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Abstract

Engineers working on complicated system integration problems in industries such as automotive or aerospace often
face a need to understand the impact of uncertainties in their component models, particularly during the early stages
of development projects. If such uncertainties are modeled as continuous random variables, system model
calculations create the need to evaluate the probability characteristics of functions (i.e., sums, products, etc.) of these
random variables. Evaluation of analytical expressions for the resulting probability density functions is often
intractable, and even direct numerical evaluations can require excessive computation times using modern computers.
As an alternative, there are approximation techniques which hold the prospect of significant reductions in the
execution times in return for modest reductions in the accuracy of the resulting density functions.

Methods for approximating mathematical functions of independent random variables are explored based on the
assumption that the operand random variables can be modeled as beta distributions. Attention is focused on the
arithmetic operations of multiplication, division, and addition of two independent random variables, and the
exponentiation of one random variable to a scalar power. Execution times for these approximate evaluation
techniques are compared to those using direct numerical calculation and, alternatively, to those using a Monte Carlo
approach. Comparisons are made of the accuracies of these alternative approximation techniques to the results of
direct numerical calculations for a wide range of beta distribution parameters. These tests indicate that the
approximation techniques generally provide good accuracy for addition, multiplication, and exponentiation
operations, but the approximation accuracy is poorer for the quotient operation. This limitation is not expected to
pose a major impediment to the useful application of these approximations in system model calculations.
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1 Introduction

Enterprises that perform system integration must be able to evaluate system components in early

development stages, when more than half of total product costs is determined [3]. Manufacturers

of automobiles and trucks are excellent examples of such enterprises. At present almost all

development and determination of subsystem costs is done by the suppliers of individual

subsystems, but there is a need for the producer of the overall system to plan and coordinate the

development of these subsystems. The system integrator must therefore be able to effectively

model economic aspects, such as life-cycle costs, and technical aspects, such as electrical losses,

of system components. During the early development phase when system alternatives are

discussed, not all of the information required for an effective comparison of various system

topologies is available. Many of the attributes of various system components can only be

represented by estimated values. Nevertheless, important product decisions are made on the

basis of these inexact estimates. It is therefore desirable to render visible the uncertainty

apparent in all available data and the results of any system analysis before major decisions are

made.

One method of modeling uncertainties in component attributes is to use continuous random, or

stochastic, variables. Uncertainty in overall system attributes may then be calculated and also

represented in the form of continuous random variables. The representation and calculation of

system attributes using random variables opens up the possibility of assessing the risks involved

with a given project. There are presently several well known mathematical methods for

calculating functions of several random variables [see 16]. Unfortunately, many of these

methods require long computation times or are not well suited for implementation on a computer

[see 2 for an example of this]. When the systems to be modeled are large and results are needed

quickly, long computation times and large data structures become a major hindrance. The

purpose of this thesis is to investigate methods for efficiently, accurately, and quickly carrying

out mathematical operations with random variables, which will lend themselves well to computer

implementation and integration into software.



1.1 System Analysis Using MAESTrO

MAESTrO [19] is a software tool specifically designed to analyze alternative electrical system
configurations for automobiles and trucks. Specifically, MAESTrO is capable of calculating
estimates of the total cost, weight, reliability, and efficiency of an entire electrical system as well
as of its generation, storage, distribution, and utilization subsystems. Figure 1.1 shows a simple
electrical system that one may analyze using MAESTrO. This system is comprised of an
alternator, two motor loads, and their associated wiring. Suppose we wish to calculate the cost of

the entire system by adopting the simple cost model assumption that the cost of the total system

is equal to the sum of the costs of all six system components. At present, the cost of each

component, and thus of the entire system, can only be calculated deterministically in MAESTrO.
All of the input parameters describing each component to MAESTrO are scalars, and the cost of
the system is therefore output by the software as a scalar. However, this scalar result cannot

meaningfully represent the uncertainty present in the cost of the system due to uncertainty present
in the parameters used to calculate the costs of each individual component.

As an example, we will now proceed to probabilistically calculate the cost of the system shown
below. Suppose that each of the three wires is known to cost $5, and we make the assumptions
shown in Table 1.1 about the minimum possible, maximum possible and most likely costs of the
other three components.

WIRE2

M MOTOR1
WIRE1

G ALTERNATOR

WIRE3

M MOTOR2

Figure 1.1: A simple electrical system that one may analyze using MAESTrO is shown above.
This system is comprised of an alternator, two motor loads, and their associated wiring.



a
Alternator

Motorl

Motor2

$30

$20

$5

$40

$30

$35

$27

$7

Table 1.1: Assumptions about the minimum, maximum, and most likely costs of
and motors of the system shown in Figure 1.1 are given above.

the alternator

Figure 1.2: Probability density functions that may be used to represent the cost of the alternator
(left), motor (center), and motor2 (right) of the system shown in Figure 1.1 are shown above.

014

0.12

Figure 1.3: A probability density function representing
Figure 1.1 is shown above.

uncertainty in the cost of the system of

The cost assumptions shown in Table 1.1 can be approximated by the probability density

functions shown in Figure 1.2. We can use convolution to add these three density functions to

each other and to the total cost of the three wires ($15), to obtain a density function representing

the cost of the entire system. This result is shown in Figure 1.3 and yields a great deal of

valuable information about the uncertainty inherent in the cost of the entire system. For example,
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it is clear that this cost will not be less than $75, nor exceed $91. The expected value of the cost
can also be calculated to be $82.85.

We can also find the probability that the cost of the system will be between two values, x, and x2

by integrating the above distribution over the interval [xjX2]. For example, suppose we have
defined a maximum cost target for our system of $85. We can integrate the above distribution
from x = $0 to x = $85 in order to find the probability (77.5%) that we will meet this cost
target. Knowing that a system design may meet a desired cost target with a probability of only
77.5% long before the system is about to enter production could prove to be a valuable piece of
information at early design stages. Unfortunately, such information cannot be obtained with the
current implementation of MAESTrO.

The goal of this thesis is to explore means of extending MAESTrO to allow users to define
component parameters as probability density functions, as opposed to simple scalars. From these
density functions representing component parameters, we wish to compute probability density
functions representing subsystem and system attributes such as cost, weight, reliability, and
efficiency. In order to be able to do so, we must find fast and effective methods to compute
mathematical functions of random variables.

1.2 Objectives and Technical Approach

The overall objective of this thesis is to investigate methods of approximating probability
densities of functions of independent random variables for the purpose of using in the MAESTrO
software tool. Stated mathematically, if X1, X2,.... X, are independent real random variables

with density functions f,(x),f 2 (x),...,fn(x) and Y= (X,,X 2,... X,), where p is any arbitrary

real function, we would like to find a reasonable approximation to the probability density
function of the random variable Y, g(y), using the density functions of X1, X2,..., X,.

While it is theoretically possible in many instances to find a closed-form analytical expression for
g(y), this expression can be very complicated, difficult to derive, and impossible to evaluate on a

computer. It is therefore desirable to find an acceptably good approximation to g(y) using simple
numerical algorithms that would require a fraction of the computational time and resources of
their analytical counterpart. This thesis will compare methods for approximating the density

function, g, of the function of independent random variables, (p.



The technical approach adopted in this work is to investigate the following three methods for

performing calculations with random variables and to compare them with regard to their relative

speed and accuracy:

1. Direct numerical calculation of g(y) based on analytical expressions

2. Monte Carlo approximation to g(y)

3. Analytical approximation to g(y) using the moments or cumulants of X , X,,..., X

The mathematical operations that will be investigated are products, quotients, and linear

combinations of two independent random variables, and exponentiation of one random variable

to a scalar power. While analytic expressions for all of these operations exist, they typically

involve convolution integrals that are difficult or impossible to evaluate analytically. These

expressions may however be used as a basis to directly generate numerical approximations to

g(y).

A Monte Carlo approach can serve as an alternative to direct numerical approximation of analytic

expressions and has the advantage that it does not require there to be an analytic expression

available for the density function being approximated. This approach is considerably more

complicated than direct numerical calculation but can in some cases lead to improvements in

speed and accuracy.

Although direct numerical calculation and Monte Carlo calculation of functions of independent

random variables may require less time and computational resources than a direct analytical

approach, the computational savings that these methods offer may still not be enough if we have

models that require many stochastic calculations or require storage of many stochastic variables.

Fortunately, methods are available to approximate the density function of Y = q(X,,X2,..., X,)

using simple calculations and the moments of X,, X2,..., X. Three of these methods, one

developed by M. Springer [16] and two developed by G. McNichols [11] can offer significant

savings in computation time and resources over direct numerical calculation or a Monte Carlo

approach.

1.3 Organization of this Thesis

As mentioned in the previous section, this thesis will explore three methods for approximating

the density function, g(y), of the random variable Y = p(X,X 2, ... ,X), where X,,X 2,...,X, are

independent random variables and (p is a real function. Chapter 2 begins with an introduction to



the basic concepts of probability theory that are necessary to the derivation of the analytical
approximation methods of Springer and McNichols, and concludes with a description of the
generalized beta distribution which is used for all calculations in this thesis.

Chapter 3 develops the analytical approximation methods that will be used to approximate the
density function of Y, g(y). The general method for approximating a function of beta
distributions with a beta distribution is introduced. Subsequently, Springer's and McNichols'
methods, which are used to calculate the moments of the approximating beta distribution, are
developed out of the theory of Chapter 2.

Chapters 4 develops the numerical and Monte Carlo methods that will be used to approximate
the density function of Y, g(y). Analytical expressions for the density functions of products,
quotients, sums, and differences of two independent random variables, as well as exponentiation
of one random variable to a scalar power, are derived, and algorithms are developed to generate
numerical approximations based on these analytical expressions.

Chapter 5 begins with a discussion of implementation issues surrounding the direct numerical
and Monte Carlo algorithms of Chapter 4 and compares the two approximation methods on the
basis of the smoothness and accuracy of the approximations they generate. Implementation
issues surrounding the analytical approximation methods of Chapter 3 are then discussed. Two
batteries of tests are used to compare Springer's and McNichols' methods, and their results are
presented. The chapter concludes with a comparison of the execution times of all the
approximation methods under study.

Chapter 6 summarizes the results of Chapter 5 in the context of the extension of MAESTrO to
perform calculations with random variables. The conclusion is reached that while direct
numerical techniques are still too slow for software implementation, Springer's approximation
techniques hold promise for the addition, multiplication, and exponentiation operations. The
approximation accuracy for the quotient operation is found to be poorer. However, this
limitation is not expected to pose a major impediment to the useful application of these
approximations in system model calculations.



2 Background

Basic probability theory and the beta distribution are fundamental to the derivation of the analytic

and numeric methods that are the subject of exploration of this thesis. Section 2.1 introduces the

concepts of a random variable, the moments and central moments of a random variable, and the

characteristic function of a random variable. These basic ideas are then applied to generalized

beta random variables in Section 2.2 in order to show that a beta random variable can be

completely and uniquely characterized by its first four moments.

2.1 Basic Probability Theory

This section introduces basic concepts of probability theory necessary to develop the numerical

approximation methods described in Chapter 3. The section begins with the definition of a

random variable and its associated distribution and probability density functions. Expressions for

calculating the moments of a random variable from its density function and its first four central

moments from its moments are then presented. Finally, it is shown through the use of the

characteristic function that a reasonable approximation to the density function of a random

variable may be obtained from the random variable's moments.

2.1.1 Expression of Uncertainty as a Random Variable

An uncertain quantity can be modeled as a random variable. Probability theory differentiates

between discrete and continuous random variables. A discrete random variable may only assume

a finite or countable number of values, whereas a continuous random variable may assume an

infinite number of values within the interval upon which it is defined [5]. Random variables

shall be denoted henceforth by uppercase letters and the values that they may assume by

lowercase letters.

Every random variable has a non-negative, monotonically non-decreasing distribution function,

F(x), associated with it defined as:

F(x) = P(X < x) (2.1)



where F(-o) = 0 and F(o) = 1. If F(x) is continuous and everywhere differentiable, we may

define the probability density function of a random variable, f(x) = dF(x)/dx.
density function has the following properties:

f(x) O0

P(x, < X < x2) =

2f(x)dx

f (x)dx

f (x)dx = 1

A probability

(2.2a)

(2.2b)

(2.2c)

2.1.2 Moments and Central Moments of a Continuous Random Variable

The rth moment of a random variable about zero is given by [9]:

u = E(X) = x'r f(x)dx (2.3)

The first moment about zero of a random variable, Mi , is called its mean or expected value.

We may also define the set of moments about the mean of a random variable and call these the

central moments. The rth central moment of a random variable is therefore given by:

yr = E((X - ')r) = (x- ') f (x)dx (2.4)

The following is true of the first and second central moments:

A2  = E(X - ') = E(X) - '= 0

p2 = E(X - /A 2 = E(X2) - 1 2 = /k4_g2

(2.5a)

(2.5b)

The second central moment of a random variable is also known as the variance and is often

written as o .



Similarly, the third and fourth central moments of a random variable may be expressed in terms

of the moments:

13 = - 34' + 2' 3  (2.6a)

, = lu - 4u3'U'+ 64'2 - 3p ' 4  (2.6b)

2.1.3 Characteristic Function of a Continuous Random Variable

The expectation of the random variable eitx considered as a function of the real variable t is

known as the characteristic function of X [13]. The characteristic function of a random variable

X has many important properties and is crucial in establishing a connection between the moments

of a distribution and the distribution itself. A random variable's distribution function is

completely determined by its characteristic function, and the characteristic function of a random

variable may be expressed as a function of the moments. Thus, the distribution function of a

random variable may be completely specified through moments. As this fact will form the basis

for all of the analytic approximation methods developed in Chapter 3, a further exploration of the

characteristic function is necessary.

The characteristic function of a real random variable X is given by [13]:

O(t) = E(e t") = Jet f (x)dx, where i = 1 (2.7)

Since Ieitx = 1 for all real t, the above integral will converge for any real random variable. The

density function of X may therefore be expressed as the following Fourier integral:

1 itx

f(x) = e-i'~(t)dt (2.8)

Given that the characteristic function is differentiable, its rth derivative is given by:

dro- ir x' ei f (x)dx (2.9)
dth Equation (2.3), we obtain:

By letting t = 0 and comparing with Equation (2.3), we obtain:



,L= di i =O (2.10)

Given that a random variable has moments up to order n, we may express its characteristic
function as a Maclaurin series:

(t) = 1+ I ' tr +R,(t) (2.11)
r=1 r!

However, as n -> oo, the residual term, Rn, converges to 0:

lim R,(t) = lim n' +l tn"+ =0 (2.12)
n-+- -- (n +1)!

Thus, the characteristic function may be expressed as an infinite series of the moments:

0(t) = lim 1 + Ir-t (2.13)

We have shown that if an infinite number of the moments of a random variable exist and are
known, then its characteristic function, and thereby its distribution and density functions, may be
completely determined. However, in almost all practical cases not all of the moments of a given
random variable are available. One can however approximate the density function of a random
variable by using a finite number of moments.

Suppose we wish to approximate the density function of a random variable using the following
finite power series [9]:

f Y a xi (2.14)
j=0

Iff is defined on the closed interval [a,b], the coefficients of ar may be determined by the method
of least-squares. In order to do so, the following expression must be minimized:



g = f - aj xJ 'dx (2.15)
a j=0

Differentiating with respect to the coefficient ar, where r is any integer on the interval [O,n], and

setting the result to 0 yields:

- 2 f- ajx xdx = , r = O,..., n (2.16a)
a j=0 )

b b n

Sxrfdx = = f ajxJ+dx, r=O,...,n (2.16b)
a a ji=

If two distributions have equal moments up to an arbitrary order n, then they will have the same

least-squares approximation, as the coefficients aj are determined by the moments. This result

opens up the possibility of approximating a function of one or more random variables by its

moments. According to Kendall and Stuart, the first four moments of a distribution function are

sufficient to yield a reasonably good approximation to that distribution function, given that we

have some information about the type of the resulting distribution function. In the following

section we will describe a distribution function that is uniquely specified by its first four

moments.

2.2 The Generalized Beta Distribution

The generalized beta distribution [15] is able to represent the sort of uncertainties that arise in

practical industrial applications quite well, since it is defined over a finite interval (as opposed to

the Gaussian distribution) and provides a close approximation to a large number of other types of

distribution functions.

The generalized beta distribution is defined uniquely by four parameters, a, /, a, and b, and its

density function is given by the following relationship:

1 F( /3) (xaa) (b x)l (2.17)
f(x; , fl, a,b) = (b -- '(b- (2.17)_a(_

S(b - F)'- (a)Frfl)



where a 5 x 5 b and a, p > 0. The F-function is defined as:

(2.18)

The beta distribution is useful for representing a wide range of distribution functions over the

finite interval a 5 x 5 b. The parameters a and / are both shape parameters. When a and P are
both greater than 1 (see Figure 2.1), the distribution will have only one peak at:

a(P - 1)+ b(a - 1)
Xpeak = a,)+b(a or a> 1 and P > 1

a+P-2
(2.19)

When a and P are both less than 1, the function assumes a U-shape. When a 2 1 and P < 1 it is

J-shaped, and when P 2 1 and a < 1 the function takes the shape of an inverse J (see Figure 2.2).

The function becomes the uniform distribution when a = / = 1.

4

1 5

35 -

3 - 3

2 4

25

0 5

o /

1 fb(x;2,8,0,1) 4 fb(x;6,3,0,1)

2 fb(x;3,6,0,1) 5 fb(x;8,2,0,1)

3 fb(x;6,6,0,1)

Figure 2.1: The beta density function plotted on
both greater than 1 is shown above.

the interval [0,1] for various values of a and 03

F(x) = (x- 1)!= e-ttX-'dt



1 fb(x;0.2 5, 4 ,0,1) fb(x;0.5,0.5,0,1)

2 fb(x;4,0.2 5 ,0,1)

Figure 2.2: The beta density function plotted on the interval [0.1] for various values of a and 3
where either a<1 or P<1 (left) or both a<1 and P<1 (right) is shown above.

In order to be able to approximate a distribution whose first four moments are known with a beta

distribution, it is necessary to establish a relationship between the first four moments of a beta

distribution and its four beta parameters. McNichols [11] has calculated the mean, second, third,

and fourth central moments of the generalized beta distribution as a function of the beta

parameters:

'=a ++(b-a) a+P (2.20a)

112 = ((2 = (b-a)2)( + )2 (2.20b)

p 3 = (b-a) 2(p la )3 (2.20c)
-a + + 2)(a + P + 1)(a+/)



y4= (b - a) 4 (2.20d)
(a + p + 3)(a + p + 2)(a + p + 1)(a + )4

It is also possible to calculate the four beta parameters from the mean, variance, third and fourth

central moments. The beta distribution shape parameters, a and P, may be recovered from the
mean and first three central moments using the following relations [8]:

6(P2 - 3, -1)
r = (2.21)

6+ 33 - 22

a, = rlr 1±(r+2)I A(r+ 2)2tA +16(r+ 1) (2.22)

where

S3 and a2 (2.23)

If y3 > 0, then P > a, otherwise a > /3.

Once the shape factors a and 3 are known, the endpoints a and b may be calculated by
rearranging Equations (2.20a) and (2.20b) above to yield:

(a + p + 1)(a + p) 2
c= j1 2  (2.24a)

a
a = ('- c (2.24b)

b = a + c (2.24c)

This shows that a beta distribution is uniquely and completely characterized by its first four
moments. The above result allows us to attempt to approximate a function of one or more
independent beta random variables by simply calculating the first four moments of the result and
fitting the corresponding beta distribution to this result. There is however no guarantee that a



beta distribution will serve as a good approximation to a function of independent beta

distributions, since products, linear combinations, quotients, and powers of independent beta

distributions are not in general beta distributions. It is experimentally tested in Chapter 5

whether products, sums, quotients, and powers of independent beta distributions can be well

approximated by beta distributions.





3 Analytical Approximation Methods

This chapter addresses the problem of approximating linear combinations, products, quotients,

and powers of independent beta variates. The methods described are intended to greatly simplify

and quicken the process of performing mathematical operations with beta variates by avoiding

having to perform convolution or Monte Carlo analysis (see Chapter 4). Each method enables

calculation of the moments of a function of two or more random variables given only the

moments of these random variables. Two separate methods are described for multiplication,
division and exponentiation and one method for linear combinations of random variables.

Section 3.1 describes methods developed by Springer in 1978 (see [16]), and Section 3.2

describes methods developed by McNichols in 1976 (see [11]).

Figure 3.1 shows the general method that is used to calculate the moments of two independent

beta variables. The first step is to calculate the required moments or cumulants (see Section 3.1

for a treatment of cumulants) of the random variables X1 and X2. Once these have been

calculated, either one of Springer's or McNichols' methods is used to calculate the first four

moments or cumulants of the resulting distribution. These can then be used to calculate the four

beta parameters of the resulting approximation using the relations given in Section 2.2.

Figure 3.1: The general method used to approximate a function of two independent beta
variables is represented here. The step inside the circle will differ depending on the functional
form of the function to be approximated and the approximation method used (i.e. Springer's or
McNichols').



3.1 Springer's Methods

In [16] Springer develops relations for exactly calculating the moments of a random variable that

is a linear combination, product, or quotient of two other independent random variables as well

as the moments of a random variable raised to a scalar power (exponentiation). As described in
Section 3.1.1, the expression for the moments of a linear combination of independent random

variables relies on a set of descriptive constants known as cumulants, which are derived from the
logarithm of the characteristic function described in Section 2.1.3. Mellin transform theory is
employed in Sections 3.1.2 and 3.1.3 to derive expressions for the moments of the product of two
independent random variables and the moments of one random variable raised to a scalar power.
Finally, expressions for the moments of the quotient and difference of two random variables are
derived in Section 3.1.4 as special cases of multiplication and exponentiation, and linear
combinations respectively.

3.1.1 Linear Combinations of Two Independent Random Variables

In order to calculate the moments of the random variable Y = a + bX; + cX2 we will require a set
of descriptive constants other than the moments, as the moments of Y cannot be readily

calculated from the moments of X and X2. This set of descriptive constants of a random variable
are called cumulants and are derived using the characteristic function of a real random variable,
which was described in Section 2.1.3. The characteristic function of the random variable

Y = X1 + X 2 , (p(t), is simply the product of the characteristic functions, <pl(t) and <p2(t), of the

two independent random variables, X1 and X2, [13]:

(t)= E(e't ) = E(eit( x+x2)) = E(e'txl e' 2  (3.1)

= E(eit' )E(eitX2 ) = (t)2 t)

By taking the natural logarithm of the characteristic function, an additive relationship can be

established. It is therefore expedient to define the following function, known as the cumulant

generating function:

V(t) = ln(O(t)) (3.2)

The cumulant generating function of Y, ly(t), can now be expressed as the sum of the cumulant

generating functions of X, and X2, fl (t) and y2(t):



V(t) = l (t) + V 2 (t)

Similar to the way the moments were defined in terms of the characteristic function, we define

the rth cumulant of Y in terms of the rth derivative of Vy(t), the cumulant generating function of Y:

r, = i-r'dtr o (3.4)

Using the above relations, one can derive expressions for the cumulants of Y in terms of the

moments of Y. This is done by Kendall and Stuart [9] for the cumulants up to order 10. For the

purpose of this thesis only the first four cumulants of any given random variable will be needed.

These are given in terms of the moments by:

K, = 4'

x3 =  414'- 3pI+ 212 42 -6

K4 = 4 - 4p''- 3 42 +12 p2; 2 - 6p'4

(3.5)

Manipulation of the above

cumulants:

set of equations yields expressions for the moments in terms of the

g '=IK

P4 = K2 + K 2

(3 6)
p ' = K3 + 31c2K + K 13

4 = K4 + 4K3 1 + 3K2
2 + 6K 2K

2 + K14

The variance, third, and fourth central moments can also be expressed in terms of the cumulants:

A12 = (2 = K 2

= C3
(3.7 )

14 = K4 + 3K2
2

It is now possible to derive expressions for the first four cumulants of Y = a + bXj + cX2 in terms

of a, b, c, and the cumulants of X1 and X2. The characteristic function of Y is given by [12]:

(3.3)

),



O(t) = E(ei') = E(exp{it(a + bX, + cX2))= eita ((tb) - (tc))

By taking the natural logarithm of t(t) we obtain its cumulant generating function:

Wy (t) = ita + 01(tb) + 2(tc) -U (3.9)

Employing Equation (3.4), we find" the following expressions for the first four cumulants of Y

[11]:

a- b-x, c-K X2

K2y 0 b2 12x C2 2
= + + 3

K'3y 0 b3 .3xK .3 3x 2

f'4y. -0 b4 .4xl  4 C X2
. " K'C.

(3.10)

3.1.2 Multiplication of Two Independent Random Variables

It is necessary to use the Mellin Transform to derive an expression for the moments of Y = X1X 2

from the moments of X and X2. If the integral:

xk-1 f (x)ldx , where x 2 0 (3.11)

converges for x and k real, then the Mellin transform off(x) exists and is given by [16]:

M (f(x)) = xS-'f (x)dx (3.12)

where s is complex. f(x) can be recovered from Ms(f(x)) using the Mellin inversion integral:

(3.13)
C+o

f (x)- 2i x-M (f(x))ds
c-loo

(3.8)



where c is a real constant. The Mellin Transform of the density function of Y = X X 2 is given

by:

M,(g(y)) = E(YS-')= E((XX 2 )s- ' ) (3.14)

If X1 and X2 are independent, we may express the probability of the intersection of the events

X1 c A and X2 eB as [13]:

P{(X, e A)(X 2 e B)} = P((X, X2) Ax B)

= fff(xP,x2 )dxdx2  (3.15)
AxB

= f f()dx, xf 2( 2)dx 2
A B

Thus if X1 and X2 are independent, the Mellin Transform of their product is given by the product

of their Mellin Transforms:

E((X 1 X2 )-1) = E(Xs-')E(X-'1)= M,(f,(x,))M,( f 2(x 2)) (3.16)

From the definition of the Mellin transform given above and the definition of the rh moment

given in (2.3), it is clear that:

I' = E(X')= Mr+,(f (x)), where x 2 0 (3.17)

Combining Equations (3.16) and (3.17), we find that the rth moment of Y= XX 2 is given by:

ly = Px, 'x 2  (3.18)

Fan [4] compared the first ten moments of products of several beta distributions obtained using

the above approximation with the moments of products of the same beta distributions obtained

analytically using Mellin transform methods and showed that the above approximation yields

very good results.



3.1.3 Exponentiation of One Random Variable

The Mellin Transform is required to derive a general expression for the moments of the random
variable Y = X. If Y has density function g(y) and X has density function fix), then the Mellin
transform of Y is given by [16]:

(3.19)M,(g(y)) = E(YS-')= E(( X) -  Xm(-) f (x)dx
0

From Equation (3.17),

equation:
the r h moment of Y (if it exists) is given by letting s = r + 1 in the above

(3.20)= E(Y'r) = xmrf (x)dx =p'm.r)x
0

Thus, the rth moment of Y = X is given by the m -r moment of X.

If the density function of X is defined on the closed interval [a,b], and b > a > 0, then the above
integral will converge for all m and r, and we may write:

py = E(yr) = E(X mr) = m.r)x (3.21)

3.1.4 Division and Subtraction of Two Random Variables

Both division and subtraction can be accomplished using the methods described in the previous
three sections of this chapter. To find the moments of Y = X / X 2 = X 1(X2)-1 we can use

Equations (3.18) and (3.20):

(3.22)P =y = Yrx -r)X 2

Similarly, the cumulants of Y = X, - X2 = X, + (-1)X 2 can be found from Equation (3.10):

Kr = KrxI -Krx2ly rx r 2
1 (3.23)



3.2 McNichols' Methods

Using Springer's methods, exact expressions were found for the moments of a random variable Y

which is a function of one or more other random variables. In [ 11] McNichols develops first and

second order methods for approximating the moments of a random variable

Y = Tq(X, X2,..., X,), where T is any arbitrary function of real random variables. His first order

method relies on finding a linear approximation to the function T, while his second order method

depends on finding a quadratic approximation thereof.

If a function Y = qp(X 1, X2,..., X,,) has continuous first partial derivatives for each Xi, then it can

be approximated about the point X' = (XI°,X 2 ,...,Xn) by a first order polynomial Y as follows:

Y = p(X,, X2,..., X,)= p(Xo +I (X) (Xi - Xo) (3.24)
i=1 dXi x=x o

Similarly, if a function Y = (X,, X 2,..., X,) has continuous first and second partial derivatives

for each Xi, then it can be approximated about the point XO = (XIoX 2
0, ....X,,o) by a second order

polynomial Y2 as follows:

Y2 = (X,, X2... X)=(X)+ (X) (X X)

ij Xo

n 82p(X) (Xi X;o)
2

i=1 d X=XO 2

Since the density of a random variable will tend to be concentrated around its mean, the highest

degree of accuracy will usually be obtained by applying the above approximations about the

point X0 = ( ,14X .'X' ) [13]. If Y is a function of one or more random variables whose

density is not concentrated about the mean (such as a beta variate with a and 13 < 1, see Section

2.2), then we would not expect our approximation to be very good.



McNichols has applied (3.24) and (3.25) about the point X ° = ( ,1 "'2 ,.--,/n ) in order to find

approximations to the cumulants of Y = 9(X) as functions of the central moments of X [ 11]. His
results are summarized in Table 3.1 and Table 3.2. For the case of linear combinations of
independent random variables, McNichols' first and second order methods reduce to Springer's
method (see Equation (3.10)). Expressions for the first four cumulants of the product and
quotient of two independent random variables and those of a random variable raised to a scalar
power have been derived for McNichols' first and second order methods and the results
summarized in Table 3.3 through Table 3.8.

Cumulant of Y Expression in terms of the central moments of Xj,X 2,...,X,

cly 9p c,',iX2 ,...,Jtixn)

3C~y 
n dg(X) 3

n d p ( X ) I xdX 
Ix

Table 3.1: The cumulants of Y= 9(X1, X2,...,Xn) as a function of the central moments of
Xi,X2,... ,Xn for McNichols' first order approximation (see Equation (3.22))



Cumulant of Y Expression in terms of the central moments of X1 ,X2 ,..

a2<p(x))d 2(X)
,UI

2

nj dp(X)
x MI 2

+ [xi= X i 2 x (

3

d£ a(x)
i=1 dXi p,

n n

)J2d2p(X)
dXidX,

- 322x,

+ In nd 2q((X)3 8 1 1 d XdX-
i=1 j=1

U3x, P3 x

Si= 2 i Ax
AI ____________

K4y

- 34x, p2x, + 4p2x, )

d9( X) X,

idX, u0

iLj

d 2p(x)

dxidx.

i= d Xi

- 322x, )

4 x, '4x

14x)

-416x, u2x, + 12
M4x, 2x, -64x 3x, )

Table 3.2: The cumulants of Y = <p(X l , X2 ,..., X,) as a function of the central moments of

XI,X 2,...,X,, for McNichols' second order approximation (see Equation (3.23))

Kly

IC2 y

K3y

Expression in terms of the central moments of X;,X2,..., X,,Cumulant of Y

JU2X,

- 3p22x, )



Expression in terms of the central moments of X, and X2

ly PX + PX 2

2Y +A xU2 2X,

C3y Ax 9X2 + 21"3X

Sx(2 - 32 f4 ) ( 4X, - 321)

Table 3.3: The cumulants of Y = XIX2 as a function of the central moments of X, and X2 for
McNichols' first order approximation

Cumulant of Y = X1X 2  Expression in terms of the central moments of X, and X2

lly PXl t x 2

12 *2 1
C2y xI ll2x2 "- "XI + P .Lx2x 2

C3 y A3X2 + Ix2 3 X" + 4 13Xl 3X
2

y 4x2 - 32 4 (4x - 3p)

"-(]4x t '4x2 - 3 /X x2 )

Table 3.4: The cumulants of Y = XX 2 as a function of the central moments of X, and X2 for
McNichols' second order approximation

Cumulant of Y = X1X2



Cumulant of Y = Expression in terms of the central moments of X1 and X2

Kly

'C2y

K3y

K4y

tLx,

/'2/x, #'x,
/2 2 x2
x2 A X2

3

,3 *2 x2

Ax2 AX2 )

I14x, - 3142x
,4 + PC

AX2

Table 3.5: The cumulants of Y = X1 /X2 as a function of the central moments of X, and X2 for
McNichols' first order approximation

Cumulant of Y = Xs/X2 Expression in terms of the central moments of X1 and X2

f r- + tUx, , ,-73 t2l
P1 xi t xl +x

Ax2 Ax2 ) 2

3

,-3 /__

Xi, K .x. lA
4 ,6

14X2

-x 4
,2 I'4x 21X2

x + ,xx - x 2)3
U3X2 +

1 ) 4x, M4x 2 - 34X I22x2
- 3X )+8

AX2

+ ( t3) - 4p 6 X2 x2X + 12 4X2 2x2 - 64X2 - 3/XX2

Table 3.6: The cumulants of Y = X1/X 2 as a function of the central moments of X1 and X2 for
McNichols' second order approximation

Cly

14x1 -
3 p2x1

'4
AX

2

- 344x2 2 +4 231*X2-x + -x )

Cumulant of Y = X/X2 Expression in terms of the central moments of X, and X2



Cumulant of Y = Expression in terms of the central moments of X

2y 0m2 tx2(m-1) x

3 x3(m-1) ,x

/14y m4 4(m-1) 4 -- 32x)

Table 3.7: The cumulants of Y = Xm as a function of the central moments of X1 for McNichols'
first order approximation

Cumulant of Y = Xm  Expression in terms of the central moments of X

gly p1m + L m(m_ I m-2

m 2  1)4g ) )2x

y m2 ,2(m-1) + (m(m_ . 
, (m-2) 2 3 )

3y m3: 3(m- l ) x +- (m(m _ ) (m- 2) 3 6x - 34x 2x+ 4 x)

K4y m4 tx4(m-1) 4x

S - x(m2) ) 4 ( 8 x - 4 p6xI2x + 21 4xy x - 64x - 3.4x)

Table 3.8: The cumulants of Y = X as a function of the central moments of X, for McNichols'
second order approximation

Cumulant of Y = X Expression in terms of the central moments of X



4 Numerical Methods

This chapter explores methods for finding numerical approximations to the density functions of

the sums, differences, products, quotients, and powers of random variables. Given

Y = Tp(X, X 2) , or Y = p(X) the result of all of the methods described is to generate the vectors g

and y, which represent g(y), the density function of Y, and y sampled at n points. Section 4.1

introduces the Fourier and Mellin convolution integrals associated with addition, subtraction,

multiplication, and division of two independent random variables as well an analytic expression

for the density function of a random variable raised to a scalar power. Algorithms to find

numerical approximations to these analytical expressions are developed in Section 4.2. Finally,

Monte Carlo methods are developed in Section 4.3 to determine approximations to g and y for

any arbitrary function p.

4.1 Analytical Solutions to Functions of Random Variables

Although this thesis intentionally avoids analytic solution of expressions associated with

functions of independent random variables, these expressions form the basis of the numerical

methods for finding numerical approximations to sums, differences, products, quotients and

powers of random variables described in Section 4.2. The convolution integrals associated with

sums, differences, products, and quotients of two random variables are therefore derived in

Section 4.1.1, and an expression for the density function of one random variable raised to a scalar

power is introduced in Section 4.1.2.

4.1.1 Analytical Convolution of Two Independent Random Variables

Springer [16] gives analytic expressions in the form of convolution integrals for products, sums,

quotients, and differences of two independent random variables.

In the case of Y = X1 + X2 the density function of Y, g(y), as a function of the density functions of

X and X2,f(xj) and fj(x 2) is given by the Fourier convolution integral:



g(y)= f(y - x 2). f 2(x 2)dx 2

In order to derive this result let:

X1 = y- x 2

X 2 = X2

Since X1 and X2 are independent, their joint probability element is given by:

(4.1)

(4.2)

(4.3)f(x, x2)ddx,d2 = f(x )f(x2)dxd 2

Using (4.2), this becomes:

g(y, x 2)dx2dy = f(y - x2)f 2(x 2)Jdx2dy (4.4)

Where J is the Jacobian of the transformation given in (4.2):

1 1

dx dx
J x2 2

dy dx 2 (4.5)

0 1

The variable x2 can be integrated out of (4.4) to yield the density function of Y = X, + X2, given
in (4.1).

Employing the above method and the following transformation:

x1 = y + x2
X 2 = X2

the convolution integral Y = X1 - X2 is found to be:

(4.6)



g(y)= f(y + x 2). f 2(x 2)dx 2

In the case of Y = XX 2, the transformation:

y
X1 -

x
2

X 2  X2

yields the Mellin integral for the product of two random variables:

g(y)= f () 2 f(X)dX2
-- X2 2

Finally, the transformation:

x1 = yx 2

X 2 = X2

yields the Mellin integral for the random variable Y = X

X 2

g(y)= x 2f (yx 2) f 2(x 2)dx2
(4.11)

The integrals given in Equations (4.1) and (4.7) may be solved using Laplace transform methods

and the integrals given in Equations (4.9) and (4.11) using Mellin transform methods.

Unfortunately, these analytic solutions can be very difficult to compute and do not lend

themselves well to implementation on a computer. Dennis [2] finds an analytic expression for

the product of three beta variables using Mellin transform methods, which contains 23 terms and

still only serves as an approximation to the actual solution.

(4.7)

(4.8)

(4.9)

(4.10)



4.1.2 Analytical Exponentiation of One Random Variable

Numerical evaluation of a convolution integral is not necessary in order to find the density of a

function of one random variable. Given a real random variable X and an arbitrary function p, the

density function of Y = p(X) is [9]:

d-1
g(y) = f(-(y)) d- (4.12)dy

For the special case of Y = Xm:

-l(y) = ylim (4.13)

Substituting (4.13) into (4.12), we find an expression for the density function of Y = Xm:

g(y)= f f(yim)y/Mm', y 2 0O (4.14)

4.2 Direct Numerical Approximation to Functions of Random Variables

Since an exact analytic solution to the equations introduced in the previous section may be
tedious to compute and is usually not required, it is advantageous to solve them numerically.
Iqbal [18] has found a methodology to numerically invert Mellin integrals based on the
expansion of Laguerre polynomials, but his method has been left as a topic for further research.
Section 4.2.1 develops methods for obtaining numeric approximations to the convolution
integrals in Section 4.1.1 based on sampling the density functions of fl(xl) and f 2(x2). Section
4.2.2 introduces a simple algorithm for directly calculating a numerical approximation to

Equation (4.14).

4.2.1 Numerical Convolution of Two Independent Random Variables

This section describes the numerical techniques used to compute the vectors g and y,

corresponding respectively to sampled versions of g(y) and y given in Equations (4.1) and (4.7).



If the two density functions f(xl) andf2 (x2) are defined on the closed intervals [al,bl] and [a2,b2],

y will be defined on the closed interval [c,d], where:

c= a, + a2

d = b, +b 2

(4.15)

for the case of addition of X1 and X2;

c= a, - b 2

d = b - a2

(4.16)

for the case of subtraction of X, and X2;

for the case of multiplication of X and X2; and:

for the case of division of X, and X2.

The n-element vector y may be obtained by sampling y at n evenly spaced points between c and

d.

In order to find g for the case of the sum of two random variables, each of the density functions,

fj(xl) and f 2(x2), associated with the random variables X1 and X2 is first sampled at A evenly

spaced points, yielding the A -element vectors f andf 2. If we let n = 2' for some positive integer

i, an n point radix-2 Fast Fourier Transform (see [10]) may be performed on each of the vectors,

yielding the n-element vectors f, and f 2 . We then generate the vector g, whose ith element is

given by:

(4.19)

c = a1 a2

d = b
2

(4.17)

c = al / b2

d = b / a2

(4.18)

9i = f;i. f2i, i = 1,...,n



The n-element vector g, representing g(x) sampled at n evenly spaced points, is obtained by
taking the n point radix-2 Inverse Fast Fourier Transform of ^.

The procedure for finding g for the difference of X1 and X2 is the same as that for addition except
that the vectorf 2 must be reversed before its Fast Fourier Transform is taken such that (assuming
vector indices i = 1,...,n):

fL = f 2(n+_ ,  i = 1,... ,n

f- = FFT({f} 
(4.20)

Since Fourier Transform methods cannot be used to find numeric approximations to the
convolution integrals given in Equations (4.9) and (4.11) for Y= X1X 2 and Y= X1 / X2,
respectively, a novel algorithm was developed by this author to find their approximations. Given
the n-element vectors y and x2, representing sampled versions of y and x2, the procedure given
immediately below is used to obtain each point gi of the n-element vector g, corresponding to
g(y) for the case of multiplication of two random variables.

1. The lower and upper limits of integration, a and b, of the Mellin integral may be found by:

a = maxy',a 2  (4.21)

b = minfL ,b 2}

2. The lower and upper indices of the vector x2 , jl and ju, may be found using the relations
(assuming vector indices fromj = 1,...,n):

,= round a-a 2 (n - 1)+1
Sb2 - a2  (4.22)

S = round b2 a2(n -

3. Finally, each gi may be found from the following relation:

g=-- x21  , i= 1,...,n (4.23)
n =x2 24



In order to find g for the case of division of two random variables, the procedure given below is

used.

1. The lower and upper limits of integration, a and b, of the Mellin integral may be found by:

a = max _T ,a2
(4.24)

b= min -, b2

2. The lower and upper indices of the vector x2, jl and j,, may be found using (4.22).

3. Finally. each gi may be found from the following relation:

g,=-- x21f, xif2{xz i= 1,...,n (4.25)

j=jln.

4.2.2 Numerical Exponentiation of One Random Variable

Given Equation (4.14), we may proceed to find a numeric approximation for g(y). If x is defined

on the closed interval [a,b], then y will be defined on the interval [am,bm] if m 2 0 and [bm,am] if

m< 0. By sampling y at n evenly spaced points, we obtain the n-element vector y. Employing

the previous Equation (4.14), gi can be found:

gi = f(y/m). I/m- i=1,...,n (4.26)
Im|

4.3 Monte Carlo Approximation of Functions of Random Variables

Monte Carlo analysis offers an alternative to convolution for calculating Y = T(X, X 2) , where T

is any arbitrary real function [7]. If X1 and X2 are defined over two closed intervals, let y be the

n-element vector of evenly spaced points between a and b, where a and b are given by:

a = min(p(x,,x 2))
(4.27)

b= max(q, (x,x 2)



A pseudo-random number generator is then used to generate two p-element vectors ul and u2,
where p > n, whose elements are uniformly distributed between 0 and 1. Each element of these

two vectors is then mapped to a point in its respective distribution, resulting in two new
vectors x' and x'. A description of this mapping for the case of generalized beta variates can be

found in [1]. The ith element of the p-element vector y' is calculated from x' and x' by:

y,'= p(x,xi), i= 1,...,p (4.28)

We may now subdivide the interval [a,b] into n equally-sized disjoint intervals and form the n-
element vector h by counting the number of points of y' that fall into each of these intervals.

The ith element of g, the vector approximation to the density function of Y, is obtained through:

nh.
g = n (4.29)

The Monte Carlo method described above has the advantage over the direct numerical methods
described in the previous two sections that it generalizes easily to any functional form, (p.



5 Implementation and Experimental Results

The previous three chapters have laid the theoretical groundwork for performing arithmetic

operations on beta random variables. In this chapter, practical implementation of the numerical

and analytical algorithms developed, as well as the concrete results they produce is discussed.

Section 5.1 addresses the problem of generating sharp beta density functions numerically from

their beta parameters on digital computers with finite floating point limits. The chi-squared test,

which is used to evaluate the accuracy of all of the approximation methods under study, and the

least squares test, which is used only to evaluate the accuracy of Springer's and McNichols'

approximations, are the topic of Section 5.2. The various numerical methods introduced in

Chapter 4 are compared in Section 5.3 with respect to their relative speeds and the smoothness of

the density functions they produce. Implementation of Springer's and McNichols' analytical

approximation methods, which were discussed in Chapter 3, is addressed along with a

comparison of the different methods in terms of the accuracies of the approximations they

produce in Section 5.4. Finally, Section 5.5 compares the execution times of the analytical and

numerical routines under investigation. All of the routines described were implemented using

MATLABI [10] on a 200MHz PC with a Pentiumrn processor.

5.1 Calculation of a Beta Density Function from its Beta Parameters

In order to implement the numerical methods of Chapter 4 and test the analytic methods of

Chapter 3 on beta density functions, an efficient and accurate means of generating sampled

versions of these density functions is required. This section describes two methods for

calculating the vectorf, representing a sampled version of the generalized beta density function

f(x) described in Section 2.2. The first method is the more simple of the two and works correctly

as long as the beta shape parameters of f and the interval upon which f is defined are small

enough. If we wish to definef over a large interval or require a sharp, unimodal density function,

this first method may not work due to the floating point limits of a digital computer. The second

method described circumvents the floating point limits of digital computers by avoiding

excessively small or large intermediate results and taking advantage of the fact that the integral of

any probability density function over its entire domain must equal 1 (see Equation (2.2c)).



If f(x) is defined on the closed interval [a,b], we may define the vector x to be the set of n evenly
spaced points between a and b. When the beta shape parameters of f are sufficiently small and
the interval upon whichf is defined is sufficiently narrow, the vectorf, representingf sampled at
n evenly spaced points, may be calculated directly by:

1 F(a + ])/ -
fi (b a)+ F( ) (xi-a)al(b- xi) -  i= 1,...,n (5.1)

(b-a)a+Pl (a)F(1)
k

Due to the fact that any probability density function must integrate to 1, k in the above equation is
given by:

k= (x - a)-(b - x)-'dx (5.2)

When a , /, or (b - a) are sufficiently large, k can exceed the upper floating point limit

(= 1.78 x 10308 for purposes of this thesis) or the lower floating point limit (= 2.2 x 10-308 ) of the
computer being employed. This problem can be circumvented by recognizing that:

f k x i - a) d (b- x,) , i= ... ,n (5.3)

k can be neglected since it represents only a scale factor, and since it is known that any density
function must integrate to 1 over its entire domain. If two scalar quantities, c and d, can be found
such that when:

= (-a)(b - i=,...,n (5.4)

is trapazoidally integrated with respect to x over the interval [a,b], the resulting scalar s exceeds
neither floating point limit, the desired resultf can be calculated by:

f h i= 1,...n (5.5)

c is determined by letting:



a-i 0-1
p= ,q=

d d
(5.6)

1 F(p+q+2)
(b- a)+q+l F(p + 1)F(q +1)

and finding the smallest positive integer d such that c is within the floating point limits. Since

we know that when:

h'= [c(x, - a) - 
d(b

- x,)' , i= 1,..., n (5.7)

is trapazoidally integrated with respect to x, the result is 1, h will not exceed the floating point

limits for sufficiently small values of d.

Letting a = 100, b = 200, n = 1000, and y= a= /, it was found that the maximum value of yfor

which f could be calculated directly using Equation (5.1) was about 75, whereas the algorithm

described above yielded valid beta density functions for values of y in excess of 20,000. Figure

5.1 shows plots of fb = (x;2 x 104,2 x 104,100,200) and fb = (x;75,75,100,200) for comparison.

These plots show clearly how the above algorithm allows for calculation of beta density

functions with much sharper peaks than could be calculated using the direct method alone.
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Figure 5.1: Plots of fb = (x;2 x 104,2 x 104,100,200) (left) and fb = (x;75,75,100,200) (right) are

shown above. Note how much sharper the density function on the left is compared to the density
function on the right.



5.2 Chi-Squared and Least-Squares Tests

All of the analytical approximation and numerical methods described in Chapters 3 and 4 were

tested using a chi-squared (X2) test in order determine their respective accuracies. In addition to
the chi-squared test, the analytical approximation methods of Chapter 3 were also subjected to a
least-squares test.

A flowgraph of the routine used to perform the chi-squared test is shown in Figure 5.2. n = 1099
points are sampled from each input beta distribution Xi. Each of these n points from the beta

distribution fb (x; a, P, a, b) was generated using Cheng's algorithm BA, described in [1], in the

following manner:

1. Let c = a +. If min(a, r) <1, let d = max(a-',p-'); otherwise let

d = (c- 2)/(2a 3- c). Let v= a+d-'.

2. Generate the random numbers U1 and U2 such that 0 < U,U2 1 and let

V =dlogU, / (1- U). Let W = a ev.

3. If c log{c / (p + W)} + vV - log(4) < log(Ul2U 2 ) , return to 2.

(b - a)W
4. Otherwise deliver a + (p + W)

(P +w)

Given the functional form of Y = (X 1,, X 2) or Y = (p(X), n points from Y can be generated. An

approximating distribution to Y is then produced using one of the numerical or analytical
approximation methods described in Chapters 3 and 4. A chi-squared test with a significance
level of y = 0.01 is then performed to determine the likelihood that the set of n points from the

true distribution, Y, could have come from the distribution obtained through numerical or

analytical approximation. y = 0.01 was chosen as opposed to y = 0.05 or y = 0.10 because it

was found that almost all distributions that passed a chi-squared test at this significance level
provided excellent approximations to Y. The chi-squared test is accomplished by dividing the

approximation to Y into k equiprobable intervals. Greenwood and Nikulin suggest selecting k
such that [6]:



k < min( ,logn) = 7

The n randomly generated points from the true distribution of Y are grouped into these k

equiprobable intervals. The result is the k-element vector p. The chi-squared metric is then

given by:

(5.9)2 kPi -= n

n i=1

A table of the chi-squared distribution may be used to determine at what level of significance the

approximation to Y matches the true distribution of Y, given Z and k - 1 degrees of freedom. If

this level of significance is greater than y = 0.01, the approximation has passed the test,

otherwise it has failed.

Input functional form
Y= (X,,X 2) or rY p(X)

Input beta parameters for each Xi.

(a,fl,a,b)

Perform equal probability chi-
squared test.

Figure 5.2: A flowgraph of the chi-squared routine used to test each all approximation routines

is shown above.

* Generate 1099 random samples
from each Xi distribution.

* Generate 1099 observations of
Y=~ (X,,X 2 ) or Y= P(X)

Calculate the beta parameters of
the approximation to Y using an
analytical or numerical
approximation method.

(5.8)



A flowgraph of the routine used to perform the least-squares test is shown in Figure 5.3. Let g'

be a sampled version of the 'true' density function of Y = p(X, X 2) or Y = Tp(X), calculated

using one of the numerical methods described in Section 4.2. Generate the p-element vector y by

sampling y at p evenly spaced points. The beta parameters, (a,P,a,b), of the approximation to Y

are calculated using one of either Springer's or McNichols' methods. If a' is the minimum of the
vector y and b' its maximum value, let:

c = max(a,a')

d = min(b,b')

If necessary, g' and y are truncated so that they are defined only on the interval [c,d]. Using this

n-element truncated version of y, the beta shape parameters, a and f, and the algorithm described
in Section 5.1, g, the n-element sampled version of the approximation to Y, is calculated. The
result of the least-squares test is then given by [20]:

1 n
s- =(g; - g2 (5.11)

n- i=1

5.3 Implementation and Comparison of Numerical Methods

This section examines implementation of the numerical methods described in the previous
chapter and compares these routines on the basis of their respective execution times and the
relative smoothness of the curves generated by them. The convolution methods introduced in
Section 4.2.1. are discussed in Section 5.3.1. The simple case of numerical exponentiation of
one random variable to a scalar power is briefly discussed in Section 5.3.2. Section 5.3.3
explores implementation of the Monte Carlo methods developed in Section 4.3.



Input functional form
Y=q((X,,X 2) or Y= p(X)

Input beta parameters for each Xi.
(a,,a,b)

Figure 5.3:
McNichols'

Perform least-squares test.

A flowgraph of the least-squares routine used to test each of Springer's and
approximation routines is shown above.

5.3.1 Numerical Convolution of Two Independent Random Variables

The routines for performing numerical Fourier convolution with probability density functions

were implemented using 256 point radix-2 Fast Fourier Transforms and Inverse Fast Fourier

Transforms. 256 points were necessary in order to yield the desired smoothness of the results.

The 128 point vectorsfi andf 2 were generated using the routine described in Section 5.1. Since

Fast Fourier Transforms could be used, execution times were fast (about 30ms), and the resulting

density function vectors were smooth for the cases of both addition and subtraction. Since the

use of the Fast Fourier Transform to calculate the sum of two probability density functions is a

well known technique, the results were not subjected to a chi-squared test.

The routines for performing numerical multiplication and division were implemented with

n = 500, the minimum number of points necessary to yield the desired smoothness of the results.

Generate the density function of Y
using direct numerical calculation.

* Calculate the beta parameters
of the approximation to Y
using one of either Springer's
or McNichols' methods.

* Generate the density function
of Y numerically from these
beta parameters.

II



The case of multiplication was benchmarked using the input beta density functions

f, = fb (x;2,1,0,1) and f 2 = fb (x;3,1,0,1), since it is known that the product of these two density

functions is the beta density function g = fb (x;2,2,0,1) [4]. Figure 5.4 shows the product of f,
and f2, generated using numerical convolution, superimposed upon g. It can be seen from the
plot on the left, that n = 500 was sufficiently large to yield a smooth curve, and the plot on the
right shows that the numerically generated curve is almost identical to g. Unfortunately,
execution times for both the multiplication and division routines were well in excess of 2
seconds. Execution time could have been reduced by implementing the routines in C instead of

MATLABTM , but since these routines were written mainly in order to benchmark the analytical
approximation routines of Chapter 3, this step was not taken in order to obtain a meaningful
comparison.

The accuracies of both the multiplication and division routines were verified using the chi-
squared test described in Section 5.2. For the case of Y = X, X 2, one hundred trials were run

with X1 and X2 defined on the interval [0,1] and having randomly generated shape parameters
such that 1 5 a, / < 10 . For the case of Y = X, / X2 one hundred trials were run with X, and X2

defined on the interval [1,2] and having randomly generated shape parameters such that
1 a, fl < 10. All of the approximating approximations generated passed the chi-squared test,

showing that both algorithms are reliable.
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Figure 5.4: Plots of the product of fb(x;2,1,0,1) and fb(x;3,1,0,1) generated using numerical
convolution (left) and this same curve superimposed upon fb(x;2,2,0,1) (right) are shown above.
The plot on the left shows that the technique yields smooth curves, while the plot on the right
shows that accurate curves are yielded through this technique as well.



5.3.2 Numerical Exponentiation of One Random Variable

The routine for performing numerical exponentiation of one random variable to a scalar power

directly using Equation (4.26) was implemented with n = 100. Execution time was short (30ms)

and the resulting curves were sufficiently smooth.

5.3.3 Implementation and Exploration of Monte Carlo Methods

The Monte Carlo routine described in Section 4.3 was implemented for the cases of

multiplication, division, and addition of two random variables and exponentiation of one random

variable with p = 105 and n = 100. Cheng's [1] algorithm BA was used to generate beta variates

from a set of uniformly distributed random numbers (see Section 5.2). Consideration was given

to using a significantly more sophisticated algorithm developed by Zechner and Stadlober [17],

but once it became clear that the previously described numerical methods were far superior to the

Monte Carlo method for our purposes, this idea was abandoned. Execution times were long

using the Monte Carlo method and the resulting curves were not smooth. This phenomenon is

explained by the fact that the accuracy of the Monte Carlo method used increases only as the

square root p [7].

For all of the operations involving two random variables execution times were approximately 1.5

seconds. For the case of exponentiation execution time was about 1 second. Figure 5.5 shows

the product of f, = fb(x;2,1,0,1) and f 2 = fb(x;3,1,0,1), calculated using the Monte Carlo

method, plotted with the known result g = fb(x;2,2,0,1). While the curve generated using the

Monte Carlo method follows the desired curve well, it is not nearly as smooth as one would like

it to be. Comparison with Figure 5.4 shows that the convolution methods described in the

previous section are far superior in terms of the smoothness of their results than the Monte Carlo

method described in this section. This can be attributed to the fact that analytic expressions for

products, quotients, and sums of two independent random variables X1 and X2 contained only one

dimensional convolution integrals, which could be readily solved on a computer by sampling the

density functions of X, and X2. For the case of exponentiation of a random variable to a scalar

power, the analytic expression to be solved contained no integral at all, rendering its calculation

even more straightforward.
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Figure 5.5: The product of f, = fb(x;2,1,0,1) and f 2 = fb(x;3,1,0,1), calculated using the Monte

Carlo method (solid), and the known product g = fb(x;2,2,0,1) (dashed) are plotted above.
Comparison with Figure 5.4 shows that the convolution based methods described in the previous
section are far superior in terms of the smoothness of the result than the Monte Carlo method
described in this section.

5.4 Implementation and Comparison of Analytical Approximation Methods

In Section 2.2 it was proposed to verify experimentally whether products, sums, quotients,
powers, and linear combinations of beta distributions could be well approximated themselves by
beta distributions. This section details the implementation and testing of the analytic routines
that generate the beta approximations to the products, sums, quotients, powers, and linear
combinations of beta distributions. In Section 5.4.1 an algorithm is developed for calculating the
beta parameters of a distribution given its central moments. Sections 5.4.2 and 5.4.3 discuss
implementation of Springer's and McNichols' methods, described in Chapter 3, and focus
specifically on the issue of numerically generating moments of arbitrary order of beta
distributions. Implementation of chi-squared and least-squares routines, which are used to test
the approximation routines, is the subject of Section 5.4.4. The results of these tests are
discussed in Section 5.4.5, and conclusions are drawn about the accuracy of each approximation
method for each of the arithmetic operations under study.



5.4.1 Calculation of Beta Parameters from Central Moments

Expressions for calculating the beta parameters of a beta distribution from its first four central

moments were given in Section 2.2. It was found experimentally that these expressions

sometimes yield negative beta shape parameters (a, P) given certain combinations of the first

four central moments. If either of the beta shape parameters is negative, the corresponding beta

distribution function will no longer converge to 1 as x -> b, which we know that it must

according to Equation (2.2c), implying that negative beta shape parameters are meaningless. The

following simple algorithm was therefore developed to transform negative beta shape parameters

to positive ones:

1. Calculate a and 3 using Equation (2.22).

2. If neither a nor / is negative, a valid result has been obtained, and no further steps need be

taken. Otherwise let:

a' = a, p' = /, c = a. / (5.12)

3. If c > 0 the new shape parameters are given by a = Ia' and / = /3'j, otherwise the new

shape parameters are given by a = Ip'I and P = Ia'.

The validity of the above algorithm was verified experimentally using the test methods described

in the following sections.

5.4.2 Implementation of Springer's Methods

Approximation of linear combinations and products of two independent random variables using

Springer's approximation methods, described in Section 3.1, requires that we calculate only the

first four moments (for the case of multiplication) or cumulants (for the case of linear

combinations) of each beta variable. Calculation of the first four moments or cumulants of a beta

variable may in turn be calculated from each beta variable's central moments. Finally, the central

moments may be calculated exactly and readily from the beta shape parameters. Thus,

implementation of Springer's approximation method for multiplication, according to Equation

(3.18), and linear combinations of independent random variables, according to Equation (3.10),

was accomplished without complication.



Implementation of division of two random variables and exponentiation of one random variable
to a scalar power was however not as straightforward. The expressions for the moments of the
quotient of two independent beta variables and one beta variable raised to a scalar power derived
from Springer [16] require moments other than the first four. Specifically, division of two
independent random variables requires the negative first, second, third, and fourth moments of

the beta variable X2, where Y = -, and exponentiation of one random variable X to the mth

power requires the mth , 2m th, 3mt h, and 4mth moments of X. As no closed form algebraic
expressions were available for these moments, they had to be calculated numerically based on
Equation (2.3). Numerical integration was accomplished using Romberg's method (see [14])
with a numerical tolerance of 10-10. For this reason, the division and exponentiation algorithms'
execution times (about 20ms) are approximately twice those of the methods for multiplication
and linear combinations.

5.4.3 Implementation of McNichols' Methods

Implementation of McNichols' first order method for the cases of multiplication, division and
exponentiation was straightforward, as these operations require only the first four central
moments of each random variable. McNichols' second order method for multiplication also
requires only the first four central moments of each random variable. His second order method
for the cases of division and exponentiation require both the sixth and eighth central moments of
the input random variables. Since no expressions for these central moments were available, they
were calculated by evaluating Equation (2.3) using Romberg integration with a numerical
tolerance of 10-10. Due to this, run times for McNichols' second order division and
exponentiation routines were twice as long (about 20ms) as his other methods.

5.4.4 Description of Test Batteries

Two batteries of tests were run to test the accuracies of each of Springer's and McNichols'

methods. One battery of tests was run in order test the accuracy of each method under random

variation of the beta shape parameters, ac and P, of the input distributions, and a second was run

to test each method under random variation of the interval [a,b] upon which each input beta
distribution was defined.



Table 5.1 summarizes the first battery of random tests run on Springer's and McNichols'

approximation algorithms. Each of the beta shape parameters, a and 1, for each of the input beta

distributions, X, was produced with a random number generator. It was chosen to allow the beta

shape parameters to vary between 1 and 10, as it is unlikely that very highly skewed distributions

would be used to model any real physical or economic phenomenon. For the cases of

multiplication and addition each beta distribution is defined on the interval [0,1]. For the cases

of division and exponentiation each beta distribution is defined on the interval [1,2] in order to

avoid ill numerical behavior near x = 0. One hundred tests were run for each operation under

study, although for the case of exponentiation 4 different scalar powers were applied to each of

only 25 randomly generated beta distributions.

Table 5.2 summarizes the second battery of random tests run on Springer's and McNichols'

approximation algorithms. Each of the beta interval boundaries, a and b, for each of the input

beta distributions, Xi, was produced with a random number generator. For the cases of

multiplication and addition these were allowed to vary between 0 and 100. For the cases of

division and exponentiation, these were allowed to vary between 1 and 100 in order to avoid ill

numerical behavior near x = 0. a and 1 of each of the two distributions for each mathematical

operation were chosen such that a result was yielded using all three approximation methods that

passed a chi-squared test on the interval [0,1]. One hundred tests were run for each operation

under study, although for the case of exponentiation 4 different scalar powers were applied to

each of only 25 randomly generated beta distributions.

Operation a P a, bl a 2  P2 a2 b2  # of

Tests

Y=XX 2  15 _410 1:5f,10 0 1 1a 2 510 15fP2 -10 0 1 100

Y=X +X 2  1 <_ 4 i10 15A! 10 0 1 1- a 2 10 1< #2 10 0 1 100

YX 15 , lo10 1_13 10 1 2 1 a2 10 1 P2 10 1 2 100

X2

Y =X 1 : _ 10 1! iA 10 1 2 m = 0.5, 1.5, 2, 3 25

Table 5.1: The beta parameters and number of tests run for the first battery of random tests on
Springer's and McNichols' approximation algorithms are shown above. All of the beta shape

parameters, a and 1, were produced using a random number generator.



Operation a1 fi a bI a2  12 a2  b2 # of
Tests

Y= XtX 2  9 3 O<a, 1 100 0 b, 100 6 5 O<a 2 100 0<b2b,100 100

Y=X +X 2  9 3 0Oa, s100 O<b <100 8 6 0: a 2 5100 0 b2 100 100

= X, 2.6 4.6 1 a s 100 1 b, 100 9.6 8 1 a 2 5100 15 b2 5100 100
X 2

Y=X" 4 2 1 a, <100 1<b 100 m = 0.5, 1.5, 2, 3 25

Table 5.2: The beta parameters and number of tests run for the second battery of random tests on
Springer's and McNichols' approximation algorithms are shown above. All of the beta interval
boundaries, a and b, were produced using a random number generator.

5.4.5 Experimental Comparison of Springer's and McNichols' Methods

The results of the two batteries of tests run on Springer's and McNichols' approximation
methods are shown below in Table 5.3 and Table 5.4. The number of tests out of one hundred
that failed the chi-squared test at a 1% level of significance for each operation and approximation
method is given in the third column of both tables. Whether we chose the chi-squared test or the
least-squares test as our performance metric, it is clear that Springer's method is far superior to
either McNichols' first or second order methods in terms of accuracy of the approximations it
generated. This was especially true for the first battery of tests when the input beta distributions
were defined on a much narrower interval than for the second battery of tests. Figure 5.6
compares Springer's and McNichols' approximations for the products of the distributions

fb(x;4 .1,8.15,0,1) and fb(x; 9 ,9 .3 3,0,1). It can be seen that Springer's method performs much

better than McNichols' second order method. This result was reflected by the fact that Springer's
approximation passed a chi-squared test while McNichols' second order method did not.
Although McNichols' multiplication methods were much better in the second battery of tests, his
division and exponentiation methods still did not perform nearly as well as Springer's.

A ° A A



# of Trials that Failed X2 Test Average of

Least-Squares

Tests

Springer' s

McNichols' 1st

McNichols' 2nd

Springer's / McNichols'

(see note below)

Springer's

McNichols' 1st

McNichols' 2
" d

Y=Xm  m

0.5 1.5 2

Springer' s

McNichols' 1st

McNichols' 2 nd

0 0 0 0 0

Table 5.3: The results of the first battery of tests run on Springer's and McNichols'
approximation methods are shown above (see Table 5.1). For each arithmetic operation and
approximation method, the number of trials out of one hundred that failed a chi-squared test is
given, along with the average over all one hundred trials of the least-squares test (see Equation
(5.11)). Note that McNichols' first and second order methods are identical to Springer's method
for the case of addition (see Section 3.2).

Operation Method

Y = XX 2

Y = X +X 2

y XX2

0.024

0.360

0.320

0.0016

0.0041
0.011

0.017

3 Total

0.007

0.056

0.043



Operation Method # of Trials that Failed X2 Test Average of

Least-Squares

Tests

Y= XIX 2

Springer's 0 4.8 x 10- 6

McNichols' 1st 0 4.8 x 10-6

McNichols' 2nd 0 4.8 x 10-6

Y = X1 + X 2  Springer's / McNichols' 0 0.0060

(see note below)

y= X
X 2

Springer's 3 0.010

McNichols' 1st 22 0.048

McNichols' 2nd 18 0.070

Y=X" m

0.5 1.5 2 3 Total

Springer's 0 0 0 0 0 1.9 x 10- 6

McNichols' 1st 0 1 6 13 20 1.9 x 10- 4

McNichols' 2nd 1 0 6 14 21 2.1 x 10-4

Table 5.4: The results of the second battery of tests run on Springer's and McNichols'
approximation methods are shown above (see Table 5.2). For each arithmetic operation and
approximation method, the number of trials out of one hundred that failed a chi-squared test is
given, along with the average over all one hundred trials of the least-squares test (see Equation
(5.11)). Note that McNichols' first and second order methods are identical to Springer's method
for the case of addition (see Section 3.2).
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Figure 5.6: Plots of the approximation to the product of fb(x;4.1,8.15,0,1) and fb(x;9,9 .3 3,0,1)

shown on the interval [0,0.6] are shown above for Springer's method (left) and McNichols
second order method (right). It can be seen that Springer's method yields the better
approximation.

A plot of the one product trial using Springer's method that passed a chi-squared test but yielded

a high least-squares value of 2.06 is shown in Figure 5.7. The approximation generated

numerically is highly skewed, and therefore does not lend itself well to being approximated by a

beta distribution. Although Springer's approximation is excellent on the interval [0.02,1], most

of the probability of the desired result as well as the approximation is concentrated in the region

[0,0.02] where the approximation is poor. Thus when Springer's product method yields a density

function that approaches infinity at either its right or left hand limit, (=> a < 1 OR 3 < 1), the

results should be examined against a numerically generated benchmark before they are trusted.

Otherwise, Springer's multiplication method is highly reliable. Note that Springer's method

always yields the best beta approximation to the true result, since the first four moments of

Springer's approximation exactly match those of the true result (see Section 2.1.3). Thus, when

Springer's method yields a poor approximation to a given density function, we may not use a

beta density function to approximate this density function.



25

20

S15

10

0 0 02 0.04 0.06 0 08 0 1
X

Figure 5.7: Plots of Springer's approximation to the product of fb(x;1.2 4 ,3.8 1,0,1) and

fb(x;1.12 ,4 .4 6 ,0,1) and the numerically generated benchmark density function on the interval
[0,0.1] are shown above. In this case, Springer's method yields a result of
fb(x;0.57 ,21.7 0,0.00,1.79 ) and a least-squares metric of 2.06.
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Figure 5.8: Plots of Springer's approximation to the sum of fb(x;9.25,2. 1,0,1) and

fb(x;1.12,4 .3 3 ,0,1) and the numerically generated benchmark density function on the interval
[0,2] are shown above. In this case, Springer's method yields a result of
fb(x; 49.75,4 9.7 5,-0.92,2.9 6) and a least-squares metric of 0.0177.

For the case of addition of two random variables, most of the trials passed a chi-squared test as

well. In contrast to the case of multiplication, approximations to sums of two random variables

tended to be worse when the resulting distribution was fairly sharp. A plot of an approximation

that failed the chi-squared test is shown in Figure 5.8. When Springer's addition method yields a

density function that is sharp, i.e. a and f are both large, the results should be examined against a

numerically generated benchmark before they are trusted.



Although Springer's method was also the best overall for approximating the quotient of two beta

distributions, it was found that in a few isolated cases, McNichols' first and second order

methods yielded slightly better approximations. By the same token, McNichols' first order

method tended to yield better results than the second order method. Since both Springer's

method and McNichols' second order method both required the use of numerical Romberg

integration, it is believed that small numerical inaccuracies were the cause of the unexpected

results. Figure 5.9 however shows that when McNichols' first order method is best, it is not

much better than either his own second order method or Springer's method.

Many quotients did not lend themselves well to approximation by a beta distribution. Figure

5.10 shows one of the worst approximations using Springer's method. Note that the desired

density function is fairly sharp, and therefore does not allow itself to be approximated well by a

beta density function. Unfortunately, it is difficult at present to predict when Springer's method

will yield an unsatisfactory approximation for the case of division.
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Figure 5.9: Plots of the approximation to the quotient of fb(x;4 .74 ,3.7 5,1,2) and

fb(x;8.87,1.36,1,2) on the interval [0.4,1.5] are shown above for the three methods tested. Both

McNichols' first and second order approximations are more accurate than Springer's, but it is
difficult to discern that from this figure.
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Figure 5.10: Plots of Springer's approximation to the quotient of fb(x;8.15,1.5 3,1,2 ) and

fb(x;6.4 3,1.4 5,1,2 ) and the numerically generated benchmark density function on the interval
[0.5,1.5] are shown above. In this case, Springer's method yields a result of
fb(x;6.10,6.10,0.65,1.39 ) and a least-squares value of 0.2151.

For the case of exponentiation of one random variable to a scalar power m using Springer's
method, all of the trials passed a chi-squared test. It was however found that when m was less
than 0 or greater than 3, Springer's method became unreliable. Both McNichols' first and second
order methods performed worse than Springer's for all m tested.

The conclusion to be drawn from both batteries of tests is that Springer's approximation methods
outperform McNichols' methods in terms of accuracy in almost all situations for the arithmetic
operations of multiplication, addition, division, and exponentiation to a scalar power m, such that
0 < m < 3. For the case of addition, Springer's method seems to generate very accurate results as
long as the beta shape parameters of the input distributions are between 1 and 10. For the cases
of multiplication and exponentiation, most of the approximations generated using Springer's
method are accurate. When results are generated with shape parameters less than 1, caution
should be used in accepting these results. Approximation of the quotient of two beta
distributions does have the potential to lead to inaccurate and unexpected results. One topic of

future research could therefore be to develop a new method to more accurately approximate the

quotient of two beta variates or at least predict when approximations using Springer's method
will be inaccurate.



5.5 Comparison of Execution Times

Table 5.5 shows execution times in seconds of the direct numerical and Monte Carlo methods as

well as Springer's and McNichols' analytical approximation methods. For the case of addition,

the convolution method described in Section 4.1.1 was much faster than the Monte Carlo method

described in Section 4.3, since the former method could be implemented using a radix-2 Fast

Fourier Transform algorithm. Calculation of the density function of one random variable raised

to a scalar power was significantly faster by direct calculation according to Equation (4.26) than

with the Monte Carlo method. When performing multiplication and division, the Monte Carlo

method proved considerably faster than the convolution methods described in Section 4.1.1.

However, the curves resulting from Monte Carlo calculations proved inferior in terms of their

smoothness in comparison to the other methods. This problem could be remedied by increasing

the number of points sampled from each input distribution, but as the accuracy of the Monte

Carlo method increases only as the square-root of the number of points sampled [7], large gains

in accuracy would drastically increase execution times.

Springer's and McNichols' analytical approximation methods proved much faster than direct

numerical calculation or calculation using a Monte Carlo approach. Note that Springer's and

McNichols' second order routines for division and exponentiation were slower than the other

analytical approximation routines due to their use of Romberg integration .

Operation Multiplication Division Addition Exponentiation
Method

Direct 2.37 2.7 0.03 0.03
Monte Carlo 1.51 1.4 1.39 0.91
Springer 0.01 0.02 0.01 0.02

McNichols 1st 0.01 0.01 0.01 0.01

McNichols 2 nd 0.01 0.02 0.01 0.02

Table 5.5: Execution times in seconds of all of the numerical and analytical methods explored

for generating approximations to products, quotients, sums, and powers of independent beta

random variables are shown above.





6 Conclusions and Further Research

The overall objective of this thesis was to investigate methods of approximating probability

densities of functions of independent random variables for the purpose of using in the MAESTrO

software tool. Stated mathematically, if X,, X2,..., X, are independent real random variables

with density functions fl (x),f2(x),...,f,(x) and Y= T(X 1,X 2,...,X,), where p is any arbitrary

real function, reasonable approximations were found to the probability density function of the

random variable Y, g(y), using the density functions of X, X2,...,X,.

While it is theoretically possible in many instances to find a closed form analytical expression for

g(y), this expression can be very complicated, difficult to derive, and impossible to evaluate on a

computer. It was therefore desirable to find a reasonably good approximation to g(y) using

simple numerical algorithms that require a fraction of the computational time and resources of

their analytical counterpart. This thesis compared methods for approximating the density of the

function of independent random variables.

The overall objective of this thesis was to investigate the following three methods for performing

calculations with random variables and to compare them with regard to their relative speed and

accuracy:

1. Direct numerical calculation of g(y) based on analytical expressions

2. Monte Carlo approximation to g(y)

3. Analytical approximation to g(y) using the moments or cumulants of XI,X 2 ,..., X,

Experimental results showed that approximating g(y) numerically, based on analytical

expressions, was the most accurate for the cases of multiplication, division, and addition of two

random variables and exponentiation of one random variable to a scalar power. For the cases of

addition and exponentiation, these numerical approximations could also be generated quickly.

Approximating g(y) using a Monte Carlo approach was slow as well as inaccurate in comparison,

due to the fact that fairly simple analytic expressions exist for the arithmetic operations under

study.

The direct numerical method however needs to be further refined so that it can be integrated into

a software package for performing stochastic system analysis and evaluation. In order for this



method to be used for practical stochastic analysis of complex systems, an algorithm must be
developed that can rapidly evaluate the Mellin convolution integrals of Section 4.1.1.
Compression algorithms also need to be developed or existing algorithms utilized in order that
storage of many stochastic variables does not consume an excessively large amount of computer
memory resources.

Springer's analytical approximation method was clearly better than either of McNichols'
methods at performing the arithmetic operations under study. For shape parameters of the input
beta distributions greater than 1 but less than 10, Springer's method was found to reliably
generate accurate approximations to products and sums of two independent random beta variates,
as well as to one random beta variate raised to a scalar power between 0 and 3. Springer's
approximation methods also require significantly less computer memory than direct numerical
methods, as each result is described uniquely and completely by four parameters, and less
computation time, due to their simplicity. Unfortunately, Springer's method was found to be a
bit unreliable when calculating the quotient of two independent random variables.

Despite their problems, Springer's methods are ready to be integrated into MAESTrO. In order
to avoid erroneous results, the accuracy of calculations that meet the following criteria should be
verified using a numerically generated benchmark:

* All division operations

* Exponentiation of a beta distribution to a scalar power m that is less than 0 or greater than 3

* Multiplication operations that generate highly skewed beta distributions

* Addition operations that generate sharp beta distributions
* Calculations involving beta distributions with shape parameters less than 1 or greater than 10

Although it is unlikely that sharp or highly skewed beta distributions would arise as input models
to any systems, they can come about as the result of previous calculations performed on beta
distributions with more symmetric and nearly uniform distribution shapes. The Central Limit
Theorem tells us that as we sum more and more independent random variables, the result
approaches a Gaussian distribution. When we attempt to approximate something close to a
Gaussian with a beta distribution, the interval upon which the beta distribution is defined, [a,b],

and its shape parameters, a and P, become large, due to the fact that a Gaussian has infinitely
long tails. Multiplication of many independent random variables is not as well understood, but
appears to yield results that become more and more skewed. This phenomenon translates to beta

distributions with small shape parameters, a and P. Performing calculations with very sharp

distributions becomes difficult due to the floating point limits imposed by computers (see Section



5.1). Performing calculations with highly skewed distributions is also difficult, as these

distributions may asymptotically approach infinity at either their right or left hand limits.

In order that Springer's method can be more confidently incorporated into software, it is

desirable to find more symmetric and nearly uniform beta approximations to sharp or highly

skewed beta distributions. In the case of sharp beta distributions, almost all of the probability

density is concentrated at the center of the interval [a,b]. We would like to find an

approximation to this sharp distribution that has much smaller shape parameters and that is

defined over a much smaller interval than the original sharp distribution. In the case of highly

skewed beta distributions, we would like to find an approximation that is defined over a larger

interval and with larger shape parameters than the original skewed distribution. Finding

algorithms to perform these mappings would greatly assist practical implementation of

Springer's methods into software, and provides a potentially interesting topic for further research.
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