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EMPIRICAL APPROACHES TO THE PROBLEM OF AGGREGATION OVER INDIVIDUALS

I . Introduction

One of the most challenging features of tracking economic activity over

time is assessing the impact of the changing composition of the economic

players. In the United States, the decline in the typical size of households,

the baby boom - baby bust cycles, the changing age structure of the population

and the migration of households to southern climates provide examples of such

changes. The shift of production from manufacturing and agriculture to

service industries, and the continuing infusion of high technology throughout

many areas provide examples of how the nature of production has varied. In

most if not all aspects, the U.S. economy of the 1990' s is considerably

different from the U.S. economy of the 1950' s, the 1960's and the 1970' s.

If the economic reactions of such different kinds of players were

nonetheless quite similar, then compositional effects on aggregate economic

activity would be minor. In this case, compositional changes over time would

amount to a relabeling of the economic players that is not associated with

any real behavioral differences. However, for the U.S. or any other actual

economy, this possibility is in conflict with casual observation and virtually

all studies of disaggregated, microeconomic data.

Consider the needs for food and clothing of a large family relative to a

small family at the same budget level, or of a poor family relative to a

wealthy one. Consider the needs for health care of a young couple compared

with an elderly couple, or more generally, the needs for current saving or

having previously accumulated wealth. Consider the different concerns of a

capital-intensive manufacturing company relative to a labor-intensive service

provider, in trying to make plans for expansion or other new business



investment. In broader terms, to the author's knowledge there are no studies

of disaggregated, micro level data that fail to find strong systematic

evidence of individual differences in economic behavior, whether one is

concerned with demographic differences of families or industry effects in

production. Entire empirical methodologies have been developed to account for

systematic individual differences in micro level surveys, such as the modeling

of fixed or random effects in panel data.

The presence of these kinds of differences have one strong implication

for aggregate economic activity. Namely, it matters how many households are

large or small, how many are elderly and young, and how many companies are

capital-intensive or labor-intensive. Such heterogeneity of concerns and

reactions are an essential feature of the overall welfare impacts of changes

in food prices, the overall impacts of interest rates on savings, or the

impact of an investment tax credit. It is difficult to conceive of an

important question of economic policy that does not have a distributional

component, or a differential impact on economic players. It is likewise hard

to envision how the impacts of relative price changes or of real income growth

could be adequately summarized over time without some attention to the

composition of the economy.

Concerns over the issues raised by compositional heterogeneity of data on

groups, such as data on economy-wide aggregates over time, are summarized

under the heading of the "problem of aggregation over individuals." Over the

past decade, various approaches have been developed to account for

compositional heterogeneity in empirical modeling of aggregate data, and the

purpose of this survey is to discuss this work.

To spell out the context of our survey in more detail, it is useful to

differentiate the three major approaches to empirical modeling of aggregate

data; 1) modeling aggregate data alone, including the representative agent



approach, 2) modeling individual economic behavior alone, or microsimulation,

and 3) joint modeling of individual and aggregate level data. These

approaches differ in terms of their treatment of the problem of aggregation

over individuals, and we now discuss them in turn.

The first approach is the econometric modeling of aggregate data series

alone, where one asserts the existence of a stable model among aggregates, and

then fits the model statistically. This approach is motivated as a first-cut

method of studying aggregate data patterns, for the purpose of forecasting or

getting rough insights on the interplay of macroeconomic variables for the

analysis of economic policy. One version of this approach includes

traditional macroeconomic equations, which are specified and estimated in an

ad hoc fashion, with regressor variables included to represent the major

economic influences on the macroeconomic variable under study. Examples

include a standard Keynes ian consumption function, an ad hoc money demand

equation, or an accelerator-style investment equation, all familiar from

macroeconomic textbooks. One can likewise include in this category the

growing literature on pure time series analysis of macroeconomic data, where

economy-wide aggregates are analyzed as the result of fairly stable stochastic

processes (with unit roots and other concepts of cointegration used as the

primary focus)

.

While we will survey some work that studies compositional influences in

an ad hoc fashion, these purely statistical approaches are not well grounded

in any model of (individual) economic behavior, and amount to making involved

inferences solely from correlations between aggregate data series. Use of

economic effects estimated in this way for policy analysis, or use of such

equations for prediction, amounts to extrapolation of the recent past data

patterns into the future, with no foundation relative to the behavior of the

individual economic actors. This kind of traditional macroeconomic modeling



amounts to a purely statistical approach to aggregate data series, motivated

as the simplest method of parsimoniously summarizing interactions among

aggregate variables.

This category also includes the tightly parameterized econometric models

of individual consumer and firm decision making under uncertainty, that are

related to aggregate data under the guise of a "representative agent." These

models, the workhorses of modern real business cycle theory, treat economic

aggregates as though they necessarily obey the constraints of rational

choices by a single decision maker, namely a "representative consumer" or

"producer." This kind of modeling has proved a tremendous engine for the

development of rational choice models over the last two decades, and their

empirical application has developed into an ideology for judging aggregate

data models. In particular, models are judged as "good" on the basis of

whether they coincide with a sophisticated decision process for a single

individual. Given the assumed "existence" of a representative agent,

compositional issues are ignored by fiat.

There are various well-known settings in which the structure appropriate

for a representative agent exists in aggregate data. For instance, in terms

of demands for different goods, an aggregate preference relation exists if

individuals have identical and homothetic preferences (Terence Gorman (1953)),

or if the government is continuously redistributing income in an optimal way

(Paul Samuelson (1956)). These kinds of conditions may seem far-fetched for

any real-world economy, but they are representative of all "justifications" of

the representative agent approach. In particular, no realistic conditions are

known which provide a conceptual foundation for ignoring compositional

heterogeneity in aggregate data, let alone a foundation for the practice of

forcing aggregate data patterns to fit the restrictions of an individual

optimization problem.



There is a vast and growing literature on what is wrong with the

representative agent approach, that is well surveyed in Alan Kirman's (1992)

stinging criticism. While we do note some implications of ignoring

heterogeneity in aggregate data as part of our motivation, our current purpose

is to discuss methods of incorporating individual differences in aggregate

data models. As such, a broad posture of our exposition is that recent

developments underscore how a "representative agent" is not necessary for

incorporating economic restrictions in aggregate data. Taken at face value,

representative agent models have the same value as traditional, ad hoc

macroeconomic equations; namely they provide only statistical descriptions of

aggregate data patterns, albeit descriptions that are straight jacketed by the

capricious enforcement of restrictions of optimizing behavior by a single

individual. Without attention to aggregation, one can only be skeptical about

using empirical results from a model that is motivated solely by the phrase

"assume a representative agent."

A natural reaction to the difficulties of ignoring heterogeneity is to

carry out all behavioral modeling at the level of individual agents. The

second approach to modeling aggregate data is microsimulation, which takes

this posture to its extreme. In particular, this approach begins with a full

model of the behavior of each different type of individual in the population,

estimated with survey or panel data on individuals. Aggregate values are then

simulated by adding up across all individuals. Examples of microsimulation

models include the Joint Committee on Taxation's (1992) model for simulating

tax policy impacts, and various models of appliance choice and energy demand,

such as those described by Thomas Cowing and Daniel McFadden (1984)

.

Microsimulation models have the potential for the most realistic

representation of aggregate data movements - an adequate model of the behavior

of each kind of economic player would represent the full behavioral foundation



underlying economic aggregates. The drawback to this kind of model is not in

its foundation, but rather in practical implementation. Supposing that a

complete individual model can be characterized without difficulty (and this is

a huge supposition) , microsimulation involves carrying out a separate

simulation of each individual's behavior. Consequently, exogenous and/or

predetermined variables need to set for each individual, as well as starting

conditions when the individual models are dynamic. With a substantive

accounting for individual differences, there is virtually unlimited

flexibility in the application of microsimulation models, but the simulation

process becomes virtually intractable to carry out.

Because the results for aggregated variables are dependent upon precisely

how the individual simulations are specified, the sheer scale of possible

inputs precludes any meaningful understanding of the primary influences on

aggregate data movements. In particular, with the exception of the work of

James Heckman and James Walker discussed below (Section 4.5), there have been

no conclusive comparisons of aggregate tracking performance between

microsimulation models and statistical models of aggregate data alone. For

microsimulation models even the simplest form of aggregate validation is

either difficult or impossible. This sobering feature of the microsimulation

approach is clearly evidenced in the careful analysis of microsimulation

models of energy demand of Cowing and McFadden (1984).

The third approach to modeling aggregate data, the subject of our survey,

is to adopt a framework that permits individual data and aggregate data to be

modeled under one consistent format. In particular, an individual model is

specified together with assumptions that permit an aggregate model to be

formulated that is consistent with the individual model. This approach models

the comparability of individual behavioral patterns and aggregate data

patterns, removing any mystery induced by the one-sided focus of studying



aggregate data alone or individual data alone as in the other approaches.

The overall aim for models that account for aggregation over individuals

is to account for individual heterogeneity as in the microsimulation approach,

as well as give a tractable, parsimonious model for aggregate data. This

compromise between the other approaches is typically achieved by using

individual level equations that are restricted to accommodate aggregation,

together with information on the distributional composition of the population.

These added restrictions can be tested with individual and (sometimes)

aggregate data, and such testing is necessary for a full validation of this

kind of model.

There are clear advantages to such micro-macro models, which are useful

to list at the outset. First, any restrictions on behavior applicable at the

individual level model can be applied in a consistent fashion to the aggregate

model. The parameters of individual level equations appear in the aggregate

level model, and restrictions on those parameters (from individual optimizing

behavior) are applicable at both levels. Second, simultaneous modeling of

both individual and aggregate level data permits pooling of both kinds of

data, which broadly allows heterogeneity to be characterized by observed

individual differences in behavior. Finally, the results of estimating such a

model are applicable to a wide range of applied questions; the individual

level model can be used to measure distributional effects, and the aggregate

level model used to simulate or forecast future aggregate data patterns. By

construction, simulations of individual level equations are consistent with

simulations of the aggregate level equations.

We have introduced these issues in a somewhat abstract fashion to set the

stage. The elucidation of the principles involved in building models that

account for aggregation, as well as recent examples of these kinds of

models, comprise the subject of our survey. For a bit of a road map,



we begin by a simple discussion of the issues raised by individual

heterogeneity for equations fit to aggregate data. We then discuss some

theoretical ideas that clarify how individual level models can differ from

aggregate data patterns, as well as spell out what constitutes a well

grounded, interpretable aggregate level model. This sets the stage for our

survey of applied work, which is somewhat of a collage of different

aspects of modeling aggregation over individuals. We begin with

statistical methods of assessing distributional effects in aggregate data,

that, while crude, point up interesting interactions between individual

heterogeneity and aggregate dynamics. We then cover recent work in demand

analysis, where micro-macro modeling has been developed most fully. Following

this are sections discussing aggregate equations and statistical fit, various

aspects of dynamic modeling, models of market participation and recent work in

microsimulation that is focused on aggregation issues. We survey a variety of

problem areas to give broad coverage to work that connects individual and

aggregate models, which has been used in empirical work or is closely relevant

to empirical methods.

Our survey will deal with only a fraction of recent literature that

addresses questions under the heading of "aggregation," and so it is

necessary to mention some areas that are not covered. As mentioned

above, we will not cover the myriad of arguments against representative agent

modeling, nor the numerous theoretical results on what micro level assumptions

can yield partial structure among aggregate variables. Kirman (1992)

provides reasonable coverage of this literature. We are concerned with

aggregation over individuals, and will not cover the construction of

aggregates within individual decision processes, such as in the literature on

commodity aggregates and two-stage budgeting, or in the literature on whether

an aggregate "capital" construct is consistent a heterogeneous population of



firms; a good starting point for these literatures is Charles Blackorby,

Daniel Primont and Robert Russell (1978).

Moreover, we focus on macroeconomic variables that are averages or totals

across an economy comprised of a large number of individual agents, and we

presume that the definition of "individual agent" is sufficiently unambiguous

to make sense out of applying an individual level model. For some of our

discussion, we are interested in the recoverability of empirical patterns of

individual level data from aggregate data series, and then the definition of

"individual" is given from the context. But for the applications of

restrictions from rational behavior, such behavior is taken as appropriate for

the "individual" so defined. For example, in the context of demand analysis,

the "individual" is typically a household, and the application of

integrability restrictions assumes that households are acting as a single

rational planning unit. We do not cover the literature on whether decisions

of multi-person households are made jointly, or are the aggregates of separate

decisions made by the individual household members under a bargaining process.

While the questions addressed in this literature overlap with some of our

concerns, the setting of a two-to-seven member household is sufficiently

different from a national economy to raise quite different issues. For

example, ongoing income redistribution may be entirely feasible within the

context of a single family, in a way that one would never consider applicable

to a real-world economy. Good starting points for this literature include

2
Robert Pollak (1985) and Pierre-Andre Chiappori (1988), among many others.

2 . Basic Issues of Heterogeneity and Aggregate Data

Traditional methods of modeling aggregation over individuals involve

fairly strong linearity restrictions on the impacts of individual

heterogeneity, and the theory we describe later indicates the role of such



restrictions. For motivation of the basic problems, we first develop a feel

for the issues raised by individual heterogeneity through some elementary

examples

.

Much of the work on aggregation has been developed in the context of

analyzing commodity demands, and so we consider a simple static demand

paradigm here. Suppose that our interest is in studying the demand for a

commodity, as a function of prices and total expenditure budget, or "income."

Suppose further that the vector of prices faced by all individual households

are the same at time t, but that incomes vary across households and over time.

We employ the following notation:

N : Number of households at time t; indexed by i = 1,...,N .

p : Price (Vector) at time t.

y. : Demand for the Commodity by household i at time t.

M : Total Expenditure Budget, or "Income" of household i at time t.

y. = f.(p ,M. ): Demand Function of household i at time t.
•^it L^'^t' It'

1

y - Z- y- Average Demand

1

M - y. M. : Average Income
t „ ^1 It ^

^t

We are interested in how aggregate demand y relates to aggregate income M

and price p .

A "representative agent" approach to studying aggregate demand could

begin with a formulation of a "per capita" demand equation y -= G(p ,M )

,

presuming that mean demand y is determined solely by prices and mean income

M This equation would be fit with aggregate data over time, by least

squares or some other technique. The issues we discuss below are not affected

10



by what estimation method is used, but arise solely because of the use of the

aggregate income M alone to explain average demand y . Consequently, for our

examples we suppose that aggregate estimation reveals the true pattern between

y and p M , without making reference to any particular estimation method.

Consider first a straightforward setting. Suppose that all households

have identical homothetic preferences, so that given prices, all households

allocate the same fraction of their income to the commodity. Demand for

household i at time t is then expressible as

(2.1) y. - b(p ) M. .

'it ^t It

Here an additional dollar of income increases demand by b(p ) for any

household.

In this case, aggregate demand is given by

(2.2) y^ - b(p^) M^ .

This is a well defined, stable, interpretable relationship, which would

be estimated with data on y , p and M over time t. The reason for the

stability of the relation is clear. Suppose that incomes change, inducing a

change of AM in M . Each household adjusts their demand according to their

common marginal effect b(p ), so aggregate demand changes by the marginal

amount b(p )AM. The relation is interpretable because the aggregate marginal

effect b(p ) is the marginal behavioral response b(p ) of any of the

households in the population. Here there is no "aggregation problem."

Now let's complicate the example slightly, by supposing that there are

two types of households, say "small" and "large". Suppose further that the

only behavioral differences between these households involves a minimum

(subsistence) demand for the good; namely, small households have demand

function

11



(2.3) y^^ - a^Cp^) + b(Pj.)M^^, family i small

and large families have demand function

(2.4) y^^ - a^(p^) + t3(Pj.)M^^, family i large,

where a_(p ) and a., (p ) represent the subsistence level demands. These forms

of demand would arise from quasi -homothetic preferences for each type of

family.

Suppose further that there are N^ small families and N. large families,

and P^ - N. /N , N.. /N = 1 - P_ denote percentages of small and large

families. Aggregate demand is given as

(2.5) y^ - a^(Pj.) + [aQ(p^) - a^(p^)] P^^ + b(p^) M^ .

The impact of an additive difference among households is to introduce the

percentage breakdown of household types (Pf^^) into the aggregate equation.

The response to a change in aggregate income M remains interpretable and well

defined: a change in incomes causes a marginal adjustment for every family in

line with b(p ) , which matches the aggregate "effect" b(p ) . If the

population remained stable over time; with P- = P., then econometric

estimation based on the equation

(2.6) y^ - S(p^) + b(p^) M
t

will uncover the marginal response b(p ) - b(p ) and the average minimum

demand a(p^) - a^(p^) + [aQ(p^) - a^(p^)] Pq.

However, if the population is not stable, with P- time varying, then

econometric analysis based on equation (2.6) would generally not uncover the

true income effect. If the percentage of small households trended with

12



average income; namely up to error we have P = d + k H , then the estimated

effect of average income would be approximately b(p) = b(p ) + [a^(p )
-

a (p )] K. At any rate, a correct specification requires including the

composition effect P_ into the aggregate equation, to permit measurement of

the correct income effect. Of course, if the trend effect k, were minor, b(p )

would roughly measure b(p ), the marginal income response of each individual

family.

In this example, the primary issue involves separation of the

(well-defined) aggregate income effect b(p ) from the composition

effect, which is accomplished by including the percentage P^ in the

aggregate demand equation. With any other kind of individual heterogeneity,

this simple kind of separation is obliterated. In particular, one immediately

faces the question of what the "aggregate income effect" is, or what "effect"

would be measured by an econometric analysis of aggregate data alone.

In particular, now suppose that large and small households have

different marginal responses to income; namely small households have demand

function

(2.7) y^^ - b^Cp^) M^j., family i small

and large households have demand

(2.8) y^^ - b^(p^) n^^, family i large.

where we have omitted the subsistence levels (a(p )'s) for simplicity. These

demands arise if all small households have identical homothetic preferences,

as do all large households, but that preferences differ between small and

large. In this case, aggregate demand is given as

13



(2.9) yt-^O^V ^Ot^Ot^^^V (1-W ^It

where

i "small"

(2.11) M^^- N^/1 I M.^

i "large"

denote average income for "small" and "large" households respectively.

Equation (2.9) reflects the fact that it now matters who gets the additional

income, as small households spend it differently from large households. A

correct implementation of this model would involve estimating equation (2.9),

employing data on p^, P^^, M^^ and M^^.

However, out of practical expediency, suppose one fit

(2.12) y^ = B(p^) M^

"as a good approximation", regarding B(p ) as a sort of "average" effect. To

judge this approach, consider rewriting the true model (2.9) in terms of a

"typical" income effect. While we could define this effect in various ways,

let's take the most natural, namely the average income effect across all

families:

(2.13) b(p^) -Po, bQ(p^) + (I-Pq^) b^(p^) .

With this assignment, we can rewrite the true equation (2.9) as

(2.14) y^ - b(p^) M^. + D^.

which gives the "typical" aggregate effect, plus a distributional term

14



(2.15) D^ - [b^(p^)- bQ(p^)] Po,(l-Po,) [M^, - Mq^] .

This term depends on the difference in marginal effects (b- (p ) - b.(p )), the

composition of the population P/^ , and the relative distribution of income

(M.. - M-. ) over large and small families.

Several ideas come to mind for justifying the approximate equation (2.12)

for estimation with aggregate data; we now take them in turn to keep the

issues in focus. First, we note that if the percentage of small families P

varies over time t, then the typical effect b(p ) of (2.13) likewise varies

over time, so that the estimated aggregate coefficient B(p ) would attempt to

measure a moving target. Let's assume this away by supposing that the

population composition is indeed fixed with P. ~ ^0' °^ ^^ ^° stable that

this is a good approximation.

This pins down the typical effect b(p ), so we now turn to the impact of

omitting the term D There is heterogeneity in marginal responses; b.. (p )
-

br)(p^) »*
; so we focus on the relative income term M.. - M^ . Suppose this

difference trends with mean income; as in

(2.16) M^^ - Mq^^ r M^ .

Trending such as in (2.16) emerges if the distribution of income across

families is constant, with M-. /M and M.. /M constant over time. In this case

estimating equation (2.12) would give

(2.17) B(p^) - b(p^) + [b^(p^)- bQ(p^)] Ppd-Po) r .

so that the macro coefficient B(p ) is a stable but biased measure of the

typical effect b(p ). We could, of course, beg the question by redefining the

"typical" effect to equal the expression for B(p ) in (2.17). While this is

silly, we return to this point later.

15



The mismeasurement caused by ignoring distributional composition is

eliminated if the term D itself is negligible. We assume this by taking M

= M.. , which gives r s in (2.17). This assumption implies a zero

correlation between incomes and the marginal income effects b^(p ), b.. (p ) in

each time period, and gives the true aggregate relation as

(2.18) y^. - b(p^) M^ .

As such, estimating equation (2.12) would give B(p ) - b(p ).

It is clear under these assumptions that (2.18) is the true model, and

that an econometric approach based on (2.12) would reveal this relationship.

Because implementing (2.12) involves no omitted terms, specification tests

could not reject (2.12), so that we would have empirical confirmation of this

aggregate model. Indeed, the aggregation problem is solved, if a well fitting

aggregate model is the overall goal. In fact, that same goal was attained

under (2.16) when t # 0, where the aggregate coefficient B(p ) was given by

(2.17). But the r - case underlying (2.18) gives foundation for the

interpretation that B(p ) is a "typical" income effect, namely that B(p ) as

the average income effect b(p ). As such, we have shown how to "solve" the

aggregation problem in our example.

Or have we? Equation (2.18) is a well-specified, interpretable model

that represents the aggregate data pattern without systematic error. But is

that equation useful or valuable to an application? Would (2.18) adequately

track the impact of changes in income on demand, under our behavioral model

(2.7), (2.8)?

To pose this question, suppose that we wished to predict the impact of

an increase in average income of AM - 1 at price level p . Some of the

additional income will go to small families, say a fraction 6, with the rest

(1 - S) going to large families. This would entail a change in aggregate

16



demand of

(2.19) Ay - 6 bgCp^) + (1 - 6) b^(p^)
,

reflecting the marginal spending responses of small and large families. On

the other hand, equation (2.18) predicts the impact as

(2.19) Ay - b(p^) AM - b(Pj.)

or the average income effect. Therefore, equation (2.18) gives an accurate

prediction only when (5 s p or when the additional income is distributed

in a way that is uncorrelated with the marginal effects b-(p ) , b.. (p ) .

Therefore, for (2.18) to be accurate, any predicted income changes have to

have the same distributional structure as assumed for justifying the equation

to begin with. The same is true under (2.16) with r »<
; the "aggregate

effect" (2.17) will accurately predict the impact of changing average income

only when the new income is distributed in a fashion that maintains (2.16).

In sum, while the above assumptions produce an equation that exactly fits

existing data patterns, every one of those assumptions must hold for the

estimated equation to have any practical value, including the assumptions on

purely distributional features of the population. Neglecting distributional

features undercuts the foundation of any equation based entirely on aggregate

variables.

The "aggregation problem" Is simply stated. Any incomplete summary of

heterogeneous behavioral reactions, such as a relationship among aggregates,

will fail in systematic ways to take account of those behavioral reactions.

The "solution" is likewise obvious, namely that models need to account for

heterogeneity and the composition of the population explicitly. The real

issue in the last example above is that the true model is given by equation

(2.9), which captures heterogeneity in marginal responses as well as the

17



relevant distributional structure. Any simplification down to simple averages

misses structure inherent to the basic behavioral reactions, which in turn,

severely limits the usefulness of the simplified model.

Models that account for individual heterogeneity will typically not be

estimable using data on economy-wide averages alone; additional data on

distributional composition (such as Pfv , ^n^> ^-i^ above), or micro data on

individual behavior, will need to be incorporated. This should come as no

surprise; to study relations that involve heterogeneous individual responses

without distributional information is analogous to studying dynamic relations

without using data over time. Moreover, with a properly specified model the

incorporation is not difficult: the fact that a model ascribes structure to

individual behavioral reactions implies that it is applicable in a consistent

fashion to individual as well as aggregate data. The structure of individual

responses, as well as necessary distributional assumptions, become an integral

part of a properly specified model of aggregate data, and can provide testable

restrictions that cannot be detected with aggregate data alone. Our survey

discusses recent methods of econometric modeling that introduce these kinds of

structure.

Most of the modeling methods involve fairly simple, sometimes static

models of individual behavior. In contrast, the "representative agent"

approach has been the vehicle for the development of fairly complex nonlinear

models of individual behavior under uncertainty, and one might rightfully

question whether our simple static examples above are not too simple, making

more of heterogeneity issues than other familiar problems. In this regard,

two observations are warranted. First, issues of individual heterogeneity are

intrinsic to the use of aggregate data, whether individual models are static

or dynamic. There is nothing in the economics of decision making over time or

equilibrium theory which alters that fact, and the issues of heterogeneity and

18



interpretation are worse for complicated nonlinear individual models than for

simpler ones. There is simply no reason for according the "aggregation

problem" a secondary status relative to other concerns (aside from ill-advised

modeling convenience) , as in representative agent modeling. Second, part of

our survey will be to discuss some interesting interplay between the problem

of aggregation and observed dynamic structure of aggregate data. One type of

work shows how the failure to account for individual heterogeneity in an

aggregate equation, which amounts to an omission of distributional effects,

leads to spurious evidence of dynamic structure. Another type of work shows

how aggregation over individual time series processes leads to more

complicated dynamic structure among aggregate variables. Consequently,

empirical issues of individual heterogeneity and dynamic structure in

aggregate data are intertwined, with the assessment of their relative

empirical importance yet to be settled.

We separate our discussion into two parts; theoretical modeling

considerations in Section 3 and specific empirical models in Section 4. While

Section 3 contains the principles that guide our discussion of specific

models, this section can be read separately. Section 3.5 covers some broad

issues of estimation, which are applicable to estimation of the empirical

models of Section 4.

3 . Theoretical and Econometric Considerations in Accounting for Aggregation

over Individuals

Every model that accounts for aggregation over individuals must begin

with a specification of individual behavior, or an econometric model

applicable to individual level data. With regard to studying aggregate

demand, as in section 2, the first step is to model the individual demand

functions y. - f.(p ,M^ ), for each individual agent. In turn, this
'^it 1 '^t it
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requires identifying the individual attributes that affect individual demands,

including observable differences and differences that are modeled

stochastically. We summarize the differences compactly as A , and rewrite

the (common) individual demand function as y. - ^(P*. -^it '^it^
'

We use this simple demand paradigm to lay out the basic issues below, but

there is nothing that restricts our treatment to the names given these

variables above. The framework and the issues to be discussed below are

applicable quite generally, to static and dynamic empirical models, and not

just to demand models, as our terminology might suggest. There is no

substantive difference between M. and A. as regards aggregation - both vary

over individuals - and we keep them separate only to focus on a specific

economic aggregate of interest, namely M . The generic role of the price

argument p is to represent variables common to all individuals, which do not

introduce heterogeneity by themselves. The essential feature of the framework

is the delineation of aspects that vary over individuals and aspects that are

common across individuals.

The "model" for aggregate demand y then appears simply as

(3.1) y^-— I, f(P,.M,,.A.^).

^t

If the population size N is large enough to appeal to a statistical law of

large numbers, then we can associate y with the mean E (y) , using the

formulation

(3.2) Ej.(y) -
I

f(p^,M,A) dn^(M,A)

where n is the distribution of M,A at time t. This formulation is generally

necessary when (statistical) regularities are assumed for the distribution of

individual variables.
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The approaches we discuss involve different ways of implementing (3.1) or

(3.2) in terms of modeling aggregate data. Exact aggregation and related

linear methods are based on restrictions on the form of f (
.
) to structure

(3.1) or (3.2). Nonlinear individual models with distribution restrictions,

or restrictions on the structure of , give another way of implementing

(3.2). Finally, a further possibility is to characterize the individual

function f(p ,M. ,A. ) completely, with cross-section and/or panel data on
•^t It It r y . / f

individuals. The "micro-simulation" approach predicts y by implementing

(3.1) (or (3.2)) directly, by explicit addition over agents, with Q the

observed empirical distribution at time t.

3 . 1 The Role of Linearity and Exact Aggregation

The exact aggregation approach involves restricting the model for

individual behavior so as to limit the amount of distributional information

4
required for the implied aggregate model. Eliminating the need for

distributional distinctions often requires fairly strong linearity

restrictions on the individual model. The theory underlying exact aggregation

methods is often couched in overly strong terms of when a generic form of

aggregate equation "exists," which just reflects the idea that if

distributional effects belong in a model, then a model without such effects

doesn't "exist."

The essence of exact aggregation theory can be seen from the original

question of the foundation of a per-capita demand equation for a commodity, or

the simplest form of representative agent model. In particular, when are we

permitted to model average demand y as a function of average income M and

prices p ? More formally, when can we assert that
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(3.3) y^. - F(Pj.,Mj.)

without attention to individual heterogeneity?

The basic logic of what equation (3.3) says is sufficient to ascertain

its implications. As long as average income M (or p ) does not change, then

neither does y . Consider what this means. Suppose you were to reach into my

pocket, and take a fifty dollar bill. I would be poorer and you richer, and

both of us would adjust our purchases of the commodity in question. Because

average income M has not changed, equation (3.3) implies that average demand

y does not change, which means that my purchase adjustment must be exactly

offset by yours. In other words, our marginal reactions to a change in income

must coincide. However, equation (3.3) is not affected by how much money is

taken, or whose pockets are involved in such transfers, so we must conclude

that everyone's marginal reactions are the same. Individual demands must be

of the form

(3.4) f(Pt-«if^t) - ^(Pf^t) -^^(Pt) \f

or that individual Engel curves are parallel and linear. This gives the

aggregate demand function as

(3.5) F(p^,M^) - Nj.'^ I a(p^.Aj^^) + b(p^) M^ .

The aggregate income effect b(p ) is quite interpretable - it is the

marginal income effect displayed by every individual in the population. To

the extent that the population changes over time, or that equation (3.3) holds

when the distribution of attributes {A. ) is freely varied, then the logic

extends to the intercept, giving
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(3.6) ^^Pt'^if^it^ ' ^(Pt^ + ^(Pt^ "if

so that no individual differences are allowed at all. If further, demand is

zero when income is zero, then a(p ) - as well, with demand proportional to

income for each family, and aggregate demand proportional to aggregate

income

.

The severity of these restrictions on individual behavior (no

heterogeneity in marginal reactions) reflect the strength of the requirement

of (3.3) that distributional effects are irrelevant. The exact aggregation

approach is based on applying the logic above in weakened form, with

distributional elements introduced in a controlled fashion. To set ideas,

recall the example of Section 2 above where "small" and "large" families

displayed different propensities to consume. In our present notation, let the

attribute vector A. be a qualitative variable, with A. - 1 denoting a small
It ^ It "

family and A. - denoting a large family. The basic model (2.7) and (2.8)

is compactly written as

(3.7)
yit - ^o^Pt) ^t«it ^ ^(Pt> (^-^t)"it

•

-b^(p^)M.^. [bQ(p^) -b^(p^)] A.^M.^

The model for aggregate demand (2.9) is then written as

(3.8) y^ - bj^(p^) M^ + [^^(pj.) - b^(p^)] AM^

where

(3.9) AM - N
'"

y A. M. - N
"' T M

t t ^ It It t ^ It

i "small"

This matches (2.9), as AM - P. M_ , where P. - N " Y A. - A .

t Ot Ot Ot t ^ It t
Here, the
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form of the individual demand function establishes what distributional

information is required, namely AM as well as how to interpret the macro

coefficients. In particular, the coefficient of M is the marginal propensity

to consume b.. (p ) of "large" families, and the coefficient of AM is the

difference b^(p ) - b.. (p ) of the propensity to consume between "small" and

"large" families.

The theory of exact aggregation focuses on the aggregate equation,

insisting that it depend on only a small number of distributional statistics.

In particular, one can ask what restrictions are implied if the aggregate

equation takes the form.

(3.10) y^-^^Pf^f ^2t ^Jt)

where the M arguments are J statistics of the joint income -attribute

{(M. ,A. )) distribution;

(3.11) Mjt-^jf("lt^t>- <«2f^2t> (^f\t)l J=l '

This generalizes (3.3), in which J - 1 and M - M . As in the more

restricted problem, the ability to vary the joint income-attribute

distribution enforces intrinsic linearity on the individual demand equation,

as well as requiring the distributional statistics (M .
' s) to be averages.

A precise version of this theory is given in Jorgenson, Lau and Stoker(1982)

,

Lau (1977, 1982) and others. The argument is given loosely as follows.

The main requirements of this theory are that the distributional

statistics are not redundant among themselves or in aggregate demand, and that

the joint income-attribute distribution can be varied arbitrarily. The first

feature is used to establish that the distributional statistics M , . . . ,M

are functions of averages, and so can be taken as averages themselves.
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Therefore, the permissible distributional statistics are sample moments; say

with

where x (M,A) is a function of the individual income and attribute values.

The second feature, arbitrary variation of the distribution, is then

applied to show that the individual demands must be intrinsically linear. The

conclusion of this argument shows that the x.(M,A) can be redefined so that a

marginal change in x.(M,A) depends only on p, with individual demand taking

the linear form

(3.13) f(p,-M,^,A.^) - a(p^) + b^(P,)x,(M.^.A.^) -H . . . -h b_j(p^)x^(M. ^,A. ^)

- a(p^) + b(p^)'''x(M.^,A.^)

where b(p) = (b^(p) ^^(P))' and x(M,A) = (x^(M,A) Xj(M,A)). This, in

turn, gives that aggregate demand is linear in the sample moments, namely that

(3.U) y^ - a(p^) + b^(p^) [N^"^X
^i^^^it' ^it^ ^

+ b2(p^)[N^-^I X2(M^^,A.^)] -H ... -. b^(p,)[N^-'Z ^j(^it-^t)]

- a(p^) + b(p^)'x^

with x « N Y x(M. ,A. ). This type of generalized linear structure for

both micro and macro level equations is the characterizing feature of exact

aggregation models. Again, it is important to stress how this structure

applies generally to aggregation problems (and is in no way restricted to

demand analysis)

.
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Within the context of demand analysis, the components of x(M,A) can

represent linear and nonlinear functions of income, as well as functions of

observable differences across families. The model (3.7) has x.. (M,A) = M and

x„(M,A) = MA, and we consider more extensive exact aggregation models below.

It is important to note that nonlinear terms in income M likewise give rise to

marginal differences as above; for instance various demand models take the

form

(3.15) y.^ - bQ(p^) M.^ + b^*(p^) A.^M^^ + b^^p^) M.^ln M.^

which leads to an entropy measure N
J^

M. In M. in the equation for

aggregate demand y . Further, much of the work on exact aggregation demand

models also uses economic optimization theory to structure the income effects;

for instance, the budget constraint ("adding-up") of demands implies that a

system in exact aggregation form must have x.. (M,A) - M, and homogeneity of

degree zero in prices and income likewise restricts the form of further income

terms and the coefficients (as functions of prices). At any rate, specific

models usually reflect restrictions to deal with aggregation, as well as

restrictions from the underlying individual optimization theory.

The practical attractiveness of exact aggregation models derives from

three sources. First, the aggregate equations can be immediately derived from

the individual equations, with the distributional impacts clearly

interpretable. In particular, having specified an individual demand equation

of the form (3.13), the aggregate equation can immediately be written down,

and the required distributional statistics (x ) stated. This practical ease

in modeling cannot be overstated. Second, while intrinsic linearity may

appear as a stringent requirement, the fact that virtually any function of

individual attributes can be used permits a wide range of heterogeneous

responses to be modeled - any area using linear models for survey or panel
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data analysis has exploited such restrictions. Moreover, any specific set of

equation restrictions can be tested statistically with data on differing

individuals, either from a cross section survey or a panel survey.

Third, and perhaps most important, is that exact aggregation models

are fully interpretable . The individual level model is fully recoverable from

the aggregate model, because the coefficient functions of y. - a(p ) +

T — T—
b(p ) x(M. ,A. ) match those of the aggregate model y - a(p ) + b(p ) x .

While obvious, it is important to recall what this means for the use of

economic theory to restrict aggregate models. For modeling demand, the

individual coefficient functions are structured by integrability conditions,

and the same restrictions are applicable to the aggregate data model. This

does not mean that the aggregate demand equations are integrable themselves,

but just that the full modeling benefits of rational individual choice are

available for the aggregate model.

3 . 2 Nonlinearity . Distributional Restrictions and Recoverabilitv

While exact aggregation models are applicable in a variety of areas,

there are settings where the intrinsic linearity of such models is

unwarranted or undesirable. When individual behavioral relations are

nonlinear, then exact aggregation theory is not applicable, and so one might

ask how a model could be built that accounts for aggregation over individuals.

Permitting arbitrary variations in the underlying distribution of individual

attributes brought about micro linearity, so this feature must be dropped. In

particular, the structure of the distribution of individual attributes must be

included as part of a model that accounts for heterogeneity of individual

responses. This change of posture also requires some rethinking of the basic

issues surrounding interpretability of the relationship between aggregates.

As before, the issues are best illustrated with an example. Suppose that
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we are studying the purchase of a single unit of a particular product, and we

only observe whether it is bought (say y - 1) or not (y.^ - 0). Assume for

the moment that the value to family i of buying this product depends only on

the price p of the product and the family's overall budget M. ; in

particular, suppose the net benefits (utility) are modeled as 1 + ^, In p +

^„ln M. . The individual model of purchase is then

(3.16) y.j. = f(Pt.Mit) - 1 if 1 + /S^ln P^ + ^2^" "it " °

- otherwise

Because of the (0,1) nature of y. , this model is nonlinear in In M. ,

-'it It

and cannot be made to be linear in a function of In M. or M. that does not
It It

depend on the parameters 0^ , ^„ (or be put in exact aggregation form)

.

Indeed, addition of a normal error term on the right-hand-side of (3.16) would

give a probit model.

The aggregate y - N Z 7- here is the proportion of all families that

buy the product. How is this proportion to be modeled in a manner consistent

with the individual model, at least for a large population?

For this it is necessary to structure the distribution of M. , and

derive the aggregate model as the probability that a purchase is made.

With the distribution restriction, the aggregate model is derived in a

straightforward fashion from (3.2). Consequently, we suppose that the

distribution of M. is lognormal in each period t, say with In M. having mean

2
fj,

and variance S

To derive the aggregate relation, consider the probability E (y) of

purchase, or the probability of

28



(3.17) 1 + /9^1n p + /92I" M >

Some arithmetic gives this as the probability of

(3.18) -Zj. "(In M - M^) <

^2\
1 + ^^In p^ + ^2 ^t

where the left-hand variable is normally distributed with mean and

variance 1. Therefore, we have that

(3.19) E^(y) - *

P2\
1 + ^^In p^ + ^2 '^t

where E (y) is the fraction of families purchasing the product, $( .
) is

the univariate normal cumulative distribution function and /i is the mean of

log income. To rewrite this equation in terms of mean income E (M) , we again

2
appeal to the lognormal assumption, for which E (M) - exp [m^+ (1/2)S ]

.

Solving this for /i and substituting into (3.19) gives the aggregate model as

(3.20) E^(y) - $

l^2^t

2x

1 + ^^In pj. + ^2 1-n ^^W - ^2

Thus, the proportion of families buying the product is a nonlinear

(cummulative normal) function of the product's price and of the mean and (log)

variance of family income. With observations on E (y) , E (M) (or y , M ) and

S over time t, the (individual level) behavioral parameters /9.. and /3„ could

be estimated. Note that if E were constant (say E) over time, then it could

be estimated as a parameter as well.
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The impact of heterogeneity in (3.20) is most evident because of the

appearance of Z
,
gauging the spread of (log) income. Also of interest is the

appearance of something we might call an "aggregate net benefit of purchase,"

namely 1 + ^., In p + ^„ln E (M) . While one might find it convenient to name

this expression in this fashion, it is clear that such a "net benefit"

has no behavioral interpretation; no "agent" formulates a decision on the

basis of it. The model of purchase choice is at the individual level, where

it needs to be to give foundation to the interpretation of ^.. and ^

If other elements of individual heterogeneity are relevant to this

purchase decision, then more distributional information is necessary in the

aggregate model. For instance, suppose that the net benefits differ between

"small" families (A. = 1) and "large" families (A. -0), in accordance with

the model

(3.21) y^j.
- f(Pt.-Wit) - ^ if 1 + ^^In p^. + /Sjln M.^ + p^ k^^ >

- otherwise

We now structure the ioint distribution of M. and A.^ to model the overall
-" It It

probability of buying E (y) . Denote the proportion (probability) of small

families as P^ - E (A) , and assume that the income of small families is

2
lognormally distributed with mean E- (M) and log-variance S- , and that the

income of large families is lognormally distributed with mean E. (M) and

2
log-variance 2- . The aggregate model now is

(3.22) E^(y) - Pq^ Ej.(y|A - 1) + (l-P^^.) Ej.(y|A - 0)
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^Ot*
^2^0t

1 + ^^In pj. + ^2 In Eq^(M)
^Ot

(1 - Pq,) *

Pl\^

2s

1 + ^^In p^ + ^2 In E^^(M)
It

VThile a more complicated equation, the same features are retained, namely the

individual model parameters fi. , ^„ and ^_ could be estimated with aggregate

data (including the distributional variables). Here, this model has nothing

to do with an "aggregate net benefit" 1 + /9.. In p + ^.In E (M) + ;9^Pf^ , not

that any such connection would ever be expected.

These examples point out how aggregate models can be formulated with

nonlinear individual models. Also, they stress the importance of interpreting

the model parameters in terms of the original, individual level, model. We

assumed specific forms for the distributions of underlying attributes - these

features are a necessary part of the model, and could be tested, as with any

other feature of model specification.

Because of these features, it is natural to think that the use of

distributional restrictions would eliminate all of the problems posed by

aggregation over individuals. In one sense this is true, but in another it is

not. In particular, the foundation of the aggregate model rests on its

connection to individual behavior, in that the behavioral parameters are

recoverable from the aggregate model. While an aggregate relationship can

always be characterized statistically, at least in principle, it is not

interpretable , nor can it be counted on to track the aggregates out of the

statistical sample. Without such a recoverability property, there is no clear

connection between aggregate data patterns and individual behavior.
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The basic recoverability issue is fairly easy to spell out. We alter our

notation slightly, denoting the individual model as y - f(p x. ,^) , where

X. sunuBarizes individual attributes (or functions of observed attributes such
It

as M, A above), and fi represents parameters of interest. Suppose that the

distribution of x at time t is given as (x) - n(x,;i ), where we have used

parameters /i (say /i - (E (x),E ,...)) to summarize how the distribution

varies over time t. The aggregate relation is given from (3.2) as

(3.23) Ej.(y) - 0(p^,/i^,/9) -
J

f(p^.,x.^) dn(x./i^)

Individual behavior is recoverable from this aggregate relation if p is

identified by the formula (3.23). This occurs if ^ always changes when ^ is

varied (regardless of how fi is varied), or in other words, given a sufficient

number of observations on E (y) , p , n that fit equation (3.23), it is

possible to solve for fi uniquely. This was true for the examples above, but

it need not be true for any specification of f and/or U.

This issue is studied in some detail in Stoker (1984a), where the focus

is on heterogeneity per se, or with the argument p held constant. Some of

the results of this analysis are of interest here. First, one can verify that

linear individual models are the only models that give recoverability for

broad ranges of distributions, which is a verification of exact aggregation

theory in the large sample context. Second, there are classes of

distributional restrictions where recoverability is assured regardless of the

form of the individual behavioral model. These classes are known as

"complete" distribution classes in statistics, with the foremost example being

distributions of the exponential family. This family refers broadly to

a distribution restriction of the form
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7r(M )'D(x)

(3.24) dn(x,M^) - Pq(x) c(m^) e dx,

or where a base density Pr,(x) is altered over time in a fashion consistent

with the exponential term above (permitting unconstrained variations in

7r(/i )). The exponential family contains several familiar distributional

formulations; normal, gamma, beta, as well as the lognormal distribution used

above. In these cases recoverability is assured, and estimation of all the

behavioral parameters can be based on aggregate data alone.

3 . 3 Differences Between Aggregate and Individual Models

Situations where recoverability fails often provide the key to

understanding differences between models estimated with individual and

aggregate level data. Such situations arise because the distribution of

heterogeneous attributes fails to vary sufficiently for the effects of the

attributes to be measured. Perhaps the clearest way to see this point is to

consider restrictions associated with the sort of "aggregation factors" used

by Arthur Lewbel (1991) and Richard Blundell, Panos Pashardes and

Guglielmo Weber (1992) (to be discussed later). Suppose that the individual

attribute variables are partitioned as x - (x..,x_), x.. a single variable, and

the individual model is in exact aggregation form; say

(3.25) y.^ - a(p^) + b^(P,)'x^i, + b2(p,)'x2i, .

so that the correct aggregate model is

(3.26) E^(y) - a(p^) + b^(p^)'E^(x^) + b2(p^)'E^(x2)

Consider a couple kinds of constancy restrictions, namely i) E (x„) - c^,

constant, or ii) E (x-)/E (x..) - c- , constant. In both cases the aggregate
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relationship is linear in E (x^ ) , as

(3.27) E^(y) = i(p^) + b^(p^.)'E^(x^).

However, the correspondence of (3.27) with the individual model (3.25)

differs, depending on how recoverability fails. Specifically, under i) we

have a(p^) - a(p^) + b2(p^)'Cj^, b^(p^) - b^(p^) , and under ii) we have a(p^)

= a(p^), b^(p^) - t)^(p^) + b2(p^)'c2. In one instance b^(p^) can be

recovered, but not a(p ) or b„(p ), and in the other case a(p ) can be

recovered, but not b.. (p ) or b„(p ). Nevertheless, if one could verify these

kinds of constancy restrictions in a particular data set, one has an

explanation for the aggregate model (3.27) together with the individual

model (3.25). For instance, if the "aggregation factor" E (x„)/E (x..) were

constant, then (3.27) would be useful for prediction in situations where the

factor remained constant.

The effects of certain individual attributes are impossible to measure

with aggregate data when aspects of the heterogeneity distribution are

strictly constant. Return to our general format, with x = (x.., x„) as above.

Suppose that given the value of x.. , the distribution of x„ is constant over

time. In other words, suppose that the density of the underlying distribution

is structured as

(3.28) dn(x,/i^)/dx - P2|l^''2l''l^ ^l^^'ll'^t^
•

It is easy to see that this structure makes it impossible to study the

effects of heterogeneity represented by x„ with aggregate data. In

particular,
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(3.29) E^(y) -
J

f(Pj.,x.^) dn(x.M^)

-
J J

f(p^,x,^) p^,^(x^\x^) dx^lx^ Pj^(x^Im^) dx^

-
J

f^CP^.Xj^.^) p^(x^Ip^) dx^ .

where given x^ , f is the mean value of f, or f (p ,x^ ,)9) - E[f (p ,x,^) |x.. ] .

In this setting, sufficient variation in the distribution of x^ may permit

recoverability of f . Recoverability of a more detailed individual model,

such as f, is impossible, because there is variation only in the marginal

distribution of x^ . From the vantage point of aggregate data, the empirical

implications of beginning with the model f() are the same as beginning with

the simplified model f ().

Recoverability can fail in many other ways, often resulting in an

aggregate data pattern that has little resemblance to the individual

behavioral model. One extreme case is where the underlying distribution just

trends with the aggregates of interest. For instance, suppose p = E (x) , and

that the density of the distribution is

(3.30) dn(x.E^(x))/dx - Pq(x) + [E^(x)-Eq(x)]'s(x)

Here Pf^(x) is a base density (say from one time period), and s(x) indicates

how the density shifts with the aggregate E (x) ; we have J p^ix)dx = 1,

/ xpQ(x)dx - E (x)
, / s(x)dx - and / x s(x)dx - (1,...,1)'. This

structure says that any group of individuals defined by a fixed range of x,

accounts for a proportion of the population that varies linearly with the mean

E (x) . What affect would this have on aggregation? From (3.30), we have
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(3.31) E^(y) -
J

f(p^..x^,^) (Pq(x) + [E^(x) -Eq(x) ] s(x)) dx

-
J

f(p^,x^,^)pQ(x)dx + [E^(x)-Eq(x)]
J

f(Pj.,x^,^) s(x) dx

- a(p^,;8) + b(p^,^) E^(x)
,

or the aggregate relationship is always linear in the mean E (x) . Regardless

of whether the original model was highly nonlinear; say exponential, high

degree polynomial, or even 0-1 as in the purchase example above, it is

impossible to distinguish it from a linear individual model consistent with

o

the above equation. Of course it may be possible that particular choices of

f, p^ and s would result in being identified by (3.31). But with

distributional trending, the aggregate relation can bear little resemblance to

individual behavior, with recoverability of any nonlinear individual model

ruled out.

The cases where recoverability fails again point up that care is required

in the applicability of restrictions from individual behavior to aggregate

models. Each of the cases above involves too little independent variation in

the population distribution over time to recover the individual model, which

means that distribution effects exist but are not measurable with aggregate

data alone. As such, these settings are ones in which simple aggregate data

models will describe the data patterns exactly, but individual behavioral

restrictions cannot be casually ascribed to such aggregate models.

It is important to keep in mind what these concerns are negative about.

In particular, they are pessimistic regarding the prospects of learning about

behavior from aggregate data alone. The solution is likewise simple; namely

model individual behavior, use aggregate data in a fashion consistent with
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that individual model, and combine individual data in estimation when

possible. If all one has is aggregate data, the recoverability property is

essential for a model can be interpreted in terms of individual behavior. But

for many (most) applications, there may be too much richness in individual

behavior to expect that a few aggregate data series will reveal it adequately.

3 .4 Unobserved Individual Heterogeneity and Stochastic Aggregation Models

A natural recourse for capturing the myriad of individual differences

in many practical problems is to model such differences as unobserved random

variables. In the context of models that deal with aggregation over

individuals, one needs to pay special attention to how such unobserved

attributes are distributed and how their distribution evolves over time.

Moreover, various approaches to aggregation have unobserved individual

differences as a starting point, and our discussion of random elements gives a

natural format for discussing econometric estimation. For this discussion, we

expand the notation so that the individual model is now

(3.32) y = f(p,x,^,£)

where x (and its distribution) are observed and £ represents unobserved

attributes, whose distribution must be modeled.

In the abstract, x and £ are indistinguishable, and so all of the above

remarks about recoverability could apply for the recoverability of f from the

relation between aggregates. However, because « and its distribution in any

time period are not directly observed, we consider the situation where the

density of (x,£) factors as p (£|x,a) p(x|/i ); or that the density of e for

given X is stable at each time period, where we permit a vector of parameters

9
a. The most straightforward setting for dealing with unobserved

attributes is when their impact is additive, as in
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(3.33) y = f(p,x,/3,£) = f(p,x./9) + £

onwhere we assume E (£|x) = 0, for each time period t. From exact aggregati

theory, it is clear that (3.33) would be implied if the average of y depends

in general on only the marginal distributions of x and e

.

The aggregate relationship is generally written as

(3.34) E^(y) -
J I

f(Pj.,x.^,£) p^(€\x,a) de\y. P(x|Mj.) dx

-
J

f(p^,x,^,CT) p(x|Mj.) dx

where f(p,x,^,a) - E[y|p,x]. As this is a situation of conditional constancy,

the conditional expectation f(p,x,/9,(7) captures all of the structure of the

individual model for aggregate data. Recoverability would focus on whether

the parameters fi and a could be identified with sufficient aggregate data.

Two practical points are worth noting. First, the criterion for the

inclusion of variables centers on the stability of the conditional expectation

E(y|x) - f(p,x,)9,a); omitting an important variable can cause this conditional

expectation to vary over time. This is closely connected to the question of

how behavioral regularities are ascribed across individuals - standard micro

econometric models structure the effect of observed variables, but other

approaches try to avoid this, summarizing differences through randomly varying

parameters

.

Second, with regard to the aggregate relation (3.34), there is no

practical difference among any individual stochastic models with the same

conditional expectation E(y|x) - f(p,x,^,a). That is, whether unobserved

differences are in levels as in (3.33), or entered in a more complicated

fashion, there is no effect on the mean aggregate relation. For instance, a
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random coefficient model

(3.35) y = f(x,^,£) - pQ + (^1 + e^)'y- + fg

has the same aggregate empirical implications as a model with common

coefficients (omitting e.) provided E(£..|x) - 0, an observation due to

Arnold Zellner (1969). This latter restriction is related to the familiar

covariance restriction of linear aggregation, Cov(x,£.) - (which implies

E (y) ~ p + 'E (x)); in particular, E(£-|x) - is implied if the

covariance restriction holds for all possible distributions of x. If in

(3.35) the disturbances £. are homoskedastic , then (3.35) implies increasing

variance of y with increases in x, whereas a common coefficient model without

£., would have constant variance of y over x values. Of course, if there are

coefficient patterns over different x values, or £(£.. |x) - c(x) >* 0, then the

appropriate, potentially recoverable regression exhibits those patterns, as in

(3.36) E(y|x) = f(x,^) - ^Q + [^^ + E(£^|x) ] 'x + E(£q|x) .

These notions illustrate the interplay between modeling individual differences

and the observed variables. The most sensible posture is to use variables to

represent all observable individual differences, interpreting the results of

analysis the way one interprets a regression pattern estimated from individual

level data.

3 . 5 Econometric Issues and Aggregation

Throughout this section we have discussed aggregation questions in the

general context of recoverability of individual behavior from aggregate data

patterns. In practical terms, we will typically have a micro model specified

up to some parameter values, and the object of empirical work will be to

estimate the parameters. It is necessary that such parameters be identified
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from all of the data available, including whatever individual data is

rele"v«"aiit as well as aggregate data. Recoverability of certain parameters

meanis that they are identified from the aggregate model alone.

Estimation of a well specified model that accounts for aggregation over

indiwiduals does not entail any nonstandard econometric issues. In

particular, such a model involves estimation of a set of parameters over one

or mcore data sources, and the only real concern is that the individual model

is ajpplied to data on individuals and the aggregate model is applied to

aggrtegate data. Our purpose here is to complete our coverage by raising a few

of tlhe broad issues; namely to discuss estimation in the context of full or

part.iial recoverability, as well as discuss some results that permit partial

poolK.ng of individual and aggregate data.

As above, we suppose that the individual model is denoted

(3.37) y - f(p^.x.^.£)

wheree £ is random with density p (tjx.a), and the micro regression of y on x

is dtenoted

(3.1i6) E(y|x) - f(p^,x,7) .

wherie we denote all of the parameters for estimation as 7 - (/9,a). The

aggnegate model is given as

(3.2&9) Ej.(y) -
J

i(p^,x.7) p(x|m^) dx - ^(p^,M^.7).

(With full recoverability, when 7 represents a small number of parameters

relative to the number of aggregate observations, estimation can proceed on

the Fbasis of aggregate data alone. In particular, if y , p ,
(i denoted the

aggr«egate observations, then 7 could be estimated consistently by (nonlinear)

2
leasfc squares, as 7 - argmin

J] [y - ^(p ,M ,7)] • We could also consider
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weighted least squares estimators; James Powell and Stoker (1985) show how

efficient weighting schemes can be implemented, using the stochastic structure

imparted by aggregation across a random sample. In specific examples, it may

be easy to derive a likelihood function for the aggregate estimation.

When 7 represents a large number of parameters measuring effects of many

kinds of individual differences , there may not be sufficient aggregate data

points either to identify all the components of 7, or to measure them with any

precision. This situation is typical in realistic problems dealing with

individual heterogeneity, and makes it necessary to bring more detailed data

into the estimation process, such as data on individuals. If there is

sufficient data at the individual level, such as a panel of many individuals

over many time periods, there may be no inherent need to formulate a specific

model for aggregates at all. For example, the parameters could be estimated

by maximum likelihood methods, or if 7 is identified in the regression (3.38),

by (nonlinear) least squares regression.

While this is all quite standard, two remarks are called for. First, the

only substantive reason for formulating an aggregate model when full panel

data is available is to facilitate aggregate predictions - namely formalizing

how the distribution of individual attributes varies in simulated time

periods. Second, some standard panel data methods can seriously complicate

attempts to model aggregates; for exanple, the incorporation of fixed

individual effects. A fixed effects setup is only tractable when the number

of individuals is relatively small, with aggregation carried out explicitly

(say aggregation over counties in a state). Otherwise, the individual effects

need to be regarded as random for overall aggregation, with their distribution

12
(joint with observed individual variables) specified fully.

These two situations represent two extremes, namely sole reliance on

aggregate data versus sole reliance on individual data. In practical terms,
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the situations that fall between these two extremes are those that are best

addressed with models that account for aggregation. That is, where the model

involves sufficient numbers of individual differences to be realistic, but too

many to be studied with aggregate data alone, and there is some limited

individual level data, such as one or more cross section surveys.

This setting gives rise to measuring effects of individual heterogeneity

with individual data, and measuring the effects of common variables with

aggregate data. To outline how this is done, suppose that 7 represents the

subvector of 7 that is identified with cross section data at time t^, that can

be thought of as the parameters gauging the effects of individual differences.

Suppose that 7 represents the subvector of 7 that is identified in the

aggregate data (namely in the model (3.39)), and where each element of 7

appears in either 7,7 or both. In a demand modeling scenario, 7 could

represent income and demographic effects, and 7 could represent price and
ag

income effects (through the impact of aggregate income) . In this situation,

7 could be estimated by either maximizing period t^ likelihood

A

(3.40) 7„_ - argmax I In p(y.^ ,P^ ,x ;7)

where p ( ) is the likelihood derived from the behavioral model (3.37) and

the conditional distribution p of £ given x. If 7 is identified by the

regression (3.38), then least squares can be applied with the cross section

data

(3.41) 7„-argmin I i iVi, ' ^ <Pt '^t ^"^^ ^
^

•

cs

The parameters 7 could then be estimated with the aggregate data via

(3.42) 7 - argmin X [y^ " *(P^.M^.7)]ag
^ag

A A

Finally, the estimates 7 and 7 could be pooled by inversely weighting with
cs ag
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regard to their estimated variances.

For exact aggregation models, this kind of pooled estimation is discussed

in detail by Jorgenson and Stoker (1985). In this case, with an individual

regression model of the form

(3.43) E(y|x) - a(p,7) + b(p,7)'x .

the incorporation of cross section data into the estimation is particularly

easy. Specifically, the estimation of (3.43) employs the cross section data
A A

through the OLS coefficients a, b of y regressed on x and a constant, which

consistently estimate a(p ,7) and b(p ,7). This represents a substantial
'^O

computational simplification over (3.40) or (3.41) with a nonlinear individual

model

.

For later reference, it is useful to restate this feature of exact

aggregation models in different terms. Because the aggregate equation from

(3.43) is

(3.44) E^(y) = (^(p^,E^(x).7) - a(p^,7) + b(p^,7) 'E^(x)

we have that the "aggregate effect" SE (y)/3E (x) d<l>/dE (x) at time t is

A

just b(p ,7), and that the cross section OLS slope vector b consistently

measures that effect. This coincidence of cross section and aggregate

coefficients is implied by the exact aggregation format, and could be

statistically tested to check the specification of such a model

With a substantively nonlinear model and a fair sized cross section data

base, the estimation indicated in (3.40) or (3.41) can involve extensive

computation, making the overall estimation job considerably harder than just

estimating parameters with aggregate data. We close this section by raising

14
some connections that permit partial methods of pooling. These methods are
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the nonlinear analogy to pooling based on coefficients with exact aggregation

models

.

To set this up, recall that the vector x can represent products and other

transformations of the basic observed individual variables, and suppose that x

is specified so that E (x) parameterizes distribution movements. In

particular, we can determine ^ as /i - H(E (x)) in the aggregate model

(3.39), rewriting it as

(3.45) E^(y) -
I

f(p,.,x,7) p[x|H(E^(x)] dx - /(p^. E^(x) ,7)

.

The "aggregate effect" at time t is SE (y)/aE (x) - d(i> /dE (x) evaluated at

time t^.

The connection works as follows (Stoker (1986a); suppose that the "score"

i. = 91n p(x.|u )/9y can be estimated for each x. in the cross section at t =
1 1' t t 1

A

t^. Suppose further that d are the slope coefficients of regressing y. on x.

using i. as the instrumental variable:

(3.46) d-d i^^J)'"^ (Z ^y^) .

A

The result is that d consistently estimates the aggregate effect, as in

A

(3.47) plim d - aE^(y)/aE^(x)

.

This is true regardless of the form of the individual model.
A

One could envisage situations where the cross section coefficients d

could be used to extrapolate E (y) in subsequent time periods, in a way that

was robust to the specification of the individual model. When the model is

fully specified, this result is useful for partial pooling in the estimation

* *
of 7, as d estimates d4i (p ,E (x),7)/3E (x) . For instance, if 7 denoted

the parameters determined if this effect were known, then estimation could be
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based on minimum distance, as in

(3.48) 7,
* -

cs

m

argmin [d - a/(p ,E (x) .7)/aE (x) ]V"^d - a/(p^ .E^ (x) .7)/aE^(x)
]

^cs
CO Cq Cq t

A

where V'^ is an estimate of the variance of d. This objective function could

also be included as part of a partial pooling procedure in the standard way.

Moreover, while estimation of the scores I. may appear daunting at first

glance, in leading cases they do not need estimating. For instance, if the

distribution is in the exponential family form (3.24) with D(x) = x, then £.

is proportional to x. and d is the OLS regression coefficients of y. on x.

.

This form occurs if x is normally distributed, for instance. An example is

given in our discrete choice example of (3.17-3.20), with 2 constant over

time; there d is the OLS coefficient of the 0-1 variable y. on x. - In M.

,

-^1 1 1

which consistently estimates the effect of changing the mean of log M on the

proportion of purchasers, or 3E (y)/a/i in our earlier notation. If

distributional movements are represented as translations (or can be written

SO, as in proportional scaling), with p (x) - P/^(x - E (x)), then d can be

based on nonparametric estimates of the scores. These types of estimates are

known as "average derivative estimators", and are discussed in a different

context in Stoker (1992).
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4. Empirical Approaches that Account for Aggregation Over Individual

s

Recent work has involved a wide variety of modeling approaches for

studying the issues raised by aggregation over individuals. Our coverage of

the theoretical considerations provides some central themes to discuss in each

of these areas. We now turn to an area-by-area summary of different

approaches

.

4. 1 Statistical Assessment of Distributional Effects in Macroeconomic

Equations

Compositional effects must be present in aggregate data unless the

marginal reactions of individuals are remarkably similar. We first consider

work that looks in crude fashion to see where distributional effects are

manifested in aggregate data. One way of making such comparisons is to

contrast economic variables across situations where the distributional

structures are grossly different. An older example of this kind of comparison

is given by Franco Modigliani (1970) , who explains differences in savings

rates across countries by focusing on population growth rates and age,

motivated by the notion that individuals in different countries will have

similar needs for saving consistent with a simple life cycle.

More germane to standard macroeconomic analysis is the assessment of

distributional effects over time in a particular economy. Simple approaches

here amount to including distributional variables in a standard macroeconomic

equation, and testing for whether they have a significant effect. An early

example of this kind of study is by Alan Blinder (1975), who studied the

effects of income distribution on average consumption in the U.S. Blinder

included relative income distribution variables (quantiles) , and failed to

find any significant effects.

Blinder' s pioneering results are of interest for several reasons,
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including pointing out two difficulties with measuring distributional effects.

The first problem is that there may be too little variation in the

distributional variables of interest over time, as with the relative income

distribution in the United States. The second problem is that without some

micro-macro correspondence in the modeling approach, even significant

results may be difficult to interpret, aside from asserting that "distribution

apparently matters." For instance, if Blinder had found significant

effects of relative income quantiles, this would suggest consumption

differences attached to the relative position of individual incomes, but not

the income level, which would seem more relevant for individual consumption

decisions. The interpretation issue is exacerbated for the inclusion of

variables such as the Gini coefficient of the income distribution, which is

not obviously traceable to individual income effects.

As indicated in Section 3.1, such difficulties of interpretation are

addressed by including distributional statistics that are themselves averages,

such as proportions of individuals in well-defined categories. The

effects of such proportions are interpretable because they coincide exactly

with dummy variable methods of studying individual differences. For instance,

recall our earlier example of investigating small-large family differences in

demand, and in particular, equations (2.3-5). With cross section data, one

might take a first cut at looking at such differences by fitting the

regression equation

(4.1)
yit " ^ "^ ^ "it

"^ "^

'^it
"^

""it ^ " -^ ^
t

where A. - 1 if family i is small, and A - if large, and testing whether

d - 0. The aggregate analog of this is to include the proportion of small

families P. - N ' ^ A. in the aggregate equation, as in
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(4.2) y -a+bM +dP-^+u
^ ^ 't t Ot t

and testing for whether d - 0, where we have abstracted from price effects for

simplicity. As in (2.5), it is clear that a measures the basic level of

demands for large families, and d measures the difference between the levels

for small and large families.

Recent efforts to characterize distributional effects using proportion

variables have been more successful than their predecessors. Stoker (1986c)

examines the robustness of the popular Stone-Geary linear expenditure system

(LES) by including proportions of families in various ranges of the real

income distribution as regressors. For discussing the results, consider a

typical equation of this system (say for expenditure on commodity group 1)

,

augmented for distributional effects, which takes the form

(4.3) y^ - (l-b)7, P,, - l^^ h-y^
p^^^

. b M^ + a -H I d. P . ^ . u^

being linear in prices {p, ) and average total expenditure M , and where P.
rCt t J t

denotes proportions of families in fixed ranges of the real income

distribution. From our discussion above, it is clear that the d. coefficients
J

pick up departures of the micro Engel curve from linearity, which coincide

with distributional effects in the aggregate equation). Moreover, d. = for

all j coincides with the linear expenditure system being statistically valid

for each household as well as for the aggregate data.

Three features of the empirical results of this study are of interest for

our discussion. First, the hjrpothesis of no distributional effects (d. -

for all j) is soundly rejected, and including the proportion variables

substantially changed the estimates of marginal income effects. For example,

A

for food, which is around a third of the budget, b - .1 when the proportions

A

were omitted, but b - .3 when they were included. This gives evidence for
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heterogeneity in individual responses, as well as suggests that accounting for

heterogeneity may bring macro parameter estimates more in line with estimates

from micro data. Second, while distributional effects were clearly evidenced,

the separate estimates of the d. parameters were not precisely estimated.
J

This coincides with the issue of little distributional variation, and forces

the conclusion that detailed individual demand patterns are unlikely to be

easily measured with aggregate data alone, even augmented by proportions.

Full micro-macro modeling of the kind discussed in Section 3, and in sections

below, appear necessary for a successful characterization of the impacts of

individual heterogeneity in aggregate data.

The third feature of the results is the most intriguing, and suggestive

of future research questions. In particular, a more conventional approach to

assessing the LES would be to look for dynamic misspecif ication, and here, the

original LES estimates displayed substantial serial correlation in the

residuals. In fact, the estimation of a quasi-differenced formulation

suggested that a first differenced (or cointegrated) LES model would be

appropriate for the aggregate data, and the estimates of marginal income

effects (b above) had intuitively reasonable values under this specification.

The intriguing feature arises from considering dynamic and heterogeneity

influences simultaneously. In particular, no serial correlation was evidenced

for the model with proportions. Neither the quasi-differenced model, nor the

model in levels with proportions, were strongly rejected against a

specification that permitted both heterogeneity and serial correlation. In

other words, the model that accommodated individual heterogeneity in

expenditure levels and a simple, first differenced dynamic model provided

practically equivalent descriptions of the aggregate demand data. It is easy

to see how this could happen, and the implications for aggregate data analysis

are strong. Namely, suppose (4.3) provided a statistically decent
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representation of the individual heterogeneity, then first differencing it

gives

(4.4) y^ - y^_^ - (l-b)7^ (Plt-Plt-l) -
^k^l ^\ (Pkt-Pkt-l)

-^

b (M^-M^.,) + I d. (Pj,-Pj,.i) ^ u^-u,.i .

Since the income distribution evolves slowly, with the proportion differences

P. -P. ^ negligible or nearly constant, differencing can effectively

eliminate their impact. The broad point is that, because distributional

effects naturally exist in aggregate data, distributional effects are primary

candidates for the kinds of omitted features giving rise to aggregate dynamic

structure. The interesting result is that accommodating individual

heterogeneity may go some distance in explaining the source of apparent

dynamics in aggregate data.

Stoker's study is flawed in a number of ways, such as the use of

proportions of the real income distribution in place of proportions of the

total expenditure distribution. More important, though, is that the use of

the LES sets up a very restrictive "straw man" to shoot at. Exoneration of

this system would be consistent with individual Engel curve patterns that are

linear, which have never been observed in surveys of individual budgets.

In response to some of these concerns, Adolph Buse (1992) devises a

similar testing strategy based on the Quadratic Expenditure System (QES) of

Pollak and Terence Wales (1979), which permits quadratic micro Engel curves,

and studies several kinds of dynamic specifications, such as those consistent

with habit formation. Using Canadian data, Buse finds virtually the same

results, which differ only to the extent that evidence is found for preferring

the demand model with heterogeneity over dynamic demand specifications without

heterogeneity. He concludes that the role of heterogeneity as well as its
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implications for dynamic structure were not due to the restrictive LES

equations, nor are just an artifact of US demand data.

Individual households differ in many ways, and focusing on the income

distribution may be a particularly ill-designed approach for studying

distributional effects. Barring tumultuous times like civil revolutions,

movements in income distributions tend to be quite smooth, which can

preclude precise measurement of their impacts on aggregate variables.

Distributions of other types of individual characteristics clearly exhibit

more variation; the familiarity of "baby boom" and "bust" cycles to describe

the U.S. post war experience raises the age distribution and family size

distribution as natural candidates. In terms of the age distribution, this

point is implemented by Ray Fair and Katherine Dominguez (1991) . In

particular, they find strong evidence of age distribution effects in four

different kinds of traditional macroeconomic equations, including one for

consumption. While they restrict the individual age impacts to have a

quadratic shape, they are able to interpret the estimated age patterns in

straightforward ways, via the (individual) age structure that they are

associated with.

While a useful starting point, the methods discussed above are

admittedly crude, and implemented in an exploratory, or ad hoc, fashion. The

broad message of this work is that applying crude, simple methods can find

evidence of distributional effects In various settings, and permit comparisons

with other estimation approaches. Distributional effects are not completely

masked in the aggregate data studies discussed above, although the relative

importance of individual heterogeneity versus common dynamic structure is an

open question. At any rate, distributional variables are natural candidates

for inclusion in tests of specification of any empirical macroeconomic

equation. To get a closer assessment of the true individual structure, one
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needs to carry out more full micro-macro modeling, which dictates exactly

how distributional influences and behavioral effects are to be separated. We

now turn to work that has developed this paradigm in demand analysis.

4. 2 Individual Heterogeneity and Distributional Effects in Demand Analysis

The majority of work done on modeling individual and aggregate data has

been done in the context of studying demands for various commodities. In

historical perspective, this work follows the introduction of flexible

functional forms for representative agent demand models , which in turn follows

the fairly widespread application of the (Stone-Geary) Linear Expenditure

System to aggregate demands. Interest in demand models that accommodate

individual heterogeneity is motivated by at least three basic features. First

is the well -documented existence of demographic effects and nonlinearity of

Engel curves in cross section data, or features that immediately imply the

presence of distributional effects in aggregate demand. Second is the fact

that until recently, the only source of information on reactions to varying

prices was aggregate time series data. This meant that accounting for price,

income and demographic effects required pooling of aggregate and individual

data sources. Third, the application of demand systems to welfare analysis is

extremely limited when based on aggregate analysis alone. Consumer surplus

analysis, the standard aggregate method, is deficient in several ways. For

instance, there are the well known theoretical issues of whether consumer

surplus accurately measures equivalence or compensating variation, when a

single family's demand has been measured. But more important is that

differences in needs across families implies that welfare impacts will

likewise differ, in ways that make the use of a single surplus measure at best

ambiguous. The only consistent way of constructing a single welfare measure

is to implement an explicit social welfare function, but this requires
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realistic individual demands and/or preferences as inputs.

A logical starting point for our discussion is with demands that are

linear in the total budget

'(4.5)
yit - Pit^iit " ^^V -^b(Pt>"it

where p., , q-i . are the price and quantity of a good (say # 1) . Preferences

that give rise to demands of this form are characterized by Gorman (1961),

and include the Linear Expenditure System and similar models; see Blackorby,

Richard Boyce and Russell (1978), among others. Such linear structures, with

common marginal reactions, have been used in other modeling contexts as well;

for instance, see the consumption model of Martin Eichenbaum, Lars Peter

18
Hansen and Scott Richard (1987).

The first direct use of distributional information in aggregate demands

19
arises from incorporating nonlinearity in income effects. The principal

examples arise from models where budget shares vary with log total

20
expenditures In M. . Aggregate budget shares in these models depend on

the entropy statistic

y M. In M.^ It It

(4.6) & - t-1 T.

^ It

Ernst Berndt, Masako Darrough and Diewert (1977) implement a version of

translog demand equations (discussed below) of this form. Another popular

demand model in this form is Deaton and Muellbauer's (1980a, b) "Almost Ideal"

or AIDS demand system. Each equation from this system takes the form

(4.7) w^.^ -
°i + Ij T'ljl- Pjt - ^f^^ ^^Vl ^ ^ ^" "it

-^ hit

where
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(4.8) C(p^) - exp[aQ + l.a. In p^^ + (1/2) l.l^ j.^ In
p^ ^.

In
p^^^.] .

and €^. is an additive disturbance. The associated market budget share

equation is

(4.9) W^^ -
°i + Ij Tljl" Pjt - ^(1" C(Pt>) -^ ^ ^t

-^
^It

where £.. - ^ M. £,. /X M. is the aggregate disturbance. The parameters of

this model are restricted by integrability conditions; see Deaton and

Muellbauer (1980a, b) for details. For estimation, the complicated

nonlinearity in parameters is often sidestepped by replacing C(p ) by an

observed price index.

Proper implementation of this model involves observing the statistic &

for each time period. The early applications discussed above sometimes used a

distribution restriction so that In M can be used in place of & . In

particular, we have that

(4.10) e - In M + §

where § is Theil's entropy measure of relative income inequality

y M. In (M. /M )^ It ^ It' t'

(4.11) §^ -

Under the distributional assumption that § - § is constant over t, then the

aggregate model takes the form

(4.12) W^^ - °1 + ^j ''ij^" Pjt ^1^^" ^^Pt^^ "^
^l ^^ \

where a.. - Q., + fi^^ . This assumption is used in Deaton and Muellbauer 's

(1980a) estimation, and is consistent with "proportional scaling," where all
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individual expenditure values M. just scale up or down proportionately with

21
mean total expenditure M over time.

The obvious similarity between (4.12) and (4.7) can be mistaken as

Justifying a per capita, representative agent model for demands. Equation

(4.12) arises from a definite individual level model and employs a

distribution restriction for aggregation, which coincidentally gives the same

estimation equation as a AIDS model applied for a representative agent. In

particular, (4.12) rests on the assumption that a) (4.7) is valid, with no

individual heterogeneity in demands aside from income effects and b) that

relative entropy 8 is constant over time. Each of these assumptions is

testable with micro data, and patently unrealistic; but for our purposes we

note that the parameter interpretations and integrability restrictions

applicable to (4.12) come directly from (4.7). This notion of what

aggregation structures give rise to equations analogous to those fit in a

22
"representative agent" approach has been studied by Lewbel (1989b).

The joint distribution of total expenditure and family demographic

variables is incorporated in the translog model of Jorgenson, Lau and Stoker

(1982) . A budget share equation from this system takes the form

(4 1^)) ^lit - [^] ^^l ^ h ^Ij '" Pjt -^ ^ '" "it ^ ^s ^As ^it) -^ ^lit

where A . , s - 1,...,S are 0-1 variables indicating demographic structure of
sit

the family, and D(p ) - - 1 + Z, L P^-'i-n p. . As before, integrability
t '^ J KJ J t

restrictions are applicable to the parameters of this model. The associated

market budget share is

(4 •^^> ^It - [dTTt] ^"1 ^ ^j ^Ij '" Pjt -^ ^ ^t -^ ^s ^As ^"st) ^ ^It

where 6 is the entropy term above, and
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y M. A .^ It sit

(4.15) PM
St

^ It

or, in words, PM is the proportion of total expenditure accounted for

by families with A . - 1. Therefore, the market demand equation (4.14) has

a size distribution effect 6 , and demographic heterogeneity effects through

PM ^.St

Jorgenson, Lau and Stoker (1982) implement model (4.14) using

observations over time on the distributional statistics & and PM for
t St

five demographic categories (family size, age of head, region and type of

residence, and race of head), using 18 dummy variables A . . In principle, all

parameters of the model could be estimated with aggregate data (including the

distributional statistics) alone, but modeling a substantive number of

demographic influences necessitates pooling aggregate data with other data

sources. They use cross section data to estimate model (4.13) (for given

value of price p) , or to estimate the income and demographic effects, and pool

those results with estimates of model (4.14) from aggregate data. This

amounts to estimating price effects with data on varying prices over time, and

income and demographic effects with data across individuals. The basic model

indicates how estimates from different types of data sources are to be

23
consistently combined.

Instead of using data on the distributional statistics, it is clear that

distributional restrictions could have been applied to generate a simple

aggregate equation; for instance, i) 5 constant over time and iia) PM
t St.

constant over time, gives market budget shares depending on only p and In M

whereas i) and iib) PM /A constant over time, gives an aggregate equation

of the form (4.13) with M. replaced by M and A .^ replaced by A As
It '^ ' t sit '^ -^ St

discussed before, & and the relative proportions PM /A are "aggregation
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factors," whose constancy give the relevant distributional restrictions for

motivating simple forms of aggregate equations.

While the inclusion of demographic characteristics gives a substantial

generalization over models that omit them, evidence from individual cross

section data shows that income and demographic effects are more complicated

than those depicted translog equation (4.13). For instance, Lewbel

(1991) and Jerry Hausman, Whitney Newey and Powell (1992) find evidence of

more elaborate income structure than just one log expenditure term.

Martin Browning (1992) surveys work that shows substantial interactions

between income structure, family size and other demographic effects.

The ideal empirical situation for studying income, demographic and price

structures of individual household demand would be based on an extensive panel

survey, covering demand purchase across a large number of families and a large

number of time periods. Coming close to this ideal is the recent study of

Blundell, Pashardes and Weber (1992), who analyze the repeated annual cross

section data bases from 1970-1984 of the British Family Expenditure Survey,

involving 61,000 observations on household demands. For a seven good demand

2
model, they find a quadratic version of the AIDS model (with (In M) terms) to

be adequate, including extensive coverage of individual demographic

attributes. They also use the notion of constant "aggregation factors" as

discussed above to develop a cohesive empirical explanation of how aggregate

demand, aggregate total expenditure and price patterns can adhere to a fairly

simple model over 1970-1984. In essence, they conclude that heterogeneous

demographic influences are paramount and the income structure of the original

exact aggregation models require some generalization. Moreover, with a proper

accounting for distributional effects, parameter estimates correspond to those

from micro data studies, and the aggregate demand model more accurately tracks

aggregate demand data patterns simpler per-capita (representative agent)
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demand equations. This study sets the current standard for careful empirical

work on the impact of aggregation in the study of demand behavior; as

extensive data bases of this kind become available in other fields, similar

studies would likewise be quite valuable.

While models that consistently treat individual household and aggregate

demand behavior involve more extensive modeling than simpler, representative

agent approaches, they are likewise more informative in applications, such as

assessing alternative policy scenarios. Models of this kind can be used to

forecast demands by different kinds of households, and assess the differential

welfare impacts across different kinds of households. Stoker(1986b) uses the

translog model (4.13, 4.14) in a retrospective analysis of the welfare impacts

of the energy price changes of the 1970' s, along similar lines to the early

application of Jorgenson, Lau and Stoker (1980). This kind of application can

be taken one step further, by combining individual welfare impacts via an

explicit social welfare function, to get overall "good" or "bad" assessments.

Jorgenson and Slesnick (1984) formulate an explicit social welfare function,

and assess the implications of various policies on the pricing of natural gas

using explicit interpersonal comparisons. While any specific method of

combining individual welfare measures is subject to debate, it is clear that a

full accounting of individual differences is necessary to get a realistic

depiction of the benefits and costs of economic policy.

Work on demand analysis represents the most extensive development of

models that account for aggregation over individuals, in terms of theoretical

consistency and empirical properties. While exact aggregation models have

appeared in other applied areas, recent empirical work has often approached

the problems of aggregation from different directions, and used somewhat

different methods. Moreover, as discussed by Blundell (1988), much current

(micro level) demand modeling deals with situations where intrinsically
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nonlinear models are necessary (such as rationing and corner optima) . We now

discuss some of these other approaches and methods.

, 4. 3 Aggregation and Goodness -of- Fit Tests

As discussed above, it is entirely possible for there to exist

substantial heterogeneity in individual responses together with a simple,

possibly linear relationship existing between the associated aggregates.

While this setting immediately raises doubts as to the interpretation of the

aggregate relationship, one could ask whether the aggregate equation could

serve as a good tool for prediction. This amounts to renouncing any possible

behavioral interpretation of such an equation, and justifying such aggregate

equations through the need for parsimony in a larger modeling context. This

kind of approach was laid out for linear models by Yehuda Grunfeld and

Zvi Griliches (1963) , who also give an early portrayal of distribution

restrictions as a "synchronization" of individual responses. A revival and

extension of these ideas is contained in Hashem Pesaran, Richard Pierce and

M.S. Kumar (1989), who develop such a "goodness-of -fit" test in modern

24
econometric terms.

This idea can be seen easily as follows. Suppose that the population

consists of N individuals (or groups) , with the behavior of individual i given

by the linear model

(4.16)
^it °i

"^
""it'^i

""

"it ^ " -^ N,t-1,...,T.

X. represents the principal economic variables of interest, with all

individual differences captured by the coefficients a.
, fi. (any similarities

or dissimilarities across individuals are left unspecified) . This model

implies the aggregate equation
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(^.17) y^ - N"^ Z a. + N"^I x.^'^. + u^

This model can be implemented by estimating a. and p. for each individual, and

inserting the estimates in the aggregate model (4.17); or adding up the

individual equations for aggregate prediction.

The question of interest here is whether a simple model among aggregates

could be estimated, namely

(4.18) y^ = S + x^'^ + a^ t - 1 T.

that would give the same degree of fit to the aggregates as the true model

(4.17). A test of this situation (termed "perfect aggregation" by Pesaran,

Pierce and Kumar (1989)) is a test of the restrictions

(4.19) N'-'-Ya.+N'-'-yx. '^. -S + x'^, t-1 T'
t ^ L t ^ It ^1 t ^'

' '

performed with panel data (y. , x. for all i, t) , using estimates of each of

the coefficient values. Failure to reject this condition "justifies" the use

of equation (4.18) in terms of aggregate goodness-of -fit

.

The evaluation of this approach involves assessing the appropriateness of

the linear micro models (4.16), as well as the results of the

"goodness-of -fit" test. For the latter, consider the situation where such a

test fails to reject, with (4.18) giving a statistically adequate depiction of

the aggregate data patterns relative to the true micro model (4.16). What

does this say? Consider the notion of 'aggregation factors' here; namely

write the true model (4.17) as

(4.20) y^ _ Q + x^'b^ + Uj.

where
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('=•21) b - [7 X. fl./I X. 1 .

With sufficient variation in x over time, (4.18) amounts to having b

constant, or b = ^ for each time period. This clearly occurs in the exact

aggregation case of constant coefficients, where ^. - ^. (- ^) for each i, j.

But in other cases, there are practical questions arising from the fact that

b^ is based on the unobserved micro parameters and the distribution of x. in
t "

It

each time period, and knowing that b is constant does not reveal what aspects

of the distributional underpinnings are important.

For example, suppose that the estimation of the individual coefficients

of (4.16) revealed that a group of micro agents had "large yS's" and another

group had "small /9's". If b is constant for all t, then one can only

conclude that the large -small differences are sufficiently smeared in the

aggregate data as not to be noticed empirically. This is an unfortunate

"synchronization" of x. and /9. , as one cannot learn whether the data has

involved a sectoral trend from "small" to "large" groups or vice versa, which

is necessary information for applying the model out of sample. This issue has

a simple answer, which is to model differences among ^.'s using observable

micro data, so that the aggregate model reflects as many systematic features

of individual behavior as possible. Modeling all coefficient differences in

this way amounts to an exact aggregation approach, with the "aggregation

factors" based on observable features only.

Another depiction of the "synchronization" phenomena is given in Clive

Granger's (1987,1990) analysis of "common factors." This work points out how

studies of individual level data involve different sources of variation from

studies of aggregate level data, as follows. Consider an individual level

model of the form
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(4.22)
yit - '^ -^ ^Pt -^ ^0 '^it

-^ ^ ^t^ -^
^it

where p^ is a common observed variable as before, x. varies over individuals
t It

and over time, and e is a disturbance, uncorrelated over individuals and

time. Suppose for simplicity that the variance of x. in the population at

2
time t is 2 , constant over time t. The aggregate E (y) in a large

population is

(4.23) E^(y) - a +
^j^

2^ + 7P^ + Pq Ej.(x) + fi^ E^(x)^

Rewrite the individual level model at a specific time, say t - 0, as

(4.24) y.Q - {a + ^^ E^ + 7Po + /Sq
^O^''^

"*" ^1 ^O^''^^'

^^0 [^t ^o^'^)! ^^ t^it' - ^o(^)^- ^^J -^
^it

2
Now, defining p , E (x) (and E (x) ) as "common factors," they are seen as the

source of variation of the aggregate E (y) over time t. Alternatively, the

oncross section variation of y. at time t - is due entirely to the deviati
•'it '

2
terms involving x. and x. above. As such, the sources of variation are

*' It It

orthogonal in a natural way. For the aggregate model, the relevant

"synchronization" of x. values is through the conmon factors appropriate for

the model.

This example underscores the idea of pooling individual level data and

aggregate data; clearly both sources of variation apply to estimation of 0^

and P^ , and more precise estimation of these parameters can lead to more

precise estimation of a and 7 from the aggregate model. Granger (1987,1990)

also argues that aggregate relationships can become more "linear," however,

this argument does not appear applicable above, and therefore would need to be
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25
addressed in specific examples.

The essential point here is that much is missed by focusing on aggregate

equations alone, whether oversimplified or not. Aggregate "goodness of fit"

tests of the kind outlined above can and should be performed as part of

checking all restrictions of a micro-macro model, but not the only part. If

there are economic reasons for individual behavioral differences that are not

adequately captured in the micro model, then the aggregate level model suffers

from important omissions, regardless of how well it fits aggregate data

patterns. When individual differences are incorporated, estimation can

involve entirely different sources of variation from individual level data and

aggregate level data, however, the basic model dictates how those sources of

variation can be combined. A proper justification for an aggregate model

requires ruling out the omission of important individual differences, and the

aggregate data alone may have little to say about this.

4.4 Time Series Analysis and Dynamic Behavioral Models

We have stressed above how the interplay between individual heterogeneity

and dynamic structure raises many basic issues for the modeling of aggregate

data. The well established empirical tradition of measuring short run and

long run effects, as well as judging transitory and permanent impacts for

forecasting, xinderscore the practical importance of assessing the impact of

individual heterogeneity in dynamic equations estimated with aggregate data.

There has been relatively little attention to these issues, with some notable

exceptions (see Granger (1990)). We now discuss some of the issues, to place

them in the context of our survey.

We begin by considering difficulties in interpreting dynamic equations

estimated with aggregate data. The issue here is that aggregation over

heterogeneous (individual) time series processes tends to result in longer,
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more extensive processes applicable to aggregate data. This general notion is

in line with the ideas of heterogeneity giving rise to observed dynamics

discussed in Section 4.1, and a general discussion of heterogeneity and lag

structure is given in Pravin Trivedi (1985). Here we illustrate these ideas

using a simple example of the form recently studied in Marco Lippi (1988) and

Lewbel (1992).

Suppose that we are studying an economy of N individuals, and that the

model applicable to individual i is an AR(1) process of the following form

(4.25) y.^ - Q + 7.y.^ 1 + ^z-^ + «.^
^ ' •'it 'i-'it-l '^ It It

where z. is a set of predictor variables, and the first order coefficient 7.
It

'^

1

varies over individuals. The aggregate model in a large population is

therefore

(4.26) y^ = a + N"^ I T^i^it-l
"^ ^ ^t '

Because equation (4.25) applies for y. 1 . it is impossible to treat 7. and

y. .. as uncorrelated (unless 7.-7 for all i) . In particular, by recursive

substitution of (4.25) into the expression for N ^ T-Y-t i'
^^® aggregate

model (4.26) is rewritten as

(4.27) y, - a + r^y^.^ + T^y^.^ "^ Vt-3 ^ " " "
"^ ^~\

where the aggregate lag coefficients are

(4.28) r^ - E(7.)

^3 "
^^''i^^

' 2E(7j^)E(7j^^) + E(7.)^
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and so forth, where T., j> 3, is determined by the first through j moments

of the distribution of 7. in the population. Therefore, under the individual

model (4.25), the low order moments of the distribution of first-order

cpefficients 7. can be solved for from estimates of the T. parameters.

Setting aside the natural modeling questions of whether the T. coefficients

have stable structure for large j , or what lag length is appropriate in

practical applications, this example illustrates how individual differences

can generate more complicated aggregate dynamics. Obviously, the same

(lag- lengthening) phenomena would occur if (4.25) displayed a more complicated

lag structure than AR(1).

For a bit more clarity on the differences between the individual and

aggregate level models, imagine one is studying consumption expenditures C. ,

and that the economy consists of two kinds of households. The first household

type (A. - 0) is headed by irresponsible yuppies who spend every cent of

current earnings (I. ), following the model

(4.29) C. - I. A. -
^ ^ It It 1

The second household type (A. - 1) is headed by uninteresting stalwarts who

formulated a life plan while in high school, took jobs with secure earnings,

and implemented perfect consumption smoothing. Setting aside real interest

rate effects, these households follow the model

(4.30) C.^ - C.^
,

A. - 1
^ ^ It it-1 1

These models are combined into an exact aggregation model as

(4.31) C. - A.C. , + (l-A.)I,^ '
It 1 it-1 ^ 1' it

26
and the correct aggregate model takes the form
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(4.32) C^ - N'-"- y A.C. 1 + N"-"- y (l-A.)I.
t ^1 it-1 ^ ^ 1 It

Obviously mean current consumption depends on the distributional structure of

the population, namely the lagged consumption of stalwarts and the earnings

of yuppies.

However, suppose that this current average consiimption were studied as

a function of average earnings and lagged consumption values. Equation

(4.32) is in the form (4.25) with y. - C. , q - 0, 7. - A.
, ^ - 1 and z. -

(l-A.)I. . Supposing that the population is evenly split between stalwarts and

yuppies, and that mean earnings at time t is the same for each group, the

aggregate equation (4.27) takes the form

(4.33) C^ = .5 C^_^ + .25 C^^ + -125 C^_^ +...+.51^

The point is that the dynamics evidenced in this equation are nothing like the

dynamics exhibited by either stalwarts or yuppies. On the basis of aggregate

data alone, one could not distinguish our artificial setup from one with a

common individual model of the form

(4.34) C. -.5 0. , + .25 C, „ + .125 C. ., + ... + .5 I.
It it-1 it-2 it-3 It

which exhibits fairly slow adjustment for every household. Moreover, if the

composition of stalwarts and yuppies were time varying, then the coefficients

of (4.33) would likewise be time varying. Of course, the basic problem lies

in trying to give a behavioral interpretation to the dynamic equation (4.33).

The proper model is (4.32), which would reveal the stalwart -yuppie

heterogeneity from the effects of the right-hand variables, by capturing the

compositional effects in a way consistent with the correct individual model.

These kinds of interpretation issues may be particularly pronounced in

studies of durable goods. For instance, suppose that the aggregate stock of
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refrigerators grew quite gradually over time, then it is natural to expect

that an aggregate equation with several lags would describe the evolution of

this stock. But at the individual level, adjustment occurs differently:

people buy a new refrigerator a discrete times; when their old one breaks, or

when they change decor as part of moving to new house, etc. In any case, it

is problematic to ascribe much of a behavioral interpretation to a time series

model describing the aggregate stock of refrigerators.

It is one thing to point up difficulties in casual behavioral

interpretations of equations estimated with aggregate data, but it is quite

another to make constructive remarks on aggregation relative to dynamic

behavioral models, such as models of individual choice under uncertainty.

While the literature is replete with applications of such models directly to

aggregate data (under the assumption of a representative agent) , we can ask

what issues arise for modeling aggregates if such a behavioral model is

applied to individual agents themselves. Since models that account for

uncertainty involve planning for the future, a realistic consideration of

heterogeneity must include all differences relevant to planning; namely

differences in objectives (tastes, technology, etc.) as well as differences in

the information used in the individual planning processes . Another central

issue concerns the implications of markets that can shift uncertainty across

agents, such as insurance or futures markets.

It is fair to say that the development of macroeconomics over the last

two decades has been preoccupied with issues of uncertainty, and we cannot do

more than just touch the surface of these issues here. Nevertheless, it is

informative to look at a familiar paradigm from our vantage point. For

this we consider intertemporal consumption models as popularized by Robert

Hall (1978) and Hansen and Kenneth Singleton (1982).

We spell out the general setting first, and then give specializations.
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Family i chooses how much to spend C. at time t as part of a plan that takes

account of future uncertainty in wage income and other features, by optimizing

over time with regard to available wealth. Specifically, at time t family i's

consumption plan arises from maximizing expected utility

T.

(^35) E.jl ^- (5/u. (C. )|5. ]it^^r-0 1 it+T^ it+f'' it^

subject to the amount of available wealth, where future wages and other income

are not known with certainty. Here U. () is the utility of consumption for

family i's at time t+r , 6. its (subjective) discount factor and T. sets the

planning horizon. E reflects family i's expectation at time t, where

expectations are formed with the information available at time t, denoted as

5. . Consider the planning over periods t and t+1, where one could earn

(possibly uncertain) interest n. Optimal planning will equate (properly

discounted) marginal utilities, giving the (Euler) equation

E^^{[6^/a+'t)] Ui^+i'(C^^.^^)|^^^] - U^'(C^^), which we rewrite as

(4.36) tV^^^-^^l^i'^^it-Hl) -"i'(^it) -^^t.l

where V.^^^ - [6^/(Un)] U.'(C.^^^) - £.^[R^
"i' (C^.^i) l^t^ '^^ ^^^^^^

states that any departures of spending from the plan must be unanticipated,

namely that E. (V.^ .1^.^) - 0. In other words, V. , reflects adjustment in^ It it+1' if^ ' it+1 -^

reaction to "news" not known at time t. One may assess their job is more

secure because of a surprise upswing in the economy, Uncle Ned could hit the

lottery, or one could learn that a youngster in the family has a serious,

costly illness. The behavioral theory just states that each family plans the

best they can, and adjusts as new events unfold.

For some immediate implications, we begin with Hall's simplification of

this model. Suppose that the interest rate a is known; a - r, and that family

2
preferences are identical and quadratic; U. (C. ) - - 1/2 (B - C. ) , with B
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a "bliss" value of spending, and 6. - 6. Solving (4.36) for C . gives

(4.37) C.^^^ - [l-6"^(l+r)] B + 6'^(l+r) C^^ + v.^^^

' - a + b C. + V. ,
It it+1

where a = [l-(5'-^(l+r) ] B, b - (S'^'-d+r) and v^^^^ - - fi'^^d+r) V^^^^. Here.

spending by family i at time t+1 is a linear function of spending at time t,

27
plus any adjustment due to unanticipated events; with E. (-v \^ ) - 0. If

each family discounts utility at the rate of interest; 6 (1+r) - 1; then

spending follows the familiar "random walk" C. . ~ C + v. . .

If the economy consists of N families, then average consumption

is

(4.38) ^t^i'^^^^t^\^l •

Suppose that 9 denotes information that every family has at time t (we

assume there is some), then the planning theory asserts that
^t^^t+l^^t^

~

N" y E. (v. ,|5 ) - 0. At this stage, differences in 5.^ across families,
^ it^ it+1' t^ ^ It

(heterogeneity in information) has little effect, only limiting the stochastic

restrictions implied on the aggregate adjustment. Recoverability applies

here: estimates of 6 and B can be derived from estimates of a - [1-6 (l+r)]B,

b - ^''(l+r).

Heterogeneity in preferences can be modeled in the same fashion as with

our earlier discussion. For example, with quadratic preferences, suppose that

times when greater spending are required are adequately modeled by raising

2
the bliss point B in preferences; specifically U. (C. ) - -1/2 (B. - C ) ,

where larger B. indicates higher need for expenditure by family i at time t.

Finally, for notational simplicity, suppose that at any time families are

either needy (A. - 1) or not (A. - 0), with the bliss point modeled as B =
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a + 7 A . Solving (4.36) now gives spending by family i as

(4.39) C.^^. - B. ^ - 6'^(l+r) B. + 6'^(l+r) C. + v. ,' it+1 it+1 It It it+1

- [l-<5"^(l+r)] a + 7A^j.^^ - i6''^(l+r) A.^ + 5'^(l+r) C^^. + v.^^^

- a + c A. , + d A. + b C^ + v. ,it+1 It it it+1

Average consumption is

(4.40) C^^^ - a + c P^^^ + d P^ + b C^ + v^^^
.

where P denotes the proportion of families with higher needs (A. = 1) at

time t. The same stochastic restrictions apply to v as before, and the basic

model parameters a, 6 and 7 are (over) identified by a, b, c and d.

We have used the simple "needy or not" distinction for illustration, as

it is easy to see how this model could be derived for a more detailed scheme

of planning for various things; feeding and clothing teenagers, college

spending, or reduced spending in retirement; especially given their obvious

connection with observable demographic attributes (age, family size, etc.).

The resulting model would express average current spending C . in terms of

past spending C , and the demographic structure of the distribution of

families, as relevant to the lifetime spending plan. As above, such a model

would be applicable to data on individual families as well as aggregate data.

While we have shown how individual heterogeneity can be accounted for in

studying intertemporal consumption, we round out our discussion with two

further observations. First, intrinsic nonlinearities cause complications for

aggregation here, as in other areas. Suppose that interest rates are known

and families have identical preferences; U.^O - U(), but that marginal

utility U' is an invertible, nonlinear function of spending C. Following our

above logic gives aggregate consiomption as
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The nonlinearity of U' requires C
^

to depend explicitly on the distribution

of C. and v. , across all families. The behavioral theory asserts only that
It it+1 ^ ^

V. , is unanticipated, and thus uncorrelated with C. in family i's forward
it+1 V > It -^

planning process. Much more distributional structure is necessary for an

adequate specification of this kind of model to be used for analyzing average

consumption data. Heterogeneity in preferences complicates this further.

One source of such additional structure is appealed to in many

macroeconomic studies, namely the existence of complete efficient markets.

For instance, if families are further assumed to have identical homothetic

preferences, Mark Rubinstein (1974) has shown how the presence of efficient

markets implies that all idiosyncratic risk will be optimally shared, with

family i's consumption a stable multiple of average consumption: C. - ^-C

for all i, where N \ Q . - \. Homotheticity of preferences implies that

marginal utility factors as U'(tfC) - a(^) U'(C)), so that the Euler equation

for family i

(4.42) E.^{[5/(l+a)] U'(C^^^^)|5^] -U'(C^-^)

holds for average consumption, namely

(4.43) E^{[6/(1-Hi)] U'(C^^^)|^J -U'(C^).

since U'(C. ) - U'(«.C ) - a(«,) U'(C ) for all i and t. What is going on
It 1 t i t

here is that optimal risk sharing implies that the individual equation (4.42)

is a proportional (a(^.)) copy of the same equation for the average

consumption. In other words, the efficiency of insurance, futures and other

markets acts to removes the impact of individual heterogeneity in information

and risk. With identical homothetic preferences, each family plans
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expenditures in line with average consumption.

The argument that markets are sufficiently efficient to erase concerns

about individual differences has been used elsewhere; for instance Gary Hansen

1985 raises the notion that a worker becoming unemployed could result from a

process akin to a random lottery; prior to the lottery, the planning by all

individuals is identical. Whether markets and/or institutions of this level

of efficiency actually or approximately exist is debatable, and we will not

discuss the available scientific evidence.

But differences in the needs and plans of individual families are

evident, and in this context, it is important to stress how the individual

behavioral model is logically distinct from coordination invoked by market

interactions. Under the assumptions giving equation (4.39), equation (4.40)

holds. Coordination across families induced by market interactions may permit

(4.40) to be simplified, or may not. Consequently, building a realistic model

does not involve a choice between accounting for individual heterogeneity or

efficient markets; individual heterogeneity in behavior must be accounted for

28
first, and the role of market interactions assessed subsequently.

4. 5 Market Participation and Other Models of Discrete Responses

While markets for insurance can serve to lessen heterogeneity in

individual planning processes, there are many other roles that markets can

play in aggregate data. Market participation models focus on a more primitive

role, which is to account explicitly for the fact that individual households

are choosing whether to buy a product, and that individual firms are choosing

whether to produce the product. The "in or out" decision is binary in

character, and determined by the prevailing level of market prices. In this

setting, the price level determines what fraction of the consuming or

producing population is active in the market, as the aggregate impact of
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heterogeneous, extensive margin decisions. This contrasts with our treatment

of prices in continuous spending decisions, where they enter as common

29
variables for all households.

' We can again appeal to our discrete choice example of Section 3.2 for

illustration. In particular, the individual model (3.17) states whether a

household purchases at price p , or participates in the market, and the

aggregate equation (3.20) specifies what fraction of the population is

participating. While we discussed this model in terms of aggregation over the

income distribution, it is equivalently cast as a model of choice at various

price levels. The overall issue is familiar to students of the

microeconometric literature, as any treatment of selection bias has the same

30
structure

.

A very natural setting for this kind of model is the study of

employment. Here the decisions of whether to participate (getting a job) are

made by potential workers comparing offered wages to reservation wages (or in

current times of business restructuring, participation may be determined by

firms offering positions). Thomas MaCurdy (1987) spells out how to build this

kind of model of labor supply. In his setup, the employment participation

percentage is modeled via an aggregated probit discrete response model.

A full implementation of an aggregate participation model is given in

Heckman and Guilherme Sedlacek's (1985) estimation of a two sector model of

labor markets. Here selection occurs between two labor markets, with the

analysis permitting estimation of the wage effects of various individual

skills, and employs lognormal distribution assumptions on unobserved wage

differences. While this model treats capital across the sectors somewhat

casually, this study is notable in that the authors give a convincing

verification of the basic distributional assumptions used.

Another kind of aggregate participation model used recently is the
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short-run industry production model originally proposed by Hendrik Houthakker

(1955). This kind of model involves aggregation over fixed input-output

technologies, where participation is determined by whether profits are

nonnegative at prevailing input and output price levels. The Houthakker setup

is as follows: suppose individual production facility i can produce one unit,

using a... units of labor, and a„ . units of capital, where the production

requirements (a...,a„.) vary over the potential producers of the product.

Production unit i will produce if its short term profits are nonnegative, or

p - wa., . - ra„ > 0, where p is the price of the output, and w, r the input

prices. Let id(w/p,r/p) = (i
|

1 - (w/p) a^ - (r/p) a^^ > 0) denote the set

of units with nonnegative profits. Suppose (p(a.^,a^) denotes the "efficiency"

distribution, or the number of potential production units times the density of

production capabilities (a.., a.). Total production and total input

usage is determined as

«J(w/p,r/p)

(4.44) L - / a^(p(,a^,a^) da^ da2

^(w/p, r/p)

^' Lr , , ^
^2^^^1'^2) ^^1 ^^2

i4(w/p,r/p)

The primitive feature of this model is the efficiency distribution, and an

induced aggregate production relation Q - S(L,K) can result from solving out

the above system, eliminating w/p and r/p. Houthakker originally noted that

if <p is a Pareto distribution, or (p(a .a^) - Aa °l' a^ 2"
, then the induced

^^2
aggregate production relation is in Cobb Douglas form Q - C L K , where

P^ - Q^/(Q^+Q2+1) and fi^ - a^/(a^+a^+l).

This kind of model has been developed by numerous authors , most

extensively by Kazuo Sato (1975) and Leif Johansen (1972). In terms of recent
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empirical implementations, Hildenbrand (1981) employs a model of this kind for

Norwegian tanker production, where he characterizes the efficiency

distribution directly from individual firm data. Finally, Heckman and V.K.

Chetty (1986) extend the basic model to include an adjustment equation for

capital over time, and apply it to the analysis of U.S. manufacturing. While

these models are interesting alternatives to standard continuous production

models, their applicability hinges on the strong assumption of limited input

substitutability at the level of individual production units, as well any

assumed shape and evolution of the efficiency distribution over time.

Discreteness of individual reactions also plays a central role in some

recent models of macroeconomic adjustment. A primary example is the (s,S)

model of aggregate inventory dynamics developed by Caplin and Daniel Spulber

(1987) and Ricardo Caballero and Eduardo Engel (1991,1992). Here,

discreteness arises because individual firms adjust inventories according to

threshold criterion - firm i waits until its inventory reaches level s., at

which point the inventory is increased to S . . Aggregate adjustment occurs

sluggishly as different firms react to shocks at different times. The

distribution of reactions provide the central structure of these models.

Sluggishness in aggregate investment responses also arise from

irreversibilities of investment decisions by individual firms. Guiseppe

Bertola and Caballero (1990) give a detailed analysis of the dynamic aggregate

behavior of an economy populated by agents behaving according to (s,S) rules.

The empirical implementation of these adjustment models is in an early

stage of development. In particular, the initial efforts have been focused

solely on broad aggregate implications, and studied using aggregate data

series alone. The potentially realistic features of the adjustment processes

in these models need to be verified using data from individual firms, and

methods developed for tracking the sectoral composition of aggregate
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inventory or investment statistics.

4.6 Recent Work on Micros imulation

A primary reason for studying aggregation over individual agents is for

simplification in economic modeling. A single, properly specified equation

for an economic aggregate is useful in a larger model of the economy as a

method of summarizing the behavior of a large group of agents, be they

producers or consumers. We now turn to a brief discussion of work that models

heterogeneous agents explicitly, without concern for whether a parsimonious

aggregate model can be formulated.

One emerging trend in macroeconomic research is the study of model

economies with two or three different (kinds of) consumers or other agents.

The purpose of this work is to look in detail at heterogeneity in the context

of markets for risk sharing, where such markets are either efficient or in

some way incomplete. Recent work of this kind includes the two -agent

models of Bernard Dumas (1989) and of John Heaton and Deborah Lucas (1992),

who also discuss references to this recent literature. It is clear that with

two or three agents, this kind work is unlikely to give a realistic depiction

of heterogeneity as it exists in a real world economy, and therefore has

limited applicability to practical questions. However, the superficial

treatment of heterogeneity facilitates another purpose, which is to address

difficult questions on the workings of markets for risk sharing.

Consequently, this work may yield valuable insights on the interplay between

market interactions and differences between agents.

More germane to our discussion are full scale microsimulation models. As

discussed in the opening remarks, it is difficult to argue against the

microsimulation approach for modeling aggregates on logical grounds. We have

stressed how it is essential to model individual behavior, and it is a natural
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next step to conclude that individual modeling should be carried out without

any additional considerations, such as whether the purposes of aggregate

prediction are served. After all, one can add up across models of individual

behavior, giving aggregate responses that are behaviorally based.

Logical correctness, however, does not translate to practical

tractability. Even with a small number of variables representing individual

heterogeneity, an extensive setup is required for a full implementation of

microsimulation: a complete model of individual behavior linked to a model of

the evolution of heterogeneous individual attributes. For instance, a general

model of household spending behavior must be linked to a model of the

evolution of the demographic structure of the population, let alone a model of

wage and income determination. As demonstrated by Cowing and McFadden (1984),

the complexities inherent in this process preclude validation of aggregate

results from such a model relative to more parsimonious modeling of aggregate

data patterns. Our discussion of models that account for aggregation has

focused on how the required inputs for applications can be summarized in

32
modeling aggregate data patterns.

As developments in computational power progress unabated, it is natural

to expect that methods of implementing and validating microsimulation models

will be developed in the future. As part of our survey, we discuss two recent

types of work that overcome the existing shortcomings of microsimulation in

different ways. The first is the Joint Committee on Taxation's (1992) model

of forecasting the impacts of tax policy changes. This model follows in the

tradition of tax policy models developed by the NBER (see Daniel Feenberg and

Harvey Rosen (1983), among others). Impacts of changes in tax policy are

simulated at the individual level by recomputing individual tax forms,

combined with some assumptions on reporting differences and other behavioral

changes induced by the policy changes. This model is likely the most
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important microsimulation model in use today, as it is the primary source of

estimates for tax policy changes for the U.S. Congress, and requests for its

results have grown dramatically in recent years (from 348 in 1985 to 1,460 in

1991, for instance).

The simplification employed by the Joint Committee on Taxation's model is

aptly described by a section heading of their 1992 report, "Holding Fixed the

Level of Macroeconomic Aggregates." In particular, the model holds constant

the effects of economic growth, monetary policy and other changes in fiscal

policy, and focuses solely on the distributional impacts of tax policy

changes. By removing the effects of interest rates and price level

(inflation) changes, the projection of tax impacts for individuals is greatly

simplified. However, this feature places a large proviso on forecasts from

the model. Comparisons between the results of this model and results from

less detailed macroeconomic models (that study tax effects together with the

effects of macroeconomic aggregates) are likewise somewhat problematic.

The second kind of microsimulation model is described in Heckman and

Walker (1989,1990), who give the results of a full scale "horse race" between

a fully nonlinear microsimulation model and simple aggregate forecasting

equations. The object of this study is the forecasting of fertility rates,

and the comparison is between simple time series models of aggregate fertility

rates and the results of simulating a dynamic individual model of durations

between births. The net result is that the microsimulation model out performs

the simple forecasting equations along several criteria. While this model is

too complicated to discuss in any detail here, these results raise hopes that

microsimulation methods may be profitably applied to forecasting aggregate

data. An interesting feature of the model is that the inherent dynamics serve

to simplify the difficulties in creating inputs for the microsimulation. In

particular, the dynamic features of the model (durations between births are
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determined by previous birth history) create the distributions required for

predicting future fertility endogenous ly.

5 . Some Conclusions

One of the most difficult problems faced by beginning readers of the

literature on aggregation over individuals is its own heterogeneity; it

consists of a wide range of seemingly unrelated problems and approaches. As

such, we have only given brief glimpses at pieces of a rapidly growing area.

Our approach to surveying recent developments was to spell out conceptual

issues for interpreting equations estimated with aggregate data, and then

discuss specific approaches with the interpretation issues in mind. This

posture was chosen as a way of focusing attention on the properties valuable

for empirical applications, which is the most natural future avenue for

progress

.

In many ways the most important development of the work of the last

decade is the demonstration of how individual heterogeneity can actually

be incorporated in the modeling of aggregate data. While the models we have

discussed are often simple, and many unsolved questions remain for

accommodating more complicated models (including market interactions), the

"aggregation problem" is no longer a mysterious proviso of macroeconomic data

analysis, to be given lip service and then ignored. The issues we have

discussed concerning the relative importance of individual heterogeneity and

aggregate dynamics certainly suggest that the most valuable applied work in

this area is yet to come.

A note on the historical setting of this work is useful to place it in

context. In particular, the work we have surveyed can be regarded as attempts

to merge two separate trends in research. The first is empirical

macroeconomics , which has evolved through the development of exceedingly
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sophisticated behavioral models, and applied either formally or informally

through the guise of a representative agent. The value of this work lies in

how it has permitted empirical measurement to be focused on specific, easily

understood issues. Representative agent models were first used for

interpretable measurement of substitution patterns in consumption and

production, and has proceeded through the demonstration of how primitive

structure (technology and preferences) relates to observed choices by

individuals under uncertainty.

The second trend involves theoretical work devoted to the implications of

heterogeneity over individuals. This work created an increasingly dismal view

of representative agent modeling, by showing that heterogeneity could be

neglected only in very restricted, unrealistic settings. The strongest form

of criticism of empirical aggregate data modeling came in the work of

Gerard Debreu (1974) and Hugo Sonnenschein (1972), as surveyed by Wayne

Schafer and Sonnenschein (1982), that stated that no restrictions on aggregate

excess demands could be adduced from economic logic alone, aside from Walras

Law and lack of money illusion. In particular, they demonstrated that one can

begin with any formula with those properties, and construct an economy with

that formula as the aggregate excess demand function. The Debreu-Sonnenschein

work was interpreted by most as stating that, because no specific restrictions

on aggregate relationships were guaranteed, there was no rationale for

structuring models to be consistent with a representative agent.

Representative agent models can never have a firm foundation from economic

theory alone

.

While true, this interpretation is purely negative, and does not suggest

productive directions for empirical work. A more constructive interpretation

of the Debreu-Sonnenschein work is it points out the need to add more

structure to justify aggregate data models. In particular, to study aggregate
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data from the U.S. economy, what is relevant are characteristics of the U.S.

economy. Relative to empirical economics, who cares if an artificial general

equilibrium model could be constructed for any aggregate data pattern? VHiat

needs to be studied are actual observed aggregate data patterns as they are

related to the actual characteristics of the U.S. economy. To the extent that

economic theory is valuable for giving structure to individual behavior, it

should be applied at the individual level, and there is nothing wrong with

tracing the aggregate implications of such behavior. The Debreu-Sonnenschein

results are more appropriately applied to methods that are not based on

observed data series, because the criticism states that one can make up a

model to generate any arbitrary excess demand structure, and therefore

generate any answers one wants

.

The work we have surveyed can be seen as the initial attempts to build

empirical models that are applicable to the applied questions of aggregate

data, but retain the feature of modeling behavior at the individual level.

Because of the bridge between micro and macro levels in these models,

structure from individual level decision is brought to bear on aggregate data

patterns in a consistent way. This linkage permits behavioral responses to be

studied with aggregate data, and future aggregate data patterns to be

simulated in a fashion consistent with the heterogeneous composition of the

population.

There is a broad set of prescriptions for empirical modeling available

from the work we have discussed. First, in constructing models that measure

aspects of behavior, one must begin "from the ground up," or always begin with

a model of behavior at the individual level. There is no sufficiently broad

or realistic scenario in which one can begin with a representative agent's

equations without explicitly considering the impact of heterogeneity. Whether

a representative agent model fits the data or not, there is no realistic
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paradigm where the parameters of such a model reflect only behavioral effects,

uncontaminated by compositional considerations. The application of

restrictions appropriate for individual behavior directly to aggregate data is

a practice without any foundation, and leads to biases that are impossible

to trace or measure with aggregate data alone. The only way individual level

restrictions can be consistently applied to aggregate data is through the

linkage provided by an assumed aggregation structure.

To implement a consistently constructed model of individual behavior and

aggregate data, it is important to stress that all relevant data should be

employed. In this context, this means that an aggregate level model is

applied to aggregate level data, the individual level model is applied to

individual level data, and consistently derived equations are applied to

partially disaggregated data, such as those on coarse groupings of the

population. All types of data are relevant to a single model, or measurement

of a single set of behavioral parameters.

We have glossed over the potential data problems of comparing individual

and aggregate level data, because of the overall importance of modeling at all

levels simultaneously. In particular, the potential for measurement problems

in individual level data does not give proper excuse for ignoring the

necessary connections between individual behavior and aggregate data. When

one suspects problems of conceptual incompatibility, a more informative

approach is to check for the implications of such problems within the context

of a fully consistent individual -aggregate level model. For instance, one way

of judging a "cure" for a measurement problem in individual level data is to

see if the resulting parameter estimates are comparable with those obtained

from aggregate data.

Hand- in-hand with the necessity of using all relevant data is the

necessity of checking or testing all relevant assumptions underlying a model.
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Aside from a platitude of good empirical work, it is important to stress the

testing aspect here because altogether too little attention has been paid to

checking or testing assumptions required for aggregation, relative to

assumptions on the form of individual behavioral models. For instance, exact

aggregation models rely on intrinsic linearity in the form of individual level

equations, and testing such restrictions should take on a high priority, and

be implemented with individual level data. For aggregation over intrinsically

nonlinear models, specific distributional assumptions are required, and

likewise become testable implications of the model. In essence, one should

avoid the temptation to regard the aggregation structure as secondary to the

individual model of economic behavior, focusing on one and ignoring the other,

as both types of structure have equal bearing on the subsequent model of

aggregate data. A fact of life is that only the crudest implications of

heterogeneity can be studied with aggregate data alone - while

distributional data should be included in any study of aggregate data to

check the specification of estimated macroeconomic equations, the most

informative assessments of aggregation structure will come from studying

individual level cross section or panel data.

In line with this is a cautionary remark about the natural temptation to

just create a "story" to "justify" common reduced form or representative agent

models. The problem is that for any equation connecting aggregates, there are

a plethora of behaviorally different "stories" that could generate the

equation, which are observationally equivalent from the vantage point of

aggregate data alone. If one invents a paradigm that is not consistent with

individual data, or based on fictitious coordination between agents, then the

results of estimating an aggregate equation based on that paradigm are not

well founded, and are not to be taken seriously. For an arbitrary example,

suppose that one applies a representative agent model of commodity demands.
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asserting the existence of community indifference curves through optimal

redistribution of income in each time period, following Samuelson (1956).

The results of such estimation have credibility only if one can find

convincing evidence that such redistribution is actually occurring, and

occurring to the extent required for Samuelson' s result (or maintaining

constant marginal social welfare for each income level) . Checking a "story"

that motivates an aggregate data model always requires looking beyond

aggregate data to the underlying process.

With these prescriptions, one should be quite optimistic about the

overall prospects for dealing with the problem of aggregation over

individuals, or understanding the implications of individual heterogeneity in

macroeconomic analysis. Approaches that neglect individual heterogeneity,

such as pure representative agent modeling, should be abandoned. However,

there is no reason why the wide array of individual behavioral models

developed under the representative agent paradigm cannot be applied at the

individual level, and used as a consistent foundation for studying

macroeconomic data.
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Notes

It is useful to stress that our basic concerns with "individual

heterogeneity" refer to differences between groups that are observable in the

context of an econometric analysis of individual level data, and not

arbitrarily fine distinctions that could characterize each individual

differently. For illustration, suppose first that you work for a large

corporation, and your job is to assess the authenticity of claims for

disability payments. Sam Jones has filed a claim, because of back pain that

he attributes to a fall he took while at work. In this instance, your job is

to decide on a fine distinction of individual heterogeneity; namely, whether

Mr. Jones is actually unable to work. Alternatively, suppose that you are the

executive in charge of forecasting the costs of future disability claims to

the company. In this case, you do not particularly care about whether Mr.

Jones is disabled, but you do care about what percentage of workers typically

become disabled, relative to age, skill level and type of job. It is this

latter notion of individual heterogeneity that is germane to our discussion of

modeling economy-wide aggregates. This distinction also seems to underly

Kirman's (1992) puzzling remarks associating representative agent models and

exact aggregation models.

2
Further, we do not address the issues raised by endogeneity of individual

differences; for instance, the potential impact of endogeneity of family size

in studies of demand. Some topics we cover (such as econometric estimation)

can accommodate endogeneity with few modifications, however others (such as

aggregation with nonlinear individual models) involve many more complications.
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3
For instance, Section 4.4 includes coverage of Euler equation estimation in

intertemporal consumption models. There y can denote current consumption,

M. lagged consumption, p interest rates and common information sets, and A.

demographic differences, innovations, etc.

While the features of this theory are discussed by Jacob Marshak (1939) and

Pieter DeWolff (1941), the main contributions date from Gorman (1953) and

Henri Theil (1954), through John Muellbauer (1975,1976), Lawrence Lau (1977,

1982), Dale Jorgenson, Lau and Stoker (1982) and John Heineke and Herschel

Sheffrin (1990), among many others.

This is not a loaded phrase indicating many detailed steps. In particular,

our assumption that M is lognormal states that (In M - /i )/S is standard

normal (with mean and variance 1). Therefore, we divide both sides of

(3.18) by P^, subtract In M, add /i , and finally divide by 2 . This gives

(3.19), which is in a convenient form for solving for the aggregate buying

percentage E (y)

.

Related issues are addressed by Harry Kelejian (1980).

Equation (3.25) suggests we have returned to the case where y. is

continuous, but all conclusions are valid if (3.25) holds with y^^^. ^i^j-' ^2it

taking on discrete or otherwise limited values.

A numerical example of the trending phenomena is given in Stoker (1984a).

Q
All remarks would apply if the distribution of i varied over time in a known

way.
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For example, suppose that the discrete choice model (3.16) included a normal

disturbance: y . - 1 if 1 + ^, In p + /3„ln M+£>0, y-0 otherwise,

2
where (. is normal with mean and variance a^ . Our notation here has p and e

as above, but x - M. The conditional expectation E(y|p,M) is the percentage

of people at income level M who buy the product when price is p; here

E(y|p,M) - i[a^'^{l + ^^^In p + /92ln M) ) . With pCMJ/i^. ,2^) the lognormal

distribution, the aggregate model is given by (3.20) where /SjS , the

2 2 2 1/2
denominator inside the brackets, is replaced by (^„ 2 + a^ ) ,

which

permits recoverability of ^^ , fi. and a. from aggregate data.

Models (3.38) and (3.39) can easily be formulated via orthogonality

conditions, with estimation carried out using instrumental variables or

another generalized method of moments method. This would accommodate various

kinds of endogenous predictor variables, as well as the standard setup for

models of behavior under uncertainty (Section 4.4). This proviso applies

throughout our discussion below, where we discuss least squares estimation for

simplicity.

12
These issues arise in cohort analysis, and the use of repeated cross sections

for estimation of dynamic models; see Angus Deaton (1985), among others.

While we do not delve into the differences between using panel data and

repeated cross sections here, it is likely that Robert Moffitt's (1991)

arguments in favor of using repeated cross sections (avoiding the attrition

that plagues long panels) have some validity here.
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13
To the extent that the disturbance in the aggregate equation is the average

of the disturbance in the individual equations, then these variances would

reflect grouping or size heteroskedasticity as well. In this regard, one

might ask whether more efficient estimates are available by taking into

account the correlation between the individual and aggregate data; while the

answer is yes, when the cross section is small relative to the population, the

adjustments required (with random errors) are negligible (c.f. Stoker (1977)).

For instance, for family expenditure data in the United States, one might

observe 10,000 households in a cross section, with a population size of N -=

90 million.

These connections are developed in Stoker (1982, 1986a, 1986d) . Stoker

(1985) discusses similar connections for measuring the sensitivity of

aggregate forecasts to individual parameter estimates.

This connection follows from integration-by-parts, or the "generalized

information matrix equality" familiar to readers of econometrics. In

particular, dE[g(x)]/6n - Cov[£(x) ,
g(x) ] where lix) - ain p(-x.\n)/dfi (provided

-1
boundary terms vanish), d estimates [Cov(i,x)] [Cov(£,y)] =

[aE(x)/dfi]'^dE(y)/dfi - aE(y)/aE(x) at time t.
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Stoker (1986c) develops this structure somewhat differently, based on stable

demand behavior within each range of the income distribution. This posture

facilitates measures of the extent to which individual nonlinearity "averages

away" in aggregate data.

A further study of note is the use of the age distribution to explain housing

prices by Gregory Mankiw and David Weil (1989) , although these authors

curiously omit income and other economic variables that would seem appropriate

for housing demand.

18
Theil (1975) lays out the original foundation for per-capita application of

the Rotterdam demand model, with more general formulations given in William

Barnett (1979) among others.

19
Demand analysis provides perhaps the only area where the theoretical

implications on income structure of exact aggregation models are well

understood. In particular, Gorman (1981) studies the demand q(p,M)

=
Y,

b.(p) V'-(M) . where the V'.(M) terms could be of any form. In a remarkable

analysis, he shows that there can be at most three linearly independent V"^ (M)

terms, which is referred to as the "Gorman Rank 3" result. He further

characterizes the admissible ip
. (H) terms; including the power and log terms

used in the models we discuss later, as well as trigonometric terms. Lewbel

(1991) discusses his extensions of these results in the context of demand

rank, which unifies this work with exact aggregation, and work on generalized

Slutsky conditions of Erwin Diewert (1977) and Stoker (1984b).
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20
These models arise from the path breaking work of John Muellbauer (1975) on

when aggregate demand depends on "representative income," and adopt Engel

curve formulations proposed earlier by Harold Working (1943) and Conrad Leser

(1960).

21
An important example that we have not covered is the Quadratic Expenditure

System of Pollak and Wales (1979). This model is quadratic in total

- - 2
expenditure, which results in aggregate demand depending on M , M and the

- 1 — 2
variance V - N^ Y (M.^ - M_) . All the same remarks apply here - for

t t ^ It t rr J

instance, to implement a model based on this system with aggregate data

requires either observing V or adopting a restriction relating V to M .

From the development in Pollak and Wales (1992), it is clear that the QES

can provide the basis for an aggregate model that allows recoverability

,

including accounting for demographic differences across families.

22
It is interesting to note how a parallel development is underway in general

equilibrium theory, in part due to the increasing recognition that the famed

Arrow-Debreu model is vacuous for purposes of empirical work. For instance,

Xavier Freixas and Andreu Mas-Collel (1987) derive very similar forms to those

of Muellbauer (1975) by studying aggregate revealed preference properties. In

line with the models we have just discussed, Werner Hildenbrand (1983, 1992)

proposes using nonparametric methods for introducing income distribution

information in studying aggregate income effects, with estimates given by

Wolfgang Hardle, Hildenbrand and Michael Jerison (1991). Jean-Michel

Grandmont (1992) studies the introduction of demographic differences through

family equivalent scales, obtaining results with some similarity to those of

Gary Becker's (1962) random demand model.
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23
Jorgenson, Daniel Slesnick and Stoker (1988) give another example of an

estimated exact aggregation model.

24
Related applications of this kind can be found in Terence Barker and Pesaran

(1990), among others. The discussion of random coefficients likewise applies

to the traditional justification for the Rotterdam model of demand, c.f. Theil

(1975) and Barnett (1979), among many others.

25
The main situation where a primary focus on aggregate data can be justified

is with a linear model where the individual predictor variables are observed

up to (tightly structured) errors; the measurement errors in the individual

data have to have mean across individuals , and be uncorrelated with

individual marginal effects. In this case, regression with individual data

involves the standard bias, but the average of the observed predictors closely

matches the average of the true predictors (the predictors with error have the

same "common factor" as the true predictors) . See Dennis Aigner and Stephen

Goldfeld (1974), among others.

26
In the notation of Section 3.1, we have y.,^ - C. and x - (^it^it-l'

(l-A.^)I.^).

27
The notation of Section 3 coincides here as y. - C. , M. - C. ^ and A.

contains v. . Common information would coincide with p^, and household
It t

specific information would enter through A.

91



28
For instance, a consumption model of the kind in (4.39, 4.40) could be used

as part of a real business cycle simulation model, such as those discussed by

Edward Prescott (1986) . If such equations are estimated using individual

data, their use represents a more scientific method of calibrating such a

model to micro data than is often practiced, such as setting approximate

parameter values for a representative agent from older studies of micro data,

and matching factor shares and other aggregates.

29
Our discussion has not focused on situations where prices vary across

individuals. In such cases, the varying prices are treated like other varying

attributes, and restrictions to accommodate such variation are combined with

restrictions on price effects from the basic choice model. For example,

Muellbauer (1981) uses an exact aggregation model to study labor supply

with varying wages across individuals.

30
Aggregate simulations of discrete choice models are given by Colin Cameron

(1990), as well as many references to the transportation economics literature.

The recent literature on monopolistic competition contains theoretical

analysis of aggregation and discrete response models, such as Egbert Dierker

(1989) and Andrew Caplin and Barry Nalebuff (1991) , although these ideas have

not been developed for empirical study. Other work of note concerns the

aggregation structure of discrete response models germane to marketing; see

Simon Anderson, Andre de Palma and Jacques -Francois Thisse (1989), for

instance, as well as Greg Allenby and Peter Rossi's (1991) study of why macro

"logit" models demonstrate good fitting properties to aggregate market shares.

31
Pok-Sang Lam (1991) reports on the results of applying an (s,S) model to

automobile data.
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32
Inputs that are endogenous generally make prediction more difficult, but are

especially onerous in microsimulation models, because the entire distribution

of endogenous inputs must be simulated. For instance, suppose that one was

interested in forecasting welfare payments, and at issue was whether

the welfare system actually induced families on welfare to have more children.

In this case, family size could not be treated as exogenous. To simulate the

effect of a policy change in welfare payments, induced changes in the

distribution of family size would have to be simulated, which is much more

complicated than projecting exogenous changes in family size distribution.

93



References

Aigner, Dennis J. and Goldfeld, Stephen M. (1974), "Estimation and Prediction
from Aggregate Data When Aggregates are Measured More Accurately that
Their Components," EconomeCrica, 42, 113-34.

Allenby, Greg M. and Rossi, Peter E. (1991), "There is No Aggregation Bias:
Why Macro Logit Models Work," Journal of Economic and Business
Statistics, 9, 1-14.

Anderson, Simon P.; de Palma, Andre and Thisse, Jacques-Francios (1989),
"Demand for Differentiated Products, Discrete Choice Models and the
Characteristics Approach," Review of Economic Studies, 56, 21-36.

Barker, Terence S. and Pesaran, M. Hashem (1990), Disaggregation in
Econometric Modeling , London, Routledge.

Barnett, William A. (1979), "Theoretical Foundations of the Rotterdam
Model," Review of Economic Studies, 46, 109-130.

Berndt, Ernst R. ; Darrough, Masako N. and Diewert W. Erwin (1977), "Flexible
Functional Forms and Expenditure Distributions: An Application to

Canadian Consumer Demand Functions," International Economic Review, 18,

651-675.

Becker, Gary S. (1962), "Irrational Behavior and Economic Theory," Journal of
Political Economy, 70, 1-13.

Bertola, Guiseppe and Caballero, Ricardo J. (1990), "Irreversibility and
Aggregate Investment," Columbia Working Paper, #488.

Blackorby, Charles; Boyce, Richard and Russell, Robert R. (1978), "Estimation
of Demand Systems Generated by the Gorman Polar Form: A Generalization of

the S -Branch Utility Tree," Econometrica, 46, 345-364.

Blackorby, Charles; Primont, Daniel and Russell, Robert R. (1978), Duality,
Separability and Functional Structure: Theory and Economic Applications

,

Amsterdam, North Holland.

Blinder, Alan S. (1975), "Distribution Effects and the Aggregate Consumption
Function," Journal of Political Economy, 83, 447-75.

Blundell, Richard (1988), "Consumer Behavior: Theory and Empirical Evidence -

A Survey," Economic Journal, 98, 16-64.

Blundell, Richard; Pashardes, Panos and Weber, Guglielmo (1992), "What Do We

Learn About Consumer Demand Patterns from Micro Data," draft. University
College London, forthcoming American Economic Review.

Brovming, Martin (1992), "Children and Household Economic Behavior," Journal
of Economic Literature , 30, 1434-1475.

Buse, Adolph (1992). "Aggregation, Distribution and Dynamics in the Linear and

Quadratic Expenditure Systems," Review of Economics and Statistics , 74,

45-53.

94



Caballero, Ricardo J. and Engel, Eduardo M.R.A. (1991), "Dynamic (S,s)
Economies," Econometrica, 59, 1659-1686.

Caballero, Ricardo J. and Engel, Eduardo M.R.A. (1992), "Microeconomic
Adjustment Hazards and Aggregate Demands," draft, MIT Department of

/ Economics

.

Cameron, A. Colin (1990), "Aggregation in Discrete Choice Models: An
Illustration of Nonlinear Aggregation," in T.S. Barker and M.H. Pesaran,
eds.. Disaggregation in Econometric Modeling, London, Routledge

.

Caplin, Andrew S. and Nalebuff, Barry (1991), "Aggregation and Imperfect
Competition: On the Existence of Equilibrium," Econometrica, 59, 1-24.

Caplin, Andrew S. and Spulber, Daniel (1987), "Menu Costs and the Neutrality
of Money," Quarterly Journal of Economics , 102, 703-726.

Chiappori, Pierre-Andre (1988), "Rational Household Labor Supply,"
Econometrica, 56, 63-90.

Chetty, V.K. and Heckman, James J. (1986), "A Dynamic Model of Aggregate
Output Supply, Factor Demand and Entry and Exit for a Competitive
Industry with Heterogeneous Plants," Journal of Econometrics , 33,
237-262.

Cowing, Thomas G. and McFadden, Daniel L. (1984), Microeconomic Modeling and
Policy Analysis , New York, Academic Press.

Deaton, Angus S. (1985), "Panel Data from Time Series of Cross Sections,"
Journal of Econometrics , 30. 109-126.

Deaton, Angus S. and Muellbauer, John (1980a), "An Almost Ideal Demand
System," American Economic Review, 70, 312-326.

Deaton, Angus S. and Muellbauer, John (1980b), Economics and Consumer
Behavior, Cambridge, Cambridge University Press.

Debreu, Gerard (1974), "Excess Demand Functions," Journal of Mathematical
Economics, 1, 15-23.

Dierker, Egbert, "Competition for Customers," Universitat Bonn, Discussion
Paper A- 244.

Diewert, W. Erwin (1977), "Generalized Slutsky Conditions for Aggregate
Demand Functions, Journal of Economic Theory, 15, 353-362.

Dumas, Bernard (1989), "Two -Person Dynamic Equilibrium in the Capital Market,"
The Review of Financial Studies, 2, 159-188.

Eichenbaum, Martin S.; Hansen, Lars Peter and Richard, Scott F. (1987),
"Aggregate Durable Goods and Nonseparable Preferences in an Equilibrium
Asset Pricing Model," NORC Discussion Paper 87-9.

95



Fair, Ray C. and Dominguez, Katherine M. (1991), "Effects of the Changing U.S.
Age Distribution on Macroeconomic Equations," American Economic Review,
81, 1276-1294.

Feenberg, Daniel R. and Rosen, Harvey S. (1983), "Alternative Tax Treatment of
the Family: Simulation Methodology and Results," Chapter 1 of M.S.
Feldstein, ed. , Behavioral Simulation Methods in Tax Policy Analysis

,

Chicago, University of Chicago Press.

Freixas, Xavier and Mas-Colell, Andreu (1987), "Engel Curves Leading to the
Weak Axiom in the Aggregate," Econometrica, 55, 515-532.

Grandmont, Jean-Michel (1992), "Transformations of the Commodity Space:
Behavioral Heterogeneity and the Aggregation Problem," Journal of
Economic Theory, 57, 1-35.

Granger, Clive W.F. (1980), "Long-Memory Relationships and the Aggregation of

Dynamic Models," Journal of Econometrics, 14, 227-38.

Granger, Clive W.F. (1987), "Implications of Aggregation with Common
Factors," Econometric Theory, 3, 208-222.

Granger, Clive W.F. (1990), "Aggregation of Time Series Variables: A Survey,"
in Barker, Terence S. and Pesaran, M. Hashem, eds

. , Disaggregation in

Econometric Modeling, London, Routledge.

Gorman, William M. (Terence) (1953), "Community Preference Fields,"
Econometrica, 21, 63-80.

Gorman, William M. (Terence) (1981), "Some Engel Curves," in Deaton, Angus S.,

ed. Essays in the Theory and Measurement of Consumer Behavior, Cambridge,
Cambridge University Press.

Grunfeld, Yehuda and Griliches, Zvi (1960), "Is Aggregation Necessarily Bad?"

Review of Economics and Statistics , 42, 1-13.

Hall, Robert E. (1978), "Stochastic Implications of the Life Cycle -Permanent
Income Hypothesis: Theory and Evidence," Journal of Political Economy,
86, 971-987.

Hansen, Gary D. (1985), "Indivisible Labor and the Business Cycle," Journal of
Monetary Economics, 16, 309-27.

Hansen, Lars Peter and Singleton, Kenneth J. (1983) "Stochastic Consumption,
Risk Aversion and the Temporal Behavior of Asset Returns," Journal of
Political Economy, 91, 249-65.

Hardle, Wolfgang; Hildenbrand, Werner and Jerison, Michael (1991), "Empirical
Evidence for the Law of Demand," Econometrica, 59, 1525-1550.

Hausman, Jerry A.; Newey, Whitney K. and Powell, James L. (1992),
"Errors- in-Variables Estimation of Some Engel Curves," draft, forthcoming
Journal of Econometrics

.

96



Heaton, John and Lucas, Deborah (1992), "Evaluating the Effects of Incomplete
Markets on Risk Sharing and Asset Pricing," Sloan School of Management
Working Paper.

Heckman, James, J. and Chetty, V.K. (1986), "A Dynamic Model of Aggregate
Output, Factor Demand and Entry and Exit for a Competitive Industry with
Heterogeneous Plants," Jouimal of Econometrics , 33, 237-262.

Heckman, James J. and Sedlacek, Guilherme (1985), "Heterogeneity, Aggregation
and Market Wage Functions: An Empirical Model of Self -Selection in the

Labor Market," Journal of Political Economy, 93, 1077-1125.

Heckman, James J. and Walker, James R. (1989), "Forecasting Aggregate
Period-Specific Birth Rates: The Time Series Properties of a Microdynamic
Neoclassical Model of Fertility," Journal of the American Statistical
Association, 84, 958-965.

Heckman, James J. and Walker, James R. (1990), "The Relationship Between
Wages and Income and the Timing and Spacing of Births: Evidence from
Swedish Longitudinal Data," Econometrica, 58, 1411-1442.

Heineke, John M. and Shefrin, Herschel M. (1990), "Aggregation and
Identification in Consumer Demand Systems," Journal of Econometrics, 44,

377-390.

Hildenbrand, Werner (1981) , "Short Run Production Functions Based on
Microdata," Econometrica, 49, 1095-1126.

Hildenbrand, Werner (1983), "On the Law of Demand," Econometrica, 51,

997-1019.

Hildenbrand, Werner (1992), "Market Demand, Theory and Empirical Evidence,"

Discussion Paper A- 359, Universitat Bonn.

Houthakker, Hendrick S. (1955), "The Pareto Distribution and the Cobb-Douglas
Production Function in Activity Analysis," 23, 27-31.

Johansen, Leif (1972), Production Functions , Amsterdam, North Holland.

Joint Committee on Taxation (1992), Discussion of Revenue Estimation and

Process, JCS 14-92, August 13, 1992, U.S. Government Printing Office,

Washington, D.C.

Jorgenson, Dale W. ; Lau, Lawrence J. and Stoker, Thomas M. (1980), "Welfare
Comparisons and Exact Aggregation," American Economic Review, 70,

268-272.

Jorgenson, Dale W. ; Lau, Lawrence J. and Stoker, Thomas M. (1982), "The

Transcendental Logarithmic Model of Aggregate Consumer Behavior," in

Basmann, Robert L. and Rhodes, George, eds
.

, Advances in Econometrics,
Vol. 1, Greenwich, JAI Press, 97-238.

Jorgenson, Dale W. and Slesnick, Daniel T. (1984), "Aggregate Consumer
Behavior and the Measurement of Inequality," Review of Economic Studies,
51, 369-392.

97



Jorgenson, Dale W. ; Slesnick, Daniel T. and Stoker, Thomas M. (1988), "Two
Stage Budgeting and Exact Aggregation," Journal of Business and Economic
Statistics, 6, 313-325.

Jorgenson, Dale W. and Stoker, Thomas M. (1986), "Nonlinear Three Stage Least
Squares Pooling of Cross Section and Average Time Series Data," in
Moroney, John R. , ed. , Advances in Statistical Analysis and Statistical
Computing, Vol. 1, Greenwich, JAI Press, 87-116.

Kelejian, Harry J. (1980), "Aggregation and Disaggregation of Nonlinear
Equations," in Jan Kmenta and James B. Ramsey, eds . , Evaluation of
Econometric Models, New York, Academic Press.

Kirman, Alan P. (1992), "Whom or What Does the Representative Individual
Represent," Journal of Economic Perspectives , 6, 117-136.

Lam, Pok-Sang (1992), "Permanent Income, Liquidity, and Adjustments of
Automobile Stocks: Evidence from Panel Data," Quarterly Journal of
Economics, 106, 203-230.

Lau, Lawrence J. (1977), "Existence Conditions for Aggregate Demand
Functions," Institute for Mathematical Studies in the Social Sciences,
Stanford University, Technical Report No. 248.

Lau, Lawrence J. (1982), "A Note on the Fundamental Theorem of Exact
Aggregation," Economic Letters, 9. 119-126.

Lee, K. ; Pesaran, M. Hashem and Pierse, Richard G. (1990), "Testing for
Aggregation Bias in Linear Models," Economic Journal, 100, 137-150

Leser, Conrad E.V. (1963), "Forms of Engel Functions," Econometrica, 31,

694-703.

Lewbel, Arthur (1989a), "A Demand System Rank Theorem," Econometrica, 57,

701-706.

Lewbel, Arthur (1989b), "Exact Aggregation and a Representative Consumer,"
Quarterly Journal of Economics , 104, 622-33.

Lewbel, Arthur (1991), "The Rank of Demand Systems: Theory and Nonparametric
Estimation," Econometrica, 59, 711-730.

Lewbel, Arthur (1992), "Aggregation and Simple Dynamics," draft, Brandeis
University.

Lippi, Marco (1988), "On the Dynamic Shape of Aggregated Error Correction
Models," Journal of Economic Dynamics and Control, 12, 561-585.

MaCurdy, Thomas E. (1987), "A Framework for Relating Microeconomic and
Macroeconomic Evidence on Intertemporal Substitution," in Bewley, Triiman

F. , ed. , Advances in Econometrics , Fifth World Congress, Vol. II,

149-176.

Mankiw, N. Gregory and David N. Weil (1989), "The Baby Boom, the Baby Bust,

and the Housing Market," Regional Science and Urban Economics, 19,

235-258.

98



Marshak, Jacob (1939), "Personal and Collective Budget Functions," Review of
Economic Statistics, 21, 161-170.

Modigliani, Franco (1970), "The Life Cycle Hypothesis of Saving and
Intercountry Differences in the Saving Ratio," in W. Eltis , M. Scott and
I. Wolfe, eds . Induction , Growth and Trade, Oxford, Clarendon Press.

Moffitt, Robert (1991), "Identification and Estimation of Dynamic Models with
a Time Series of Repeated Cross Sections," Draft, Brown University.

Muellbauer, John (1975), "Aggregation, Income Distribution and Consumer
Demand," Review of Economic Studies, 42, 525-543.

Muellbauer, John (1976), "Community Preferences and the Representative
Consumer," Econometrica, 44, 979-1000.

Muellbauer, John (1981), "Linear Aggregation in Neoclassical Labor Supply,"
J?eview of Economic Studies, 48, 21-36.

Pesaran, M. Hashem; Pierce, Richard G. and Kumar, M.S. (1989), "Econometric
Analysis of Aggregation in the Context of Linear Prediction Models,"
Econometrica, 57, 861-888.

Pollak, Robert A. (1985), "A Transactions Cost Approach to Families and
Households," Journal of Economic Literature , 23, 581-608.

Powell, James L. and Stoker, Thomas M. (1985), "Estimation of Complete
Aggregation Structures," Journal of Econometrics, 30, 317-344.

Prescott, Edward C. (1986), "Theory Ahead of Business Cycle Measurement,"
Quarterly Review, Federal Reserve Bank of Minneapolis, 10, 9-22.

Rubinstein, Mark, (1974), "An Aggregation Theorem for Securities Markets,"

Journal of Financial Economics , 1, 224-244.

Samuelson, Paul A. (1956), "Social Indifference Curves," Quarterly Journal of

Economics, 73, 1-22.

Sato, Kazuo (1975), Production Functions and Aggregation, Amsterdam, North

Holland.

Schafer, Wayne and Sonnenschein, Hugo (1982), "Market Demand and Excess Demand

Functions," in Arrow, K.J. and M.D. Intriligator , eds. Handbook of

Mathematical Ecoonomics , Vol. II, New York, North Holland.

Sonnenschein, Hugo (1972), "Market Excess Demand Functions," Econometrica,

40, 549-563.

Stoker, Thomas M. (1978), "The Pooling of Cross Section and Average Time

Series Data," draft. Harvard University.

Stoker, Thomas M. (1982), "The Use of Cross Section Data to Characterize Macro

Functions," Journal of the American Statistical Association, 77, 369-380.

99



Stoker, Thomas M. (1984a), "Completeness, Distribution Restrictions and the
Form of Aggregate Functions," Econometrica, 52, 887-907.

Stoker, Thomas M. (1984b), "Exact Aggregation and Generalized Slutsky
Conditions," Journal of Economic Theory, 33, 368-377.

Stoker, Thomas M. (1985), "Aggregation, Structural Change and Cross Section
Estimation," Journal of the American Statistical Association, 80,
720-729.

Stoker, Thomas M. (1986a), "Aggregation, Efficiency and Cross Section
Regression," Econometrica, 54, 177-188.

Stoker, Thomas M. (1986b), "The Distributional Welfare Impacts of Rising
Prices in the United States," American Economic Review, 76, 335-349.

Stoker, Thomas M. (1986c), "Simple Tests of Distributional Effects on
Macroeconomic Equations," Journal of Political Economy, 94, 763-795.

Stoker, Thomas M. (1986d) , "Consistent Estimation of Scaled Coefficients,"
Econometrica, 54, 1461-1482.

Stoker, Thomas M. (1992), Lectures on Semiparametric Econometrics, CORE
Lecture Series, Louvain-la-Neuve , CORE Foundation.

Theil, Henri (1954), Linear Aggregation of Economic Relations , Amsterdam,
North Holland.

"Theil, Henri (1975), Theory and Measurement of Consumer Demand, Vol.1,
Amsterdam, North Holland.

Trivedi, Pravin K. (1985), "Distributed Lags, Aggregation and Compounding:
Some Econometric Implications," Review of Economic Studies, 52, 19-35.

Van Daal, Jan and Merkies , Arnold H.Q.M. (1984), Aggregation in Economic
Research, Dordrecht, D. Reidel.

de Wolff, Pieter (1941), "Income Elasticity of Demand, A Micro-Economic and a

Macro -Economic Interpretation," Economic Journal, 51, 140-145.

Working, Harold (1943), "Statistical Laws of Family Expenditure," Journal of
the American Statistical Association, 38, 43-56.

Zellner, Arnold (1969), "On the Aggregation Problem, a New Approach to a

Troublesome Problem," in Estimation and Risk Programming, Essays in Honor
of Gerhard Tintner, Berlin, Springer.

100



5939 065







Date Due

MAr 1 5 1991

Lib-26-67



MIT LIBRARIES pUPl

3 1060 006Mb261 1




