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Abstract

This study presents a methodology for optimal and accurate extraction of the n, m, and H
parameters for D.C. hot-carrier degradation modeling. The methodology is based on a
Monte Carlo simulation of the two key elements in hot-carrier reliability studies: the
degradation and lifetime correlation plots. An optimized method for parameter extraction
is also developed based on the extrapolation of the quantity ISUB/ID at a device lifetime of
10 years. The focus of this study is to verify the existence of an optimized parameter
extraction method and to explore its sensitivity to statistical estimators and device biasing
conditions within the context of balancing the device stress time with the number of
device measurements subject to a constraint of fixed total time for stressing. Simulation
results indicate that for a given technology, the optimized method for parameter extraction
highly depends upon the level of ISUB/ID biasing as well as the choice of statistical
estimators used to model process variation. The stress time sampling scheme is also found
to be an influential factor of this sensitivity.
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Chapter 1

Introduction

1.1 Physics of Hot-Carrier Degradation

Due to the continued scaling of MOSFET dimensions while the power-supply voltage

remains constant, the resulting high electric fields generated within the device produce hot

carriers which can damage the gate oxide. The high lateral-electric field at the MOSFET

drain greatly energizes mobile charge carriers within the conducting channel at the pinch-

off region. Some of the energetic carriers induce impact ionization forming electron/hole

pairs. Some of the energetic electrons are further energized by the high electric field and

can acquire (as an ensemble) an effective temperature much higher than that of the sur-

rounding silicon lattice. These "hot" carriers can gain sufficient energy to cross over the

energy barrier of the Si-Si0 2 interface, break Si-H bonds, and create different forms of

oxide damage.

NMOS hot-carrier-induced oxide damage can be separated into three distinct types.

Each mechanism occurs during different gate-voltage stress regimes (for fixed drain volt-

age). For low gate-voltage stress (VG-VT, peak gate hole-current region), the generation

of oxide hole traps is the major degradation mechanism [1]. For medium gate-voltage

stress (VG-VD/ 2 , peak substrate-current region), acceptor-type interface state generation

is the most important degradation mechanism [2]. These acceptor-type interface states are

negatively charged when occupied and neutral when empty. For high gate-voltage stress

(VG-VD, peak gate electron-current region), the electron trapping mechanism dominates

[3]. These electron traps, whose occupancy is insensitive to bias voltage, have a similar

effect on the device characteristic as the acceptor-type interface states.



The generation of hot-carrier-induced oxide damage has a detrimental effect on MOS-

FET performance as device characteristics such as threshold voltage VT, drain current ID ,

and transconductance gm can be adversely changed [4],[5]. The degraded device perfor-

mance over time can seriously affect the operation of the circuit; thus the issue of hot-car-

rier reliability exists as a major concern. In order to assess the extent of the hot-carrier

damage and its impact on device and circuit performance, accurate reliability simulation

based on properly calibrated degradation models is needed [6].

1.2 Hot-Carrier Degradation Models

Under realistic circuit operation, devices typically undergo A.C. hot-carrier degrada-

tion. A given A.C. waveform can be partitioned in time by small time steps such that

approximately D.C. conditions can be applied within each time step. This quasi-static

approximation allows the use of D.C. degradation model within each time step to predict

A.C. degradation and evaluate device reliability.

1.2.1 Derivation of the D.C. Degradation Model

Acceptor-type interface state generation is commonly believed to be the dominant deg-

radation mechanism affecting NMOSFET device and digital circuit performance [7]. It is

in the medium gate-bias regime that substrate current is observed to correlate very well

with the observed hot-carrier degradation [8]. Thus ISUB can be used as a good monitor for

the amount of interface-state generation.

The substrate current is a function of the drain current and other parameters which can

be extracted from experimental measurements. A general equation for the substrate cur-

rent is [2]:

(qi

ISUB = CIDe (1.1)

where C is a process-dependent parameter, (pi is the critical energy for impact ionization, X



is the mean free path for electrons, and Em is the maximum lateral electric field at the

drain. A model for Em [9],[10] can be substituted into Equation (1.1) yielding:

B, -1,

IsuB = 'I D (VD - VDSAT) e VDSAT (1.2)

where VD is drain to source voltage and VDSAT is the drain saturation voltage defined as

V Ecrit L (V G - VT) (1.3)VDSAT= Ecrit • L + VG- VT

parameters Ai and Bi are impact ionization coefficients, VT is the threshold voltage, Ic is

the length of the effective pinch-off region, L is the effective gate channel length, and Ecrit

is the critical field for velocity saturation. Both Ecrit and 1c are functions of the bias volt-

ages and other physical parameters shown in (1.4).

Ecrit = Ecrit0 +Ecritg VG+Ecritb VSUB

Ic = (lco + cl C VD) x tOx

where VSUB is the back-body bias and tox is the gate-oxide thickness.

Equation (1.1) can be used to correlate the amount of hot-carrier-induced damage at

the Si-SiO2 interface with the measurable quantity, ISUB . The amount of interface traps

generated is found by the following expression [2]:

ID qkE(1.5)
ANit = C - - - e tstress (1.5)

where w is the width of the device, (Pit is the critical energy for interface-state generation,

and tstress is the amount of time the device undergoes stress. Combining (1.1) and (1.5)

yields the basic D.C. degradation model for NMOSFET acceptor-type interface-state gen-

eration, which underlines most hot-carrier reliability simulation tools:

ANit = w(D . (ISUB)m . tstress) n (1.6)



Equation (1.6) expresses hot-carrier-induced interface-state generation in terms of

quantities which can be experimentally measured or calculated. ID and ISUB are the mea-

surable terms, while n, m, and H are extractable parameters. The parameter n is the degra-

dation rate coefficient, which reflects either the reaction-limited or transport-limited

regimes of the interface-state generation mechanism [2]. H is a process-dependent con-

stant. The parameter m is called the voltage acceleration factor and defined as

m it (1.7)
Tpi

which is the ratio of the critical energy needed for interface-state damage and impact ion-

ization, respectively. It is important to note that accurate extraction of these three model

parameters is crucial for accurate prediction of hot-electron degradation in any reliability

simulation.

1.2.2 Brief Overview of A.C. Hot-Carrier Degradation and Modeling

Although the focus of this study is on D.C. hot-carrier degradation modeling and it's

parameter extraction, realistic circuits are subjected to A.C. waveforms and hence undergo

A.C. degradation. Therefore, a brief discussion on A.C. modeling is warranted.

One metric for how much stress a device undergoes during A.C. hot-carrier stress is

the quantity hot-electron AGE which is defined as [ 11]:

T

AGE = ID(t) ISUB(t) m dt (1.8)

0

Both ID and ISUB are time-dependent, and the AGE is normally evaluated for one period of

a waveform from t=O to t=T(period). Within one period, an A.C. waveform can be rapidly

changing and hence subject the device to many different stress-bias conditions. Combin-

ing (1.8) with (1.6), a power-law dependence on AGE can be shown for hot-electron deg-



radation[11 ]:

ANit = [AGE]n  (1.9)

1.3 Motivation and Overview of Thesis

Proper calibration of the hot-carrier degradation models is essential for accuracy in

hot-carrier reliability simulation tools. A crucial element to insure proper calibration and

verification of the models is the accurate and efficient extraction of the modeling parame-

ters. Much work has been performed in establishing evaluation guidelines for more consis-

tent and effective use of these models in the simulation tools [6],[13]. One study has

discussed the statistical issues involved in parameter extraction and briefly shown that an

optimum between accuracy and efficiency exists [13]. However, a thorough study of this

trade-off has never been performed.

This thesis presents a methodology for improving the D.C. hot-carrier degradation

model parameter-extraction procedure. The current unoptimized procedure is examined in

order to determine the relevant optimization issues. An element for optimization is devel-

oped for D.C. parameter extraction with concluding suggestions for further studies which

can improve the proposed optimized method. The goal is to present a methodology for

optimal model parameter- extraction within the framework of the evaluation guidelines for

accurate A.C. circuit-level reliability simulation.



Chapter 2

Current Methodology for D.C. Parameter Extraction
The effects of hot-carrier-induced damage on device performance can be quite com-

plex. However, in order to separate the damage creation mechanism from the effects of the

damage on the device characteristics, a single well-understood parameter is often used to

assess the degradation. Interface trap generation ANit can lead to changes of the threshold

voltage AVT, reduction of the forward-linear drain current AID/ID and transconductance,

Agm. Degradation of any of these device parameters can serve as monitors for ANit; how-

ever, AID/ID is used in this study due to its high correlation to the localized hot-carrier

induced damage and its ease of measurement.

Equation (1.6) can be now written as [14]:

AID K(ID (ISUBm
- K -I k. - •tstressI  (2.1)

ID w-H ID sr

since I""c AN,, and where K is a proportionality constant. In this study, we will assume

K=1, and thus, the reduction in drain current is set directly equal to the amount of interface

damage. This assumption is permissible because the true value of K is accounted for in the

extraction of the technology-dependent parameter H. Both ID and ISUB are measured at

their initial values under stress-bias conditions, w is the width of the device, and tstress

denotes the amount of time the device is stressed at a given D.C. voltage. The parameters

n, m, and H are extracted degradation model parameters obtained from experimental mea-

surements.



2.1 Extraction of Degradation Model Parameter n
Normally, n is extracted first by rewriting (2.1) as a power-law relationship [22]:

AID n_ A t
ID

(2.2)

where A is the power-law pre-coefficient and n is the power index. As evident from (2.2),

a correlation between A and n exists and one study has shown that A increases with

decreasing value of n, satisfying a simple exponential relationship [23].

The NMOSFET device data used in this study comes from a 0.4 micron, LDD process

with an oxide thickness of 7nm and device widths of 10 micrometers. Figure 2.1.1 illus-

trates the power-law relationship of the hot-carrier induced degradation and is a represen-

tative plot used to extract the parameter n at a fixed EOx, where Eox is the oxide field at the

drain and is defined as:

VG - VD

tox

100

20%
Lifetime

1 10 1 100 1000

Stress Time (seconds)

Figure 2.1.1: Degradation plot used for extraction of parameter n

(2.3)



The bias voltages for Figure 2.1.1 is VG=2.4V and VD=4.4V. For a constant Eox, VD is set

much higher than the operating voltage and VG follows from (2.3).

The stress time denotes how long a particular D.C. stress condition is applied to the

device. The measurement time scheme of Figure 2.1.1 is {6, 12, 30, 60, 120, 300, 600,

1200, 30001 seconds with log spacing due to the log-log nature of the plot. At each time

interval, the change in forward-linear drain current is measured at the operating voltage.

The data points are regressed using the method of least squares, and the corresponding

slope estimator becomes the parameter n.

For conventional devices with lightly-doped drains (LDD), the linear-current drain

characteristic exhibits a two-stage effect which manifests into two different degradation

rates [15]. This characteristic can be seen from the different values of the parameter n

associated with the solid and dotted regression lines of Figure 2.1.1. Hence, the value of n

seems to depend on the stress time. The reason for this is that LDD devices have oxide

spacers used to reduce hot-carrier degradation[16]. These structures introduce additional

degradation mechanisms in that trapped electrons in the spacer region increase the para-

sitic drain series resistance [17]. Furthermore, another study attributes this degradation,

not only to the increased resistance underneath the LDD spacer region, but also in the

reduction of carrier mobility in the subdiffusion and channel regions [15]. The degradation

rate's saturation behavior affects the correlation between the device lifetime and ISUB/ID,

which will be discussed in Section 2.2. However, this adverse effect can be eliminated by

stressing the device for such a long duration that the degradation rate reaches its final

asymptotic value, as shown by the solid line of Figure 2.1.1.

For each set of VD and VG bias conditions, the device lifetime, t, is also calculated.

The lifetime is defined as the stress time required for AID/ID to change by a particular

amount called the lifetime criterion. Equation (2.4) calculates the lifetime:



Ali e - logA

S=10 " (2.4)

where Alife is the log of the lifetime criterion and logA is the intercept estimator from the

linear regression. Different VD and VG bias conditions can be selected within a fixed EOx,

and each condition has an associated ISUB/ID value and lifetime, t. The ISUB/ID and life-

time are correlated and used to extract the parameters m and H. This lifetime-correlation

plot will be discussed in Section 2.2.

In summary, the operator has control of the follow variables associated with the extrac-

tion of the parameter n:

* the lifetime criterion Alife,
* the choice of EOx,
* bias conditions within each EOx - the spacing and quantity of VD and VG values,
* the stress time for each bias condition - the duration, spacing, and number of intervals

for a particular sampling scheme.

2.2 Parameters m and H Extraction

For a particular Eox, the gate and drain bias voltages are varied to observe the relation

between the device lifetime and ISUB/ID. Normally, about 10-15 different bias conditions

are sufficient to generate of a plot of normalized lifetime against normalized substrate cur-

rent, as shown in Figure 2.2.1. The drain saturation current under stress conditions, ID , is

used as the normalization quantity.



105
Model Parameter:
3.34 < m < 6.03

0 4 Lifetime Criterion:1 0D = 20%

N 10 3

102

Stress Condition:
S. Eox = 0.53 MV/cm

101 . E = -0.18 MV/cmox
A Eo = -0.89 MV/cm

ox

SE = -1.61 MV/cm m
100 , ox

• * Eox = -2.32 MV/cm

SEox = -3.04 MV/cm
1 0 -1 , I I I I I , I , ,l

10-4  10-3 10-2 10-1

ISUB/ID( n o r m alized)

Figure 2.2.1: Lifetime-correlation plot used to extract parameters m and H

Figure 2.2.1 shows the lifetime-correlation for different families of Eox. Each data point

within a given Eox family has a stress duration of 50 minutes, but different durations can

be set by the operator.

The degradation model parameter m can be extracted from the lifetime-correlation

plot. The parameter m is the slope of the regression line and logH which is the intercept.

For a log-log plot, the intercept is where ISUB/ID = 1. Thus logH is extracted from the life-

time-correlation plot and not H. However, H can be found by the following expression:

10log
H

H = (2.5)
1/n
life

Figure 2.2.1 shows a dependence of the voltage acceleration rate on the oxide electric

field near the drain. Furthermore, a study has shown that this rate also has a dependence on



the lifetime criterion used if the asymptotic behavior of the degradation rate coefficient is

not taken into account [13]. However, Figure 2.2.1 does not show a dependence of m on

the chosen criterion, because each lifetime was determined when degradation had reached

its final asymptotic behavior.

2.3 n, m, and H Dependence on Eox
Figure 2.2.1 illustrates the family of different Eox curves across varying bias condi-

tions. The different m and logH values from Figure 2.3.1 definitely suggest a dependence

of the voltage acceleration rate coefficient and process-dependent parameter on the oxide

field. Proper accounting for the local oxide field dependence in extracting the degradation

model parameters is essential, especially when hot-carrier evaluation under A.C. condi-

tions require the model to be applicable over a wide range of operating voltages. This

dependence can be accounted for by using different set of parameter values in the AGE

model of Section 1.2.2.

The exact functional form of the Eox dependence of the parameters n, m, and H is not

known. Speculative physical explanation for the observed oxide-field dependence focuses

either on the injection mechanisms or the generation of interface-state damage [17]. One

speculative explanation is energy band bending of the Si substrate due to the applied oxide

field, which forces the drain current path deeper into the silicon and further away from the

Si-Si0 2 interface [18]. The greater the oxide field, the larger the amount of band bending,

and the greater the distance hot-carriers must travel to reach the gate oxide. This results in

additional critical energy (yit) required for hot electrons to cross over the Si-SiO 2 barrier

height to create interface states [6].
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Figure 2.3.1: Dependence of D.C. parameters on oxide field

While the m and H dependence on Eox is well observed and can be accounted for in

A.C. hot-carrier degradation simulations, the dependence of the degradation rate coeffi-

cient n on the oxide field is less often taken into account [6]. Figure 2.3.1 seems to suggest

that a dependence of n on Eox exists, and one study shows a general relation between n

and Eox across a wide range of gate and drain bias conditions and device parameters [19].

This study states that improper accounting for this dependence results in significant over-

estimation of A.C. hot-carrier lifetime. Furthermore, the dependence is not primarily due

to a combination of different degradation mechanisms such as interface-state generation or

hole trapping but rather is an inherent feature of the interface-state generation mechanism

itself. Other speculative explanation for the field dependence is field-dependent diffusion

of interstitial hydrogen generated from the Si-H bond breaking that occurs during hot-car-

rier stressing. This hydrogen diffusion process has been proposed as the rate-limiting step

for hot-carrier-induced interface-state generation [2].



The study in [19] was performed using conventional devices while the data from Fig-

ure 2.3.1 is for LDD structures. In order to determine the statistical dependence of the deg-

radation rate coefficient on the oxide field for LDD devices, data from two LDD-based

technologies is used. The first technology uses six Eox families while the second has ten.

Both technologies were stressed over a wide range of bias conditions. Table 2.3.1 lists the

Eox families used for each technology.

Hypothesis testing of the mean of n for each Eox family (a treatment) is used to con-

firm or deny the dependence of n on all Eox families. The hypothesis test is

Ho: PEox=0.53 = "REox=-0.18 = P-Eox=-0.89 =fgEox=-1.61 =fEox=-2.32 = fEox=-3.04

against

H1: At least two of PIEox=0.53, PREox=-0.18, PEox=-0.89, gEox=-1.61, gEox=-2.32, REox=-3.04 dif-

fer.

The analysis of each treatment's mean is performed with the Analysis of Variance

(ANOVA) technique. If the prob-values from the ANOVA tables of Figure 2.3.2 (A) and

(C) are less than the a degree of confidence, then Ho is rejected in favor of H1. For 95%

degree of confidence, a is 0.05. The results confirm that for both technologies, there is a

strong dependence of n on Eox. Appendix A provides a derivation of the statistical models

used in the ANOVA table as well as an elaboration on hypothesis testing. The analysis in

Appendix A also shows the interdependence of one treatment on another and includes

tables showing the amount of interdependence. For Technology 1, the treatments which

have Eox values less than or equal to -0.89MV/cm are statistically independent of each

other. This result is confirmed by the prob value of Figure 2.3.2 (B), which is greater than

the a confidence level.
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Figure 2.3.2: ANOVA table for (A), (B) Technology 1 and (C) Technology 2

Technology 1 Technology 2

No. of Data Points Eox (MV/cm) No. of Data Points Eox (MV/cm)

15 0.53 10 0.36

16 -0.18 10 -0.45

17 -0.89 9 -1.26

14 -1.61 10 -1.75

17 -2.32 9 -2.08

12 -3.04 10 -2.40

10 -2.73

8 -3.05

11 -3.30

10 -3.71

Table 2.3.1: Listing of EOx used for each technology in ANOVA table



2.4 Issues Concerning Current Methodology

Section 2.1 briefly outlines the issues required for accurate extraction of the n, m, and

H parameters. No optimized extraction procedure currently exists as the experimentalist

simply chooses a stress time duration (normally 50 minutes), number of measurements

(10-15 data points on lifetime-correlation plot), and the stress and bias conditions (from

previous knowledge of the device's I-V curves). If the regression fit for the lifetime-corre-

lation plot is poor, more measurements are taken. Therefore, in order to develop a method-

ology that optimizes the parameter extraction procedure for accuracy and efficiency, all

the issues concerning the current unoptimized methodology must be examined. These

issues can be divided into two categories: D.C. modeling issues and A.C. modeling issues.

D.C. modeling issues are those which involve variables examined under a fixed Eox while

A.C. modeling issues involve a range of Eox families.

2.4.1 D.C. Modeling Issues - Fixed Eox

The following issues must be taken into consideration when developing an optimized

procedure for D.C. parameter extraction.

* What are the individual VG and VD bias conditions within a particular Eox? These VG
and VD pairs also define the corresponding ISUB/ID values in the lifetime-correlation

plot. One study states that the maximum stress voltage (VD) is desirable to reduce the

lifetime extrapolation error [13]. However, the stress voltage range is limited by two
constraints: the upper-limit voltage should not turn on the parasitic source-bulk-drain
bipolar transistors [21], and the lower-limit voltage should be set such that final
asymptotic behavior is attained for the degradation rate. Another study suggests that a
medium-to-high gate voltage range (VD/2 > VG 2 VD), since the main hot-carrier

induced mechanism in NMOSFETs is interface-state generation [3].
* Another issue associated with the bias condition is the spacing and total number of

individual VG and VD pairs. The number of bias conditions addresses how many

devices are used in the experiment and the total number of measurements needed. The
number of measurements corresponds to the total number of data points appearing in
the lifetime-correlation curve for a particular Eox family.

* What should be the stress time scheme? This issue addresses the duration of each mea-
surement, the number of intervals to be sampled and the spacing of these intervals for
one duration.



The optimization for D.C. modeling focuses on balancing the issues addressed in the

second and third bullets under the constraint of a total time allotted to extract n, m, and H

for a particular Eox. How should this total time be distributed between the duration of a

measurement and the number of measurements? Longer individual device stress times

reduce the lifetime extrapolation error, however, at the expense of fewer number of

required measurements. The individual data points in the lifetime-correlation plot will

have smaller associated error, but larger uncertainty in the regression fit due to fewer data

points. Shorter individual device stress times increase the lifetime extrapolation error,

however, more measurements can be achieved. Though there are more data points in the

lifetime-correlation plot, which improves the regression fit, each measurement now has a

larger associated error. Once an optimum between these two extremes has been deter-

mined, the gate and drain bias conditions can be varied to examine the behavioral response

of an optimized parameter extraction method.

2.4.2 A.C. Modeling Issues - Varying Eox

Analogous issues concerning A.C. modeling exist which are similar to those of D.C.

modeling.

* What range of Eox should be chosen? One study suggests an Eox window around the

peak substrate current since this region is found to minimize the interpolation and
extrapolation errors [6]. The much observed correlation of substrate current with inter-
face-state generation mechanism further supports this suggestion.

* The number of Eox values and spacing within this range is also of concern.

Under the constraint that the total time allotted to extract a set of n, m, and H oxide

field dependent parameters is constant, the allocation of this total time along with the total

number of Eox values needs to be optimized. A.C. parameter extraction optimization is

complicated due to the lack of knowing the true functional dependence of m and H on the

oxide field. The optimization method is further complicated if the distribution of time

allotted for D.C. parameter extraction within a particular Eox family is not uniform.



2.4.3 Optimization Focus of this Thesis

This thesis will only concern the optimization issues associated with D.C. modeling.

Suggestions on A.C. optimization will be better discussed upon further studies of the func-

tional dependence of m and H on the oxide field.



Chapter 3

New Methodology for D.C. Parameter Extraction
The focus of this research is to explore D.C. model parameter extraction issues. Due to

the nonlinear equations involved in hot-carrier reliability modeling, the Monte Carlo sim-

ulation technique was chosen for the analysis.

3.1 Description of Monte Carlo Simulation

Most Monte Carlo simulations follow a standard algorithm which consists of develop-

ing simulation models of the system's events, generating these events in the model by ran-

dom sampling from known probability distributions, collecting simulation statistics, and

analyzing the results. The execution of the simulation models usually occurs on a com-

puter using a simulation/mathematical language. Details of the Monte Carlo algorithm

used in developing the methodology for optimized D.C. parameter extraction are shown in

Figure 3.1.1.
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3.1.1 Developing the Simulation Models and Parameters

The Monte Carlo simulation was based on the D.C. modeling process which followed

a series of steps, from extracting the parameter n in the degradation plot, to extracting the

parameters m and H in the lifetime-correlation plot. The model used in the simulation of

the degradation plot was based on Equation (1.6):

A* - N(,iA,aF)

tA =ID IUBM* )N* (3.1)

where A* represented the reduction of forward-linear drain current, AID/ID. Since n, m,

and H were normally extracted from experimental data subject to statistical variation, they

were modeled probabilistically in order to incorporate this randomness in the simulation.

Modeling n, m, and H probabilistically also caused the quantity A* to be probabilistic.

Hence, simulating the degradation plot using (3.1) involved three group of variables: prob-

abilistic, optimization, and technology. The probabilistic and optimization variables were

the control variables in which their values were adjusted to analyze the model's response.

The technology variables became constants for a given set of simulations and were cali-

brated according to known data.

The probabilistic variables were N*, M*, H*, and A*. Process variations caused statis-

tical variation in the parameters n, m, and H. The standard deviation, Y, for each of these

variables accounted for the statistical variation due to device, die, and wafer level differ-

ences. Because the exact amount of variation, a, for each variable was unknown and dif-

fered from one technology to the next, a range of values for a was used to perform the

analysis.

Although A* is probabilistic due to N*, M*, and H*, A* had its own standard

deviation, (E, which modeled the instrumentation error and random scattering of the

measured data. If exactly identical devices were to be used by the same instrument to



measure AID/ID, there would still be random variation in the measured linear drain current

which was accounted for by ae. With the presence of Ge, scattering would be greater for

smaller values of A*. Without the presence of aE, differences in the size and location of

the stress time regions would become inconsequential.

The probabilistic variables were assumed to have a normal distribution with the excep-

tion of H*:

N* - N(no,yn) M* - N(mo,om)

logH* - N(logHo,,logH) 
(3.2)

where no, mo , logH o, and their respective cs denoted the mean and standard deviation of

each variable's normal distribution. Since logH was extracted from the lifetime-correla-

tion plot and not H, logH* assumed a normal distribution with H* defined by the follow-

ing function:

10logH *

H* = (3.3)
1/N*
life

where Alife was the lifetime definition. A* was defined in (3.1). The mean was obtained

from initial field data of a particular technology and Y was varied over a range centered

around the mean.

The optimization variables consisted of the stress time and ISUB/ID sequences. These

variables comprised the main control variables of the optimization routine. The stress time

sequence had three degrees of freedom: the duration (tlen), number of intervals (Nint), and

the spacing (kTsp). The duration was defined by the starting and ending stress times. The

number of intervals corresponded to how many stress time values used for one duration.

kTsp defined the exact value at each time interval.

Similar to this sequence was the ISUB/ID sequence for the lifetime-correlation plot.

The different ISUB/ID values reflected different stress voltage conditions. This sequence



also contained three components: the bias length (Ilen), number of intervals (Ndev), and the

spacing (kIsp). The bias length defined the starting and ending points of the sequence. Ndev

defined how many bias conditions occurred within a fixed Eox and also corresponded to

the number of extrapolated device lifetimes or number of device measurements. kIsp

denoted the exact ISUB/ID values within the sequence. Although the experimentalist did

not directly adjust ISUB/ID in changing the bias conditions, the associated VG and VD pairs

could be readily calculated from MOSFET device models.

The technology variables consisted of no, mo , logHo , w, ID , and the lifetime criterion.

Those values were determined using measured data from a particular technology, and for a

set of simulation trials, these variables remained constant. The lifetime criterion was cho-

sen to be 10% for this study. The initial stress value was used for the drain saturation cur-

rent, ID. Although ID may have change during stressing, any such change was considered

negligible. Thus ID was assumed to remain at its fresh value throughout the simulation.

3.1.2 Calibrating no, mo, logHo and Listing Simulation Assumptions

The values for no , mo, and logH o came from the experimental measurements of a par-

ticular fixed Eox for a given technology. This particular Eox condition was chosen because

of its high lifetime-correlation coefficient (> 90%) and its associated gate voltages were

biased at the medium-to-high regime, where the major degradation mechanism was inter-

face-state generation. Nine different bias voltages were applied to generate nine degrada-

tion curves for the same Eox. Each curve had an associated degradation-rate coefficient, n,

and the mean of these nine values became no . The standard deviation provided a basis to

develop a range of values for on.

The associated ISUB/ID and device lifetime extrapolated from each degradation curve

were used to extract mo and logH o from the lifetime-correlation plot. The slope estimator



was mo while the intercept estimator was logH o. Each estimator had an associated stan-

dard error which provided the basis for estimating a range of values for am and alogH.

Using the same known data, ao was derived by applying a nonlinear fit of the power-

law relationship, Atn , to each degradation curve. Each fit was characterized by the mean

square error (MSE) which measured the normalized square difference between the fitted

curve and the measurement points. The MSE was normalized by the degrees of freedom

from linear regression (which was the number of measurement points less 2) [20]. The

mean of the MSE from each fitting of the nine degradation curves was defined to be ao.

Since oa had units of percentage, experimental data used in its calibration was represented

with a plotting method whose ordinate scale reflected the same unit of percentage. A lin-

ear fit on a log scale plot would change the unit of measurement to log(%). Thus, a nonlin-

ear fit on a linear scale plot was required in order to preserve the percentage units.

Furthermore, a linear regression analysis on a log scale plot would result in a highly

underestimated as value since the MSE would measure the square difference of a log

operation.

Although individual values for on, am, alogH, and as were determined from the same

set of experimental data, it was worthwhile to note that each value was highly coupled to

the other. This study's analysis did not decouple the factors which uniquely influenced aE,

on, am, or alogH from each other. For example, the factors which caused only n to vary

were embedded in the same experimental data used to estimate as for m and logH. Due to

a lack of filtering, high values for on, am, alogH, and as should be avoided and a range of

values should be used instead with conservative choices toward the lower end. The base

values served as a basis for estimating a range. Table 3.1.1 summarizes all the values dis-

cussed in this section and shows the base value for on, am, alogH, and o.



Technology Variables Probabilistic Variables

no 0.278 an : base, range 0.021, 0.005 - 0.1

mo  3.537 am : base, range 0.418, 0.1 - 0.8

logH o  2.214 ologH : base, range 0.525, 0.1 - 1.0

w 5gm E : base, range 0.015, 0.01 - 1

ID  2.685mA

Lifetime 10%
Criterion

Table 3.1.1: Initial values used in Monte Carlo simulation

3.1.3 Tracing through the Rest of the Monte Carlo Simulation

Once the simulation model had been established, the initial condition for the technol-

ogy variables set, and a set of optimization variables selected, values for N*, M*, logH*,

and A* were randomly sampled from the normal distribution. The computer generated the

random sample using a pseudorandom number generator. This design used a Marsaglia-

Zaman subtract-with-borrow generator for real numbers [24]. The advantages of this gen-

erator over most others were: implementation simplicity, speed, an extremely long period,

and excellent performance on tests of randomness [25].

Once values for N*, M*, and logH* had been generated from random sampling, the

mean value of A* was calculated according to (3.1) for a particular ISUB/ID value and at

each stress time value. A* was generated from a normal distribution using the calculated

mean values and user-defined up according to (3.1). After generating A* for an entire

stress time sequence, a linear regression was performed on the log-log plot. The lifetime,

t, was calculated at the lifetime definition using (2.4), where Alife was 1 (10% definition),

logA was the intercept estimator, and n was the slope estimator from regression. This

whole process was repeated for other ISUB/ID values until the ISUB/ID sequence expired.



Simulation of the lifetime-correlation plot involved graphing the extrapolated t at each

ISUB/ID value. All modeled process variation, measurement errors, and random scattering

occurred in the degradation plot and their manifestations appeared in the dispersion of the

(T*ID/W,ISUB/ID) points. Another linear regression was applied to this log-log data set, and

the slope and intercept estimators (m and logH respectively) were used to extrapolate

ISUB/ID at 10 years. Equation (3.4) showed the required calculations.

C- logH
SUB(@10years) = 10 m

(3.4)

L 315360000 ID)C = Log (D w

The process of random sampling N*, M*, and logH* to calculate ISUB/ID at 10 years

was repeated for the number of simulation trials. Upon expiration of the trials, an empiri-

cal distribution for ISUB/ID was generated. The user could determine the number of simu-

lation trials. The greater number of trials yielded finer resolution in the ISUB/ID

distribution at the cost of a longer total simulation time.

3.2 Selecting an Element for D.C Optimization

Since the goal of hot-carrier reliability was to determine the effects of damage on the

device at a distant future time, extrapolating values of ISUB/ID from the lifetime-correla-

tion curve at 10 years lifetime was an excellent element upon which to base parameter-

extraction optimization. Upon repeated simulation trials, a distribution of these ISUB/I D

values at 10 years was generated. In assessing the trade-offs under a total time constraint

for D.C. parameter extraction, short stress times led to large lifetime-extrapolation errors,

which manifested in greater scattering of the data points in the lifetime-correlation plot.

Hence, the ISUB/ID distribution at 10 years suffered even though the lifetime-correlation

plot had more points. Longer stress times led to smaller extrapolation errors and reduced

the scatter in the lifetime-correlation plot; however, the ISUB/ID distribution suffered due



to a fewer number of measurements. The optimum within this trade-off was defined as the

stress conditions with the tightest resulting ISUB/ID distributions.

The time constraint problem could be formulated as:

Tdev = tlen + t instr " N in t

Ndev 
(3.5)

Ttota = XTdev(i)

i=1

where Tdev was the total time taken to perform one stress measurement on a device, tlen

was the stress duration, tinstr was the time needed for the instrument to take one reading,

Nint was the number of intervals in the time sequence, and Ndev was the total number of

devices for a given extraction experiment. Note, that the expression for Ttotal allowed dif-

ferent stress time durations for each devices. However, this study simplified the optimiza-

tion problem by assuming a uniform allocation of stress time sequence for each device

which consequently treated tinstr as a constant.

3.2.1 Alternative Elements for Optimization

Analogous to extrapolating ISUB/ID at a device lifetime of 10 years, the operating volt-

age at lifetime can also be determined and its distribution used as another element to base

the parameter-extraction optimization. This alternative choice has further value as the

maximum operating voltage is often used as the metric of comparison in many hot-carrier

reliability studies [13],[26],[27]. However, this choice usually entails ISUB and ID experi-

mental measurements to be taken at operating condition which subjects the optimization

element to process variation. Or, the model for ISUB/ID can be derived from (1.2):

B, ' 1,

Isub Ai V,- VDSA
-. = - (VD - VDSAT) * e (3.6)

which can be solved to obtain the operating voltage, V D

which can be solved to obtain the operating voltage, VD



Another study has suggested that parameter-extraction optimization focus on the pre-

diction interval from the regression fit of the lifetime-correlation plot [13]. The study

states that a minimum prediction interval can be achieved by balancing the device stress

time and the uncertainty associated with a smaller number of data points. Hence, an opti-

mal extraction procedure which minimizes the extrapolation errors can be designed and

performed [13]. The disadvantage of using statistical measures such as the prediction

interval or mean square error and minimizing their magnitude as an optimization goal is

that the associated statistical equations do not directly account for all the variables which

need to be modeled. For example, the ISUB/ID values are used as the independent variables

in the prediction-interval equation and no other terms are available to account explicitly

for the device stress time. Therefore, the study chooses ISUB/ID bias conditions which are

correlated to the stress-time duration. Such correlation reduces the effectiveness of the

prediction interval as an optimization element.



Chapter 4

Analysis of Monte Carlo Simulation
The purpose of this analysis is to characterize the effects of the probabilistic,

optimization, and technology variables on the various stages of the Monte Carlo

simulation. The three major stages are: the degradation plot, empirical lifetime distribution

for fixed ISUB/ID bias condition, and lifetime-correlation plot. Although all three sets of

variables are examined in each stage, much of the focus will be on the probabilistic

variables, since choosing the appropriate values from the ranges of Table 3.1.1 is pivotal in

determining an optimal region, which is used to validate the existence of an optimal

parameter extraction method.

4.1 Effects on Degradation Plot

The analysis of the degradation plot is based on the model of (1.6). Quantitative graphs

are used to illustrate the individual effects of each a as well as the simultaneous effects.

Effects due to optimization and technology variables are discussed qualitatively. Table

4.1.1 lists the values used in the model of (1.6).

no 0.278

mo  3.537

logH o  2.214

ISUB/ID 0.0616

ID (mA) 2.685

w (gm) 5

lifetime 10%

time 6x10 -7, 1.2x10 -6, 3x10 -6

sequence 6x10 -6, 1.2x10 -5 , 3x10 -5

(seconds) ,...,
6x10 4, 1.2x10 4, 3x10 4

Table 4.1.1 Values used in simulating the degradation plot



4.1.1 Effects of Turning On Only One a

In the cases of only one on, am, or alogH active, Figure 4.1.1(A)-Figure 4.1.3(A)

show the maximum deviation from the nominal degradation curve (represented by black

squares) for selected a values within the range from Table 3.1.1. The boundaries corre-

sponding to each a represent the worse-case deviation from the nominal out of 1000 simu-

lation runs. Each selected a values should also reflect boundary curves which clearly

illustrate a deviation from one set to the next, which signifies that the choices for a partic-

ular a should not be closely spaced together. Since the base values come from experimen-

tal measurements, the accuracy of representation is dependent on the sample size. This

dependency further justifies the use of a range even though the true a may be constant for

a given technology but nonetheless remains unknown.

In Figure 4.1.1, the spread for on is 0.005, 0.02, 0.05, and 0.1 with the base value at

0.02. on values below 0.02 show the more realistic case of degradation usually found from

current technologies, while higher on values extend the possible degradation boundary to

extreme values which show damage in excess of 1000% of the nominal for the low-to-

medium stress-time range. Even at the base value of 0.02, the degradation boundary is

more than double the nominal for also the low-to-medium stress-time range. In actuality,

the degradation boundary for on=0.02 should be much less than double the nominal

because this a value's effect on degradation also reflects those due to other as. The per-

centage of linear current degradation with only on active can be expressed as:

log AID) = N*. logt + N* -. log ((SUB) wmHID (4.1)

where t is the stress time and N* has a normal distribution described in (3.2). Although H

also has an n dependence, it is treated as a constant. Figure 4.1.1 shows a rather large time

sequence in order to illustrate the divergence of the boundary curves from the nominal

curve at small stress times, while at large stress times, the boundary curves converge.
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From inspection of Equation (4.1) and illustrated in Figure 4.1.1, the slope of each bound-

ary curve changes. For the set of curves above the nominal, the upper boundaries are char-

acterized by slopes less than no. For large on values like 0.1, the slope of the upper

boundary can be less than zero and hence leads to a set of boundary curves with decreas-

ing non-monotonic slopes. For the set of curves below the nominal, the lower boundaries

remain monotonic as their slopes increase above no for increasing on. Furthermore, Equa-

tion (4.1) shows that the vertical intercept for each curve changes by a factor of N*. Hence

for a given on, none of the degradation curves within the boundary ever crosses for the

time frame shown, despite the variation in slope for each one. At extremely large stress

times beyond what is shown, the boundary curves not only cross each other but also the

nominal curve.

Figure 4.1.1(A) shows boundary curves which are determined as the worse-case devia-

tion from the nominal curve out of 1000 simulation runs. Simulation is not the only man-

ner in which the boundary curves can be determined. They can be calculated analytically

using Equation (4.1) by substituting (no+on)=N*. However, the analytical method is less

accurate as shown by comparison of the boundary curves from simulation with the ones

calculated analytically in Figure 4.1.1(B). The substitution assumes a l c deviation from

the mean which only covers 80% of the total sampling space. A simulation is more precise

in defining the boundaries since the sampling range is not confined to 1c deviation.

The effects of varying only am or ologH on the degradation plot are shown in Figure

4.1.2 and Figure 4.1.3. The spread of am is 0.1, 0.4, 0.8 with its base value at 0.42, and the

spread of flogH is 0.1, 0.5, 1.0 with its base value at 0.52. All the boundary curves have

constant slope of 0.278 but with different intercepts. Equations (4.2) and (4.3) describe the

vertical displacement of each boundary curve:



log (ID = n, logt + n, log SUBM WH (4.2)

log = n logt + no logsuj I D w- (4.3)

For both cases, the degradation boundaries corresponding to as' below or near each

respective base value (Tm=0.4 and alogH=0.5) best represent the cases from experimental

observation.

A comparison of these two cases with that of on shows that the effects of an on the

degradation plot is much greater at the low-to-medium stress time range. When either am

or ologH is doubled from its base value (Tm=0.8 and YlogH=l), the degradation reaches

an order of magnitude greater than the nominal curve. When on is doubled from its base

value, degradation is in excess of two orders of magnitude at the low stress times and

slightly one order of magnitude above at the medium stress times. However at the high

stress time range, the degradation approaches the nominal for the case of an while it

remains an order of magnitude different for am and cYlogH.

The degradation due to varying only eY is more sensitive to the location of the stress

time interval and the particular ISUB/ID bias level. Figure 4.1.4(A) illustrates this

dependency. Equation (3.1) defines (E as the standard deviation of the mean, AID/ID,

whose magnitude is a function of many parameters such as n, m, H, and ISUB/I D . For

small ISUB/ID levels and at low stress times, the degradation can be orders of magnitude

different from the nominal, especially when aE is large (greater than 0.1). However at

higher stress times, the choice of se has negligible effect on degradation even at small

ISUB]ID . At the medium stress times which reflect a more realistic range used in

experimental measurements (1-10,000 seconds), large ae can cause significant deviation

from the nominal, which normally does not coincide with experimental observation. Small

Ge can also cause significant deviations if the ISUB/ID level is very low. Therefore, the



choice of as should be balanced with the ISUB/lD level, and, to a lesser extent, the stress

time.

(A) (B)
10' 102

10 * 10'

1E-0- .......... .o...

values for given ISUB/ID level by using regression fits. At as of 0.01, the fit virtually coin-

cides with the nominal while fits of higher as values increasingly depart from the nominal.

The departure is characterized by a decrease in slope, increase in vertical intercept, and

poor fitting coefficient. Although not apparent in Figure 4.1.4, the increase in vertical

intercept is small and not noticeable on the scale shown. The poor fitting coefficient makes

the fit for higher as less reliable. Since the presence of high ae at low stress times causes

the poorer fit and less reliable slope, the choice of as does not have to be balanced with the

stress time to the same extent as the ISUB/ID level if the low stress time range is avoided.

Figure 4.1.5(A) illustrates another issue for high ae at low stress times. Although the

data points (black squares) are generated from a gaussian distribution about the nominal

curve (hallow circles), they are distribution mostly above the nominal curve below the

stress time of 1 second. Depending on the relative magnitude of the nominal curve, a high

aE can frequently generate negative A* values at low stress times. The generation of these



points assumes a normal distribution which has equal probability of generating a point

above and below the nominal. The Monte Carlo algorithm discards these negative values

and only retains those with positive quantities, because subsequent regression analysis

uses the log of the A* values. Hence the overall distribution of points is not normal, as the

number of points appearing below the nominal does not coincide in number with those

lying above. Figure 4.1.5(B) and (C) show both curves on a linear-linear scale and the

amount of deviation from the nominal after applying ce. Figure 4.1.5(C) shows the appar-

ent deviation at low stress times. As discussed in Section 3.1.2, the need for nonlinear

regression to determine the base value of as attributes the manifested effects of as to the

Atn form and not to the log form. Furthermore, the nonlinear regression accounts for the

significant deviations at high stress times as seen in Figure 4.1.5(B) while the log opera-

tion of Figure 4.1.5(A) minimizes the deviations which result in an underestimated (e.
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Figure 4.1.5. (A) Degradation at high as and low stress time, (B) Same degradation curve
showing Atn form, (C) Zoom of (B) at low stress time



4.1.2 Effects of Turning On Multiple as

Figure 4.1.6 and Figure 4.1.7 illustrate the cases for both on and am active as well as

on and alogH. Each respective a is chosen such that their combined effects are apparent.

The combined effects of on and am cause the convergence of the boundary curves toward

the nominal due to the change in slope. The boundary curves are also displaced further

from the nominal due to greater deviation in the vertical intercept, on changes the slope

and vertical intercept in the same manner as describe for the case of only on varying,

while am adds addition deviation to the intercept due to the power factor effect of M*, as

shown in (4.4).

log AI-) = N* logt + N* log SUB M* wH (4.4)

The effects of an and (logH are less intuitive and the boundary curves for different a val-

ues are difficult to define. Unlike the previous cases, the worse-case boundary curve can-

not define a limit within which lie all curves generated in the simulation for an and alogH

values. The coupled effects of an and (logH cause the intercept to change in a non-mono-

tonic direction such that the generated curves can cross each other within the stress time

frame of Figure 4.1.7. This cross-over effect is the reason for the difficulty in defining a

boundary region for an of 0.02 and alogH of 0.5. Two sets of curves are used to mark one

possible boundary. The curves represented by shaded circles is chosen because it has the

greatest deviation from the nominal referenced at the stress time of 6x10 -7 seconds, while

the curves represented by shaded triangles is chosen because it has the greatest deviation

from the nominal referenced at the stress time of 3x10 4 seconds. Both curves are deter-

mined from 1000 simulation trials. Since this cross-over effect has not been observed from

experimental measurements, it is best to turn (logH off during the optimization and lump

the variation due to logH with the other as (essentially increasing their values).



The reason for the non-monotonic, directional change of the intercept is due to H*

residing in the denominator of the log-product as shown in (4.5). H* has an inverse effect

on the intercept while the N* multiplier has a direct effect such that the direction of

change for the intercept highly depends upon the magnitude of H* and N*. For example,

increasing both H* and N* does not necessarily cause the intercept to increase. If the mag-

nitude of increase for H* is much greater than that for N*, the intercept decreases. Thus

this effect on the intercept similarly causes the degradation level to depend on the relative

magnitude of N* and H*.

(AID) I S) B
m  

ID
log ~-D= N* logt+ N* log I' (4.5)

When both am and alogH are active, the behavior of the boundary curves is similar to

Figure 4.1.2 and Figure 4.1.3 with the exception that the intercepts' displacement from the

nominal depends on the value of M* and H*. As seen in (4.6), an increase or decrease in

M* and H* usually causes the intercept to act in opposite directions while retaining the

same slope, no . Since ISUB/ID is less than 1, an increase in M* decreases (IsuB/ID)M *; thus

combining M* and H* further displaces the boundary curves from the nominal.

AI ISM* I

log = n.o logt, +n o log(( SUB - w (4.6)

Figure 4.1.8(A) shows a realistic example of when on, am, alogH, and ce are active

for low-to-high stress time sequence. All the as have been chosen at the end of the low

range listed in Table 3.1.1. When ae is active in conjunction with other as, the generated

data points are distributed about a new curve based on an, am, and alogH active. Due to

the small a values, this curve virtually coincides with the nominal. The degradation for a

time sequence normally used in experimental measurements is shown in Figure 4.1.8(B),

which is a more accurate representation of one of the technologies used in this study since

the amount of deviation from the nominal for this time regime is small. At low stress times



and small c=0.01, the degradation becomes apparent as the simulated data points exhibit

a gaussian distribution about the an, am, and clogH curve.
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4.1.3 Effects of Altering the Technology and ISUB/ID Bias Variables

Changing the technology and bias parameters affects the A* model in a deterministic

manner such that boundary curves need not be used in the characterization. Both involve a

change in the nominal curve. Figure 4.1.9 shows that an increase in ISUB/ID shifts the

nominal degradation curve upward. The subsequent curves at the higher ISUB/ID level are

spaced less apart than those in the lower level due to the log scaling. A change in either

mo, logHo, w, or ID also shifts the vertical intercept. Both w and logHo have inverse effects

on A*, while m o and ID have direct effects, assuming changes in ID do not impact ISUB/ID*

This assumption is justifiable if any changes in ID are lumped with ISUB such that ID

remains constant.
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Figure 4.1.9. Effects of changing ISUB/ID bias level on A model

4.2 Effects on Empirical Lifetime Distribution
Figure 4.2.1 shows that at each ISUB/ID level of the lifetime-correlation plot, an empir-

ical t distribution can be obtained from a set of simulation trials. Larger number of trials

yields better resolution for that distribution, whose shape is dependent upon the choice of

on, am, alogH, and c. The focus of this section is to characterize this lifetime distribu-

tion at a particular ISUB/ID level and examine its response to changes in the probabilistic,

technology, and optimization variables. Each distribution in this analysis can be modeled

according to (4.7):

1= /N* SUBM* w H*
U* I= (D (4.7)

where A* accounts for the as variation according to (3.1). Furthermore, (4.7) asserts that

the empirical lifetime distribution reduces to a singular point in the case of no as turned

on. Since (4.7) is a function of four random variables, each normally distributed, an exact



closed form function describing the r distribution cannot be found; hence, the Monte

Carlo approach is used to derive an empirical solution.
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Figure 4.2.1. Illustration of empirical r distribution at each ISUB/ID of lifetime-correlation
plot

4.2.1 Effects of Turning On Only One a

Figure 4.2.2 to Figure 4.2.4 show the empirical t distribution for the cases of varying

only on, am, or alogH. The simulation parameters are equivalent to those used in charac-

terizing the degradation plots with the exception of the stress time sequence, ISUB/ID level,

and a ranges. The stress time sequence has been reduced to a range more appropriate for

experimental measurements (from 0.1 to 50 minutes). The ISUB/ID level is chosen halfway

between the range observed from sample data (0.06 from range of 0.02 to 0.08). The a

ranges have been reduced toward small values, since high values result in an excessively

large spread of t, which makes comparison of t distribution for small and large a values

not feasible on the same graph.
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Each lifetime value of a distribution is calculated according to (2.4) in the Monte Carlo

simulation. The nonlinear nature of (2.4) causes the mean and median of the distributions

to change for a given range of on, am, or alogH values. Furthermore, the mean becomes a

function of the a value. This nonlinearity makes predicting the lifetime distribution

counter intuitive and becomes less analogous to the linearization of the A* model in the

degradation plots. However, consistency can be maintained by characterizing the lifetime

distribution based on log(t) by linearizing (2.4) to:

log' = logAlif--logA (4.8)

As evident from Figure 4.2.3 and Figure 4.2.4, the mean and median of each distribution

remain constant and no longer depend on the a values. (4.8) also shows that the mean of

log(t) is a linear combination of the mean of am or alogH. For example in the case of

only am varying,



g(log t) = log Alif - g(log A)

(4.9)

g(logA) = n o - log + no, - (M*) - log7 I

where g(M*)=m o and all other quantities are constant. Thusfar, the mean of log(t) can be

determined if at most only one probabilistic variable is present, by applying the following

linear rule of expected values [28]:

E(aX + b) = a - E(X) + b (4.10)

where operator E is the expected value (or mean) of the independent random variable X,

and a and b are constants.

The mean of log(r) cannot be linearly determined from (4.8) for the case of an varying

since logA has n dependence. This scenario is analogous to having two or more probabi-

listic variables present. Figure 4.2.2 shows that for on of 0.02 and below, the log(,t) distri-

butions appear to be gaussian with approximately constant means. But at larger on values,

the distributions' shape becomes more asymmetrical as the lower tail is wider than the

upper. This is mostly attributed to a greater percentage of lifetime below the mean, which

decreases with increasing an. This nonlinear nature of log(rt) becomes most apparent at

large on values.

Figure 4.2.3 and Figure 4.2.4 agree with intuition and are in accordance with (4.8). As

am or alogH becomes larger, the mean and median of the log(z) distribution remain con-

stant. The distribution is also gaussian because both M* and logH* are distributed nor-

mally. For am varying, the mean of log(,) is given by (4.9). For alogH varying, the mean

is:

log Alf, - t(logA)
Wl(logt) = fe

(4.11)

g(logA) = no -( og - (log(H*))) + no m, log ( ID

where g(log(H*)) is given by the following expression:



1/n o

p(log(H*)) = logH,-log((Alife) ) (4.12)

log(H*) should not be confused with logH* as the former takes the log of the H* value,

and the latter is the normally distributed random' variable of Equation (3.2). The means

from both (4.10) and (4.11) are the same and verified in Figure 4.2.3 and Figure 4.2.4.

These three case studies reveal which a values within the ranges from Table 3.1.1

result in lifetime distributions exhibiting nonlinear properties or showing greater sensitiv-

ity toward changes in per unit a. Using the distribution's tightness as one measure of this

sensitivity, both am and alogH distributions exhibit considerably less sensitivity toward

changes in a of the same magnitude than an. For instance at a a value of 0.05, the on dis-

tribution already exhibits considerable asymmetry. This trend is consistent with Section

4.1.1 in that greater influence by on on the degradation curves manifests into more sensi-

tive distributions.

4.2.2 Effects of Turning On Multiple as

Since a is an implicit variable within the Monte Carlo algorithm, the mean of log(')

distribution cannot be described analytically like am and alogH. Its effect on both the n

and logA terms of (4.8) causes the mean of increasing ac distributions to remain constant

whereas the peaks shift below the mean. Figure 4.2.5 shows this property, and the distribu-

tions of Figure 4.2.5 are obtained with an, am, and alogH set to 0.005, 0.05, and 0.05

respectively. The case of varying only are is not as meaningful since a is normally distrib-

uted about the an, am, and alogH curve. Between the ac ranges of 0.01 to 0.1, the distri-

butions show minimal differences, which are manifested in changes of the height and

slight shifting of each peak below the mean. However, the distribution remarkably departs

from the group in both shape and height for ae beyond 0.1. Some asymmetry can also be

observed.



Figure 4.2.6 shows another distribution with increased on, am, and alogH (black

dash-dot-dot line) along with the distributions of Figure 4.2.5. This distribution has ao of

0.1 but with on of 0.01, am of 0.1, and alogH of 0.1. Despite the doubling of on, am, and

alogH, this distribution has the same mean as all the distributions shown thusfar except for

the cases of varying only on greater than 0.01. Furthermore, this distribution more resem-

bles that of oE=0.5 (black dash-dot), which suggests that increasing the other three as

have similar effects as greatly increasing only ae.
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Figure 4.2.5. Lifetime distributions with on, am, alogH, and as varying
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4.2.3 Effects of Altering the Technology and Optimization Variables

The focus of this section is to examine what effects changing w and ID , no, mo, and

logHo , the ISUB/ID levels, and stress time sequence have on the log(t) distributions. The

solid grey curve of Figure 4.2.6 depicts the effect of increasing the channel width to 10pm

and decreasing the linear drain current to 1.5mA. The associated on, am, and ClogH val-

ues are 0.005, 0.05, and 0.05 respectively. Both w and ID combine to shift the nominal

degradation curve downward such that the overall AID/ID level decreases. For the same

lifetime definition of 10%, the extrapolated t values increase which shift the mean

upward. Although the peak is less than the counterpart distribution (dotted line), both dis-

tributions exhibit the same shape which indicates that changes in the probabilistic vari-

ables affect the lifetime distribution in a different manner than the technology variables.

The lower peak results from a decrease in the AID/ID level.

am=0.l,ologl
- -- a-e=.l,w=l1

ID=1.5mA

/1



As stated in Section 4.1.3, the effects of changing either technology or IsUB/ID bias

parameters cause a shift in the nominal degradation curve, which manifests itself into

shifting the mean of the subsequent log(T) distributions. Figure 4.2.7 and Figure 4.2.8

illustrate the lifetime distributions at different means when different no, mo, logHo and

ISUB/ID levels are considered. Both figures were generated using the same cE, on, Gm, and

GYlogH. Their shapes remain gaussian and similar to the w, ID distribution of Figure 4.2.6.

Of all the parameters which influence the nominal curve, changing the base technology

constants no, mo, logH o has the most dramatic affect, as the mean shifts orders of magni-

tude below the other distributions. Figure 4.2.8 shows that as the ISUB/ID level increases,

subsequent peaks also increase because the AID/ID level has increased.

Figure 4.2.9 verifies the intuitive insight one expects the effects of considering differ-

ent stress time schemes to have on the lifetime distribution. It shows that at low stress

times (0.01 - 0.5 minutes), the extrapolated r values are extremely spread out, resulting in

a wide distribution. The poor quality of this distribution compared to the other three in

Figure 4.2.9 indicates the large uncertainty in the lifetime extrapolation, which results

from large scattering of the A* data points at extremely low stress times. This large scatter-

ing is a result of using a low stress time range and further aggravated with a high GE value.

The four sets of stress time range are chosen to cover a wide range of time sampling

duration. The longest duration involves 0.01 to 5000 minutes and three other ranges as

subsets of this: 0.01 to 0.5 minutes, 0.1 to 50 minutes, and 10 to 5000 minutes. All sets

have the same time spacing pattern: 1, 2, 5, 10, 20, 50, etc. For the choice of (G=0.1,

on=0.005, and ym=ologH=0.05, only the subsets involving low stress time ranges (0.01

to 0.5 and 0.1 to 50 minutes) exhibit noticeable change in distribution from the other two.

Even for the range of 0.1 to 50 minutes, the change is small compared with the lowest sub-

set. However, none of the stress time schemes affects the distributions' mean. The log(r)



distributions' response to different stress time durations greatly depends on the choice of

ap, an, am, and alogH, which will be a focal issue in the optimization methodology of

Chapter 5.

0.25

0.20

0.15

0.10

0.05

0.00
1.3 1.91.4 1.5 1.6 1.7 1.8

log(z)
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4.3 Effects on Lifetime-Correlation Plot
Section 4.2 analyzes the effects that different parameters have on the lifetime distribu-

tion at a fixed ISUB/ID level. The focus of this section is to examine the response of the

lifetime-correlation plot to the same parametric changes but for varying ISUB/ID values.

An ISUB/ID interval from 0.02 to 0.08 with 0.0067 spacing was used and chosen as inclu-

sive of the values from experimental observation. The assumptions used to generate the

lifetime-correlation plots are the same as the ones used to generate the degradation plots

and are listed in Table 4.1.1. Since the usual method to extract the m and logH parameters

from the lifetime-correlation plot is linear regression, a regression curve is used to charac-

terize the effects of different an, am, alogH, and uE. Larger a values result in greater scat-

tering of the (ISUB/ID,*ID/w) data points, which leads to a less reliable slope and poorer

fitting coefficient. The regression fit used in subsequent characterizations is determined

from 1000 simulation trials as the one which has poor fitting coefficient and poor slope.

The degree of poorness for the slope is referenced from that of the nominal. The impor-

tance of satisfying both poor slope and poor fitting coefficient is critical because there

exists cases in which a high fitting coefficient occurs but with poor slope or accurately

extracted slope but with poor fitting coefficient.

4.3.1 Effects of Turning On Only One a

The case of varying only an is shown in Figure 4.3.1. The slope of the nominal fit

(black line) is used as the reference for subsequent extracted m values and also has a fit-

ting coefficient of 1. Each an curve represents a fit in which both the extract m value and

fitting coefficient have the greatest deviation from their reference values. Only the lower

boundary of the conic section is shown (those whose slope is more negative than the refer-

ence mo of -3.537). The upper boundary (those with slope more positive than the refer-

ence) is symmetrical about the nominal line, and both boundaries form the conic section.



Figure 4.3.2 offers a statistical measure of different as' effect using a 95% prediction

interval, which indicates that for repetitive trials of the same on, subsequent regression fits

lie within this interval 95% of the time. Table 4.3.1 summarizes the extracted m, logH and

fitting coefficient for each case. Figure 4.3.2(A) and (B) show relatively thin prediction

intervals for an up to 0.02 and unrealistically large intervals beyond 0.02. The fitting coef-

ficient for on-0.02 is nonetheless above 90%, which is highly acceptable. This breakpoint

of n=0.02 is consistent with the conclusion drawn from the analysis of the degradation

plot and lifetime distribution.

on m logH R2

0.005 -3.804 1.843 0.98

0.02 -4.759 0.584 0.95

0.05 -8.147 -4.709 0.45

0.1 -33.061 -44.585 0.12

Table 4.3.1. Summary of fitting parameters for on varying
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Figure 4.3.3 to Figure 4.3.6 reveal that the effects of varying either am or alogH are

not as dramatic as those of on. Both cases exhibit similar characteristics as the extracted m

and fitting coefficients are closely related at om and alogH beyond 0.1. Once again these

similarities are in par with what has been discussed earlier in the degradation and lifetime

distribution plots. Both cases indicate that the fit becomes unacceptable beyond the break-

point of 0.1 as indicated by a large increase in negative slope, poor fitting coefficient, and

widening of the 95% prediction interval. Table 4.3.2 and Table 4.3.3 summarize these val-

ues.
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am m logH R2

0.1 -4.287 1.294 0.97

0.4 -5.940 -0.835 0.77

0.8 -11.848 -8.642 0.77

Table 4.3.2. Summary of fitting parameters for am varying

alogH m logH R2

0.1 -4.034 1.564 0.97

0.5 -6.078 -1.304 0.79

1 -7.947 -3.858 0.68

Table 4.3.3. Summary of fitting parameters for ologH varying

The effects of adding variation about the nominal degradation curve due to only oe,

and how it manifests itself onto the lifetime-correlation plot can be seen in Figure 4.3.7

and characterized by the prediction intervals of Figure 4.3.8. The variations due to GE do

not become significant below the value of 0.1 as indicated by the fitting coefficients of

Table 4.3.4. Although their prediction intervals are similarly thin, there is significant devi-

ation of the extracted slope from the reference. Only at the smallest value of o=0.01 does

the prediction interval encompass the entire nominal line. At the extreme value of ac=1.0,

the poor fit is analogous to the case of an=0. 1. Nonetheless the simulation shows that any

choice of Ga below 0.1 yields acceptable correlation fits.
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oa m logH R2

0.01 -3.914 1.738 0.98

0.05 -5.300 0.128 0.96

0.1 -6.269 -0.870 0.96

0.5 -10.985 -6.995 0.64

1.0 -36.490 -38.839 0.44

Table 4.3.4. Summary of fitting parameters for ao varying

4.3.2 Key Elements in Choosing Values for on, am, alogH, oa in Optimization Methodol-

ogy
The analysis of this chapter evaluates the impact of various a values on the three key

facets of D.C. parameter extraction and modeling. In the case of turning on only one o, the

breakpoints for on is 0.02, am is 0.1, alogH is 0.1, and as is 0.1. Values beyond the break-

points produce curves which largely deviate from the nominal degradation curve, wide

lifetime distributions with highly shifted means, and lifetime-correlation curves with poor

fits and unreliable extracted slopes. This manifests into unrealistically, unacceptably, and

inaccurately generated test cases. Furthermore, simulations which mimic realistic scenar-

ios require simultaneously active as, whose combined effects further complicate the deter-

mination of a set of breakpoints. Setting each a to its respective breakpoint value results in

the above unwanted condition. Setting each to its lowest value from the range of Table

3.1.1 may be conservative; however, Figure 4.3.9 shows that such condition results in sim-

ulated data which most resembles experimental data. Further Monte Carlo analysis involv-

ing all as indicates that a relatively tight lifetime distribution and high fitting coefficient

(above 90%) can still be attained for values up to ae=0. 1, an=0.005, am=0.1, and

alogH=0. 1. an has the most adverse impact overall followed by oe while am and alogH

have equal influence.



The choices for on, ym, and ologH are independent of the technology parameters

such as w, ID , no , mo, and logH o. A change in the technology parameters does not require

a different set of probabilistic variables with the exception of ae. The change tends to shift

the position of the nominal line. If the shift is such that the nominal line lies at low AID/ID

levels, noticeable sensitivity can be observed among the three key facets due to high cY.

The situation is further aggravated if the ISUB/ID level and stress time duration are also

low. One typical manifestation is that large amounts of scatter appear in the lifetime-corre-

lation plot due to large uncertainty in extrapolated lifetime. This results in a poor regres-

sion fit and inaccurately extracted slope. Hence, both ISUB/ID and stress time must

consider the choice of ac in order to avoid the unwanted condition.

0
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107

106 L

10-2 10-1

SUB D

Figure 4.3.9. Representative lifetime-correlation plot from Monte Carlo simulation with
on, am, ilogH, and as at conservative values



Chapter 5

Optimization Results Based on D.C. Modeling Issues
The two main optimization issues concerning D.C. modeling are balancing the stress

time sequence with the number of device measurements for a given total time constraint

and selecting the appropriate VG and VD bias conditions within the context of the first

issue. It is believed that the dominant issue in locating an optimal region concerns the

former; thus, this study focuses on the trade-offs between longer individual device stress

times and fewer numbers of device measurements versus shorter stress times and greater

numbers of device measurements. From experimental observation, the VGD bias window

is quite narrow around -2.5V to -0.5V in order to maintain acceptor-type interface state

generation as the dominant degradation mechanism. For a given VGD, the degrees of free-

dom in selecting individual VG and VD values are limited due to the narrow window. The

small granularity of VG and VD choices does not cause sufficient variation in the ISUB/I D

bias range that affects the individual distributions of ISUB/D extrapolated at 10 years.

Hence, the optimal region is unlikely to be affected due to the individual distributions'

insensitivity. However, it has been found that the stress time and number of device mea-

surements significantly influence the existence and location of this optimal region, which

also depends on the ISUB/ID bias range for a given technology.

5.1 Simulation Methodology
The results of this section was based on the algorithm outlined in Chapter 3 and also

summarized in the flowchart of Figure 3.1.1. For each simulation trial, a specific ISUB/ID

was extrapolated at 10 years according to Equation (3.4). Table 5.1.1 summarized the

assumptions used in the simulation. Since the bias conditions, VG and VD, were not the

more important issue in optimizing D.C. parameter extraction, no models were used for



ISUB and ID. Thus, values for the ISUB/ID sequence were chosen explicitly based on

insight from experimental observations. Linear spacing of this sequence was based on a

constant defined by the following expression:

= (ISUB/ID)max - (ISUB/ID)mn (5.1)
sp Ndev - 1

where Ndev was the number of device measurements. Conservative values mentioned in

Section 4.3.2 were used for the probabilistic variables. These were the lowest values from

the c ranges of Table 3.1.1 and produced simulated degradation and lifetime-correlation

curves which best approximated those from experimental measurements.

The optimization of stress time and number of device measurements was based on the

two equations of (3.5). A time constraint of 500 minutes had been chosen for the stress

duration, Ttotal. Each stress time sequence consisted of four samples with log spacing.

Such spacing was favored in experimental extraction procedure due to the log-log scale of

degradation and lifetime-correlation plots. A large total time constraint and relatively

small number of time samples were chosen in order to simplify the number of variables

used to calculate Tdev, which was the time taken to perform one device stress measure-

ment. The typical time for the data acquisition instrument to take a measurement, to ana-

lyze it, and to record it was approximately one minute. The tinstr overhead, which

amounted to four minutes, could be neglected from (3.5) since the total time constraint

was large. Since each device was subject to the same stress time sequence for a set of sim-

ulations, Equation (3.5) was reduced to the following expression which underlined the

remainder of this study:

Ttotal = Ndev• Tdev (5.2)

In order to obtain an empirically exact distribution for each set of simulations, large

number of trials was required for best resolution. Hence each ISUB/ID distribution was



obtained with 5000 to 50,000 trials. If the ISUB/ID population had a tight distribution, then

the number of trials could be small. However for more ill-defined and wider distributions,

large number of trials was required. However, a large number of trials for each distribution

was discouraged since it entailed long simulation time. Furthermore for tight distributions,

a saturation point existed for the number of trials needed to obtain precision.

no  0.278

mo  3.537

logH o  2.214

ID(mA) 2.685

w (tm) 5

lifetime 10%

on 0.005

cm 0.1

ologH 0.1

GE 0.01

ISUB/ID sequence 0.02 - 0.08

Time constraint (minutes) 500

Number of time samples 4

Table 5.1.1. Listing of the values used in optimization



5.2 Response of Optimized Parameter-Extraction Method on Balancing
Device Stress Time with Number of Device Measurements

5.2.1 Results of Study from above Methodology

Seven combinations of number of device measurements and stress time duration were

chosen to represent each ISUB/ID distribution. The stress time duration coincides with the

log spacing scheme, and the product of this duration with the number of device measure-

ments is 500 minutes. Figure 5.2.1 shows that no optimal region exists as the ISUB/ID dis-

tribution becomes tighter with increasing number of device measurements. This seems to

indicate that the uncertainty in the extrapolated lifetime does not manifest into greater

scattering of the (ISUB/ID,r*ID/W) points. But detailed examinations reveal that although

the uncertainty does cause scattering in the lifetime-correlation plot, it is not sufficiently

significant to cause a noticeable difference at low stress times. The behavior of the ISUB/ID

distribution for large number of device measurements is analogous to the model used to

calculate a prediction interval, which becomes more narrow as the number of sample

points increases. Even with a large sample, the interval's width could decrease if the sam-

ple points are sufficiently scattered since the variance would increase. Hence, the scatter

introduced by the lifetime extrapolation errors at low stress times for the study of Figure

5.2.1 is not the dominant factor. The lack of scatter is due to the conservative choice of GE,

cn, cm, and TlogH. Figure 5.2.2(B) shows a typical degradation profile for the stress time

considered in this study. The thin black curve pertaining to on=0.005 and am=0.1 illus-

trates that the curve about which Ge is distributed has equal variation across the entire

stress time range. The small choice of cE=0.01 further aggravates the problem as any devi-

ation from the on=0.005 and am=0.1 curve becomes insignificant. Hence A* at the high

stress times sees the same variation as at the low stress times while greater number of

device measurements at low stress times tightens the subsequent ISUB/ID distribution.
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Figure 5.2.1. ISUB/ID distribution showing results of study using assumptions from Table
5.1.1; T denotes the number of device measurements

While Figure 5.2.1 shows a log(ISUB/ID) distribution, the corresponding ISUB/I D distri-

bution shows similar results. Its appearance is also gaussian-like revealing the same trend

at larger number of device measurements. The reason for using a log distribution even

though the linear ISUB/I D value is extrapolated at 10 years will become apparent in the

later discussion.
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5.2.2 Results of Study Upon Use of Different Assumptions

Figure 5.2.1 reveals that the existence of an optimal region highly depends upon the

choice of a used to model the variations. Thus for a particular technology with quantifi-

able amounts of variation, the methodology outlined thusfar can be used to verify the

existence of an optimal region. However it is of great importance to determine under what

conditions such an optimal region exist and identify the key elements which affect its

existence. The degradation profiles of Figure 5.2.2(A) and (B) can be used to identify pru-

dent choices for the as which may result in an optimal region. The extended stress time

range of Figure 5.2.2(A) clearly illustrates variation in A* across different stress time

regimes for various on and am values. Figure 5.2.2(B) shows the variational effects at the

studied time frame. The case of on=0.02 and am=O.1 (dash-dot-dot curve) presents the

best candidate for differential variation between low and high stress time regimes, even for

the small time range of this study. ologH is not accounted for due to its adverse unrealistic

effects when combined with on. These effects are shown in Figure 4.1.7. Although am

can also be turned off and all variations attributed to on and oe, experimental observation

shows a need to account for variations across multiple extraction parameters. A large

value of 0.2 is chosen for ae in order to cause additional extrapolation error at low stress

times. This manifests into additional scatter in the lifetime-correlation plot such that the

larger number of measurements has less influence in defining the ISUB/ID distribution.

The ISUB/ID bias interval also has been extended in order to examine the optimal

region's response to different ISUB/ID bias conditions. This is accomplished by partition-

ing the large interval into smaller subintervals. A range of 0.02 to 0.2 is used for the outer

interval with subintervals at 0.02 to 0.08, 0.08 to 0.14, and 0.14 to 0.2. The spacing is still

in accordance with (5.1). Table 5.2.1 summarizes the new assumptions used for the

remainder of the study.



no 0.278

mo  3.537

logH o  2.214

ID(mA) 2.685

w (lm) 5

lifetime 10%

on 0.02

om 0.1

ologH 0

oF 0.2

ISUB/ID range 0.02 - 0.2

Time constraint (minutes) 500

Number of time samples 4

Table 5.2.1. Listing of new values used to determine optimal region

Figure 5.2.3 and Figure 5.2.4 suggest an optimal region exists for the outer ISUB/I D

interval of 0.02 to 0.2 and inner interval of 0.02 to 0.08. The former's optimal region lies

around 10 to 50 device measurements at stress times from 10 to 50 minutes. The latter has

an optimal region closer to 5 to 10 device measurements at stress times from 50 to 100

minutes. If a log operation is applied to the individually extrapolated ISUB/D values and

plotted in Figure 5.2.5 and Figure 5.2.6, the optimal regions become visibly clear. The

more well-defined optimal region from the outer ISUB/ID interval lies around 50 device

measurements with 10 minute stress duration. The corresponding one for the inner interval

lies definitely above 25 device measurements and below 100 device measurements. These

boundaries are well balanced around the 50t distribution.



The asymmetry of the linear ISUB/ID distribution compresses the width of the optimal

region because it is located at a relatively low ISUB/ID range for both cases. The reason for

the asymmetric distributions is based on the nonlinear function used to extrapolate ISUB/ID

at 10 years. This property is analogous to one affecting the lifetime distributions discussed

in Section 4.2. The gaussian-appearance of the log(ISUB/ID) distributions is consistent

with those of the lifetime distribution. The more ill-defined distributions at large number

of device measurements (such as 500t) is due to a lack of resolution from fewer simula-

tion trials.

No optimal region exists for the inner medium and high ISUB/ID intervals, as shown by

Figure 5.2.7 and Figure 5.2.8. The higher ISUB/ID values place the nominal degradation

curve at high AIDD levels such that a ce=0.2 has similar effects as that of oE=0.01 from

Section 5.2.1. The exact AID/ID levels can be seen in Figure 4.1.9. Since these nominal

curves are spaced relatively closed to one another, the three as generate degradation

curves which highly interact across the different nominal curves. This leads to more gaus-

sian-appearing distribution shapes as the number of device measurements increases.

Because these two cases are analogous to that of c~=0.01, the dominant mechanism which

defines the ISUB/ID distributions is the number of device measurements. Unlike the

rEc=0.01 case, the distributions from 5 to 50 device measurements are asymmetric and

largely spread out across low ISUB/ID values.
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Chapter 6

Conclusion and Recommendations

6.1 Summary of Findings

A methodology has been developed for optimal and accurate extraction of n, m, and H

parameters for D.C. hot-carrier degradation modeling. This methodology is based on

Monte Carlo simulations of the degradation and lifetime-correlation plots. Boundary

curves in the degradation plot define the limits within which lie the set of possible A*

curves deviating from the nominal. The extracted slope and fitting coefficient of the life-

time-correlation curves measure the impact of different probabilistic variables. Lifetime

distributions at a fixed ISUB/ID level are also used to characterize the effects of different

probabilistic, technology, and optimization variables. This intermediate analysis links the

degradation plot to the lifetime-correlation plot. The purpose of these characterization

tools is to identify appropriate and realistic choices for the Ts, which are used to model the

process variation manifested in n, m, H, and instrumentation error. Conservative values

resulting in the most realistic degradation scenario are chosen to perform an optimization

study focused on addressing two main issues: balancing device stress time with the num-

ber of device measurements under a total time for stressing constraint, and the former

issue's sensitivity towards different VG and VD bias conditions. An element for optimiza-

tion based on the extrapolated ISUB/ID values at device lifetime of 10 years has been

developed. The corresponding ISUB/ID distribution is used to define an optimal region in

order to evaluate the two main issues.

Simulation results indicate that the existence of the optimal region highly depends

upon the choice of Ts and the ISUB/ID bias regime. For the conservative choice of values,

no optimal region exists because increasing the number of device measurements result in



tighter and more well-defined ISUB/ID distributions. Even though increasing the number of

device measurements entails shorter stress times, the corresponding ISUB/ID distributions

do not broaden. The scatter introduced by lifetime extrapolation error in the degradation

plot due to low stress times has negligible influence on the extrapolation of ISUB/ID values

at a device lifetime of 10 years. The more dominant influence on the ISUB/ID extrapolation

is the larger number of sample points in the lifetime-correlation plot, which consequently

improves the ISUB/ID extrapolation. The small values of Y cause equally distributed varia-

tion across the examined stress time regime. As a result, larger values for o, on, and om

are chosen such that the degradation profile shows greater variation in the low stress time

regime than in the high regime. The ISUB/ID bias interval has been extended and subinter-

vals developed in order to study the optimal region's sensitivity toward different bias

regimes. Results indicate that an optimal region for the outer extended and inner low bias

intervals exists. Although they do not exactly coincide, both regions have close proximity

towards one another. No optimal region exists for the inner medium and high intervals,

because both cases are similar to the case with conservative Y choices in that larger num-

ber of device measurements improves the ISUB/ID distributions. The low ISUB/ID interval

places the nominal degradation curve at sufficiently low AID/ID levels such that variational

differences from low-to-high stress time regimes can be significantly accounted for in the

simulation. The medium and high ISUB/ID intervals effectively view the larger ae as a rel-

atively small value similar to the conservative choice case. Furthermore, the optimal

region of the inner low interval is better defined than the outer interval. The existence of an

optimal region for this outer interval is due to the inclusion of the low ISUB/ID regime.

However, the inclusion of higher ISUB/ID regimes degrades the optimal region's quality.

The optimal region's sensitivity toward ISUB/ID bias levels raises a hypothesis that it

also has a dependence on the technology variables, which affect the AID/ID level of the



nominal degradation curve. However, this study does not quantitatively validate this

hypothesis nor does it attempt to quantify the level of dependence. Experience surmises

that the dependence is less significant than the choice of as and ISUB/ID bias levels. This

study does not directly examine the effects of explicit VG and VD bias conditions on the

optimal region due to the belief that the small degree of freedom within the narrow VGD

window limits the possibilities of affecting the optimal region's sensitivity. It is conjec-

tured that any influence is negligible.

6.2 Recommendations for Further Studies
It is noteworthy that of all the cases in which an optimal region fails to exist, not one

case shows an improvement of ISUB/ID distribution as the number of device measurements

decreases. One possible reason is a mismatch in the weighing of each sample point in the

lifetime-correlation plot with the corresponding lifetime extrapolation error. Currently any

"weighing" is implicitly accounted for by the scattering of the entire sample point space.

Improvements to the methodology is possible if a weighing scheme is used in the extrapo-

lation of ISUB/ID values at 10 years. This scheme should assign greater weights to the sam-

ple points corresponding to the ISUB/ID distribution set with fewer number of device

measurements. The reason is that the lifetime extrapolation error has been reduced due to

the longer stress times. The determination and implementation of these weights into this

study's methodology become the primary focus of the next study. One possible implemen-

tation is to employ a weighted least squares regression on the ISUB/ID extrapolation. None-

theless, choosing the appropriate weights is a complex and challenging task since they

should model actual physical quantities.



Appendix A

Derivation of ANOVA Models

A.1 Testing Each Treatment Mean Against All Treatments
The following analysis derives the models used in the ANOVA table of section 2.3.

Each EOx treatment contains a certain number of extracted n parameters. Let nv be the

number of extracted n parameters for a given treatment and v denoting the specific treat-

ment, then

(A.1.1)N= 1
v= 1, 2,3, 4,5, 6

and the mean of n over all treatments be

S Xv, k
v = 1, 2,3,4, 5, 6k =

N
(A.1.2)

where xv,k is the individual n parameter values within each v treatment [20].

A measure of the variability between the sample treatment means is called the treat-

ment sum of squares and denoted by SSmeans:

SSmeans = n (Xv - I)2

v = 1, 2,3, 4,5, 6

(A.1.3)

where .v is the mean of the n values for a specific treatment.

A measure of the variability of the observed values of n around their respective treat-

ment means is the error sum of squares and denoted by SSE:

(A.1.4)SSE= Y (Xv, k- v) 2

v = 1, 2,3,4,5,6k = 1

with treatment mean square (MSmeans) and error mean square (MSE) to be:



MSmeans - mens MSE = (A.1.5)Vt- I N - vt

where vt is the total number of treatments.

To determine any statistically significant differences between the treatment means, the

amount of between treatment variability is compared to the amount of within treatment

variability. An F-test for difference between treatment means is used [20] and defined as:

MSmeans
F(means) = means (A.1.6)

MSE

in which the null hypothesis, H0 , is rejected in favor of the alternate hypothesis, H1, if

F(means) > F(v,-1,N - v' ) , where oa is the degree of confidence. For 95% confidence, a is

0.05. Furthermore, the null hypothesis can also be rejected if the prob-value which is the

area to the right of F(means) under the curve of the F-distribution having vt-I and N-vt

degrees of freedom is less than a. A large value of F(means) results when SSmeans, which

measures the between treatment variability, is large in comparison to SSE, which mea-

sures the within treatment variability. F(means) being sufficiently large implies that the

null hypothesis should be rejected. A large F(means) also entails a small prob-value. For

Technology 1 which has six Eox families and 91 n samples, F(5, 85 ,0.05)=2.32 with 95%

confidence level. This value is significantly less than F(means)Techl = 12.01. For Technol-

ogy 2 which has 10 Eox families and 97 n samples, F(9,87,0.05) =1.99 with 95% confidence

level. F(means)Tech2 = 13.76 which is significantly greater than F(9,87,0.05)

A.2 Testing of Pairwise Treatment Means
Once an overall dependence of n on Eox has been found for all treatment means, a

pairwise comparison of specific treatment means can be performed to determine whether

statistically significant differences exist between some of these treatments. This can be



done by testing the null hypothesis Ho: Ri = Rj against H 1: ,, # g, where i and j can be any

specific treatment. A t-test based on the Student-t distribution is used:

t = (A.2.1)

/ M SE F~1 1w

where Ni and Nj are the total number of n values in treatments i and j. If Itl > t(N -
v,, a/2), then

Ho is rejected in favor of H1.

Table A. 1 lists the results of each pairwise test and the associated Itl value for Technol-

ogy 1. t(85,0.025)= 1.99 for Technology 1 and is used for the comparison. The results state

that for tests 1-9, the mean of each examined Eox has some form of statistical dependence

on each other. However for tests 10-15, each mean is statistically independent of the other.

The dependence and independence fall into two distinct groups: those with Eox values

greater than -0.89MV/cm are statistically dependent while those with Eox values less than

or equal to -0.89MV/cm are statistically independent. Further hypothesis testing within

each group suggest that the group with Eox less than or equal to -0.89MV/cm is indepen-

dent of n while the other group shows a strong dependence of n on Eox. The ANOVA table

for the group showing statistical independence appears in Figure 2.3.2 (B). The F (3,56,0.05)

value with four treatments, 60 n samples, and 95% confidence level is 2.77.



Test Number Test Itl value Significance

1 CgEox=0.53, 2.05 yes

gEox=-0.18

2 REox=0.53, 5.44 yes
g-Eox=-0.18

3 ItEox=0.53, 4.69 yes
REox=-1.61

4 REox=0.53, 5.89 yes
REox=-2.32

5 REox=0.53, 5.91 yes
REox=-3.04

6 REox=-O0.18 ,  3.42 yes

gEox=-0.89

7 gEox=-0.18, 2.75 yes
REox=-1.61

8 [tEox=-O.18 ,  3.87 yes

REox=-2.32

9 gEox=-0.18, 4.06 yes
gEox=-3.04

10 REox=-0.89, 0.51 no

PREox=-1.61

11 Eox=-0.89 ,  0.47 no

REox=-2.32

12 gEox=-0.89, 0.96 no

REox=-3.04

13 REox=-1.61, 0.96 no

REox=-2.32

14 Eox=-1.61, 1.39 no

REox=-3.04

15 [Eox=-2.32, 0.53 no

REox=-3.04

Table A.1: Results of pairwise treatment test for Technology 1



No such distinct demarcation exists for Technology 2 as the t-test for pairwise compar-

ison shows only some Eox family having statistical difference which does not fall into any

distinct groupings. The t(87,0.025) value with 10 treatments, 97 n samples, and 95% confi-

dence level is 1.99. Table A.2 shows the result of each pairwise test.

Test Number Test Itl value Significance

1 REox=0.36, R-Eox=-0.45 3.81 yes

2 P'Eox=0.36, REox=-1.26 2.50 yes

3 fEox=0.36, REox=-1.75 3.34 yes

4 gEox=0.36, REox=-2.08 4.05 yes

5 gEox=0.36, REox=-2.40 4.06 yes

6 fEox=0.36, REox=-2.73 3.53 yes

7 fEox=0.36, REox=-3.05 5.81 yes

8 gEox=0.36, REox=-3.30 6.30 yes

9 gEox=0.36, REox=-3.71 9.97 yes

10 JtEox=-0.45, REox=-1.26 1.21 no

11 gEox=-0.45, Eox=-1.75 0.57 no

12 gEox=-0.45, REox=-2.08 0.34 no

13 fEox=-0.45, gEox=-2.40 0.25 no

14 gEox=-0.45, REox=-2.73 0.28 no

15 fEox=-0.45, kEox=-3.05 0.22 yes

16 fEox=-0.45, REox=-3.30 2.40 yes

17 Eox=-0.45, fEox=-3.71 6.16 yes

18 Eox=-1.26, gEox=-1.75 0.65 no

19 gEox=-1.26, gEox=-2.08 1.51 no

20 fEox=-1.26, IEox=-2.40 1.45 no

21 gEox=-1.26, REox=-2.73 0.94 no

22 gEox=-1.26, gEox=-3.05 3.31 yes

Table A.2: Results of pairwise treatment test for Technology 2



Test Number Test Itl value Significance

23 REox=-1.26, gEox=-3.30 3.57 yes

24 REox=-1.26, REox=-3.71 7.20 yes

25 gEox=-1.75, REox=-2.08 0.90 no

26 gEox=-1.75, REox=-2.40 0.82 no

27 RJEox=-1.75, REox=-2.73 0.29 no

28 gEox=-1.75, REox=-3.05 2.76 yes

29 REox=-1.75, REox=-3.30 2.99 yes

30 gEox=-1.75, JREox=-3.71 6.73 yes

31 gEox=-2.08, REox=-2.40 0.10 no

32 JREox=-2.08, REox=-2.73 0.62 no

33 gEox=-2.08, PEox=-3.05 1.84 no

34 gEox=-2.08, gEox=-3.30 1.99 yes, weak

35 gEox=-2.08, gEox=-3.71 5.65 yes

36 gEox=-2.40, REox=-2.73 0.53 no

37 REox=-2.40, REox=-3.05 1.98 no, weak

38 gEox=-2.40, gEox=-3.30 2.15 yes

39 gEox=-2.40, REox=-3.71 5.91 yes

40 REox=-2.73, REox=-3.05 2.48 yes

41 REox=-2.73, REox=-3.30 2.69 yes

42 R!Eox=-2.73, itEox=-3.71 6.44 yes

43 REox=-3.05, REox=-3.30 0.01 no

44 gEox=-3.05, gEox=-3.71 3.59 yes

45 REox=-3.30, REox=-3.71 3.90 yes

Table A.2: Results of pairwise treatment test for Technology 2



Appendix B

Simulation Code Written in Mathematica 3.0



m Monte Carlo Simulation to generate IsuB/ID distribution at device lifetime
of 10 years.

i Purpose: to observe the effect of varying o-n, orm, ologH, OE, stress time sequence, and ISUB/ID
interval on the distribution.

Note: the parameter m is positive as defined by the A equation although the extracted value is negative;

for 10% lifetime definition, log(A) = log(10) = 1;
and o- is measured in %.

Load the necessary Mathematica 3.0 packages needed for simulation.

<< Graphics' Graphics'
<< Statistics' ContinuousDistributions'
<< Graphics 'MultipleListPlot'
<< Statistics' LinearRegression'
<< Statistics'NonlinearFit'
<< Statistics'DataManipulation'
<< Graphics' Legend'

The technology variables are set as:

no = 0.278;
mo = 3.537;
logHo = 2.214;
Ho = 10^ (logHo) / (lifetime^ (1/no));
w = 5*10^(-6);
Id = 2.685*10^(-3);
lifetime = 0.1;

The probabilistic variables are set as:

ce = 0.01;
an = 0.005;
om = 0. 1;
alogH = 0.1;

The time and ISUB/ID biasing sequences are (time is in seconds):

time= 60*{0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50);

IsubIdmin = 0.02;
IsubIdmax = 0.08;
IsubId = Table[i, {i, IsubIdmin, IsubIdmax, (IsubIdmax- IsubIdmin) / (TauCollect- 1) }];

The number of simulation trials and number of device measurements(NumberDevice) are:

NumberTrial = 10000;
NumberDevice = 50;



The following initializes some arrays needed to store intermediate simulation variables and defines intermediate constants.

ntable = Table[i, ({i, TauCollect)];
mtable = Table[i, {i, TauCollect)];
htable = Table[i, (i, TauCollect)];
tautable = Table[i, (i, TauCollect)];
isubidtable = Table[i, {i, NumberRun)];

logA = Log[10, (lifetime*100)];
taul0years = Log[10, 315360000 * Id/w];

Explanation of the intermediate variables:
ntable is an array which holds the n values generated by on;
mtable is an array which holds the m values generated by Gm;
htable is an array which holds the calculated H values from the logH generated by -logH;
tautable is an array which holds the extrapolated lifetime from the degradation plot;
isubidtable is an array which holds the extrapolated ISUB/ID values at device lifetime of 10 years from the lifetime
correlation plot;
logO is a constant of the lifetime definition;
taul0Oyears is a constant for rID/w at 10 years;
TrialIteration is a variable which records the simulation trial;
DeviceIteration is a variable which records the number of the device being operated on by the simulator;

delta[t_,Is] defines the degradation model;
deltatable is an array which stores the evaluated A values at a particular ISUB/ID for the entire stress time sequence;
oE intoduces scatter to the A values and is stored in the deltascatter array;
deltascatterplot is an array which stores the (time,A) pairs to be used in regression analysis;
deltascatterplotlog stores the log values of deltascatterplot;
regressionscatter is a variable which holds the results of the regression analysis
flag is a variable which checks if the (A + o) values are negative since a log operation cannot be perform if true;
tauplot is an array which stores the (ISUB/ID,TID/w) pairs to be used in regression analysis;
tauplotlog stores the log values of tauplot;
regressiontau is a variable which holds the results of the regression analysis;
regressiontauline defines the lifetime correlation equation;
IsubIdExtrapolate equates the lifetime corrrelation equation with rID/w coordinate at 10 years;
logisubid solves for ISUB/ID at 10 years;
i is an array counter.



For [TrialIteration = 1, TrialIteration < (NumberTrial + 1), TrialIteration++,

For [DeviceIteration = 1, DeviceIteration < (NumberDevice + 1), DeviceIteration++,

mtable[[DeviceIteration]] = Random[NormalDistribution[mo, sigmam]];
ntable[[DeviceIteration]] = Random[NormalDistribution[no, sigman]];
logH = Random[NormalDistribution[logHo, sigmalogH]];
htable[[DeviceIteration]] = (10A(logH))/ (lifetimeA (l/ntable[[Device I teration]]));

delta[t_, Is_] =
((((Is) Amtable[[DeviceIteration]]) * Id/ (w*htable[[DeviceIteration]])) A

ntable[[DeviceIteration]]) *
tAntable[[DeviceIteration]];

deltatable =
100*Table[delta[time[[i]], IsubId[[DeviceIteration]]], {i, Length[time]}];

deltascatter =
Table[Random[NormalDistribution[deltatable[[i]], a]], {i, Length[deltatable]}];

If [Min[deltascatter] < 0, Flag = 0, Flag = 1];
If[Flag == 0, DeviceIteration = DeviceIteration-i,

deltascatterplot = Table[{time[[i]], deltascatter[[i]], {i, Length[time]}] //N;

deltascatterplotlog = Log[10, deltascatterplot];
regressionscatter = Regress[deltascatterplotlog,

{1, f}, f, RegressionReport-> {BestFit, BestFitParameters,
ParameterCITable, RSquared}];

tautable[[DeviceIteration]] =
10A ((logA - Extract[regressionscatter, {3, 2, 1, 1, 1)}])/

(Extract[regressionscatter, {3, 2, 1, 2, 1}]));

]; (*end of 2nd If statement*)
]; (*end of DeviceIteration FOR LOOP*)

tauplot = Table[{IsubId[[i]], tautable[[i]] *Id/w, {i, TauCollect}];
tauplotlog = Log[10, tauplot];
regressiontau =
Regress[tauplotlog, (1, f), f, RegressionReport-> {BestFit, BestFitParameters,

ParameterCITable, EstimatedVariance, RSquared}];
regressiontauline =
Extract[regressiontau, (3, 2, 1, 2, 1)] * x + Extract[regressiontau, {3, 2, 1, 1, 1)];

IsubIdExtrapolate = regressiontauline == taul0years;
logisubid = Solve[IsubIdExtrapolate, x];
isubidtable[[iteration]] = 10A(Part[logisubid, 1, 1, 2]);

] (*end of TrialIteration FOR LOOP*)



The following finds the mean and standard deviation of the ISUB/ID distribution.

Print["Mean of Isub/Id Distribution = ", Mean[isubidtable]]
Print ["StandardDeviation of Isub/Id Distribution = ", StandardDeviation[isubidtable] ]

The following calculates the (x,y) coordinates to plot the distribution by counting the frequency of values occuring within
each bin. The y coordinate represents the probability of occurance.

binsize = 0.05;
Print["Binsize =", binsize];
Print["Isub/Id values are:"]
isubidx = Table[i, (i, Min[isubidtable], Max[isubidtable], binsize)]
Print["Count of Isub/Id for each bin is:"]
isubidy = BinCounts[isubidtable, {Min[isubidtable], Max[isubidtable], binsize)]
Print["Coordinates of Isub/Id distribution plot are:"]
isubidxy =
Table[{isubidx[[i]], isubidy[[i]] /Length[isubidtable]), {i, Length[isubidx]}] //N

The following plots the ISUB/ID distribution as well as the mean value.

plotl = ListPlot[isubidxy,
AxesLabel -> ("Isub/Id", "Prob"), Prolog -> AbsolutePointSize[5],
PlotRange-> {{Min [isubidtable], Max[isubidtable]},

{0, (0.05 +Max[isubidy/Length[isubidtable]]))),
AxesOrigin-> {Min[isubidx], 0),

PlotLabel-> "Isub/Id Distribution at 10 yrs"]
plot2 = ParametricPlot[{Mean[isubidtable], x),

{x, 0, (0.05 +Max[isubidy/Length[isubidtable]])}, PlotStyle-> {Dashing[{0.025)]}]
Show[plotl, plot2]
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