
Admissible Nilpotent Coadjoint Orbits of p-adic Reductive Lie Groups

by

Monica Nevins

B.Sc.(Hon) Mathematics and Computer Science
Summa Cum Laude

University of Ottawa, 1994

SUBMITTED TO THE DEPARTMENT OF MATHEMATICS IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1998

Copyright 1998 Monica Nevins. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole and in part.

Signature of Author:..

Certified by.....

Accepted by .................

(

. . . . . . . . . . . . . .. . . .. . . . .. . . . . . . . . . . .

Department of Mathematics
April 2, 1998

. .....................
David A. Vogan, Jr.

Professor of Mathematics
Thesis Supervisor

.....................................................
Richard Melrose

Professor of Mathematics
Dhair, Departmental Committee on Graduate Students

JUN 01198B science
LIBRARIES





Admissible Nilpotent Coadjoint Orbits of p-adic Reductive Lie Groups

by

Monica Nevins

Submitted to the Department of Mathematics
on April 2, 1998 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

ABSTRACT

The orbit method conjectures a close relationship between the set of irreducible unitary

representations of a Lie group G over a local field, and admissible coadjoint orbits in the

dual of the Lie algebra.

We define admissibility for nilpotent coadjoint orbits in p-adic reductive Lie groups, and

compute the set of admissible orbits for a range of examples. We find that for unitary,
symplectic, orthogonal, general linear and special linear groups defined over p-adic fields,
the admissible nilpotent orbits coincide with the special orbits defined by Lusztig and Spal-

tenstein in connection with the Springer correspondence. We also show that for the p-adic

Lie group of type G2 , all special orbits are admissible, and further that the minimal orbit is

a nonspecial admissible orbit.
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1 Introduction

A fundamental problem in the theory of Lie groups over local fields is the classification
and construction of the irreducible unitary representations of a reductive Lie group G. One
promising approach to this problem is known as the orbit method.

The orbit method seeks to associate irreducible unitary representations of G to coadjoint
orbits in the dual of the Lie algebra of G. The former are algebraic objects; the latter have
rich geometric structure. One can hope, and in many cases is able, to use this geometry
to construct the associated representation. Kirillov provided the first success of the orbit
method, with the following theorem.

Theorem 1.1 (Kirillov [K]). Let G be a nilpotent connected simply connected real Lie
group. There is a constructive bijection

Sirreducible unitary coadjoint G-orbits1
Gu = representations of in = *//G.

G "I

For example, if G = ], then g* = g*//G = R. The representation associated to the orbit

x E R is given by qx(y) = exp(2rxixy) for each y E IR. When G fails to be simply connected,
however, the conclusion of the theorem can fail as well. For instance, let G = R/Z. Then we
again have g* = g*//G = R, but the unitary representations are only those ox with x E Z.
In other words, not all coadjoint orbits arise in an orbit correspondence.

We thus seek to refine our statement of the orbit correspondence by describing those
coadjoint orbits to which representations can conjecturally be associated. The first attempts
in this direction led to the subset of integral orbits. They are defined as follows.

Fix an additive unitary character V of the base field F. For instance, if F = R, we may

choose 0(x) = exp(21rix).

Definition 1.2. An element f E g* is integral if there exists a unitary representation 7 of
Gf = {g EG g - f = f} satisfying --(exp(X)) = i(f(X)) for all X in gf n domain of exp.

This criterion is sufficient for the case of G = R/Z; in fact it is enough to obtain a
stronger version of Kirillov's theorem.

Theorem 1.3 (Kirillov [K], Moore [Mo]). Let G be nilpotent connected Lie group over
a real or p-adic field. Then there is a constructive bijection

Sintegral coadjoint
G-orbits in g* J

Partial Proof. Let f be an element of g*. The coadjoint orbit G - f - GIGf is naturally

a symplectic manifold: its tangent space g/gf at f carries the Kostant-Kirillov symplectic

form wf, defined by
wf(X, Y) = f([X, Y]) for X,Y E g/gf.



Suppose now that f is integral. To construct a representation of G associated to f, we choose
a real polarization of g. A real polarization is a Gf-invariant subalgebra [ of g containing

g, such that /gf is a Lagrangian subspace of g/gf. Such an 0 always exists when G is
nilpotent.

Since f is integral, we may define a representation of H = exp(b) by

a(exp(X)) = O(f(X))

for all X E b. Integrality guarantees the existence of a on gf; since here /gf is an affine
space, there is no obstruction to extending a to all of [.

Finally, we induce this representation from H to G, and define p(f, j) = IndG a to be
the representation associated to the orbit G - f.

What remains to be shown (and what we regrettably omit) is: that p(f, j) is irreducible
and unitary; that p(f, ~j) is independent of the choice of representative f or polarization [;

and that all irreducible unitary representations of G arise in this way. OE

Kostant and Auslander were able to prove that integrality is the correct criterion for
type I simply connected solvable real Lie groups as well. Nevertheless, the next example
shows that integrality is not a sufficiently precise criterion to fully describe the desired set
of orbits.

Let G be a reductive Lie group. Then we can identify g and g* via a nondegenerate
G-invariant bilinear form on g. Thus for each f E g, we obtain a Jordan decomposition
f = f, + fs, where f,, is nilpotent, and f, is semisimple. In other words, they act by
nilpotent, respectively semisimple, endomorphisms in any algebraic representation.

It is easy to see that if f is nilpotent, then f igf 0. Thus all nilpotent orbits are
automatically integral. Not all nilpotent orbits arise in the orbit correspondence, however.
One example is that of the minimal nilpotent orbit of the real symplectic group Sp(2n, IR) for
n > 1. The only irreducible representations associated to this orbit are ones of the two-fold
covering group of the symplectic group (the metaplectic group).

Hence we would like to find a refinement of integrality, one which gives a more restrictive
condition on nilpotent orbits.

To motivate the refinement proposed by Duflo, let us consider just one more extension
of Kirillov's result [LP].

Suppose G is real or p-adic Lie group containing a nilpotent connected normal subgroup
N. Denote the Lie algebra of N by n. Let f be an integral element of n*. By Theorem 1.3,
we have an associated irreducible unitary representation (p, Vp) of N.

We want to construct an irreducible unitary representation of G associated to the coad-
joint orbit G - f, built out of p. We will need to use "Mackey theory," as defined by the
following theorem.

Theorem 1.4 (Mackey [Ma, Theorem 8.1]). Suppose G is a Lie group, and N a type
I normal subgroup with a metrically smooth dual group. Let p be an irreducible unitary



representation of N. For each g E G, define the representation p9 of N via p9(n) = p(g-lng)

for n E N. Set
GP = {g E G I p9  p,

the stabilizer of p under G, and denote by G -p the G-orbit of p. Then we have a bijection

irreducible unitary represen- irreducible unitary represen-

tations a of GP for which aIN +-- tations a' of G such that a' N
is a multiple of p is supported on G -p

The correspondence is given by a -+ IndGP a.

In our case, we can use Theorem 1.3 to describe GP as the quotient

GP = GI N N/N

where Nf embeds into the semidirect product as n - (n, n-l).

The space Vp carries a distinguished projective representation 7r 0 p of Gf x N, where 7r

is related to p by the equation

7r(g)p(n) = pg(n)ir(g) for all g E G, n E N. (1.1)

This determines 7r only up to a scalar of modulus one, and in general it is not possible to

choose 7r to be a homomorphism. We must pass to a particular two-fold cover of GI to get

a (true) representation. The remarkable fact is that via the map

Ad: G -+ Sp(n/n),

the cocycle of the projective representation ir coincides with that of the restriction to Ad(Gf)

of the Segal-Shale-Weil representation of Sp(n/nf) (see [W]). In other words, the two-fold

cover in question is exactly the pullback of the metaplectic group Mp(n/nf) to Gf . Denote

this cover by (Gf)Mp. Thus, the projective representation r ® p of Gf x N leads to a (true)
representation 7rMP of (GI)Mp on Vp having the property that rM P 0 p is a representation

of (Gf)Mp x N.
This does not, however, give us a representation of GP on that space. To see this, note

that
G P = (Gf)Mp x N/ (Nf)M .

The restriction of irMp 0 p to (Nf)MP is nontrivial; it is given by a character 7 -1 , where 7

satisfies

1. 7(E) = -1, where e is the nontrivial element of (Nf)Mp lifting the identity;

2. r(exp(X)) = i(f(X)) for all X E nf .



Therefore, to get a representation a of GP with the desired property - that CaN is a multiple
of p - we must choose a representation 0 of (Gf)Mp whose restriction to (Nf)Mp is given
by r. Then the exterior product of the representations 0 0 1 and 7rM P 0 p gives such an
irreducible unitary representation a of GP. (This representation 0 is not unique. In fact, we
get all irreducible unitary representations of GP whose restriction to N are multiples of p
from different choices of 0.)

We may now apply Mackey's theorem, to get an irreducible unitary representation of G.
This completes our construction.

In 1980, Duflo generalized these ideas and proposed, for real Lie groups, the criterion of
admissibility of an orbit. We extend it to include the p-adic case as well. It naturally arises
from the question of the existence of the representations 0 of the construction above, and is
defined as follows.

Let G be an arbitrary Lie group over F, and let f be an element of 9*. Note that Gf
preserves the symplectic form wf on g/gf. Hence we may define a group (Gf)Mp such that
the diagram

(Gf)Mp - + Mp(g/f)

S Ad Sp(/f)

commutes. This is analogous to the metaplectic cover that arose in the construction above.
Let e denote the nontrivial element in the kernel of the map p.

Definition 1.5. An element f E g* is admissible if there exists an irreducible unitary
representation 7 of (Gf)Mp satisfying

1. 7(e) = -1, that is, r is a genuine representation;

2. -T(exp(X)) = (f(X)) for all X in gf n domain of exp.

Such a pair (f, T) is called an admissible orbit datum.

Duflo's work suggests that there should be a correspondence

u--+ {admissible orbit data}.

Although there are known examples where this fails to give a bijection [V1], it is a close
approximation to what we expect to hold true.

Let us now provide evidence that the admissibility criterion is a good one. Firstly, note
that the theorems proven using integrality can be restated using admissibility. It turns out
that in those cases, roughly speaking, the "integral 7" and the "admissible 7" are related
by tensoring with the square root of a character related to an existing polarization.



Secondly, we note that for reductive Lie groups, admissibility is at least not a trivial

criterion for nilpotent orbits G • f. Instead, it becomes a question of the splitting of the

covering group (Gf )Mp over Gf .
Thirdly, for real reductive Lie groups, there is an abundance of evidence linking admis-

sible orbits and unitary representations. For the semisimple admissible orbits, we can use

the known techniques of parabolic and cohomological induction to construct associated rep-

resentations [V1]. For the case of nilpotent orbits, the situation is far less well understood.

For one, there is as yet no definition for what it should mean for a representation to be "as-

sociated to" a nilpotent orbit, except in certain cases - such as those arising in the following

theorem. There, a natural association of a representation to a nilpotent orbit comes out of

the theory of primitive ideals and associated varieties.

Theorem 1.6 (Vogan [V2, Theorem 8.7]). Suppose G is a real reductive Lie group.

Suppose that a nilpotent orbit G - f satisfies a certain nice algebraic condition. If 7 is

an irreducible unitary representation of G associated to G f, then G f is admissible.

It is the case of nilpotent orbits in a reductive Lie group that we wish to investigate

further. One hopes to generalize Theorem 1.6, and to understand how representations

associated to nilpotent orbits might be constructed. We hope to gain a first insight into this

problem by determining the set of admissible nilpotent orbits.

Inspiration [V1] from Lusztig's work with representations of Lie groups over finite fields,
and from the Langlands' program, suggest a strong link between admissible nilpotent orbits

and the so-called special orbits defined by Lusztig and Spaltenstein (see, for example, [Ca,
§12.7]). We conjecture that, for nilpotent orbits in split reductive Lie groups over local

fields, special should imply admissible. The converse cannot hold because, for example, all

nilpotent orbits of a complex group are automatically admissible: the complex symplectic

group is simply connected and hence admits no nontrivial covers.

Schwarz [Sch] computed the admissible nilpotent coadjoint orbits for the real classical

groups. He proved that the special orbits coincided with the admissible orbits for all groups

except the (nonsplit) unitary groups. In this last case, all orbits are special, but not all

orbits are admissible.

In the present thesis, we extend Duflo's admissibility criterion to nilpotent orbits in p-

adic Lie groups (as summarized above), and use this criterion to prove the following theorem

(Theorems 5.10, 6.2, and 7.1).

Theorem 1.7. Let F be a p-adic field. Let G be a reductive Lie group over F. Then

1. if G = SL(n, F) or G = GL(n, F), then all orbits are admissible; in particular, the

admissible orbits coincide with the special orbits;

2. if G = Sp(2n, F), G = O(V) (an orthogonal group) or G = SO(V) (a special orthog-

onal group), then the admissible orbits coincide with the special orbits;



3. if G = U(V) (a unitary group) or G = SU(V) (a special unitary group) then the
admissible orbits coincide with the special orbits;

4. if G is a split group of type G2, then all special orbits are admissible; the minimal orbit
is admissible but not special.

For the case of the group G2, Savin [Sav] has constructed a representation of a three-fold
cover of G associated to the minimal orbit. That this does not descend to a representation
of G is a matter for further study: it suggests that admissibility alone is not enough to
guarantee the existence of an associated representation. This is a fact known for certain
examples of real Lie groups as well [V1]. Nevertheless, this theorem provides evidence that
the admissibility criterion that we have defined for p-adic groups is the correct analog of
Duflo's admissibility criterion, and that it gives a close approximation to the set of orbits
arising in the orbit correspondence.

The first few sections of this paper treat the requisite background material. In Sec-
tion 2, we fix our notation and terminology, and recall the notion of the Hilbert symbol
and exponential map for p-adic fields. In Section 3, we outline Weil's construction of the
Segal-Shale-Weil representation, its corresponding cocycle, and the metaplectic group. We
omit all proofs; see [LV] and [Pe] for a complete treatment of the subject. We also consider
the metaplectic covers of certain interesting subgroups of Sp(W) and construct criteria for
when these covers split.

In Section 4, we begin our discussion of admissibility. We define a criterion for the
admissible nilpotent coadjoint orbits following Duflo [D] and Lion, Perrin [LP]. We then
proceed to special cases. In Section 5 we consider the symplectic, orthogonal and unitary
groups, using ideas of Moeglin in [M] for the classical groups. We proceed to the case of the
special and general linear groups in Section 6. In Section 7, we classify the nilpotent orbits
for the split p-adic group G2, as well as presenting a treatment for the real case.



2 Background: p-adic Fields

By a local field we mean a locally compact, nondiscrete (commutative) field. The archime-

dean local fields are R and C, the fields of real and complex numbers, respectively.

A nonarchimedean local field of characteristic zero is called a p-adic field. It is a finite

algebraic extension of Qp, the p-adic completion of the field of rational numbers for some

prime p. The nonarchimedean local fields of positive characteristic are the fields Fq ((t)),
power series in one variable over the field with q elements. Although we are primarily

interested in p-adic fields, we will often state results in the broader context of all local fields.

2.1 The Hilbert Symbol

We adopt the following notation for a nonarchimedean local field F:

val, valF: the unique discrete valuation on F which gives a surjective map of F* onto Z,
and sends 0 to co;

91: = {a E F I val(a) 0}, the integer ring of F;

p, PF: = {a E F I val(a) > 1}, the maximal ideal in 91;

q: cardinality of the residue field 91/p;

p: characteristic of the residue field, also called the residual characteristic of F;

e, eF: = valF(p), the degree of ramification of F over Qp.

In general, we will denote our base field by F. A quadratic extension of F is denoted

E = F(w), where w F, but w2 E F. Then any element of E can be expressed as a sum

z = x + wy, with x and y in F. With this notation, the conjugate of z is - = x - wy. The

trace of E over F is the map TrE/F : E -+ F defined by TrE/F(z) = z + -5. The norm (over

F) of an element of E is defined as NE/F(Z) = zz.

Set F* 2 _ {a 2 I a E F*}; this is a subgroup of the multiplicative group of F. By way of

example, the group F*/F*2 has four elements when F is a p-adic field with p odd, but 2n-2

elements when F is a degree n extension of Q2. This gives the number of distinct quadratic

extensions of F (with the trivial extension F = F(1) included).

Let (a/b)F denote the Hilbert symbol of two nonzero elements a and b in F [N, 111.5].

We recall some of its properties now.

Lemma 2.1. Let F be a local field and a, b, c elements of F*. The Hilbert symbol (a/b)F

equals 1 if a is the norm of an element of F(xi/), and -1 otherwise. It satisfies:

1. (ab/c)F = (a/c)F(b/c)F, (a/b)F = (b/a)F, (a/a)F = (a/ - 1)F;

2. (a/1 - a)F = 1;



3. (a/b)F = 1 for all b E F* if and only if a E F*2

Also

4. (a/b)c = 1 for all a, b E C;

5. (a/ - 1)R = sign(a).

6. If F is nonarchimedean, of residual characteristic different from 2, then

(a/ - 1)F = (-1)val(a) 2

In particular, (a/ - 1)F = 1 for every a E 91*.

7. If F = Q2, then (-1/ - 1)F = -1, although (a/ - 1) = 1 for any a E 1 + 2 .

This final case of residual characteristic 2 is not well understood in general. We do have
the following result, however, which will be useful for our study. Recall that eF denotes the
degree of ramification of the p-adic field F over Qp.

Lemma 2.2 (Fesenko, Vostokov [FV, VII, §4, Ex.6(c)]). Let F be a p-adic field of
residual characteristic 2, and let a, b E F*. If

val(a - 1) + val(b - 1) > 2eF,

then (a/b)F = 1.

2.2 The Exponential Map

Suppose from now on that the characteristic of F is zero. Then one can formally define an
exponential map F -+ F* as an infinite power series centered at 0 E F. This series converges
everywhere for F = R or C, but for p-adic fields, it converges only on a neighborhood of
zero. More precisely, we have the following theorem.

Theorem 2.3 ([N, 111.1.2]). Let F be a p-adic field of residual characteristic p and let n
be an integer satisfying n > eF/(p - 1). Then the power series

x
2  x

3

exp(x) = 1 + x + + +-- (2.1)
2! 3!

and
X2  x 3

log(1 + x) = x-- +
2 3

give mutually inverse isomorphisms (and homeomorphisms)

exp: pn -+ 1 + pn and log: 1 + p -+ pn.
ep F F F F- P



What is of interest to us here is the exponential map from a Lie algebra to the corre-

sponding group. For linear groups, it is defined by the power series expansion (2.1), where

this time we let x = X denote an element of the Lie algebra g.

Lemma 2.4. Suppose G C GL(n, F) is a linear Lie group over a p-adic field F, with Lie

algebra g C End(Fn). Then the exponential map defines a continuous map from an open

neighborhood of 0 E g onto an open neighborhood of 1 e G.

Proof. We need to understand the domain of the exponential map. Where it converges, it

will be continuous. Let X be an element of g. There is some finite algebraic field extension

of F, say F, over which X has a complete Jordan decomposition. Specifically, there exists

a matrix h E GL(n, F) such that h- 1 Xh = D + N, where D is diagonal (with entries equal

to the eigenvalues of X), N is strictly upper triangular (hence nilpotent), and DN = ND.

It is easy to see that exp(X) converges if and only if exp(h-'Xh) = h - 1 exp(X)h converges,
which happens if and only if exp(D) converges.

Hence the convergence of the exponential map on X is equivalent to the convergence of

the exponential map on the eigenvalues of X, which is determined by Theorem 2.3 above.

Explicitly, each eigenvalue A of X must satisfy

valp(A) >
p-1

This domain might be viewed as a "tubular neighborhood" of the nilpotent cone in g. In

particular, it is an open neighborhood of 0 E g. The same construction at the group level

shows that the image of exp is an open neighborhood of 1 E G. O

We make the following definition.

Definition 2.5. Let Go denote the open normal subgroup of G generated by the image of

the exponential map.

When F = IR or C, Go coincides with the topological identity component of G. Recall,
however, that p-adic groups are totally disconnected, so such a description does not apply.

If G is a simple, simply connected algebraic group defined over F and isotropic over F,
and G = G(F) is its group of F-points, then Go = G by a theorem of Kneser and Tits [P1].
Such groups include G = SL(n, F) and G = Sp(2n, F), for example.

If G = O(V, F) is an orthogonal group (the group of all transformations preserving a

nondegenerate quadratic form on a vector space V), then Go C SO(Q, F), as the following

proposition shows.

Proposition 2.6. Suppose G is a linear Lie group defined over a p-adic field F of residual

characteristic p. Then for all g E Go, we have

det g 1 +p if p is odd;

1 +pn where n > eF + l, if p = 2.



The stated result is weaker than what we are able to prove, but is sufficient for our
applications.

Proof. Embed G in some GL(n, F) and its Lie algebra g in End(Fn). It suffices to prove
the proposition for g = exp(X), where X is in the domain of the exponential map in g. We
use the notation F, F, N, D of the proof of Lemma 2.4.

We wish to compute det(exp X). Since det(exp N) = 1, we have

det(exp X) = det(exp D) = exp(trace(D)).

The trace lies in F; let n = valF(trace(D)) = valF(trace(X)). By Theorem 2.3, this expres-
sion converges if and only if n > eF/(p - 1), in which case det(exp X) takes values in 1 + pn.
Since n is an integer and eF = valF(p) > 1, this proves the proposition. O

Corollary 2.7. If G is a linear Lie group defined over a p-adic field F, then (det g/-1)f = 1
for all g E Go. Moreover, det g = -1.

Proof. The second assertion follows from the equality -1 = (p - 1) + (p - 1)p+ (p - 1)p 2 +...,

and the preceding theorem.
The first assertion follows immediately from Lemma 2.1[6] and Proposition 2.6 for the

case of residual characteristic different from 2.
If F has residual characteristic 2, then we must apply Lemma 2.2. Since -1 = 1 + 2 +

22 + 2 3 +..., we know valF((-1) - 1) = valF(- 2 ) = eF. On the other hand, if g E Go,
then by Proposition 2.6, valF(det g - 1) > eF + 1. Hence the hypotheses are satisfies, and
we conclude that (det g/ - 1)F = 1, as required. O1



3 The Metaplectic Group

3.1 The Segal-Shale-Weil Representation

Let F be a local field, and V) a nontrivial unramified unitary character of F. For convenience,
not necessity, we assume the characteristic of F is different from 2; see [W]. Let W be a

symplectic vector space over F, with symplectic form (,). The Heisenberg group H(W) is

the set W x F with multiplication given by:

1
(v, s) -(w, t) = (v + W, s + t + -(v, w)).2

If 1 is a Lagrangian subspace of W, then 1 x F is an abelian subgroup of H(W). We can

define a representation of H(W) by:

irl = Ind, )id x 4.

By the Stone-von Neumann theorem [LV, 1.3.3 and A.1], this induced representation is

irreducible and, up to equivalence, does not depend on the choice of Lagrangian 1. Further-

more, any irreducible representation of H(W) for which the center acts by this character 4
is equivalent to 7re.

Let Sp(W) be the symplectic group of W, that is, the group of automorphisms of W

preserving the symplectic form (,). We have a natural action of Sp(W) on H(W), given by

g (v, t) = (gv, t).

Define a new representation of H(W) by

7r (v, t) = rl (gv, t);

it is equivalent to 7rj by the Stone-von Neumann theorem. Hence there exists a unitary

intertwining operator T(g), unique up to a scalar of modulus one, such that

T(g) o 7rg o T(g- 1) = it. (3.1)

Denote the space of unitary operators on the space of 7r by U(7). One can check that for

any gi, g2 in Sp(W), the operator T(gl)T(g2 ) E U(ir) intertwines 7r919g 2 and rl, and so must

be a multiple of T(glg2). Hence the map g '-+ T(g) defines a projective representation of

Sp(W), called the Segal-Shale- Weil representation.
We would like to be much more explicit in our understanding of this representation.

Consider the bundle over Sp(W) given by

{(g,T(g)) E Sp(W) x U(r) I T(g) satisfies (3.1)}. (3.2)

The fibre over each point is isomorphic to C = {z E C I Izl = 1}. There is a canonical section

of this bundle, depending on the choice of I [LV, 1.6.9 and A.9]; denote it by g (g, RI (g)).

For any gl, g2 in Sp(W), we can find cl(gl, g2) E C' such that

RI(gl)R(g 2) = C(g91 92 )R(g9192).



This defines cl E H 2 (Sp(W), C1 ), a 2-cocycle of Sp(W). We use this section to identify our
bundle (3.2) with the group GMp(W) = Sp(W) x C1 , where the multiplication in GMp(W)
is given by

(91, ) t (g2, t2) = (9192, tlt2 Cl (91, 92))"

This Cl-covering group of Sp(W) is called the Mackey obstruction group. Note that the
Segal-Shale-Weil representation gives rise to an honest representation of GMp(W) via

(g, t) F+ tR (g).

This is called the metaplectic representation.

3.2 The Metaplectic Group

We now need an explicit formula for the 2-cocycle cl.
For any three Lagrangian subspaces 11, 12, 3 of W, let 7(11, 2, 3 ) denote the equivalence

class of the quadratic form on 11 $ 12 E 13 given by:

(Xl,X2, X3) '- (X1 , X2) + (X2 , X3 ) + (X3,X1)

(see [LV]). The invariant of this form we need to consider is called the Weil index.
The Weil index y(Q) of a nondegenerate quadratic form Q is a unitary character of the

Witt group of F. It is defined by an integral equation in [W, §14], and has been computed
explicitly for all local fields in, for example, [Pe, Appendix]. (Although this explicit form is
quite complicated for p-adic fields, for F = R, y(Q) is simply 0(l signature of Q).) Denote
the quadratic form on F sending x to ax2 by a. For any nondegenerate m-dimensional
quadratic form Q on F, with discriminant D F*/F 2,

-(Q) 2 = (D/ - 1)F -(1)2m; (3.3)

see [W, §28]. We extend -y to degenerate quadratic forms, by defining y(Q) = -y(Q/rad(Q))
and y(O) = 1.

Lemma 3.1 (Vergne [LV], Perrin [Pe], Ranga Rao [RR]). Let W be a symplectic
vector space. With respect to a choice l of Lagrangian subspace of W, the 2-cocycle of
the Segal-Shale-Weil representation is given by

cl(gl, g2) = y(7((, 91l, 91921))

for any gl, g2 E Sp(W).

This cocycle, or the quadratic form 7(11l12, 13), are variously called the Leray invariant,
the Maslov index (over R) and the Kashiwara index (over any local field). Weil described
the cocycle only on an open subset of Sp(W) in his original work [W, §43].



Vergne [LV, §1.7] gives a nice interpretation of the cocycle in terms of oriented La-

grangian planes for the real case; Perrin [Pe] describes an analogous construction in the

local nonarchimedean case. We will use their results.
Before proceeding to the construction of the metaplectic group, let us illustrate the above

construction with a particular case where the cocycle can be described concretely.

Let W be a symplectic space, and choose a decomposition W = I $ I' of W into com-

plementary Lagrangian subspaces. With respect to this decomposition, we can write any

g E Sp(W) as a block matrix of the form

g= CD

in the usual way.

Lemma 3.2 ([LV, 1.6.22, A.9]). On the open set of Sp(W) x Sp(W) consisting of pairs

of block matrices
A, B 1  A 2 B 2

(gC g2 1 Dr ' C2 D 2

such that C1 and C2 are invertible, the quadratic form r(l, gl, g919g21) is given by the matrix

C1-1(CiA 2 + D 1C2)C2
- 1 = A 2C2- 1 + C1-1D1. (3.4)

The middle term on the left arises in the product gig2*

The proof is a straightforward calculation, and is omitted.

The final step in our construction is to find a smallest closed subgroup of GMp(W)

covering Sp(W); in essence, reducing the cover to its non-trivial core. Note that when

F = C, GMp(W) splits as a covering group for topological reasons, so we may exclude this

case from now on.
Following [W, §43] and [LV, 1.7.8 and §A.16], we will define a map

: Sp(W) -- 4

which satisfies

(g)I(g92) = C (gl, g2)2 '(9192). (3.5)

Then the subgroup
Mp(W) = {(g,t) I I(g) - = t2}

of GMp(W) is what we will call the metaplectic group. It is a non-trivial double cover of

Sp(W). The restriction of the metaplectic representation of GMp(W) to Mp(W) takes the

form
(g,t) tR (g) = p(g)-1/2Rl(g).

It is also called the metaplectic representation.
To define such a map T, we need the following lemma, which is not hard to prove.



Lemma 3.3 ([LV]). For any g E Sp(W), consider the isomorphism

algg: 1/(in gl) - (gl/(in gl))*

v -+ (.,v)>.

Choose orientations on the vector spaces I and 1 n gl; these give orientations on 1/(l n gl)
and (gl/(l n gl))*. If 1 = gl, then this map has a well-defined determinant D(aqgl) modulo
F* 2 . When I = gl, set D(alagl) = det(gjl), reflecting the extent to which g is orientation-
preserving on 1. These values D(aagt) depend only on g, and not on the choices made.

From the property (3.3) evolves the following proposition.

Proposition 3.4 (Vergne [LV], Perrin [Pe]). For any g E Sp(W), the map

'I(g) = (D(aj.gj)/ - 1)F y(1)2(diml-dim( n gl))

satisfies (3.5).

Note that this result is in some sense an extension of that in Lemma 3.2.

Remark 3.5. If -1 is a square in F, then in fact I'(g) = 1 for all g E Sp(W).

3.3 Coverings of Subgroups

Suppose we have a homomorphism i: G -+ Sp(W), where G is Lie group over F. Then we
can define the metaplectic cover (with respect to i) of G to be the group GMP = GM(W)
defined by the commutative diagram

GMP > Mp(W)

G S(W).

More explicitly, it is the subgroup of G x Mp(W) defined by

{(g,x ) E G x Mp(W) I i(g) = p(x)}.

We say that the metaplectic cover of G (corresponding to W) splits if there is a section of

this bundle, that is, a homomorphism r of G into Mp(W) satisfying p o 7r = i.

In this section, we consider various kinds of groups G and maps i: G -+ Sp(W), with the

intent of understanding the factors leading to a splitting of a metaplectic double covering

group.



3.3.1 Symplectic Decompositions

In this section, we discuss the case where G preserves a decomposition of W into symplectic

subspaces. Let e represent the nontrivial element in the kernel of the projection map p.

Lemma 3.6. Let W 1 and W 2 be two symplectic vector spaces, and set W = W1 EW 2 . Then,

viewing Sp(Wi) x Sp(W2 ) as a subgroup of Sp(W), we have

(Sp(Wl) x Sp(W2 ))Mp(W) = (Mp(W) x Mp(W2)) /(1,), (E, E)

Proof. Choose Lagrangian subspaces li of W1 and 12 of W 2 . Set 1 = 11 e 12; then I is a

Lagrangian subspace of W. An easy computation shows that for any two elements (gl, g2)

and (hi, h2 ) in Sp(W) x Sp(W2 ),

cl ((gl2), g2 , I h2)) = cl (91, hl)c(92 g h2)

and

'1((g9, 92))= 1 91) 12(2)-

Thus the map

Mp(WI) x Mp(W2 ) -- (Sp(Wl) x Sp(W 2 ))Mp(W) (3.6)

given by

((91, t1)7 (92 7 2)) ((91 92) 1 tl2)

is a homomorphism. It is surjective, and its kernel is precisely the set {((gl, t1 ), (g2, t 2 ))

g91 = 1, g2 = 1, tlt 2 = 1}, as required. O

Proposition 3.7. In the setting of Lemma 3.6, suppose we have a pair of group homomor-

phisms i 1 : G1 -+ Sp(W1i) and i 2 : G2 -+ Sp(W2 ). Then the metaplectic cover of G 1 x G2

induced by the map il x i 2 into Sp(W) splits if and only if each of the metaplectic covers

(G 1 )MP(W1) and (G 2 )Mp(W2) split.

Proof. First suppose that we have a section

G 1 x G 2 -+ (Sp(W) x Sp(W2 ))Mp(W).

Given any element (g, 1) E G 1 x G 2 , write its image under this homomorphism as

(g, 1) ) ((i1 (g), i2 1)) S9, 1)

By Lemma 3.6, the homomorphism s decomposes as s(g, 1) = sl(g)s2(1), where sl,s2 are

sections of G 1
M p (W ) , G Mp (W 2) respectively, determined a priori only up to sign. In this case,

however, we can fix 82(1) = 1, which leaves us with a well-defined homomorphism

G1 - Mp(Wi)

g (i (g), s (g))



We construct a section of GMp(W 2) in the same way.

Conversely, suppose we have sections sl, 82 of GMP(W1), GMp(W2) , respectively. Compos-
ing sl x s2 with the projection homomorphism (3.6), we get a section of (G1 x G2 )Mp(W),

as desired. O

Corollary 3.8. Let G be a Lie group. In the setting of Lemma 3.6, suppose we have a pair
of group homomorphisms ii: G -+ Sp(W1) and i 2 : G -+ Sp(W2 ). Assume the metaplectic

cover of G induced by i2 splits. Then the metaplectic cover of G induced by the map il x i2
splits if and only if the metaplectic cover of G induced by il splits.

Proof. Suppose the metaplectic covers GMp(W1) and GMP(W2) of G induced by the maps il

and i2 , respectively, split. Then by Proposition 3.7, the metaplectic cover of G x G induced
by the map il x i2 splits, and hence in particular splits over the diagonal subgroup isomorphic
to G.

Conversely, suppose the metaplectic covers GMp(W2) and GMp(W1BW2) both split over

G. The first part of the proof of Proposition 3.7 will serve us here: replace the element
(g, 1) E G1 x G2 with the diagonal element (g, g) E G x G, and the well-defined section

S2(1) = 1 with a section over all of G determined by the splitting of GMp(W2). The effect
is the same: to remove the ambiguity of sign, and hence give a well-defined splitting of
GM(W1). O

The hypothesis in this corollary - that GMp(W2) splits - is essential. We conclude this
section by showing that two nontrivial metaplectic double covers can induce a trivial cover
over the diagonal subgroup.

Let A denote the diagonal embedding of Sp(W) into Sp(W) x Sp(W).

Lemma 3.9. Let W, W1 and W2 be symplectic vector spaces. Suppose we have homomor-
phisms ii: Sp(W) -+ Sp(W1) and i 2 : Sp(W) -+ Sp(W2 ), such that the metaplectic covers of

Sp(W) arising from each of il and i2 are nontrivial. Then the metaplectic cover of Sp(W)
induced by the map

(it x i2 ) o A: Sp(W) -+ Sp(W1 e W 2) (3.7)

splits.

Proof. Up to inner isomorphism, there is a unique nontrivial two-fold covering group of the
symplectic group Sp(W) [MVW, Ch2.II.1]. Hence our hypothesis implies that

Sp(W)Mp(W1) - Sp(W)Mp(W2) - Mp(W).

It then follows from Lemma 3.6 that the metaplectic cover of Sp(W) x Sp(W) induced by
the map il x i2 is isomorphic to (Mp(W) x Mp(W))/Z, where Z is the central subgroup
{(1, 1), (E, e)}. The cover of Sp(W) induced by (3.7) is the diagonal subgroup

A(Mp(W) x Mp(W))/Z = {((g, t), (g, t')) E Mp(W) x Mp(W)}/Z.



For each g E Sp(W), let P(g) be a square root of xI(g)-, the character defining Mp(W)

(cf. (3.5)). Then we have a well-defined splitting homomorphism

Sp(W) -- * A(Mp(W) x Mp(W))/Z,

defined by sending g to the class modulo Z of the element ((g, P(g)), (g, P(g))). O

As a special and important case of these last two results, we record the following propo-

sition.

Proposition 3.10. Let W be a symplectic vector space, and W' an orthogonal vector space.

Then W ® W' is symplectic, and there is a natural map

Sp(W) -- Sp(W 0 W') (3.8)

given by g(w 9 w') = gw 0 w'. The metaplectic cover of the symplectic group Sp(W) arising

from this map splits if and only if dim W' is even.

Proof. We prove this by induction on the dimension of the orthogonal space W'. Suppose

dim W' = 1. Then W 0 W' - W, since both are symplectic vector spaces of the same

dimension. It follows that (3.8) is an isomorphism, and so the metaplectic cover of Sp(W)

is just Mp(W), which does not split.
Now suppose we have the result for any dimension less than k. Let W' be an orthogonal

vector space of dimension equal to k. Choose an orthogonal decomposition W' = W1 e W2,

with dim W 1 = 1 and dim W2 = k - 1. Then Sp(W) preserves the decomposition

w W'= (W W1) e (WOW2).

If k - 1 is even, then apply Corollary 3.8 to deduce that the metaplectic cover of Sp(W) does

not split for k odd. If k - 1 is odd, then apply Lemma 3.9 to deduce that the metaplectic

cover of Sp(W) splits for k even. OE

3.3.2 Lagrangian Decompositions

Now suppose that G preserves a decomposition of W into Lagrangian subspaces. Without

loss of generality, identify G with its image under the homomorphism i: G -+ Sp(W).

Proposition 3.11. Let W be a symplectic subspace over a p-adic field F, and G a closed

linear subgroup of Sp(W). Suppose G preserves a Lagrangian subspace I C W. Then the

map

Go - Mp(W) (3.9)

gd (g, 1)

defines a splitting of the metaplectic cover of G over Go.



Proof. Since G preserves 1, the quadratic form -(1, gll, gig21) is identically zero for all gl, g2 E
G. It follows that c(gl, 9g2) = 1, so (3.9) defines a homomorphism of Go into GMp(W). It
is certainly continuous.

To see that it takes values in Mp(W), first note that dim l-dim(lIngl) = dim l-diml = 0,
so the y(1) term in Proposition 3.4 disappears. Moreover, since G C Sp(W) is linear, we
may apply Corollary 2.7 to deduce that in fact (det(g i)/ - 1)F = 1 for all g E Go. Thus we
have '(g) = (det(gll)/ - 1)F = 1 for all g E Go, which completes the proof. ]E

Although in this thesis we confine ourselves to linear Lie groups, it is worthwhile to
note here an important case where a metaplectic splitting can be determined without using
results from Section 2.2.

Proposition 3.12. Let W be a symplectic subspace over a p-adic field F of residual char-
acteristic different from 2, and G a Lie group. Suppose we have a map i: G -+ Sp(W), and
two Lagrangian subspaces 1 and 1' of W satisfying the following conditions:

a) Inl'= {0};

b) i(G) preserves I and 1';

c) there is an isomorphism L: 1 - I' intertwining the G-actions on I and 1'.

Then the metaplectic cover GMP defined by i splits.

Proof. Choose dual bases of I and 1', so that together they form a standard symplectic basis
of W. With respect to this basis, the action of any element g E G is given by a matrix[A 0]

0 tA-1

where A = i(g)ll and tA-1 = i(g)ll,. Condition (c) above can then be stated as L o A =
tA-1 o L, from whence it follows that det(A) = det(A) - 1. Hence, det(i(g)lI) = +1 for all
g E G. Since the residual characteristic of F is assumed different from 2, we can apply
Lemma 2.1[5] to deduce that (det(i(g) l)/ - 1)F = 1. Hence the result follows from the proof
of Proposition 3.11. EO

3.3.3 Metaplectic Covers of SL(2, F)

We include one final observation about splittings of metaplectic covers over subgroups iso-
morphic to SL(2, F). This particular result will be of use to us in Section 7.

First let us introduce some notation. Let Wk denote the unique k-dimensional irreducible
representation of SL(2, F). It carries an SL(2, F)-invariant bilinear form which is orthogonal
if k is odd and symplectic if k is even. In the latter case, we write simply Sp(k, F) for the
corresponding symplectic group.



Proposition 3.13 (Vogan). Let F be R or a p-adic field of residual characteristic not

equal to 2, and let m be a positive integer. Corresponding to the action of SL(2, F) on

W 2m, we have a homomorphism

SL(2, F) -+ Sp(2m, F). (3.10)

The metaplectic cover of SL(2, F) induced by this map splits if and only if m is even.

Note that the embedding of SL(2, F) into Sp(2m, F) described here is not equivalent to

the kind arising in Proposition 3.10, if m > 1.

Proof. The proof is by induction on m, using the isomorphism of SL(2, F)-spaces

W
2 m-

1 & W
2  2m E W2m

- 2 .

First note that if m = 1, then the map (3.10) is an isomorphism. By [W], the corresponding

metaplectic cover is nontrivial. We prove here in detail the case m = 2; the general inductive

step is no harder.
Consider the representation of SL(2, F) given by

W = W3 ® W 2 = W 4  W 2.

We compute the covering group SL(2, F) = SL(2, F)Mp(W) in two different ways; comparing

them determines the cover of SL(2, F) induced from its action on W 4, as required.

Since W3 is an orthogonal space, and W 2 symplectic, we have the following commutative

diagram:

SL(2, F) ---- (O(W 3 ) x Sp(2, F))MP(W) - Mp(W, F)

SL(2, F) ---- + O(W 3 ) x Sp(2,F) ---- Sp(W,F).

We first determine the pullback of Mp(W, F) over the group O(W 3) x Sp(2, F). If we choose

a Lagrangian I of W 2, then W3 01 is a Lagrangian of W. Moreover, O(W 3 ) preserves W3 01,

so the metaplectic cover induced by W splits over O(W 3 )o by Proposition 3.11. On the other

hand, applying Proposition 3.10, we see that this cover does not split over Sp(2, F), since

the orthogonal space W3 is odd-dimensional. By [MVW, p34], the metaplectic group is the

only nontrivial two-fold cover of the symplectic group. Hence we have the isomorphism

(O(W 3 )o x Sp(2 , F))Mp(W) c O(W 3 )0 x Mp(2, F).

It follows that SL(2, F) - Mp(2, F).
On the other hand, using W = W 4 E W 2 and Lemma 3.6, we have

(Mp(4,F) x Mp(2,F))/Z --- Mp(W,F)

I I
Sp(4, F)x Sp(2, F) -+ Sp(W,F),



where Z denotes the diagonal central subgroup {(1, 1), (e, e)}. Let A denote the diagonal
embedding of G -+ G x G for G = SL(2, F), and let H be the group SL(2, F)Mp(4,F) that

we wish to determine. This group H is defined by the diagram

SL(2, F) - (H x Mp(2, F))/Z - (Mp(4, F) x Mp(2, F))/Z

I I t
SL(2, F) SL(2, F) x SL(2, F) --- + Sp(4, F) x Sp(2, F).

This group H is a double cover of SL(2, F), so must be one of Mp(2, F) or SL(2, F) x {+1}.

If H = Mp(2, F), then by Lemma 3.9, SL(2, F) must be the trivial double cover of
SL(2, F). This contradicts our earlier computation.

Hence H = SL(2, F)Mp(4,F) is the trivial cover SL(2, F) x {+1}, as required. O



4 Admissibility of an Orbit

Let G be a reductive algebraic group defined over a local field F of characteristic zero. Let g

be the Lie algebra of G. Choose a nilpotent element f in g*, the dual of the Lie algebra, and

consider its orbit under the coadjoint action of G. This orbit G -f has a natural symplectic

manifold structure, given on the tangent space at the base point f by the Kostant-Kirillov

symplectic form
w(X1, X 2 ) = f([XI, X 2 ),

where X1 and X2 are in g/gf.
For our purposes it is convenient to work in the Lie algebra. Choose some faithful finite-

dimensional representation p of g, and define a G-invariant nondegenerate bilinear form B

on g via
B(X 1,X 2) = Tr p(Xl)p(X 2) VX 1,X 2 E g.

Identify f with its preimage under the isomorphism X ~4 B(X, .). Then we can choose a

Lie triple in g having f as its nilnegative element; that is, we can find an isomorphism

: sl(2F) -+ g

sending Y to f, where {H, X, Y} denotes the usual basis of sl(2, F), with Lie bracket given

by:
[H, X] = 2X [H, Y] = -2Y [X, Y] = H.

To simplify notation, we write ¢ for q(sl(2, F)).

The action of GI on g/gf clearly preserves the symplectic form w, and hence gives rise

to a homomorphism (denoted Ad by abuse of notation)

Ad: G -+ Sp(g/gf).

Recall the subgroup Go = (Gf) 0 of Definition 2.5, and the character 1 of F fixed at the

beginning of Section 3.
If f is nilpotent, then we can easily check that f igf 0. Hence every nilpotent coadjoint

orbit is integral, that is, there exists a character X of Gf satisfying x(exp X) = 0(f(X)) for

all X in the domain of the exponential map. Thus Duflo's condition for admissibility - that

there exist a genuine character of the metaplectic double cover of Go with this integrality

property [D, p154] - reduces to the following in our case.

Definition 4.1. A nilpotent coadjoint orbit G - f is admissible if the metaplectic cover of

GI corresponding to g/f splits over the subgroup Go .

It is, however, unnecessary to consider all of Gf for admissibility. We can write GI =

GO v U(Gf), where GO is the centralizer of 4 in G, and U(Gf) is the unipotent radical of GI

[Ca, Prop. 5.5.9]. The latter term is a unipotent subgroup, isomorphic to a vector space (its

Lie algebra) via the exponential map. It is easy to show that this implies that any double

cover of U(Gf) must split.



Hence the condition for admissibility can fail only over Go, and we restrict ourselves to
considering the diagram

(GA)MP Mp(g/gf)

G O > Sp(171)"

There is one further reduction to make. Decompose g/gf into weight spaces under O(H),
the semisimple element of 4. We write

g/f = (gl/f) [i].

It is easy to see that the +1 weight space of g/gf is equal to g[1], and that g[1] is a symplectic
subspace of g/gf preserved by Gk.

Remark 4.2. If g[1] = 0 then necessarily g[2m + 1] = 0 for all integers m, and the orbit
G -f is said to be even. In the classical Lie algebras, it is equivalent to the condition that in
the partition type classification of the orbit, all parts have the same parity. In general, one
can partially classify nilpotent orbits by their weighted Dynkin diagrams; the even orbits
are those for which only even weights occur [CMcG].

Definition 4.3. Call a nilpotent coadjoint orbit G -f pseudo-admissible if the double cover
of GO defined by

(G) M" P - Mp(g[1])

1 1.
G - Ad Sp(g[1])

splits over G0.

Proposition 4.4. Suppose G is a linear Lie group over a p-adic field F. Then a nilpotent
orbit G - f is admissible if and only if it is pseudo-admissible.

Proof. Write g/gf = W e) [1] where W denotes the sum of the remaining weight spaces.
Both W and g[1] are symplectic subspaces preserved by GO. Let us first prove that the
metaplectic cover of Go induced by its map into Sp(W) splits.

The subspaces

1= (g/g) [i] and 1' = (g/g) [i]
i>1 i<1

are non-intersecting Lagrangians of W preserved by G1 . Moreover, there is an obvious linear
isomorphism of I onto 1' commuting with the action of GO, defined by

(adY) - 1: (/f) [i] -+ (g/g) [-i + 2],



for all i > 1. Apply Proposition 3.11.
The equivalence of admissibility and pseudo-admissibility now follows from Corollary 3.8,

applied to the symplectic decomposition g/gf = W E 0[1]. E

Thus the question of admissibility is determined on g[1]. It follows, for example, that
even orbits are always admissible.

In subsequent sections, we analyze GO and g[1] for particular choices of G.



5 Symplectic, Orthogonal and Unitary Groups

Let F be RI or a p-adic field. We analyze the following cases together.

Symplectic Let V be a vector space over F equipped with a symplectic form (,). Then G
is the symplectic group Sp(V, F).

Orthogonal Let V be a vector space over F equipped with an orthogonal form (,). Then
let G be either: the orthogonal group O(V, F), the group of automorphisms of this
form; or the special orthogonal group SO(V, F), consisting of those automorphisms of
determinant equal to 1.

Unitary Choose a quadratic extension E = F(w) of F. Let V be a vector space over E
equipped with a hermitian-form (,), and denote by U(V) C GL(V, E) the group of
automorphisms of this form. Let G be either the unitary group U(V), or its subgroup
the special unitary group SU(V).

We first fix some notation. If ir: s[(2, F) -+ End(V) is a representation, let

V[i] = {v e V I ir(H)v = iv}

denote its ith weight space under the semisimple element of s(2, F). Let W m denote the
unique (up to equivalence) irreducible representation of sr(2, F) of dimension m. If wm E
Wm[m - 1] is a nonzero highest weight vector of W m , then a basis of the sl(2, F)-module
W m is

{wm, Ywm, . . ., ym-wm}, (5.1)

where we recall from Section 4 that Y E sf(2, F) is the lowering operator.

Choose a nilpotent orbit G -f and a Lie triple q as in Section 4. Since g acts on V, so
does the subalgebra 0(s[(2, F)). Decompose V into irreducible subrepresentations under b.
We can write

v = Vm, (5.2)
m>1

where Vm is the subspace of all copies of W m in V.

Remark 5.1. This decomposition is strongly related to the partition classification of nilpo-
tent orbits under F. If V m Z 0, then m occurs in the partition for G f, with multiplicity
equal to the number of times W m occurs in V m .



5.1 Structure of G4 and g[1]

Our first step is to understand these V m subspaces better. Define V(m) to be the GO-

space Homl(2,F) (Wm, V), with the action of g E GO on an element T E V(m) given by

(g -T)(w) = g(T(w)), for all w E Wm. There is a GO-equivariant isomorphism

Wm 0® (m) -+ Vm (5.3)

w T 4 T(w),

where GO acts only on the second factor of the tensor product.

The direct sum in (5.2) is orthogonal with respect to the form (,) on V, and hence we

can consider the restriction of (,) to each V m .

Recall that there is a nondegenerate bilinear form bm, unique up to multiplication by a

scalar, on each irreducible representation W m of sl(2, F). It is sl(2, F)-invariant, and has

the property that for all x E Wm [i] and y E Wm[j], both nonzero,

bm(x, y) L 0 i = -j. (5.4)

Lemma 5.2. The form bm on W m is orthogonal if m is odd, and symplectic if m is even.

Proof. Let us choose a basis for W m of the form in (5.1). The sl(2, F)-invariance of bm

implies

bm(wm, ym-lwm) = - bm(Ywm, ym-2Wm)

=(1)m- 1 bm(Ym-l Wm, Wm),

which by the nondegeneracy of bm and property (5.4) is nonzero. It follows that bm in

symmetric if m is odd and skew-symmetric if m is even. O

Without loss of generality, we fix a scaling of bm so that

bin(win, ym-lwm) = 1

for each m. (This depends of course on our choice of Wm made earlier.) We can now relate

the form (,)Ivm to a form on V (m )

Lemma 5.3. Define a nondegenerate bilinear form (,)m on V (m) by

(S, T)m = (S(wm), T(ym-lwm)) = (S(wm), 0(Y)m-T(wm))

for all S, T E V(m ) . Then the form on W m 0 V(m) defined by

(x ® S, y ® T) = bm(x, y) - (S, T)m, (5.5)

for x, y E W m and S, T E V (m), is equivalent to (,)Ivm via the isomorphism (5.3).



Proof. To prove the equivalence of the form defined in (5.5) and the form (,), we use (5.3)
and compare them explicitly on a spanning set of the form

{Ykwm OT 10< k < m - 1, T E V(m)}.

Let Ji,j denote the Krcenecker delta function. Using the sl(2, F)-invariance of bm, we have

(YkWm 9 S, Y'wm 0 T) - bm(YkWm, yl'm) (S, T)m

= (-1)kbm(wm, yk+Wm) (S(wm), T(ym-llm))

= (- 1 )k Sk+l,m-1 (S(wm),T(ym-1wm)).

On the other hand, by the q-invariance of (,), we have

(S(YkWm), T(Y' m) = (¢(Yk)S(wm), ¢(yz-(m-1))T(ym-lwm))

= (-1)k (S(wm), q(y)k+-(m-1)T(ym-lwm))

= (- 1 )k Jk+l-(m-1),O (S(wm), T(ym-lWm)).

So the two forms are equal, as required. O

Remark 5.4. It follows from Lemma 5.2 and Lemma 5.3 that this form (,)m is of the same
type (symplectic, orthogonal or Hermitian) as (,) if m is odd, and of opposite type if m is
even. (In the Hermitian case, take "opposite type" to mean skew-Hermitian.)

Now set GO,m = Aut(V (m ), (,)m) -+ Aut(V, (,)) = G. By the preceding lemma, we have
a natural isomorphism

GO= 1 Gm (5.6)
m>1

for G symplectic, orthogonal or unitary. For the special orthogonal and special unitary
groups, GO is the subgroup given by the intersection of the product in (5.6) with G. In the
question of admissibility, however, we shall see that this distinction is irrelevant: for the
special orthogonal group, Go = Im>1 Gom (see Section 5.3), so the splitting is the same;
for the special unitary group, we shall see that the metaplectic cover of (U(V)O)MP induced
by its map into Sp(g[1]) splits completely (see Section 5.6), and therefore must also split
completely over the subgroup (SU(V)O)MP. We will thus simplify our notation by writing
(5.6) in all cases.

In Section 5.2, it will be convenient to identify V(m ) with each of the weight spaces V m [i]
which are nontrivial, via the map

T -+ T(y(m-l-i)/2wm). (5.7)

This identification gives rise to a form (,)m,i on V m [i], which we describe in the following
lemma.



Lemma 5.5. Let m and i be integers satisfying

m>0, -(m-1) i<i m-1, and i-m-1 mod2.

Define a nondegenerate bilinear form (,)m,i on Vm[i] as follows. Let x and y be arbitrary

elements of Vm[i], and let S and T be their respective inverse images in V(m) under the

isomorphism (5.7). Set

(x, y)m,i = (-1)(m-1-i)/2(S, T)m.

Then the GO-equivariant isomorphism (5.7) intertwines the form (,)m on V(m) and the form

(,)m,i on Vm[i].

In particular, GO,m = Aut(V m [i], (,)m,i).

The proof is a straightforward calculation, which we omit.

5.2 Decomposition of g[1] under the action of GO

Now that we have a more precise understanding of GO and the decomposition of V under

0, we proceed to the main problem of the section, namely, the decomposition of g[1] under

the adjoint action of GO.

When G = Sp(V) or G = O(V) (or SO(V)), g is isomorphic to A2 V and Sym 2 V,
respectively, via the G-equivariant isomorphisms generated by

v 0 w® 0 v f-+ (-, w)v + (., v)w. (5.8)

A similar result holds for the case G = U(V), as follows. Recall that V is isomorphic to

V as a vector space over F, but has the conjugate E action. We write elements of V as U,
so that multiplication by an element A of E takes the form

a = AU.

Define A(V, V) to be the F-subspace of V®EV spanned by the skew elements {v0U7-w®; I
v, w E V}. It is a vector space over F (not E), and is isomorphic to 9 via the G-equivariant

linear map generated by

v ® T - W -+ <.7 U - ., . (5.9)

The overlines on the right hand side are unnecessary, and will be omitted from now on.

Under the isomorphisms (5.8) and (5.9), the +1 weight space of g under O(H) can be

identified with A2 V[1], Sym2V[1], or A(V,V)[1], respectively. This holds for SU(V) as well,
since its Lie algebra differs from that of U(V) only by a central part, which must lie in the

zero weight space under O(H).
Each of these identifications has a nice interpretation in terms of the weight spaces of

V, as described in the following lemma.



Lemma 5.6. For each pair (m, m') of positive integers, with m even and m' odd, the space

m-I

9m,m [1] = E V m [i] Vm'[-i + 1]
i=-m+l

corresponds to a symplectic subspace of g[1]. In fact,

g[1]- $ - m,m [1], (5.10)
m even
m' odd

and this decomposition is G¢-equivariant and orthogonal with respect to the symplectic form
w on g[1]. The action of GO on gm,mi[1] is given by the usual action of GOm x G m ' on

each of the spaces Vm[i] ® Vm'[-i + 1].

The notation Vm[i] 0 Vm'[-i + 1] is perhaps an awkward compromise: when V is an
F-vector space, we mean Vm[i] OF Vm' [-i + 1]; when V is an E-vector space, we mean

Vm[i] OE Vm' [-i + 1], viewed as an F-vector space by restriction of scalars.

Proof of Lemma 5.6. This is an exercise in understanding the isomorphisms (5.8) and (5.9).
First note that by fixing the parity of m, we get an obvious, well-defined isomorphism
between the space

m-1

Ei D n[i] 0 Vm'[-i + 1]
m even i=-m+l
m' odd i odd

and A2 V[1], Sym 2V[1], or A(V, V)[1], respectively. This is the isomorphism in (5.10).
Let m, n be even integers, and m', n' odd integers (all positive). For Z1 E gm,m' [1] and

Z2 G On,n [1], the form w is given by

w(Zi, Z 2 ) = Tr O(Y)[ZI, Z 2 ]. (5.11)

We readily compute the Lie bracket of Zi with Z2 via

[ZI, Z 2]v = Z1 Z 2 v - Z 2 Z1 v

using (5.8) and (5.9). We give explicit formulas for the case G = U(V); the other cases are
similar.

Without loss of generality, we may assume

Z 1 = 1 -09y- yl 0xT-

Z 2 = X 2 0 - Y2 '; 2

for some x1 E V m [i], x2 E Vn[j], yl E Vm'[-i + 1] and Y2 E V"'[-j + 1]. Here, m and n are

even, so i and j are odd.



Then we have

[Zi, Z2]v = [x1 ® Y- Y1 ®X1 , X2 ® Y2- y2 ®9 21]

= (, y2) (2, Y1)1 - (V, 2 ) (2, 1)Y1

- (v, X2)(y2, Yl)x + (v, X2) 2,X 1)yl (5.12)

- (v, Y1) (x1, y2)X2 + (V, Y1)(X1, X2)Y2

+ (v, X1)(y1, y2)X2 - (V, X1 )(Y1, X2)Y2-

Recall that (V[i], V[]) = 0 unless i = -j. Hence all of the terms in (5.12) are zero, except

in the following cases.

Case i = -j + 2: Then (yl, y2) can be nonzero; we have

[Zi, Z2]v = (v, X1)(ylY1 2)X2 - (V, X2 )(y2, Y1)X1.

Case i = -j: Then (x1, X2) can be nonzero; we have

[Zi, Z21 = (V, Y1) 12)Y2 - (, Y2 ) ( 2 , X1)Y1

To apply (5.11), choose an orthogonal basis {ek} of V. Set (ek, ek) = ak and recall that

Tr 0(Y)[Zi, Z2 ] = 1 -1 (¢(Y)[Z, Z2]ek, ek). (5.13)
k ak

Using the relation

(v,w) = 1 (v, ek) (ek,w),
k

we deduce the following.

Case i = -j + 2:

w(Zi, Z 2 ) = ((Y)X 2 , X1)(yl, Y2) - (Y)X1, X2)(Y2, Y1). (5.14)

Case i = -j:

w(Z, Z 2 ) = ((Y) 2, y)(2, X2 ) - ((Y)yl, Y2 ) (2, 1). (5.15)

Finally, using the fact that (V m , Vn ) - 0 for any m $ n, we conclude that (5.14) and

(5.15) are identically zero unless m = n and m' = n'. Thus, the images of gm,m' [1] are

pairwise othogonal in g[1] .
The last statement of the lemma follows from the GO-equivariance of (5.8) and (5.9). O

See Figure 5.1 for a representation of the non-zero pairings within gm,m [1], as determined

by equations (5.14) and (5.15). It is clear how the conditions i = -j + 2 and i = -j arise

through the symmetry of the weight spaces about zero.



5.3 Finding GO-invariant Lagrangian Decompositions

We now have a decomposition of g[1], and may apply the results of Section 3.3.1 to study
the question of admissibility of G - f by studying the metaplectic cover of Go coming from
each gm,m' [1] individually.

Following Mceglin [M, §1.3], we define

Ym,m, = Vm [i] 0 Vm' [-i + 1].
i<-1

This is an isotropic subspace of gm,m, [1] (cf. Figure 5.1).
If m < m', then dime Y = dimF gm,m' [1], SO Ym,mi is a Lagrangian subspace of gm,m, [1].

An element (g, g') E GO m x GO m ' preserves Ym,m', and acts on it block-diagonally, with

its natural action on each F-vector space V m [i] 0 Vm' [-i + 1]. We are thus in the setting
of Proposition 3.11, and conclude that the metaplectic cover corresponding to Sp(gm,m' [1])

splits over GO'm x GO'm '

It remains to consider those gm,m' [1] with m > m'. In these cases, Ym,m, is isotropic but
not maximally so. However, it does pair nondegenerately with the isotropic space

Xm,m, = ( v M [i] ® VM '[i + 1],
i>3

as one can deduce from Figure 5.1. The leftover piece, V m [1] 0® m' [0], although not itself
symplectic, is G¢-equivariantly isomorphic to a symplectic vector subspace of gm,m' [1], as
described in the following lemma. Recall the bilinear forms (,)m,i on Vm[i] defined in
Lemma 5.5.

Lemma 5.7 ([M, §1.3]). Suppose m > m'. Define

6: V m [1] 0 Vm' [0] -+ gm,m' [1]

by

(m'-1)/2

S0 E (-1)k ((Y)k Q(Y)ky) (5.16)
k=O

This is a GO m x GO,m'-equivariant isomorphism onto an orthogonal complement of Ym,m',

Xm,m, in gm,m'[1]. The form w, restricted to gm,m'[1], pulls back under 6 to a multiple of

the form TrE/F( (,)m,1 (,)m',O) on Vm[1] 0 Vm'[0].

Proof. It follows immediately from Figure 5.1 that w(Im(6),Xm,m,) - O. One can also
prove that w(Im(6), Ym,m,) - 0 with an explicit calculation similar to that in the proof of



Vm [-5] Vm [-3] Vm [-1] I Vm[1] Vm[3] vm[5] vm[7]

I

Figure 5.1: The symplectic vector space gm,n' [1]. Dotted lines join spaces which admit a non-zero
pairing under w. Those along the bottom represent where (5.14) is nonzero, while those along the
top represent where (5.15) is nonzero. The isotropic space Ym,m, is spanned by all the vector spaces

within the thick solid line. The image of 6 is a small subspace of the span of the spaces within the
thick dashed line.

Lemma 5.6: use the G-equivariance of (,) to cancel non-zero terms in the alternating sum

(5.16).
The final assertion can also be proven using an explicit calculation, which we include

here. We consider the case where G = U(V); the other cases are analogous.

Let Z1 = x, 0 I and Z 2 = x2 ® V- be two elements of V m [1] (E Vm' [0]. Then

w(6(Zl),6(Z2 )) =

(m'-1)/2
(-1)k + l w ( k1(Y)-kx ® (Y)k i ¢(Y)-'1 2 9 ¢((Y)'W)

k,1=0

= (-(Y) 2, X1)(1, Y2) - ((Y)X, X2)(2, Y1)

= (xl, q(Y)x2 )(Y1, Y2 ) + (xl, (Y) 2 ) (Y1, Y2)

= TrE/F((X 1, (Y)x2) (Y1, y2))

= (_1)(m-2)/2 (_)(m'-1)/2TrEIF((X1, X2)m,1

by (5.14)

(Yl, Y2)m',0)

as required.

We now wish to
position

use the results of Section 3.3.1 with regards to the symplectic decom-

gm,m' [1] = (Ym,m' Xm,mi) ( 6(Vm[1] 0 Vm' [0]).

The first piece has a pair of GO-invariant, non-intersecting Lagrangians, intertwined by

isomorphisms coming from the action of q(Y), so we can apply Proposition 3.11 to conclude

that the metaplectic cover over G'm x G,m' coming from its inclusion into Sp(Ym,mI' Xm,m')

splits. Thus to determine the splitting of the whole metaplectic cover it suffices to compute

that on 6(Vm[1] ® Vm'[0]).

The second piece, however, does not admit a polarization invariant under the whole

group GO,m x GO,m ' . We proceed on a case-by-case basis, for each of our groups G.

To reduce notation, we identify V m [1] ® Vm'[0] and its image under 6.



5.4 Symplectic Group

Here, GO,m is an orthogonal group and GO,m ' is a symplectic group (m even, m' odd,
as usual) by Remark 5.4. Let 1 E l' be any Lagrangian decomposition of V m' [0]; then
(Vm[1] 1l) E (V m [1] 9 l') is a Lagrangian decomposition of Vm [1] 0 V m ' [0] preserved by
GO,m . We apply Proposition 3.11, to conclude that the corresponding metaplectic cover of
the orthogonal group G¢,m splits over Go'm

Since the product (5.6) in GO is direct, we can consider the case of the splitting over the
symplectic group separately.

Construct the orthogonal vector space

Um, = Vm [1].
m>m'
m even

Then Urn' V m ' [0] is precisely the last remaining piece of g[1] on which we need to determine
the splitting of the metaplectic cover of GO,m': on all other direct summands of g[1], either
we have already proven that the metaplectic cover splits, or the action of GO,m' is trivial

(and hence the splitting is automatic).
Now apply Proposition 3.10 to the symplectic vector space Vm' [0] and the orthogonal

space Urn,. Recall that Sp(Vm' [0]) = GO,m'. We conclude that the metaplectic cover of
GO,m' splits if and only if dim Urn, is even. This number dim Urn, is just the number of even
parts m greater than m' (counted with multiplicity) in the partition type classification of
the orbit (Remark 5.1).

To summarize: we have found that the metaplectic cover (GO)Mp([91) splits over each

of its orthogonal group components GO' m (m even). Over each of its symplectic group
components GOm ' (m' odd), we have found that the cover splits if and only if the sum of
the multiplicities in V of all the spaces Wm with m even and m > m' is even. The number
of such m less than m' does not affect the splitting.

5.5 Orthogonal Group

This case is exactly equivalent to that of a symplectic group. Interchange m and m' every-
where in the discussion, to conclude that the metaplectic cover splits only when the sum of
the multiplicities in V of all the spaces Wm' with m' odd and m' < m is even for each fixed
even m.

5.6 Unitary Group

Here, (,)m,1 is a Hermitian form, and (,)m',O is skew-Hermitian by Remark 5.4. We apply
the following lemma [Pr, §1].

Lemma 5.8. Let F be a nonarchimedean local field of characteristic not equal to 2, and E
a quadratic extension of F. Let V and W be vector spaces over E equipped, respectively,



with a Hermitian form (,)v and a skew-Hermitian form (,)w. The isometry groups U(V)

and U(W) form a dual pair in Sp(V 0E W), where V OE W is viewed as a symplectic vector

space over F with symplectic form

(v 1 Wl, v2 W2) = TrE/F((v1, v2)V(w1, w2) W)

Then the metaplectic covers of U(V) and U(W) induced from Mp(V OE W) both split.

Sketch of proof. It suffices to consider U(V), by symmetry. Harris-Kudla-Sweet computed
splittings

U(V) x U(W) -- + GMp(V OE W)

explicitly in [HKS]. This Cl-fold cover splits over SU(V) by restriction. The group SU(V)

is equal to its commutator subgroup. Hence this map takes SU(V) into the group of commu-

tators of GMp(V OE W). Since GMp(V 0E W)/Mp(V OE W) is abelian [MVW, Ch.2.II.9],
it follows that the map in fact takes values in Mp(V OE W), as required. Moreover, this

splitting map is unique.
Next, include U(1) into U(W) via the inclusion of the 1-dimensional Hermitian space

into W. The metaplectic cover of its image in U(W) splits, not necessarily uniquely [Pr,
Ch. 1].

These two splittings together give a splitting on U(W) = SU(W) > U(1), since the

uniqueness of the splitting over SU(V) implies, in particular, that it will be normalised by

the chosen splitting over U(1). Ol

Remark 5.9. Lemma 5.8 fails for F = R- the metaplectic cover of U(1) does not split in

this case.

It follows that the metaplectic cover of G¢ 'm x G ',m ' induced from its inclusion into

Sp(Vm[1] G Vm'[0]) must split for all p-adic fields F. Apply Corollary 3.8 to deduce that

the metaplectic cover of GO induced from its action on all of Sp(g[1]) must split.

We have proven the following theorem.

Theorem 5.10. Suppose F is a p-adic field. Let E be a quadratic extension of F.

If G = Sp(V, F), then a coadjoint orbit G -f is admissible if and only if, in the partition

corresponding to the orbit, the number of even parts (counted with multiplicity) greater than

any odd part is even.
If G = O(V, F) or SO(V, F), then a coadjoint orbit G- f is admissible if and only if, in

the partition corresponding to the orbit, the number of odd parts (counted with multiplicity)
less than any even part is even.

If G = U(V) C GL(V, E), or SU(V), then every coadjoint orbit is admissible.

For the case F = IR and G symplectic or (special) orthogonal, these results have been

obtained by Schwarz [Sch]. He also gave a complete answer for the real unitary group.



This characterization of the admissible orbits might seem no more than a peculiarity, if
not for the notion of special nilpotent orbits, as defined by Lusztig and Spaltenstein. One
of the descriptions of the set of special orbits in the classical groups is given in terms of the
partition-type classification of nilpotent orbits (see [CMcG, §6.3]). Using Remark 5.1, we
immediately deduce the following corollary.

Corollary 5.11. Let G and F be as in Theorem 5.10. The admissible orbits under G
coincide with the special orbits.



6 Deciding Admissibility for the Special and General Linear
Groups

Let F be a p-adic field, and let V be an n-dimensional vector space over F. The general

linear group GL(n, F) can be identified with the group of all automorphisms of V. The

special linear group SL(n, F) consists of all g E GL(n, F) with determinant 1. Similarly, we

could identify the Lie algebra gl(n, F) with End(V), and sl(n, F) with all endomorphisms

of trace 0. However, it will be more convenient for us to use the identification End(V) =

V ® V*, where V* = HomF(V, F). The action of a group element g on f E V* is given

by (gf)(v) = f(g-lv), for all v E V. With respect to this action, the adjoint action of the

group is given by Adg(v 0 f) = gv 0 gf .
We determine the admissibility of nilpotent orbits for both groups in this section. When

there is no distinction to make, let (G, g) refer to either pair of Lie group and Lie algebra.

Let G - f be a nilpotent orbit in g, and let ¢ be a corresponding s[(2, F)-triple as in

Section 4. Then ¢ = 0(s[(2, F)) is a subalgebra of g, and so acts on the space V. Decompose

V into irreducible subrepresentations under this action, and further into weight spaces under

O(H), as in Section 5. We have

v= Vm 0 Vm [i], (6.1)
m>1 m>1 i=-m+l

where Vm is the subspace of all copies of the m-dimensional irreducible representation of

sl(2, F) in V, and V m [i] denotes its ith weight space with respect to O(H). The group

GO will preserve each V m [i], since it intertwines the sl(2, F)-action on V. The space V*

decomposes in the same way, with the action on each component (V*)m[i] - (Vm[-i])*
given by the adjoint (negative transpose).

The next step is to determine g[1]. Since any central part of g[(n, F) lies in its zero weight

space, g[1] is the same for both gl(n, F) and si(n, F). With respect to the identification of

gl(n, F) with V 0 V*, we define, for each pair of positive integers (m, m'), with m even and

m' odd, a subalgebra

gm,,m[1] = ( (Vm[i] ® (V*)m'[-i + 1] E Vm'[-i + 1] (V*)m[i]) .
-m+l<i<m-1

Note that the terms Vm'[-i + 1], (V*)m'[-i + 1] are zero if -i + 1 is not between m' - 1

and -m' + 1.

Lemma 6.1. The space g[1] decomposes as

[1] = 0 Bm,mI[1], (6.2)
(m,m )

where this sum runs over all pairs (m, m') as above. This decomposition respects the sym-

plectic form on g[1], as well as the action of GO: each gm,m, [1] is a symplectic, G -invariant

subspace of g[1].



Proof. It is clear that (6.2) is an equality of vector spaces. We need to prove that, with
respect to the symplectic form w on g[1], W(gm,m' [1], 9n,n' [1]) = 0 whenever (m, m') # (n, n')

are pairs as above. As in the proof of Lemma 5.6, let Z1 E gm,m' [1], Z 2 E gn,n' [1] be arbitrary.
Without loss of generality, assume we have Z1 = vl 0 fi and Z 2 = v2 0 f2, where either
vl 0 fi e Vm[i] 0 (V*)m'[ - i + 1] or vi 0 fl e Vm'[-i + 1] 0 (V*)m[i]. Similarly for v2 0 f2,
with m, m', i replaced by n, n', j. To distinguish the many cases, let m(vk) (respectively
m(fk)) denote the dimension of the sl(2, F)-subspace in which vk (respectively fk) lies, for
k = 1,2.

Then we compute, for each w E V,

[Zi, Z 2]w = [Vl 0 fl,v2 0 f 2 ]w

= (vl fl)(V2 9 f 2 )w - (V2 f2)(vl 0 fl)w

= (vl 0 fl)(f2(w)v2) - (v2 0 f2)(fl(W)V1)

= f2(w)fl(2)vl - fl(w)f2(v1)v2.

Consequently, using (5.11) and summing over dual bases as in (5.13), we deduce

W(Z, Z 2) = Tr(Y) [Zi,Z 2]

= f 2 (q(Y)Vl)fl(v 2) - fl((Y)v2 )f 2 (l).

Recalling that f(v) = 0 only if m(v) = m(f) and the sl(2, F)-weight of v is the negative of
that of f, we immediately conclude that w(vl 0 fl, v2 0 f2) = 0 unless m(vi) = m(f2) and

m(v 2) = m(fi), as required.
Finally, note that the G¢-equivariance of the decomposition is clear: GO in fact preserves

each of the subspaces Vm[i], for any integer m > 0. ]

This lemma gives us a description of the group GO: it is wholly characterized by its
preservation of the subspaces Vm[i]. Let dm = dim(Vm[i]) = dim((V*)m[i]) denote the mul-
tiplicity of the m-dimensional irreducible representation of sr(2, F) in V. If G = GL(n, F),
then GO = Im>0 GL(dm, F); if G = SL(n, F), then GO = S(-m> GL(dm, F)), the sub-
group of all transformations of determinant equal to one. GO may be thought of as the set
of block-diagonal matrices in G with respect to the decomposition (6.1) such that all blocks
corresponding to the weight spaces of Vm (for any fixed m) are equal. Write an element g
of GO as product element (gm), as m runs over all nonzero V m .

Finally, note that each gm,m' [1] contains, as complementary GO-invariant Lagrangians,
the subspaces

mm, = Vm [i] 0 (V*)m' [-i + 1]
-m+l<i<m-1

and
l'm,m = @ Vm' [-i + 1] 0 (V*)M [i].

-m+l<i<m-1



The determinant of the action of an element g = (gm) in GO on Im,m' is given by

det(gi m,,) = l det(gm x (gm)*)

= det(gm)dml det((gm,)*)dm,

where the product runs over all indices i giving rise to a nonzero space Vm[i] ® (V*)m' [-i+ 1].

It follows from Proposition 3.11 that the metaplectic cover of GO arising from its action on

each of the symplectic spaces gm,m' [1] splits. By Corollary 3.8, this implies that the entire

metaplectic double cover of G0 corresponding to g[1] splits, and that the orbit G- f is

admissible.
We have proven the following-theorem.

Theorem 6.2. Let F be a p-adic field. For the groups GL(n, F) and SL(n, F), every

nilpotent coadjoint orbit is admissible.

All orbits under these groups are special, so we have the following immediate corollary.

Corollary 6.3. Let F be a p-adic field. For the groups GL(n, F) and SL(n, F), the admis-

sible orbits coincide exactly with the special orbits.



7 The Exceptional Lie Group of Type G2

To answer the question of admissibility of each of the nilpotent coadjoint orbits for G2 , we
forgo the abstract approach of the preceding sections in favor of a case-by-case study.

Recall that the nilpotent orbits of any Lie group are partially classified by their weighted
Dynkin diagrams [CMcG]. For the exceptional group G2, there are 5 weighted Dynkin
diagrams, each of which corresponds to one or more nilpotent coadjoint orbits over our field
F. We anticipate that, as before, the admissibility of an orbit will be a function of its
weighted Dynkin diagram, that is, of its stable orbit over an algebraically closed field.

In Table 7.1, we list the weighted Dynkin diagrams, and whether or not the given stable
orbit is special.

Orbit Diagram dim 0 Special
ogo

a 0
{o} 0 0 0 yes
On 1 0 6 no
Op 0 1 8 no

(subreg 2 0 10 yes
Oprin 2 2 12 yes

Table 7.1: Nilpotent Orbits in Type G2 [CMcG, 128]

Note that Oprin, Osubreg and {0} are all even orbits, and hence admissible by Remark 4.2.
The remainder of this section is devoted to deciding the admissibility of the remaining orbits.
There is a unique minimal orbit in G [Sav]; we denote it again by 0,. Similarly for the Op:
there is a unique 8-dimensional rational orbit.

In Section 7.1, we choose explicit sl(2, F)-triples for each orbit, and compute g and B[1]
in the Lie algebra. We then find the subgroup Go corresponding to the Lie algebra go, and
consider the question of admissibility of these orbits.

7.1 Explicit Triples for 0, and Op

Let {a, p} be a set of simple roots for a Lie algebra of type G2, chosen so that with respect
to the Killing form n on g,

(a, a) 3.

Then the root system is the set

{a, ±,, ±(a + 3), ±(a + 2/3), ±(a + 3/3), +(2a + 30)}.

See Figure 7.1.



2a+30

a a+3

Figure 7.1: Root diagram for G2. The labeled
the choice of simple roots a and 0.

a+2 a+33

roots are exactly the positive roots, with respect to

Denote the root subspace of g corresponding to a root y by g. For each positive root

y, choose root vectors E E g[y] and F E g[-Y], normalized in a compatible way (see, for

example, [Sav]). The minimal orbit O is the orbit through Fa, and Op is the orbit through

FP.

For Oa, we take q to be the sI(2)-subalgebra of g generated by Ea and Fa, with Y = Fa

as the -2 weight vector. Then we can read the subspaces g¢ and g[1] directly from the

root diagram of G2 (Figure 7.1). The algebra gO is given by the direct sum of all the trivial

representations of ¢ in g, so is spanned by the vectors

{Ea+20, Fa+2p, Ha+2 = [Ea+2 , Fa+20]}.

Thus the Lie subalgebra g4 is isomorphic to s[(2); in fact, it is the root-5l(2) subalgebra

corresponding to a short root. The vector space g[1] is spanned by

{E 2 a+3,P, Ea+, Fp, Fa+3 }. (7.1)

The adjoint action of gO on g[1] is equivalent to the unique irreducible 4-dimensional rep-

resentation of sl(2). The vectors in (7.1) are weight vectors, listed in decreasing order of

weights.

For Op, we take q to be the sr(2)-subalgebra of g generated by Ep and Fp, again with

Y = Fp as the -2 weight vector. In this case, gO is spanned by the vectors

{E 2a+30, F2a+3#, H2a+ 3 = [E2a+33, F2a+ 3P]I

I



and g[1] is spanned by

{Ea+20, Fa+p}. (7.2)

So once again the Lie subalgebra gO is isomorphic to sl(2), but this time to the root sl(2)
corresponding to a long root. Here, the adjoint action of g on g[1] is equivalent to the
standard 2-dimensional representation of sl(2); the vectors in (7.2) correspond to +1 and
-1 weight vectors, respectively.

7.2 Admissibility for a p-adic Lie Group of type G2

In this section, let G be the centerless Lie group of type G2 over a p-adic field F. It is a
linear group, so it is easy to compute the subgroup GO from its Lie algebra. In each of the
two cases above, g9 is isomorphic to sl(2, F), so Go can only be SL(2, F) or PSL(2, F).
Since in each case we have an irreducible even-dimensional representation of sl(2, F) which
lifts to the group, GO must be isomorphic to SL(2, F).

To determine the admissibility of Op, the diagram we need to consider is

SL(2, F)Mp - Mp(2, F)

I 1P
SL(2, F) - Sp(2, F).

The bottom map is an isomorphism, so the top map is as well. From [W], we know that the
projection map p does not admit a splitting. Hence, the orbit Op is not admissible.

The diagram we need to consider in the case of O is

SL(2, F)MP - Mp(4, F)

1 "
SL(2, F) -- Sp(4, F).

This cover of SL(2, F) splits by Proposition 3.13. Hence the minimal orbit Oa is admissible.

We have proven the following theorem.

Theorem 7.1. Let F be a p-adic field and let G be the adjoint group of type G2 over F.
Then

1. the principal, subregular and zero orbits are all admissible;

2. the 8-dimensional orbit is not admissible;

3. the minimal orbit is admissible.

Corollary 7.2. Let F be a p-adic field and let G be the adjoint group of type G2 over F.
Then all special orbits are admissible. The minimal orbit, which is not special, is admissible.



7.3 Admissibility for Real Lie Groups of type G2

First let G denote the linear group of type G2 defined over R It has no center. We mimic

the arguments used above for p-adic groups. The subgroups of G corresponding to the

Lie subalgebras g are isomorphic to SL(2, R). Again, it follows immediately that the 8-

dimensional orbit is not admissible for G, and from Proposition 3.13 that the minimal orbit

is admissible for G.
Now consider the simply connected real Lie group of type G2. It is the double cover of

the adjoint group discussed above. It is not a linear group; in fact, the subgroup lifting the

sr(2, R) subalgebra corresponding to the long root is the nonlinear double cover of SL(2, R),
namely Mp(2, R). It follows that the 8-dimensional orbit is admissible for G, because the

diagram we need to consider is

(Mp(2, ))M P Mp(2, R)

Mp(2, R) i Sp(2, R).

which splits by definition. Moreover, the minimal orbit, being admissible for the adjoint

group, remains admissible for any covering group, and so is admissible here.

We have the following theorem, which is already known.

Theorem 7.3. Let G be a real Lie group of type G2 over R. If G is simply connected, then

all nilpotent coadjoint orbits are admissible. If G is adjoint, then only the 8-dimensional

orbit fails to be admissible.
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