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Abstract

Recent increases in limit spans of cable-stayed bridges have highlighted the need for
new concepts in analysis and design. The increased flexibility requires more theo-
retical studies on non-linear behavior and on dynamic analysis. Design also is more
oriented to a performance-based approach: motion control is more important than
strength analysis.

My main objective is to define what are the parameters to control in order to
design structures that meet the performance requirements in terms of displacements,
velocities and accelerations at particular points. My methodology is based on the
definition of simplified methods for performance based design of cable-stayed bridges.
The results of these methods, implemented on simulation models, are verified through
comparison with the results of detailed finite element analyses. My approach is ex-
tended both to static and dynamic analysis.

The results are compared to those obtained by more traditional methods and show
the effectiveness of this approach. The conclusion is that it is possible to rely on these
simplified methods especially for conceptual design of cable-stayed bridges. Further
evolutions are foreseen in the field of aeroelasticity and active control theories applied
to long span civil structures.

Thesis Supervisor: Jerome J. Connor
Title: Professor
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Chapter 1

Introduction

Cable-stayed bridges are becoming very popular all over the world. Newer cable-

stayed bridges have reached spans very close to 900 m (see Table 1.1);1 and future

evolution in the design will lead to further increases of the limit span. Although

the strength of new materials allows this progress, the problems in the range of

actual spans, and even more in superior spans come from the overall flexibility of the

structural system. In fact, the span length increase results in a considerable increase

in the displacements and the accelerations of the bridge under dead and live loads

especially for the dynamic effects of traffic, earthquakes, and wind actions. As a

consequence, the optimal design of cable-stayed bridges needs to be based more on

the control of deflections, velocity, and accelerations than on the control of material

resistance and strength.

This type of structures requires non-linear analysis, not only for dynamic actions

but also for static loads. In fact, the cable itself has a non-linear behavior, as its

axial stiffness is a function of the sag and of the tension [7]. Another non-linear effect

comes from the behavior of bending elements subject to axial load. The typical beam

column model can be applied both to the girder and the tower, as in both cases the

stiffness depends on the level of compression of the member [8]. Second order effects

are also related to the material non linearity such as the post-cracking behavior of

1From: Karoumi Raid, 'Dynamic Response of Cable-Stayed Bridges Subjected to Moving Vehi-
cles', Licentiate Thesis, Dept. of Struct. Eng., Royal Institute of Technology.



concrete elements [19] or the post-yielding behavior of steel members. Many studies

have been developed for the non-linear modeling of cable-stayed bridges both for the

vertical loads [9] and for the dynamics actions of wind and earthquakes [24], [13], [14].

The main purpose of my research is to introduce motion based design [3] as an

approach to cable-stayed bridge structural analysis and design. The objective of this

approach is to define the values of the design parameters which minimize the displace-

ments, velocities and accelerations of the system, in order to meet the serviceability

requirements under the effects of static and dynamic loading. To fulfill this objective,

I focus on the performance of sample models of three span cable-stayed bridges; the

construction of these models is based both on the state of the art literature and on de-

sign patterns observed in existing projects. Through a motion based design approach

I define the optimal stiffness and damping distribution throughout the system, the

location and the dimension of motion control devices and finally the optimal overall

structural arrangement of the system.

The conceptual design for vertical loads is based on a preliminary analysis of a

simple model of a beam on an elastic foundation with constant stiffness [11]. This is

the simplest way of representing the central span of a three span cable-stayed bridge.

The purpose is to find an optimal distribution of the cables under the effect of the

dead load. The effect of the cables' sag on the stiffness is introduced through the use

of a tangent stiffness modulus, which, therefore, accounts for the non-linear behavior

of the cables.

The main characteristics of the wind actions and their interactions with the bridge

structure are briefly described in the fourth chapter, as a basis for the formulation of

computational dynamic analysis. The objective of computational static and dynamic

analyses for vertical and lateral load is to assess how effective are of passive and active

damping or base isolation devices in limiting the dynamic response of the system to

the required levels.

The areas of the cables that result from the simplified design approach are imple-

mented in a three dimensional finite element model in ADINA [4]. I use this model

to extract the fundamental modes and to perform a dynamic analysis of the forced



response due to wind actions. The ratio between the first mode period, which is a

lateral mode, and the second lateral mode is around 2.3. The effectiveness of Tuned

Mass Damper in the control of wind excitation is tested using the model.

The final chapter outlines the basics of an active system for the control of the

aerodynamic excitation. It seems that this field will see a lot of improvement in the

next year leading long-span bridge structures well beyond what are considered the

actual limits.



Table 1.1: Major cable-stayed bridges in the world

Bridge name Country Center span (m) Year of completion Girder materialT
Tatara

Pont de Normandie
Yangpu
Xupu

Meiko Chuo
Skarnsund

Tsurumi Tsubasa
Oresund
Ikuchi

Higashi Kobe
Ting Kau

Annacis Island
Yokohama Bay
Second Hooghly
Second Severn

Dartford
Rama IX

Chang Jiang Second
Barrios de Luna

Tonglin Cangjiang
Kap Shui Mun

Helgeland
Nanpu

Hitsushijima
Iwagurujima

Yuanyang Han Jiang
Meiko-Nishi Ohashi

St. Nazarine
Elorn

Vigo-Rande
Dame Point

Baytown
Luling, Mississippi
Flehe, Duesseldorf

Tjorn (new)
Sunshine Skyway

Yamatogawa
Neuenkamp
Tempozan

Glebe Island
ALRT Fraser
West Gate,

Talmadge Memorial
Rio Parana

Karnali
Kohlbrand
Guadiana

Kniebruecke
Brotonne
Mezcala

Japan
France
China
China
Japan

Norway
Japan

Sweden
Japan
Japan

Hong Kong
Canada
Japan
India

England
England
Thailand

China
Spain
China

Hong Kong
Norway
China
Japan
Japan
China
Japan
France
France
Spain
USA
USA
USA

Germany
Sweden
USA
Japan

Germany
Japan

Australia
Canada

Australia
USA

Argentina
Nepal

Germany
Portugal
Germany
France
Mexico

890
856
602
590
590
530
510
490
490
485
475
465
460
457
456
450
450
444
440
432
430
425
423
420
420
414
405
404
400
400
396
381
372
368
366
366
355
350
350
345
340
336
335
330
325
325
324
320
320
311

1999
1994
1993
1996
1997
1991
1995
1999
1991
1994
1997
1986
1989
1992
1996
1991
1987
1995
1983
1995
1997
1991
1991
1988
1988
1993
1986
1975
1994
1978
1989
1995
1982
1979
1981
1987
1982
1970
1990
1990
1985
1974
1990
1978
1993
1974
1991
1969
1977
1993

Steel
Steel

Composite
Composite

Steel
Concrete

Steel
Steel
Steel
Steel
Steel

Composite
Steel

Composite
Composite
Composite

Steel
Concrete
Concrete
Concrete

Composite
Concrete

Composite
Steel
Steel

Concrete
Steel
Steel

Concrete
Steel

Concrete
Composite

Steel
Steel
Steel

Concrete
Steel
Steel
Steel

Concrete
Concrete

Steel
Concrete

Steel
Composite

Steel
Concrete

Steel
Concrete

Composite



Chapter 2

Simplified model for vertical loads

The overall behavior of cable-stayed bridges is highly complex; it depends on the

interaction among different structural elements, the girder, the towers and the cables.

The girder is supported by several inclined steel cables connected to one or more

towers that transfer all the live and dead load action down to the soil. The cables

carry only axial tension force, while the towers and the girder can resist bending as

well as axial compression.

The behavior of an inclined cable is non-linear since the sag of the cable due to

the dead load effects the internal tension. This is a source of non-linear behavior of

the whole system. Similarly, the effect of axial deformation on the bending stiffness of

beam-column elements introduces additional geometric non-linearity. Other nonlinear

effects on the system are introduced by material non-linearity typical both of steel

and reinforced concrete elements.

The main parameters governing the displacements, velocities, accelerations and

the force distribution in a cable-stayed system with respect to vertical loads are:

1. The geometric proportion between the tower height and the girder central span.

2. The number and the configuration of the cables.

3. The type of connection between the towers and the girder.

4. The inertia of the girder and the towers.



The following observations on the relevance of these design characteristics are

derived from parametric and sensitivity studies [15], [22]. It has been proved that the

highest efficiency of the cables system is reached when the ratio between the towers'

height, over the girder, and the central span is between 0.20 and 0.25. This is the

ratio that minimizes the total weight of the cables. This is also the range that most

of the existing bridges respect. Newer bridges have usually a large number of cables;

this helps reducing the deformation and the bending moment of the girder. These

criteria in the design of the tower and the cable setting result in great economical

advantages, particularly for long span bridges.

Regarding the constraints scheme, a rigid connection of the girder to the tower

greatly increases the moment at this joint, without a great benefit for the maximum

moment at the center of the midspan. As a consequence, the choice of a continuous

girder simply supported at the tower results in a more cost efficient design. Further-

more, in many cases this choice is also convenient for earthquake design as it shifts the

natural period of the structure to a range where the seismic action is less significant.

A final remark on the overall setting of three span or multiple span cable-stayed

bridges relates to the construction phase. In fact, most of the existing cable stayed

bridges are symmetrical with respect to the towers and this is particularly advanta-

geous to reduce the bending on the towers during the construction process, when the

girder assembly proceeds by cantilever from the towers.

All of the above consideration will be taken into account when constructing the

model for the simulations that follow. The preliminary analysis will focus on the

optimal dimensioning for vertical loads, these loads on long span bridges are mostly

dead loads.

2.1 Cables

The basic need is for a high-strength elastic material with high Young Modulus and

good resistance to fatigue. In order to carry the heavy loads for a long life-time,

strands are usually preferred to ropes in cable-stayed bridges. There are four different



strand configurations:

1. Helically-wound galvanized strands, The Ultimate Tensile Strength (UTS) is

670MPa.1, and Young Modulus (Eo)is 165, 00OMPa, the pre-stressing limit is

0.55 UTS. The fatigue strength is low.

2. Parallel wire strands, UTS is 1, 800MPa and Young Modulus is 190, 000MPa.

3. Strands of parallel wire cables, UTS is 1, 600MPa and Young Modulus is

200, 0000MPa. Galvanized wire cables' UTS is 1, 570MPa and Young Modulus

is 190, 00OMPa.

4. Locked coil strands, they have several layers of round wires, only the outer layer

may be galvanized. UTS is 1, 500MPa and the Young Modulus is 170, 000MPa,

the pre-stressing limit is .55 UTS.

One of the basic requirements is to limit the pre-stress level in cables. Considering

the great influence of dead loads on the overall loading of the structure, a limitation of

a = 0. 4 au on the cables' tension level under the effect of dead load seems reasonable.

2.2 Cable modeling in cable-stayed bridges

The primary function of the cables is to provide vertical stiffness to the girder. The

simplest model of cable-stayed bridges that can be used for the preliminary design of

cables is a beam on elastic foundation. According to the theory of beams on elastic

foundations of stiffness k [11], the fundamental equation in the case of uniformly

distributed load q is

d4y
El + ky = q (2.1)d 4

11MPa = 106N/m 2=14.245ksi



In the case of a beam simply supported at both edges2 the solution of this equation,

assuming k constant throughout the central span, gives the following expressions for

the deflections, the rotations and the curvature:

q(1 cosh Ax cos Axi + cosh Az/ cos Ax
k cosh Alc + cos Alc

= qA sinh Ax cos Axz + cosh Ax sin Axz - sinh Axz cos Ax - cosh Axi sin Ax (2.3)
k cosh Alc + cosAlc

q sinhAx sin Axz + sinh Axz sin Ax (2

/kX cosh Al, + cos Al,

where l, is the span of the beam, x is the distance from the left edge, xl = lc - x, and

A is defined as:

A = (2.5)

These expressions are the solutions of the fundamental equation (2.1) of an elastic

simply supported beam on elastic springs, when the inertia of the beam I and the

spring stiffness k are constant.

Through these equations it is possible to design cables in such a way that a pre-

scribed value of the vertical stiffness is obtained. For example, if the design require-

ment is to meet a serviceability constraint on the vertical deflection3 of the midpoint

of the central span under a certain load, the required value of k can be calculated

through equation(2.2) where x and xl are both equal to half the total span 1, (see

Figure 2-1). The coefficient a represents the required limit of the ratio between the

span l and the vertical displacement 6.

2A refinement comes from considering the stiffness of the flanking spans as rotational springs at
the edges of the central span.

3 Other constraints may be introduced on the rotations, or curvatures through equations (2.3)and
(2.4).



Figure 2-1: Scheme of the central span

6-= (2.6)

then taking the expression (2.2) of the solution in terms of vertical displacements and

rewriting for y = 6, and x = xt = 1,/2, the following is obtained:

q [1 - 2cosh (Al,/2) cos (Al/2)
lc/a cosh Al, + cos Al,

This equation together with the expression (2.5), which relates A to k, gives the

required value of k when the value of a is given together with the load and the inertia

and modulus of the girder beam.

In the case of a multicable structure this model can give good results. To apply

these equations to a cable-stayed structure the continuous geometric and inertial

characteristics must be expressed in terms of the characteristics of a structure with

a discrete distribution of stiffness. The following expression relates the uniformly



distributed stiffness to the equivalent characteristics concentrated in the cables:

Kn = Axnk (2.8)

As a result, the stiffness Kn of the single cable can be obtained from the value of

uniformly distributed stiffness. The subscript n stands for the nth cable. The length

of influence Axn is defined in the following way:

Xn+l + Xn_1 (2.9)
S,2 (2.9)

The vertical stiffness of the nth cable of the central span can be expressed starting

from its flexibility. It is expressed by superposition of three terms: first the flexibility

of the cables of the central span, secondly the flexibility of the cables of the flanking

spans, and lastly the contribution of the horizontal flexibility of the towers, AH is

the horizontal displacement of the nt h cable at the tower. The complete expression

by superposition is:

Xn Xn f AH T

An = + 2 + (2.10)
EnAnsin29 cos9n  EAlcosntan2n  tan10)

where An is the area of the cross section and En the elastic modulus of the nth cable,

On is the angle between the nth cable and the girder, in which xn is the distance of

the cable anchoring at the girder from the point where girder meets the left tower.

The superscript f indicates that variables are related to the flanking spans

In the following I have considered a three span cable-stayed bridge model, in which

the cables are symmetrically arranged on the sides of the towers and the cross section

of each cable is the same as its symmetrical. Therefore the following relations are

true:

xn = x; An = A; En = E ; n = Of (2.11)

Furthermore the first three cables on the flanking spans are anchored to the piles,



in order to increase the stiffness of the longest cables. It follows that the only hori-

zontal component of these cables at the tower is related to the elastic elongation of

the anchored cables. The general expression for the vertical flexibility of the nth cable

is:

2x AHT
2an + = Ac (2.12)

EnAnsin26nCOS n  tanOn n  n

where A' and A T are respectively the vertical flexibility of the girder's supports

related to the cables and to the tower. The vertical stiffness of the nt h cable can be

expressed by the following:

1 1
K , + (2.13)

An = 0 if the cables are anchored on the flanking span.

Hence, the following formula can be used to express the area of the nth cable as a

function of the stiffness

K, 2x,
A = (2.14)A 1 - KnAT Esin2ncosn (2.14)

The value of the modulus En differs from the Young modulus Eo of the cable

itself. In fact, the influence of the sag on the modulus must be taken into account.

The value of the modulus depends on the cable configuration in a non-linear way.

An increase in the loading leads to a decrease in the sag, as a consequence, the cable

stiffness increases. To synthesize this behavior the tangent stiffness modulus can be

introduced. It is expressed by the Ernst formula [7] that relates the change in stiffness

to the geometry of the cable and its tensile stress:

EoF =(2.15)
En 1 + ' 2xEo/12a (2.15)

where 'y is the specific weight of the cable, and aU is the tensile stress in the cable.

As stated above, a serviceability constraint on the vertical deflection of the mid-



point of the central span under a certain load gives the required value of k in the

solution (2.2) of a beam on elastic foundation. From this required value of k the

stiffness Kn of the single cable can be obtained. Once the required stiffness K. of the

cables is calculated, the area of the cables can be found using the following expression

derived from equations (2.14), (2.15), and (2.8):

Knr 2x, Kn 2 2x 3

n Eo(1 - KnA T ) sin2 n COS n 1 - KA 12F, sin2 ncos A3  (2.16)

Fn is the tensile force on the nt h cable.

This is an equation of third degree in the form a * x 3 - x + b = 0. It can be solved

for real positive values An, the value of the two constants a and b are given by:

Kn (yxn) 2  2xn
1 - KnA T 12Fn sin 2 n cos (2.17)

Kn 2x,
b =2X (2.18)

Eo(1 - KnAT) sin2 On cos O

In this way it is possible to obtain the areas of the cables through a performance

requirement related to deformation and not to strength. In any case these areas must

be tested for strength and resistance of material.

In a design based only on strength requirements, if forces are calculated as the

cables were fixed support, the areas of the cables will be obtained by the following:

F P
An = s - (2.19)

Uall sin COn cault

where c, is a coefficient that limit the level of stress in the cables to an allowable

stress aaul as a part of the ultimate strength.



2.3 Application to the model

To test all of the above considerations, I have first constructed a simple plane model of

a bridge. The model bridge I have analyzed is a three span model with a central span

of 600 m. The choice of this span relates to what was presented in the introduction. In

fact, the actual trend in cable-stayed bridges construction shows that this dimension

represents the upper boundary on the average economically feasible type of bridge.

The objective of my work is to apply the simple approach presented above to step

from conceptual design to more detailed design for a model of a long span bridge.

The dimension of the two flanking spans is 285 m, and is kept very close to half

the central span; this to maintain the structure almost symmetrical with respect to

the tower. The total height of the towers is 180 m (125m over the girder, around 20

percent of the central span). Each tower is fixed to the ground and support 36 cables,

18 per side; the cables are connected to the girder with 15 m spacing one from each

other.

The cables layout is a mix of fan and harp pattern, as the cables are anchored

in groups of three on the tower, with 5 m spacing. The lateral girders are pinned to

the ground by hinges with a vertical constraint, these connections are distributed on

the first three cables on the flanking span. The model is shown in Figure 2-2. Axial

compression in the beams are neglected when forming the stiffness matrix and out of

plane displacements are not allowed.

As explained in the last paragraph, the first objective is to dimension the cables

in such a way that they can provide the beam with an uniform vertical stiffness.

This stiffness based design is compared with a design based on a pure strength design

criterion in which the area of each cable is dimensioned to support a longitudinal

portion of the girder at a fixed level of tension.

The type of cables adopted in the conceptual design are be parallel wire strands

with a Ultimate Tensile strength of 1, 600MPa and a Young modulus of 190, 00OMPa.

It is assumed that the initial tension in the cables, should not exceed 40 percent of

the UTS under the effect of the dead load (i.e.; 640MPa) this value agrees with that
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Figure 2-2: Bridge Plane Model
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reported in recent literature [12], for a steel with an ultimate strength of 1, 600MPa.

The stiffness of the cables is directly related to the stress level; it decreases as the

sag of the cable increases in the deformed shape due to its weight. A pseudo-linear

analysis can be developed using a modified value of the Young modulus expressed as

a function of the cable length and the level of tension according to (2.15), which can

be used in a step by step analysis with an evaluation of tension in the different steps.

Even in linear elastic approximation the stiffness approach is oriented to conceptu-

ally design a structure with a determined value of the initial stiffness for the cables, in

which the initial reduced modulus is taken into account. A purely strength approach

will not respond to the requirements on the vertical deflections of the girder.

In the following figures are reported the graphs that describe the distribution of

the area of cables along the central span obtained through the approach described in

the latter paragraph, for specific value of a, q. In particular, a first analysis aimed

to find out the variation of the required vertical stiffness with different value of the

girder inertia.

The design requirement is the limitation of the midspan deflection to 1/300 of the

central span, under a dead load of 100KN/m. In particular, the analysis showed that

a first minimum value of the required vertical stiffness lower than k = 50KN/m2

(cables' stiffness) is related to an extremely low value of the girder inertia (Id =

0.54m 4) see Figure 2-3. A direct proportionality is shown between the girder inertia

and the required vertical stiffness towards a maximum value of k = 57KN/m2 that

corresponds to a relatively high value (I = 18.99m4 ) of the girder inertia. A value of

required cables' vertical stiffness equal to the one obtained for I = 0.54m 4 is obtained

for I = 79.99m 4 . All of these values lead to certain cables' areas, see Figure 2-4, in

these values the reduced modulus is not taken into account.

Vertical displacements and rotations of the girder are plotted in the following

Figures 2-5 and 2-6 for each value of the girder inertia and for half central span. In

this case both displacements and rotations maximum values do not correspond to

the midpoint of the central span, when the minimum inertia of the girder is adopted

(Id = 0.54m 4).
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Figure 2-7: Area of the cables - Minimum girder inertia

The effective areas of cables that provide the required stiffness are determined.

The values of areas obtained using equation (2.13), in which E, = E0, are compared

with the values obtained considering the tangent modulus instead of the Young mod-

ulus. The variation of the values of the areas are reported in Figure 2-7 for the girder

of lower inertia and compared to the area obtained with the strength design criterion,

for c, = 0.4. It can be shown that the latter controls for the cables near the tower

up to 150 m (a quarter of the central span) from the tower. Starting from this point

stiffness design start to control. For the last four cables a correction to the initial

force must be introduced to meet the required stiffness when solving equation (2.16)

with respect to the area of cables.4

It is interesting to notice how the area distribution can be represented by a straight

line in a semilogarithmic scale as shown in Figure 2-8. Figure 2-9 and Figure 2-10

show the initial vertical stiffness provided by the cable to the girder designed through

the proposed conceptual approach.

4in order to obtain the required value of stiffness, as a combination of area and reduced modulus,
the equation is solved by iteration with step increases of the force Fn
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Different performance based design conditions can be derived from the solutions

in terms of rotations or curvature, deriving the value of the required k from equations

(2.3) and (2.4).

To give a more detailed description of the values obtained, I report in Table 2.1 the

areas of cables obtained with the pure strength criterion (Astr), the areas obtained

with the stiffness criteriterion for minimum inertia (Amn), and for maximum inertia

(A"'). These values of the areas include the correction for stiffness decay, obtained

by pre-stressing the cables. D is the horizontal projection of the cable length, H is

the height of the cable-tower joint from the girder, L is the length of the cable. The

cables are numbered from 1 to 18 ideally starting from the tower and moving away

from it for each group of cables. As the model is a plane model and the girder is a

simple beam, in the same way the cables are concentrated in a single one no matter

what is the real transversal configuration.

- - strength design

..... stiffness design

- corrected stiffness
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2.4 Plane finite element model

I have constructed a finite element model in which the values of cables' areas ob-

tained by the above analyses were implemented. As a first step, the three different

approaches to the design of the areas of the cables were compared. In one case the

constant girder inertia of I = 0.54m4 , which is the value of girder inertia that mini-

mize the area of cables, was used. For this value of the girder inertia, I have calculated

the vertical deflections along the central span for an uniformly distributed vertical

load for the arrangements of cables areas obtained through three different design ap-

proaches. In particular, I have considered the areas obtained by strength design, and

by both stiffness and corrected stiffness design.5 .

The vertical deflections are reported in Figure 2-11 in which they are compared

with the graph representing the mathematical solution of the beam on elastic foun-

dation. The deflections of the system designed with a strength-based approach differ

from the ones designed with a stiffness-based design approach. In particular, the

maximum value is more than twice of the stiffness-based design value. By contrast,

the values of the deflections obtained with the stiffness-based approaches are both

very close to the ones calculated for the beam on an elastic foundation.

Other insights come from the normalized graphs of Figure 2-12, in it is easier to

focus on the shape of the deflections along the girder. The figures show that the

normalized deflection of the model in which cables are designed through a stiffness

design that include pre-stress is very close to the one calculated through the solution

of the beam on elastic foundation. In strength-based design the rate of growth of

vertical displacements along the girder is very high. This is an undesirable behavior

for a bridge structure whose serviceability strongly depends on the differential vertical

displacement between adjacent points.

The conclusion is that the stiffness-based approach is reliable for conceptual design

of cable-stayed systems. It gives the opportunity to better control the performance

5In the corrected stiffness design En is implemented as the tangent modulus and includes the
application of pre-stress in the four cables closer to midspan on both sides of the central point



of the system under vertical loads in terms of displacement requirements. The results

obtained for the response of the system through finite element analysis strictly cor-

respond to the those that are obtained using the mathematical formulation based on

the theory of beams on elastic foundations.

In the simplified model used in the stiffness-based design method I have modeled

the central span as hinged at its edge neglecting the effect of the eventual continuity

with the flanking span or with the tower. To assess the influence on the girder's

displacements of the constraints at the beam edges I have used the finite element

model. Figure 2-13 shows that, in the case of low girder inertia, the difference between

the case in which the beam is hinged at its extremes and the case of tower-girder

continuity is minimal and affects only the part of the central span that is closer to

the tower itself. The case of continuity with the flanking span would be in between

these two cases. As a consequence, having considered the beam as simply supported

at its edges has not introduced an error in the stiffness-based design model.

In the following Table 2.2 the modal frequencies of the first ten mode of the plane

model are reported. In particular, the model in which the cables were designed for

strength(Astr) is compared with the model for which the areas of cables were designed

for serviceability(Aser).

In a similar way Table 2.3 reports the first ten modal frequencies of a plane model

with a longitudinal girder inertia of I = 18.99m 4 , which corresponds to the maximum

required vertical stiffness for the cables. The frequencies reported correspond to the

model in which the cables were designed for strength(Astr)and to the model for which

the areas of cables were designed for serviceability(Aser).

The following figures show the shape of the first six modes in a sample case. It

can be noticed that moving towards a design of cables for serviceability constraints,

the model structure shows higher natural frequencies. The stiffness of the model

increases; the difference is more relevant for lower values of the girder's inertia.

This can be better noticed when looking at the following figures (Figure 2-14 and

Figure 2-15) that represent the natural periods of the different modes of vibration of

the models and compare once again the strength design with the stiffness design.
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Deflection under uniformely distributed load - Effects of girder-tower joint
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Figure 2-13: Effects of the girder-tower constraints on the main span deflections
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Figure 2-15: Period for different vertical modes - Maximum inertia

In conclusion, this simple model based on the solution of the beam on elastic

foundation, gives good results when used to design the area of cables in order to

make the structure meet a displacement requirement. This can be obtained through

the solution of equation (2.16) that includes the effects of non linearity of the cables.



Table 2.1: Model Geometry and Areas of Cables

cable D H L Astr, A " Axn "
no. m m m cm2 cm 2 cm 2

30
45
60
75
90
105
120
135
150
165
180
195
210
225
240
255
270
285

95
95
95
100
100
100
105
105
105
110
110
110
115
115
115
120
120
120

100
105
112
125
135
145
159
171
183
198
211
224
239
253
266
282
295
309

36.87
25.93
27.72
29.30
31.53
33.98
35.59
38.18
40.87
42.25
44.95
47.70
48.80
51.50
54.24
55.04
57.71
90.60

36.87
25.93
27.72
29.30
31.53
33.98
35.59
38.18
44.69
51.84
63.35
77.80
89.79
116.81
164.65
179.58
206.94
355.85

36.87
25.93
27.72
29.30
31.53
33.98
35.59
41.51
51.40
59.83
73.78
92.41

110.99
160.94
188.02
205.07
236.31
406.36

Table 2.2: Modal Frequencies - Igirder = 0.54m 4

MODE No. f (Astr)sec- 1 f (Aser)sec-

1 0.201 0.251
2 0.257 0.306
3 0.407 0.468
4 0.472 0.527
5 0.513 0.548
6 0.573 0.605
7 0.657 0.708
8 0.713 0.763
9 0.734 0.764
10 0.800 0.830



Table 2.3: Modal Frequencies - Igirder = 18.99m 4

MODE No. f (Astr)sec- 1 f (Aser)sec-

1 0.279 0.320
2 0.503 0.523
3 0.769 0.783
4 0.855 0.867
5 0.978 0.988
6 1.015 1.029
7 1.117 1.119
8 1.131 1.140
9 1.600 1.604
10 2.191 2.210
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Chapter 3

The spatial models

3.1 Behavior under lateral loads

The model implemented and used in the previous chapter is a plane model based on

the capacity of a cable system to carry vertical loads. Cable systems, when treated as

linear elements are characterized by zero stiffness out of their plane: any combination

of cable forces have its resultant in the cable plane. Therefore in design for lateral

loads of cable-stayed systems, the spatial arrangement of cables with respect to the

girder and the towers is very important.

Flexibility under lateral loads depends on different structural schemes adopted. In

general the contribution to lateral resistance and stability comes from a combination

of the following capacity of the structural elements:

1. lateral bending stiffness of the girder

2. lateral stiffness of the towers

3. assembly of the cable systems

Bridges with single-plane or parallel-plane cables systems can resist lateral loads

in two different ways [10]. The first can be described as a pendulum effect; it is

a second order effect based on the capacity of the system to store potential energy

that can counteract the lateral excitation. This mechanism, which is effective only



in earth-anchored system, gives stability to the system for lateral loads even when

the lateral resistance of the girder is negligible. The second behavior is typical of

self anchored systems in which the girder resists lateral forces through bending; as a

consequence, the motion due to lateral loads consists mostly of a rotation of the girder

around the ideal vertical axis of tower, instead of a rotation of the girder around the

ideal point at the top of the tower.

A different behavior in terms of lateral stiffness comes from a "spatial" arrange-

ment of the cable system, in particular a truss effect can be obtained moving the cable

systems to two or more different planes and taking into account the contribution to

lateral stability of the resultant force due to the tension of at least one of the cable

systems, the other being in compression. The compressed system, to remain stable

must be designed in such a way that compression in the cables under live loads does

not exceed the level of tension related to initial stresses due to dead loads.

Of course the behavior or real systems consists of a mixture of the different pat-

terns briefly illustrated above. In the following section I will investigate some of the

issues related to cable-stayed bridges behavior under lateral loads, with particular

attention to dynamic effects.

3.2 Description of the model

In the first part of my thesis I have constructed a simple model of a cable-stayed

bridge to perform a static analysis: the purpose was to test the model for further more

advanced analyses. I have considered a plane model structure neglecting the out-of-

plane effects, such as torsional effects and lateral bending; furthermore, I have only

considered symmetrical load conditions, without including second order effects. The

towers have been modeled as compression columns neglecting the effect of bending

on the compressive stiffness, the girder itself has been modeled as a beam, in which

bending and compression, do not interact in the definition of the stiffness matrix. As

a consequence, I have not adopted the beam-column model, for the tower as for the

girder, which is needed to check for the instability of the system.



3.2.1 Characteristics of the structural elements

In the following analysis both the tower and the deck are composed of steel elements.

The material is linear elastic, Young modulus is E = 2.05x10sMPa, material density

is 7.85 KN/m3 . The same density has been considered for the steel cables; however,

the Young modulus was reduced to E = 1.9x10 MPa, as it is usually done to take

into account the effect of the wires assembly in the cables [16]. The steel for the tower

and the deck is a grade 50 steel (ultimate strength ault = 350MPa), while the cables'

material is an high-strength steel with an ultimate strength of auu = 1, 600MPa.

The geometric data are those derived through the plane simplified model, the

lower inertia scheme is adopted for the girder. To expand the model out of the original

plane, an hypothetical box section is adopted; the box section is 18m wide and 1.5m

deep. The steel girder has constant area of A = 1.307m 2 and a longitudinal inertia of

Ilong = 0.54m 4, a lateral inertia of Ilat = 38m 4, and a total torsional moment of inertia

Itor = 1.908m4. The total area of the tower is At = 1.2m 2 and its longitudinal total

inertia is If = 4.5m 4 . It results in a H-shaped structure, composed of hollow section

beam elements, two vertical and two transverse elements, each one has constant area

of Ati = 0.6m 2 and a longitudinal and lateral inertia of Iat,long = 2.25m 4

These characteristics have been derived from the analysis developed with the

plane model of the structure. The cables have been dimensioned on the basis of an

uniform distribution of the dead load of g = 100KN/m along the deck, a pretension

is applied to four of the central cables on both side of midspan point to accomplish

the requirement of uniform vertical stiffness. The maximum value of the strain in the

cables is 0.337%. In Table 3.1 the main characteristics of cables' system are presented.

Cables areas indicated refer to the single cable. Although in Table 3.1 they are only

numbered from 1 to 18, (they correspond to the flanking span), they form two parallel

planes on both sides of the pylons. However, cables on both sides of the central span

have the same characteristics of these cables that are their symmetrical with respect

to the tower.

A pseudo-linear analysis can be developed estimating a modified value of the



Table 3.1: Geometric Characteristics of Cables - Igide, = 0.54m4

Acab(cm 2 ) f /Uu Ered(MPa) Fpres(KN)
1 18.44 0.337% 40.0% 1.899e+05 0
2 12.96 0.337% 40.0% 1.899e+05 0
3 13.86 0.337% 40.0% 1.897e+05 0
4 14.65 0.338% 40.0% 1.896e+05 0
5 15.77 0.338% 40.0% 1.894e+05 0
6 16.99 0.338% 40.0% 1.892e+05 0
7 17.79 0.339% 40.0% 1.890e+05 0
8 19.09 0.339% 40.0% 1.887e+05 0
9 22.35 0.311% 36.6% 1.879e+05 0

10 25.92 0.280% 32.6% 1.865e+05 0
11 31.68 0.247% 28.4% 1.838e+05 0
12 38.90 0.219% 24.5% 1.790e+05 0
13 44.89 0.202% 21.7% 1.724e+05 0
14 58.39 0.181% 17.6% 1.558e+05 0
15 82.32 0.177% 14.3% 1.291e+05 289
16 89.78 0.184% 14.9% 1.291e+05 747
17 103.46 0.191% 15.4% 1.291e+05 1,420
18 177.91 0.198% 16.0% 1.291e+05 3,310

Young modulus expressed as a function of the cable length and the level of tension

according to equation (2.15) known as the Ernst formula [7], which can be used in a

step by step analysis updating the value of tension at each step.

As can be seen from Table 3.1, though the reduced modulus is superior to 95%

of the original Young modulus for the first eleven cables starting from the tower, the

decay greatly increases starting from the twelfth cable.The values of the pre-stressing

forces calculates as shown in Chapter 2 are here indicated in the sixth column of

Table 3.1. Equation (2.15) shows a trade off between the area of cable and the Young

modulus for constant value of tension; as a consequence, the initial tension must be

tuned up in order to keep the initial stiffness constant on the cables. Of course the

reduced modulus is very low and reaches the minimum value at the midspan cable

(35.7 % of the original Young Modulus).

For long spans the assumption of linear behavior of the cables, with constant

Young modulus reduced to the initial value, can be too conservative for symmetrical



loading. In fact the effect of this kind of loading is an increase of tension in all the

cables, the increase in tension bring to an increase in stiffness, that it is not considered

if the elastic modulus is not updated.

A similar geometric non-linear effect comes from the beam-column model: in

particular it is a reduction of the bending stiffness related to the compression on

the elements; in my model both the tower and the deck experience high level of

compression stresses and this effect tends to be relevant. In contrast with the increase

in stiffness experienced by the cables, in the beam and the tower there is a trade off

between tension and stiffness. As I pointed out above, a cable-stayed bridge is a

complex structure, its behavior is governed by the interaction of different kind of

structural members, in order to study the real deformation of the structure it is

necessary to model all the non-linearity of the system.

3.2.2 The finite element model

I have discussed the process of transforming a physical model into a mathematical

model for my bridge structure. The following step is to define how to solve this

model: this has been done with a finite element model. The finite elements that I

have implemented in my model to perform my analysis are part of the ADINA [4]

library and are the following:

1. Truss 2-node element for the cables. This element can be successfully adopted to

describe elements with no bending and shear resistance, in the case in which the

applied forces are only end forces. The element in ADINA can be employed in

linear, materially-nonlinear-only and large displacements and rotation but with

small strains. The same element varies in a 3-node and 4-node truss element.

2. Two nodes beam elements for the tower and the deck. The beam element is the

2-node Hermitian beam, which is based on the Bernoulli-Euler beam theory.

It is corrected for shear deformation effects and can be employed in linear,

materially-nonlinear-only and large displacements and rotation but with small

strains, both in elastic and elasto-plastic analysis.



3.3 Linear elastic analysis

I have performed the first analysis on a simple linear elastic model; all the calculation

were referred to the undeformed geometry, the cable sag has not been considered and

the weight of the cables was neglected.

The starting status of the system includes all the initial values of strain in the

cables, and the pre-stressing forces where needed. A 2-node truss element with a

straight line axis has been adopted to describe the behavior of cables in a linear

analysis. The deck has been modeled with a finite element mesh that divided each

beam between two adjacent cables in three parts 5 m long, the beam was modeled

by 2-node Hermitian elements. In particular, the model adopted is a spine model:

the box section is not modeled with plane elements but only with simple beams, that

include all the characteristics of the box section; the connections between the girder

beam and the cables is modeled with transverse beams (2-node Hermitian elements)

with high level of stiffness characteristics, they have just to rigidly connect the main

girder to the cables and the towers, without introducing any flexibility into the model.

For a scheme of the structure see Figure 3-1.

Similarly to the main girder, the tower has been modeled with 2-node Hermitian

elements, each element being 5 m long. The elastic modulus of the cables has been

considered constant and equal to the initial value calculated using equation (2.15),

after the pretension of the cables, the stiffness has not been updated when the tension

in the cables changes after the application of the live load. In the same way the

stiffness of the other elements has been considered constant for all the load conditions,

the analysis of the system has always been performed without considering the effect

of the deformation on the loads, the integration of all the variables has been done

with respect of the initial geometry of the system, and the stiffness matrix formed by

terms which are constant with the external load.

The system is simply described by general equation of motion, formulated as

following; solving the equation (3.1), the displacements u will be found. For a generic
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load condition represented by R(t), this is the form of the equation:

[M][U] + [C][U] + [K][U] = [R] (3.1)

The mass matrix is defined assuming lumped-masses throughout the system.Damping

can be assumed as proportional to K and M in the following Rayleigh matrix format:

[C] = al[M] + a2[K] (3.2)

The same model has been used for a linear dynamic analysis, for a first check on

the first fundamental periods of the system and for the analysis of the main vibration

modes.

3.3.1 Modal analysis results

The first analysis of the space structure is made through modal analysis. In particular,

the equations of motions expressed in matrix from 3.1 are rewritten after the basis of

vector U is changed through the following position.

U(t) = E Ojqj(t) = Ojq(t) (3.3)
j=1

In particular this form help in finding uncoupled equations of motion then reduc-

ing, a Multi Degree of Freedom system in the summation of a series of SDOF system.

The characteristics of each SDOF system are found with the solution of the following

eigenvalue problem for the undamped system:

[K][Ij] = wj[M][Ij] (3.4)

The eigenvectors of the problem are those that satisfy equation 3.4 together with

the orthogonality relations:

[ij]T[K][4j] = w [~]"[M][Pj]Sij (3.5)



where 6ij is the Dirac function, which is zero when i is different from j and unity

when they are the same. The characteristics of the equivalent SDOF's are given by

the following modal mass, modal stiffness, and modal damping.

Mj = [I'] T [M][Dj] (3.6)

K= [Ij]T[K][j] = w2(3.7)

Cj = [j] T [c][Ij] (3.8)

Assuming a linear damping, for example [C] = a[K] it follows that:

C = aKj = aw2M (3.9)

All of the above leads to the following n uncoupled equations for the MDOF system:

M7i + C4 + Kq = 3jR(t) (3.10)

The values of the periods calculated through an ADINA simulation, with damping

neglected, are reported in Table 3.2, together with the maximum value for the eigen-

vectors. For the first eight eigenvectors in the Table is also reported the direction of

the mode, where V stands for vertical, L for lateral and T for torsional. A better

understanding of the correspondence between modal frequencies and mode shapes

comes from the mode shapes given in Figure 3-2 and in Figure 3-3. The eigenvectors

that results from the output of the program are normalized; therefore, the modal mass

is a unity mass and the modal stiffness is equal to the natural frequency squared. As

a consequence of that, the uncoupled equations of motion, for linear damping will

have the following form:

j + aw2q + wjq = OjR(t) (3.11)



Table 3.2: Periods and maximum eigenvectors for each mode

MODE PERIOD X-EIGENVEC. Y-EIGENVEC. Z-EIGENVEC.
4.07501e-04

-2.92237e-05
3.91150e-05
5.93797e-04
4.19404e-05
-7.41358e-04
3.06171e-04
8.46607e-05
6.45454e-05
4.19838e-04
-3.93350e-04
3.87730e-05
5.04349e-05
-5.21152e-05
2.96227e-05

-1.74936e-05
-1.20942e-04
1.16609e-04
-2.33129e-05
-7.39451e-05
-4.33993e-05
-9.39401e-05
5.03072e-05
2.17524e-05
3.68961e-05
-3.91421e-05
3.88964e-05
-3.77399e-05
3.07086e-05
2.38013e-05

-4.60653e-05
-4.39015e-04
-3.72863e-04
-4.97727e-05
-5.21677e-04
1.85985e-04

-4.22521e-04
4.11243e-04
3.78273e-04
-3.04328e-04
3.16857e-04
-3.88984e-04
-3.84676e-04
3.89500e-04
-3.22123e-04

Legend: L=Lateral Mode, V=Vertical Mode, T=Torsional Mode

7.768
5.137
4.476
3.401
3.159
2.872
2.690
2.580
2.578
2.351
2.022
1.899
1.877
1.727
1.651



3.4 Non-linear formulation

I have already pointed out why the analysis of large cable stayed bridges requires a

non linear analysis, this is particularly important if the serviceability requirements on

the displacements, velocities and accelerations are a concern. A non linear static and

dynamic finite element analysis is most effectively performed using an incremental

formulation, in which the static and kinematic variables are updated incrementally

corresponding to successive load step or time steps in dynamics.

In this section I report the basic of a non-linear model that I have tested in other

applications on the same model of a cable-stayed bridge. Although I do not report

here any particular results, I outline the basic criteria used for that model, as a

starting point for new more refined analyses.

The analysis constraints are very important for this formulation [1]. On the one

hand it is important that the governing finite element equations are satisfied in each

load step or time step with a sufficient accuracy because otherwise solution errors can

accumulate; this requires small load increments or time steps. On the other hand if

these steps are too small the analysis can become too expensive. The attention must

focus on the right choice for the iterative solution method, for the tolerance of the

solution, for the limit in the iteration and especially for load increments or time steps.

The expression of the governing equations for the response of the finite element

system in static analysis is

(t)[K][U] =(t+At) [R] _(t) [F] (3.12)

where t[K] is the tangent stiffness matrix corresponding to the configuration of the

system at the time t, [U] is the vector of nodal point of incremental displacements,

while [R] is the external force calculated after the increment of time and [F] is calcu-

lated at time t.

Similar to equation 3.12 the following expression describes the finite element equa-

tions of motion in which the internal force given by the product of the mass[M] and
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the acceleration after the increment of time is included

(t)[K][U] =(t+At) [R] _(t) [F] -(t+At) [U] (3.13)

In my problem this formulation has been applied to take into account the large dis-

placements analysis, implemented to better describe the behavior of the cables when

they deform under the effect of their weight; furthermore, the geometric nonlinear be-

havior of the tower and the deck was considered by updating at each load increment

or time step the stiffness matrix. In this formulation the tangent stiffness matrix

gives an exact description of the system in its stress-strain status corresponding to

the actual value of the loading; the hypothesis of small strains was still valid.

The finite elements adopted to describe the system are the 2-node truss element

for the cables and the 2-node beam element for the tower and the deck. The only

difference is that each cable is described by a mesh of more than one element, the

number of elements varies with the length of the cable in such a way that the maximum

length of each element does not exceed 15 m. This must be done in order to describe

the cable sag under the effect of the weight; an initial strain due to the pretension

of the cable has been applied on the initial configuration. This evaluation has been

based on the reduced modulus of the cable calculated from equation 2.15

The solution of the system was obtained through the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) matrix update method, with the use of line searching method, the line

searching tolerance (STOL) was set to 0.5. The tolerance criterion for the convergence

of the iteration was the force criterion with an assumed tolerance of 10- 5.



Chapter 4

Modeling of wind actions

In this chapter I review the fundamental phenomena related to wind actions on bridge

structures. Different wind effects and interactions between wind forces and bridge

structures can yield to strong motion of bridge decks, cables and towers and have

to be taken into account in designing both for strength and for serviceability. The

basic means of limiting these effects are introduced also with particular care for the

construction phase of long span bridges.

The steady-state part of the wind excitation can be addressed through an ap-

proximate static analysis. Apart from that, many different phenomena related to win

actions can bring dynamics effects to bridge structures. These actions, which are par-

ticularly relevant for long span flexible bridges such as suspension and cable-stayed

bridges, can also be related to low speed actions. Analog testings of model struc-

tures in wind galleries have shown that for these bridges wind-structure interaction

phenomena are highly related to the cross section shape of the girder. For example,

it has been observed [23] that plate stiffened deck systems are often exposed to ex-

cessive vortex shedding excitations for transverse wind actions. As a consequence of

that, the deck experiences excitations in vertical bending. The problem can be solved

through a reshaping of the cross-section; in fact, the design of edge details can be

fundamental in these cases. Box sections or concrete decks with box edge girders,

which are commonly used in a large number of existing cable-stayed bridges, have

shown a good aerodynamic response to wind actions.



The chapter is organized as follows: I will first introduce the basic laws for distri-

bution of wind forces, secondly I will discuss the static and dynamic components of

wind actions. This will be more an overall description of the phenomena and will not

include a complete analytical formulation of the problem. Therefore, the conclusion

of this brief description is that wind-structure interactions phenomena are addressed

through different types of models. The different analysis aspects are not unified under

the same theory and the action analysis requires models that do not coincide with

those usually applied to structural analysis. A strong effort is still needed towards

the unification of all the theories under the same simulation model, and, even though

the growth of Computational Fluid Dynamics is quite fast, analog testing is still the

most valuable resource used in practical applications.

4.1 Wind action description

Wind is slowed down near the earth's surface by the resistance to the flow introduced

by the roughness of the ground and by fluid friction associated to the air viscosity.

As a result, the wind velocity varies from zero at the surface to the gradient wind at

about 300 m to 600 m above the ground surface. In a typical distribution of wind

force as a function of the height z the mean wind speed,V is described by a power

law such as:

= (Z)a 
(4.1)

V(zo) zo

where the exponent a is in the range from 0.12 to 0.5 and directly increases with the

terrain roughness; z0o is a reference height.

The shearing action of the wind also causes mechanical turbulence of the flow,

known as gustiness; its effects are continuous and sometimes abrupt changes in direc-

tion and magnitude of the wind. The wind turbulence is characterized by a random

distribution of the physical size of the disturbances, this is in the range from al-

most zero to several hundred meters in length, while the disturbances in the lateral



direction are less extended.

Gust distribution is very similar to the mean velocity distribution, and can be

described by the following [10]

V(z) = Cu( z )0.1 (4.2)
V-(z) zo

in which Cg is the gust factor, that can be taken as equal to 1.41. In the following

two sections I describe separately the static and the dynamic effects of wind actions

on structures.

4.2 Wind actions as static loads

The first component to analyze is the static one, which represents the steady state

part of the wind action. It always acts in any structure and is particularly relevant for

large span structures. On a bridge cross section, the static action consists of a drag

component, D, acting in the wind direction, a lift component, L, normal to the wind

direction and a pitching moment, M. All these three components are governed by the

wind speed, V, the air density, p, the cross sectional width, B, and the dimensionless

coefficient, CD, CL and CM. The expressions describing these actions are

1
D = -pV 2 BCD (4.3)

2

L = pV 2BCL (4.4)
2

M = -V 2B 2CM (4.5)
2

where the values of the C coefficients are normally determined experimentally in

wind tunnels. These coefficients are dependent on the cross-section geometry and are

a function of the wind incident angle 3. They are also used in the calculation of the



bridge response to turbulent wind.

All the structural parts need to be designed to bear these actions, the value of

the design average wind speed can be derived from measurements, and it is usually

associated to a mean recurrence interval of time that is calculated on a statistical

basis. Different values of the average velocity and of the recurrence interval can be

assumed for serviceability design and for limit strength design.

4.3 Dynamic effects of wind actions

The dynamic actions to take into account in the analysis of slender cable-stayed

bridges are those related to vortex shedding, torsional instability and flutter, gallop-

ing, wake instability, and buffeting by turbulence. For local effects on the cables it

is important to consider the joint occurrence of wind and rain. All these effects need

designer's attention for their consequence on strength and serviceability not only af-

ter the completion of the structure but also during the construction phase. In fact,

cable-stayed bridges are highly redundant structures but during erection are much

more flexible than they are in their final configuration.

In the following paragraphs I will briefly describe the different dynamic phenom-

ena related to wind-structure interaction. Although many of these effects are better

understood by analog wind-testing on model structures, recent developments in the

field of numerical models and information technology can hopefully help to achieve

more reliable computer simulation models.

4.3.1 Turbulence

Wind action varies randomly with time, due to the turbulence of the air flow. This

aspect is of great interest in structural engineering application as it introduces time de-

pendent load conditions in the analysis. Structures with low natural frequencies may

exhibit resonant amplification effects in their response to wind action. Furthermore,

longspan structures' aerodynamic behavior strongly depend upon the turbulence in

the air flow. A quantitative description of turbulence is necessary when it has to be



taken into account for design issues. The simplest descriptor of wind turbulence is

turbulence intensity. It is defined with respect to the height z as:

I(z) = -(v ) (4.6)
V(z)

where vf (z) = v(z, t) - V(z) represents the velocity fluctuations with respect to the

mean velocity. In order to express the turbulence intensity of an event, this must be

related to a time interval. This is usually assumed between 10 minutes and one hour,

and depends on the data collected.

4.3.2 Spectra used for structural design purpose

They are used to describe the frequency content of turbulent wind action. A simple

formula for the spectrum definition is:

nS(z, n) 200f (4.7)= (4.7)v, (1 + 50f)5/

where n represents the frequency, v, is the friction velocity, and is related to the mean

wind velocity V(z) through the following formula expression:

1 z
V(z) = -v ln- (4.8)

k zo

that express the the mean wind speed at a certain height as a function of v,, contain

an explicit indication of k known as the Von Karman constant and the roughness

length z0o that depends on the different soil characteristics.

All the power spectral density functions are expressed as function of a non-

dimensional frequency given by the product of the frequency by the "autocorrelation

length" and divided by the velocity. These spectra characterize the wind excitation

as a random signal. Figures 4-1, 4-2 and 4-3 show different power spectral density

functions available in the literature.
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Figure 4-1: Power spectral density functions variation with non-dimensional frequen-
cies
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cies - log scale

60

0.3

0.25

0.2

Solari
Kaimal

--- von Karman
- Davenport

.-.-.- Harris
. . . . . . . . . . . . . . . . . . . :... . . . . . . . . . . . . . . .

...... ........ -.-...;.L ..... ... . ........... ... .. .. .. .. ....... ... ... .. ... .... • .... ~ ~~ .. •.. ..: ..' .- .. .. ... ...... .•... . .. -' . . . . ....

........... . . ...... .. ..... ... : ; ' ' :. . .... .... : :. ....... .... . .... K i a............ ...... . oSolari a
~~~~~;~~i~i~ ~ ~ i~;~~~~i~ ~~ ~; i. ~ '~~ ~~~i~~"~~l Kaimal

von Karman
: :" ..-- -. Davenport

'/" Harris

j~ ; 1 ................% ....... ... .. ......... . .... .. ... .. .. ...

. . .. . . . . . . . .... . . ... . . . . . .. . . .. . ................. ........

....~~~~~~~~~~~~ . ..; .•.. : . ; .:. . . . . . . .; . . .:. ............ .. .. .. .. . ......... .....,.. .;.. ;. . ...
. . . . .. . . . ...... . . . . .. .. . .. .. . . . .

. .. . . . .. . ... . . . . .. . . . . . . . .
....... .. . . . .. .. . . ... . . . . . . ... . .

.......... ......... . . . ... .. .. . . . . .
. . .. .. . . .... . . . . .... . . . .. . . . . . .. . .

. . .. . . . . . . . .. . . . . . .. ...... . . . ....... .... . .. .. . . . . . ... . . . . . .. . . . .. .. . . . . .. . . . .
. . . . . . .. . . . .. .. . . . . .. . . . .
. . . . . . .. . . . .. .. . . . . .. . . . .

. : : :: : I : ::: . . ..: 1 . :

100

.10U,C

a

10-2

'i\I I I.. ..

..... . .........
• .

"';i
....... .. ... ;.. . '%... .... .. ..... .. .. . •

............ ... .... ... . .. . .. . . ..".~~ ~ ~ ~ . . ... ... ..... ... . . ... .. ...... ... .... ..
-• ..-i

...... ... ... ...



Power spectral density function

Solari
Kaimal

-..................... ............................. -- - v o n K a rm a n
G E Davenport
----- Harris

................. .. .... ... .. ... .. .. ... ... ..... ........ ... ... i .... .... . .... ... ..

/ /

! i

1 2 3 4 5 6 7
Non-dimensional inverse frequency, 1/f=U/nL

8 9 10

Figure 4-3: Power spectral density functions variation with non-dimensional inverse
frequencies

Another expression to be used

larity) coordinate f, which is:

in the spectrum definition is the Monin (or simi-

nz
f= (

V(z)
(4.9)

This formulation for the wind spectra applied to the lowest frequencies overes-

timates (5 percent) the structural response, furthermore it does not satisfy the re-

quirements for n=O but in any case it applies with good results to calculation of the

spectra to be used in structural analysis. In order to apply this formulation to define

the wind velocity spectrum at a certain height z, v, can be calculated from (4.8),

after having defined a value for the mean velocity V(z) and a proper value for the

roughness length z 0.
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4.3.3 Vortex shedding

The vortex shedding excitation is typical of slender cylinders exposed to wind action,

this is an across-wind action and can occur even for not particularly strong wind

actions. Wind forms vortices alternately in either side of the section when flowing

around these elements; this phenomenon has a high degree of periodicity. Vortex

shedding can occur on other kinds of bluff sections different from cylindric, typically

on box type sections. The magnitude of this action greatly decays when the edges

of the cross section are shaped with streamlining profile. To describe the relation

between the frequency of vortex shedding, f , and the wind velocity, I introduce the

Strouhal Number, S, defined as a coefficient that depends on the geometric shape of

the section. For a cylinder of width B, it can be expressed by the following:

sfBS = (4.10)
V

For circular cylinders this number depends on the Reynolds Number, Re = VB/v ,

where v is the kinematic viscosity of air. In the case of sharp cornered cross sections

the Strouhal Number is independent from the Reynolds Number.

When the vortex shedding frequency, fl, is closer to the deck natural frequency

for torsion or vertical bending, bridge vibrations can develop. This happens when

the wind velocity is very close to the critical speed, which is a characteristic of the

structure. In this case the amplitude will strongly depend on the structural damp-

ing of the whole structure. The value of critical wind speeds, for long span bridge

structures are in the narrow range of 8 to 15 m/sec, these values are not related to

extraordinary events. However, vibrations of bridge decks related to vortex shedding

are mostly vertical and the maximum amplitudes are not as larger as in other more

slender cantilever structures. Design for vortex shedding tends to limit the amplitude

of oscillations more for serviceability concerns than for stability. The acceptable ac-

celeration threshold for users' comfort is 2 percent of gravity acceleration g, for wind

speeds below 15 m/sec, and a maximum of 5 percent of gravity acceleration, for wind

speeds between 15 m/sec and 30 m/sec.



Vortex shedding excitation of circular cylinders is sensitive to the mass damping

parameter, defined as (m/pB2 , where m is the unit mass distributed over the length,

and ( is the critical damping ratio. It is proved that when the value of this index is

equal or greater than 5 no motion will occur. A solid steel rod would have a value

of this damping parameters close to 5 when a value of critical damping ratio of 0.1

percent is assumed. Stay cables in synthetic sleeves with cement grout have lower

values of (m/pB 2 and can experience vortex shedding excitations: the consequences

will be undesired local effects of bending at the cable anchorage, with high stress

concentrations, and cable induced vibrations on the deck and the tower. Some very

simple viscoelastic collars at the cable attachments can highly increase the structural

damping and prevent the cables from this undesired behavior.

4.3.4 Torsional instability and flutter

Although torsional instability and flutter are both related to the twisting of the bridge

deck around its longitudinal axis, it is important to separate the two problems. The

basic difference is that torsional instability derives from a single degree of freedom

motion whereas flutter results from the coupled effect of torsional and flexural motion.

Both of these wind-structure interaction effects are unstable and can easily drive long

span bridge structures beyond their limit strength and to collapse.

Torsional instability by itself comes from the second order effect related to the

twisting moment expressed by (4.5). As the twisting moment increases with the

wind velocity, the effective angle of attack of the wind relative to the structure may

increase too. This leads to a further increase of the twisting moment, that will

require an additional reactive moment from the structure. This is clearly a non-linear

instability phenomenon, related to the inertia characteristics of the structures, to the

wind velocity, to the shape of the section and to the angle of attack of the wind action.

Critical wind velocity for torsional instability corresponds to the value of wind

velocity at which the magnitude of the wind induced moment creates an unstable

condition on the structure. This effect can cause the structure to collapse if the

ultimate strength is reached. In a simple model of a deck with a concentrated torsional



spring of elastic constant , if is the angle of rotation of the section of width B, the

critical wind velocity for the moment expressed by (4.5) is given by:

Uc , (4.11)
pB2Cp

where:

dC'
C d = 10=o (4.12)

Uc is also called critical divergence velocity, and normally, even for large span struc-

tures is well above the value of critical velocity for vortex shedding.

Torsional instability is not sensitive to structural damping. The critical divergence

velocity increases with torsional rigidity as it is shown in (4.11). As torsional rigidity

is directly related to natural frequencies, it follows that the objective of the design

for torsional instability is to realize bridge decks where the torsional modes are high

frequency modes. The critical divergence velocity is also inversely correlated to the

width of the deck, thus, narrow decks are less sensitive to torsional instability.

As stated above, flutter is basically related to the coupling of torsional and bending

modes in the motion due to dynamic excitation. An essential part of the instability

in these oscillations is based on the phase difference between the torsional and the

bending motion. The critical wind speed that causes the instability has to be evalu-

ated, the design wind speed, then, must be well above this critical value. This design

objective is a priority in long span bridges, in fact, the amplitude of motion caused

by flutter can reach catastrophic values for long span decks.

Bridges with high values of natural frequency are less sensitive to flutter, as a

consequence, torsional stiffness must be a concern for long span structures; in cable-

stayed bridges for example the contribution of the tower shape is relevant to the overall

torsional response to dynamic wind action. Similarly, cable disposition is important

for deck torsional rigidity, for longer spans; for example; the disposition of the cables

on a single plane at the center of the cross section will require a very high torsional



stiffness of the deck. The critical wind speed for flutter is also dependent on the ratio

of torsional natural frequency to bending natural frequency, fo/fy; the bridge decks

are susceptible to flutter if this ratio is only slightly higher than unity. If the ratio

is higher than 1.5 flutter would not occur. The fundamental dynamic equations in

two-dimensional form can be written as follows [20]:

m(j + 2(ywyP + Wy2 y) = L (4.13)

I(0 + 2,owo + wo2 0) = M (4.14)

where, by definition, w is the circular frequency, 0 and the index 0 stand for the

rotation around the longitudinal axis, y and the index y stand for the vertical dis-

placement. As defined in (4.4) and (4.5), L and M are the lift force and the twisting

moment, so the equations (4.13) and (4.14) can be rewritten as:

BO
pV 2B(kH* + kH V + k2 H*O) = L (4.15)

pV2 B2(kA + kA BO + k2HO) = M (4.16)V V

where, by definition, k = Bw/V.

In the above equations (4.15) and (4.16), H',2,3 and A, 2,3 are the flutter coeffi-

cients; they depend on the aerodynamic properties of the section, are all functions of

k, and can be derived experimentally. As mentioned above, flutter is a two degree-

of-freedom phenomenon and both the lift and the moment equation are required to

predict the flutter critical velocity of a long-span bridge. In this analysis the coupling

coefficients, H2 and At become as important as A*, which is a measure of aerodynamic

torsional stiffness.

Torsional instability can also be described by equations (4.15) and (4.16), but,

as it is a single degree of freedom phenomenon, only the moment equation (4.16)



is relevant. In this equation the coefficient A* determines the degree of torsional

instability. Similarly Ht* determines the degree of stability in vertical bending, H*

is usually negative, except for those bridge decks that are prone to vortex shedding

excitation, in which case it is positive over the wind speed range where vortex shedding

excitation occurs.

The conclusion is that equations (4.15) and (4.16) fully describe the phenomena of

wind structure interaction for dynamic excitation, for torsional and bending moment,

and can then include both torsional instability and flutter. The response analysis

for the design can be based on the H and A coefficients that are experimentally

determined. It must be stressed out that these are potentially the most dangerous

phenomena for cable-stayed long span bridges. In fact, they can lead the structure

to instability and collapse.

Cable-stayed bridges are no less prone to these phenomena of aerodynamic exci-

tation than suspension bridges, and this can be more relevant in the future as the

limit spans are increasing rapidly. The fundamental parameter to test the sensitivity

of a bridge to flutter is the ratio of torsional natural frequency to bending natural

frequency. By contrast, this parameter does not have any influence on sensitivity to

torsional instability.

4.3.5 Galloping and wind-rain instability

Galloping is a single-degree-of-freedom instability phenomenon that causes large am-

plitude motion in a cross-wind plane. It has been found that rectangular elements

with width to depth ratios less than four are the most prone to galloping effects. It is

important to consider galloping in the design of towers particularly during erection,

before the cables and the deck are installed. The criterion for stability is related

to the lift coefficient, CLand the drag coefficient, CD, and is based on the following

relation [5]:

sCL
L+ CD < 0. (4.17)



Damping is very effective in avoiding the excitation of galloping oscillations; as a

result, dynamic vibration absorbers can be used to protect structural elements from

this effect.

A particular effect of galloping may affect elements with cylindrical cross sections,

when they are subjected to even a small change in their axi-symmetry. This can

happen when water or ice films deposit on cables. On cable of cable-stayed bridges

it can lead to oscillation with an amplitude of double the diameter of the cable. This

can be prevented by simply connecting neighboring cables together with a wire rope.

4.3.6 Buffeting by wind turbulence

Turbulence is a fluctuation of wind speed with the time, the result is a variation of the

wind load along the span of a bridge. The magnitude of the bridge response depends

on the wind speed, the properties of turbulence, the shape of the road deck and the

natural frequencies of the bridge.

Effects of turbulence on the bridge behavior depend on the physical scale of tur-

bulence relative to the size of the bridge and on the effect that it has on the frequency

spectrum of wind energy. Good estimates of the response can be made using analyt-

ical procedures that incorporate data from wind tunnel tests.

4.4 Conclusion and remarks

I have surveyed the wind-structure different kinds of interactions. While some of

these interactions (i.e.; steady state actions) apply to every kind of structure, others,

such as vortex shedding apply to bridge structure, even if they are most relevant for

slender cylindrical structures. In other cases the interaction effects are strictly related

to cable-stayed bridges or other long span bridges, as in the case of flutter. In some

other cases the interaction regards a part of the whole system as it is for wind rain

instability of cables, or finally the interaction can regard bridge structures during

the construction phase, as it is for galloping for the towers before all the cables are

connected to the entire deck.



In general the fundamental design aspects to be considered at the conceptual

design stage are those related to the optimal cross-section shape for aerodynamic

effects, together with the distribution of lateral, torsion and bending stiffness of the

structure.

In fact, a good control of flow separation around the deck, together with a reduc-

tion of the surface directly exposed to lateral wind, will help achieving an optimal

design for wind action. One of the objective of the design of a long-span bridge

structures will be an high lateral stiffness optimized to minimize the amplitude of lat-

eral vibrations. The contribution of the towers and of cable arrangements to lateral

stability is fundamental. With respect to towers' design, A shapes show very good

performances and positively contribute to lateral stability. With respect to cables'

arrangements, fan patterns together with spatial arrangement on convergent planes

add the cables' contribution to the overall lateral stiffness and stability of the system.

I have also stressed how high torsional stiffness can improve the cable-stayed bridges

overall stability, this can be controlled through the design and the shaping of the

cross section of the girder.

Other design aspects are related to damping distribution along the structure.

This is important in the case of modes excited by resonant components that can be

contained in the wind turbulent actions. As the overall structural damping of long

span cable supported structures is usually very low, in many cases it will be beneficial

to think about adding damping through the application of special devices.

In some cases special devices can be used to limit wind effects during the con-

struction phase, in fact the low lateral stiffness of the deck can bring about effects

that are completely different from those that can be observed when the continuity of

the girder is realized. This can suggest the application of temporarily devices such

as additional stay cables or more sophisticated devices such as tuned mass dampers,

which are very effective in reducing vibration amplitude related to not-impulse forces,

or viscoelastic spring-dampers or friction dampers. The issue of providing additional

damping to cable-stayed structure will be addressed in the following chapter. Damp-

ing is very effective in controlling vibration amplitudes of long span bridges, even if



in many cases it is not easy to evaluate as it is sensitive to frequencies.

Local vibration phenomena in the cables, especially for very long midspan cable

can be annoying and can be easily avoided by simply inserting dampers in the cable-

deck joint or by connecting the cables one to each other.

The lesson learned from the wind induced collapse of some long span bridges in

the past, together with the experience developed during many years of wind tunnel

testing, together with aeroelasticity theory and application to aero-industry, can help

a lot in future development of optimal wind design of long span bridges.

In any case wind analysis of long span lightweight structures is a very complex

problem that include computational difficulties both in the modeling of the flow dis-

tribution, and in the modeling of the non linear interaction between the structure

and the fluid itself. In fact, the flow distribution depends on the deformed shape of

the structure and vice-versa. This introduces elements of high non-linearity in the

formulation and solution of the problem.

Another challenge comes from the modeling of the wind action as a random process

as it is and from including the spatial effects related to the dimension of the structures.
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Chapter 5

Passive devices for motion control

The long-span bridge construction and design industry is constantly moving towards

two different objectives: the first is the development of new technologies that are

able to address the demand for longer spans, the second is to address the increasing

demand for structures whose safety and serviceability requirements are guaranteed

for the whole life cycle. As a matter of fact, from an economic perspective, the two

aspects are directly related. The money invested increases with the span and, as a

result, the required level of performance over the entire life cycle is higher for long

span bridges.

Even though in many bridges the design and construction solution is very special-

ized to a unique project, it is possible to identify some system solutions that can be

applied throughout a large spectrum of projects. This is the case of motion control

devices and systems that are becoming more important in the construction of long

span bridges.

Once the model of the structure is properly defined and the acting loads too, it

is possible to figure out how to control the motion of the system by designing its

internal characteristics. Motion control devices and systems, which are part of the

whole system, can be divided in the two broad categories of passive motion control

devices and active motion control devices. In both cases the devices or systems aim

to control the system response to external load, the requirements to be obtained will

be based on the overall performance of the system. The difference in the definition



relates to the way the system operates; while an active system is operated through an

external power supply, a passive system or device will not need any external power

to be operated but will be started by the motion of the primary system itself.

In this chapter I will present a passive system, the Tuned Mass Damper (TMD),

which is a simple device consisting of a mass, connected to the primary system through

a spring and a damper. It is effective in reducing the dynamic response of the struc-

ture. Part of the energy of the system coming from the external excitation is dissipated

by the damper inertia force.

In the last chapter I will introduce an active system for control of aerodynamic

excitation, called Active Flutter Control System (AFCS).

5.1 The behavior of Tuned Mass Damper

Usual ranges of natural frequencies can show sensitiveness to both wind excitations

(lower frequencies modes) and seismic vibrations (higher frequencies modes). Al-

though a thorough analysis is required for earthquake actions, in the case of long

span bridges the modes that can bring higher levels of energy into the system are

more in the range of sensitivity to wind excitations. In particular, structures with

natural periods of around five to eight seconds are likely to be resonant to gust exci-

tations. In fact, winds' turbulent components have higher intensity in this range of

periods.

These excitations are better controlled through damping, with the main objec-

tive of reducing the peak amplification in the response of the system. Empirical and

identification studies show that medium to longspan cable-stayed systems have low

structural damping for the range of vibrations that they can usually experience. It

seems also difficult to introduce additional structural damping to such large struc-

tures. Therefore, one of the most interesting application comes from the use of Tuned

Mass Dampers (TMD). This system has been largely and successfully applied to high

rise building to control wind driven oscillations. In the following paragraphs, I will

first investigate the basics of TMD theory, then I will show the basics of a design



methodology and finally I will apply it to my model derived from the simplified the-

ory [3]. Some results, which I have obtained testing the proposed method on my finite

element model, will show how powerful these devices could be when applied to long

span cable-stayed systems. My simulations are limited to the use of TMD to improve

the structural performances under wind actions.

5.2 Tuned Mass Damper theory for SDOF sys-

tems

The fundamental equations are derived for a SDOF system [5] and then extended to

applications to MDOF systems. The basic formulation is derived for an undamped

SDOF system, recalled as the primary system, to which a mass is connected with a

spring and a concentrated damper. The latter will be identified as the TMD of the

whole system. The mass of the damper, expressed as a percentage of the mass of

the principal system, provides additional damping to the whole system through its

relative displacement with respect to the primary system.

In the general case of primary systems subject to ground motion and harmonic

excitation respectively expressed as:

ag = ageint (5.1)

p = Peint (5.2)

The response in term of displacement has a similar form. The d index indicate

damper's characteristics:

u = leint (5.3)

Ud = dei t (5.4)



5.2.1 Undamped primary systems

In particular, I focus on a SDOF system of mass m and frequency w with no damp-

ing and with a TMD of mass md attached to the primary system by a spring and a

dashpot; the frequency of the TMD is Wd. The fundamental properties of the com-

posed system are the following: the ratio of the excitation frequency Q to the natural

frequency of the primary system, the ratio of the damper frequency to the natural

frequency of the primary system and the ratio of the mass of the damper to the mass

of the primary system. They are defined as follows:

p (5.5)

md

m

(5.6)

(5.7)

the responses of the primary system and of the

form:

damper have the following complex

S 6 agm ei6 2U= -Hle '- H2i2
k k

p3 agmH/
Ud = H e-  H4 ei

JC d -

(5.8)

(5.9)

where the Hi factors determine the amplification of the pseudo-static responses, 6 are

the phase angles between the response and the excitation.

Following are the amplification factors expressions:

S= f2 - p2] 2 + [2(dpf] 2

D21
(5.10)



[(1 + p)f 2 - p2] 2 + [2(dpf (1 + mu)]2

D21

H 3 = "
ID2

1
H4 = D21IO21

ID 2 = V([1 - p2][f2 - p2] -_ p2f2)2+ (2(dpf[1 - p2(1 + p)1)2

For optimal behavior a TMD has to minimize the maximum amplitude of the

primary system. This condition is obtained for a particular couple of values pl and

P2 solutions of the following equation:

1 + 0.5p 2p4 - [(1 +/I)f 2 +, ]p2 + f 2 = 0 (5.15)

using the two positive roots the amplification factor H 2 will have the form:

H 2 p,Q= 1 2
1- pl,2

(5.16)

the condition for optimal behavior will be the following constraint on the roots:

I1 - p2(1 + )1 = 11 - p2(1 + /)1 (5.17)

The relation between the optimal tuning frequency and the mass ratio will be

derived by substituting for pl and P2 using (5.15):

1 - 0.5
fopt = 

(5 1

1+ A

H2 - (5.11)

(5.12)

where

(5.13)

(5.14)

(5.18)



and will be used to express the value of the optional frequencies of the damper as

follows

Wd opt = foptW (5.19)

As a consequence, the following will be the expressions for the roots for equation

5.15 and for the amplification factor:

P1,2 opt = + (5.20)

1+P
H2 1p= (5.21)

The expression for the optimal damping at the optimal tuning frequency is

opt - p(3 (5.22)5)diopt - 8(1 + )(1 - 0.5k) (5.22)

The application of a TMD to an undamped primary system add the damping that the

system by itself does not have. By analogy with damped SDOF systems an equivalent

damping ratio 5e is defined as one half of the inverse of the amplification function. In

fact, from the typical expression for a SDOF with low damping ratio:

1 1
H - --- 1 (5.23)

and by similarity, it follows that:

1
e 2H2  (5.24)

This can be used to define the required value of H 2 when designing a TMD for a

certain SDOF system. Once the value of the required equivalent damping is deter-



mined, it is possible to find out through the required value of H 2 opt what mass ratio

with respect to the mass of the primary system is needed for the TMD. Another re-

quired value of the mass ratio of the TMD with respect to the primary system comes

from the evaluation of the required amplification factor H4 for the TMD.

5.2.2 Damped primary systems

An approach similar to the one described above can be outlined for the case of a

primary system with damping. Two new amplification functions are introduced, H5

and H 6 together with a parameter D 3:

D3 = [1-P 2] f 2 -p 2 ] -p 2  _ (f 2 2 4 df) +i2( d(pf[1 - p2] - p 3 f) + 2p[f
2 -p 2]) (5.25)

and the amplification factors:

H5 = D2H2 (5.26)
D31

H6 = (1 + 4 2p2 )H 4  (5.27)
1D31

The displacements have the forms:

agm
= gk Hsei' (5.28)

Sag = m H6ei s (5.29)

5.3 Extension to MDOF systems

In practical applications the starting point is the definition of the SDOF system to

control through the Tuned Mass Damper. In my case the first choice would be to

control the first mode. Referring to Table 3.2, the maximum value of the eigenvector



corresponds to the lateral displacement of the midspan node. This is the displacement

to control, the displacement can be obtained by superposing the modal contributions.

For resonant conditions it is possible to assume that the displacement is function only

of the first mode. Calling uz, the component of midspan node displacement in the x

direction I have the following:

ur, = msql (5.30)

and solving for q1:

1
q1 Ux (5.31)

substituting in the equation of motion in the form 3.11:

1
M 1) (5.32)

and

1 2K= (W1 (5.33)

5.3.1 Application to the cable-stayed bridge model

From Table 3.2 it can be seen that the X-eigenvector's maximum value is 4.07501e-

04. The value of 1/(mS)2 is 6.02203e+06. As the total mass of the system is:

1.60863e+07, this means that the modal mass of the first mode is 37.40 percent of

the total mass. Starting from this and using the optimal parameters and the charts

derived by Connor [3], the fundamental parameters of the Tuned Mass Damper to

adopt for meeting a certain requirement on the damping added to the system can be

derived by defining a performance requirement on the displacements of the primary

system at the point in which the eigenvector is maximum. In this case it is the

midspan point. Once the optimal mass ratio is defined all the optimal values that



characterize the TMD are chosen. In particular the design is done taking into account

a structural damping of 0.02 for the primary system in the first mode.

All the figures used in the following design process are those related to this value

of structural damping. The rationale of the design is to use a TMD fine tuned to

dampen the first mode in such a way that the amplification factor H5 will not exceed

a fixed value. This is just a partial achievement, as it is related only to a mode, but it

is considered a starting point of a certain importance especially in this case, in which

the first mode has a frequency which is much higher (0.2940 vs. 0.1287) than the first

one in the lateral direction.

Of course there are some limit also in the dimension of the mass to adopt for the

damper; in fact in the case of such a large structure the total mass of the system makes

the task of damping the amplification of the primary system more difficult. However

a starting point will be to design the TMD in a way that the initial gain related to

the amount of mass ratio to put in the system is exploited. In fact, observing the

plot of H5 opt versus the mass ratio shown in Figure 5-2, it can be seen how the rate

at which the amplification decrease is very fast for a small increase of the mass ratio.

In a first dimensioning I chose a value of six for the amplification factor. It can be

obtained through a relative low value of mass ratio (3.65 percent).

According to the method here proposed the amplification factor of six for the

primary system will bring to certain values of the TMD characteristics that are in

particular a mass of md = 223, 530Kg, a dashpot of c = 40, 771Kg/sec and a stiffness

of K = 131, 190Kg/sec2. With this dimensions the TMD amplification factor will

be 25.10 and the amplification ratio between the TMD and the primary system 4.18.

All this value including the plot of the equivalent damping versus the mass ratio are

reported in figures from 5-1 to 5-5. Following these graphs are the results obtained

from a simulation on the finite element model under a lateral harmonic load with

a frequency equal to the natural frequency of the first mode of the system, and an

amplitude of 10,000 KN/m. The static displacement calculated for the system is 0.95

m.

The following cases were considered:



1. primary system without TMD, structural damping of 2 percent,

2. primary system with TMD, with the parameters found with the above method

and again a structural damping of 2 percent,

3. finally the system with two TMD both with the same dimension of the single

TMD, on both sides of the girder. The structural damping is still 2 percent.

The results in terms of lateral displacements of the midspan point are shown in Figures

5-6, 5-7 and 5-8. It easy to notice how the TMD is effective. In particular the single

TMD dampens out the maximum displacement of the primary system to one third of

the maximum resonant displacement. Another reduction of the 30 percent is detected

when the double TMD is added. This is not a great advantage compared to what

was gained in the first step. However, this second applied TMD is interesting and

was sufficient for another improvement in the overall performance in the sense the

the displacement of the damper is at this level is accepted and almost ready to be

implemented See Figure 5-9 to 5-13.

As long as can be shown through this very simple example the efficiency of TMD

in passive control systems can be stated. Further analysis could extend to analyze

multiple TMD elements in order to keep an effective passive control system on a

broader number of loading cases and time histories.
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Figure 5-1: Design equivalent damping on the primary system - STMD
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Optimal tuning frequency ratio for TMD -1 Mode
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Figure 5-5: Design optimal tuning frequency
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TMD effects on primary system, harmonic loads, (T=T1; P=10 KN/m)
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Chapter 6

Active motion control systems

In the above chapter a passive systems mostly suited to the control of the resonant

effects of wind components forced response was presented. This potential resonance

effects of wind are related to the turbulence which is contained in most of the winds

actions, the use of damping is one of the most efficient method to deal with undamped

and slightly damped structures. On the other hand the active control system is

designed to control aerodynamics wind effects on long and super long span bridges.

These effects are strongly related to the deformations of the structure itself in a highly

non-linear way.

An active control system is defined as a system that actively monitors the motion

of a structure and can modify it by means of an actuator powered by an external

energy supply. In 6-1 a schematic flowchart provides more detailed information about

the concept. The application of active control to civil structures is an innovation that

seems economically feasible for long span bridges. The concept of active control,

which is broadly applied in the aerospace industry, is still an innovation in civil

constructions. Although active control systems have been studied in many projects

at the design stage, and on scale models, full-scale systems have been installed on

structures only recently and never on bridges by now.

The first applications have been already implemented on buildings, as described

in the following paragraphs. The concept of active control can include many different

systems even if narrowed down to the construction industry.



Figure 6-1: Active control flowchart
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6.1 Technological paradigms in long span bridge

design

The research interest around the topic of bridge aerodynamics has strongly increased

after the Tacoma Narrow bridge failure in the 1940. Since then research developed

continuously towards safer and more reliable structures. The innovation has been

mostly incremental and the development has mainly been in design and in material

technology. The technology transfer from the aircraft industry has influenced the

innovation: wind tunnel tests have been used more often and have brought new

concepts in the design of optimally streamlined sections. The latest evolution has

been characterized by modular innovations such as the adoption of new materials

and of particular devices and design solutions aimed to reduce dynamic effects and

vibrations.

As new high-strength materials are adopted for cables and other structural el-

ements the aerodynamics wind effects related to structural flexibility are the main

limit towards the construction of super long spans. In fact, the evolution is towards

lightweight structures with high material stresses and for which the performance re-

quirements for deformations control the design and construction choices. The high

cost of high-strength materials is only affordable if an optimal material distribution

throughout the structure is achieved. Active control systems adopted to control the

motion of a structure can reduce the materials' quantities otherwise needed in the

construction. These systems can therefore be conceived as common element in wind

sensitive bridge to increase the comfort of the users, to reduce the fatigue damages,

and as a result of this, to increase the safety of the structure on a long term basis.

6.2 Technical description and background

At the moment in bridge engineering effective applications of active control are

thought and applied to the control of wind actions more than to the control of seis-

mic excitations. In fact, as the earthquake excitation is impulsive, short time lags



between the time in which the external signal is detected and the time in which the

countermeasure is taken can easily undermine the efficiency of the system.

The innovation presented here is based on the idea of using of control surface on

the side of a bridge deck to control the aerodynamic response of long span bridges

to extreme wind conditions [17]. The system here presented has been developed by

COWI, a medium size danish design and construction management firm highly spe-

cialized in bridge engineering and aerodynamics. The innovation is based on the idea

of constantly monitoring the movements of the deck and on the use of control surfaces

movements to generate stabilizing aerodynamic forces counteracting any tendency to

movement. This will bring an increase of the critical wind speed up to 50 percent.

The control surfaces are airfoils of polyurethane foamed stainless steel sheeted

sandwich. Because of their lightness they can easily be supported at a distance of

5-10 m symmetrically on both sides of the bridge deck. Control rods activated by

hydraulic cylinders, with short time rise, operate the airfoils. The hydraulic cylinders

are activated by means of computer controlled servo pumps. The computer operates

on the basis of signals from accelerometers located in the bridge girder, in accordance

with a service function developed on the basis of mathematical modeling and wind

tunnel tests.

Bridge engineering firms specialized in design and construction of long span struc-

tures have to develop high-end technologies to compete in a very tight market which is

based on low-cost bids or distinctive-capabilities competitions. The advantage of the

presented innovation is that it can be easily applied to a different range of projects.

The implementation of this innovation in bridge construction is affordable as great

part of this technology is derived and adapted from aircraft industry; the advantage is

that adequate system reliability can be accomplished by adopting standards already

in use in that industry. This will still be an innovation when designed for and applied

to civil engineering systems but at the mean time can be upgraded on the basis of

already developed research and design paradigms. In a similar way the innovation can

take advantage from the enhancements achieved in the computer industry particularly

in the area of data storage and processing.



6.3 Stage of development

To define the potentiality of the described innovation it is very beneficial to investigate

what is the state of the art in the field of applications of active control to construction.

This process is still in a pre-paradigmatic design phase [21], in which on the one hand

there is a strong push for research and developing of new technologies, on the other

hand the application of innovations to the construction world are still in a pioneering

age.

The evolutionary development of a branch of science is usually developed from

a pre-paradigmatic stage during which a body of theory reaches its maturity, to a

paradigmatic stage in which dominant patterns emerge and evolve toward design and

implementation. The technological paradigm [6], of active control has been devel-

oped under the technology push of the aerospace industry and have recently taken

advantage of the progress of computer industry and material science. Design and

construction companies, operating in the area of highly specialized structure are de-

veloping their own paradigms trying to gain a competitive advantage from being

the first innovators in their specialties, their objective is to define what can be the

dominant design of the future.

The first application of actively controlled structures has been implemented in

buildings in Japan [3]. Kajima Corporation has pioneered the field with the Kyobashi

Seivan, an eleven stories building in Tokyo equipped with an Active Mass Damper

(AMD) on top of it. The purpose is the limitation of motion response to lateral loads.

The AMD is activated when the sensors embedded in various part of the structure

send a signal to the processors that exceed a fixed limit. In this case the processors

send a feedback to an actuator that applies a force sufficient to start the mass of

damper. The efficiency of the system has been measured in the capability of reducing

the uncontrolled response to one third. A more recent application is the Nishikicho

Building a fourteen stories building whose construction was completed in 1993 in

Japan. The system is conceptually similar to the former the only difference being

that the AMD is coupled to a Tuned Mass Damper (TMD), which is a passive device.



The AMD is activated by a an active system of sensors, processor and actuator, its

mass is much smaller than the TMD mass and the purpose is to dampen out the

oscillation of the TMD through the use of a smaller force.

The extension of the application to bridge design is more difficult as the forces and

the masses involved are much larger than in the described buildings. However the

COWI innovation, as continuously distributed along the structure does not require

the activation of large masses or forces. As the core part of the system is in the

triangle sensor, processor/controller, actuator, the observation of existing systems

installed on buildings has been highly beneficial to the innovation.

The application of active control to bridge construction can potentially bring a

nontrivial change in the field of long span and super long span bridges. Although de-

rived from the aerospace industry and developed and applied to building construction

industry, its implementation to the bridge construction industry is completely new.

The described application of active control to bridge design and construction is a

system innovation; its integration into a new bridge improves the structural perfor-

mance of the system. In fact, the introduction this subsystem into a bridge completely

changes the concept of the analysis and the behavior of the entire system is completely

changed. Furthermore, the embedded system that continuously collects data during

the life cycle of the structure, increases the possibility of following the state of the

structure without time consuming and expensive inspections. An extension of the

system is the application to existing structures suffering from excessive deflections

due to the interaction with the aerodynamics effects of wind.

The system is based on the collection of data of the response of the structure to

an external action. At the same time the external excitation (i.e.; the wind action) is

measured and the data are stored, these two set of data will serve as a powerful tool

to identify the system characteristics through the analysis of the response.

The direct consequence of this is that this system plays the double role of actively

controlling the structure and providing a series of data along the life cycle of the

structure. These data can help in keeping track of the status of the system and

consequently decide if the structure is still meeting the performance requirements for



which it was originally designed. This follows the trend in structural monitoring that

is moving towards installing equipment able to keep track of the behavior of new

structures all through their life cycle.

6.4 Future potentiality

The active flutter control system has been proposed for a patent; it has the poten-

tiality for becoming a dominant paradigm in the design and construction of long and

super long span bridge. In fact, the full exploitation of the system could create new

opportunities in the area of super long span bridges by increasing the technical and

economic feasibility of many projects whose feasibility has been considered for a long

time such as the Africa/Europe Gibraltar crossing, the Bering Strait crossing, the

Messina Strait crossing.

The advantage from an economical point of view is much greater as the span

increases; in fact, the cost of material needed for the uncontrolled structure to meet

the required performance increases exponentially with the span. As a consequence,

the benefits that could come from the introduction of this innovation will come mostly

from projects in a span range over 1,000 m for cable-stayed bridges and over 2,000

m for suspension bridges. That is considered the scenario of the future. At the same

time the application of the active control system to existing bridges can be adopted for

facilities that show sensitivity to aerodynamics effects of wind at any time during their

life cycle. This area is continuously expanding in an age in which the government

investment for rehabilitation and retrofitting of existing infrastructure facilities is

growing fast compared to the investment for new constructions [18].

An efficient control system can improve the technical/economical feasibility of

large projects. Moreover, a system that provides a total control on the behavior of a

structure during its life cycle will increase the safety of the users of the facility. Last

but not least if less materials are involved in the construction, the environmental

sustainability of a structure is improved. The implementation of this innovation in a

new or an existing bridge can establish a dominant design, particularly in the area of



super long span bridges. The conclusion is that the full exploitation of this innovation

can bring great benefits to design and construction of new long-span bridges. Further

advantages from the development of the described innovation should come up when

transferring it to active control of earthquake excitation.



Chapter 7

Conclusions

The objective of my thesis has been the identification of some of the most relevant

issues in the design of long-span cable-stayed bridges. This type of structures has

recently experienced an interesting evolution and it seems that the limit span is going

to increase in the next future.

The idea of a design that mostly relies on the high tension capacity of new mate-

rials is very powerful when coupled with a performance-based design. The simplified

proposed method presented here is a potential new approach to design of very flexi-

ble structures and is mostly focused on the overall deformation performances of the

structural system.

This first step, together with more development of passive and active devices for

control of structural motion, could lead to new achievements in cable-stayed bridges

design. It is possible to think of structure that will perform better in their whole

life-cycle. The higher safety and serviceability performance will be the basis for the

design of these large structures.

The analysis of the approach to the design of Tuned Mass Dampers has shown

that good results can be achieved through simplified design that again is based on

the motion based requirement for the structure.

An analysis of the main phenomena related to wind-structure interaction has

been also addressed. This is the basis for the design of structures that meet their

performance requirements under the excitation due to strong wind.



Great impulse to wind engineering will come from a more unified approach to the

problem of the aeroelastic interaction between wind and structure. Strong improve-

ment to the field could easily come from the increased power of computational tools

and from the progress in the field of computational fluid dynamics.
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