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Abstract
Predicting equilibrium beach profiles (EBP) have been an ongoing effort since Bruun (1954) and
Dean (1977) carried out extensive empirical studies of beach profiles. Although most efforts in
predicting beach profiles are focused on empirical studies, recent models have been process-based.
These models typically use the Energetics approach, a theory originally derived by Bagnold (1963)
for open channel flow. It is felt that the use of this theory in a coastal environment is somewhat
suspect. Hence, a traction model is preferred.

This thesis focuses on predicting EBP using a theoretical approach based on accepted
empirical principles for bedload transport by waves. Madsen's (1991) theoretical derivation for
bedload transport, based on the Meyer-Peter Muller empirical model, is rederived for a sloped bed.
Nonlinear, normally incident, periodic waves are assumed and shoaling as well as wave orbital
velocities are predicted using Cnoidal wave theory. Beach profiles are generated by adjusting the
local bed slope so that at each depth the net sediment transport is zero. By comparing the results
to the Inman et al. (1993) empirical study, this approach is shown to predict beach profile
tendencies well outside the surf zone. Within the surf zone, wave heights are assumed to be
proportional to the water depth and the model breaks down. In order to improve surf zone
predictions, an undertow as well as suspended sediment transport are added to the model.

The present undertow model is in all essential details similar to existing undertow models,
except for its treatment of the bottom boundary condition. In our model an assumed value of the
average bottom shear stress is used in conjunction with the Grant-Madsen wave-current interaction
model to predict the undertow velocities at the outer edge of the wave boundary layer. This
bottom velocity is used as the bottom boundary condition necessary to solve for the undertow
profile in the interior of the fluid following already established procedures. A valid solution is
obtained when the assumed average bottom shear stress leads to a prediction of a zero net flow in
the shorenormal direction. The solution compares favorably to detailed laboratory measurements
of undertow velocity profiles by Cox and Kobayashi (1997).

Incorporating this undertow model along with suspended transport considerations in our
existing equilibrium beach profile formulation improves our predictions within the surf zone. The
generated EBP follow these trends: larger waves tend to erode the beach making the overall slope



gentler; beaches with coarser sediments tend to be steeper; and longer waves tend to cause beach
accretion. There is a noticeable bar crest at the point of breaking. However, a comparison with
Dean and Inman et al. empirical studies show some shortcomings of the modified model. It is felt
that a swash zone model and a more accurate treatment of wave attenuation is warranted.

Thesis Supervisor: Ole S. Madsen
Title: Professor, Department of Civil and Environmental Engineering
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Chapter 1

1 Introduction

1.1 General Remarks

Understanding beach erosion is of utmost concern to many coastal engineers.

Unfortunately, little is understood about how beaches are formed or destroyed. Certainly

the simplest concept dealing with beach stability is the idea of equilibrium beach profiles

(EBP). Equilibrium profiles are defined as having a local, time-averaged, cross-shore

sediment transport of zero and a constant longshore transport.

Generally speaking, beach profiles are manifestations of forces generated by wave

and current action, and since wave conditions and current speeds are rarely constant,

beach profiles invariably change. Even "equilibrium beach profiles" are rarely in a

constant state of equilibrium. Rather, "equilibrium beaches" are those beaches that

exhibit stationary characteristics over a sufficient stretch of time. This thesis explores

equilibrium beach profiles using a theoretical approach based on accepted empirical

principles for bedload transport and suspended load transport induced by steady and

unsteady flows over a sandy bed.



1.2 History and Current Theories

1.2.1 Empirical Models

The simplest and certainly the best known model concerning EBP is the

Bruun/Dean model [Bruun, 1954; Dean, 1977]. Based on an extensive empirical analysis

of beaches throughout the United States and abroad, it was found that the shape of beach

profiles could generally be expressed in the form h x' For the majority of the beaches

sampled, m was approximately 2/3. This empirical relationship was further strengthened

by theoretical arguments that proposed that beach profiles would adjust their shape to

dissipate wave energy. Of the three mechanisms proposed by Dean, 1) wave energy

dissipation per unit volume, 2) wave energy dissipation per unit surface area, and 3)

uniform bottom shear stress due to oblique waves, only the first mechanism supported an

exponential to the 2/3. Briefly, the derivation is outlined here.

D (1.1)
'--E

h

where E is a constant, D is the energy dissipation per unit bottom area, and h is the water

depth. Since the energy dissipated is related to the energy flux, it follows then that for

linear long waves,

dE1  d(Ec) d(H 2 -) (1.2)
D - -- -0c

dx dx dx

Assuming that H is linearly related to water depth,

D h/2 dh (1.3)

h dx

With e a constant, the equation can then be integrated resulting in



h oc x2/3  (1.4)

Therefore, by using an argument of energy dissipation per unit volume, it was concluded

that EBPs could be expressed as h = Ax 2/3, in which A is a sediment scale parameter. It

should be noted that the argument is limited to the surf zone.

Although it is unclear how energy dissipation per unit volume actually moves

sediment, certainly the strongest aspect to this model is its simplicity. For blindfolded

tests, as those carried out in New Zealand for example, this model for the most part

succeeded at estimating the slope of the beach within the surf zone [Dean et al., 1993].

Because of its simplicity and general applicability, it has gained considerable recognition.

However, recent activity in the literature has begun to question this model. An

exponential curvefitting model has been advocated as more accurate [Bodge, 1992; Komar

and McDougal, 1994]. It has also been suggested to split the profile into two separate

sections [Inman et al., 1993]. The main criticism cited by these various authors is that

h = Ax2/3 is insensitive to varying wave conditions. This feature was considered

counterintuitive. Another limiting factor is that h = Ax2/3 as a rough approximation is

valid only within the breaker zone. Since energy dissipation per unit volume was

evaluated only within the surf zone, those who approximate the entire beach using this

model imply that sediment transport mechanisms are identical inside and outside the

breaker region. This has yet to be established. In fact, Inman et al. [1993] propose that the

mechanisms are different and that the use of a single curve-fitting model, therefore, may

not be valid.

Inman et al. apply curve fitting models to numerous beaches throughout California,

North Carolina, and the Nile Delta region. The profile is split into two sections, the



nearshore zone and the offshore zone, and analyzed separately. Although little theory is

presented, the empirical data is extensively developed. Assuming the form h = Ax"', it is

proposed that the two separate shapes of the beach have an exponential m = 2/5 and that A

is 0 (1). Certainly, this method improves the fit of the EBP forms tested, but the

methodology is too complicated with no clear way of applying it to engineering problems

[Dean, 1994] . Moreover, there is little theoretical backing. However, the point raised by

Inman et al. is a valid one: whether or not the theoretical argument for m = 2/3 is a

justifiable one. If m was found to be closer to 2/5 than 2/3 under a more careful analysis

of empirical data, then the theoretical argument of wave energy dissipation per unit

volume needs to be rethought.

1.2.2 The Energetics Approach

The debate about the "best" curvefitting methodology is expected to continue.

However, without understanding the physics behind the empirical relationships, little

progress will be made in understanding the process of shore erosion. Hence, much of the

new cross-shore profile models found in the literature today are indeed process-based.

Sediment transport models are used in tandem with the cross-shore profiles, wave and

current conditions, and sediment characteristics. The most popular process-based models

are based on Energetics, first introduced by Bagnold [1963]. The Energetics approach is a

sediment transport prediction method based on the idea that a portion of fluid energy is

expended in maintaining a sediment transport load. This next section briefly outlines this

approach.



There are two well known and widely used formulations for sediment transport

using the Energetics approach. The first is the original formulation by Bagnold. A later

variation of this equation was derived by Bailard [1981]. The expression given by both

these authors for the total immersed weight cross-shore sediment transport rate based on

the Energetics approach is simply

it = i + i, (1.5)

where ib is the bedload transport rate and i, is the suspended load. We will briefly outline

the derivation of both these terms for both authors and discuss their applicability for

sediment transport on beaches subject to oscillatory flow.

i) Derivation of Bedload, ib.

Bagnold's expression for bedload was originally derived for open channel

conditions for normal steady flow on a sloped bed. Positive x is considered to be parallel

to the bed slope in the down-slope direction.

The force necessary to overcome frictional resistance and gravitational forces and

keep sediment particles in motion on a sloped bed is:

F = [(p. - p)]gVb cos tano u"'- tanj (1.6)

where p, is the sediment density, p is the fluid density, Vb is the bedload volume per unit

area, u, is the sediment velocity and is positive down slope, 3 is the bed slope and is

positive for increasing depths in the positive x direction, and 0 is the internal angle of

friction. The work done per unit time by the fluid on the sediment is then simply this



force multiplied by the sediment velocity, or Flu, .Bagnold defines the immersed

sediment bedload transport rate as its immersed weight times its velocity:

ib = (Ps - p)]gVus . (1.7)

Hence, the work expended per unit time can be written in terms of ib :

Flu. = b i tan- I tan p ljcos (1.8)

Bagnold then makes the argument that since the rate of work (Flus ) is equal to some

fraction of the total energy dissipated, it follows the cross-shore immersed weight

sediment bedload transport rate is

-. us Eb 2 (1.9)

Slus cos tan - tan

where 2 is the energy dissipated and eb is the efficiency factor for the bedload. Q is

defined as

S= u, = c, p ulu, (1.10)

where cf is a friction factor coefficient and ut is the depth averaged fluid velocity for open

channel flow. For waves, uf is the near-bottom fluid velocity and it is assumed that

u,/u I= uf Iluf . This derivation holds for a velocity going in either direction, such as

under oscillatory flow.

Bailard uses Bagnold's derivation for bedload and his bedload formulation is

therefore the same. However, Bagnold and Bailard differ in their expression for

suspended load. We shall look at each derivation separately.



ii) Derivation of Suspended Load, is.

Bagnold maintained that the suspended sediment is supported by the stream fluid

via turbulent diffusion. While suspended, sediment grains move both downstream with

nearly the local fluid velocity and are falling downward toward the bed. In order for

equilibrium to be maintained, Bagnold proposed that the center of mass of the suspended

load must remain at a constant height above the bed.

Bagnold assumes steady normal flow on a sloped bed. The x-coordinate system is

parallel to the bottom and is positive in the down-slope direction. The immersed weight is

defined as

F = (p, -p)V,g (1.11)

where V, is the total sediment volume per unit area.

In order for the sediment to remain parallel to the bottom as it moves downstream,

Bagnold maintains that the sediment volume must lose potential energy at a rate equal to

its immersed weight times the sediment's vertical velocity. But since the sediment is also

settling at its fall velocity, work is required to keep it suspended. The rate of work

necessary to counteract this settling is the immersed weight multiplied by the average

sediment fall velocity. Hence, Bagnold argues that the total amount of work per unit time

necessary to keep the sediment volume centroid parallel to the slope is the difference

between these two quantities.

Rate of Work = (p, - p)Vg(w-u, sin P) (1.12)

where w is the sediment fall velocity and is positive in the direction of gravity, and u, is

positive downstream. With a suspended load defined as

is = [(p, - p)]gVu s (1.13)



then (1.12) can be redefined in terms of i,:

(1.14)
Rate of Work = i, sin (1.14)

As it was argued for the bedload component, Bagnold assumes that the rate of work

required for (1.14) is equal to a fraction of the energy dissipated in the sediment-free free

stream, e,2. This then leaves us with the complete equation for suspended load:

E, (1.15)

(w/u, -sin 1)

The energy dissipated, Q, is defined as it was for bedload, equation (1.10). E, is the

efficiency factor for the suspended load. The sediment velocity is assumed to be the same

as the fluid velocity.

For conditions when sin/3 > w/u,, (1.15) theoretically breaks down. A brief

examination of (1.12) shows that for such conditions, in order to maintain the sediment

centroid parallel to the bed slope, the rate of work required from the free stream is

negative, so we would expect an increase in the free stream energy. This creates an

inherent contradiction considering that Bagnold argues the exact opposite, that free-stream

energy dissipation is necessary for sediment suspension. Since it is not possible to have

an increase in energy by dissipating it, (1.15) makes no physical sense in this case. Even

for sin P -- w/u,, unusual results are obtained. A cursory glance at (1.15) under these

conditions shows that an infinite amount of suspended load is expected. Therefore, it is

concluded that equation (1.15) should only be applied if sin / << w/us.

That being said, it is clear that there are some problems with regards to the

applicability of (1.15) in coastal environments. Along a coast, it is not unreasonable to



assume a typical sediment diameter of around 0.1 mm with a fall velocity of around 1

cm/s. If we assume that the offshore fluid velocity is around 1 m/s, again not an

unreasonable assumption, the bed slope must be considerably less than tan P = 0.01 in

order for (1.15) to be valid. However, typical beach slopes in the surf zone are around

tan - 0.1. Hence, Bagnold's formulation is not valid for typical coastal environments.

In fact, one may even question the validity of the hypothesis itself.

The crux of the problem with Bagnold's formulation is that the power contribution

from the suspended load to the free stream directly effects the suspended transport rate.

Bailard attempts to address this problem.

Bailard [1981] assumes a normal steady flow in an open channel with a similar

coordinate system to Bagnold's. He claims that a fraction of the total amount of energy in

the stream dissipated is equal to the amount of energy necessary to keep the sediment

suspended.

sed strea,,,,,, (1.16)

The amount of energy dissipated in the free stream is based on the rate of potential energy

lost. For open channel flow, the amount of potential energy lost is simply

Qstream = Paghu, sin P (1.17)

where h is the water depth and p, is the apparent density of the sediment ladened water

and is defined as

V (1.18)
Pa = (PS, - P) +P

Using the same definition of suspended load as above (1.13), and inserting (1.18) into

(1.17), the free stream's total energy dissipation is therefore:



For open channel flows, the energy dissipation for a sediment free stream is pghu, sin /

and is equal to (1.10). Hence, (1.19) can be rewritten as

QStrean = i. sin P + Q (1.20)

where Q is given by (1.10). The rate of work necessary to keep the sediment from

falling is according to Baillard [1981] simply the immersed weight of the sediment times

its fall velocity.

2sed = (ps - )gVs., (1.21)

Introducing (1.20) and (1.21) into (1.16) we derive Bailard's expression for the suspended

load:

iE = E (1.22)

w/u, -e, sin p

Considering that es is of the order 0.01, this formulation makes more physical sense than

Bagnold's. However, it is stressed that this equation was derived for normal steady flow

in an open channel with the free stream flowing downstream. If one were to "convert"

(1.22) into an equation that is applicable to oscillatory flow, the physical meaning of

(1.22) would be lost. For example, if one were to derive (1.22) by assuming the velocity

was moving upslope (ie. under a crest of a wave), one could not use the line of logic used

by Bailard. According to Bailard then, energy would not be dissipated at a rate

pghu, sin P , but rather be produced at that rate. This of course does not make physical

sense.

So even though the physical justification for using either Bagnold's or Bailard's

suspended sediment transport rate for coastal environments is questionable, it is used



regardless. The coordinate system is redefined to be in accord with typical coastal

problems. The bedload formulation (1.9) is changed such that the x-direction is horizontal

and positive shore-wards. The negative sign in the denominator becomes positive.

Equations (1.15) and (1.22) also are changed to reflect this the new coordinate system, and

they are "generalized" for oscillatory flow. The velocity is positive in the onshore

direction and 3 is positive for decreasing depths in the onshore direction. The total

sediment transport rate along a sloped bed using Energetics is therefore

el uf u tan Esu u,(.
i, = j, + = + + 1 + F tan 3 (1.23)

tan01 l I l tan w

where Bagnold assumes that F = 1, and Bailard assumes that F = e,. There are some

slight geometric differences between (1.23) and that which was derived here. Let it be

sufficient to note that (1.23) is the equation cited in the literature dealing with EBP (ie.

Bowen [1980], Bailard [1981]) and hence we will just state it with out arguing the finer

nuances of its derivation.

Equation (1.23) is further developed upon by Bowen [1980], Bailard and Inman

[1981], and Bailard [1981] and applied directly to cross-shore sediment transport on

beach profiles. Bowen assumes that F = 1 while Bailard uses his own formulation,

F = e,. The expression for the cross-shore sediment transport equation as it pertains to

equilibrium beaches is derived below.

One can Taylor expand (1.23) and only retain the leading order terms if it is

assumed for the bedload contribution that tan / << tan 0 and for the suspended load



w
contribution that Ftan f << --. After time-averaging, it can be shown that (1.23) is

approximated as

Eb [
(i, tan 0 Uf

2U f tan I

tan \
CE,

w Uf --
F
- tan
w

/3 Uf )]

(1.24)

It is not unrealistic to assume that tan P << tan 0 if 0 is to be taken to be around

30' to 500 and the bed slope to be less that 100. However, the assumption I tan P <<--
Uf

is poor for F = 1. uf is the time-varying velocity within the water column, and for shore-

normal flows, this is simply the sum of the oscillatory flow and current flow

uf = f+i. (1.25)

For nonlinear flows, we define the oscillatory velocity using the superposition of linear

waves of varying harmonics:

= Um Cos t + Um 2 COs 2at +... (1.26)

where u,, is the maximum orbital velocity and a is the radian frequency of the wave. By

introducing (1.26), Bailard implicity states that (i") = 0 when n is odd. Hence, by

substituting (1.25) and (1.26) into (1.24), it is shown that

3 ba n p Eu3b 3 tan (u3) ,

tancp 2 tanT
cf Um 2 +48u(u3)* um Ftanf(u5)*

w w

where:

u = U / U is the dimensionless steady flow

is the first odd moment

(1.27)

X, = 2 jjf 3



X2 =K3 )/u4 is the second odd moment

(u3)* = f 13u is the third central even moment

(u5)* = u u is the fifth central even moment

Typical values for eb are of the order 0.2, e, is of the order 0.02, and c1 is of the

order 0.01 [Bailard, 1981].

For equilibrium beaches (i,) = 0. Using Stokes second-order wave theory and

Longuet-Higgin's [1953] bottom drift model, the odd moments and the dimensionless

steady flow can be solved. The even moments are extrapolated from the figures presented

in Bailard [1981] along with details of the methodology. Once these terms are plugged

into (1.22), an explicit expression can be found for the beach slope at any depth given that

the wave climate is known.

More sophisticated models have been recently developed. Southgate and Nairn

[1993], for example, assume an offshore wave climate and then describe the localized

wave and current climate by using linear theory to find refraction, shoaling, and by using

theory presented by Battjes and Janssen [1973] to find wave energy dissipation. Once the

localized wave-current climate is known, the volumetric transport rate using the immersed

weight sediment transport is found [Nairn and Southgate, 1993]. Bailard's formulation is

preferred over Bagnold's.

The main models that use this general approach are reviewed by Roelvink and

Broker [1993]. These include the Nearshore Profile Model [Southgate and Nairn, 1993],



the UNIBEST model [Roelvink and Stive, 1993], and SEDITEL [Pechon, 1992]. Each of

these numerical models use the Energetics model.

Use of the Energetic's approach has well known weaknesses. Some of the more

obvious weaknesses have already been touched upon, such as whether or not there is any

physical basis for applying the suspended sediment transport equation to coastal

environments. Another obvious problem is that the constant and universal efficiency

factors are hard to quantify and have been shown to fluctuate with varying hydrodynamic

conditions [Nairn and Southgate, 1993]. Sensitivities to these parameters may retard

efforts to derive a model that could predict beach evolution over significant time frames.

In addition, more sophisticated models based on this approach are designed to describe the

dynamic behavior of coastal profiles. According to Roelvink and Broker [1993], it is

unclear as to whether these models could actually ever achieve an equilibrium beach

profile for a barred beach with constant boundary conditions. In addition to the reasons

just listed, there is also no threshold for sediment motion, limiting the use of the model to

strong wave action, nor is there a use of coupled wave-current theory. Indeed there are

waves and currents, but the same friction factor is applied to both. It is felt that the

energetics approach is too limiting.

Use of a traction model, such as Madsen and Grant [1976], as the basis of a

theoretical model to predict equilibrium beach profiles as well as predicting dynamic

profile changes may be more advantageous than the Energetics approach for several

reasons. First, there is no efficiency factor. Second, the mechanics of sediment transport

based on a traction model makes it possible to incorporate wave-current interaction and a



sediment movement threshold. Lastly, the physical reasoning behind using the Energietics

approach for coastal environments is questionable at best.

This thesis suggests the first steps of putting together such a model. Although the

theory behind this model is relatively straight forward, the time variation of waves and the

repetitive nature of the calculations make it necessary to use a computer to carry out the

calculations iteratively. Both the theory and the rudiments of the computer algorithm are

presented here.

1.3 Thesis Organization

The thesis is organized into two sections. The first section, chapters 2 and 3, deals

with bedload transport alone. The second chapter develops a theoretical bedload model

for sloping beds under both oscillatory and constant currents. Wave theories pertinent to

shallow water are also discussed. In the third chapter, equilibrium beach profiles are

generated using a computer algorithm based on the model developed in chapter 2. This

model is then compared to existing field data. This data is taken from Inman et al. [1993].

The next section, chapters 4 and 5, further refines the bedload-based equilibrium

beach profile model by adding suspended sediment transport within the surf zone.

Chapter four discusses suspended load theory and the undertow current. A new

theoretical model for predicting the structure of the undertow is presented and then used

with the suspended sediment concentration to predict an off-shore suspended load. In

chapter 5, the complete model is presented.



Chapter 2

2 Theory for Bedload Transport

In order for an equilibrium beach profile to exist, there must be a net sediment transport

rate of zero everywhere. However, due to the increasing nonlinear nature of waves as they

shoal, the wave peaks tend to become proportionally larger than the troughs (i.e.

I /,,,,xl>lm,,,,I). Since shear stress is related to bottom orbital velocity, which in turn is

related to surface profile, it is deduced that the orbital velocity and associated shear stress

under the crest are greater than the trough orbital velocity and shear stress. Since Meyer-

Peter and Muller [1948] empirically relate bedload to the difference between critical and

bottom shear stress, it follows that there would also be a net transport rate onshore. In

order to offset this trend, a slope is introduced. Since a greater force is necessary to push a

body up a slope than down, the increased effort should balance out the stronger shoreward

shear stress.

Although heuristically, one can see why a slope is necessary to balance the

onshore transport rate due to the nonlinear nature of the waves, it is also equally clear that

transport mechanisms could include both suspended load and bedload. However, we

maintain that suspended load outside the surf zone is relatively unimportant compared to



bedload and should be neglected altogether. The details of this argument are shown in

Appendix A. So if bedload is the dominating transport mechanism outside the surf zone,

a thorough investigation is warranted in which the immediate goal is to find an

equilibrium beach slope at each depth such that there is no net transport.

This chapter rederives the conceptual mechanics-based model for bedload

sediment transport process in steady and unsteady turbulent boundary layer flow as

presented by Madsen [1991]. This model, which parallels the empirical sediment

transport model proposed by Meyer-Peter and Muller, was derived for a non-sloping bed.

Here, a slope is introduced into the original model presented by Madsen.

2.1 Derivation of Bedload Equation

Drawing on a wealth of empirical data, Meyer-Peter and Muller suggests that bedload

transport is proportional to the shear stress raised to the 3/2 power. Madsen [1991]

verifies this empirical relationship by theoretically deriving an expression for bedload

transport on a flat bed. Following this derivation closely, one can modify Madsen's

expression to solve for bedload on a sloping bed. Madsen proposes that:

NFd = Tb - 'cr (2.1)

where N is the number of grains moving per unit bottom area, Fd is the drag force acting

on these moving grains, and the bottom and critical shear stresses are denoted by ',, and

rcr , respectively. Equation (2.1) can be rewritten as:

Nu,V, = uv (, ( cb -r) (2.2)

F,



to express bedload transport rate. The product Nu,-V, represents the sediment volume

transport per unit width perpendicular to the transport direction, with us being the

terminal sediment grain velocity, and V, representing the sediment volume of a moving

grain. The variables in (2.2) are derived for a sloped bed as follows.

For the drag force, Fd, a simple free body diagram of a sediment grain resting on a

sloped bed is drawn (see figure 1).

figure 1. Sediment Grain on Slope

The buoyant weight of the sediment is (p, - p)Vg . Therefore, the component parts of

the free body diagram are:

FN = normal force = (p, - p)V. g cos f

f = frictional force = FN tan 0

FD = gravity force = (p, - p)V, g sin P3

(2.3)

(2.4)

(2.5)



where p, and p are the sediment and fluid densities, 3 is the beach slope angle, and 0 is

the internal angle of friction, either static ( , ) , or kinetic (,k ). For steady state, the

balancing forces are calculated. If the acting force is pushing upwards, the balancing or

reacting force is:

F,P = (p, - p)V, g (tan 0 cos 3 + sin p) (2.6)

Likewise, if the force is pushing down, the reacting force is:

Fd,,wn = (p -p)Vg (tan # cos3 - sin p) (2.7)

Since wave action creates a shear stress that acts in both directions, the two equations are

simplified into one:

F, = (p, - p)V g (tan 0 cos 3 + sin p) (2.8)

For the remainder of this report, these two equations will be combined into one, with a (+)

sign signifying that the orbital velocity is in the shoreward direction (under the crest), a (-)

sign indicating the seaward direction (under the trough).

Again following Madsen's derivation closely, it can be shown that the critical

Shield's parameter associated with the initiation of motion on a sloped bed is:

2

Ycr U*cr = 0.052(tan 0, cos/3 + sin 3)
(s - 1)gd

(2.9)

where Pcr is the critical Shield's parameter, u. is the shear velocity, 0, the internal angle

of static friction, d the diameter of the sediment, s the specific weight of the grain, and g

gravity. Since the shear stress is expressed as u, = z/p, the critical shear stress is

simply:



Tcr = 0.052(s-1)pgd tan , (cos3 sin/3 )
tan ~,

For a flat horizontal bed, the critical shear stress is [Madsen, 1991],

'T cr = 0.052(s - 1)pgd tan 0,

Therefore, the critical shear stress for a sloping bed can be written as

(2.10)

(2.11)

(2.12)
'cr = z'cr (cos in + )

where l, is given from ( 2.11).

The terminal sediment velocity, u,, is also found for a sloped bed. Madsen

shows that the response time for a sediment accelerating from rest to terminal velocity is

negligible such that u, = u,, and that the terminal velocity of the sediment is related to

shear velocity

u,_ _ 8(u, - au,,cr) (2.13)

where a, in the particular case of a sloped bed, is

(2.14)2 tan #k cos 3 + sin3 tan k + tan p
tan O, cos + sin 3 tan , ± tan 3

Substituting equations (2.8) and (2.13) into equation (2.2), bedload is expressed as

(2.15)
q.,h = " ' tan (u. - au cr)

(s -1)pg cos P (tan k _ tan )

The critical shear stress is found from equation (2.10) or from the generalized Shields

diagram [Madsen and Grant, 1976] (figure 2). The values of 500 and 300 are used to
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Figure 2. Modified Shield's Diagram taken from Madsen and Grant [1976].



approximate the angles of internal friction, ., and k , respectively. These values are

rooted in theoretical calculations and confirmed by experimental work. If

Ycr = 0.052 tan 0, for a flat bed (2.9) and typical values of critical Shield's parameter are

Yc, 0.06 (figure 2), then ¢, -50 . Moreover, the ratio

a = tan k (2.16)

tan ,

must satisfy the limits 0 < a < 1. By taking an average value of 1/2 or a = 1/,2, it is not

unreasonable to assume thatk, _= 30. A comparison of sediment transport models with

King [1991] gives a similar value of k "

It should be noted at this point that the agreement of (2.15) with Meyer-Peter

Muller is excellent for horizontal bottoms [Madsen, 1991]. It is this agreement that allows

us to make the transition to a sloped bed with confidence. Moreover, theory outlined

here also agrees with the slope effects predicted by the Energetics approach to bedload

transport: a steeper slope reduces the onshore transport while increasing the offshore

transport. So at least qualitatively, there is agreement with the Energetics approach.

2.2 Wave Theory

The generalized equation for bedload transport on a bottom slope is complete.

However, the bottom shear stress, T,, needs to be evaluated. For wave motion over a

surface it is known that T, o I uI, and u, oc r7. Since r,, is dependent on the phase of



the wave, one must accurately describe the time-variation of 77, the surface profile. There

are various theoretical approximations that describe 7. As the wave shoals, it is expected

that the waves become increasingly long. That is to say, the water depth, h, becomes

much smaller than the characteristic horizontal wave length. This parameter, (hL), helps

define the shape of the wave as it shoals. Likewise, the amplitude of the wave relative to

the water depth (H/h) also influences the characteristics of the wave as it shoals. An

increasing wave amplitude/depth ratio increases the nonlinear nature of the wave. It

appears that a combination of these two parameters (H/h)(L/h)2 - (HL2/h 3) is critical in the

way one describes the behavior of a wave in shallow water [Svendsen, 1974]. When this

parameter, known as the Ursell number, U, is less than about 26, it is found that Stokes

theory (linear or second order) is valid. For Ursell Numbers greater than about 26,

Cnoidal theory is valid.

2.2.1 Stokes Theory:

Stokes theory is simply a superposition of differing harmonics. For a second order

Stokes wave, the first and second harmonics are superimposed. So for U < 26, Stokes

second order theory is used for which

7 (t) = 71 cos 0 + 72 cos 2 (2.17)

and,

uh (t) = U,,,, cos 0 + u 2 ,,,, cos 20 (2. 18)



where 0 is the phase of the wave, and ul b,,, and U2 bi are the first and second harmonic

maximum bottom orbital velocity given by

ao (2.19)
UIbm sinh kh

3 aO 1 (2.20)
u= -ka( )

4 sinh kh sinh3 kh

where k is the wave number, h the water depth, a the wave amplitude, and w the wave

radian frequency. The first and second harmonic bottom shear stress are now found.

By adopting the eddy viscosity model v, = Kmlmz , where v, is the eddy viscosity,

K is von Karman's constant, U*.m is based on the maximum first harmonic bottom shear,

and z is the vertical distance from the bottom, the first harmonic shear stress is calculated

using the principles laid out in Madsen [1994] for waves on a flat bottom surface. Simply

stated

1 2 (2.21)
Im 2 w Ulhm'

The friction factor, fl, relating the bottom orbital velocity to the shear stress, is found as

proposed by Madsen [1994] and the derivation is briefly outlined as follows.

The "exact" solution to the turbulent boundary layer problem is given by

Sker 
2 + ikei2 i(2.22)

ker 2 , + ikei2 l,, J



k
where = z/l; z,,1 = z,/ l; I= iK,,,/O; uL = ulb - UlbmCOSWt as D o. Z,,

30

and kN is the equivalent Nikuradse sand grain roughness of the bottom. We also define the

shear stress as

S= [pvt (9ul /9z)]2 0 . (2.23)

We take the partial derivative of (2.22) with respect to z and incorporate the integrand into

(2.23). Assuming that " is small, ker and kei can be expressed as their asymptotic

expansion:

ker 2j + ikei2 = - In -y - i--
2 4

where y is the Euler constant, so that the partial derivative of (2.22) is simply

(2.24)

(2.25)+u,

1  1

az 2z(ker2 + ikei2 ),,

The first harmonic bottom shear is, once we introduce the proposed eddy viscosity model

and rearrange the denominator,

TI = PVt

(ker2 2

where tan 8
Skei2 j,,,
ker 2V4',

1 =

2[(ker 2.

picKU . u ei-o (2.26)
luIb ei -

+(kei2 F')]

By introducing (2.21) into (2.26) we write

(2.27)P J f 1 /2 2 eor-o
-)2 +(kei2e

,,Y+ (kei2 F() Y2



By considering the maximum amplitude of (2.27), and again introducing (2.21) into the

left-hand side, it is clear that the friction factor can be solved as:

Se (2.28)
- fer 2 2/2 + kei2 )2 2
IC 2

As stated earlier, for small arguments, Kelvin functions can be approximated by their

asymptotic expansion, which is a logarithmic function. Hence, for small values of (,,, we

introduce the definition of (,,

/= = o Zo ZO kN

oK *Im /, KUIbm flw/2 30AhmtK f /2

into (2.28) and then approximate (2.28) as

1 1 A ,,, (2.29)
+ log, - = log ,0 i- 0.17

4j 4Vf kN

where Ab,n is the maximum bottom excursion amplitude and is equal to Ulhm /w. This

equation, (2.29), can likewise be approximated by an explicit expression. These explicit

formulas are used in the program and detailed later. Once the friction factor is known,

then the first harmonic shear stress (2.21) can be solved.

We now solve the second harmonic friction factor and shear stress. The boundary

layer shear stress for the second harmonic is defined as

U 2 =u 2  (2.30)
T2  t lmZ

and the exact solution to the turbulent boundary layer for the second harmonic velocity is

similar to (2.22):



u Re {[1

where we denote 12 = ku,,, /20

ker 2j + ikei2 1 i2a, (2.

ker 2 2 + ikei2 o 2 " 2bm

and 2 = z/1 2 so that 12 = 1/2 . Following the same

31)

procedure as we did for the first harmonic (equations (2.24) to (2.26)), we arrive at the

following expression:

(2.32)
PKU*Im i2cot-

2 *m I 2bm e i2ox-

2[(ker2 ,,2 + (kei2 ,,2 Y
]

The maximum value of (2.32) can be rewritten as

(2.33)

SP KU*lnU lm U2bm

2m 4 F,21 2 1

2[(ker '2 +(kei2 U2 
2 lbm

The first bracketed term in (2.33) is identical to the maximum of (2.26) except for the fact

that ',,2 = 2 ,. Since this difference is essentially buried within a log term and not

expected to be significant (again, we note that Kelvin functions with small arguments can

be approximated with a log function), we can assume then that f 2w - f1w and therefore

(2.33) can be approximated as

(2.34)
2m r l Ibim)ulbm

By substituting equation (2.19) and (2.20) into (2.34) we develop a direct relationship

between the first and second harmonic maximum bottom shear stress:

(2.35)T2,, 3 ak

,,, 4 sinh kh



Introducing these results into equation (2.18), we arrive at the following equation

describing the time variation of the bottom shear:

b (t) = ,, cos + Z 2 m cos20 (2.36)

Hence, it then follows that the time varying bottom shear stress can be written as

1 (2.37)
Th (t) flwPUlhmUh (t)

2

where ub(t) is given by (2.18). The form of expression (2.37) becomes important when

Cnoidal theory is applied to the problem.

2.2.2 Cnoidal Theory:

For U > 26, Cnoidal wave theory is applied. The surface profile variation is

77 =  min +Hcn2(0,m) (2.38)

where cn2 is the square of the Jacobian Elliptic cosine, fmin is the location of the trough

below still water level, H is the wave height, m is the parameter associated with the

Jacobian Elliptic function, and 0 is the phase angle [Svendsen, 1974]. The time varying

bottom orbital velocity is approximated as the depth averaged velocity

ub C ( 7 (2.39)

h+r)

where h is the water depth, and c is the phase velocity defined as the wave length divided

by the wave period. The wave length is a function of wave height, wave period, and water



depth. Using an analogous expression to (2.37), the time varying bottom orbital velocity

is expressed as

1 (2.40)
b (t) = I lbmUb (t)

The "first harmonic" orbital velocity is defined

Ulbm = (Ubmax -Ubmin)/
2  (2.41)

where

9ta (2.42)
Ub max = C( max (2.42)

h+ fmax

and

U m =( min (2.43)
umin min

h + 77mi n

The analysis is complete. For both Cnoidal and Stokes theory, expressions for the

bottom shear stress have been derived.

2.2.3 Friction Factor Determination:

Section 2.2.1 derived exact expressions for the friction factor. Here, we present

the explicit equations used to approximate the friction factor. If one assumes rough

turbulent flow, the wave friction factor is calculated from one of the following expressions

from Madsen [1994]:

f,. = exp{7.02(A,,,/kN)-0.078 -8.82} for 0.2 < (Ab,,/kN) <100 (2.44)



fAw = exp{5.61(Abm/k,) - ". 9 -7.30} for 102 < (Abm /k,) < 10
4  (2.45)

f,, = exp{5.50(Abm ,,/k, ) - 20 - 7.021 for 10' < (Abm /kN) < 106 (2.46)

where kN is the Nikuradse roughness factor and is approximated by the diameter of the

sand grain. Abn1 is the excursion amplitude and is estimated to be

Ahm = Ulbm (2.47)

o)

where Ulb,,, is found from either (2.19) or (2.41). For cases where it is valid, (2.46) is

preferred over (2.45). For values of (Ab,,/kN)>10 6, we revert back to solving the theoretical

equation presented in section 2.2.1 (2.29).

The assumption of rough turbulent flow is checked. For values of k,u*~I,/v < 3.3,

(v is the kinematic viscosity) the flow is smooth turbulent and the friction factor is

recalculated.

f,, =0.25exp{7.02( RE/50) -.0 78 -8.82} for 0.2 < RE/50 < 100 (2.48)

f,, = 0.25expI5.61(VRE/k, )--' 09 _ 7.301 for 102 < RE/50 < 104  (2.49)

f, = 0.25exp{5.50( RE-/50) - '20 -7.02} for 103 < fRE/50 < 106  (2.50)

where RE is the Reynolds number:

RE = u2m /ov (2.51)

Equations (2.48) through (2.50) are variations of the equations (2.44) through (2.47).

They are derived by realizing that the roughness for smooth turbulent flow is not based on



sediment characteristics but rather on the bottom shear velocity and viscosity of the water.

Defining kN = 3.3v / u.,,, and inserting this definition into equation (2.29) it is possible to

show after some algebraic manipulation that

+ log10  = log o

4 V4o 4 to

(2.52)RE _ 0.17
50

So by analogy, for rough turbulent conditions if (2.29) can be approximated by equations

(2.44) - (2.47), for smooth turbulent the above equation can be approximated by (2.48) -

(2.50).

2.3 The Model

In order to make use of the transport model, the critical bottom shear stress on a

flat bed, r'cr needs to be considered.

The critical shear stress is found by using the modified Shield's diagram, figure 2

[Madsen and Grant, 1976]. First, S* is calculated by

d (2.5S =-d (s - 1)gd (2.5
4v

cr, is then estimated from figure 2. From this, Tr', is calculated (see (2.9)).

r'cr = (s - 1)pgdWI, (2.5,

3)

4)

Equation (2.15) is expanded to its full form:The analysis is complete.



sh= -l)p32gcosp tan + tanf
[(Stan 1 (2.55)

t  - cr(cOS  -n sinf (t) r(C Sin

b(0Tr(CO tan , tan

For any given depth, bed slope, and wave condition described by Stokes or

Cnoidal theories, the bedload can be calculated from (2.55). Its application is simple.

Recall that when the bottom orbital velocity is upslope (shorewards), then a (+) sign is

used in place of the (±) sign, and when the orbital velocity is downslope (seaward), a (-)

sign is used instead (see equation (2.8)). Therefore, for z,(t)> 0, the (+) signs are used,

and for zb(t) < 0, the (-) signs are used. Also, for conditions such that Ir,(t)I < r,, then

q,b=O. Equation (2.54) calculates the critical shear stress for a flat bed. The time varying

shear stress is calculated from equation (2.37) using Stokes or Cnoidal theory.

Shoaling of the wave is handled incrementally. The program starts at a depth in

which Stokes theory is valid and at depths in which one would expect little sediment

motion. From this point, the program attempts to find an angle, /, for which the net

transport rate is zero. Once the equilibrium angle has been found, the program then

decreases the depth by an arbitrary increment. This increment is constant and is used to

continually decrease the water depth until the water depth is close to zero. Hence, at each

depth, an equilibrium angle is obtained.

When Stokes theory is valid, linear theory is used to shoal the wave. While this

shoaling process is relatively straight forward, cnoidal wave theory is somewhat more

complex. For that reason, a simplified table of cnoidal wave parameters [Svendsen, 1974]

was added to the program in order to facilitate shoaling of the wave for Ursell numbers



greater than 26. At each depth where cnoidal theory is valid, the program finds the wave

length and height and the resulting Ursell number by using this table. The wave

characteristics and bottom orbital velocities and shear stresses were calculated, and the

excursion amplitude of the wave was estimated.

It is worth mentioning at this point how one goes about calculating the free surface

for cnoidal waves. The Jacobian Elliptic cosine, cn, used in (2.38) is estimated from the

"Handbook of Mathematical Functions" [Abramowitz and Stegun, ed. 1972]:

1 (2.56)
cn = -- 0.25ml(sinh 0 cosh 0 - 0) tanh 0 / cosh 0

cosh 0

where ml is a parameter found from the table in Svendsen. Since the equation is only

relevant for ranges 0-ir, any phase greater than 7r is translated into its related phase,

Oa = (2r -,,actua,). Moreover, 0 is scaled by K, another parameter from Svendsen, so 0

is again further manipulated to account for differing K values: Ou,,e,, = K8, /r. Finally, we

can calculate cn2

So starting with a phase angle 0 = 0, the free surface is calculated allowing us to

calculate the bottom orbital velocity using (2.39). Next, the wave friction factor is

calculated using the explicit equations as described in section 2.2.3. The bottom shear

stress can now be calculated for any phase of the wave.

Once these parameters have been calculated for a given depth the iterative process

of finding P in which qsb,net = 0 begins. P is initially set to zero. The wave is then split

up into differential parts so that the transport rate can be estimated for each phase of the

wave period. The transport rate for each phase is calculated and then summed up to



produce a total transport rate. For conditions in which the net transport is onshore, the

bed slope angle in increased, and vice versa.



Chapter

Model Application and Results

In order to find the average net transport over any given period of time, it is necessary to

examine both the shoreward and seaward transport. By setting ,, (t) = IT,, (t) , and

looking at the transport in either direction separately, one arrives at the average transport

rate over one period at any given depth.

(3.1)qsh,net = qsh,shoreward - qsh,seaward

In order for =qsh,net = 0 at this depth and wave condition, there must exist an equilibrium

slope that allows for a balancing of reacting forces. Using a simple computer algorithm,

this angle can be calculated at each depth. From this information an equilibrium beach

profile can then be pieced together.



This section briefly describes the computer algorithm used to carry out the

equilibrium beach calculations. Some of this has already been discussed but will be

reintroduced here for clarity.

3.1 Cnoidal vs. Stokes Theories

Calculating the depth at which the Ursell Number is approximately 26 (the point at

which Stokes theory is replaced by Cnoidal theory), it becomes evident that Stokes theory,

for the most part, is only valid at depths greater than 6 to 8 meters (table 1).

Table 1. Depths at which Cnoidal vs Stokes are valid. This table illustrates the
approximate depths in which the Ursell Number is approximately 26 for varying wave
heights and wave periods. For depth greater than those shown, Stokes theory is
considered valid. For depths less than those shown, Cnoidal theory is valid

Deepwater Wave Heights
Wave Period

1.0 m 1.5 m 2.0 m

7s 4.0 m 4.8 m 5.5 m

10 s 6.5 m 7.0 m 8.6 m

13 s 8.5 m 9.5 m 11.2 m

The majority of empirical data used to support h = Ax' was either confined to the

surf zone (around 3 meters depth) or continued to slightly deeper depths just outside the

surf zone. For this reason, it was decided not to include Stokes theory in the algorithm

other than to determine at which depth U = 26. This simplified programming, and

eradicated any discrepancy that may have arisen when theories were switched.



3.2 The Algorithm

Input values include kinetic angle of friction, static angle of friction, wave period

(seconds), phase angle, diameter of sediment (dso), and the deep water wave height. All

length scales are in meters and all time scales in seconds.

The first step calculates the critical shear stress. The model simplifies the

modified Shields diagram (figure 2) into four zones and calculates the critical shear stress

by first calculating S* using (2.53), estimating Shields critical parameter and then using

(2.54). The deep water wave length is found using linear theory:

L, = T 2  (3.2)
27r

The wave is then shoaled. Starting at a depth of 1/2 the deepwater wave length,

the depth is decreased by an arbitrary increment. For Ursell Numbers < 26, linear theory

is used to shoal the wave. Once the Ursell number is 26 or greater, Cnoidal theory is used.

Shoaling using Cnoidal theory is simplified by using the table compiled by Svendsen

[1974] . Once the switch is made from Stokes to Cnoidal, the equilibrium slope for which

q,ne, = 0 is calculated at each depth until the wave breaks using the breaking criterion

H/h = 0.78. After breaking, the program continues with Cnoidal theory except it assumes

that the wave height is now given by a constant ratio of H = 0. 78h.

At each depth the program determines an angle, 13, for which the net transport rate

is zero. This is accomplished by using nested iterative loops. Generally, this is done by

setting P to zero and integrating the bedload transport rate over one wave period. If the



transport rate is onshore, then P is increased and vice versa. More specifically, the

computer program breaks the wave period into an arbitrary number of discrete phases.

Some experimentation was performed at this point to get the best resolution for the least

amount of CPU used. Typical values ranged from 20 to 40 discrete phases per period and,

therefore, 40 is used in all computations. The bottom orbital velocity at each phase is

approximated by (2.39) by calculating the free surface at that phase (2.38). The shear

stress is then calculated from (2.40) using equations (2.41) through (2.43).

The bottom shear stress is then used to calculate the "instantaneous" bedload

transport. Equation (2.55) is used for this purpose. If (77min + (max - min) CIn2 ) > 0, then

the transport direction is shoreward. Otherwise, it is seaward. The appropriate signs in

(2.55) are used. Motion occurs when

h(t), >,cr(COS3 + sin/3) (3.3)
tan ,

otherwise, it is assumed that no transport is taking place during that particular wave phase.

The transport rate is then calculated from the governing equation. The phase

angle, 0, is then incrementally increased and the whole process repeated. 0 is increased

from 0 to 2 7. The net transport is found by summing the component parts. If the net

transport rate is onshore, P is increased. Otherwise it is decreased. Convergence is

reached when the changes in the slope resulting from finding an absolute zero transport

rate are imperceptible. The convergence criteria used was AP 10-4 .

Once p is found, it is translated into a segment of the beach profile. The

"active" P is averaged with the P at one incremental depth greater to find the average



slope, fJ, over the depth increment. The distance is calculated by dividing the depth

increment by tan(f).

3.3 Results

A series of runs were made with a variety of combinations of wave heights, wave

periods, and beach sediment diameter. Profiles were calculated and plotted. Each profile,

from the point at which U = 26 to a depth close to zero, was subjected to a curve fitting of

the form h = Ax"', with the water level at the origin of the depth axis. Selected results

are shown in Tables 2, 3 and 4. The actual profiles generated by the computer

corresponding to the tables are shown in figure 3, 5, and 7, respectively. Each of these

profiles are likewise compared to a profile using the best fit equation h = Ax"' and are

shown in separate figures (4, 6, 8) for clarity.

Table 2. Profiles with Sediment Variation, H, = Im, T = 10 s. The parameters A and mn
are used in the profile equation h = Ax'n

Sediment Diameter A m

d = 0.1 mm 0.93 0.417

d = 0.5 mm 0.942 0.429

d = 1.0 mm 0.974 0.452

These results suggest that (1) as diameter of the sediment increases, the slope of

the beach increases (table 2 and figure 3); (2) with increasing wave height there is a

corresponding decrease in beach slope (table 3 and figure 5); and (3) longer waves give



Table 3. Profiles with Deepwater Waveheight Variation, d = 0.3 mm, T = 10 s. The
parameters A and m are used in the profile equation h = Ax"'

Deepwater Wave Height A m

Ho = 0.5 m 0.860 0.47

Ho = 1.0 m 0.967 0.41

Ho = 1.5 m 1.4 0.30

rise to steeper slopes (table 4 and figure 7). In other words, higher waves acting on a

slope previously formed by smaller waves will create a predominant offshore transport

rate, thus eroding the beach. Likewise, longer waves on a shallower beach cause

shoreward transport and will tend to build up the beach head. These results parallel

documented trends [Dean, 1994].

Table 4. Profiles with Wave Period Period Variation, H,, = 1 m, d = 0.3 mm. The
parameters A and m are used in the profile equation h = Ax"'

Wave Period A m

T =7 s 0.86 0.31

T = 10 s 0.967 0.41

T = 13 s 1.14 0.46

It should be noted that there is no dramatic change of slope at the point of

breaking, a change one would expect to find in nature. However, it should be pointed out

that figure 5 shows a slight change in slope for the largest wave height (the solid line)

right at the point of breaking (around 2.3 m depth of water), but it is hardly noticeable.



Profile Variation with Different Sediment Diameters: Ho=1m, T=10s
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Profile Variation with Different Wave Heights: d=0.3mm, T=10s
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Profile Variation with Different Sediment Diameters: d=0.3mm, T=10s
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Profile Variation with Different Time Period: d=0.3mm, Ho=1 m
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Profile Variation with Different Sediment Diameters: Ho=1m, d=0.3mm
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Other profiles have the same subtle change in slope at the point of breaking but are even

harder to notice. This is because the program terminates shortly after the point of

breaking for smaller wave heights (a 1 meter high deep-water wave breaks in about 1.5 to

2 meters depth).

This brings up a point concerning some limitations of the model proposed. The

program could not be run to depth of zero. As the depth approached around 50 cm, the

nonlinear nature of the wave became so great that the bottom shear stress did not exceed

critical under the trough of the wave and an equilibrium slope could not be found.

3.4 Discussion

Although the results do not seem to match h = Ax 2 /3 , there is a correlation to

Inman et al.'s [1993] curvefitting results for the seaward segment.

3.4.1 Inman et al. Curve Fitting Methodology:

As previously mentioned, Inman et al. took data from three major locations

(California, North Carolina, and the Nile delta), split all data profiles into two sections, the

bar-berm component and the shorerise component, and applied a curvefitting model of the

form h oc Ax" to each section. The MSL was used as an origin for the shore-rise (or

seaward) component whereas the berm crest was used as the origin for the surf zone. The

curve fitting methodology is shown in figure 9.

It is found that the shorerise's average parameters are A = 1.06 and min 0.36. The

surf zone has average parameters of A_ 0.78 and in_ 0.41. The depth in which the switch
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is made, Z3, is approximately 2 - 4 meters below MSL. This point is referred to as the

breakpoint-bar to signify that it is the bar commonly at or near the breakpoint of the wave.

ZI is approximately 3 - 4 meters. Other parameters in the definition sketch are irrelevant

to this discussion.

3.4.2 Comparison of Theoretical Model to Inman et al. Curves:

The model suggested here produces similar results to Inman et al. with a 8 to 10

second wave and a deepwater height of approximately 1 to 1.5 meters for the shorerise

component (see tables 3 and 4) . These similarities are illustrated in figure 10.

Unfortunately, little information about the wave climate at each data site used in Inman et

al.'s curvefitting procedures was reported. What is known is that there is considerable

difference in wave climate between each of the three major areas. California's wave

climate is characterized by near-breaking wave heights of 1 H, (m) 6 and peak spectral

periods of 5 T, (s) 20; North Carolina, 1 H, (m) 5 and 5 < T,, (s)_ 15 ; and the Nile

delta, 0.5 < H, (m) 3 and 3 T,, (s) 8 [Inman et al., 1993]. The average sediment size

for all sites in 4 m depth is reported to be 0.1 mm to 0.3 mm. For deeper water, the

sediment size is around 0.1 mm.

Data from Inman et al. show that the difference between the Nile and North

Carolina profiles is significant. Averages for the North Carolina shorerise component is

A _ 1.1 and m_ 0.30, but the Nile's shorerise parameters are A _ 0.43 and in _ 0.48.

Assuming that the Nile is subjected to smaller waves with lower periods, it is seen that

table 3 shows similar trends in beach parameters. In fact, assuming that the shores of
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North Carolina are subjected to waves with a significant deepwater height of 1.3 meters

and peak spectral periods of 9 seconds and beaches with a sediment diameters of 0.2 mm,

the model after being run with these particular wave characteristics indicates parameter

values of A _ 1.1 and m_ 0.33. Although North Carolina may have typical sediment

diameters less than or greater than 0.2 mm there is little change in profile due to variations

of sediment size, as seen in figure 3. These results closely parallel the empirical data.

Likewise, assuming that the Nile delta coast has a wave climate of significant deepwater

heights of 0.4 meter and peak spectral periods of 6 seconds and a sediment diameter of

0.2mm, the parameter values found by the model after being run with these characteristics

are A _ 0.57 and m= 0.46 wave. Again, the results parallel those found in the field.

Inman et al. also propose that there are two main characteristic shapes: the

summer profile and the winter profile, yet it is not explicitly stated what the change in the

overall wave pattern is during seasonal changes. One could surmise that the winter brings

strong local winds, and hence higher waves and perhaps slightly shorter wave periods.

Table 5 illustrates findings from Inman et al. for seasonal variations. Table 6 proposes

some typical winter conditions and their respective shapes based on the model presented

here. It is assumed that the ambient wave condition would be much rougher in the winter

than during the summer months and therefore to simulate this, it is assumed that the wave

heights, but not necessarily the period, would be larger. It is assumed that the wave height

is of the order 1.5 m for winter conditions, while for summer it is assumed that the wave

height would be around 1.0 m. The period was kept constant at 10s.



Results from Table 5 and Table 6 indicate that the model captures general beach

profile shifts with changing ambient wave characteristics. However, the model does not

succeed at capturing the magnitude of change in the coefficient A. By studying the

Table 5. Inman et al. Profiles with Seasonal Variation for the shorerise beach segment.
Information concerning changes in wave climate between the seasons was minimal. The
sediment diameter was assumed to be d = 0.2 mm.

A m
Winter 1.52 0.31

Summer 0.73 0.42

Table 6. Modeled Seasonal Variation. The wave conditions on the top row are assumed
to approximate the winter months, whereas the bottom row parameters attempt to
approximate ambient summer wave characteristics. The sediment diameter was assumed
to be d = 0.2 mm

A m

T=10s, H=1.5m 1.4 0.30

T=10s, H=1.Om 0.967 0.41

general trends of the model by perusing Tables 2 to 6, it is seen that shorter wave periods

decrease the coefficient A, but slight increases in wave heights causes A to dramatically

climb. The exponent m, on the other hand, decreases with increasing wave height, but

increases for increasing wave period by approximately the same ratio. In order to better

match results illustrated in Table 5, it would appear that wave heights for the winter

should be increased while the proposed wave period for the summer should be decreased.
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Increases in the wave height for winter months may be justifiable. However, it is unclear

at this point whether or not the wave period for the summer is actually shorter than the

wave period during winter months.

Too little is known of the sediment characteristics in any of individual profiles

studied to permit comparison of sediment size with the changes in parameters noted here.

The general trend noticed in figure 3 seems indicative of what is actually observed in the

field [Inman et al., 1993; Swart, 1991]. Unfortunately, this is all that can be said at

present about the impact of sediment size on profile variations.

3.5 Summary of Bedload Model

Using a simple theoretical model previously shown effective in applications for

bedload transport over a flat bed under steady and unsteady currents, it is demonstrated

that oscillatory flow generated by nonlinear wave action over a bed with a zero net

transport rate creates a beach shape of the form h = Ax'. It is assumed that the main

mode of sediment transport is bedload and that there is only one shear generating force,

that of wave action. Cnoidal theory is used to describe wave surface profiles and resultant

orbital velocities. Bottom shear is related to the bottom orbital velocity squared multiplied

by a resultant friction factor. Bedload is proportional to shear stress raised to the 3/2

power. At each depth, an equilibrium angle is calculated by adjusting the bed angle such

that the time averaged bedload over one wave period is zero. Once the wave breaks, the

theoretical approach changes only in the sense that wave height is dampened linearly with

depth. By averaging adjacent angles over incremental depths, a beach shape is drawn.

Profiles are generated from a depth in which the Ursell Number, denoted as U = HL2/3 ,
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equals 26 to a depth close to zero. Using best fit curves to describe theoretical beaches

generated under varying wave conditions and sediment characteristics and, comparing

these with empirical studies, indicate a strong correlation between empirical models used

to describe the beach segment outside the breaker zone.

Inman et al. proposes that beach profiles are best described not by a single curve

fitting model, but rather by two parabolic curves. It is claimed that transport mechanisms

within the breaker zone (bar-berm) are different from the offshore (shorerise) segment.

Results obtained here concur. It is seen that theoretical profiles match closely the shape of

the offshore segment. Inman et al. reports that A = O(1) and m = 0.4. Results obtained

here suggest similar parameters. Variability in these parameters can be attributed to

changes in wave conditions and sediment characteristics. Empirically, trends in the

parameters indicate smaller m during winter, as well as steeper slopes with increasing

grain diameter. Results obtained here parallel these findings.

Although the results match empirical data offshore, it is clear that once the wave

breaks the model's effectiveness is severely limited. This is demonstrated quite distinctly

in figure 10. The empirical curve fitting model for the shorerise beach segment, as

suggested by Inman et al. is approximated very well by assuming some general wave

conditions with a sediment diameter of 0.2 mm and then running these through the

proposed model. However, Inman et al. suggests two separate curve fitting methodologies

to account for the change in the hydrodynamics brought on by breaking. As figure 10

clearly illustrates, at the point of breaking our model does not radically change slopes to

follow the bar-berm curvefitting component. In fact, our model does not deviate at all

from the offshore curve-fitting line. Hence, we capture the key elements of the shore-rise
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sediment transport processes and predict the equilibrium beach profile well for the region

offshore of the breakerline, but fall far short within the surf zone.

It is suggested that adjustments are needed to account for changes in wave

characteristics as well as the appearance of near-shore currents associated with breaking

waves. In order to improve predictions within the surf zone, an undertow is added. This,

coupled with increased turbulent kinetic energy and hence more suspended sediment, will

cause greater offshore transport which will then presumably decrease the bed slope at the

point of breaking. The next chapters further refines the model along these lines.



Chapter 4

4 Suspended Load and the Undertow

The surf zone, hydrodynamically, is quite different from the area outside the surf zone

because of the breaking wave action. Not only will a strong undertow result in order to

compensate the shoreward mass transport, but there will also be increased turbulence,

increased near surface shear due to the roller affect, a significant amount of energy

dissipation and hence a drop in wave height, and a transformation of wave form. The

amount of energy dissipated, or the increased surface shear, is dependent on the type of

breaking wave. This analysis assumes a roller-type breaker.

The increased turbulence in the surf zone generates the necessary energy to

suspend a significant amount of sediment. Once suspended, the currents often associated

with breaking waves (the undertow and longshore currents) can then transport the

sediment more readily. Hence, suspended sediment within the surf zone becomes

increasingly important, perhaps even dominating the bedload transport. It is therefore



imperative to include suspended transport into our model. For the purpose of modeling

cross-shore suspended load, it is believed that the dominant features are wave-induced

suspended sediment with an undertow current as the transport mechanism. Once the

sediment concentration profile and the undertow velocity profile is found, the suspended

load can be found by integrating the coupled suspended concentration and cross-shore

velocity field:

(4.1)
q, = (CU)dz

Z

where ZR is defined as the point near the bed below which, sediment transport is

considered to be bedload, and above, sediment transport is considered to be suspended

load. 77 is the free surface.

4.1 Suspended Sediment Distribution

The governing equation for the distribution of suspended sediment in the water column is

the advective diffusion equation.

ac -a -a c (4.2)
at (wc) v = a

where wf is the fall velocity, v, is the sediment diffusion coefficient and c is the volumetric

concentration of suspended sediment. We assume a constant sediment size for which wVr is

constant and where the sediment diffusion coefficient can be approximated by the

turbulent eddy viscosity. Equation (4.2) is split into two equations, one for a constant



concentration, the other a time-varying, wave-associated concentration. This is

accomplished by letting c = 5 + c,,. The time-invariant concentration distribution is:

SjWf _+Vt a) =0 (4.3)
z(w )+ v =0

The sediment fall velocity, wt, is simply estimated using the Grant-Madsen [1976] graph

relating fall velocity and sediment-fluid parameter S. (figure 11). The boundary

conditions specified for this governing equations are as follows: 1) no sediment is

transported through the surface, c -- 0 as z -> o, and 2) a reference concentration, CR, is

specified at a reference height above the bottom, ZR. The reference height is given as

proportional to sediment diameter. Here we use the value of ZR suggested by Madsen et

al. [1993]:

ZR = 7d (4.4)

The reference concentration, theoretically, is considered to be proportional to the bedload.

According to Einstien [1950], this can be expressed as

CRC q,, (4.5)

where qsb is the bedload and u, is the sediment velocity. It has been shown in the second

chapter (2.13) that u, = 8(u. -au,,cr), and from equation (2.15), stated here again,

+ 8(rb I - cr) (4.6)
qs, = (u, - u,,, )

(s - 1)pg cos P (tan k + tan 3)

we derive an expresion for CR.
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CR = HIcr) (4.7)

ZRpg(s - 1)(tanpk p tan 13)

where y is the resuspension parameter and is set to y = 10-2 as detailed in Appendix A.

The time-average reference concentration is then

Y(ktb (t) -' cr) (4.8)

SZRpg(s - 1)(tanpk ± tan 1)

Equation (4.8) is calculated in much the same way bedload was calculated in

section 2.3. A single wave period is broken down into discrete temporal phases. For each

phase, the bottom shear stress is calculated using equation (2.40). The critical shear stress

is calculated by (2.12). If t, (t)l < Zr, then CR = 0. Otherwise CR is calculated using

(4.7). Recall that for shoreward velocities, the positive sign in the denominator is used,

while for seaward velocities, the negative sign is used. Note that while it is possible to get

a negative (offshore) bedload transport, the reference concentration calculated by (4.7) is

always positive. The reference concentrations calculated at each phase are then summed

up and divided by the number of discrete phases specified. This is our calculated CR.

In order to solve the governing equation (4.3) more information is needed

concerning the hydrodynamics within the surf zone, namely, the fluid eddy viscosity.

Moreover, since we are looking for suspended sediment transport, a detailed description of

the velocity field is also needed in order to solve equation (4.1).



4.2 The Undertow

The undertow is a phenomena that arises due to the local mismatch at each point in

the water column between the radiation stress gradient and set-up induced pressure

gradient. In order for a local balance to exist, a turbulent shear stress is introduced. This

shear is generated by what is commonly known as the undertow.

4.2.1 General Remarks

Graphically, the undertow phenomenon is illustrated by figure 12. The depth

integrated, time-averaged momentum equation is in balance. That is to say, the change in

the radiation stress S. in the shore-normal direction is balanced by the setup gradient and

bottom shear. However, a local imbalance exists. This is illustrated in figure 13. It is

here that a local turbulent shear stress in the vertical must exist such that the horizontal

Figure 12. A graphical representation of the undertow within the surf zone.



time-averaged momemtum equation balances both over the depth and at each localized

point in the vertical.

Many attempts have recently been made to come up with a simple analytical

solution in order to predict the undertow. The present undertow model is in all essential

details similar to existing undertow models, except for its treatment of the bottom

boundary condition. This model assumes a value of the bottom boundary shear-stress

which is then used in conjunction with the Grant-Madsen [1986] wave-current interaction

model to predict the undertow velocity at the outer edge of the wave boundary layer. This

bottom velocity is then used as the bottom boundary condition necessary to solve for the

undertow profile in the interior of the fluid following established procedures. A valid

"qcr

/ MWS

'77 tr

I .-'-L' d g 6b /bx

Figure 13. Force balance in the surf zone demonstrating the local imbalance of
Forces along the vertical.

solution is obtained when the assumed average bottom shear stress leads to a prediction of

zero net flow in the shore normal direction.



4.2.2 Theoretical Formulation

The time-averaged horizontal momentum equation as presented by Stive and Wind

[1982] is

_ +-2 g =uw (4.9)
- (2 -2+g + -= 0
ax ax az

u w can be broken down to an organized wave component and a turbulent fluctuation

component, uw = iHi + u'w'. Within in the surf zone, it is assumed that the organized

wave motion is relatively small compared to the turbulent contributions, ii << u'w'.

The dominant term is simply a turbulent Reynolds stress, and is related to a horizontal

shear using an eddy viscosity concept:

au'w' 1 at (4.10)

@z p az

Since -= pv, (z) ,where v, (z) is the turbulent eddy viscosity, the horizontal time-
averaged momentum equation can then be expanded to

averaged momentum equation can then be expanded to

S(u - )+
ax

(4.11)
g-= - v, (z)

ax z aJz

It is observed that, generally, the local imbalance between the momentum flux and

the setup is constant in the vertical at any particular depth in the surf zone [Stive and

Wind, 1986]. Hence we can say that the term 2 - 2 + g?- is only a function of x. We

therefore simplify (4.11) by replacing these terms by a single variable, R:



(4.12)DR D Z au
ax 3V (z)

x -z)
(4.12) is only valid below the trough level, d. Integrating this equation with respect to z,

we get

U(z) = R z dz
ax v,

(4.13)
Vdz
vt

and since it has been proposed that v, (z) can be approximated fairly well as a constant in

depth [Stive and Wind, 1986], the integrals in (4.13) can be solved to give:

1 (4.14)
U(y) -ay 2 + Vy+ k

2

where y = z+h (where h is the still water depth), Vt and k are integration constants (note

1 dR a__that ' = v,y), and a - which includes the unknown setup term . This leaves
v, dx ax

us with three unknowns.

In order to solve for the two integration constants, V/ and A, two boundary

conditions must be specified. The first is that the volume of the return flow must equal

the amount transported shorewards due to mass transport.

(4.15)d

U-dt =f U (y)dy

where dt is the height of the trough above bottom. U,, is the mean velocity of the return

flow. By inserting (4.14) into (4.15), it can be shown that

6 2
(4.16)



The second boundary condition is satisfied by specifying a shear stress at the trough depth.

If we differentiate (4.14) with respect to y and then multiply the result by the density and

eddy viscosity, the result is

dU (4.17)
pv, = pv,ay + pv, t

dy

dU
For y = d,, the shear at the trough level, pv, = z,,, is found.

dy

T,, = pv, (ad, + v) (4.18)

At y = 0, we know that T = Tc , the current bottom shear stress. Therefore, we can modify

(4.18) to

t,, = pv,ad, +TC  (4.19)

By using these three equations, (4.16), (4.18), and (4.19), and inserting them into (4.14),

the general equation describing the undertow can be written in the following form:

y 2  dt2  d, - (4.20)
U =+ i +U,,

2 6 p v, 2

It is noted at this point that (4.20) is derived from the local force imbalances within

the vertical plane of the water column. Equation (4.19), on the other hand, represents the

total force balance within the water column. Both equations must be satisfied in order to

have a comprehensive solution.

Unknown parameters in these two equation, v,, U,,, I c, ,tr, and a, are found

using the relationships and methods outlined below.

The eddy viscosity is estimated from the empirical relationship given by Stive and

Wind [1986]. The eddy viscosity is assumed to be constant over depth.



v, = 10-2 ch (4.21)

where c is the phase velocity. The average return velocity, U,,,, can be estimated from

linear theory for long waves by calculating the mass transport rate, M:

M 1 1 H 2 (4.22)

ph ho 8 h

However, it has been proposed that there will be an increase of mass transport within the

surf zone due to the effects of the roller. In order to account for this extra mass associated

with the rollers, Stive and Wind [1986] proposed an empirical equation to obtain the

average return velocity.

U-- 1 g H (4.23)
10 h

This result corresponds closely to the solution for the linear net mass transport as derived

above if we assume that H = 0.8h. Svendsen [1984] presents an alternative solution for

the net return flow:

u- CH /A( hj (4.24)

where Bo is a shape factor, estimated to be 0.08 and Ar is the area of the roller estimated to

be 0.9H2.

The trough shear can also be estimated using linear theory. The shear at the

surface is simply the gradient of the time-averaged pressure in the shore-normal direction

between the trough level and the free surface.

a y 1 2 1 H H 2  (4.25)
'tr Pgdz -- pgrl P

ax 0 2 ax 16 ax



Again, because of the roller, it is expected that there will be a greater shear at the

surface of the water than there would be if there was no breaking. A semi-empirical

relationship is devised in order to accommodate this increase. This equation was proposed

by Svendsen [Stive and Wind, 1986].

_i1 _ + A,h _H2 (4.26)
' 16 H 2 L ax

Ah
It is worth noting that the additional r term is an empirical correction factor added to

H 2 L

account for the roller effect. Ar, again, is the area of the roller and is approximated by

0.9H 2. Without this correction term, (4.26) is simply the expression found above using

linear theory.

The last step in solving all unknown parameters entails the introduction of a

boundary layer profile. We use a combined wave-current model [Grant-Madsen, 1986] to

describe the boundary layer flow:

u(z) _ 1 u, 2 
(4.27)

U m tz)

where u*,,1 is the maximum combined wave-current shear velocity. Now we have all the

necessary information to analytically and completely solve (4.20), the undertow current

profile.

Our final solution methodology is as follows. We assume a current bottom shear,

T, and by using (4.26) we calculate a from (4.19). We can now solve (4.20) in its

entirety by using our solution for a, our assumed value of ',, and the equations (4.21)

and (4.23). We then solve the boundary layer flow (4.27). The boundary layer flow and

the free stream flow (4.20) should have matching velocities at the boundary layer



thickness. If they do not then a new value of rc is assumed and the process is repeated.

The thickness of the boundary layer is estimated from the following relationship:

IKcU*m (4.28)

If z c << m, then the maximum combined wave-current shear velocity can be

approximated by the maximum wave shear velocity, ie. equation (2.21), and for most

situations within the surf zone, this is a valid approximation.

4.3 Validation of Model

We have compared our theoretical profile to the experimental results presented by

Cox and Kobayashi [1997]. Cox and Kobayashi measured both the free surface variaton

as well as the vertical velocity distribution for the case of periodic waves (1.2 s period)

spilling on a rough, impermeable, 1:35 slope where a single layer of sand was glued to the

bottom. The median grain size, dso, was reported to be approximately 0.10 cm.

Velocities were measured at six stations, one outside the surf zone, one right at the point

of breaking , one during the "transition" zone, and the other three within the inner surf

zone. Unlike previous studies of the undertow, Cox and Kobayashi were able to capture

detailed measurements of the instantaneous velocities and shear stresses in the bottom

boundary layer of about 1 cm thickness under the breaking waves [Cox and Kobayashi,

1996]. Therefore, it was possible to obtain the mean undertow velocities, even within the

boundary layer. The results of the free surface measurements are presented in table 7.

Cox and Kobayashi [1997] presented their own theoretical model and attempted to

validate it with their measured results. However, they relied on a calibration coefficient



which they themselves showed to be highly sensitive. Moreover, they used measured

values Qs, H, and 77 (Table 7) in order to further increase the accuracy of their model. In

our model, we use a minimal number of these measured values. Actual, the only values

used, other than the bed slope and sediment diameter to scale roughness, is the average of

the measured H normalized by water depth h and the time period of the waves. For

example, the measured values of Qs are ignored in favor of Stive and Wind's formulation

for return flow, U,, (4.23). There is no calibration coefficient. The model is meant to be

predictive and not rely on detailed information about the undertow in order to "predict" it.

Table 7. This table is from Cox and Kobayashi, 1997. The x value is a horizontal
reference frame, H is the wave height measured, h is the mean still water depth, and Q. is
the return flow per unit width of the wave flume.

Station X H h kh 1min Qs

Number (cm) (cm) (cm) (cm) (cm) (cm2/s)

1 0 13.22 27.60 0.4982 -3.88 -0.30 -88

2 240 17.10 20.64 0.4265 -3.60 -0.44 -99

3 360 12.71 17.56 0.3917 -2.82 -0.05 -148

4 480 8.24 14.38 0.3529 -2.33 0.20 -114

5 600 7.08 11.51 0.3144 -1.60 0.75 -70

6 720 5.05 8.50 0.269 -0.82 1.13 -45

The procedure to calculate the wave height at the station depth is as follows. At

station 2, breaking occurs. From the next set of points, stations 3 to 6, the ratio between H

and h is calculated. The average is taken to be 0.62, and this value is then used to predict

the wave height at any given depth, regardless of what the actual measured height was.



This assumption made certain calculations easier. Knowing the bed slope, one can

dH2
analytically predict H if one assumes that Hoc h and therefore solve (4.26) in a

dx

relatively straight forward manner.

Since we are concerned mainly with the hydrodynamics within the surf zone, only

the last four stations are used for comparative purposes. Figure 14 illustrates that the three

inner surf zone stations are the most successful at predicting the structure of the flow field

both within and outside the boundary layer. At the transition zone, the shear at the trough

level seems to be overpredicted. One possible explanation for this is that the surf itself is

not moving as a structured whole at this point in the breaking process, as suggested by

Svendsen [1984]. Also, the assumption that the eddy viscosity is constant throughout

depth may not be valid during the transition.

4.3.1 Sensitivity Analysis of Model

To see how changes in the near surface shear affect the structure of the velocity

profile, a run was made using linear theory to calculate z,r and was compared to the semi-

empirical equation (4.26) proposed by Svendsen [1984]. The results are shown in figure

15. This figure illustrates that indeed closer to the point of breaking, where presumably

the surf has not structured itself sufficiently, linear theory without any correction factors

does a better job at predicting the undertow structure.

The model's sensitivity to other parameters is also explored. Computer runs were

performed with varying methods of calculating the average return velocity, U,,,. Figure 16
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shows results of profile variation when U,, is calculated with either Svendsen's

formulation (4.24), Stive and Wind's formulation (4.23), or linear theory, (4.22). The

shape factor, Bo, was estimated to be around 0.08, based on the recommendation of

Svendsen [1984]. There is, it seems, little variation between the three methods. Equation

(4.23) seems more effective at estimating the return flow for these sets of conditions in

this particular experiment; increases in Bo would lead to satisfactory results if the use of

equation (4.24) was preferred. Due to its simplicity, equation (4.23) was adopted for this

particular model of the undertow. Linear theory clearly under-predicts the return flow.

However, the measured return flow of -148.07cm2/s within the transition zone (table 7)

compares closely to the calculated return flow using linear theory (-150 cm2/s).

It was also deemed important to look at how sensitive the vertical structure of the

velocity was to the way wave attenuation was handled. Since our sediment transport

model assumes that the wave height is linearly varying with depth, knowledge of the

model's sensitivity to this propotionality constant was considered vital. So using the

empirical equations for the return flow and the trough shear stress, the proportionality

constant between wave height and water depth, H = Kh, was varied from 0.6 to 0.8.

Results of this sensitivity test are shown in figure 17.

As one can see from the figure, with increasing values of K, the undertow becomes

increasingly larger. Therefore, it can be inferred that an accurate rendering of wave

attenuation is important in modeling the undertow. The gradient of wave heights, as well

the quantitative value of the wave at any given depth, has a significant impact on both the

return velocity U,,, and the near surface shear, z,, . The more accurate the predictions of

wave attenuation in the surfzone, the greater confidence we have in our undertow model.
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4.3.2 Additional Comments and Comparisons

Another test was carried out on experimental data presented by Buhr-Hansen and

Svendsen [1984]. In their test, wave heights and water depths were measured at each of

the four stations presented in Table 8. In addition to the bottom slope (1/34), wave period

(2.2 s), and an estimated bottom roughness of 0.1mm (smooth bottom, see Svendsen et al.

[1987]) we used only known wave height to depth ratios, K, with an average value of H =

0. 73h within the surf zone. The undertow profiles were calculated. The solution is

compared to measured results in figure 18. It seems that similar trends to those seen in the

comparison with Cox and Kobayashi's data are noticed here. The shear near the surface

close to the point of breaking is over-predicted resulting in discrepancies between our

model and the measured data. Otherwise, the model does a fair job at predicting the

undertow .

Table 8. Select measured numerical values of parameters from Buhr-Hansen and
Svendsen [1984] experiments. The bed slope was 1/34 and the wave period 2.2 s.

X (m) H (m) h(m) H/h
22.00 0.116 0.145 0.80
23.00 0.087 0.120 0.73
23.87 0.072 0.101 0.71
24.50 0.058 0.086 0.67

A little more needs to be said concerning modeling wave attenuation. As seen in

figure 17, an over-prediction of the wave height gives rise to a considerably exaggerated

undertow. But the problem does not stop here. A greater wave height means a greater
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shear stress near the bottom which, in turn, creates more suspended sediment. Combining

that fact with an over-predicted undertow current, the overall suspended load will be

increased that much more. Hence, careful attention must be given to how wave

attenuation is modeled. More will be written later on this subject (Chapter 5).

Our results indicate that the model is effective at predicting the undertow both

inside and outside the boundary layer provided an accurate predictor of wave attenuation

in the surf zone is available. It is recommended that tr,, be calculated using the empirical

formulation (4.26) and that U, be calculated using Stive and Wind's formulation (4.23).

The empirical formulation for the eddy viscosity outside the boundary layer (4.21) seems

to do a good job within the inner surf zone and for lack of any alternative, this equation is

recommended.



Chapter 5

5 Modified Model for Surf Zone
Application

5.1 The Suspended Sediment Distribution

The sediment concentration profile can be described now by solving equation

(4.3). Since the eddy viscosity term within the boundary layer is estimated differently

from the eddy viscosity term outside the boundary layer, two solutions pertaining to the

concentration distribution are necessary. Inside the boundary layer, where the boundary

layer thickness is defined as y = 8, and where v t = u.,,, z , the resulting concentration

distribution is

-Wr (5.1)
Y 0.4u.,,

C= CR -fory< 

S is given by (4.28); u*, is the combined wave-current shear velocity and is estimated as

the first harmonic shear stress (2.21), the same value used to calculate the undertow; and

the reference concentration is given by equation (4.8). Outside the boundary layer, the



eddy viscosity is constant and given by equation (4.21). The solution to equation (4.3) is

therefore:

-w_ (5.2)

C = CR exp f (y-) fory> 3

The integration

= - (5.3)q,, = CUdy

can now be done numerically. Note that U for y < 3 is given by (4.27) and for y > 8 , U

is given by equation (4.20). The transport mechanism is always offshore. The average

suspended load over one wave period is obtained and then added to the bedload.

5.2 The Complete Modified Model

Following a similar methodology as used in Chapter 3, the average net transport was

found at each depth in the surf zone. The slope of the bed is then adjusted until the net

transport is zero.

q, = _qs,ne + s qs,net = 0 (5.4)

Input values for the computer are the same as those outlined in Chapter 3. They

include the angles of friction, deepwater wave height, wave period and mean sediment

diameter. The waves are assumed to be periodic. The wave is shoaled to a depth in which

Cnoidal theory is valid (U > 26), at which point the transport model is initiated and the

slope of the bed is calculated. The bedload model is used exclusively up to the point of

breaking. The wave breaks at Hb = 0. 78hb and the wave height then remains at that ratio

for all depths shallower. However, at the point of breaking and shoreward, it is assumed



that an undertow is present. This undertow is the offshore transport mechanism for

suspended sediment, and these two coupled gives us an offshore suspended load. Clearly

there is a discontinuity between the point just before the point of breaking and just after.

Although this sudden appearance of an undertow is of some concern, for modeling

purposes it was decided that as a first approximation this approach would suffice.

The wave characteristics at any local depth, namely qr(t), u(t), and T (t), were

calculated depending on user input values. For any depth, these calculated characteristics

remain constant regardless of bed slope. The undertow, on the other hand, does not

remain constant at any given depth regardless of bed slope. This is because the near

surface shear, ,tr, depends on the rate of change of wave height. Since H oc h, r,, must

then be dependent on the rate of change of the bed slope. Therefore, input values into the

undertow algorithm are the wave characteristics and an assumed bed slope.

The model, shoreward from the point of breaking, calculates both bedload, using

the wave characteristics, and suspended load, using undertow characteristics. The

solutions are added and averaged over one wave period. If the resultant sediment

transport is onshore, the slope is increased and the undertow, net bedload transport and

reference concentration are recalculated (or vice versa). This continues until the slope at

any particular depth results in zero net transport.

The way the equilibrium beach profile is generated is identical to the way it was

described in Chapter 3. Beginning at the depth in which the transport functions are called,

the equilibrium slope is calculated as just described. Decreasing the depth by some

arbitrary increment, the process is repeated until an extensive list of depths and respective



slopes are found. Slopes between two depths are averaged and the horizontal distance

between them is then calculated. The profile is then plotted using this information.

5.3 Results of Model in Surf Zone

The program was run under a variety of wave conditions. It became immediately

apparent that the decision to model wave energy dissipation in the surf zone, namely

H oc h, was inadequate. For larger wave heights or fine sediment diameters, the offshore

suspended transport of the undertow dominated the onshore bedload transport at slopes of

/3 = 0, requiring that the slope be negative for a zero net sediment transport rate. Since

any increase of water depth would then increase our wave height, an obvious violation of

the basic thermodynamic principles results.

5.3.1 General Results

Solutions can however be obtained for sufficiently small wave heights and wave

periods. Results presented here attempt to mimic those in Chapter 3, but can not be

comprehensive due to the limitations imposed by the way wave attenuation is modeled.

Figure 19 shows the variation of our complete equilibrium beach profile (EBP)

with a variation of sediment diameter. For small sediment diameters, we run into the

problem mentioned above: within the surf zone region, a dominant offshore suspended

load makes finding a continuous beach profile impossible with the present formulation.

Hence we stick to sediment diameters that result in valid results, those being 0.2 inim,
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0.5 mm, and 1 mm. Unlike any other EBP, we have "hinged" the profile at the point of

breaking for illustrative purposes.

Figure 19 clearly illustrates a distinct change in slope right at the point of breaking

for slopes with a sediment diameter of 0.2 mm. This bar crest is a naturally occurring

phenomenon. Figure 19 also demonstrates that with larger sediment diameters a

steeper equilibrium beach slope results. As mentioned in Chapter 3, these results parallel

those found in nature. Also, it is found in nature that sediments with coarser diameters are

transported shorewards, while smaller sediments are transported offshore. By studying

figure 19, this trend can be deduced. Examine the middle profile with d = 0.5 mm at a

depth of 1.5 m. For smaller sediment sizes, ie. the profile with d = 0.2 mm, it is seen that

the slope is gentler than the 0.5 mm slope at this depth. Therefore, if sediments of size 0.2

mm were found on a 0.5 mm slope, the slope would be too steep to maintain equilibrium

and the 0.2 mm sediment will be transported offshore. By the same argument, it can be

shown that coarser sediment will be transported onshore.

Changes along the shore-rise beach segment are minimal as seen in figure 19.

Here, changes in the slope can be explained by examining the difference between the

bottom shear stress and the critical shear stress in the bedload formulation. This

difference we will define as the net resultant shear stress. Under the crest, the difference

between these values is large and any minor change in the critical shear stress will not

proportionally affect the net shear stress by any great amount. However, under the trough,

since the absolute values are closer together, any change in the critical shear will result in

a significant proportional change. So for coarser sediments, there will be a proportionally

larger change in the net shear under the trough than under the crest. This will cause a net



onshore transport. For finer sediments, by the same logic, there will be an offshore

transport.

However, it is within the breaker zone that we see the greatest changes. These

changes are clearly related to suspended offshore transport. Once the wave breaks, an

undertow current is induced. Smaller sediment diameters result in more suspended

sediment and therefore a greater offshore suspended load. This essentially causes erosion,

resulting in a gentler beach slope. Gentler slopes, of course, reduce the shear stress at the

trough level causing less of an undertow. It is inferred from figure 19 that a significant

amount of fine sediments is suspended such that even with a reduced undertow, a gentler

slope is necessary for equilibrium. For coarser sediments, there is less suspended

offshore transport and therefore less erosion. The slope will remain steep. Steeper slopes

result in stronger undertows. But it can be inferred from figure 19 that even with a

stronger undertow, the suspended load is still small such that there is minimal change in

beach slope at the point of breaking. For a beach with mixed sediment, we would then

expect that the fine sediments be transported offshore predominantly by the undertow

current while the coarser ones would remain behind or perhaps even be transported

shorewards due to bedload. Clearly, EBPs within the surf zone are very responsive to

sediment diameter.

Figure 20 shows the variation of beach profiles with changing wave heights. As

one can see, larger wave heights result in gentler beach slopes. Deep-water wave heights

input to the computer program were 0.7 m, 1.0 m, and 1.3 m. Results involving wave

heights larger than 1.3 m were not possible due to the generation of significant suspended

sediment at the point of breaking. A bar crest is again seen at the point of breaking for
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each wave, and it is also interesting to note that the beach profiles within the surf zone all

merge into the same line. The reasons for this is that once the wave breaks we assume that

the wave is proportional to water depth. Hence, at a depth of 1.5 m, an initially larger

wave (ie. Ho = 1.3 m) will be the same height as an initially smaller wave (ie. Ho = 0.7 m).

So at that depth, the wave climates are identical.

At first glance, figure 20 appears to indicate that smaller wave heights will cause

greater erosion. However, this appearance is deceiving since we have "hinged" our

profiles at the MSL. The proper interpretation is as follows. Look at the profile generated

by H, = 1.0 m at the point of breaking (the bar crest). If one were to slide the other two

EBP so that the profiles more or less overlapped on the shore-rise segment, it is then easily

seen that larger waves will erode the beach at that point while smaller waves will cause

accretion. If one were to refer back to chapter 4, it is clear that larger wave heights create

stronger undertow currents and generate larger suspended sediment concentration. So a

profile generated with Ho = 1 m will be eroded by larger waves since they break in deeper

water and create a stronger undertow at a deeper depth.

Dean [1994] states that beach slopes subject to steeper waves tend to have gentler

slopes. Since Dean's model attempts to describe the whole beach profile, by visually

examining figure 20 it is seen that the average slope of the whole profile, measured from

the MSL to the deepest portion, is gentler for larger waves.

Figure 21 illustrates changes in the EBP with varying wave periods. A noticeable

bar crest is seen for each profile, and it is obvious from the figure that longer waves create

steeper slopes. What are the implications? The figure seems to indicate that longer
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waves create greater erosion. But again, because we have "hinged" the profile at the

MSL, one must be careful in interpreting the figure.

Consider the profile that has a period of 10 s at a depth of 1.5 m. If the other two

profiles were shifted so that they all match at 1.5 m, then it obvious that at that depth the

slope for the 13 s profile is steeper, and for the 7 s profile it is gentler. It becomes now

apparent that if a 13 s wave was run over this profile, the slope would be too gentle for

equilibrium and sediment would be transported shorewards. The reverse would be true for

a 7 s wave.

Sediment is transported shoreward for longer waves because longer waves are

more nonlinear at any given depth. Greater wave nonlinearity translates into a greater

shear stress under the crest than under the trough causing more onshore transport. The

generated profiles seen in figure 21 simply reflect the slopes necessary to balance out this

nonlinearity.

A final note concerning figure 21 is that EBP generated by this model are

extremely sensitive to wave period. Any prediction of EBP using the model presented

here must take extreme care in specifying the wave period.

5.3.2 Comparison with Empirical Curve-Fitting Lines

Dean suggests that equibilibrium beach profiles be of the form y = Ah 2/ 3 where A

is a sediment scale parameter [Dean, 1991]. Dean's empirical curve-fitting methodology

was predominately applied to the near-shore segment of the beach profile. In Chapter 3,

100



results obtained there were valid for the shore-rise segment and hence the applicability of

Dean's model was suspect.

However, we now compare the complete model to Dean's curve-fitting

methodology. Dean's profile has its origin at the MSL and from figure 22, it can be seen

that for sediment diameters of 0.3 mm, the parameter A is to be of the order 0.3 mn 3 . We

have chosen three values of A, 0.25, 0.30 and 0.35 and have shifted our generated profiles

in the horizontal plane so that a more visual comparison with Dean's model is possible.

Ideally, one should use similar wave parameters used to generate figure 10 in Chapter 3.

As mentioned, such large wave heights are not possible with the present treatment of wave

attenuation. Instead, the wave parameters used are identical to those in figure 20. This

comparison is shown in figure 23.
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Figure 22. Variation of sediment scale parameter, A, with sediment size, d, and
fall velocity, wf. [Dean, 1991]
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Comparison with Empirical Curve-fitting Methodology of Dean
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As one can see in figure 23, the comparison between Dean's empirical curve-

fitting methodology and the theoretical model presented is poor in some respects, but good

in others. The poor comparison is partly due to the simplicity of Dean's empirical model

and partly due to the limitations of our own theoretical model. Dean's model cannot

account for the bar crest, nor does is suggest any change due to variation of deepwater

wave characteristics. On the other hand, our model does not take into consideration tidal

fluctuations or swash-zone wave dynamics. For the good comparison, by offsetting the

generated profiles' horizontal origin from the empirical model's origin as we did in figure

23, the general trend of the whole empirical EBP is captured very well by the generated

EBP. Considering the inherent limitations of Dean's empirical model and the

inadequacies of this model, these results are encouraging. However, it should be noted

that beach forms may be dominated by larger waves than those modeled here so these

results should be viewed in that context.

A comparison of our model with Inman et al. [1993] is also carried out with Inman

et al. basic curve-fitting parameters for both outside and inside the surf zone. As

mentioned earlier, the wave parameters used for figure 10 could not be used. Again,

comparisons are made with the use of the parameters from figure 20 and is seen in figure

24. For the shore-rise beach segment, as we discussed in Chapter 3, the origin is at the

MSL and the parameters for the empirical equation h = Ax' are A = 1.16 and mi = 0.38.

For the bar-berm, the basic data set had values of A = 0.86 and m = 0.41 where the point

of origin is at a height of Z1, which is considerably higher than the MSL, as shown by the

definition sketch, figure 9. Z1 has a typical range of 3 to 4 inm. Here we use Z, = 3.0 m.
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Comparison with Empirical Curve-fitting Methodology of Inman et al.
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Figure 24. Comparison of Model with Inman et al. Curve-Fitting Methodology, h
= Ax' The shore rise segment is generated using Inman's et al. basic data set, as is the
bar-berm profiles. The origin for the bar-berm section is set at 3 m above the MSL. The
model assumes a sediment diameter of 0.3 mm and T = 10 s. The shore-rise segment was
moved along the horizontal until a visual comparison was possible with the H,, = 1 m
profile.
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The horizontal axis for the modeled profiles were adjusted until a visual

comparison was possible. The shore-rise segment was placed to allow for a comparison

with profiles generated by H, = 1 m. If one were to move the empirical shore-rise

segment along the horizontal until a visual comparison was possible with the other profiles

(H, = 0.7 m, H, = 1.3 m), it can be seen that there is a good comparison to these other

shore-rise segments as well. It is noted here that according to Inman et al., the break-point

bar was found in depths typically greater than 2 m. Wave heights greater than H,, = 1.3 m

As opposed to a complete and comprehensive comparison between Inman's et al.

empirical model and our model as was done for the shore-rise segment in Chapter 3, a

purely visual comparison between the two models is deemed sufficient at this point for

two reasons. First, as one can see from the computer generated profiles, the bar-berm

appears as if it wants to curve up to the MSL with an infinite slope whereas the origin for

the empirical curve-fitting methodology requires that it be a few meters above this point.

This naturally creates a large discrepancy between our model and the empirical

relationship. Hence, any meaningful discussion concerning the variation of the parameters

A and m with varying wave conditions and how they compare to our generated profiles

may be a little premature. Secondly, due to the problematic nature of creating too large of

an offshore suspended load for certain conditions makes it impossible to create a wide

variety of beach profiles with wave conditions and sediment diameter sizes that mimic

those found on the beaches studied by Inman et al.

Regardless, it can be said that the generated profiles just shoreward of the breaking

point have slopes that are comparable to the empirical profile. Closer to shore this

comparison quickly breaks down. Other than that, there is fairly poor agreement between

105



the empirical and modeled EBP within the surf zone. However, as seen in Chapter 3, the

shore-rise segment is still modeled quite well by our present model.

5.3 Model Limitations and Sensitivities

It is clear that the present model is limited. Some of the limitations of our model

have already been mentioned. There is no swash zone model. The interaction between

waves and a moveable bed in the swash zone region may be considerably different than

what has been modeled here. Also, tidal fluctuations, which can have a range of over 3 m,

have not be modeled. One may suggest that a beach segment subject to intermittent dry

and immersed periods (i.e. at depths less than 1 m) should not be modeled as if it is

constantly underwater. And there are problems associated with the way wave attenuation

is modeled.

In addition to these limitations, the model is sensitive to certain parameters,

namely those parameters that are critical in calculating the suspended load. Since the

bedload transport is oscillatory, pertinent parameters have little error effect on the total net

transport rate. This is due to the fact that an error affecting shoreward transport will most

likely be balanced out by the same error in the seaward direction. However, for suspended

sediments, the transport mechanism is in only one direction. Therefore, errors associated

with the suspended concentration distribution, with the velocity distribution, or even with

bedload directly affect the equilibrium beach profile.

This is illustrated by varying CR by a factor of 0.5 to 1.5 shown in figure 25. As

one can see, adjustment of this parameter causes a noticeable change in the exhibition of a

bar crest as well as the overall slope of the profile within the surf zone. There is also
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Sensitivity of Profiles to Reference Concentration
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Figure 25. Sensitivity of the equilibrium beach profile to CR Wave parameters
and beach characteristics used are H,, = 0. 7 m, T = 10 s, and d = 0.3 mm.
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sensitivity associated with the maximum wave-current shear velocity, u.,,,, used to

calculate the eddy viscosity in equations (5.1) and (5.2). The sensitivity of this parameter

is shown in figure 26. Again, variations in this parameter can cause noticeable changes in

the profile, this even more so than the reference concentration. This is of course not

surprising since CR increases with u*I,. Although the sensitivities associated with these

two parameters are not so great to call in question the applicability of the model, care must

be taken in how one specifies these parameters. With a more complete model, a thorough

evaluation of these parameters is warranted.

Of course, the greatest sensitivity our EBP model is its sensitivity to wave period.

As seen in figure 21, minor variations in wave period create large changes in the EBP.

One must be very careful in specifying the wave period.
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Sensitivity of Profiles to Maximum Shear Velocity
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Figure 26. Sensitivity of the equilibrium beach profile to u*l, . Wave parameters
and beach characteristics used are H,, = 0. 7 m, T = 10 s, and d = 0.3 mm.
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Chapter 6

6 Conclusion

A theoretical model describing Equilibrium Beach Profiles (EBP) is derived. Although

the model attempts to describe morphology both inside and outside of the surf zone, little

can be said about the quantitative accuracy of the model within the surf zone. This is

mainly due to the way energy dissipation was modeled and a lack of a swash zone model.

A more accurate description of wave attenuation within the surf zone is required for

further development of the model. However, certain predicted qualitative beach

characteristics, namely slope steepness as a function of sediment diameter parallel what is

found in nature. Also, it is seen that longer waves do indeed tend to build beaches up.

While the present model formulation falls short of describing EBP within the surf

zone, it does seem to effectively predict general trends of beach evolution as well as a

quantitative description of the profile itself. Profiles generated compare closely to those

measured by Inman et al. outside the surf zone and share certain characteristics within the

surf zone.
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6. 1 Modelling Energy Dissipation

It is felt that the greatest short-coming of the profile model in its present form is

the way wave energy dissipation at the start of the surf zone is handled. By adopting a

rather simplistic formulation, H oc h, we have prevented the possibility of having a

negative slope at the point of breaking, making modeling sand bars impossible.

Furthermore, at the point of breaking we introduce an undertow. This discontinuity would

probably be more gradual in actual field conditions. Moreover, our modeling of the

undertow itself is somewhat suspect around the point of breaking. We assume a constant

eddy viscosity throughout the water column, the rationale being that turbulence due to

breaking is distributed throughout the entire water column. However, at the point of

breaking this would probably not be the case.

Horikawa and Kuo's [1966] laboratory data relating wave height to water depth

clearly demonstrates that for certain slopes, specifically slopes less that 1/30, the wave

heights do not vary linearly with water depth. This is shown in figure 27. The figure

shows, for four different beach slopes in which waves of differing periods and wave

heights were run, how wave height varies with water depth for breaking waves. For any

one particular run, at the point of breaking, the wave height and depth at which it breaks

are recorded. This wave is then followed shorewards where at the subsequent shallower

depths the wave height and depth are measured and plotted. Each line of Horikawa and

Kuo's figure represents their predicted wave height to water depth ratio, while the symbol

associated with this line represents the actual measured data. This data is compared to the

ratio H/h = 0.78. This is also plotted on each subfigure.
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Since typical beach slopes around the point of breaking are often much shallower

than 1/30, using the simple formulation H oc h could introduce gross errors in the

modeling of the undertow. Thus for beach slopes of around 1/80 there is a highly

nonlinear relationship between water depth and wave height and the ratio itself is

considerably smaller than 0.78 for most of the surf zone.

If the wave height is over-predicted, the error in offshore transport will be

magnified, resulting in an inaccurate prediction of the near shore beach profile. Or if the

change in H with x is under-predicted, as seen in figure 27 for the 1/80 beach just

shoreward of the breaking point, the shear stress at the trough will be too small resulting in

a reduced undertow and in an inaccurate prediction. A better model is necessary.

However, it should be said that errors associated with predictions of the undertow are not

damning. So long as the predicted wave height as well as the predicted change in wave

height is reasonable, a reasonable quantitative description of the undertow is expected.

But clearly, judging from the gross deviations from H=O. 78h as shown in some of the

subfigures of figure 27, a better approximation of the wave height would greatly enhance

the confidence we have in the validity of predicted profiles.

Models that attempt to predict changes in wave height within the surf zone often

assume spectral waves. Since most of the sea surfaces in the field are aperiodic, to allow

for this possibility would greatly enhance the flexibility of the model. There is also an

additional benefit to using aperiodic waves: there is no one break-point. Using a statistics

argument, only a portion of the waves are considered to be breaking at any particular

depth. Since initially only a small portion of wave energy is lost due to breaking, the
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undertow current due to these breaking waves will start off weak and then increase in

shallow water accordingly. Hence there would be no current discontinuity between the

surf zone and seaward zone; the problem of having a constant eddy viscosity at the point

of breaking will also be minimized.

Minimizing errors associated with the undertow will certainly be desireable.

However, as seen in section 5.3, the parameters associated with the suspended sediment

concentration distribution can still introduce significant errors. Care must be taken when

specifiying these parameters.

6.2 Further Refinements

Although in the formulation of the undertow the time-averaged free surface gradient was

accounted for, the actual setup was never numerically calculated, let alone added to the

local depth for purposes of shoaling the wave. There is a slight setup found up to the

point of breaking, but once breaking occurs, there is a resulting setdown which then

increases to a significant setup within the swash zone (for more detail, the reader is

directed to Battjes and Janssen [1978]). Exclusion of this setup/setdown may subtly

change the profile form and therefore should be included in future modifications.

A swash zone model also needs to be developed. First of all, as discussed in

Chapter 3, the nonlinear nature of the wave significantly increases while the wave energy

significantly decreases, such that initiation of sediment motion under the trough never

occurs. This created problems when it came to predicting beach profiles in depths less

than a meter or so. Even if we could predict the profile at these depths, it can be seen

from the results in Chapter 5, there is a poor agreement between our model and empirical
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models for beach profiles around the swash zone region. So further refinements are

certainly called for.
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Appendix A

B. Suspended Sediment Outside the

Surfzone

Outside the surf zone it is argued that there is little suspended sediment transport due to

wave action. This section addresses this argument.

The governing equation for the distribution of suspended sediment in the water

column is the advective diffusive equation.

ac a a Sac (A.1)
at z c) v z

where wy is the fall velocity, v, is the sediment diffusion coefficient and c is the volumetric

concentration of suspended sediment. We assume a constant sediment size for which wf is

constant and where the sediment diffusion coefficient is approximated by the turbulent

eddy viscosity. Equation (A. 1) is split into two equations, one for a mean time-averaged

concentration, the other a time-varying, wave-associated concentration. This is
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accomplished by letting c = F + c,. The time-varying equation is the relevant equation

for wave induced suspended sediment transport outside the surf zone and is

acw acw a ( )Cw 0 (A.2)

at a c (A.2)

The boundary conditions specified for this equations are as follows: 1) no sediment is

transported through the surface, or that c - 0 as z -> 0 , and 2) a reference

concentration, CR, is specified at a reference height above the bottom, ZR. The reference

height is given as a proportionality to sediment diameter. Here we use the Madsen et al.

[1993] suggested value of ZR:

ZR = 7d (A.3)

The reference concentration, theoretically is considered to be proportional to the bedload.

As discussed in Chapter 4, according to Einstein [1950], this can be expressed as

CR Oc q,_ (A.4)

u ZR

where qsb is the bedload and us is the sediment velocity. It has been shown in the Chapter

2, (2.13), that u, = 8(u. -au,.,r), and from equation (2.15), stated here again,

8(kb I -- cr) (A.5)
qsh * *cr

(s - 1)pg cos P(tan k ± tan 3)

we derive an expresion for CR.

(l=_ _ _ _ _'rb (t 1 - r) (A .6 )
C, =

Z pg(s - 1)(tan p + tan 3)
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where y is a proportionality constant and th (t) is found from (2.40). The empirical

resuspension constants, y', for flat beds taken from Wikramanayake and Madsen [1992]

was found to be 2 x 10-4 with a reference concentration defined as:

C yChb(t) (A.7)

where Cb is the volume concentration of sediment in the bed, generally taken as 0.65. By

equating (A.6) and (A.7) and solving for y when /3 = 0, it can be shown that y = 10-2,

for a sediment diameter of 0.2 mm. For simplicity and consistency, we use y = 10-2 for

all cases.

Equation (A.2) can be solved exactly once the eddy diffusivity is specified.

However, before a lengthy analytical analysis was carried out, an approximate evaluation

of the relative importance of this transport mechanism compared to bedload transport was

deemed prudent. If the importance of suspended load compared to bedload was shown to

be insignificant, a lengthy analysis would not be necessary. Hence, some simplifications

are made: it is assumed that the sediment concentration will be a function of z only at each

instance of time. Therefore, equation (A.2) can be rewritten as

SC + t (A.8)

Integrating with respect to z we obtain

acw  (A.9)
WrC, +v, = K

.f a
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where K is some arbitrary constant which, since we assume a zero net flux of sediment in

the vertical, is set to 0. Since we are looking at wave action alone, we assume that the

sediment eddy viscosity is that of the turbulent eddy viscosity:

Vt = ku.,*,, (A.10)

for z < 3cw. The solution to (A.9) is then

/ w(A.11)

c, (t) = CR Z KUlnl

u*l,,, is found from (2.40) where ub(t) is equal to (2.41). CR is calculated using equation

(A.6); the sediment fall velocity, wj, is estimated using the Madsen Grant [1976] graph

relating fall velocity versus sediment-fluid parameter S* (figure 11); and ZR is found using

(A.3).

Transport due to wave action is restricted to below the boundary layer, 6 . The

boundary layer thickness is found from equation (4.28). Therefore, the velocity profile

can be expressed using a logarithmic solution:

(t) = 1 z (A. 12)

IC Zo

where u*b(t) is found from (2.40). Therefore, the total suspended load within the wave

boundary layer is

q,. (t) = udz (A. 13)

This expression can be solved analytically

q=_CR(t4h( I ln(ZRRz") ( -ZR j +)+ZR j l J t I - (A.14)
1C ( y+1) I Z Y _( Z ZR (y+l) ZR
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where y is - wf /KIu ,I . A net suspended sediment transport rate is found much like the

net bedload transport rate is. Using Cnoidal theory outlined in Chapter 2, the time varying

shear stress is found (2.40). Using this value at each phase in the wave period, the

reference concentration is calculated (A.6) and then the suspended load (A. 14) is

subsequently calculated. The average transport rate is then calculated over one wave

period.

This analysis does not take into consideration phase shifts between actual

suspension of the particles and the transport mechanism. It is assumed that the

instantaneous velocity is responsible for both the amount of sediment in the water column

and its transport rate. Therefore, at times where we have the greatest wave orbital

velocities, we also have the greatest sediment concentration distribution. This is

considered to lead to a conservatively high estimate of the wave-induced suspended

sediment transport. The amount of net suspended transport relative to the net bedload

transport for 3 = 0 is shown to be small in table Al. Right around the point of breaking,

q,s is approximately 5% of qsb.

Table Al. Comparison of Wave Induced Suspended Transport and Bedload
transport at varying depths. The wave and sediment characteristics used to calculate these
values were Ho = 1 m, T= 10 s, d = 0.1 mm.

Transport Depths (m)

Mechanism 2.1 3.1 4.0 5.7

Qsb 1.1 0.65 0.24 0.05

Qss 0.07 0.03 0.006 -0
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To further illustrate this point, figure Al is included to visually demonstrate how

the profile model changes when the time-varying wave-induced suspended transport is

added. Hence, since the amount is relatively negligible for the most conservative case, it

was decided to not include this wave-induced suspended sediment transport into the

profile model outside the surf zone.
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Figure Al. Comparison between wave-induced suspended load with bedload and
bedload alone.
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