

convergence of the fit does not depend sensitively on the choice of the number of

functions or the values of t, and a.

Figure 7-6 shows the function Zk(w) found by fitting to the measured values [Hag].

A windowed fit, found using the exact classical values rather than the experimental

values, is also shown. Note that values of ZR(0) are not used in the fit, but only fix

the overall sign of ZR(w). The method reproduces ZkR(w) well at frequencies below

the lower limit of the measurements, CD = 0.6. Furthermore, a significant amount

of Fourier power for 4 < & < 6 is reconstructed for the 3/4 orbit. Figure 7-7 com-

pares the measured trajectory with the exact classical trajectory and the windowed

calculation [Hag]. The result for the 2/3 orbit is not significantly better than the

result of the simple method shown in Fig. 7-4. This is because the reconstruction of

Zn(w) does not recover much more Fourier power than is in the measurement. The

power of the method is revealed for the 3/4 orbit, which is recognizable only with the

basis-function method.

7.4 Resolution Limit of the Measurement

A measurement of Zk(w) over a range 0 < w < Wmax allows a reconstruction of zk (t)

with a time-resolution At , 1/Wmax. As wmax becomes larger, finer and finer features

are resolved. Eventually, the semiclassical approximation that underlies closed orbit

theory breaks down and the orbital details are limited by the uncertainty principle. In
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Figure 7-6: Gaussian-basis reconstruction of ZR(w) for (a) 2/3 and
(b) 3/4 orbits. The light solid line is the exact classical value, the
heavy solid line is the fit to the experimental data, and the dashed
line is the filtered classical result (often indistinguishable from the solid
lines). The circles are the experimental measurements of tZk (w) shown
in Fig. 7-3 with a sign determined from the constraint that ZjR(w) is
smooth and continuous. The values at Zk(0) are found from Eq. (7.1).

The poor agreement for Z3/ 4(0) is unimportant because its value only
fixes the overall sign of Z37R ) .

i 3/4M
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Figure 7-7: Basis-function reconstruction of zk(t+Tk/2) for (a) 2/3 and
(b) 3/4 orbits at e = -2.05. The light solid line is the exact classical
trajectory. The heavy solid line is the experimental reconstruction.
The dashed line is the reconstruction generated using the exact classical
values.
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this section we show that differences between the reconstructed motion and the actual

classical motion due to the breakdown of the semiclassical approximation are much

smaller than the uncertainties arising from the limited resolution. In other words, the

experiment could be pushed to much higher frequencies to yield much greater detail

about the trajectories.

For a phase-space trajectory, we need values of Zk(t) and the z-component of the

momentum, pk (t). The former is given by Eq. (7.11), and the later is given by

dzpk() -- Zk(w)w sin[w(t - Tkl2)]dw. (7.18)S dt o

As wm, increases, an ever larger fraction of phase space is reconstructed. This

is easy to see with the following argument. The area of (p,, z) phase space enclosed

by a closed orbit, A = fp,dz, can be found by parameterizing the trajectory with

time, z = zk(t) and p, = Pk(t). (The symbol Pk represents the z component of the

momentum of orbit k.) Then

A = p2(t)dt = p (t)dt, (7.19)
o t -oo

where the limits on the integral have been extended to infinity because zk (t) = 0 for

t < 0 and t > Tk. The Parseval-Plancherel formula [CTDL77] enables us to relate

pk(t) to its Fourier transform, Pk(w). Then

1 oo 1 /00
A = ~ IP (w)ldw =1 IP 2(w)ldw. (7.20)

2r -oo 7r

We see that the area of the reconstructed phase space is

A = -w) dw = - w2 1 (w) dw, (7.21)
7r 0 7r ,O

where the relation Pk(w) = wZk(w) has been used.

Figure 7-8 compares the phase-space reconstruction of the 2/3 orbit with an exact

classical calculation and with a calculation windowed over the same frequency range,
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Figure 7-8: Phase-space reconstruction for the 2/3 orbit. The light solid
line is the classical calculation. The heavy solid line is the experimental
reconstruction. The dashed line is the windowed reconstruction for
w < 4.0.

&' < 4.0. An ever larger fraction of the phase space is reconstructed as the maximum

frequency increases. A calculation shows that the 2/3 and 3/4 orbits enclose phase-

space areas equal to 5.65 and 5.34, respectively. The windowed reconstruction with

C < 4.0 recovers about 30% and 10% of the total phase space for the 2/3 and 3/4

orbits, respectively.

The uncertainty principle ultimately sets a limit AzApZ > h = 1/w = 1/250 =

4 x 10- 3 . The phase-space areas of the 2/3 and 3/4 orbits are of the order of 103h.

Because the unreconstructed area of phase space is many h, we can conclude that

the reconstruction in no way approaches any fundamental limit of the uncertainty

principle.
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7.5 Discussion

We have seen that the oscillating field enables a finite-resolution measurement of a

component of the trajectory of the 2/3 and 3/4 orbits at E = -2.05. Although the

experimental challenge of extending the method is daunting, having established its

validity experimentally it is worth considering the possibilities of extracting classical

trajectories in more general circumstances. The experimental technique requires that

only one orbit contribute significantly to a recurrence, and one must be able to mea-

sure its period. A more general method may be to extract IZ(w)l for several orbits

with similar actions by fitting the recurrence strength to a sum of Bessel functions.

Because this approach would require large quantities of high-quality data, it would

be more practical with computed spectra.

The method can in principle be extended to measure the full three-dimensional

trajectory by successively applying an oscillating field along the x and y directions.

Appendix B shows that the recurrence strength of an orbit subjected to an oscillating

field perpendicular to the static field should decrease as JO4(cl), where c is related

to the radial ac dipole moment of the orbit. Implementing this measurement ex-

perimentally is difficult because a perpendicular field must be applied without any

component parallel to the static field. Otherwise, the first-order shift produced by

the parallel component would obscure the results. A computational implementation

is in principle possible, but would be difficult because of the large basis size required.

The requirement of time-reversal symmetry and knowledge of the period prevents

this from being a general method for reconstructing trajectories. For example, the

orbits in the diamagnetic system are not constrained by this symmetry. It is unclear

whether this difficulty can be overcome.

Although the utility of the oscillating field as a tool for conducting useful ex-

perimental reconstructions of classical trajectories is questionable, the limitations for

computed spectra are much less severe. We have a fundamentally new method for

finding classical motion from quantum mechanics. Its useful applications remain to

be determined.
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Chapter 8

Conclusion

This thesis has presented an experimental and theoretical study of the recurrence

spectra of Rydberg atoms in external fields. By applying an oscillating electric field

parallel to a static field, the magnitude of the ac dipole moment of a given orbit along

the direction of the field can be determined. The new observations include:

* Recurrence spectra at E = -0.4 show good agreement with closed orbit theory

extended to a time-dependent system. Experiments at low frequency (0.12 <

g~ < 0.6) have been compared with detailed closed orbit theory computations

and semiquantal Floquet computations. All three show good agreement.

* The oscillating field yields new information about the strengths of orbits con-

tributing to a recurrence in regions where multiple orbits with similar actions

can not be resolved by traditional recurrence spectroscopy. This was first

achieved in the E = -0.4 measurements in which differences between measured

falloff rates and falloff rates predicted for the uphill orbit allow one to distin-

guish the contributions of the uphill orbit from bifurcated orbits. The clearest

illustration is at E = -2.05, where it is shown that the recurrences with actions

equal to two and three repetitions of the downhill orbit are dominated by the

2/3 and 3/4 orbits, respectively.

* Quantum Floquet computations of recurrence spectra of hydrogen and lithium

at low energies and frequencies were described. The results for hydrogen showed
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good agreement with time-dependent closed orbit theory. A model based on

closed orbit theory was developed to describe the behavior of core-scattered

orbits in an oscillating field. In principle, one should be able to distinguish

different orders of core-scattering, although this has not been demonstrated.

* The z(t) component of the 2/3 and 3/4 orbits at E = -2.05 was measured with

finite time-resolution. Within the limited frequency resolution, the experiments

and theory were in excellent agreement, demonstrating the power of the method.

Many questions about Rydberg atoms in oscillating fields remain to be studied.

* What is the behavior at higher field amplitudes f, where perturbation theory

breaks down? The framework of closed orbit theory describes this regime, but

it remains to be tested.

* To how high a frequency of applied field does closed orbit theory work? The

measurements at E = -2.05 have shown that the description is valid when

the frequency is close to three times the frequency of an orbit. At some large

frequency, the semiclassical limit breaks down, but the nature of this breakdown

is unclear. Two possibilities are that the initial state is affected by the oscillating

field, or that the semiclassical approximation breaks down when the electron

is far from the nucleus. The ability to conduct experiments over much higher

frequency ranges with controlled amplitude would greatly aid this investigation.

* What is the effect of a perpendicular oscillating electric field? Appendix B is a

theoretical description within the framework of closed orbit theory, but remains

to be tested experimentally.

* How does the diamagnetic system behave in the presence of an oscillating elec-

tric field? Because the diamagnetic system is chaotic in some regimes, it pro-

vides a testing ground for the fundamental question of quantum chaos-can

quantum systems show chaotic motion. Using an oscillating field to reveal clas-

sical closed orbits in a regime of chaos would be an important step toward
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answering this question. Although orbits should interact according to their

dipole moments, the lack of time-reversal symmetry would prevent our method

of orbit reconstruction from working. It is unclear if this is just a detail, or if

this is a sign that chaotic quantum systems are fundamentally different.

The achievements of closed orbit theory and recurrence spectroscopy are based

on a relatively small amount of spectroscopic quantum information--energy levels

and overlaps of eigenstates with a localized ground state. Much more information

about classical motion is contained within the wave function itself, for the wave

function is intimately linked with the classical trajectories through the semiclassical

approximation to the wave function. However, there is no general and practical

method for extracting the wave function experimentally. The introduction of an

oscillating field has taken us a step closer toward extracting this information because

it gives information about some of the trajectories-those of the closed orbits.

171



172



Appendix A

Scaling Properties of Assorted

Systems

In this appendix we examine the scaling properties of the Stark system and two other

prototype systems: the harmonic oscillator and an electron in a Coulomb potential.

We derive the scaling laws and consider a few aspects of recurrence spectroscopy in

these systems. Finally, we consider the effects of periodic perturbations, and what

information about the nature of classical motion can be learned from the perturba-

tions.

A.1 Hydrogen in a Static Electric Field

We consider the familiar Hamiltonian of a Rydberg atom in an external static electric

field F,
p2 1

H = + Fz. (A.1)
2 r

Let j = Fap and F = Fbr. Substitution into Eq. (A.1) gives

H = F-2a _ F b+2a Fl-b+2az). (A.2)

This produces two constraints on a and b: b = -2a and b = 2a+ 1. Their solution gives

the familiar results a = -1/4 and b = 1/2. The scaled energy is e = F 2aE = F-1/2E.
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Note that only the classical Hamiltonian scales. Planck's constant sets an action

scale for the quantum Hamiltonian, which does not scale because p = -ihV. When

the above transformations p3 = F-1/4p and F = F1/2r are used, the Schr6dinger

equation becomes

V + = Elk. (A.3)
2[ r ]

We see that w = F - 1/4 determines the effective size of Planck's constant. The

semiclassical limit is approached as w becomes large.

The unit of scaled action is S - P4 % F"+bS ~ F1/4S. Closed orbit theory

asserts that each orbit with action S modulates the photoabsorption spectrum as

Df , sin(S/h) , sin(SF-1/4 ). The spectrum should be measured with respect to

the variable w = F - 1/ 4 in order that each orbit modulates the spectrum with the

same frequency over the entire measurement range.

Closed orbit theory asserts the equivalence between the quantum spectrum mea-

sured with resolution 6w and a sum over all closed orbits with action up to S =

2i/6w. Unfortunately, the structure of both the quantum spectrum and the clas-

sical orbits is too complex to make much progress toward showing this equivalence

analytically. We therefore turn to a simpler system.

A.2 Harmonic Oscillator

The Hamiltonian of the one-dimensional harmonic oscillator is

H = - + kx2 . (A.4)
2 2

This problem is different than the Stark problem because there is no external field

with which to scale the position and momentum. However, we can scale these by the

spring constant k. Scaling P = k"p and i = kbx as before gives

H = k-2a (- + 1kl-2b+2ai2). (A.5)
2 2
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In contrast to Eq. (A.2), there is only one condition on the scaling exponents: 2b =

1 + 2a. With the simple choice a = 0, b = 1, the scaled energy is e = E, the scaled

action is S = kl/ 2S, and w = k - 1/ 2

The quantum-mechanical energy levels are E, = nVk (neglecting the zero-point

energy). Recurrence spectroscopy could be performed (at least numerically, if not

experimentally) by recording the transition strength from the ground state to an

excited state as the energy and spring constant are varied to maintain a constant

scaled energy. This is done simply by holding E constant while k is changed and

the spectrum is recorded as a function of w = k - 1/ 2. The spectrum would reveal

equally spaced peaks at w = 2n/E. The factor 2 arises from the fact that states

with even and odd n have even and odd parity, respectively. While the energy levels

occur at each n, a transition from the ground state occurs only to states of opposite

parity. The Fourier transform of such a recurrence spectrum reveals peaks at actions

S = N27r/6w = N2IrE/2 = NxrE, where N is an integer. In this simple system, we

can find the closed orbits analytically and show that the result is what one expects

classically

The scaled Hamiltonian has the simple form

-2 -2E - + (A.6)
2 2

The motion of a particle with energy E is

(t) = Vfsint. (A.7)

The primitive closed orbit is the trajectory that leaves the origin (i = 0) traveling

along the positive x axis, stops at a distance Xma, and returns to i = 0. The motion

continues along the negative x axis, and its second return to i = 0 completes the first

periodic orbit.

The action of the primitive closed orbit is

S= jidq (A.8)
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= 2 j m 2e- 2d (A.9)

= 2(2c) f/2 Cos 2 8Od (A.10)

= irE. (A.11)

This agrees with the result expected from the quantum-mechanical analysis given

above. Periodic orbit theory relates the quantum-mechanical density of states to a

sum over all periodic orbits. The fundamental periodic orbit has an action of 2re,

which is consistent with the fact the lowest frequency modulation of the density of

states is twice as large as the lowest frequency modulation of the oscillator strength.

A.3 Charged Particle Bound by a Coulomb Po-

tential

The Hamiltonian of an electron bound by a Coulomb potential with charge a is

p2H a (A.12)
2 r

There is no parameter here that can be varied experimentally to perform recurrence

spectroscopy. However, the strength of the binding potential a can be varied numer-

ically. Scaling fi = aap and F = abr gives

H = a- 2a ab+2a+1 . (A.13)

With a + 2b = -1, the Hamiltonian is that of a hydrogen atom. Choosing a = 0 and

b = -1 gives a scaled energy E = E, scaled action S = S/a, and w = a.

The energy levels of the Hamiltonian (A.12) are given by E, = -a 2 /2n 2 . When

the spectrum is recorded as a function of w, equally spaced levels at w = n-- n

are found. The Fourier transform of the spectrum thus reveals peaks at actions

S= 2r / V c.

The scaled Hamiltonian separates in semiparabolic coordinates to give two inde-
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pendent harmonic oscillators,

h = +(A + I 2) = 2. (A.14)
2 2

Identical closed orbits exist at all initial angles 0. For 0 = 0, p(t) = ~P7 sin(iTft).

The action of this orbit is S = 27r/V/- , in agreement with the expectation from the

quantum spectrum.

A.4 Periodic Perturbations to Simple Scaling Sys-

tems

Here we examine the effect of periodic perturbations to the above systems. We

begin by adding an oscillating "electric" field Flx coswt to the harmonic oscillator

Hamiltonian Eq. (A.4). The scaled Hamiltonian (A.5) becomes

2 2

2 2

where f = k2a-bFl = k-1/ 2F1 and CD = ka"-b = k-1/2w. The semiclassical theory

discussed in Chapter 2 indicates that the perturbation to the action S caused by the

oscillating field is, from Eq. (2.37),

dS= 0 (7) cos(&ir)dr. (A.16)

Because this integral is a time-integrated ac dipole moment, the result is the same

as that found for a Rydberg atom in combined parallel and static oscillating electric

fields: orbits interact with the oscillating field through their ac dipole moments.

We find different behavior if we consider a periodic variation of the spring constant,

k + k, coswt. The scaled Hamiltonian (A.5) becomes

e = +1+ + -cs) (A.17)
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where f = kl/k and & = wk "- b = k-1/2w. The perturbation to the action S is

d-- = 2 () cos(Tr)dr. (A.18)
df 0 2

A given orbit interacts here as a time-integrated mean-square dipole moment.

Finally, we consider a periodic variation to the Coulomb potential described in

Sec. A.3. Adding a periodic variation of the charge, a + al coswt, leads to a scaled

Hamiltonian

H 2 - (1 + & cos(C)), (A.19)

where & = al/a and & = a"-bw = aw. The perturbation to the action S is

d- =o 1 cos(r)dr. (A.20)

We see that in this case the oscillating field yields information about the average

value of 1/f.
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Appendix B

Some Results for a Perpendicular

Field

In this appendix we develop some results about the effect of an oscillating electric

field with a direction perpendicular to a static electric field. The description of time-

dependent closed orbit theory given in Sec. 2.3 holds for an oscillating field with any

direction. That description relates the effect of an oscillating field on a recurrence to

the perturbation to the action of an orbit. The Hamiltonian for a Rydberg atom in

a static electric field F along the z axis and an oscillating electric field F polarized

along the x axis is

H = p2 + Fz + Fx cos(wt + a). (B.1)2 r

We calculate from Eq. (2.37) the effect of the oscillating field by considering the

perturbation to the action of an orbit.

With just a static field along the z axis, the orbits are two-dimensional, defined

by z and p coordinates, where p is the cylindrical-radial distance from the z axis.

Because the perpendicular field breaks the cylindrical symmetry of the system, orbits

moving along the x direction are perturbed differently than orbits moving along the

y direction. A orbit k with period Tk and action Sk exists in the (z, p) plane, and can
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be described by a trajectory (zk(t), pk(t)). The perturbation to its action is

dSk t
S= - k (T') cos(w' + a)d', (B.2)

where Zk(t) = Pk(t) cos P and p is the azimuthal angle.

The calculation proceeds in the same manner as the calculation in Sec. 2.3.1 for

the parallel oscillating field. The action is

Sk(t) = SO - F, IZk(w)I COS (P) COS(Wt + k), (B.3)

where Zk(w) is redefined as

Zk(w) = Tk pk(T)e-"'dT. (B.4)

and k is defined by Eq. (2.44). The excitation rate (2.46) in scaled coordinates

becomes

Rf = Ro + E Ck(t) sin [2rSw + (fZ2k(')Iw) cos(P) cos((D + 0k) - k] , (B.5)
k

where the overline indicates an average over a cycle of the field and over p. The

averaging proceeds by expanding the sine term. One term averages to zero while the

other term leads to the integral

R, = Ro+-Cksin(2rSk w- k)
k

1 21 2( COS
x i-j2 dp- d() cos [f|Zk ()I COS() COS(f+ k)] . (B.6)

The integral over ct introduces a Bessel function, giving

R, = R0 + 4Ck sin (27rSw - yk)1 j 2 7dpJo [iZk(()lJwcos()] (B.7)
Ic
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This equation is simplified with the identity [GR80]

/Jo(2z cos x)dx = r Jo(z). (B.8)
o 2

The result is

R, = Ro + E CkJ (i2 k() Iw/2) sin (2rSow - 7k). (B.9)
k

A given orbit loses strength as JO4 as f is increased. Although this function falls off

faster than JO2, this does not mean that the perpendicular field has a stronger effect

on the spectrum because most orbits in the electric field have larger dipole moments

along the z direction than along the radial direction.
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Appendix C

Atomic Units

Most of the equations in this thesis are given in atomic units. This system of units

is defined by setting h = m = e = 1, where m is the reduced mass of the atom and

e is the electron charge. The values of these units depend on the atom because the

reduced mass of the atomic system is used. Table C.1 shows the values of several

units for 7Li and H. It is important to use the appropriate values in the quantum

Floquet computations because incorrect values produce shifts that are larger than

the experimental resolution.

The energy of a Rydberg state is given by

1
E = (C.1)= 2(n - S6)2 ' (C.

where S, is the quantum defect of the state. The quantum defect for 7Li is given by

the recursive formulas [Kas88, Joh59]

S, = 0.399,491, 74 + 0.029,483t + 0.002, 24t 2  (C.2)

Sp = 0.047,160,1 - 0.022,816t + 0.007,82t 2  (C.3)

Sd = 0.001,932,0 - 0.004, llt (C.4)

f = 0.000,310,3- 0.001,27t. (C.5)

The variable t is defined by t = IE I/R where R is the Rydberg constant for 7Li,
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Quantity Formula 7Li H
Energy (cm - 1) me4 / h 2.194, 574, 700(2) x 105 2.193,551,660(2) x 105
Length (cm) Ah/me 2 = ao 5.292,1863(2) x 10- 9  5.294,6545(2) x 10- 9

Velocity (cm/s) e2/h - vo 2.187, 69(2) x 10" 2.187, 69(2) x 108
Electric Field (V/cm) e/a2 5.141,4041(5) x 109 5.136,611(1) x 109
Magnetic Field (T) h/ear 2.350, 150(3) x 105 2.347,960(3) x 10"

Frequency (s- ') vo/ao 4.133,80(6) x 1016 4.131,88(6) x 1016

Table C.1: Atomic units for 7Li and H. The uncertainty in the last digit
is given in parentheses.

which equals half the atomic unit of energy given in Table C.1.

The energy of the transition from 3s to a Rydberg state is given by E = E 3 - IE,,I,
where the 3s binding energy is E3 . = 16,281.064(1) cm- 1 [Kas88].
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We report the results of an experimental and theoretical investigation of the recurrence spectra
of Rydberg atoms in a static plus weak oscillating electric field. Experiments reveal the systematic
weakening of orbits in a recurrence spectrum as the oscillating field strength and frequency are changed.
We describe a generalization of closed orbit theory to time-dependent systems and show that it provides
a qualitative and quantitative description of the phenomena. [S0031-9007(97)03947-1]

PACS numbe : 32.60.+1. 03.65.Sq 05.45.+b

In the quest for a satisfactory understanding of the con-
nections between quantum and classical descriptions of
simple Hamiltonian systems, Rydberg atoms in applied
fields provide prototypes for experiment and theory [1].
Recurrence spectroscopy and closed orbit theory have
proven to be powerful tools for these studies [2-4]. A
recurrence spectrum is the Fourier transform of a photo-
excitation spectrum that is taken with the field varying
with energy according to a classical scaling rule that keeps
the classical motion unchanged at all points in the spec-
trum [2]. It can be shown that each closed classical orbit
of the electron generates a peak in the recurrence spec-
trum at the action of the orbit. Consequently, the recur-
rence spectrum provides a quantum picture of classical
behavior. Studies of recurrence spectra have led to obser-
vations of the creation of new orbits through bifurcations
[5,6], the onset of irregular behavior through core scatter-
ing [7-10], symmetry breaking in crossed fields [11], and
the identification of numerous closed orbits [1].

We have extended this line of inquiry by investigating
the recurrence spectrum of a Rydberg atom in a field
that is oscillating with a period which is comparable
to the period of its classical orbits. The underlying
thought is that periodic orbits should be sensitive to
periodic perturbations, and that this sensitivity should be
revealed by recurrence spectra. Recurrences with periods
that are integer multiples of the period of the perturbing
field might be expected to be most affected. We report
here the first results of such a study. The experimental
observations are surprising: Recurrences with periods
near integer multiples of the period of the perturbation
survive, while those that are out of "resonance" with the
field are weakened or eliminated. We have been able to
interpret these results by generalizing closed orbit theory

1650 0031-9007/97/79(9)/1650(4)$10.00

to incorporate periodic fields, obtaining both a qualitative
and quantitative description of the phenomena.

Our study employs a lithium Rydberg atom in a static
electric field-a system we have previously studied [8]-
but now with the addition of an oscillating field. At the
low actions studied in these experiments, the spectrum is
regular and can be understood by considering only the
closed orbits of hydrogen. Experimentally, introducing an
rf field is a straightforward task. (We use "rf" to signify
the oscillating field though the actual frequency may be in
the microwave regime.)

The Hamiltonian of a Rydberg atom in an electric field
F along the z axis and an rf field with amplitude Ft
oscillating at angular frequency w, also polarized along
the z axis, is taken to be (in atomic units)

H - E! - I + Fz + Fizcos(wot). (1)
2 r

Recurrence spectroscopy is possible because the classical
Hamiltonian can be expressed completely in scaled vari-
ables. We define F F' 2r, p - F-1'p, - F3 /4t,
& - F-314o, and J - F-'F. This yields the scaled
Hamiltonian

- L - + 1[1 + cos(~d)] - F-1 2E(t). (2)
2 F

In the oscillating field, the electron energy E(t) is not
constant We define e i F-1/ 2EOut to be the scaled
energy of the electron as it leaves the atom. The
scaled action is S - F114S [12]. To obtain a recurrence
spectrum we simultaneously vary the laser energy, static
and rf field amplitudes, and the rf frequency so as to keep
the scaled parameters (e, 7, and ,&) constant as we record
the photoabsorption spectrum.

The experimental setup is similar to that described
in [8]. Lithium is excited to the 3s state by two-step
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resonant excitation 2s -. 2p -- 3s and then to an m - 0
Rydberg state by a tunable laser. The scaled energy and
frequency are known to an accuracy of about 0.1%. The
rf field amplitude was calibrated by measuring sidebands
on various states in a Stark manifold [13], yielding
an overall accuracy in F, of 10%, with 1% accuracy
at selected calibration points. In our experiments, we
measure actions up to S - 150.

We chose to study behavior at scaled energy e - --0.4,
which we had mapped previously for a static electric
feld (6]. Because this energy lies above the saddle
point threshold for ionization (e - -2), orbits directed
towards the negative z direction are absent. The most
important orbit is the parallel "uphill" orbit lying along
the positive z axis, and its repetitions. These form a
spectrum of recurrences equally spaced in action at an
interval A1 - 4337. The second repetition lies close to
a bifurcation point at e - -0397 [14], which strongly
enhances its recurrence strength. In contrast, the first
repetition is extremely weak. We mapped recurrence
spectra with constant scaled amplitude j and also constant
scaled frequency &.

Figure I displays a panoramic map of recurrence
spectra at I - 0.005, with &i varying from 0.12 to 0.60.
The most conspicuous feature is a series of regions where
the recurrences are practically annihilated and a series of
regions where they survive. The periods of the surviving
orbits are near integer multiples of 2r/&, shown by dark
lines in the plot. In addition, the strong second repetition
persists at all frequencies measured.

Repeion Number
0 5 10 15 20 25 30

0.6

0.5

03

0.2

0' 20 40 60 0 100 120 140

FIG. 1. Experimental recurrence spectra recorded at e-
-0.4 and f - 0.005, with scaled frequency 4& between 0.12
and 0.60 in steps of 0.02. The dashed lines are contours
generated from Eq. (10) where a. -0.2. The solid curved
lines mark the action at which a repetition of the parallel orbit
has a period that is an integer multiple n of the period of the
applied field. The values of a are listed on the right.

Figure 2 displays a map at fixed freuency o - 032,
with f varying from 0.0 to 0.022. As f increases, all the
peaks lose strength. Some recurrences are very sensitive
and fall off rapidly as ? increases; others persist to much
higher J. As the rf field is made yet stronger, many of
the peaks revive, some more than once.

The peaks in Figs. I and 2 are manifestations of
recurrences-classical orbits which go out from the
nucleus and return. To interpret the data, we briefly
review the ideas of closed orbit theory and then discuss
its extension to a time-periodic Hamiltonian. The theory
of recurrences begins from the usual quantum theory of
photoexcitation: As the laser radiation causes transitions
between the initial state and high energy eigenstates
of H, there is a well-defined rate of absorption. The
smoothed or large scale structure of the spectrum can
be expressed as an oscillator strength density, which we
denote Df(E, F). The oscillator strength density can be
separated into two parts:

Df(E,F)- Dfo + Df1 (E,F). (3)

Dfo is a smooth (practically constant) background that
is approximately the same as for the field-free atom at
the ionization threshold. Df3 (E, F), which varies rapidly
with E and F, is due to recurrences that arise in the fol-
lowing manner. The laser radiation produces a stream
of outgoing waves which, in the semiclassical approxi-
mation, follow classical trajectories. As the trajectories
travel outward, some are turned back by the combined
Coulomb and applied fields and return to the atom.
These interfere with the outgoing waves (and with each
other), giving rise to oscillatory patterns in the absorp-
tion spectrum. Each returning orbit k gives a sinusoidal

RIepettion Number
0 5 10 15 20 25 30

0.020

0.015

0.010

0.005

0
0 20 40 60 80 100 120 140

FIG. 2. Experimental recuence spectra corded at r
-0.4 and o - 032 with scaled rf field amplitude ? between
0.0 and 0.022. The solid curved lines mark the location of the
first zero in the recurrence strength as predicted by the restricted
semiclassical theory, Eq. (10).
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contribution to the oscillator strength density,

DfIA (E, F) - Ck sin[St(E, F)/ + 71].

The coresponding expression in scaled variables is

Df.(e, w) - C& sin[ (e)w + 7k].

S-(E,F) fp dq is the classical action around
closed orbit, §(e) is its scaled counterpart w - F-
and Yk is a phase correction associated with Maslov
dices. C is the recurrence amplitude, which is app
mately independent of E and F. The absolute squa
the Fourier transform of the absorption spectrum with
spect to w gives the recurrence spectrum, which rev
peaks at the scaled actions of the closed orbits.

We have generalized closed orbit theory to incorpo
a time-dependent Hamiltonian. We summarize the n
features here-a full description will be published e
where. The explicit time dependence of the Hamilti
ans in Eqs. (1) and (2) means that many aspects of
currence theory need to be reexamined. It can be shi
[15] that at each time t, it is possible to define an insta
neous oscillator strength density Df(E, F; F, ai, t) ou
the initial state into a band of excited states. Df car
separated again as in Eq. (3), with Df1 arising fi
closed orbits. The physical picture is much as bef
The laser produces a steady stream of outgoing wa
which now propagate in the oscillating electric field. '
result is a time-dependent wave function that in the se
classical description is "supported" by time-depen(
classical trajectories. Each returning orbit in the st
field represents a continuous family of identical oi
each starting at a different time. With the oscillating I
turned on, the orbits in a family are no longer ideni
because their properties then depend on the phase of
rf field when they left the atom. We call this splittinl
a single orbit into a continuous family of orbits "temp
symmetry breaking," because of its close analogy to c)
drical symmetry breaking [11,15]. The component of
arising from each family oscillates at the rf frequency,
the measurement averages it over many cycles.

The returning wave can be calculated using a st
classical approximation in an extended phase qs
(p,q,E,t) where time is regarded as a dynazr
variable. The conjugate variable E is not conses
because.of the temporal symmetry breaking. The ac
associated with the returning wave is again the class
action, but now in the extended phase space:

S R(t) - fp * dq - [H(t) - E ]dt).

This generalized action depends on the phase of
field relative to the orbit. For some phases, the <
is stretched and its action increases, while for otd
the orbit is compressed, and its action decreases.
small rf amplitudes, there is a smooth sinusoidal clu
between these two extremes. Using first order class

perturbation theory, the generalized action is found to be

(4) Rk(t) - St(E,F) + FIIZk(r)IT cos(t - as), (7)

where T& is the period of the orbit, Zk(o) is the time-

(5) averaged ac electric dipole moment of the nperturbed
orbit (1/Tk) fro z(r)e - '' ' dr, and al is the phase of the

the rf field for which the maximal action is attained.
1/4, Substituting Eq. (7) into Eq. (5), averaging over a cycle
in- of the field, and recasting it in scaled variables yields

of Df,5A - CkJo(?f2 k()l( k )1w)nsi[(e)w + 7k]. (8)

re- This result provides a general description of the absorp-
eals tion spectrum of a Rydberg atom in a weak oscillating

electric field. Comparing Eq. (8) with Eq. (5), we see
rate that the perturbation weakens the recurrence amplitude by
ain a factor given by a Bessel function. The argument of

Ise- the Bessel function is the perturbation to the semiclassical
ni- phase of the extreme orbits in the family-proportional to
re- the product of the perturbing field and the ac dipole mo-

own ment of the unperturbed orbit.
nt In principle one must evaluate 2k(&) separately for
it of each unperturbed closed orbit However, in the regime
Ibe observed here, the z motion of every orbit is similar to
rom that of the parallel orbit or one of its repetitions. We
ore. approximate 2 k(&) by that of the corresponding repetition
ves, of the parallel orbit in what we call the restricted
The semiclassical theory. Additionally, the ac dipole moment
:mi- for the nth repetition of the parallel orbit is related to that

dent for the Ist repetition:
atic
tbits, 1 2n() I-I (,) II sin(n&if,/2) (9)
leld sin(it/2)(

ical Using these approximations in (8), we find that every
the recurrence peak is weakened by a factor a. given by

ft %V

am-, ( J22,i () sin(n 1i /2) w -
sin(ria t/2)1 J(cj).

(10)

(In our experiment the range of w is small so it can be
mi- taken to be a constant.) We shall refer to the quantity c.
ace defined in Eq. (10) as the falloff coefficient
ical We now can examine Figs. 1 and 2 in detaiL The
ved dashed lines in Fig. 1 are contours generated from
ion Eq. (10) that show where the recurrence strength should
ical be reduced by 80% (a, - 0.2). The solid line in Fig. 2

shows the location of the first zero of the Bessel function
cf - 2.4. This simple calculation predicts the large

(6) scale features in the data, and even some details. To
further test the experiment and semiclassical theory, we

the have compared our results with approximate quantum
rbit mechanical Floquet calculations of the recurrence spec-
ers, trum. Details of these calculations will be published
At elsewhere [16]. Figure 3 compares the experimental

nge recurrence strength of the second repetition in Fig. 2 with
ical the prediction of Eq. (10). The experimental results and
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0 I ". -- -A

0 0.005 0.01 0.015 0.02
f

FIG. 3. Recurrence strength of the second repetition at e -
-0.4 and a - 032 vs scaled rf field amplitude,. f. Squares are
experimental recurrence surengths, circles are from the Floquet
computation. The solid line is the prediction of Eq. (10), scaled
to agree near I -0.

the two theoretical calculations are in generally good
agreement.

The restricted semiclassical theory neglects the differ-
ences between the parallel and nonparallel orbits. These
differences produce, for example, the small discrepancies
between the experiment and restricted semiclassical the-
ory seen in Fig. 2. We have included the exact properties
of the nonparallel orbits in what we call the unrestricted
semiclassical theory. A convenient way to summarize the
results is to fit them to the form of Eq. (10) and express
the result in terms of the falloff coefficients c,. Values
of c. from the experiment, the Floquet computation, and
the unrestricted semiclassical model are compared with
Eq. (10) in Fig. 4. The restricted semiclassical model can
be seen to provide a good approximate picture, which is
made even better by the unrestricted calculation.

Our recurrence spectra show the systematic elimination
of recurrences. We have confirmed these effects in quan-
tum mechanical Floquet calculations. We have shown
how these results can be explained to be a consequence of
the destructive averaging of orbits returning to the nucleus
at different times. These results provide a firm foundation
for the investigation and interpretation of recurrence spec-
tra in time-periodic potentials.

The work at MIT is supported by NSF Grant No. PHY.
9221489 and ONR Grant No. N00014-96-1-0484, and the
work at W&M by NSF Grant No. PHY-9630372 and
ONR Grant No. N00014-94-1-0930. N.S. acknowledges
support by an AASERT fellowship from ONR. J.O.
acknowledges support from the donors of the Petroleum
Research Fund administrated by the American Chemical
Society and from an award from Research Corporation.

0 V. vi
0 S 10 15 20 25 30

Reptitica Numbn

FIG. 4. Falloff coficient c. [defined in Eq. (10)) for the first
30 repetitions of the parallel orbit. Squares are experiment,
circles are Floquet computation, and solid triangles are the un-
restricted semiclassical theory. The solid line is the prediction
of the restricted semiclassical theory.
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