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ABSTRACT

In this paper, we study the stability of non-singular projective varieties. We will prove a

geometric criterion for a non-singular projective variety to be GIT stable in the Hilbert

scheme, and then relate the Gieseker-Mumford stability of polarized manifolds to the

behavior of heat kernels. We will also discuss the stability notion used by Viehweg, and

state some new semi-positivity results of Hodge bundles. In the end, we find some of

the methods we used to understand the semi-positivity can be applied to study various

vanishing theorems.
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1 Introduction and Discussion

The main theme of this paper is to try to understand the geometric meaning of stability

of algebraic manifolds for the study of moduli problem. The results are divided into

several parts, however, they are closely related to each other.

Heat Kernel and Gieseker-Mumford Stability. In Geometric Invariant Theory,

the notion of stability for any polarized projective variety is introduced. However to

check the stability is usually a difficult problem, see [Mu], [Gi] and [VI]. It is therefore

very interesting to describe the meaning of stability by geometric data of the polarized

projective varieties. In this paper we will in particular show that the Gieseker-Mumford

stability of a polarized smooth projective variety (as used by them in [Gi], [Mu]) is related

to the existence of a special metric on the polarized line bundle.

In early 80's, Yau conjectured the relation between notions of stability of manifolds

and existence of special metrics such as Kahler-Einstein metrics. During my graduate

studies, Yau suggested me to work towards this direction. From chapter 2 to chapter

4, I will deal with the case of Gieseker-Mumford stability. Similar problems have been

studied before. In Tian's recent work ([T1], [T2]), he studied the relation between Kahler-

Einstein metric and stability extensively. The notion of stability used by Tian is different

from those used by Gieseker and Mumford. However we will see with modifications his

methods can still be used in the study of the stability of polarized manifold in the sense

of Gieseker and Mumford.

Another motivation comes from the work on Mumford stability of vector bundles by

Donaldson ([Dol],[Do2]), and by Uhlenbeck and Yau ([UY]). They proved that Mumford

stability is equivalent to the existence of Hermitian-Einstein metric. So the meaning of

stability of a vector bundle is clearly described by its geometry. We would like to call this

correspondence the HKDUY correspondence (Hitchin-Kobayashi-Donaldson-Ulenbeck-

Yau).

Our first main result is an interesting geometric criterion for a smooth projective



subvariety of CPN to be GIT stable in the Hilbert scheme.

Theorem 1.1 Let M C CPN be a smooth projective subvariety. Assume there exists

o E SL(N + 1, C) such that

1 zi ' zj n i
vol(M) ) ( Zo12 +... + IzN 2 FS = N +

where wFS is the Fubini-Study metric and [zo, , ZN] is the homogeneous coordinates of

CPN. Then the Hilbert point of M is (GIT) stable if its stabilizer with respect to the

action of SL(N + 1, C) is finite.

Apply this theorem, we can study the stability of polarized manifolds. For any polar-

ized manifold (M, L) with fixed Hilbert polynomial, choose a large number k (depends

on Hilbert polynomial), we can embed M into some CPN by Lk. Then we can talk about

the stability of (M, L) by consider the GIT stability of the corresponding Hilbert point.

This is the stability notion for polarized manifolds used by Gieseker and Mumford. More

precise definition will be given in chapter 2.

Theorem 1.2 Let (M, L) be a polarized manifold. For any large number k, if there

exists a metric g (depending on k) on L such that Bk(z) = Bk(z, g, Ric(g)) is pointwise

constant function on M, then the k-th Hilbert point of (M, L) is (GIT) stable if it has

finite stabilizer and consequently (M, L) is Gieseker-Mumford stable.

Here Bk(z) is the limiting function (as time goes to infinity) of heat kernel for Her-

mitian line bundle Lk. The definition of Bk(z) is given in chapter 4. We don't know

whether the converse of this theorem is true yet. However at least for a large class of

polarized manifolds, the converse is true.

The proof of these two theorems will occupy the next three chapters. In chapter 2,

we introduce the Gieseker-Mumford stability. We will also try to reduce the problem of

checking stability. The definition of Gieseker-Mumford stability depends on the Hilbert

scheme and the universal family which is usually "very singular". In chapter 3, we will



try to deal with this difficulty. And we will use (singular) Riemann-Roch to introduce

a functional DM which is closely related to Gieseker-Mumford stability. Actually the

definition of DM is motivated by K-energy in the study of Kahler-Einstein metric, and

also by Donaldson functional in the study of stability of vector bundles. In chapter 4, we

will prove these two theorems and relate the Gieseker-Mumford stability to the existence

of good metrics on polarized line bundles.

Weak Positivity and Viehweg Stability. In chapter 5, we'll introduce briefly

Viehweg's approach to moduli space of polarized projective varieties with semi-ample

canonical line bundle. Compared with Gieseker and Mumford's approach, he used only

an open part of the usual Hilbert scheme and he choosed a different ample line bundle

over this (quasi-projective) Hilbert scheme. In his approach, the stability will follow

directly from the weak positivity of some vector bundles such as the direct images of

tensor powers of relative dualizing sheaves. So he shift the difficulty of checking stability

to weak positivity. Therefore if one wants to understand Viehweg's approach, he has

to understand those weak positivity. Roughly speaking, a vector bundle over a quasi-

projective variety is weak positive if we can find a suitable compactification of the quasi-

projective variety such that the vector bundle can be extended to be a semi-positive

vector bundle.

For the direct images of relative dualizing sheaves, the positivity has been studied by

Fujita, Kawamata, Kollar, Viehweg, etc. It is natural to study it from the view-point of

Variation of Hodge Structures since the direct images of relative dualizing sheaves is one

of the Hodge bundles. We can give a geometric proof of the following known theorem.

Theorem 1.3 Let Y be a smooth complex projective variety and D be a divisor of normal

crossing on Y. Consider a polarized VHS of weight b on Y = Y - D with unipotent local

monodromies. Let H be the underlying local system and let -1 be the canonical extension

of H on Y. Then the lowest filtration F"(-() = 'n,b-n is a semi-positive vector bundle

over Y



This theorem was proved before by Kawamata in [Ka2]. His proof depends on the

theory of limiting mixed Hodge structures. Our approach is to use Hormander's L 2 esti-

mate for Hodge bundles equiped with Hodge metric. Schmid's Nilpotent Orbit theorem

is used to understand the asymptotical behavior of Hodge metric. If we consider a family

of polarized Calabi-Yau manifolds then we can get new semi-positivity results for Hodge

bundles. One of them is the following theorem.

Theorem 1.4 Let f : X -+ Y be a family of n-dimensional polarized Calabi-Yau man-

ifolds. Assume Y is Zariski open subset of a smooth complex projective variety Y such

that D = Y - Y is a normal crossing divisor. Let H = Rnf,(C)prim and assume the local

monodromies of H around D are unipotent. Let 71 be the canonical extension of H on

Y. Then n -1, 1 ® n,O is semi-positive vector bundle on Y, and det2 (7 n'- 1 1) ® 7 n ,0 is

nef line bundle on Y.

We hope this theorem will also have some implications to the moduli space of Calabi-

Yau manifolds.

In this paper, we will not include the detail of the proofs of both of these two theorems

since they are essentially very similar as the proofs of vanishing theorems which we will

discuss in chapter 6.

Discussion of Vanishing Theorems. Various vanishing theorems play impor-

tant roles in algebraic geometry. In the development of geometry of higher dimensional

varieties (especially in Mori's minimal model program), Kawamata-Viehweg vanishing

theorem (see [Kal], [V3]) is one of the cornerstones. Our motivation to study vanish-

ing theorems, however, are obtained from an attempt to understand Viehweg's work on

moduli space, especially on weak positivity. We found our geometric methods used to

understand weak positivity can be applied to study vanishing theorems too. By this way,

we can prove the following result.



Theorem 1.5 Let X be a smooth complex projective variety, F be a holomorphic line

bundle over X, and A be a subvariety of X. Assume some positive multiple mF can be

written as mF = L + D where D = => viDi is an effective normal crossing divisor

(vi > 0), and L satisfies for some number k > 1, BlkLI C A and JIkLI restricted on X\A

has at most b-dimensional fibers. Then for any p + q > n + max(b, dim(A)) + 1
r

Hq(X, QP(logD) 0 F 0 O(- E(1 + [+])Di)) = 0
i= 1

This theorem can be viewed as Kawamata-Viehweg type generalization of Shiffman-

Sommese's theorem ([SS], theorem 3.37). In particular when L is ample, it generalizes

Akizuki-Kodaira-Nakano vanishing theorem.

Esnault and Viehweg studied vanishing theorems extensively in [EV1], [EV2], [EV3].

They built up general algebraic methods to various vanishing theorems. Though theorem

1.5 are not written explicitly in their papers, however, it can also been deduced from their

results. In this paper we try to use analytic approach here. Our proof is quite elementary

and depends on a careful study of L 2 cohomology on the open manifold X\D. One

advantage of this method is it can be applied to study vanishing theorems on Kahler

manifold instead of projective variety. Another advantage is it can be applied to study

higher rank vector bundles. By the same method, we can deduce a generalization of

Nakano's vanishing theorem which is not known before.

Theorem 1.6 Let X be a compact complex manifold of dimension n and F be a Nakano

positive vector bundle on X. If D is a simple normal crossing divisor, then

Hq(X, Kx 0 F 0 O(D)) = 0 for q > 1

We can also generalize Kawamata-Viehweg vanishing theorem slightly to the case of

higher rank vector bundles (see theorem 6.2). The detail will be found in chapter 6.

We will try to apply our methods to study vanishing theorems on singular varieties

in the future.



2 Gieseker-Mumford Stability

In algebraic geometry people frequently need to consider the moduli problem of polarized

varieties, i.e., we consider moduli functor

Q : Schemes/C -- Sets

for the following objects:

!(C) = {(F, W) FI is a projective variety, W ample line bundle on F}

W is called a polarization of F, and (F, 7W) is a polarized variety. (M, L) is called a

polarized manifold when F is smooth. If the canonical sheaf wr is an ample line bundle

then usually people choose W to be wr, and F is called canonically polarized. Also we

identify (F, 71) with (F', 71') if there isomorphism T : F -4 F' such that T*(7') - -H.

It turns out we should fix some numerical invariants (Hilbert polynomial) first, in

order to "split" ! into smaller pieces. Recall for any line bundle W7 over F, the Euler-

Poincare characteristic X(F, Wm ) is a polynomial of m. Fix a polynomial h'(T) E Q[T]

of degree n, then we can consider the moduli problem for

%.(C) = {(F, W) I (r, W) E ~, X(F, m ) = h'(m) Vm > 1}

People are interested in proving the existence of moduli space. If using Geometric

Invariant Theory, then the essential point is the study of stability.

2.1 Moduli Space and Gieseker-Mumford Stability

Let's introduce the approach Gieseker and Mumford used to study moduli space. Later

in chapter 5, we will discuss the approach used by Viehweg.

By Matsusaka's Big Theorem, ah' is bounded, so we can choose a large number Po > 1

depending only on h', such that for all (F, W7) C h' (C) we have

V' is very ample, for all p > o (1)

Hi(F, 71") = 0, for all i > 1, P > o



Therefore for all (F, W-) E !h'(C) we can use W (/ > o0 ) to embedd F as a closed

subvariety of a fixed projective space CPN , for N = h'(p) - 1. This embedding is not

canonical, it depends on the choice of a basis of Ho(F, W/). Let h(T) = h'(LuT) be a

polynomial in Q[T]. Grothendieck proved there is a scheme Hilbh (the so called Hilbert

scheme) parametrize all the subschemes of CPN with fixed Hilbert polynomial h, and

over Hilbh there is a universal family Univh given as

Univh C- Hilbh x CPN

g (2)

Hilbh

Definition 2.1 For any projective subvariety X C CPN with Hilbert polynomial h C

Q[T], the Hilbert point of X is the corresponding point [X] E Hilbh. For any polarized

variety (F, $-) e h'(C), let It > po and consider an embedding e, : F -+ CPN by WP,

then the Hilbert point of e,(F) C CPN is called (one of) the p-th Hilbert point of (F, 7-).

Group G = SL(N + 1, C) acts on CPN naturally, and consequently G will acts on

Univh and Hilbh equivariantly. Let vo0 be a large number depending on Hilbert polynomial

h, Grothendieck proved on Hilbh there is an ample line bundle given by

Z = det(g,(r, O(u))) v > vo (3)

where 7r2 : Univh -- CPN is the projection. £ is G-linearized, by this we mean the action

of G on Hilbh can be lifted to the geometric bundle £. Therefore we may apply GIT to

Hilbert scheme with respect to the action of group G and the line bundle Z. Let's recall

the definition of stable points from [Mu], [V2].

Definition 2.2 A point xz H = Hilbh is called (GIT) stable with respect to G, £

and the given linearisation, or xz H(2)s, if for some m > 1, there exists a section

t E F(Hilbh, £m)G such that

1) Ht = H - V(t) is affine, where V(t) denotes the zero locus of t.



2) xE Ht, or in other terms, t(x) # 0

3) The induced action of G on Ht is closed.

And (F, W-I) is called Gieseker-Mumford stable if when p is very large, there exists vo > 1

such that for any v > vo, the p-th Hilbert points of (F, W7-) in Hilbh is (GIT) stable with

respect to G and £ = det(g, rO(v)).

As we see "stability" depends on the choice of a G-linearized line bundle. Actually do

not like Gieseker and Mumford, Viehweg choosed a different ample line bundle on some

quasi-projective subscheme of Hilbert scheme. Our formulation of stability is the same

as used by Gieseker and Mumford, therefore we call it Gieseker-Mumford stability.

2.2 Simple Propositions for Stability

Now pick up a polarized manifold (M, L) in %h' (C), we will try to understand the stability

of M from the differential geometric view point. Notice Hilbert scheme Hilbh and the

universal family Univh are usually singular, and this will be one of the difficulties for us

to apply differential geometric method later. Let's do some reduction first, in order to

simplify the problem a little.

Since the Hilbert scheme H = Hilbh is complete and £ is ample line bundle over

H, we can give a more geometric description for stable points on H. Assume Zm is

very ample for some m > 1, then we embedd H into a projective space CPM, such that

m = OCPM (1) H. Since £ is G-linearized, G acts on CPM by a rational representation

G -- SL(CM + I ), and the embedding is G equivariant. Let 0 : CM+1 - {0} -+ CPM be

the projection, and / be the affine cone over H, i.e., the closure of 0- 1 (H) in CM+1.

Proposition 2.1 x E H(£)" if and only if for all points i C 0-1(x), the orbit of ,i in H

is closed and the stablizer of x is finite.

This proposition is well known, so we omit its proof. This proposition can be trans-

formed into better versions for doing analysis later. Give a Hermitian metric 1I II on



Ocpm (1) over CPM. Fix a point x E H, define a function F : G - R by

F(a) = -log(||a() 1), for a G (4)

where is a fixed lifting of x to the fiber of OcpM (1) at x. Then proposition 2.1 is the

same as the following.

Proposition 2.2 x C H(C2)S if and only if Fx is a proper function on G, i.e., for any

c 1 , C2 E R the set

{a E G I C F(a) < C2}

is compact subset of G with respect to Hausdorff topology.

For some technique reason, let's reduce this proposition a little further. For any

x E H we have morphism

Tx : G - Hilbh (5)

given by -(a) = a(x). Notice the Hilbert scheme Hilbh is complete, so we can choose

G, a smooth compactification of G, such that 7T extends to a morphism

T : G -+ Hilbh (6)

Use T to pull back the universal family Univh over Hilbh, then we get a flat family of

varieties Z over G

C Gx CpN

(7)

G

Let i : - ± x CPN be the inclusion, and use t1, 7 2 to denote the projection of

x CPN to 0 and CPN respectively. In general 7 is not a flat morphism, however since

the family Univh is bounded (see [V2], for example), we know if vo is very large, then for

all fibers F of g : Univh -+ Hilbh we have

for i > 1, v>vo (8)Hi(r, Or()) = 0



Therefore we can apply Cohomology and Base Change Theorem, then for all v > vo,

-*(r) = *(det(g,(r7rO(u)))) = det(f.(i* O(v))) (9)

Consequently proposition 2.2 now becomes the following proposition which will be used

to check the Gieseker-Mumford stability of polarized manifolds.

Proposition 2.3 Let (M, L) C Sh' (C) be a polarized manifold. Let puo be given as in

(1). Then for any pt > po, the fp-th Hilbert point x E Hilbh of (M, L) is (GIT) stable with

respect to G and 2 = det(g,(irO(v))) (v > vo) if and only if FM is a proper function on

G. Where FM : G - IR is defined by

FM(a) = -log( a() ||2)

and • - is any Hermitian metric on Co = det(f*(i* tO(v))) over G.

The difference between this proposition and proposition 2.2 is we know the definition

of FM depends now only on the family f : E - G as given in (7), however in proposition

2.2, Fx depends on the line bundle £ which is defined from the universal family over the

Hilbert scheme. So in some sense, we are able to "forget" about Hilbert scheme and the

universal family which are usually very singular, and pay attention only to the subfamily

f : 2 -+ G. There are still singularities on E, but notice all the singular points are

contained in f-1(G - G).



3 Singular Riemann-Roch

In order to study the behavior of FM, we are going to use Riemann-Roch to relate the

information on G to each fibers of the family E (see [Dol], [T1], [T2]). By this way we

will introduce a functional DM which is similar to Donaldson functional in the study of

stability of vector bundles ([Dol], [Do2]), and also similar to K-energy in the study of

Kahler-Einstein metrics ([Ti], [T2]). It is defined on the set of Kahler metrics on M,

and unlike FM, the definition of this functional DM depends only on the geometry of M.

We will prove that FM can be bounded from below by DM (see lemma 3.6), and thus

properness of DM will imply Gieseker-Mumford stability. We will prove this estimate by

differential geometric method.

3.1 Deal With Singular Fibers: Some Intersection Theory

In our situation, the family f : E -4 G has still singular fibers. This force us to use

Singular Riemann-Roch of Baum-Fulton-MacPherson. We expect the singualr fibers will

play a minor role. First let's recall singular Riemann-Roch theorem from [Ful]. It tells

us for any variety X, we can associate a homomorphisorm from the Grothendick group

of coherent sheaves to the Chow ring on X:

TX : Ko(X) - A,(X)Q

This homomorphism will in particular satisfy the following properties:

1) (Covariance). If f : X -+ Y is proper, a E Ko(X), then fTx(a) = Tyf!(a).

2) (Module). If a E Ko(X), 3 E Ko(X) (Grothendick group of locally free sheaves),

then TX( 3 0 a) = ch(3) n Tx (a)

3) (Top Term) If V is a closed subvariety of X, with dim(V) = n, then

Tx(Ov) = [V] + (terms of dimension < n)

Using the homomorphism T, we know then the Todd class for a general variety X can



be defined by

Td(X) = Tx(Ox) E A,(X)Q (10)

And for any 3 E Ko(X), Tx (/) can be writen as

Tx(/3) = ch(3) n Td(X)

Let's return to our case, consider the family of varieties f : E -+ G given in (7).

Recall Lo is the determinant line bundle det(f,(i*frO(v))). For simplicity, we denote

the line bundle fr*O(1) over C x CpN by L. Apply the covariance of Riemann-Roch to

f E -- G, then we get

f, Tg (i*(L")) = r(f i*(L)) (11)

Apply the vanishing results (8), when v > vo the right hand side of the above equation

can be simplified to the following

f!(i*(L")) = f*(i*(Lv)) (12)

Also by properties of Riemann-Roch, the left hand side of (11) can be writen as

f*T~(i*(L)) = f*(ch(i*(L')) n T(O2)) (Module) (13)

= f.(ch(i* (L)) n ([2] + terms of lower dimension)) (Top Term)

Now let E be a desingularization of E. We want to write down Riemann-Roch by

using smooth varieties t and a x CPN in stead of E since we need to do some analysis

later.

g E > x CPN (14)



Notice we have the following simple relation after desingularization

Since i*(L) is a line bundle over E, by the Projection Formular for Chow groups we get

7r,(ch(s*(L)) n [t]) = ch(i*(L)) n 7,[E] (15)

Recall we use ti, t2 to denote the projections of C x CPN to 0 and CPN respectively.

Combine the results of (13), (15), and notice g, = sl,S then the left hand side of (11)

becomes

f*(~ (i*(L))) = g,(ch(s*(L)) n ([E] + terms of lower dimension))
(16)

= g*(ch(s*(L)) n [E]) + .i*(ch(L) n [Z])

where [Z] is a cycle of G x CPN surpported in E, and

dim(Z) < n + r - 1, r = dim(G) (17)

Here n = dim(E) - dim(G) is the dimension of fibers.

Now CPN has a filtration CPN D CpN-1 D ... D CP1 by linear subspaces, and each

CPk - CPk-1 = Ck is affine. This means CPN has a cellular decomposition. It follows

(see [Ful], for example) that for any m, we have a surjective morphism of Chow groups

@ Ak(C) 0 AI(CPN) - Am(C X CPN)
k+l=m

In particular, this implies

[Z] = [C1] x [D1] + + [Cr] x [Dr] (18)

Where [Ci]'s are cycles on C and [Di]'s are cycles on CPN. Assume among [C1], ... ,[Cr],

only [C1], - - - ,[C] are in Zr-1(C),r = dim(C). From (11), (12), (16) and (18), by

comparing the corresponding parts in A-,1(G), we get

(n + 1 )!g*(c l (s*L)n +l) + i,(ch(L) n E([Ck] x [Dk]))r-
(n + 1! k=1

1 (19)
= cl(det(f*i*(L))) + 2c (G)

1-
= c (Lo) + -c (G)

2



where ('),-1 means the (r - 1)-dimensional part of this cycle.

Now notice E, G are smooth varieties, and g, i1 are holomorphic maps, so we can

compute the terms in this equation by using differential geometric methods. Of course

then we will have to deal with those [Ck] and [Dk] terms. In the following lemma, we

have a simple but useful observation about those [Ck] terms.

Lemma 3.1 There are cycles [Dkl(1 < k < s) on CPN, and (r - 1)-dimensional cycles

[Ck](1 < k < s) on G, such that

n + 1)!g (cl(s*L ")n+l) + .(ch(L")n ([Ck] x [Dk]))r-1 C(0o) + C1(G) (20)
k=1

And we may choose Ck(1 < k < s) to be divisors of G surpported in G - G.

Proof. Assume [Dk] is bk-dimensional cycle of CpN . Notice that for all 0 < i < N,

Ai (CPN) is a free abelian group generated by i-dimensional linear subspace CP i of CPN.

Therefore in (19) we may assume bk is different from each other, and bl < b2 < ... < bs.

Notice

-1. ch(L")n 1[Ck] x [Dk])
k=1 r-1

S

E ,* (ch(L) n [Dkl)o [Ck]
k=1 (21)

v bk

Cl b ! (e l(L)b  n [Dk]) 0 [Ck]

= Ak vbk [Ck]
k=1

where Ak are some constants. Now by (19), we get

vn+ 1  L)n + l)

(n (c l (s*L) + 1) kibkk - CI(L) -+ C1(G) (22)
(n + 1)! k=k=1



Notice when restricted on G, Co and K0 are trivial line bundles because of the G action.

By the following exact sequence

A,(G - G) -+ A,(G) -4 A,(G) -- 0

we conclude there exist divisors Y and Yo, such that they are supported in G - G, and

Vn+1 )n+l 1
( g*(c(s*L ) + E Akvk[Ck] = [Y] + -[Yo] (23)

k=1

Also recall, by (17), we know

(r - 1) + bk = dim(Ck x Dk) < ( + r- 1)

Therefore bl < b2 < -- < b, < (n + 1). Choose v = 1, 2, -.. , s + 1 in (23). By solving a

non-degenerate (s+ 1) x (s +1) system of linear equations we find for every k, Ak [Ck] may

be represented by divisors with surpport in G - G, i.e., we may assume Ck is a divisor

with surpport in G - G. This proves lemma 3.1.

3.2 Logarithmic Green Current

Now let's begin to use differential geometric method. Give the Hermitian metric on s*(L)

over E and the Hermitian metric on L over G x CPN by using the standard Euclidean

metric on the hyperplane bundle over CPN. Let WFS be Fubini-Study metric on CPN,

then the curvature of s*(L) is s*1F(WFS), and the curvature of L is fr(wFS). We will also

fix a Hermitian metric I II on Lo. Denote the curvature of this Hermitian line bundle by

R(II II-). Fix a Hermitian metric 11 - 1 on K0 and its curvature is denoted by R(I1 - II).

Assume [Ck] is Poincare dual to a smooth differential form ak on G , and [Dk] is Poincare

dual to a smooth differential form 3k on CP N .

We want to write the equation in lemma 3.1 as equality of currents. For this purpose,

let's recall the Green current which was used by Gillet-Soule ([GS]) in their study of

Arakelov geometry. If X is any n-dimensional smooth projective (complex) variety, and



Y C X a closed irreducible subvariety of codimension p, then there exists a (p - 1, p - 1)-

current 0 (the so called Green current), and a smooth closed (p,p)-form w on X, such

that

J-1-

27r

Here 6 y is the current representing integration on Y. What's important is that we can

choose 0 to be given by smooth differential form on X - Y which is of logarithmic type

along Y. By Hironaka's theorem on the resolution of sigularities, there exists a proper

morphism

r: X - X

such that X is smooth, E = r-1(Y) is a divisor with normal crossings, and when re-

stricted on X - E, 7 is an isomorphism. Then 4 is of logarithmic type along Y means

near each x E X, if z ... Zk = 0 (0 < k < n) is the local equation of E then there exists

a and d closed smooth forms ai and a smooth form 3 such that

k

7r*( ) = E(logjzi 2)ai + 3
i=l

Then 4 is called the logarithmic Green current of the subvariety Y C X. Using this

kind of logarithmic Green current, we can write the results in lemma 3.1 into equalities

of currents.

Lemma 3.2 There is a measurable function 0, (depending on v), such that as currents

n+l s
(n + 1)*(s*-*(WF)n+ ) + Il*(exp(lwFS) A k A k)r-1

k=1 (24)

= R(| - 11) + R(| - 10) + V 00e
27 47 27r

0, is smooth function when restrict on G, and is bounded from above by a constant on

G. Here (),r-1 means the (r - 1, r - 1) part of a differential form.



Proof Let [Z] E A,n+,_ () and [Y] E Ar-I(G) be cycles such that [Z] = cl(s*L")n+l,

and [Y] = (cl ( 0o) + 1cl(G)). By lemma 3.1 we get equality between cycles.

n+l s

+ g,[Z] + Akbk k
(n + 1)! k=1

This equation, in terms of currents, are

n+ l S

( g *(6z ) + E Ak Vbk ck
(n + 1)! k=

Let oz, 4y and Ock be the logarithmic Green current of Z C t, Y C G and Ck C G

respectively. Then we find (24) is true for some measurable function 0, given by

Vn+l S

Og, ( + ()z) + Z Ak kk -
k(n 

+ 
k=1

Here 0, is smooth on G - g (Z) - Y - (C1 + + Cs) and has at most logarithmic growth

along Y + g,(Z) + (C 1 + - - - + Cs) + (G - G). However, every term other than d00, in

(24) is smooth differential form on G, therefore by the regularity of 0 operator, 0, can

be extended to be a smooth function on G. In (24), g,(s* t(wl')) is a positive (1, 1)

current on 0, other terms except 00,, are smooth differential forms on G. Therefore for

example by Green's Formular

() = 0 ,(y)w - JG(r, y)AO,(y)w (25)

we can show 0, is bounded from above on G. Notice here we used the fact that L1 norm

of 0, on C is finite, since 0, has at most logarithmic growth along G - G.

3.3 Secondary Characteristic Classes Type Computations

The right hand side of the equation in lemma 3.2 will contain 08FM term when restricted

on G, thus we may expect to recover some information about FM from it.

Fix a reference point 0 E G C G, let Mo be the fiber of g : t -4 G over 0, then M0

is isomorphic to M. Let's identify M0 with M, and let w = s*7r2(WFS)IMo. Denoted by



P(M, w) the set of all Kahler metrics on M in the same cohomology class as w. We'll

define a functional on P(M, w).

Definition 3.1 DM is defined to be a functional from P(M, w) to IR. For any w' E

P(M, w), let w' = w + 8p for some smooth function p. Then DM(w') is defined by

DM(w') j t A dt (26)

Here wt = w + dSpt (0 < t < 1) is a smooth path from w to w' in P(M, w).

It is straight forward to check that DM(w') is well defined, i.e. it is independent of

the choice of a path wt in P(M, w).

Now since we have indentified M with M0 , then M becomes a subvariety in CPN.

We know for any a E G, g- 1(oa()) can be indentified with o(M) C CPN. Then we let

W, = a*(wFS (M)) E P(M, w) (27)

For convenience, let's make another simple definition though it is not essential.

Definition 3.2 Bergman metrics of M C CPN is defined by

Berg(M) = {w a E G} C P(M, w)

Now use Bergman metrics, DM can be considered as a functional defined on Berg(M).

DM can also be considered as a functional on G by

DM(a) = DM(w,), for any a E G (28)

Eventually we will show that in order to prove FM(a) is proper it is enough to show

DM(a) is proper.

Now we try to derive information of DM from (24). Let's do some computation

first. The following lemma is in fact Bott-Chern secondary characteristic classes type

arguments.



Lemma 3.3 For any smooth 2(r - 1) form q with compact surpport in G

s*,T(Wnl) A g*( ) =8 2(FS
(n + 1)DM(a) A 00q

Proof Let G(M) = g-1(G) c G x CPN . Now define Ib :G x M -- G(M) C E by

sending (a, x) to (a, a(x)). Let H be the Hermitian metric on .*s*(L) by pulling back the

Hermitian metric on s*(L) and the curvature is denoted by R(H). Let Ho = pr*(HIM)

be another Hermitian metric on *s*(L) - pr*(LlM), where pT2 : G x M -+ M is the

projection. Define a path of Hermitian metrics Ht(O < t < 1) on 4*s*(L) over G x M

from Ho to H, such that

Ht = ell Ho and t = t -log((a, )
Ho (a, x)

Then by straightforward computation we have

LHS of (29)= ( R(Ht))n+" A pr*(()

= M 2(n +

= oGxM0 2 (n +

GM 0 2xr

2rr

1) bt A ( R(Ht))"2 -F

- (n + 1)DM((a) A 08
27

Therefore the lemma is proved.

Note KG is trivial on G, so we may pick up a meromorphic section so of KO, and

when restricted on G, so is a nonzero holomorphic section of KG. By Poincare-Lelong

lemma

R(|| -11)
27w

-1
= So - Olog(|Iso ll)
= 0 270

where Yo is a divisor of G surpported in G - G. Similarly we can choose a divisor Y

(depends on v) surpported in G - G too, such that

R(1 - 11) = + 1OFm(a)
27 2w

Here FM is defined in proposition 2.3.

(32)

(29)

)> A pr (0)

A pr* (Oao)

(30)

(31)



Lemma 3.4 For any smooth 2(r - 1) form q with compact surpport in G

( - R(I
S27r

(-
1|) + R(|| - 110)) A = -log( lso ))

47r

Proof (31) is true in the sense of current, so we get

LQo -Olog(| so 1)
27r

A ,

(34)

log(llso 1-) A aoq
27

By (32), similar arguments shows

L -1 R(l|
0 2x

S11) A = -F() A 8O
27r

Add these two results together, then the lemmar will follows.

Using lemma 3.1, we can prove something similar to Lemma 3.3 and Lemma 3.4. Fix

a Hermitian metric I1 - I on O0(Ck), then by Poincare-Lelong Lemma again as what we

did before we can deduce the following Lemma.

Lemma 3.5 For any smooth 2(r - 1) form ¢ with compact surpport in G

exp ((wFS)) A k A 3 k A I() -
GxCP

N
kV bk log(lsk 12) A &

2w

where Sk is the section of O(Ck) defining Ck, and Ak is the constant given by 21.

Since the proof is similar as before, we omit it. Remember we proved in lemma 3.1

that Ck is supported in G - G.

3.4 Analytic Criterion to Check Stability

Now from computations of last section and lemma 3.2, we conclude there is a holomorphic

function R on G, such that

FM(a) -n! DM(o) + EAkbklog(
k=1

k 2) - 2log( so 2) + 0, = logRI 22

A ao8

- R(27r

(33)

(35)

(36)

(37)

( -V Fm(a)
G 27



We can show R is actually a constant function. This follows from an observation of

Tian in [TI]. For reader's convenience, let's write out the detail. Let us denoted by

{ [zij, w110 < i,j < n} be the homogenious coordinates of CP(N+) 2 . Then we can use W,

a projective subvariety of CP(N+1)2 , to compactify G = SL(N + 1, C) natually. Where

W is given by

W = {[zij, W]o<i,3<y det(ziy) = w N+ }

Then by using the definition of DM and lemma 3.2, some easy computation shows that

R has at most polynomial growth near W \ G, i.e., there exist constants 1 > 0, C > 0,

such that

IR(a)I < C -d(a, W \G)

where d(a, W \ G) denotes the distance from a to W\G with respect to the Study-Fubini

metric of CP(N+1)2 . Therefore R extends to be a meromorphic function on W. Notice

that W is normal and W\ G is irreducible. Since R is nonzero everywhere in G, it follows

that R has to be a constant, otherwise the divisor W \ G will be linearly equivalent to

zero. Also recall we already showed that 0, is bounded from above, and consequently

from (37) we get the following lemma.

Lemma 3.6 There are constants C' > 0 such that for v large enough

Vn+l os 1 o 2)
FM(or) -- Dmua) - lAk og(SkI 2) + o19( so - C' (38)

k=1

Here Ak and 0 < bk < n are constants.

Therefore eventually we can established an analytic criterion for the stability of a

smooth subvariety.

Proposition 3.1 Let (M, L) E h',(C) be a polarized manifold. Let Po be given as in

(1). For any p > Po, if DM is a proper function on Berg(M) then p-th Hilbert point

x E Hilbh of (M,L) is (GIT) stable with respect to G and Z = det(g,(i*!(O(v))) for

very large v.



Proof By (29) DM is a pluri-subharmonic function on G. And from its definition DM

has logarithmic growth along G - G. If we know DM is proper, then there will exists

constants 6 > 0 and C > 0, such that

DM(a) > 6 -log(d (a, W \ G) - ) - C

Then by (38) we know for v large enough, FM(a) will be proper. Consequently by

proposition 2.3 then p-th Hilbert point x E Hilbh of (M, L) is (GIT) stable.

Notice this functional DM is closely related to the K-energy functional defined by

Mabuchi for the study of Kahler-Einstein metric. Recall the K-energy v, is a functional

from P(M, w) to R, and in the case when cl(M) > 0, for any w' E P(M, w) we define

v') = i M (s(wt) - n)wn A dt

where wt = + ot (0 < 1) is a path from w to w' in P(M, w). Actually from [T1],

[T2] the properness of this K-energy will implies the existence of Kahler-Einstein metric.

In our case the Gieseker-Mumford stability of variety does not relate to Kahler-Einstein

metric directly.

This functional DM is also similar to Donaldson functional for vector bundles, see

[Do2] where the relation between Donaldson functional and family index theorem is ex-

plained.



4 Heat Kernel and Gieseker-Mumford Stability

Recall HKDUY correspondence ([Dol], [Do2], [UY]) says Mumford stability of com-

plex vector bundle is equivalent to the existence of Hermitian-Einstein metric on this

vector bundle. Suggested by this correspondence, we will also try to relate the Gieseker-

Mumford stability of polarized manifold (M, L) with existence of some good metric. Due

to some technique difficulty, up to now we can only succeed to show one side of this story

is true, i.e., existence of a good metric implies the Gieseker-Mumford stability. Along

the way, we also get an interesting criterion for the Hilbert point of a smooth projective

subvariety of CPN to be (GIT) stable.

4.1 Geometric Criterion for Gieseker-Mumford Stability

First let's try to find equation satisfied by the critical points of DM. Let a E G be a

critical point of DM. Let s(t)(-c < t < E) be a path in G = SL(N + 1, C) and s(0) = a.

We will denote DM(s(t)) by DM(t), and denote w,(t) by wt when there is no confusion.

Recall

t = W + &(10t (39)

where 'pt is function on M, and for any z = [z0 , - - - , ZN] E M

t(z) = log (1s(t) z 112 )

From the definition of DM in (26), by straightforward computation, we get

DM(T) = DM(O) + -(t)W t A dt (40)

Consequently by simple computation, we find o is critical point of DM on G if and only

if it satisfies the following equation

1 f ( zi. 1 (41)

Vol(M) I |Zo12 + . . ZN 12 WFS N+l



Lemma 4.1 Let M C CPN be a smooth projective subvariety, and its Hilbert point

[M] e Hilbh has only finite stabilizer with respect to the action of G = SL(N + 1, C).

If DM has a critical point, then DM is a proper function on G, and there exist constant

6 > 0 and C > O such that

DM(s) > 6 . log(d(s, G \ G)-1) - C (42)

Here d(s, G \ G) is the distance of s to G \ G with respect to a smooth metric on G.

Proof For any s E G = SL(N + 1, C), let s*s = U*A2U, here U is a unitary matrix

and A is a real diagonal matrix. Then by the definition, DM(s) = DM(A. U). Let

: C N x U(N + 1, C) -- G be a surjective map such that for any (zl, ... ,zN, U) E

CN x U(N + 1, C),

O(zl7-,ZN,U) = A- U, for A = diag(zo,--.,zN)

here z0o = (zl ... ZN) - 1 . Then we need only to prove the pull back function 0*(DM) on

CN x U(N+1, C) is a proper function. Fix any U E U(N+ 1, C), let o = q*(DM)ICN xU}),

then by (29) o is a pluri-subharmonic function on CN. What's more, notice the com-

plex Hessian of 'p is nonzero everywhere and ' is invariant under the obvious action of

torus S1 x ... x S1 on CN. Simple computation shows 'p is a strict convex function of

(loglz , ,loglzN ), i.e., for all (zl, -- ,ZN) E CN,

Ologlzillog zj >

Consequently since 'p has a critical point, straightforward computation shows there exist

constant 6 > 0 and C > 0 such that

(P(Z,... ,ZN) > 6 log(|z112 +..-_+ IzN12) - C

Thus the lemma is proved.

Now we get our first main theorems stated in the introduction.



Theorem 4.1 Let M C CPN be a smooth projective subvariety, and its Hilbert point

[M] E Hilbh has only finite stabilizer with respect to the action of SL(N + 1, C). Then

[M] E Hilbh is (GIT) stable if there exists a G SL(N + 1, C), such that (41) holds.

This theorem says for the Hilbert point of M C CPN to be (GIT) stable, M must

have a lot of symmetry.

4.2 Relate Gieseker-Mumford Stability to Heat Kernel

Now let's try to translate the results to be the existence of a good metric. In order to

characterize the metric we need a definition.

Definition 4.1 Let (M, w) be a compact Kahler manifold, and let L be a holomorphic

line bundle with a Hermitian metric g. Then we define Bk(z) = Bk(z,g,w) to be a

function on M, and for any z E M

N

Bk(Z,9,w) = I si(z)fl (43)
i=O

Here so, ... -, S is any orthonormal frame of Ho(M, Lk).

It is easy to check that Bk(z) is independent of choice of the orthonormal frame So, , SN.

Also we should point out that Bk (z) is closely related to the so called distortion function

discussed before by Kempf and Ji.

Now let (M, L) E h' (C) be a polarized manifold. Consider an embedding ek : M -+

CPN such that e*O(1) = Lk for some k > Po (Po is given in (1)). Assume (41) is true

for some a E SL(N + 1, C) then the k-th Hilbert point of (M, L) is (GIT) stable. Notice

if we pull back the standard Euclidean metric on 0(1) over CPN by the mapping

a - ek : M -_+ CpN

then we get a Hermitian metric II II on Lk, and the curvature of this metric is given by

R( - ) = e*a*(wFS)
27r



Now let's choose g = || -||I to be the Hermitian metric on L, and w = Ric(g) to be

the Kahler metric on M, then {e*a*(zi) 1 0 < i < N} will be holomorphic sections of

Lk on M. What's more, we can check that

ziZi = (44)lizii g I Z0 
2 + . + ZN 12

Therefore by (41), {ea*(zi) 0 < i < N} is orthonormal frame of Ho(M, Lk) with

respect to g and w = Ric(g). Consequently we conclude from the explicit expression of g

Bk (z, g, Ric(g)) = N 2 + + Z12

i= IZO 2 + ... + ZN1 2

In particular Bk(z, g, Ric(g) is a pointwise constant function on M.

Conversely assume there exists Hermitian metric g for L such that for othonormal

basis so, --- , Sy of HO(M, Lk), Bk(Z) = Bk(z, g, Ric(g)) is a pointwise constant function.

Then we have a cannonical embedding of M into CPN by

z - [so(z), - - - , N(Z)

We can check that (41) is satisfied when a = id, therefore the k-th Hilbert point of (M, L)

is stable in the Hilbert scheme Hilbh. So we have established one of our main theorems

of this paper.

Theorem 4.2 Let (M, L) E Sh' (C) be a polarized manifold, let yo be a large number

given by (1). For any k >2 Po, if there exists a Hermitian metric g (depends on k) on L

over M such that Bk(z) = Bk (z, g, Ric(g)) is pointwise constant function on M, then the

k-th Hilbert point of (M, L) is (GIT) stable with respect to G and 2 = det(g, (7rO(v))) for

all large enough v as long as the stabilizer of the Hilbert point is finite. And consequently,

(M, L) is Gieseker-Mumford stable.

This kind of metric deserves a further study. In fact, we should point out the function

SB(Z) k(Z,g, W) is related to the heat kernel. If we denote Ht(z, w) to be the heat



kernel with respect to the d-Laplacian operator on C"~O(M, Lk), then Bk(z) is precisely

the limit function of Ht(z, z) when the time t goes to infinity.

We don't know if the converse of this theorem is true or not yet. The main reason is

in the estimate (38), we only used the highest order term (with respect to v). However,

certainly for a large class of polarized manifolds, the converse of this theorem is true.



5 Weak Positivity and Viehweg Stability

In this chapter, let's consider Viehweg's approach to moduli problem. We will introduce

Viehweg's work in the first part, then in the second part we will include some new results

about semi-positivity of Hodge bundles. These results are obtained during an attempt

to understand Viehweg's work on weak positivity of the direct images of tensor powers

of relative dualizing sheaves. In [VI], [V2], these kind of weak positivity was used to

deduce the stability of smooth projective variety with semi-ample cannonical line bundle

and consequently to prove the existence of coarse quasi-projective moduli space.

5.1 Viehweg Stability and Relations to Weak Positivity

Fix a polynomial h' C Q[T] of degree n. As in chapter 2, let's use ah' to denote the moduli

functor for polarized varieties with fixed Hilbert polynomial h'. Viehweg considered

the moduli problem for polarized varieties with semi-ample cannonical line bundle. In

particular this include smooth projective varieties with ample cannonical line bundle and

polarized Calabi-Yau manifolds. For simplicity let's concentrate on these two cases, and

let ',, ~, be the moduli functors respectively. Therefore the objects of s, will be

'S, (C) ={F I F is a smooth projective variety,

wr is ample, and x(F, w' ) = h'(m),Vm > 1}

In this case, F is cannonically polarized. The objects of a", will be

h, (C) ={ (F, W) I F is a Calabi-Yau manifold,

7- ample line bundle, and x(F, - m) = h'(m), Vm 2 1}

It's well known T , and ', are locally closed, separated and bounded. Use boundedness,

there exists Po > 0 such that for all F ' , (C) (or all (F, W) E a", (C) in the second

case), w' (or W in the second case) will be very ample and without higher cohomology

for all p > o0. Then in both cases, we can use w (or 7[) to embedd all these F as

subvariety of a fixed CPN, for N = h'(p) - 1. By locally closedness, in both cases,



all these subvarieties will be parametrized by a quasi-projective scheme H, the Hilbert

scheme of cannonically polarized manifolds (or the Hilbert scheme of polarized Calabi-

Yau manifold in the second case). Let h E Q[T] be a polynomial given by h(T) = h'(pT).

Let Hilbh be the Hilbert scheme parametrize all subvarieties of CPN with fixed Hilbert

polynomial h as we used in chapter 2, then actually H is a locally closed subscheme of

Hilbh. And thus there is also a universal family X over H given by.

X - Univh c - Hilbh x CpN

i 94 (45)
H -~- Hilbh

H is G = SL(N + 1, C) invariant. As in [Mu], Prop.5.4, or [V2], Prop.7.7, in order

to prove the existence of coarse moduli scheme for T, and '",, we need only to show

there exists a geometric quotient of H by G. By using GIT, after choosing a G-linearized

ample line bundle £o on H, the problem is reduced to show all points in H are stable

with respect to G and Eo. In chapter 2, we know that £ = det(g,(irO(v))) is an ample

line bundle on Hilbh. However, Viehweg choosed a different ample line bundle over H.

For moduli problem of cannonically polarized manifolds, he choosed £o to be

0o = det(fWlH)

Here v is very large number. And for the moduli problem of Calabi-Yau manifolds, he

choosed £o to be

Po = f*WXIH

Now we can study the property of H with respect to G and 2o.

Definition 5.1 For any F tc ' ,(C), we say F is Viehweg stable if its Hilbert point in H

is a (GIT) stable point with respect to G and £o = det(fw lH). For any (F, W7-) E a", (C),

we say F is Viehweg stable if its Hilbert point in H is a (GIT) stable point with respect

to G and £o = f*wXIH.



Since Viehweg used a different ample line bundle 1o instead of 2, and apply GIT

to H instead of Hilbh, therefore Viehweg stability is different from Gieseker-Mumford

stability. In [VI], [V2] Viehweg proved in fact H = H(2)s, consequently we know there

exists quasi-projective muduli space in both cases. However, we should point out it is

hard to prove the ampleness of £o.

It is realized in [VI], [V2] that stability and the ampleness of Lo is related to certain

positivity of direct images of powers of relative dualizing sheaves which he called weak

positivity. Let's recall the definition of weak positivity from [V2].

Definition 5.2 Let Y be a quasi-projective variety and g be a vector bundle on Y. We

say g is weak positive on Y if for any ample line bundle l on H, any a > 0, there exists

3o > 0 such that Sp(g) 0 7-3 is generated by global sections on Y for any > o.

When Y is projective, weak positive is the same as semi-positive. And when g is a

line bundle and Y is projective, then weak positivity means nef (numerically effective).

In general, a vector bundle g is weak positive on quasi-projective variety Y means we

can find a projective compactification Y of Y, such that g can be extended to be a

semi-positive vector bundle over Y.

For the moduli problem of cannonically polarized manifolds, if we can show f,(w"|H)

is weak positive on H for all large v > 0, then we can show directly that Zo = det(f,wVlH)

is ample on H for very large v since it is not hard to show

-|H = det(fw iH) 0 det- (f*,wiH)

And recall this line bundle 2 is the ample line bundle on Hilbh used by Gieseker and

Mumford. This kind of weak positivity is actually ture for any family of cannonically

polarized manifolds instead of X, and we can check stability directly using this kind of

weak positivity (see [Vi], [V2]). For the moduli problem of Calabi-Yau manifolds, similar

thing is true, mainly in order to prove the ampleness and check stability, one need only

to prove some kind of weak positivity.



So if we try to understand Viehweg's approach, we have to understand the weak pos-

itivity. We can give geometric proof of a special case. Let's consider the weak positivity

of direct images of relative dualizing sheaves. In this case, under some condition, we

may even compactify the family f : X -+ H and prove the semi-positivity of the direct

images of relative dualizing sheaves. This is stronger than weak positivity. This kind

of semi-positivity has been studied before by many people such as Fujita, Kawamata,

Kollar, Viehweg, etc. It turns out we can reprove this result by a geometric method.

And in the case of Calabi-Yau manifolds we can deduce new semi-positivity results for

Hodge bundles. These results will be introduced in the following subsection.

5.2 Some Results about Semi-Positivity of Hodge Bundles

The semi-positivity of the directly images of relative dualizing sheaves can be studied

naturally in the frame of Variation of Hodge Structure. Since the directly images of

relative dualizing sheaves is exactly a Hodge bundle. One typical theorem is the following

theorem proved by Kawamata.

Theorem 5.1 Let Y be a smooth complex projective variety and D be a divisor of normal

crossing on Y. Consider a polarized VHS of weight b on Y = Y - D with unipotent local

monodromies. Let H be the underlying local system and let l be the canonical extension

of H on f. Then the lowest filtration Fn(7t) = -n,b-n is a semi-positive vector bundle

over Y

When the VHS comes from a geometric situation, this theorem has a clear geometric

meaning. Let f : X -+ Y be a family of polarized n dimensional smooth projective

varieties. Assume there are smooth compactifications X and Y for X and Y respectively

such that f extends to a morphism f : X - Y, and D = Y - Y is a normal crossing

divisor. Let H = Rdf,(C)prim (d < 2n), then H forms a polarized VHS according to

Griffiths. Assume the local monodromies of H around D are unipotent. Let W be the



canonical extension of H on Y. If we choose d = n then by the discription of [Kal],

Fn(n) = 7n= f*(WklI-)

Consequently by theorem 0.1, we know f,(wxg 1 ) is semi-positive. If we choose d = n + k,

then we get

Fn(tn) = wn,k = Rkf*(w xI)

Therefore R k f , (wY) is semi-positive too.

As we point out in section 5.1, semi-positivity of the direct images of relative dualizing

sheaves is related to the stability of polarized manifold and the existence of moduli space.

Kawamata's proof of theorem 0.1 depends on the theory of limiting mixed Hodge

structures. Our proof is to use Hormander's L2 estimate of a operator study L2 co-

homology of Hodge bundles equiped with Hodge metrics on the open manifold Y. We

will use Griffiths' curvature computation of Hodge bundles, and will use Schmid's Nilpo-

tent Orbit theorem to analyze the asymptotical behavior of Hodge metric. By the same

method, if we consider a family of polarized Calabi-Yau manifolds then we can get new

semi-positivity results for Hodge bundles.

Theorem 5.2 Let f :X -+ Y be a family of n dimensional polarized Calabi-Yau man-

ifolds. Assume Y is Zariski open subset of a smooth complex projective variety Y such

that D = Y - Y is a normal crossing divisor. Let H = Rnf,(C)prim and assume the local

monodromies of H around D are unipotent. Let Ri be the canonical extension of H on Y.

Then for any k(O < k < n), ('n,O)s ® _k,n-k is semi-positive on Y for s = dim(Hkn-k).

When k = n - 1 theorem 0.2 has an interesting stronger form. Since in this case

we can use Tian's description of Weil-Petersson metric in to compute the curvature of

Hodge bundle H"-l l 0 H n'o. It turns out we can get more sharp results.

Theorem 5.3 Under the same condition as theorem 0.2, fn-1,1 0 7f 1n,O is semi-positive

vector bundle on Y, and det2(- n - 1'1) 0 ,Hn,O is nef line bundle on Y.



The proof of these theorems are similar. The samilar techniques can be used to study

vanishing theorems in next chapter.



6 Vanishing Theorems

Though the main theme of this paper is to try to understand the stability notion comes

from algebraic geometry, however, I still would like to include one more chapter about

vanishing theorems. The reason is because various vanishing theorems are closely related

to the study of weak positivity in Viehweg's work. Also the techniques we used in the

proof of vanishing theorems can be applied to study the semi-positivity of Hodge bundles.

We don't write out the detail of proofs for semi-positivity of Hodge bundles, but instead

we choose to write out the detail of proofs of vanishing theorems.

Vanishing theorems have been studied extensively before. One classic theorem is the

Akizuki-Kodaira-Nakano vanishing theorem [AN]. It says if F is an ample line bundle

over a compact complex n dimensional manifold X, then

HP (X, F) = Hq(X, P 0 F) = 0 for p+q n + 1

When p = n, this is the Kodaira vanishing theorem. If X is assumed to be smooth

complex projective variety then Kodaira vanishing theorem has an important general-

ization given by Kawamata and Viehweg ([Kal],[V3]). Their result says if some positive

multiple mF can be written as mF = L + D where L is a nef and big line bundle and D

an effective normal crossing divisor, then

Hq(X, Kx ® F 0 0(-[--D])) = 0 for q > 1

Esnault-Viehweg built up general algebraic methods to various vanishing theorems

([EV1], [EV2], [EV3]). They gave various generalization Akizuki-Kodaira-Nakano van-

ishing theorem to the case of logarithmic differential forms. Here depends on analytic

method, we will try to generalize it too.

Recall the definition of b-ampleness of Sommese (see [SS]). Recall for k > 1, let BIkLI

be the base locus of IkLI, we can define the canonical holomorphic map

'FIkL : X\BkL CPN N = dimF(X, kL) - 1



Then L is b-ample just means for some number k, BIkLI is empty (i.e. kL is generated

by global sections on X) and the fibers of 'lkL is at most b-dimensional. Using these

terminologies, we can prove the following result.

Theorem 6.1 Let X be a smooth complex projective variety, F be a holomorphic line

bundle over X, and A be a subvariety of X. If some positive multiple mF can be written

as mF = L + D where D = E'= viDi is an effective normal crossing divisor (vi > 0),

and L satisfies for some number k > 1, BjkLI C A and I' lkLI restricted on X\A has at

most b-dimensional fibers, then for any p + q > n + max(b, dim(A)) + 1,

r

Hq(X, QP(logD) 0 F 0 (9(- E(1 + [])Di)) 0
i=1

As we mentioned in the introduction, this theorem can be deduced from Esnault-

Viehweg's results. Our method is different, and depends on Hormander's L2 estimate.

In fact, Kawamata-Viehweg vanishing theorem can also be proved by using L2 estimate

(see [Del], [Nad]). They choosed singualr metric on L and then apply L 2 estimate on

X. Our simple idea here is instead of working on the compact manifold X, we will

do all the estimate on the open manifold Y = X \ D. By the same method, we can

derive a generalization of Kawamata-Viehweg vanishing theorem. Before that, let's give

a definition.

Definition 6.1 Let X be a compact Kahler manifold with Kahler form w. We say a

vector bundle V over X is almost Nakano semi-positive, if for any E > 0, there exists a

Hermitian metric on V, such that its curvature form is bounded from below by -w 0 Idv

in the sense of Nakano.

In particular, any Nakano semi-positive vector bundle is almost Nakano semi-positive.

Using this notation, then we have

Theorem 6.2 Let X be a smooth complex projective variety. Let F be a line bundle over

X, such that some positive multiple mF can be written as mF = L + D where L is a



nef line bundle and D an effective normal crossing divisor. Then for any almost Nakano

semi-positive holomorphic vector bundle V over X,

Hq(X, Kx 0 F 0 V 0 O(-[ 1D])) = 0 for q n - v(L)+1

Here v(L) is the numerical dimension of L.

Similar result as this theorem is also obtained in [Ca] recently by different methods.

For vector bundles of higher rank, we have the Nakano vanishing theorem ([Nak]). Based

on the same idea and technique, we will study also Nakano's vanishing theorem. One of

the results we can get is the following.

Theorem 6.3 Let X be a compact complex manifold of dimension n and F be a Nakano

positive vector bundle on X. If D is a simple normal crossing divisor, then

Hq(X, Kx 0 F & O(D)) = 0 for q > 1

The organization of this chapter is as follows: section 6.1 to section 6.3 are the proof

of theorem 6.1 and 6.3. The main technique point is the proof of a L2 Dolbeault lemma

stated in section 6.1. We will give only a brief sketch of the proof for theorem 6.3 in

section 6.3 since it is quite similar as the proof of theorem 6.1. In section 6.4 we will

prove theorem 6.2.

6.1 L2 Cohomology and L2 Dolbeault Lemma.

From now on to section 6.3, we will try to prove theorem 6.1. However, we will assume

L is ample and A = 0. After we prove this special case, we will deal with the general

case in section 6.3.

Let X be a compact Kahler manifold of dimension n as given in theorem 1, and let

Y be the complement of the effective normal crossing divisor D. we will consider the L 2

cohomology on Y. In order to define L 2 cohomology we first assign Y a Kahler metric

and F a Hermitian metric.



Since L is ample, there exists a Hermitian metric 1lI L- | on L such that its curvature

R(I - JlL) is a positive (1, 1) form on X. Choose any Hermitian metric II D, for Ox(Di)

and let s, be the defining section. Let I D- D be the induced Hermitian metric on Ox(D).

Then we will give F the Hermitian metric h0 ,F over Y defined by
r 2h , -(2[ I 2- -,(logEllill2 ))2 . 117 (g ?nhDF 171 ® L (46)

i=1

Where e > 0, 6 > 0 and a > 0 are constants to be determined later. We will choose a

to be very large, while will choose E and 6 to be very small ( if we know vi > 0 for all

1 < i < r, then actually we can simply choose 6 = 0 ). Let

c (Dj) = -O0logS,112D

Denote the curvature of ha,F be R(h0 ,F). Then

1 r r a cl (Di )
-R(I HL) ZR(h,F) = R( - c(Di log(csI|D,1)

i= i= (47)
a. ((log(| 82D)) (log( Si 2D,))

(log(Esi 12 2

Since R(I - IL) is positive (1, 1) form on the compact manifold X, straightforward com-

putation shows for any fixed a > 0, when E and 6 is small enough, R(h,,F) is positive

definite everywhere on the open manifold Y. Therefore we can give Y the Kahler metric

wC,Y defined by

ay = R(ha,F) for a> 0 (48)

Let's describle the asymptotical behavior of w,,y near D. Take any local coordinate

chart (U; zl, ---, zn) for X such that the locus of D is given by zl ... zk = 0, and Yn U =

A k x A, where A1 is the open disk of radius1 and A* is the punctured open disk of
2 2 2 2

radius in complex plane. Then we find w,,y is quasi-isometric to the following Poincare

type metric w,, on U* = A*k xAI
2 2

ad d - i dz A d



And actually the bound between w,,y and wa,p is independent of a. Notice when a = 1

we get the usual Poincare metric on Ak x A'1 which we denote by wp.
2 2

Using the Kahler metric w,y on Y and the Hermitian metric ha,F on F, we can define

the L 2 norms of any F valued (p, q) froms. Consider the sheaf oQp(X, F) on X such that

on any open subset U of X, the sections of Qp(X, F) consist of F valued (p, q) froms

o with measurable coefficients such that the L2 norm of both p and &yp are intergrable

on any compact subset of U. The global sections of Q( (X, F) with 0 operator form a

complex,

(QP'O (X, F)) (P, (X, F)) -...-4 F(o"(X, F)) -+ 0
(2) (2) (2)

and the associate cohomology groups H (Y, F) of this complex {F(Q (X, F)), &} are

the Dolbeault L 2 cohomology groups with coefficients in F.

Let's point out some facts which will be used later. Notice that w,,y is a complete

Kahler metric on Y with finite volume. Simple calculation shows if O is a L 2 integrable

F valued (p, q) form and f is a smooth function on X then both f p and a(f W) will still

be L 2 integrable. Consequently we conclude Pq (X, F) is a fine sheaf on X and therefore

we get the vanishing of its sheaf cohomology groups,

Hz(X, RQ3(F)) = 0 for p,q > 0, i > 1 (49)

Now let's introduce the L2 estimate which is essentially due to Hormander [Ho], and

Andreotti-Vesentini [AV]. Here we will use the version suitable for our purpose as stated

in [De2].

Theorem 6.4 ([Ho], [AV]) Let (M, w) be a complete Kahler manifold of dimension n.

Let F be a holomorphic Hermitian vector bundle of rank r over M, and assume the

curvature operator A = [iR(F), A,] is positive definite everywhere on APM (Tpt) 0 F, q >

1. Then for any form g E L 2 (M, AP q(Tp) 0 F) satisfying Og = 0 and fM(A-lg, g)wn <

+oo, there exists f E L2 (M, APq-1(T) 0 F) such that Of = g and

S f 2 W n <  (A-gg)W n
M - M



For our complete Kahler manifold (Y, wo,y) the Kahler form w,,y is precisely the

curvature of the Hermitian line bundle (F, ha,F). Consequently we know the curvature

operator of F restricted on Apq 0 F is given by

[iR(F), A] = (p + q - n) - Id

Therefore applying theorem 6.4, we conclude

HPq (Y, F) = 0 for p + q > n + 1 (50)

Eventually we will see the vanishing of this L 2 cohomology will imply our theorem 6.1.

By (50), in order to prove theorem 6.1, we need only to prove the L 2 Dolbeault

cohomology HPq(Y, F) equals the sheaf cohomology of the holomorphic vector bundle

AP,(logD) 0 F 0 O(- Ei(1 + [E])Di) on X given in the theorem. This will follows

from the following L2 Dolbeault lemma.

Lemma 6.1 When a > 0 is very large, there is a resolution of AP,O(logD) 0 F 0

O(- Z>r(1 + [ ])Di) by fine sheaves on X given by

0 - AP',0 (logD) ®F® 0(- (1 + j[ ])D) -+ QP* (X, F) (51)
i=1

Some case of this kind of L 2 Dolbeault lemma (when p = 0) was known to S. Zucker

[Zu] and A. Fujiki [Fuj] by direct computations. Our proof will depends on the L 2

estimate of 0 operator and some curvature computations. Also for the proof of theorem

6.2 let's point out, when p = n this lemma is true for any a > 0, and similar results are

true even 6 is a small negative constant. These facts can be proved quickly by the same

arguments we are going to give.

From section 6.1, we already know QP (X, F) are fine sheaves on X. We need only

to check the exactness of (51). Let (U; z1 , -- ,x,) be the local coordinate chart of X as

before, and let e be a trivializing section of F on U. Denote (i be

1 dz, l <<i<k,= (52)
dzi k + 1 < i < n



Let s be a section of Qpo(X, F) on U. If furthermore Os = 0, then we write

L IIs=s(z) = A,(z)( i, A... A ,) e
IM=p

where I = (i1, , ip) is a multiple index and A (z) is a holomorphic function on U* =

U nY = Ak x A l. By definition s is L 2 integrable on U = A~k x A. C U n Y for any
2 2

0<r<.2

To simplify the computation notice that our Kahler metric wy U. is quasi isometric

to the usual Poincare metric Wp and the Hermitian metric ha,F U* is quasi-isometric to

the following Hermitian metric

k

h, = Iz i-(26+I)(log Zi 2)2al . 112 (53)
i=l

Here 11 -IF is a smooth Hermitian metric of F and we may assume I e(z)1F - 1. Now s is

L 2 integrable with respect to w,ay and ha,F if and only if it is L 2 integrable with respect

to Wp and h,. So we will replace w,,y and ha,F by wp and h0 when we talk about L 2

integrability. Let's compute the L 2 norm of s(z) on U* = LAk x A' with respect to wp

and h,. If we denote {i, .. , ip} n {1, ... , k} = {i, ... , ip,}, then we get

k

I2(*) = ~ 1(z) 2 (log z il 12 2 ... (log Zip, 12)2 1 Z-( 2 6+ )(log Zj 2 2 n

Ill=p j=1

Assume the Laurent series representation of AI(z) on Ak x A is given by
2 2

+oo

A,(z)= CIP(zk+1, ,) n z k1...k

P= -oo

here cr(Zk+l,... ,Zn) is holomorphic function on Al1. Then by Parseval summation
2

formular we find s is L 2 on U* = Ak x A if and only if s has removable singularities and

vanishes with order at least (1 []) along Di. This means s is a section of AP'o(logD) 0

F &O(- r=1(1 + [m])Di) on U.



Conversely if we choose s to be any holomorphic section of Ap,'(logD)F0O(- E'_ (1+

[!])Di) on U, then it is straightforward to check s is L2 integrable on U* for any

0 < r <. Therefore we proved (51) is exact at Q'o(X, F) for any real number a.

For the exactness of (51) at p,(X, F) for q > 1, we need to show for any g E

L 2 (U*, AP ® F) with respect to wp and ho, if 0g = 0 then on some U,* = Ak x A (0 <

E < ) we can find f such that

Of = g, and f E L 2(U*, AP'q- 1 0 F) (54)

For doing this, I will deform the Kahler metric Wp to be a complete Kahler metric on

U, = Ak x A', and then apply L 2 estimate to solve (54).

6.2 Deformation of Metrics and Curvature Computations.

Fix 0 < r < I, and deform the Kahler metric wp to be a new Kahler metric cp on

U* = A *k x Al given by

C p= Wp +O 8(01 + - - +n) (55)

where 0i is a function given by

i(z) 2 2

Then Dp is a complete Kahler metric on U' = A*k x A which can be seen easily from

its expression

k 2 + ,12
S= 2(log ) + ) dzi A dzf

n r 2 + I2 23(56)

S -1 ( 1 + W-  I 2) 3 ) d z A dfi
i=k+l (T2

We choose also a new Hermitian metric h0 for F defined by

ha = exp(- Z(alzi12 + aVi))ha (57)
i=1



So he is given explicitly by

k n

h 1= z-J i (Il-L)(log zi 2) 2 Jexp(-azi~ - 1)2
i=1 i--1

(58)

Here I - lIF is a smooth Hermitian metric on F, and recall Ile(z)llF = 1 for a generating

holomorphic section e of F on U.

(53), (55) and (57)

Denote the curvature of he to be R(h0 ) then by

R(ha) > a - p (59)

Notice Dp is the direct product of metrics on A* or Ar. Denote the i-th component

of Jp to be Di, then from (56) straightforward computation shows its curvature Ri

-Ric(ci) on U* satisfies

|Rjj = j0log(c')| < Cci for some C > 0

Consequently by (59) and (60), the curvature of F 0 K- 1 equipped with the Hermitian

metric induced from 69p and he will satisfy for some C > 0,

R(F 0 K-1 ) = R(ho) + Ric(@p) > (a - C)cp (61)

We will show that the curvature of E = Ap,' @ F 0 K-1 with respect to ha and Dp

is positive in the sense of Nakano. For this reason let's denote L to be the line bundle
1 1

FP 0 K-P on U*, then

E = (T* 0 L) A ... A (T* 0 L)

where T* is the holomorphic cotangent bundle of U*. In terms of orthonormal holomor-

phic frames {f } (1 < i < n) of T* given by

(
2 1 + z I 2 

2a
Iz,2(1ogjZj2)2 (r2 - z-Iz 2 )3  

-
d dzi

(1 + 2+IZ ) - i

0<i<k

k+l<i<n

(60)

(62)



we find the curvature of T* is
n

R(T*) = ci dzi A di 0 fi 0 fi* (63)

where ci, - Ri is bounded by constant on U* from (60). Now if we denote the corre-

sponding orthonormal holomorphic frame of T* 0 L to be ex and denote the curvature

of L to be
n

R(L) = 1R(F 0 K- 1) - b,; dz, A di
p i=1

then the curvature of T* 0 L is
n

R(T* 0 L) = i (6Sici + bi ) dzi A d 0 ex 0 e (64)
i,A=l

From (60), (61) and (64), it is then easy to check that R(T* 0 L) is Nakano positive if

a > C(1 + p). And consequently R(E) is also Nakano positive with respect to Jp.

6.3 On Akizuki-Kodaira-Nakano's Theorem and Nakano's The-

orem

We will prove theorem 6.1 and 6.3 in this section which are generalizations of Akizuki-

Kodaira-Nakano vanishing theorem and Nakano vanishing theorem respectively. Let's

prove theorem 6.1 under the assumption L is ample and A = 0. First let's establish the

L2 Dolbeault lemma. Let A be the contraction operator with respect to Jp. R(E) is

Nakano positve implies there exist c > 0 such that

A = [iR(E),A] > c Id on An q 0 E (65)

Now let's solve (54). Notice h0 decays to zero exponentially when Izil goes to r.

Since g E L2 (U*, AP q 0 F) with respect to wp and h,, from (55 and (57) we find g C

L 2(U*, Ap q 0 F) with respect to cp and h,. Recall that E = Apo0  F 0 K - 1, so g can

be considered as L 2 integrable E valued (n, q) form on U* with respect to cp and h,.



Notice (U*, Jp) is a complete Kahler manifold, so by (65) and theorem 6.4 we can find

f E L 2 (U, An, q - 1 ® E) = L2 (U * , Al q - 1 0 F) with respect to Dp and h0 such that Of = g.

Now from the explicit expressions of Jp and h , we conclude that f E L 2(U*, AP'q- 1 0 F)

with respect to Wp and h,. Thus (54) is ture for e = 1r, therefore we established the L 2

Dolbeault lemma.

From L 2 Dolbeault lemma, we get resolution of AP,'(logD)0F0O(- Er (1+[!])Di)

by fine sheaves Pq (0 < q < n) on X, therefore

H4(X, AP,'(logD) 0 F 0 O(- Z(1 + [- ])Di)) = H()P(Y, F)
i=1

However from (50) the L 2 cohomology group HP,(Y, F) vanishes, so we conclude

z=1

And this finishes the proof of theorem 6.1 in the special case.

For the proof of theorem 6.1 in general, we need a theorem of Hironaka in [Hir]. For

reader's convinnience, we state the theorem.

Lemma 6.2 ([Hir]) Let X be a smooth complex projective variety. Let 2 be an ample line

bundle over X, and A a subvariety. Then for any holomorphic map f : X\A - CPM,

there exists a number c > 1 such that the generic element of F(X, c2) doesn't vanish on

any positive dimensional irreducible component of f-l 1(y), for all y E f(X\A).

Now let's prove theorem 6.1 in the general case. It's a standard hypersection argu-

ment. We will do induction on r = max(b, dim(A)). When r = 0, L is actually ample

(see [SS]), so the conclusion for this case then follows from the previou special case.

Now assume theorem 6.1 is true for some r > 1. Fix an ample line bundle 2 on X.

Using Hironaka's theorem and Bertini's theorem, we can choose a smooth divisor Y in

cZ I for some c > 1, such that dim(A n Y) < dim(A) - 1 and l 1IkLI when restricted

on Y\A has at most (b - 1)-dimensional fibers. Therefore by induction, we have for



p + q < n - max(b, dim(A)) - 1

Hq(Y, Q~p(logD) 0 F - 1 0 O([ D])) = 0

Now notice we have an exact sequence of sheaves on X

0 -+ 2P(log(D + Y)) 0 O(-Y) -+ QP(logD) -s Q'P(logD) -+ 0

Using the associated long exat sequence of sheave chomology groups, we know theorem

6.1 in this case is reduced to show that for any p + q < n - max(b, dim(A)) - 1

Hq(X, RQP(logD + Y) 0 F-1 ® O(-Y + [ D])) = 0
m

However this result can be proved by applying the dual version of the special case of

theorem 6.1 (which we have established) to m(F + 2Y) = (L + mY) + (D + mY).

The proof of theorem 6.3 will be similar as theorem 6.1 and actually even simpler.

We will give only the outlines.

Since F is Nakano positive, there exists a Hermitian metric I" F on F over X such

that the curvature R(F) is Nakano positive. As in section 6.1, we give F a new Hermitian

metric hF over Y defined by

hF = D, II l ,  , , )  • F
i=1

Here E and 6 are small positive constants. We fix a Kahler metric Wy on Y which is

of Poincare type along D. Then we find if e and 6 are small enough then F (with the

Hermitian metric hF) is Nakano positive on Y, which is a complete Kahler manifold with

the Kahler form Wy. Consequently, we know the curvature operator of F satisfies for

some constant c > 0

A = [iR(F), A] > c - Id on A" 'q 0 F

Apply theorem 6.4, we get

H2) (Y, Ky 0 F) = 0 for q > 1



Restricted on each coordinate chart U of X such that U n Y = Ak x A 1 , the
2 2

Kahler metric wy is quasi isometric to the usual Poincare metric Wp, and hF is also quasi

isometric to

k

h = |z |i 2(logi 2 )21
i=1

We may assume F restricted on Ak x Al is just a direct sum of r copies of a holomorphic

line bundle L, and thus h is just a product of Hermitian metric on L. Now notice our

L 2 Dolbeault lemma is true for any a > 0 when p = n. Therefore we can establish the

corresponding L 2 Dolbeault lemma for this line bundle L, then consequently we will have

a resolution of Kx 0 F 0 O(D) by fine sheaves on X

0- Kx ® F 0 O(D) -+ ( (X, F)

Therefore we conclude

Hq(X, Kx 0 F 0 O(D)) = H nq(Y, F) = 0

Thus we proved theorem 6.3.

6.4 A Generalization of Kawamata-Viehweg Vanishing Theo-

rem.

In this section we will give a proof of theorem 6.2. In this section, X is n dimensional

complex projective variety.

Let's prove theorem 6.2. First, let's prove a special case when L is ample on X. Give

F over Y = X - D the Hermitian metric ha,F as we did in section 6.1. We still use

the Kahler metric w,,y = R(h0 ,F) on Y which is of Poincare type along D. Since V is

almost Nakano semi-positive, fix any Kahler form w on X, for any e > 0, there exists a

Hermitian metric hv on V over X such that its curvature form R(V) is bounded from

below by -ew 0 Idv in the sense of Nakano. Notice w < Cwo,y on Y for some constant



C > 0. Then the curvature operator of F 0 V restricted on An' (F 0 V) satisfies

[iR(F 0 V),A] > (qr - C) - Id

Here r = rank(V) and A is the contraction operator with respect to W,,y. Therefore if

we choose e very small, we know the curvature operator [iR(F 0 V), A] is positive definite

on A"nq(F 0 V) for any q > 1. Study the L2 cohomology on Y, then by theorem 6.4

H2 ) (Y, Kx 0 F 0 V) = 0 for q > 1

Since V locally is a trivial Hermitian vector bundle on X, the L 2 Dolbeault lemma in

section 6.1 implies we still have a corresponding L 2 Dolbeault lemma for F 0 V. Then

consequently, we conclude

Hq(X, Kx 0 F 0 V 0 O(-[mD])) = H)(Y, Kx 0 F 0 V) = 0 for q > 1

Let's prove theorem 6.2 in general. Actually, we may assume L is a nef and big line

bundle (i.e., v(L) = n). Since the general case when L is assumed to be nef only can be

reduced to this case by a standard hypersection argument. Then let's prove theorem 6.2

under the assumption when L is only nef and big. We state a lemma first. This lemma

is a well-kown fact, however for the convenience of the reader we write out the proof.

Lemma 6.3 Given any line bundle L over X, if L is big then there exists a positive

number c such that

cL = L' + D' (66)

where L' is an ample line bundle over X and D' is an effective divisor.

Proof Fix a non-singular ample divisor A and denote L' = O(A). Consider the exact

sequence

0 -- Ho(X, cL - A) - Ho(X, cL) -+ Ho(A, cL)



By Siegel's theorem, dimHo(A, cL) = O(c"-1). L is big implies when c is very large

dimHo(X, cL) > cc for some constant E > 0. Thus for a large c, HO(X, cL - A) : 0

and consequently cL - A = O(D') for some effective divisor D'.

Now let's go back to the proof of theorem 6.2. Choose blowing-up 7 : Y -+ X such

that +*(D') + 7*(D) + Ek 1 Ei is a normal crossing divisor. Here Ei(1 < i < k) are the

exceptional divisors of blowing-up. Since L' is ample over X we know that

k

L= 7*(L') - Z iEi (67)
i=1

is an ample line bundle over Y for some Ai > 0. Therefore for any number a > 1 by (66)

and (67) we have decomposition

k

acmr*(F) = ((a - 1)cr*(L) + L) +(r*(D') + acr*(D) + Ai Ei) (68)

ample

Notice (r*(D') + acir*(D) + E k> AiEi) is effective divisor of normal crossing over Y.

Therefore we can apply our vanishing theorem for the special case to (68). If we choose

a to be a very large number then we know

1 k

[a- (w*(D') + acw*(D) + A± iE)] = [17r*(D)]
acm m

Consequently by our result, we get

1
Ha(Y, K y 0 7r*(F 0 V) 0 0(-[ *D])) = 0

However since 7r : Y -+ X is blowing-up so we have

Rizr*Ky = Kx i = 0

0 iby the projection formular we know

Therefore by the projection formular we know

for q > (69)

(70)

R'ir,(Ky 0 -*(F 0 V) 0 0(-[ 7r*D])) =
Kx 0 F 0 V 0 O(-[1D]) i = 0

m (71)
0 i>1



Then theorem 6.2 follows directly from (69) and (71) by standard use of Leray spectral

sequence.
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