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Abstract

In practical applications with bathymetric sidescan sonars, the multipath reflections and

other directional interferences are the key limiting factors for a better performance. This

thesis proposes a new scheme to deal with the interferences using a multiple-row bathy-

metric sidescan sonar. Instead of smoothing the measurements over some time or angle

intervals, which was previously widely investigated, we resolve the multipath interfer-

ences from the direct signal. Two approaches on signal direction-of-arrival (DOA) and

amplitude estimation are developed, the correlated signal direction estimate (CSDE) for

three-row systems and the ESPRIT-based method. These approaches are compared using

different sonar data models, including a stochastic model from the statistical analysis on

bottom scattering and a coherent model from the analysis on interference field; the simula-

tions show the ESPRIT-based approach is quite robust at the angular separation of 2 100

between two sources and at the signal-to-noise ratio above 10dB except for highly coher-

ent or temporally correlated signals, for which CSDE works very well. The computer sim-

ulation results and the discussions on practical algorithm implementation indicate the

proposed scheme can be applied to a real multiple-row bathymetric sidescan sonar. With

the capability to simultaneously resolve two or more directional signals, the new sonar

model should work better for a wider variety of practical situations in shallow water with-

out significant increase of the system cost.
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Chapter 1

Introduction

1.1 Bathymetric Sidescan Sonar

Bathymetric sidescan sonar is developed based on the conventional sidescan sonar tech-

nique and the phase interferometry technique. Due to its capability to integrate both seaf-

loor bathymetry and imagery and its portability and lower cost compared with the

multibeam system, bathymetric sidescan sonar has been used in many different applica-

tions, including seafloor mapping, marine geophysical research, harbor and navigation

channel surveys for locating and charting underwater hazards, ROV surveys, and some

other scientific, commercial and military applications underwater.

The first commercial sidescan sonar appeared in late 1950's. The typical geometry of

use associated with sidescan sonar is shown in Fig. 1.1. Generally, the sonar system has

two transducers, each per side, and thus two-channel imaging capability. The transducer

Figure 1.1: Geometry of use for conventional sidescan sonar

emits CW or FM pulses in a fan-shape beam, which has a narrow horizontal beampattern

(0 = 1 - 2) and wide vertical beampattern ((p = 50 - 70). A scan line of the seafloor is



obtained by displaying the magnitudes of the bottom echoes as a function of across-track

distance for a given ping. With the moving of the vehicle (Towfish, ROV or AUV), the

scan lines are accumulated ping by ping to form the image. The along-track resolution is

determined by the horizontal beam angle, 0, and range, R, and the across-track resolution

is determined by the transmitted pulse length, r, (cf. Fig. 1.1, c is the sound speed) and

sea bottom geometry. For high frequency, tens or hundreds kHz, the narrow horizontal

beam angle and short pulse length can be easily obtained; therefore, such kind of system

can be used as a high-resolution imaging tool.

One of the major disadvantages for sidescan sonar is that only the range information

and no direction information can be given. For a non-flat bottom, it is impossible to relate

sidescan to a depth survey, thus making the geometrically corrected interpretation of side-

scan images difficult.

The bathymetric sidescan sonar system was proposed in 1970's [1]. Two parallel rows

of transducers are used instead of one (Fig. 1.2). Here, each row is long in the fore-aft

/ I -

dsin0 1

Figure 1.2: Geometry for bathymetric sidescan sonar: Sideview

dimension and short athwartships. 0m is the mounting angle of the transducer. By measur-

ing the phase difference, Aqp, between two rows, the signal direction-of-arrival (DOA),

0(0, = 0m + 0), can be obtained by the relation Ap = 2 , where d is the phase center

separation between the two rows and k is the wavelength. (In a practical system, gener-

ally, a look up table is used instead of above theoretic equation relating 0 and A .) In a



homogeneous medium, knowing the signal angle, 0, and the slant range, R, one can sim-

ply calculate the bottom depth by h = Rsin0t (Fig. 1.1).

To improve resolution, widely spaced rows are preferred. However, the maximum

unambiguous phase difference measurement is obtained for half-wavelength row spacing,

i.e., d = . For d> X, Denbigh [1] suggested two main techniques to resolve the ambigu-
2 2

ities. The first one requires an additional pair of rows having a different spacing and there-

fore a different ambiguous relationship between phase and angle. Hence, the combination

of two phase difference measurements corresponds uniquely with only one signal arriving

angle, which is the basis of the "Vernier" technique. A practical example uses several rows

with different spacing. The pair with small spacing (less than half wavelength) is used to

resolve the ambiguity, while the pair with large spacing is used to obtain high resolution.

The second technique of removing ambiguity is tracking the varying phase if the phase

can be expected to vary slowly and monotonically along the swath.

In Denbigh's system and some other later developed systems, including SeaMARC II

[2] (owned by Hawaii Institute of Geophysics), the phase difference is computed from the

individual phase measurements at two rows. However, a common problem with all these

bathymetric sidescan sonar systems is that their phase measurements are dispersed by

noise and interferences.

The main sources of interference and noise include: 1) multipath reflecting between

the ocean surface and bottom, as well as those due to multiple targets within the water col-

umn at the same range, 2) volume scattering in the water column, 3) surface scattering, 4)

multiple scatters on the bottom within the acoustic footprint, 5) ambient noise. 1), 2), 3)

and 5) are discussed in [1], [2] and [3]. 4) is analyzed in [4].

A few signal processing schemes have been proposed to reduce the effects of noise and

interference, such as the mean time, mean angle method, and histogram approaches. Their

underlying idea is smoothing data over a fixed time interval or angle interval or both. One

significant improvement was proposed in [3]. In this method, the complete complex

received signal is used instead of only the phase term. The phase difference is computed

by estimating the spatial correlation between the received signals at two rows for some

time interval (cf. section 3.1 for detail discussions). The basic idea is to identify and reject



measurements at instants corresponding to a poor signal spatial correlation. Under the

conditions assumed in [3], this kind of estimate is also a maximum likelihood estimate.

Furthermore, Zhu, et al. [5], incorporated the effects of noise correlation and analytically

analyzed the performance of such kind of estimator, which is consistent with the physical

intuition.

Woods Hole Oceanographic Institution developed a series of high frequency bathy-

metric sidescan sonars using a similar method and applied them to obtain the quantitative

seafloor characterization. The analysis [6] on the bathymetry power spectral density func-

tion and backscattering strength probability density function showed good agreement with

previous empirical studies, thus validating the approach to wide area seafloor characteriza-

tion using calibrated bathymetric sidescan sonar.

It should be pointed out that all above-mentioned methods suffer from another kind of

ambiguity resulting from some simultaneously arriving echoes from different directions.

This ambiguity is inherent to the sidescan geometry of use, which limits the applications,

particularly in shallow water areas with significant multipath propagations.

To solve this ambiguity problem, at least partly, a new system design consideration

and its corresponding signal processing scheme using a multiple-row bathymetric sidescan

sonar is proposed in this thesis. The echoes from different directions, including the inter-

ferences, are to be resolved. The new system should work better for many practical situa-

tions in shallow water.

1.2 Signal Direction-of-Arrival and Amplitude Estimation
In a strict sense, signal direction-of-arrival (DOA) and amplitude estimation is a parameter

estimation problem. It is tightly related to beamforming in that, traditionally, signal DOA

and amplitude estimates are obtained on the basis of beamforming, or spatial filtering.

They both constitute the very important aspects in array signal processing. Several text-

books [7, 8, 9], tutorial papers [10, 11] have been devoted to these areas. Among them,

Van Veen and Buckley [10] used the spatial filtering approach, while Krim and Viberg

[11] used the parameter approach. Discussions in this section also refer to [12]. For each

method, an applicable data model is assumed unless otherwise indicated.



A beamformer is a processor used in conjunction with an array of sensors (transduc-

ers) to receive a signal radiating from a specific location and attenuate signals from other

locations. The sensors sample the received signal in space, and the beamformer output is

the weighted sum of the sensor outputs. Therefore, the spatial response of a beamformer is

determined by the weights used to combine the individual sensor outputs.

In a primitive beamformer, the weight-delay-sum beamformer, the various sensor out-

puts are weighted and delayed by appropriate amounts relative to the reference sensor to

align signal components coming from some target direction and then summed. The

weights used are fixed for different steering directions. For a single source, the average

power at the beamformer output is maximized when it is steered toward the source, and

the beamformer resolution is determined by the array aperture and steered direction. How-

ever, this method breaks down completely in the presence of multiple sources.

In order to enable a beamformer to respond to an unknown noise and interference

environment, some adaptive weighting methods have been developed. A well-known

method, Capon's Maximum Likelihood Method, also called the Minimum Variance Dis-

tortionless Response method in a different context, was proposed by Capon [13] in 1969.

The basic idea of Capon's method is to choose weights to minimize the power contributed

by noise and signals from directions other than the steered direction, while keeping a fixed

gain in the steered direction. The power minimization can also be interpreted as placing

nulls in the directions of interferences. Many other methods, such as generalized sidelobe

canceller (GSC), were developed using the same principle. Capon's method did achieve a

significant resolution improvement over conventional beamformer. However, it is not a

true ML method (true only for a single source situation), and its performance degrades in

the presence of highly correlated signals.

Another important adaptive method is Burg's Maximum Entropy Method (MEM)

[14]. Observing that the estimated spatial covariance function has only a finite number of

lags due to the finite number of sensors, Burg's method does the covariance extension

according to Burg's Entropy criterion, which assumes a maximal random data model. For

the deterministic signals or signal with deterministic components, MEM's performance

becomes worse. For a uniform linear array, Capon's method and MEM can be related to

each other simply [9].



In the context of signal DOA and amplitude estimation, although both Capon's method

and MEM are often successfully and widely used, they have certain fundamental limita-

tions, such as the estimation bias and sensitivity, partly because they haven't exploited the

underlying data model structure effectively.

Development of subspace-based methods, which explicitly invokes the eigenstructure

of the covariance matrix, is a significant contribution for signal parameter estimation prob-

lem. One such early attempt was done by Pisarenko [15], who developed a new method to

retrieve harmonics from a finite segment of the covariance function. His idea could be

extended to the signal DOA estimation problem for a uniform linear sensor array.

The tremendous interests in the subspace approach largely attributed to the MUSIC

(Multiple SIgnal Classification) algorithm introduced by Schmidt [16] in later 1970's. One

of the important contributions in MUSIC is the geometric approach to signal parameter

estimation. In this approach, the signal subspace is estimated by eigendecomposition of

the spatial covariance matrix, and the array manifold is obtained by calibrating all possible

sensor responses to single rank one signal with varied parameters. For a suitably designed

array, the signal parameter space is related to the array manifold without ambiguity, so the

signal parameters can be determined uniquely by finding the close regions between the

estimated signal subspace and the array manifold according to some optimality criterion.

Some common used criteria include the least-squares criterion, which selects the model

that minimizes the sum of squared errors between the data and the model output, and the

maximum likelihood criteria, which select the parameter vector associated with the most

likely measurements. In conventional MUSIC algorithm, a one-dimensional search for

parameters is employed, thus reducing the computation load, while producing biased esti-

mates with finite samples. In root-MUSIC, a multi-dimensional search is employed,

which, generally, is computationally prohibitive except for the uniform linear array. Many

other extensions to conventional MUSIC are developed. In MUSIC, the maximum resolv-

able source number is the sensor number.

As the first high-resolution algorithm to correctly exploit the underlying data model of

narrow-band signals in additive noise, the performance improvement of MUSIC was so

significant that it became an alternative to most existing DOA estimation algorithms.

However, the prices paid for its excellent performance are the heavy computation load in



searching over the parameter space, and a large amount of data storage from the arduous

array calibration. Besides, MUSIC is sensitive to calibration errors including the sensor

position error and sensor gain/phase error, and cannot give the signal amplitude estimate.

In the middle of 1980's, ESPRIT (Estimation of Signal Parameters Via Rotational

Invariance Techniques), a new subspace-based approach to estimation of parameters of

cisoids in noise was proposed by Roy, et al. [17], and was extended to signal DOA estima-

tion [18]. Following the same geometric approach as MUSIC, ESPRIT exploits an under-

lying rotational invariance among signal subspaces and obtains the signal DOA estimate

without searching parameter space, thus reducing the computation loads and storage costs

significantly. Besides, ESPRIT shows more robust performance with respect to array per-

turbations, and can obtain optimal signal copy thus optimal signal amplitude estimate. On

the other hand, ESPRIT is not a general method because it requires the array manifold to

possess a displacement invariance; and the maximum resolvable source number is half the

sensor number unless an overlapping subarray structure is used (cf. further discussions on

ESPRIT at section 3.3).

A number of research papers on ESPRIT have been published since then. Ottersten, et

al. [19], followed the idea of Su and Morf [20], which models the source signal as the sta-

tionary output of a finite dimensional linear system driven by white noise, and developed a

wide-band signals DOA estimation method using ESPRIT. Ottersten, et al. [21], analyzed

the performance of the Total Least Squares (TLS) ESPRIT algorithm and showed the TLS

ESPRIT is competitive with the MUSIC, and the performance is close to the calibrated

Cramer-Rao bound (CRB) for many practical cases. However, as discussed in later sec-

tions, for highly correlated signals, the estimates deviate. Furthermore, Swindlehurst, et

al. [22], extended the original ESPRIT to exploit arrays with multiple invariances.

In practical application, the ESPRIT algorithm has been used to estimate the angle of

arriving signal and then detect the weak targets in SAR (Synthetic-Aperture-Radar) data

processing by Curlander [23]. Merwe, et al. [24], used the TLS ESPRIT to generate high-

resolution two-dimensional microwave images. Wong, et al. [25, 26], applied ESPRIT to a

velocity-hydrophone array to locate acoustic sources. These results have shown that

ESPRIT has great potential to be integrated into a practical real-time processing system.



Above mentioned array signal processing techniques are based on the second-order

statistics of the received signals, most of which assume, explicitly or implicitly, a Gaussian

signal. In recent years, some DOA estimation algorithms based on high-order statistics,

such as fourth-order cumulants, are proposed [27, 28, 29]. For non-Gaussian signals and

additive Gaussian noise, such as digital communication signals, some ocean acoustic

propagation signals with only a few Gaussian components, cumulant-based algorithms

work well. Nevertheless, it is obvious that a cumulant-based algorithm is very sensitive to

the signal model, and also the estimation of high-order statistics needs to be further inves-

tigated.

Finally, as we have seen from above discussions, estimation of the covariance matrix

plays a key role in signal DOA and amplitude estimation. A generalized coherence estima-

tion framework was proposed by Knapp and Carter [30], in which different estimators are

chosen to optimize certain different performance criteria. Also, a tutorial overview of the

coherence and time delay estimation was given by Carter [31].

1.3 Thesis Overview
This thesis proposes a new idea to deal with the interferences using a multiple-row bathy-

metric sidescan sonar, which is, resolving the interferences from the signals of interests

instead of only smoothing the received data (signals + interferences + noise) for given

time or angle intervals. Correlated signal direction estimate (CSDE), a new signal DOA

and amplitude estimation method for three-row systems, is developed in the absence of

noise, and then applied to the situation with noise. ESPRIT-based approaches are also pro-

posed, and they are compared with CSDE using different data model. Results from simu-

lations and a few real data tests are given and analyzed, and some system realization issues

are addressed. Because the thesis research is supported by a three-row bathymetric sides-

can sonar project from ONR (Office of Naval Research), most of the thesis discussions are

in the context of the three-row system, though the basic idea and some of the algorithms

can be easily extended to multiple-row systems.

The organization of the rest of this thesis is as follows:



Chapter 2 analyzes the acoustic field in the bathymetric sidescan sonar applications

and the stochastic characteristics of the bottom scattering, and then establishes the prob-

lem and data model.

Chapter 3 studies the signal processing schemes for DOA and amplitude estimation.

Three methods and their applicable data models are discussed in detail.

Chapter 4 presents the simulation and real data test results. The related issues to the

data model and algorithm parameters are addressed in detail.

Chapter 5 discusses some issues on the practical implementation of the proposed algo-

rithms in a real sonar system, and summarizes the results of the thesis. Limitation of cur-

rent work and recommendations for future work are discussed.
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Chapter 2

Problem and Data Model

2.1 Analysis on Interference Field Associated with Sidescan Sonar

As indicated in the first Chapter, one of the main sources of interference associated

with sidescan sonar is the multipath reflection between the ocean surface and bottom. To

analyze the multipath interference behavior qualitatively, a horizontally stratified ocean

acoustic model is chosen as shown in Fig. 2.1.

The ocean surface is assumed to be pressure-release, i.e., pressure P = 0, and the sur-

face scattering effect is ignored. In practical, the surface backscattering illuminated by the

sidelobe is significant sometimes, but can be reduced by adjusting the beampattern design

and system installation. For applications with tow-fish, AUV, or ROV at a depth far away

from the surface, this assumption is reasonable.

Sidescan sonar is an active system in that a short pulse of acoustic wave is transmitted,

and the backscattering echoes are received. Thus, the bottom can be modeled as an infinite

set of discrete point sources (excited by the transmitted acoustic pulse) with strength, Si .

Each source is contributed by the whole scattering region of the footprint (Fig. 1.1) enson-

ified by the acoustic pulses. As horizontal range, r, increases, the bottom backscattering

strength attenuates. On the other hand, the distance between the contiguous sources, i.e.,

ri - ri- _, increases to keep consistent with the system resolution issue. Only the first-order

scattering is considered, which means we consider only the reflection wave after radiated

from the point source. The bottom is penetrable with i CR 1 , where CR is the bottom

reflection coefficient determined by the incident angle and medium properties (density and

sound velocity). Here the density and velocity are assumed to be constants in the water

and bottom, respectively.

The homogeneous, time-independent wave equation with source f(P) [32] is

V2P(P) + k 2P(p) = -2f(P) (2.1)

where k is the wavenumber, P = (r,z), f(P) = -S(A -i), and Pi is the i-th source

coordinate. =0
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Figure 2.1: Ocean acoustic model for sidescan sonar

Even for this simplified model, it is still difficult to obtain the closed-form solution,

due to the penetrable bottom. We must resort to some approximation methods. For the typ-

ical operating frequency used by a sidescan sonar, tens or hundreds kHz, ray theory [32] is

- ---- - - -- -- -\ - - - -



a good choice. Combining all possible eigenrays using image method (Fig. 2.1), we obtain

the pressure field produced by a source at Pi(ri, h) as

( ikRnl ikRn 2

P(P, Pj) = (-1)n CRin)e _ C(in2)eR (2.2)
R ini in2 )

n= 0

Rin 1 = (r- ri) 2 + (z - (2n + 1)h) 2  (2.3)

Rin2 = (r- r) 2 + (z + (2n + 1)h)2  (2.4)

where CR(inl,) is the bottom reflection coefficient at the angle Oinl for n > 0, and equals

to one for n = 0. Note, in,, is the incident angle to the bottom experienced by the propa-

gation wave from the first n -th (image) source to the receiver (Fig. 2.1). Similarly,

CR(Oin2) is associated with the second n -th (image) source.

The total wave field at the sonar receiver, P = (0, z0), is

SR ikR,,,n ikRn2

P(i) = Si  (-1)n Cn eine - C( 2 ) (2.5)
R in in2

i=0 n=0

Rin1 = ri2 + (z - (2n + 1)h) 2  (2.6)

Rin2 = r1
2 + (o + (2n + )h)2  (2.7)

Now, we apply above results to the analysis of the interference behavior. Note, the

contributions from all the individual (image) sources arrive the receiver at different times.

Assume the sonar transmits a pulse at time t = 0. The first received signal is from the
2(h - z0) 2h

point source at nadir, ro = 0, at t - . The first multipath signal occurs at t = -.

2(2h - zo)
The second multipath signal occurs at t = with amplitude attenuated by

CR(0,o1). The third multipath signal begins at t = 4h with amplitude attenuated by
C

CR(0012). And so on. As t increases, the propagating distances for both the direct signal

and multipath signal, and thus the energy losses for them, increase. Above analysis is con-

sistent with the observation to SeaMARC II data [2].

Here an omnidirectional sensor is implicitly assumed. In a practical system (Fig. 1.1),

except for those angular sectors of interests, most other angular sectors are attenuated by

the beampattern directivity. Therefore, if a multipath interference appears at these sectors,



it will be further attenuated. In sidescan sonar design, a null toward the nadir in beampat-

tern is often preferred to avoid the strong reflection there.

From above discussions, for the time interval, t = 2(h - zo) to t = 2(2h - zo) , one direct
c c

signal and at most one multipath propagation signal are received at the same instant. From
2(2h- z0 ) 4h

t = to t = -, one direct signal and at most two multipath propagation signalsc c

are received at the same instant. Higher-order multipath signals are attenuated signifi-

cantly relative to the direct signal, and thus can be ignored.

Two examples are given below with c = 1500m/s. For h = 50m, and zo = 10m, a typi-

cal situation in shallow water, above two time intervals are 0.053s-0.12s and

0.12s - 0.133s. Assuming a flat bottom, the corresponding horizontal range intervals are

o - 80m and 80 - 92m, and the corresponding grazing angle intervals are 900 - 260 and

260 - 230, respectively. For a sidescan sonar with carrier frequency 200kHz, the typical

operating (slant) range is about 200m, which corresponds to a maximum horizontal range

- 200m here. In further distance, the direct signals are attenuated significantly and the

image data are no longer meaningful.

For h = 100m and zo = 60m, an example in middle to deep water, the two time inter-

vals are 0.053s - 0.187s and 0.187s - 0.267s. Assuming a flat bottom, the corresponding hor-

izontal range intervals are 0 - 134m and 134 - 196m, and the corresponding grazing angle

intervals are 900 - 170 and 170 - 120, respectively.

As shown in these two examples, the multipath signals are significant particularly in

shallow water, while the direct signals dominate particularly in deep water, which is con-

sistent with the observation to real ocean acoustic field. However, the model used doesn't

imply any time-varying behavior, which does exist in the real field.

A key observation is that for grazing angles less than 100, the bottom backscattering

strength decreases dramatically. So does the signal-to-noise ratio (SNR) at the receiver.

Thus the signal DOA estimates and the bathymetry measurements are not reliable. For

those regions with larger grazing angles (and thus with reliable bathymetry measure-

ments), a model with two or three simultaneously received signals describes even some

shallow water fields very well.



Fig. 2.2 gives some other kinds of interferences, which occur frequently in real appli-

cations. In Fig. 2.2 (a), bathymetric sidescan sonar works in a sloping bottom area. For

equal R, and R2 , two signals from different directions arrive the receiver at the same time.

In Fig. 2.2 (b), the sea bottom is non-flat. Similarly, for equal R1 and R2 , two or more sig-

nals are received simultaneously at some instants due to the bottom relief.

Vehicle

sidescan sonar

_ _Sea bottom

(a) AUV survey above a sloping bottom

Vehicle

Bathymetric sidescan sonar

Sea bottom

J

(b) AUV survey above a non-flat bottom

Figure 2.2: Two application cases using bathymetric sidescan sonar

2.2 Fishery Survey Application

Another application area we may have some interests is the fishery survey. Tradition-

ally, the research fishery surveys are conducted by catching fish with a net and manually

counting and measuring the samples. This operation is arduous, time-consuming and



expensive. An automatic large-volume high-resolution mapping system is to be devel-

oped, which can be realized by combining optical [33] and acoustical methods. Two

examples of such an application are given in Fig. 2.3.

Vehicle

VehicleFish school

Bathymetric sidescan sonar

(a) Fish schools in the water column

Vehicle

(b) Fish school above the bottom

Figure 2.3: Fishery survey using bathymetric sidescan sonar

Hendershot and Jackson [34] proposed an acoustic fish school measurement system of

using the phase information, the same approach in the conventional bathymetric sidescan

sonar. The fish school is represented by an ellipsoid filled with point scatterers. Depending

on range, size and scattering property of the fish school and sonar beampattern, one or

more scattering signals from a single fish school are received at the same or different

times. In the examples with dense fish schools or fish school close to the bottom (Fig. 2.3

(a) and (b)), when R, is equal to R2 , the system needs to be able to simultaneously resolve

two directional signals. The sonar system with this improved capability can provide a

coarse estimation about the distribution and density of some fish species for the optical



mapping and classification system, and extend the proposed fishery survey to more practi-

cal situations.

2.3 Statistical Analysis on Bottom Scattering

In section 2.1, we used a point source model for the bottom echo, and mentioned each

such source is contributed by the whole scattering region within the footprint. In order to

make more clearly about the measurement process, an introduction of the statistical char-

acteristics of the sea bottom scattering (reverberation) is appropriate.

The first systematic presentation on characteristics of sea reverberation using statisti-

cal method was given by Ol'shevskii [35] in 1966. In [36], Klepsvik did a similar work

with applications to wide-swathe bathymetric mapping. According to [35], the sea bottom

reverberation process can be treated as a discrete model

n

Sn(t) = ais(t - ti, ) (2.8)

t=1

where ai denotes the random amplitude with probability density function p(a) , and ti is

the onset time of the i-th scattering element, which is often assumed to have a uniform

distribution in a small time interval (-T/2, T/2). s(t) describes the transmitted signal, and

4i is a stochastic parameter defining the characteristics of the elementary scattering signals

with probability density p( i). For nonstochastic parameter = 0, we have

p(4) = 8(4 - 40). The number of scattering element, n, arriving at the reception point at the

time t is also a random variable, whose distribution satisfies the Poisson Law if the scat-

terer positions are statistically independent, and the mean scatterer density is constant for

a sufficiently large scattering region. In [36], the model used is a little bit different in that

the scatterer space distribution is considered.

Generally, the bottom scattering process is non-stationary. For the bathymetric sides-

can sonar using the narrow-band signal with the geometry given in Fig. 1.1 and 1.2, we

can neglect the relative motion between the transmitter and receivers and doppler effects,

and treat the process stationary.

According to the central limit theorem, if the number of elementary scattering signals

arriving at the reception position at a given time instant is large, and none of the these sig-



nals dominates, then the one-dimensional distribution, p(S), of the scattering process

approximates to be Gaussian, i.e.,

S
2

1 2a
2

p(S) = e (2.9)

Note in general, S is a complex process. Its instantaneous phase (IV) distribution is

uniform in the interval (0, 2n), i.e.,

1
p(N0) = - O < < 2e (2.10)2n

The envelop (E) satisfies the Rayleigh distribution,

E 20
p(E) = -- e (2.11)

as

For the sidescan sonar with narrow beam and short pulse, the number of scatterer

within the footprint may be reduced significantly, particularly for the bottom where shad-

owing occurs. Consequently, the resulting distribution departs from a Gaussian law and

shows some Poisson characters. Though, the Gaussian model is still a good approximation

for off-normal scattering region with larger size of the footprint and random scattering

components.

For scattering at normal incidence, a significant contribution from the mean amplitude

to the total scattering echo occurs. Hence, the Gaussian model is invalid, and the envelop

distribution in this situation approximates to be so-called Rice distribution with

(E + A)
2

p(E) = se Io (2.12)
os as

where 10( ) is a zero-th order modified Bessel function, and Ao is the amplitude of the

dominating scattering component.

In a real application, such an analysis is much more complex, and the validity of a sta-

tistical model depends on many factors associated with the bottom properties (roughness,

relief and material) and system parameters (frequency, signal type and pulse length).

Though, analysis of some real bottom scattering data obtained by a bathymetric sidescan



sonar [6] has shown a good agreement with the Gaussian model at a narrow grazing-angle

band for quite large regions including sediment-pond and axial valley. On the other hand,

in a wide range of grazing angles, a multimodal Rayleigh envelop distribution model fits

the data well.

The correlation analysis of the scattering process shows that for a rectangular transmit-

ted pulse with a sinusoidal carrier, the correlation interval of the instantaneous value of a

scattering process is about one-half of the pulse-length [35]. A measurement correlation

interval from a real bathymetric sidescan sonar is given in [36], which approximates twice

the specific pulse length. Considering the dispersion of the propagation medium, it is a

reasonable result.

The cross-correlation between the signals received at two points is, in general, a func-

tion of SNR, wavelength, spacing between the two point receivers, and receiving array ori-

entation to the scattering source [35]. In [36], the cross-correlation is further factorized to

include the dependence on both the transmitted pulse and the scattering characteristics.

For a two-row high-frequency bathymetric sidescan sonar with half-wavelength row spac-

ing, it can be expected that signals at two rows are highly correlated.

Finally, we give the probability density function for the phase-difference A(p obtained

on the basis of above analyses [35] as

p(Aq) = 1 IY12 3/2 (1 + t/2 + asinP) for -7t5 Ap- <7t (2.13)

2n(1 - p2)

where i is the mean value, y is the cross-correlation coefficient, and p = I, cos(Acp -[).

As the cross-correlation coefficient increases, the width of the peaked distribution

decreases, and thus the estimated phase difference approaches more to the true value.

2.4 Problem Definition and Data Model

The discussions in the first two sections suggest that a new bathymetric sidescan sonar can

be developed to obtain more accurate field measurements if two or more simultaneous

directional signals can be resolved. This can be done by adding more rows to the conven-

tional sidescan sonar.



2dsinO

(M - 1)dsinO

Figure 2.4: Multiple-row bathymetric sidescan sonar

A M-row bathymetric sidescan sonar is configured in a uniform linear array (ULA)

(Fig. 2.3), in which the mounting angle is ignored for convenience. The row spacing, d, is

half-wavelength to avoid the direction ambiguity. In the context of bathymetric sidescan

sonar, we use "row" instead of "sensor" to emphasize the geometric property of the sensor

here, i.e., long in one direction and short in another direction. The choice of row number is

almost purely an engineering problem. Taking into account the space available, weight

allowable, power limitation and costs, two to five rows may be a reasonable choice.

By collecting data from all the rows, we are to estimate signal DOA and amplitude for

multiple directional sources, including the bottom echo, multipath interference, and/or

other target return in water column within the sonar operating range.

The sources associated with a bathymetric sidescan sonar are time-varying in the sense

that their DOA's change with time. In other words, using the model in section 2.1, for each

source, there is a limited data points to be used to estimate its direction and amplitude, if

these parameters change slowly. The data length available for a single source is deter-

mined by the system parameters including the pulse length and sampling rate, by the

application geometry, and by the resolution obtainable from the signal processing algo-

rithm (cf. chapter 4 for further discussion). Here we still treat the continuous time-varying

sources as a discrete set of point sources, for each of which a signal DOA estimate can be



obtained individually. Therefore, the parameter estimation problem for a whole sonar ping

is simplified to the parameter estimation for a discrete set of sources. (Note, because all

these discrete sources come from the same sonar ping, their parameters are more or less

correlated.)

A few assumptions are invoked in our model and specified further below.

The transmitted medium is assumed to be homogeneous (constant density and veloc-

ity), so the propagating rays are in the form of straight lines. Furthermore, the receiver

array is in the far-field of the source for kr >> 1, which can be easily satisfied in high-fre-

quency. Under these approximations, the wave field at the receiver array is a sum of plane

waves. Note, for the frequency used here, - 200kHz, the wavelength, X, is about 0.01 m.

With the half-wavelength row spacing, it is reasonable to assume that the received signal

at each row is just a delaying version with respect to the reference row, which, generally, is

chosen as row 1.

The problem here is a planar problem from the sonar geometry. Assuming a single

source, s,, in 0, direction, the received data at the k -th row can be represented as

xk(t) = ak(Oi)Sir(t - 'k(O)) (2.14)

(k - 1)dsin06
where Sir(t) is the received signal at the reference row, and k(i) = )dsin0i is the

c

propagation delay between the k-th row and the reference row for a wavefront from si.

Sir(t) is related to the source by Sir(t) = si/r, where r is the distance between the source

and the reference row. ak(Oi) is the normalized response of the k-th row to the wavefront

from 0, direction.

For typical bathymetric sidescan sonar, the narrow-band signal modulated at center

frequency, wo, is transmitted, i.e.,

Sir(t) = mir(t)cos(wot + (Pi,(t)) (2.15)

where mir(t), (pir(t) are slowly varying function of time which modulate the amplitude and

phase of S,r(t), respectively.

Note, the narrow-band signal ensures that the array response is independent of fre-

quency over the signal bandwidth. Using the complex envelope representation, a complex

form of the received signal at the reference row is



sir(t) = Sir(t) + jAir(t) = [m er(t)e r(t)]eWot (2.16)

where sir(t) is the Hilbert transform of sir(t), given by

Sir(t) = 1 Sir(c) d (2.17)
R f, t-'T

Thus, the received data at k -th row in a complex form are

Xk(t) = ak(i) r(t - k())= ak(Oi) r(t)e -JwOk(O) (2.18)

Here, we used mir(t)= m,,r(t-'k(Oi)) and TPi,(t)= (Pir(t-'k(Oi)) for all possible delays.

If we have D directional signals at the same instant, the received data including the

measurement noise, hk(t), at the k-th row become

D

xk(t)= dak(Oi)sir(t)e-1WOXk(O') + h k(t) (2.19)
i= 1

For M rows, it is more convenient to use the matrix representation.

Defining

akW [ak -w)eo(1 k *k D L-"OkD (2.20)ak(O) = [ak(O)e -Jwk(O .. ak(OD)e

A(O) = [a(0O), ... ,aM(O)] (2.21)

Sr(t) = slr(t) ... , SDr(t)
T  (2.22)

X(t) = [i(t), ... , M(t (2.23)

N(t)= (t), .... m(t)l T  (2.24)

where T means the matrix transposition operation, then we have

X(t) = A(O)Sr(t) + N(t) (2.25)

Note, now the direction information is contained in the time delay and thus the phase

term of the received signal.

In the problem definition, the sensor output is decomposed into two components, the

signal to be observed and the noise due to sources of uncertainty in the process of observ-

ing the signal. The noise is due to ambient, sea reverberation, and receiver electronics, and



can be treated as additive. Generally speaking, the noise includes both nondeterministic

components and deterministic components such as multipath interferences. For the prob-

lem of interest here, a multipath interference is treated as a directional signal and thus the

noise process is assumed to be a zero mean white Gaussian process. In practical, "white"

means the power spectral density of the noise component is flat over the bandwidth of

interests. Furthermore, the noise correlation are often ignored in the development of the

algorithms. However, for some components of the noise process, there do exist some cor-

relation between the noise and signal and between the noises at two different rows, which

will be addressed in the performance evaluation.

Two kinds of signal models are considered. First, the stochastic one from the statistical

analysis on bottom scattering in section 2.3, which may also be used for the scattering

from fish school under some conditions. Generally, a Gaussian model is assumed for each

bottom scattering process from a narrow grazing-angle band. Second, the coherent one

from the analysis on interference field in section 2.1. A mathematical model for the

received signal x(t) in multipath environment is proposed by Ehrenberg [37] as

N

x(t) = Zmis(t- + n() + n(t) (2.26)

i= I

where mi and zi are the amplitude and arrival time for the i -th multipath signal, N is the

number of multipaths, s(t) is the propagating waveform of a single path, and n(t) is the

additive noise. It is easily to be seen that (2.26) is a particular version of (2.25). From this

model, we can expect to see that, for some instants of time, two processes arrive at the

reception array simultaneously, one of which is a delayed version of another. In a real

environment, the data structure is generally much more complex, and these models might

only be two components of the received signals.
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Chapter 3

Methodologies

3.1 Differential Phase Estimate

In this chapter, the solutions for the problem defined in last chapter are developed and

studied. First, the cases with a single directional source are considered, where the conven-

tional differential phase estimation (DPE) method [3] works.

Assuming a single source in 0 direction, at the k -th row, the received signal in a com-

plex notation (cf. section 2.4) is

k(t) = ak(O)s(t)e ( O + nk(t) (3.1)

We require all the rows have the same beampattern, i.e. a1(0) = a2 (0) ... aM() for

all 0, and for further convenience, an omnidirectional directivity in vertical plane is

assumed for each row, i.e., ak(O) = 1, for all 0.

For a properly bandlimited received signal, it is possible and sufficient to deal with the

base-banded quadrature samples, which can be obtained by a complex demodulator or a

real demodulator plus the Hilbert tranformer in digital domain. Thus, the base-banded out-

puts in digital domain at the k -th and (k + 1) -th row are

Xkb(n) = sb(n)e
w k ( ) + hkb(n )  (3.2)

-jWOtk+1(O) ~
X(k+l)b(n) = srb(n)e + n(k+ 1)b(n) (3.3)

In the absence of noise, we form a product by multiplying (3.2) by the conjugate of

(3.3)

R(n) = Xkb(n)?*(k+1)b(n) = I~rb(n) 2 o(() et(o)) (3.4)

Here ( )* is the complex conjugate operation. Then (cf. section 2.4),

2ndsin0
OR(n) = WO(Tk+1()- Tk(O)) = 2 (3.5)

where OR(n) is the angle or phase of R(n). Thus,



0 = asin (3.6)
2nd

Note, for a linear array, an inherent problem is that it cannot resolve the up-going wave

from the down-going wave. Fortunately, a sidescan sonar is so designed that only up-going

(or down-going, depending on the manner used) wave with respect to the transducer array

plane can be sensed. Therefore, 0 can be chosen in the range of [-2n/2, n/2 ].

For noisy signal, an estimate of R(n) should be obtained. Given L samples of the pro-

cess, the least square distance estimate A can be obtained by minimizing the cost function

C(R) = W 2( n)(R(n) - P) 2  (3.7)
n=l

and the resulting a is

L

W2(n)R(n)

R= nL=1 (3.8)

SW2 (n)
n=l

i.e., the average of the corresponding L samples. Here, W is a window function, and the

rectangular window is often used to obtain better resolution [38]. The choice of L is a

trade-off between the resolution and smoothness. Due to the time-varying signal DOA in

sidescan sonar, large L yields a smoother output, but causes loss in resolution, which is

different from the behavior in spectral estimation.

Note,

a(n) = R(n) + r - jw °(e k )- -wo'( ) 
(n) = R(n) + rb(ne n(k+ 1)b(n) + Srbn)e nkb(n) + hkb(n)h(k+ 1)b(n) (3.9)

If both the directional signal and noise are zero-mean random processes, and the

noises are uncorrelated with the directional signal and with each other, then the estimate A

approaches to the true R as L increases. A more realistic argument is given in [3] that for

highly correlated directional signal and zero-mean Gaussian noise, above estimate is a

maximum likelihood estimate at high SNR.

For a M -row bathymetric sidescan sonar, better estimate can be obtained by combin-

ing all the estimates from arbitrary pairs of rows. Let Oij = asin represents the esti-
2dmate at the pair of the i -th and j -th rows, then

mate at the pair of the i -th and j -th rows, then



M
2

= ) (3.10)
M(M- 1) ij

i = 1, j= 2, i<j

However, a problem of ambiguity (phase wrapping) arises when the spacing between

the rows in a pair is larger than the half-wavelength. For example, for 013, the estimate

from row 1 and row 3, d = X, and O,(n) = 2nsin0. The interval of 0, [-n/6, n/6], is

mapped to the interval of ~R(n), [-7n, n]. Similar, 0 e [n/6, nc/2] is mapped to OR e [n, 271]

and 0 e [-n7/2, -n7/6] to OR e [-2n,-n]. Therefore, W(n) ranges from -2n to 27n, and we

cannot tell in which 2n circle the estimated k,(n) should be.

This ambiguity can be resolved using the unambiguous estimation from pairs of rows

with half-wavelength spacing. In the same example, if the unambiguous estimation of 0 is

in the interval of [-n/6, n/6], then O(n) should be chosen in the interval of [-n, ] ; oth-

erwise, chosen in the interval of [-2n, -n] and [n, 2n]. For a larger row spacing, a similar

procedure can be applied.

Note, above DOA estimates, bij, are not independent. For example, 813 can be

obtained from 012 and 623. Averaging all such estimates is not necessary. Moreover, using

DPE method, the DOA estimation resolution is inversely proportional to the row spacing.

A Vernier technique can be realized by averaging estimates only from those pairs of rows

with a larger row spacing.

In the conventional bathymetric sidescan sonar, the amplitude estimation is done by

averaging the amplitudes received at each row or simply using any one of the row outputs.

3.2 Correlated Signal Direction Estimation (CSDE) for Three-row Sys-
tems

As we introduced in last section, the conventional differential phase estimate is obtained in

the absence of noise, and then applied to the situation with noise. It is natural to extend

this procedure to the multiple-row system. We repeat (2.25) here in the absence of noise

using the equivalent base-band representation:

Xlb(t) = Srlb(t)e- jwr(O1) + ... + SrDb(t)e-JwoT(OD) (3.11)

X2b(t) = Srlb(t)e
-

"2
0

1) +... + SrDb(t)e
- j
WOt2(D) (3.12)



xMb(t) = Srlb(t)ejWorM(0) + ... + srDb(t)e- jw O"M(OD)  (3.13)

Again, all the rows are assumed to have the normalized omnidirectional beampattern

in vertical plane. As we can see in the consequence, the omnidirectional directivity is not a

necessary requirement as long as all the rows have approximately the same beampattern in

the angular sector of interests.

For a two-row system, one directional signal can be resolved. From (3.11 - 3.13), we

have three unknowns, Srlb(t) (magnitude and phase) and 0,, and four equations. Note,

each equation in (3.11 - 3.13) includes two equations by making the real part and imagi-

nary part equal, respectively. This is an overdetermined problem. As a result, the solution

01 can be obtained by using only the phase information in Ilb(t) and x2b(t), though the

magnitude information can be used to obtain the optimal solution in noise.

For a four-row system, signals from three different directions should be able to

resolved. (Later we will indicate that for a M -row system, the maximum resolvable source

number can be M - 1 by using ESPRIT algorithm.) However, from (3.11- 3.13), we have

nine unknowns, Srlb(t), Sr2b(t), Sr3b 1 (t), 02, and 03, and only eight equations. Generally,

since three unknowns are associated with each directional source, for a M-row system

with M - 1 directional signals to be resolved, we will have 3(M - 1) unknowns and 2M

equations. Therefore, the problem for M 2 4 is undetermined. We cannot solve this group

of equations analytically and exactly, and must resort to some optimal estimation methods.

In next section, such a method will be introduced.

Fortunately, there is a solution for M = 3 and D = 2, in which case we have 6

unknowns, Srlb(t), Sr2b(t), 01, and 02, and 6 equations. Let's repeat (3.11- 3.13) here for

M = 3 and D = 2:

~-jwo2e 1 o-w,( 2 )Xlb(t) = Srlb(t)e + Sr2b(t)e (3.14)

X2b(t) = Srlb(t)e j 2(O  + Sr2b(t)e 2 (0 2 ) (3.15)
b~ .w 3 (. 1) -jw 0 t 3(0 2)

-3b(t) = Srlb(t)e
- j w

o
3( 01 

+ Sr2b(t)e (3.16)

Because the 1st row is chosen as the reference row, we have

T(O z) = z,(0 2) = 0 (3.17)



2dsin81
T3(1) = 2T2(0 1) = (3.18)

c

2dsin8 a
T3(0 2) = 2 2 (0 2) = 2d 2  (3.19)

C

To simplify the equations further, we change variables by

X = e- Jwo2 ( Ol)  
(3.20)

Y = e- 2( 2) (3.21)

Then we obtain the following equations

Xlb(t) = Srlb(t) + Sr2b(t) (3.22)

x2b(t) = Srlb(t)X + Sr 2b(t)Y (3.23)

X3b(t) = Srlb(t)X2 + r2 b(t)Y 2  
(3.24)

Solving (3.22) and (3.23), we get

Xlb(t)Y - X 2 b(t)
Srlb(t) = (3.25)Y-X

r2b(t ) = X2 b(t ) - 'lb(t)X (3.26)
Sr2b(t) =(3.26)

Solving (3.22) and (3.24), we get

y2-Xlb(t)y2 - 3b(t)
Srlb(t) = 2 2(3.27)

Y2 - X2

2
X3b(t) - Xlb(t)X 2

Sr2b(t) = 2 2 (3.28)
Y -x

By equating (3.25), (3.27) and (3.26), (3.28) for srlb(t) and Sr2b(t), respectively, we

obtain

X3b(t) = 2b(t) Y- lb(t)XY + X2b(t)X (3.29)

and thus

Y 3b(t) - 2b(X (3.30)
X2b(t) - Xlb(t)X

Note, IxI = 1 and IYI = 1, i.e., X -x*= 1 and Y Y* = 1. Using these identities, we

obtain a second-order equation of x



(ilb(t)2b*(t) - 2b(t) 3b*(t))X 2 + (1i3b(t)12 -_ -lb(t) 2 )X + ( 1b*(t) 2b(t) _ 2b*(t)3b(t)) = 0 (3.31)

Defining

A = lb(t)2b2b*t ) - 2b(t)i3b*(t) (3.32)

B = 1 3b(t)2 _- 'lb(t ) 2 (3.33)

and noting the symmetry of x and Y, we have

X -B+_JB2-4|A[2
= -B± 2 4A (3.34)

Y 2A

Finally, the solutions of (3.14- 3.16) are given by

01 = asin() "  (3.35)
2ntd

02 = asin Y(X) (3.36)
2nd

ilb(t) Y - ?2b(t)
Srlb(t) = Y- X2(3.37)Y-X

X2b(t) - lb(t)X
Sr2b(t) Y - X (3.38)y-x

where OX(Y) is the phase of X(Y). The amplitude estimates are just the magnitudes of

Srlb(t) and Sr 2 b(t).

Now we apply above solutions for the noisy signals. Again, the estimates of A and B

can be obtained over L given samples. In digital domain, using the rectangular window,

we have

L

A= R 12 -23 =L (lb(n)j2b*(n) - X2b(n)x3b*(n)) (3.39)
n= 1

L
1 2 2

B = ?3 3 - 1 1 L= _x, (
"

I3b(n
) 

A ilb(n) 2) (3.40)

n=

where kij is the covariance estimate between the i -th and j -th row. (In the discussions in

this section, the measurement process is assumed to be zero-mean or the mean component

has been removed, so the covariance estimate is equivalent to the correlation estimate.)

However, unlike the differential phase estimate method, the solution here is depended not



only the phase but also the magnitude of such covariance estimate. An optimal estimate

can be obtained if the two directional sources are highly coherent. To show how this

works, let's assume a fully coherent case, i.e., sr2b(n) = oSrlb(n) where a is a complex

constant, and represent the receiving data as

Xlb(n) = Srlb(n) + Srlblb(n) + h1b(n) (3.41)

~ -jw 0 "l2(01) -jw r2(0 2)

x2b(n ) = Srlb(n)e + CSrlb(n)e + h2b(n )  (3.42)

3b(n) = b(n)e -jw 0' 3(0 1) -rb(n)ejw 0 " 3(0 2) h3b(n )  (3.43)
X3b(f) Srlb(n)e + aSrlb(n)e (3.43)

then the covariance estimations for L given samples are

(1 +a)(ew°2O° ) + jwoa*e2  ) L
12= L S+ ae Srlb(n)12 + Noise term (3.44)

n=l

-jwor 2( 1) -jW0 2(0) jW0 3( 1) 3 2
(eJW2(1) + ae -W2(2))(e W3( + a*eJWOT3( 0

2 )L2
S23L _ Irlb(n)2 + Noise term (3.45)

n=l

L

Z = (1 + a)(1 + a*) rlb(n) 2 + Noise term (3.46)

n=l

(e-jw 3(0 1) 
+  

-jW 0 3(02) jw0't3(l 1) 
+  

je 3(0 2) L

L33 L I Srlb(n) + Noise term (3.47)
n=

Note, the signal term in the estimates is the same thing as for a single data sample

except that a single Srlb(n )12 is replaced by the sum from L samples. Defining

L

Ps = j Srlb(n) 2 (3.48)
n=

as signal weighting factor, we find the signal terms in all the covariance estimates have this

same weighting factor, and so do the signal terms in A and b. In the absence of noise, by

factorizing P, from (3.44 - 3.47), we can obtain the exact same solutions as by a single data

sample. On the other hand, if the noises are zero-mean and uncorrelated with the signal

and with each other, then the covariance estimate of L samples adds the noise term inco-

herently while adding the signal term coherently, thus increasing the array output SNR

greatly relative to a single data sample. Therefore, the optimum array gain can be obtained



and the covariance-based CSDE is an optimal estimator for above signal and noise mod-

els.

To achieve the performance provided by an optimal estimate, the noise samples are

generally required to be temporally independent. That means the sampling interval should

be significantly larger than the maximum inverse bandwidth of the noise process. This

condition is easily satisfied by noting the general noise process has wider, flat spectrum.

A similar issue regarding the signal is quite different. The data model used here (also

used by most high-resolution DOA estimate algorithms) requires the signal bandwidth as

narrow as possible, while the narrow bandwidth intends to increase the correlation interval

of the signal. Though the signals are never pure cisoids in reality, the temporal correlation

of a directional signal cannot be ignored. The correlation interval is about twice the trans-

mitted pulse length (cf. section 2.3), for example, which is equivalent to ten data points if

a sampling rate of 50kHz is used in a 100gs -pulse system.

Let's consider two temporally fully correlated signals, Srlb(n) = C1 and Sr2b(n) = C 2

both for all n, with C1, C2 constant. Following a similar procedure in coherent issue (actu-

ally this is a special coherent case), we can reach the same conclusion. Hence, it is safe to

argue that CSDE is also optimal for temporally highly correlated signals. The reason why

we call this method correlated signal direction estimation (CSDE) is that the proposed

estimator is optimal for highly coherent or temporally correlated signals. Later simulations

will verify this point further.

Observations to (3.39) and (3.40) show that the noises at three rows can be correlated

with each other as long as they are from the same process and thus have the same spatial

correlation characteristics. These noise-noise cross-product terms are cancelled with each

other by the minus operation in calculating A and t.

Generally speaking, for incoherent and temporally uncorrelated signals, a covariance-

based CSDE is not an optimal estimate. Though, a point-based CSDE can still be used. To

reduce the noise effect, a few such estimates are averaged over the given data samples.

Specifically, let 86(n), 82(n) be the solutions from L data samples ilb(n) .2b(n) 3 b(n)]

then



L

81 = - 01(n) (3.49)
L
n=l

and

L

02 = L 2(n). (3.50)
L
n=l

We should point out here that the three-row bathymetric sidescan sonar system is of

our most interests in real applications since a two-row system can be easily extended to a

three-row system, and some such three-row systems have already been available, though

they still use the conventional signal processing method. Besides, as we discussed in sec-

tion 2.1 and 2.2, the new capability, resolving two directional signals at the same instant,

can extend the conventional bathymetric sidescan sonar to a wider variety of practical sit-

uations.

3.3 ESPRIT Approach
ESPRIT is developed on the basis of a particular array structure with displacement invari-

ance. For a uniform linear array used in bathymetric sidescan sonar, two subarrays are

formed with maximally overlapping (Fig. 3.1). There are (M - 1) sensor doublets (shown

1 2 3 M

Subarray 21 N z D4 Q-oublet

Figure 3.1: Array geometry for ESPRIT

by the arrow connections), and the sensors in each doublet have identical beampatterns

and are translationally separated by a vector A, which is the exact requirement by

ESPRIT. To see how ESPRIT works, let's inspect the signals received at each doublet first.

Denoting ik(t) as the output of the k -th sensor in subarray 1, yk(t) as the output of the k -th

sensor in subarray 2, for the k -th doublet, (cf. section 2.4)



xk(t) = axk(O))sir(t)eJWoTk') + xk(t) (3.51)

i=1

D

Yk(t) = ayk (O)sirt)ejwo( + yk(t) (3.52)
i= 1

Note, the k -th sensor in subarray 2 is the (k + 1) -th sensor in subarray 1. If

ak() = ak+ i(0i), and defining a'k(i) = ak(O,)e - Wo' (6') , then we have

D

Xk(t) = a'k(Oi)sir(t) + hxk(t) (3.53)

i= 1

D

yk(t) = a'k(Oi)sir(t)e + nyk(t) (3.54)
i= 1

Combining all the outputs in two subarrays, using the matrix representation (cf. sec-

tion 2.4), we have

X(t) = A(O)sr(t) + Nx(t) (3.55)

Y(t) = A(O)0(O)sr(t) + Ny(t) (3.56)

To make the problem more clearly, all the matrices are specified with their sizes as

X(M-1)xl, Y(M-1)xl , SrDxl, A(m _1)xD, Nx(M-1)xD and Ny(M-1)xO.

(D() is a D x D diagonal matrix of the phase differences between the sensors in a dou-

blet for D directional sources, i.e.,

-jwoAssnO 1/c -JwoAsin8,/c(D(O) = diag[e, ... e ] (3.57)

A more compact representation of the data model is given as

Z(t) = (t)] = A(O)sr(t) + N (t) (3.58)
Y(t)J

with

A(O) = [ A(0) 1 (3.59)
[A(O)D(o)J

and



N z(t) = Nx(t) (3.60)
Ny(t)]

So far, the data model has manifest a key factor in ESPRIT that the outputs from the

subarray 1 and 2 are related by a complex scaling operator D(O), which is equivalent to a

real two-dimensional rotation operator (that's why ESPRIT got its name). Thus, the struc-

ture of A(O) can be exploited to obtain estimates of (0O) and then the direction informa-

tion for each source.

The detailed derivation of the ESPRIT algorithm is given in [12]. Here, the basic pro-

cedure is summarized simply as following.

From the ideal measurement model, the covariance matrix

Rz = ASrA* + 2 i n  (3.61)

where S,, a2 , are signal and noise covariance, respectively. The noise correlation, E, is

known. For D 5 M -1 (the sensor number in a subarray), the generalized eigenvalues

(GE's) of (Rz, In) are [v1 + 2, ., VD+ 2 02, ..., 2]. The 2(M - 1) - D minimum GE's equal

to the noise power, 02. Hence, the noise component is identified and its effect on signal

subspace structure can be removed. At the same time, the basis vectors that span the signal

subspace is obtained from D generalized eigenvectors (GEV's) corresponding to D largest

GE's as Es = I [e l... eD]. Note, though we assume D is known for the time being, it is

obvious that above arguments can be used to estimate D.

Here, Es is 2(M - 1) x D matrix, and it can be shown that the space spanned by Es is

equal to that spanned by A. Thus Es must be related to A by a nonsingular matrix T such

that Es = AT, and now the invariance structure of A suggests a partition of Es as

ES = L ATT] (3.62)

where both Ex and Ey are (M- 1) x D matrices, and they span the same signal subspace

spanned by A. If we can find a matrix, ', which relates Ex to Ey by Ey = ExT, then, from

(3.62),

ATYT - ' = AD (3.63)

Assuming A is full rank, we get the key relationship in ESPRIT



T'T - ' = ( (3.64)

which means, the diagonal elements of ( in (3.57) are equal to the eigenvalues of y'.

In a real situation, Es is estimated from a covariance estimation Rzz, and generally, ,

and A don't span the same subspace, and neither do Px and ky. To find ', the general

problem is

min,|Exu - E-y F (3.65)

where II IIF is the Frobenius norm [39]. Since both kx and ,y are noisy, the problem is fur-

ther redefined by using the total least square criterion as

min,,y [,x- y tL IF (3.66)

subject to a symmetric constraint on both 'x and I',.

By first forming a new matrix,

[x x~,] (3.67)

where ( )t is the conjugate transpose, and then computing its eigendecomposition and

choosing the eigenvectors, Exy( D), corresponding to D smallest eigenvalues, and finally,

partitioning Exy(D) into D x D matrices, Exy, x(D) and Exy, Y(D) , ' is obtained as

T = -Exy, x(D)[Exy, Y(D)]-1 (3.68)

The total least square (TLS) ESPRIT algorithm is summarized as following (cf. [12]):

1) Obtain kzz, the estimate of R,,, from the measurement z. Specifically, for L given

data samples at each sensor, i.e., z e C2(M - 1) xL , the maximum likelihood estimate is

Rzz = 2(M- 1)L(Z- z) (Z - z)t (3.69)

where tz is the mean of z. The number of snapshots, L, is chosen according to the avail-

able measurements, SNR at each sensor, and desired DOA estimation accuracy. Generally,

L should be at least (M - 1)2

2) Implement the generalized eigendecomposition of { kzz, Y, )



azzE = ,nEA (3.70)

where A = diag{Xj, ... , X2(M-1)}, X1 - ... ---12(M-1), and R = [ell ... e2 (M-1)] . Note, because

we use an overlapping array structure and thus some sensors are members of both subar-

rays, 1, should be considered carefully. For example, for M = 3, using the noise model

proposed, y, is given by

1000

000

1 1

Assuming a decomposition of E, = Y'I exists, the generalized eigendecomposition
1 it

can be converted a standard eigendecomposition of n2 RZZ'n2

3) Estimate the number of sources, b. For a practical Azz, the 2(M - 1)- D smallest

GE's are clustered around, and not all equal to 02. To obtain b, some further techniques

need to be used [12].

4) Obtain the signal subspace estimate Sz = R Es}, where R( ) means spanned by,

and decompose it to obtain Ex and y,,

Es = bInl I... b] = (3.72)

5) Implement the eigendecomposition,

Ix [t y] = EAE* (3.73)

with the eigenvalues arranged in decreasing order, and partition E into b x fb submatrices,

E= [E
1, E 12  (3.74)

E21 E22j-1

6) Obtain ' by ' = -E 12E2, and compute its eigenvalues, denoted by ?k, and let #k

denote the phase of hk, for k = 1, ..., .

7) Calculate



0k = asin{-c. -k/(wOA)} (3.75)

To avoid squaring the data, which intends to cause some problems on matrix opera-

tion, the measurement data can be processed directly using the singular value decomposi-

tion (SVD), which theoretically yields the same subspace estimate as the

eigendecomposition. In step 5), noting

SVD t= UIV* (3.76)

where X is diagonal and real, and U and v are unitary, then

x = U U2 * (3.77)

Thus, the left singular vectors, U, of Ex are the eigenvectors of KEx 1

In step 2), a generalized SVD (GSVD) can be applied directly [12]. However, since a

standard eigendecomposition problem is obtained there, the GSVD is not necessary. Sim-
1

ply, replacing z by 1,22, the signal subspace estimate can be obtained from the left singu-
1

lar vectors of ,n22.

To apply ESPRIT to a real application, several issues are discussed. First, we point out

here that the maximum resolvable source number for a M -sensor ULA with maximum

overlapping is M - 1 , close to that of MUSIC. The performance in terms of estimation bias

and variance using overlapping structure need to be further investigated, though a study in

[5] supports this usage in the context of a conventional split-aperture system.

Second, the noise may include both nondeterministic and unwanted deterministic

components, while knowledge of the noise correlation must be known, which can be esti-

mated by field measurements. Note, the optimum array gain is limited by the logarithm of

M. For a large M, the ESPRIT algorithm may be very sensitive to an incorrect noise corre-



lation model, particularly at low SNR. However, for a small M, though the noise model is

not a critical issue, SNR will dominate the system performance.

Third, in ESPRIT, the signals are modeled as narrow-band stochastic process and

required to be temporally independent. To track the statistics of the signal process, all

available measurements should be used. In many practical situations, data length available

for estimating the source DOA is limited, and furthermore these data are generally more or

less correlated as in the bathymetric sidescan sonar. It can be expected that all these factors

will impact the performance of ESPRIT.

Fourth, the correlation between signals from different directions is allowed in ESPRIT.

However, for fully coherent signals, ESPRIT cannot resolve them, and gives an incorrect

estimate. Though, practically, the fully coherent signals doesn't exist, the performance of

ESPRIT will also be degraded depending on the amount of such correlation as for the tem-

porally highly correlated signals. Fortunately, when the highly coherent signals appear

together with an incoherent signal, this incoherent signal can still be identified by ESPRIT.

Fifth, for a small M, the estimate of source number is not a critical issue and even can

be ignored, because, using a maximum possible D, ESPRIT can still give correct esti-

mates for the true sources, and the false random sources can be thrown away by further

processing. However, a detail inspection on the eigenstructure of kzz is very helpful to

estimate the real wave field structure, and thus gives an evaluation to the quality of the pro-

cessed data.

Finally, we give the results on optimal signal amplitude estimation, one of the advan-

tages of ESPRIT over MUSIC. Generally, a signal copy is obtained by using a weighted

sum of the sensor outputs. Such weight vectors are optimal in the sense that a single output

contains only the desired signal while eliminating other D - 1 signals. Again, using the

TLS approach, the optimal weight matrix is given by [12]

Wop = Es[E s -Es] - t (3.78)

which satisfies Wop,' A = I and I is the identity matrix. Therefore, the optimal signal copy

is estimated by

sop(t) = op . Z(t) (3.79)



and the amplitude estimate is the magnitude of Sop(t).



Chapter 4

Simulations

A new bathymetric sidescan sonar with improved signal processing system is being devel-

oped at the Woods Hole Oceanographic Institution (WHOI). In this chapter, computer

simulations are carried out to verify the performances of previous algorithms and investi-

gate the possibility of applying these algorithms to the developing system. First, we study

a single directional source situation using the DPE and ESPRIT. Then, the performances

of ESPRIT and CSDE are evaluated in the cases with two directional sources. They are

further compared using different data models with varying degrees of temporal correlation

(or coherence). After that, a practical example with two time-varying directional sources

and SNR's is simulated. Finally, because the real three-row sonar data are not available at

the time of this writing, some two-row data are used to test the algorithms.

The new system is configured as a three-row uniform linear array with half-wave-

length row spacing. The operating frequency is 200kHz, and the transmitted pulse length

is 100os. Because the system base-band bandwidth is 10kHz, the sampling frequency is

chosen as 48KHz, approximately two and half times of Nyquest rate. Sound velocity, c , is

assumed to be 1500m/s. The received signals are passed to the pre-amplifier, demodulator,

time-varying and fixed gain amplifier, A/D converter, match-filter, and finally recorded.

The raw data are compensated for system parameters according to the sonar equation [40].

In the simulation, a three-sensor array structure is adopted with each sensor being

omnidirectional. The sensor spacing is exactly half-wavelength. The signals are con-

structed as narrow-band stationary stochastic processes on the basis of the statistical char-

acteristics of bottom scattering. Specifically, quadrature samples are generated to form

complex samples for each sensor, and the following characteristics of the bottom scatter-

ing are considered [35, 3]:

1) The scattering process is Gaussian, and the quadrature components also have Gaus-

sian distributions with zero mean, and variances equal to the variance of the scattering pro-

cess.



2) The quadrature components are uncorrelated and statistically independent.

3) The envelop of the scattering process has a generalized Rayleigh distribution.

4) The phase has a uniform distribution in the interval (0, 2) ).

5) The statistical spectrum of bottom scattering in the transmission of determinate-

type signals is proportional to the square of their amplitude spectrum.

Under these assumptions, at the reference sensor (1st sensor), for each directional

source sr, the envelop Er(n) can be generated by two zero mean independently Gaussian

processes El(n) (in-phase component) and E2 (n) (quadrature component) with the same

variance or, as

Er(n)2 = E,(n)2 + E 2(n) 2

To include the finite bandwidth effects, the quadrature components are convolved with

a window function whose length depends on the pulse length, thus forming the signal

component of the simulated data. Therefore, the simulated data are correlated within a

finite interval, consistent with the correlation analysis results on the real scattering pro-

cess. Here, we choose a rectangular window and the window length is five points, the

number of samples in a pulse.

In some of the simulations, highly coherent or temporally correlated signals are inves-

tigated. For fully temporally correlated signals, sr(t) is a constant, and we can add a ran-

dom component to it to adjust its correlation. For fully coherent signals defined as

sr(t) = a " sri(t) with a a complex constant, the degree of coherence may also be adjusted

by letting a have a random component and giving different weights to the deterministic

and random components in a.

Additive noise is present at all sensors, and assumed to be uncorrelated band-limited

zero mean Gaussian process, which is added to the signal quadrature components indepen-

dently. An FIR low-pass filter corresponding to the system parameters (bandwidth, sam-

pling rate) is used to obtain the band-limited noise.

Two important parameters in simulations are the number of measurements (snapshots)

per trial, L, and the number of trials, N. As previously indicated (cf. section 3.3), the

choice of L is dependent on the SNR at array input, desired DOA estimate accuracy (for

above two factors, a larger L is preferred), and also, for bathymetric sidescan sonar, esti-



mate resolution (a smaller L is preferred). To establish a relationship between L and the

resolution, let's look at the geometry of sonar use. For the bathymetric sidescan sonar

being developed, the maximum operating distance is about 200m. Suppose the operating

height above the bottom is about one-third of the horizontal range, i.e., - 60m. Assuming

a flat bottom and L = 64 (corresponds to Im in acoustic propagating distance), at normal

incidence, the angle difference between two contiguous 64-point estimates approximates

40, while at the maximum operating distance, approximates 0.10 . Note, the angular reso-

lution of ESPRIT for a three-sensor array is also in the order of 40 around the same region.

Therefore, L should be smaller at normal incidence region, and larger for far off-normal

region. In the simulations, we choose an intermediate value of L = 64. In most cases, N,

the number of trials performed depends on the smoothness of the resulting estimate histo-

gram. Generally, N is large in low SNR, and small in high SNR. For the scenarios investi-

gated here, we choose N = 512.

The differential phase estimate is implemented as described in section 3.1. Traditional

DPE using only one pair of sensors, averaged DPE using two pairs of sensors, and vernier

DPE are tested. In the former two methods, the sensor spacing is half-wavelength. In the

vernier method, the DOA estimates are obtained from the pair of sensors with one wave-

length spacing, and the associated ambiguity is treated using the algorithm proposed in

section 3.1.

In CSDE simulations, the data are synthesized from two directional sources, and in

most cases the point-based CSDE (CSDE (1)) is used with all individual estimates aver-

aged for the given samples. For highly temporally correlated or coherent signals, a covari-

ance-based CSDE (CSDE (2)) is applied.

The ESPRIT algorithm employed is the TLS ESPRIT (ESPRIT (1)). One or two direc-

tional signals are assumed. In step 5), a singular value decomposition (SVD) is computed

instead of an eigendecomposition. Simulations with SVD alternative in step 2) show a ten-

dency to biased estimates in low SNR, and thus are not presented. A modified ESPRIT

(ESPRIT (2)) ignoring the effect of noise is also tested. In this modified version, at step 2),

a regular eigendecomposition of Azz is implemented instead of the generalized eigende-

composition of { izz, n,, }, and thus at step 4), the multiplication factor, 1, , is not neces-

sary.



Simulations are all performed on a SUN SPARC 10 workstation, and the Matlab pack-

age is used to perform the actual computations.

First, we consider the situations with just one directional signal, for which DPE and

ESPRIT are applicable. The source direction is assumed to be at 50, 40, 60 and 750,

respectively. The results for this case are presented in Fig. 4.1 through 4.4. The sample

means and standard deviations of the DOA estimates are presented in Table 4.1. As

expected, the averaged DPE has approximately half of the estimate variance by the tradi-

tional DPE, while, that the vernier DPE performs as well as the averaged DPE is a little bit

surprising, which gives vernier technique a few more credits if a pair of sensors with a

larger spacing is used with the ambiguity resolved. The results also indicate that the per-

formance similarity between the averaged DPE (or vernier DPE) and ESPRIT at mediate

to high SNR. At low SNR, ESPRIT shows better performance in the sense of estimate sta-

tistics. As 0 increases, the performances of all these methods degrade, which are further

worse considering the lower SNR at larger 0 in a real environment.

150
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SNR = 10 dB
Source direction: 50  Averaged DPE

100 64 points/trial (Vertical line:
512 trials True Source)
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Figure 4.1: Histogram of DPE and ESPRIT simulation results for a
single directional source (1)
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Figure 4.2: Histogram of DPE and ESPRIT simulation results for a
single directional source (2)
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Figure 4.3: Histogram of DPE and ESPRIT simulation results for a
single directional source (3)
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Figure 4.4: DPE and ESPRIT simulation results for a single direc-
tional source: mean and standard deviation v.s. SNR

Table 4.1: DPE and ESPRIT simulation results for a single directional source at SNR
= 10dB

Source DOA Estimates
Estimator

0(0 = 50) 0(0 = 400) 0(0 = 750)

Traditional DPE 4.990 + 0.310 40.000 ± 0.410 75.010+ 1.190

Averaged DPE 5.000 + 0.160 40.000 ± 0.210 75.030 ± 0.600

Vernier DPE 5.000 + 0.160 40.000 ± 0.210 75.000 ± 0.590

ESPRIT 4.990 + 0.170 40.000 ± 0.190 75.020 + 0.610

The results with two directional sources are also investigated, for which ESPRIT and

CSDE are applicable. The SNR and angular resolution issues are addressed with two

equal-power sources. The results are given in Fig. 4.5 through 4.10 and Table 4.2 and 4.3.

ESPRIT (1), ESPRIT (2), and CSDE (1) are tested. Note here, a simple angle-ordering
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scheme is used. The larger of the estimated DOA's is chosen as the larger of the true

DOA's. So does the smaller. This is reasonable for large SNR and source separation. The

results indicate that the performance of DOA estimation is the function of SNR for all

methods. At SNR=5dB, two sources at 400 and 500 can still be resolved using both

ESPRIT (1) and ESPRIT (2), while for CSDE (1), a SNR=lOdB is needed, and the esti-

mate bias is still obvious. The estimate performance also depends on the angular separa-

tion between two sources. Using ESPRIT algorithms, two sources with angular separation

of 40 in the direction around 500 can be resolved at SNR=20dB, while for CSDE (1), the

resolvable angular separation is about 5 - 100 at the same SNR. For all the situations here,

ESPRIT's perform better than CSDE (1). However, the results show no significant differ-

ence between ESPRIT (1) and ESPRIT (2). It should be pointed out that all the estimate

performances are also the function of the source direction (see Fig. 4.11, 4.12, and Table

4.4). As the sources move from the near-normal region to far off-normal region, the

ESPRIT estimate bias and standard deviation become larger, while CSDE estimate is bet-

ter in the intermediate region.

1

0.9 + SNR=5dB

0.8

0.7

0.6

0.5

0.4
0.4 0 5 0.6 0.7 0.8 0.9

S 08

. SNR=20dB
0.75

0.7

0.65

0.6
0.6 0.65 0.7 0.75 0.8

1
SNR=lOdB

0.9 +

0.8

0.7

0.6

0.5
0 4 0.5 0.6 0.7 0.8 0.E

0.8

0.75 SNR=30dB

07

0.65

nfi

O

True Sources

Source 1

Source 2

Source 1 direction:
400

Source 2 direction:
500

64 points/trial
512 trials

0.6 0.65 0.7 0 75 0.8

cos(8)

Figure 4.5: ESPRIT (1) simulation results for two directional
sources: estimated DOA distribution v.s. SNR



S ++ SNR=5dB

0.8

0.7

06

0.5

04
02 0.4 06 08 1

0.6

O

True Sources

Source 1

Source 2

SNR= 10dB
09

0.8

0.7

06

05
05 0.6 07 0.8 0.!

08

SNR=30dB
75

.7

65

00
065 07 075 08

cos(0)

Figure 4.6: ESPRIT (2) simulation results for two directional
sources: estimated DOA distribution v.s. SNR

09 SNR= 10dB

0.8

0.7

0.6

05

0.4
02 0.4 0.6 08 1

0.9

SNR=20dB
0.8

0.7

oo " 0.65

00
0.5 06 07 0.8 0.9 06 0.65 0.7 0.75 0.8

O

True Sources

Source 1
+++

Source 2

Source 1 direction:
400

Source 2 direction:
500

64 points/trial
512 trials

cos(0)

Figure 4.7: CSDE (1) simulation results for two directional
sources: estimated DOA distribution v.s. SNR

Source 1 direction:
400

Source 2 direction:
500

64 points/trial
512 trials

08

0.75 SNR=30dB



0.9 (460,500)

0.8

0.7

0.6
0.5 0.6 0.7 0.8 0.9

0.8

0.75 * (380,500)

0.7

065

06

0.55
06 0 65 0.7 0 75 0.8 0.85

0.75

0.65

0.6
0.6 0 65 07 0.75 0.8

0.8 (340o,500)

0.7

0.6

0.5
0.6 0.65 0.7 0 75 0.8 0.85

O

True Sources

Source 1

Source 2

Source directions:

(1 ,02)

SNR=20dB
64 points/trial
512 trials

cos(0)

Figure 4.8: ESPRIT (1) simulation results for two directional
sources: estimated DOA distribution v.s. angular separation

0.9-

0.85

0.8

0.75

0.7

05 06 07 08 0!

.8

5 - (380,500)

.7

35

.6

js . .
0.6 0.65 0.7 0 75

0.8 +(420,500)

)75

07

).65.

06
0.55 06 065 07 0.75 0.8

o.8- (340,500)

0.7

06

0.5
0.6 0.65 07 0.75 08 0.85

O

True Sources

Source 1

Source 2

Source directions:
(01,02)

SNR=20dB
64 points/trial
512 trials

cos(0)

Figure 4.9: ESPRIT (2) simulation results for two directional
sources: estimated DOA distribution v.s. angular separation

(420,500)

(460,500)

U0

0.5



vV

0.8 (450,500)

0.7

0.6

0.5
0.5 06 0.7 08 0.

0.8

0.75 (350,500)
0.7

065

0.6

0.55

0.5

n .C

).75 (400,500)

07

65

0.6

F51
9 0 6

0

0 65 07 0.75 0.8 0.85

0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 09 1

O
True Sources

Source 1

Source 2

Source directions:

(01,02)

SNR=20dB
64 points/trial
512 trials

cos(0)

Figure 4.10: CSDE (1) simulation results for two directional
sources: estimated DOA distribution v.s. angular separation

+ -~ CSDE (1) 0

True Sources

0.95 0 96 0.97 0.98 0.99 1 Source 1
04

03 II ESPRIT (1)
02-

01

0
0 96 0.965 0 97 0975 098 0985 0 99 0.995 1 1005

u4

03

02

0.1

0
0.96 0.965 0.97

ESPRIT (2)

Source 2

Source 1 direction:
50

Source 2 direction:
150

SNR = 20dB
64 points/trial

0.975 0.98 0.985 0.99 0995 1 1.005 512 trials

cos(0)

Figure 4.11: Simulation results for two directional sources: esti-
mated DOA distribution at near-normal region

8 + ++ (300,500)

6

4

0



0.2 0.3 0.4 05 06 0.7 0.8

+ H I I

ESPRIT (1)
I

0.1 0.15 0.2 025 0.3 0.35 0.4 0.45 0.5 0.55

ESPRIT (2)

, , i i i i*

0 15 0.2 0.25 0.3 0 35 0.4 0.45 05 0.55

O
True Sources

Source 1

0.5

0-

-0.5

-1
0.1

0.85 L R

cos(6)

Figure 4.12: Simulation results for two directional sources: esti-
mated DOA distribution at far off-normal region

Table 4.2: ESPRIT and CSDE simulation results for two directional sources: DOA
estimates v.s. SNR

Source DOA Estimates (400, 500 )
Estimator

SNR=5dB SNR= 1OdB SNR= 15dB SNR=20dB SNR=30dB

ESPRIT (1) 39.820 ± 3.120 39.830 ± 1.840 40.010 ± 0.600 40.000 ± 0.200

50.900 ± 4.030 50.310 + 2.160 50.000 ± 0.720 50.010 ± 0.220

ESPRIT (2) 39.510 ±3.180 39.830 1.780 39.980+0.610 40.000 0.190

50.750 ± 4.030 50.200 ± 2.140 50.000 ± 0.730 49.990 ± 0.210

CSDE (1) 38.760 4.200 39.110 2.400 39.510 1.460 39.840 0.760

48.530 ± 1.560 49.420 ± 1.360 49.730 ± 1.060 49.890 ± 0 .620

Source 2

Source 1 direction:
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Source 2 direction:
700

SNR = 20dB
64 points/trial
512 trials
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Table 4.3: ESPRIT and CSDE simulation results for two directional sources: DOA
estimates v.s. angular separation

Estimator Source DOA Estimates (SNR=20dB)

(460, 500) (420, 500) (380 , 500) (340 , 500)

ESPRIT (1) 45.840 + 1.520 42.020 ± 0.740 38.000 + 0.470 33.990 + 0.340

50.340 ± 1.760 50.100 ± 0.880 49.980 ± 0 .560 49.960 ± 0 .420

ESPRIT (2) 45.800 ± 1.560 42.030 + 0.810 38.000 ± 0.460 33.990 + 0.310

50.380 ± 1.720 50.020 ± 0.870 49.940 ± 0.580 50.000 ± 0.420

(450, 500) (400, 500) (350, 500) (300, 500)

CSDE (1) 42.980+2.980 39.430 1.510 34.910 1.210 30.030 1.100

50.700 ± 0.970 49.750 ± 1.030 49.230 0.930 49.180 ± 1.110

Table 4.4: ESPRIT and CSDE simulation results for two directional sources: DOA
estimates v.s. source direction

Source DOA Estimates

Estimator (SNR=20dB)

(50, 150 ) (400 , 500) (600 , 700)

ESPRIT (1) 4.980 f 0.320 40.010 + 0.600 60.070 + 1.490

15.110 0.310 50.000 ±0.720 70.260 ± 2.410

ESPRIT (2) 4.990 + 0.330 39.980o + 0.610 60.090 ± 1.480

15.000 ± 0.330 50.000 ± 0.730 70.170 ± 2.320

CSDE (1) 4.220 ± 0.820 39.510 ± 1.460 63.400 ± 8.200

15.630 0.810 49.730 ± 1.060 65.420 ± 1.220

The amplitude estimate is investigated using both ESPRIT and CSDE. The results are

shown in Fig. 4.13 through 4.18. Note, the ESPRIT solution is the estimate of source

amplitude within a scalar of constant. Hence, we can observe the displacement between

the true amplitude and ESPRIT estimate. However, the shape of the source amplitude is

well recovered. The scalar factor must be determined by calibrating at least one sensor. On

the other hand, the CSDE solution is the exact amplitude estimate. The example estimate



standard deviation is given in Table 4.5. It is not strange that the performance of the ampli-

tude estimation depends on that of the DOA estimation, and thus the SNR available. As

shown in simulations, for SNR= 10 - 20dB, the amplitude estimate is quite good as long as

the DOA estimate is accurate.
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Figure 4.13: ESPRIT (1) simulation results for two directional
sources: amplitude estimate example at SNR=20dB
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Table 4.5: CSDE simulation results for two directional sources: amplitude estimate
examples

Standard Deviations for
Two Source Amplitude

Estimator Estimates

SNR=lOdB SNR=20dB

CSDE (1) 0.7734 0.4051

0.8717 0.3575

In the above simulations, we assume a statistical independent signal model, in which

the temporal correlation, or the coherence between two directional sources, can be

ignored. Now, we will consider the coherent and temporally correlated signal models, and

the covariance-based CSDE (CSDE (2)) is tested together with ESPRIT. First, sensitivity

to temporal correlation is investigated. The results are shown in Fig. 4.19 through 4.21.

The sample mean and standard deviation are given in Table 4.6. The averaged correlation

coefficient, C,,, for any time lag within the sample data length is chosen as 0.5, 0.85, and

0.97, respectively. The results indicate that, though its performance decreases a little bit,

ESPRIT is quite robust to the signal correlation except for very highly (close to 1.0) corre-

lated model. On the contrary, for CSDE (2), a fully temporally correlated signal model is

preferred.
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temporally correlated signal model with C,, =0.5
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Table 4.6: ESPRIT and CSDE simulation results for two directional sources:
temporally correlated signal model

Source DOA Estimates

Estimator (400, 500, SNR=20dB)

Cav =0.5 Cav =0.85 Cav =0.97

CSDE (2) / 37.480 ± 13.430 39.180 + 3.730

51.540 ± 10.490 52.020 + 6.640 51.910 ± 5.650

ESPRIT (1) 39.990 + 1.520 39.940 2.96 /

50.020 + 1.900 50.120 + 3.930 51.200 + 9.320

ESPRIT (2) 39.910 + 1.550 39.530 ± 6.060 /

50.100 ± 1.950 50.260 ± 4.710 48.320 + 8.010

In reality, 100-percent correlated signals in time domain seldom occur, if not impossi-

ble. A much more meaningful model is the coherent signals model, which is investigated

here. The simulation results are shown in Fig. 4.22 through 4.24. The sample mean and

standard deviation are given in table 4.7. The degree of coherent, Cd , between two direc-

tional sources is chosen as 0.68, 0.86, and 0.98, respectively. Though ESPRIT is still not

very sensitive to the coherent signal model except at highly coherent signals with degree

of coherent larger than -0.95, CSDE (2) shows much better performance than ESPRIT

even at degree of coherent 0.70. This suggests the coherent signal be the best model for the

covariance-based CSDE method.

The simulation for a real bathymetric sidescan sonar is implemented. The statistical

signal model is the same as previous simulations for non-temporally-correlated, non-

coherent signals. Two source directions are assumed to change continuously from 100 to

600 and from 200 to 700, respectively, with a constant angular separation of 100 between

them. Note, in a real system, the signal strength decreases as range increases, while the

noise level at the receiver is almost a constant, independent of the signal range. Thus, the

SNR decreases as range increases. Here, the SNR is assumed to change continuously from

40dB at near-normal region to 10dB at far off-normal region. All the system parameters

are consistent with the sonar being developed at WHOI. For a sonar system 50m above the



flat bottom, the chosen angular sector corresponds to the signal range of 60 - 200m. Both

ESPRIT and point-based CSDE (CSDE (1)) are applied. The results are shown in Fig.

4.25 through 4.27. The standard deviations from the true value for each source DOA esti-

mate are given in Table 4.8. Except at far off-normal region, where CSDE (1) produces

some biased estimates for one of the sources, all the methods present a good estimate for

the source DOA's. At far off-normal region, the performance degradation can be expected,

because the SNR's there are lower, and the algorithms perform worse at that region. The

simulations here show that these algorithms has the capability to trace two time-varying

source DOA's with a small angular separation between them for a wide angular region.

Finally, let's look at some real data from two-row bathymetric sidescan sonars. Fig.

4.28 shows an example of the recorded real received data at each of two rows. The esti-

mated averaged SNR's at row 1 and row 2 are about 12.9dB and 10.2dB, respectively, and

the noise correlation between two rows is about 0.12. The complex data can be obtained

by using the Hilbert transform. Traditional DPE and ESPRIT for two-row structure are

applied to the bottom echo DOA and amplitude estimate. Note, in this configuration, both

ESPRIT (1) and ESPRIT (2) are equivalent. The covariance estimation is obtained at every

data block with 64 samples. The results are shown in Fig. 4.29. Because the data were col-

lected from a relatively flat bottom, we can observe an approximately linear source DOA

relation with the increasing range. The ESPRIT-based approach achieves exactly the same

performance for echo DOA estimates as the traditional DPE. Moreover, the amplitude

estimate is obtained by the ESPRIT-based approach as well. Because the traditional DPE

has been widely used in current bathymetric sidescan sonar techniques, the results here

indicate a great application potential using the ESPRIT-based approach.
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Table 4.7: ESPRIT and CSDE simulation results for two directional sources:
coherent signal model

Source DOA Estimate

Estimator (400, 500, SNR=20dB)

Cd = 0.68 Cd = 0.86 Cd = 0.98

CSDE (2) 40.050 ± 0.920 39.970 ± 0.620 40.020 ± 0.660

50.140 ± 1.600 50.020 ±0.710 50.030 ± 0.570

ESPRIT (1) 40.070 ± 0.900 40.030 f 1.450 /

50.070 ± 1.200 50.100 ± 1.600 51.180 f 6.600

ESPRIT (2) 40.060 ± 0.900 39.980+ ±1.460 /

50.090 ± 1.210 50.140 ± 1.620 51.110 7.550
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Table 4.8: ESPRIT and CSDE simulation results for two time-varying directional
sources with time-varying SNR's

Estimator CSDE (1) ESPRIT (1) ESPRIT (2)

Source DOA
estimates: 12.270 2.990 1.750 2.070 1.830 2.080

Standard
deviation

0 20

40dB
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Chapter 5

Discussions and Conclusions

5.1 Discussions for Real System Application

It is well known that the computation load and the sensitivity to signal and noise field are

the two key factors, which make it difficult to use a high-resolution adaptive DOA estima-

tion method in a real commercial sonar system. In this section, these two issues are dis-

cussed simply.

First, the computation loads are evaluated for ESPRIT and CSDE, which are widely

tested in Chapter 4. Each estimate is obtained by using 64 data samples, and the sensor

number is assumed to be three. Obviously, a significant computational effort is expended

in forming the measurement covariance matrix, which requires on the order of

64 x 32 = 576 complex operations. In ESPRIT (1), eigendecompositions of three matrices

with the sizes of 4 x 4, 4 x 4 and 2 x 2, respectively, are computed. Because an eigende-

composition of a m x m complex matrix requires on the order of 10m 3 complex operations,

the total computation load for eigendecompositions is on the order of 1360 complex oper-

ations. (It can be shown that the computation requirement is the same order for both eigen-

decomposition and SVD if the covariance matrix forming is included and only singular

values and left singular vector are computed [39].) Besides, to reduce the generalized

eigendecomposition to the standard eigendecomposition, a Mahalanobis transformation is

implemented, which needs 16 x 7 = 112 complex operations. To obtain the signal subspace

estimate from the first eigendecomposition, 8 x 7 = 56 complex operations are needed,

and to estimate the rotation operator ', about 4 x 3 + 7 = 19 complex operations are

needed. Therefore, the computation load for DOA estimation is on the order of 2123 com-

plex operations. If a modified ESPRIT (ESPRIT (2)) is used with the noise covariance

ignored, this number is on the order of 1955 . Furthermore, the amplitude estimate includes

the weights computation, which needs 78 complex operations, and the output computa-

tion, which needs 128 x 7 = 896 complex operations. Finally, accounting for the eigen-

value ordering operation and memory operation, the total computation load is on the order

of 3300 complex operations for ESPRIT (1), and 3100 for ESPRIT (2). Assuming a sam-



pling rate of 48KHz, the number of the complex operations per second is on the order of

2.475M for ESPRIT (1), and 2.325M for ESPRIT (2).

A similar analysis can be applied to CSDE. Actually, the covariance-based CSDE is

most computationally efficient, whose total computation load per second is on the order of

750K complex operations, while the point-based CSDE requires more computations,

which are on the order of 2M complex operations per second.

Note, in average, a complex operation (multiply or add/subtract) requires four real

operations. Assuming floating-point operation, the DSP system must be able to implement

10M such operations per second, which is not a critical requirement for a modern DSP

chip. For example, TMS320C30 produced by Texas Instruments has the capability of

33.3M FLOPS (floating-point operations per second). Though some other facts may

increase (e.g., other input/output, procedure management tasks) or decrease (e.g., parallel

instruction, matrix-orient instruction) the computation load, it is reasonable to declaim

that the computation load is no longer a critical issue in a real bathymetric sidescan sonar

system realization. This is due to a relatively simple array configuration and also the sig-

nificant improvement on computational efficiency by ESPRIT over MUSIC and some

other high-resolution adaptive methods.

Second, the real data imperfection should be taken into account because it will affect

the performance of the DOA and amplitude estimate by varying degrees. In general, most

adaptive algorithms require a known noise correlation estimate, which can be obtained

either by real measuring or by theoretically modeling. If a wrong model is used, the mis-

matching will cause the performance degradation, even totally failure operation. In

ESPRIT, a noise correlation estimate is also needed. However, in the simulations in chap-

ter 4, we have observed no significant difference between the standard ESPRIT and the

modified ESPRIT, which doesn't use the noise correlation information. This is not strange

because in the context of bathymetric sidescan sonar, only several sensors are used, and

the optimum array gain is ten times the logarithm of the sensor number. Consequently,

though a significant improvement in SNR won't happen, the noise model mismatching is

not a serious problem here.



However, some other data imperfections may be important. As we have discussed

before, the degree of temporal correlation for one source, spatial correlation among sen-

sors for one source, coherence between different sources, affect more or less the estimate

performance. The Gaussian assumption of the bottom scattering doesn't hold as the reso-

lution increases. Furthermore, the strongly dispersive medium makes the plane wave

assumption invalid, and for a complicated bottom structure, the elementary scattering sig-

nal loses its similarity with the impinging signal. In the fishery survey application, the rap-

idly moving of the fish schools causes the Doppler effects no longer ignorable.

Besides, the system design imperfections, such as non-matching beampatterns, per-

turbed sensor gain and phase response, and sensor position error, should be considered. In

system implementation, an ill-conditioning matrix operation should also be avoided.

It is impossible to deal with all these imperfections well. However, if some informa-

tions about them are available, a basis can be established to evaluate quantitatively the per-

formance obtained by the system algorithms. For example, as we know, the performance

of all the proposed algorithms depends strongly on the input SNR, so a better estimate can

be expected at the high SNR region, and vice versa. Therefore, the measurement data

quality is indicated by an estimated SNR map associated with a bathymetric sidescan out-

put. Also, as we have discussed in section 3.3, the eigendecomposition of the measure-

ment covariance matrix describes the signal field structure to some extent.

5.2 Conclusions and Future Works
In the real application with bathymetric sidescan sonar, the multipath reflection and other

directional interferences are the key limiting factors for a better performance. A new

scheme to deal with these interferences using a multiple-row bathymetric sidescan sonar is

proposed. Instead of smoothing the measurements over some time or angle intervals as

previously widely investigated, we resolve the interferences from the signals of interests.

The proposed scheme is supported by the analysis on the interference field associated with

bathymetric sidescan sonar, which shows that, for those regions with necessary signal-to-

noise ratio for reliable bathymetry measurements, a model with only one to three dominat-

ing directional sources (including the interferences) at the same instant is a reasonable

approximation to the wave field.



A few approaches are studied or developed to obtain the signal DOA and amplitude

estimate, and because the real three or more-row sonar data are not available at the time of

this writing, these approaches are tested using the simulation data based on both the statis-

tical and coherent signal models. For one directional source situation, the traditional dif-

ferential phase estimate (DPE), two of its modified versions, and ESPRIT are investigated.

The results show that, at mediate to high SNR, the averaged DPE and vernier DPE per-

form as well as ESPRIT. However, at lower SNR, ESPRIT shows better performance in

the sense of estimate statistics, possibly because it exploits the underlying noise correla-

tion knowledge.

For the cases with two directional sources, a correlated signal direction estimate

(CSDE) for three-row systems is proposed, and compared with the ESPRIT-based

approaches using different data models. The simulation results show ESPRIT-based

approaches are quite robust at the angular separation of 2 100 between two sources and at

the signal-to-noise ratio above 10dB except for highly coherent or temporally correlated

signals, for which the covariance-based CSDE works very well. Besides, both ESPRIT

and CSDE can give the amplitude estimate for each directional source on the basis of the

DOA estimate.

Basically, ESPRIT algorithm exploits the phase information embedded in the signal

covariance estimate as DPE does. Therefore, for a two-row system and one directional

source, both ESPRIT and DPE are equivalent. However, because ESPRIT can be applied

to a multiple-row system, more directional sources may be resolved. On the other hand,

CSDE depends on not only the received phase information but also the exact amplitude

measurement at each row, thus limiting its performance in the non-coherent, non-tempo-

rally-correlated signal field. However, a point-based CSDE doesn't assume any signal or

noise model and can always be used, though its performance depends. Furthermore,

CSDE is most computationally efficient.

Under the array configuration with only three or a few more sensors, a high-resolution

adaptive method such as ESPRIT cannot fully show its advantages in DOA and amplitude

estimation. On the other hand, the sensitivity to signal and noise field inherent to such a

method is reduced. The simulation results and real-data test using two-row sonar data, as

well as the discussions on the computation load and data imperfection, have shown that



ESPRIT has a great potential to be used in a real multiple-row bathymetric sidescan sonar

system.

There is certainly more research to be done into the practical aspects of the above

algorithms. First, all these algorithms need to be tested using the real three or more-row

sonar data. Second, the imperfections in the real data should be further investigated. Based

on the real data test and analysis results, the optimum row number should be able to be

determined. With the capability of simultaneously resolving two or more directional

sources, the new multiple-row bathymetric sidescan sonar should work better for a wider

variety of practical situations, particularly in shallow water; this improvement can be

obtained without significant increase of the system cost.

So far, our discussions concentrate on the signal DOA and amplitude estimation. A

logic step for further data processing is to interpret and smooth these estimates. Therefore,

by combining the smoothed estimates with other sensor data, the measurements of the bot-

tom bathymetry, backscattering properties and target imagery can be obtained.
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