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Abstract

As VLSI technologies scale to deep submicron region, the DC device-based hot-
carrier criterion is no longer practical for predicting hot-carrier reliability. Understanding
the AC hot-carrier degradation of MOSFETs in actual circuit environment and their
corresponding impact on circuit performance becomes increasingly important. The
purpose of this research is to contribute to the assessment of hot-carrier reliability in
digital CMOS circuits. Several critical issues that face circuit-level hot-carrier reliability
evaluation are investigated, including AC hot-carrier test circuit design and
characterization, AC hot-carrier degradation model calibration, the major factors
determining circuit-level hot-carrier reliability, and the trade-offs between circuit-level
hot-carrier lifetime underestimation and the amount of information required.

In the area of experimental assessment of AC hot-carrier reliability, this thesis
provides a comprehensive understanding of the key issues in designing and characterizing
hot-carrier reliability test circuits. Test circuits that can provide realistic stress voltage
waveforms, allow access to the internal device nodes, and provide insight about circuit
performance sensitivity to hot-carrier damage are presented. New insights about previous
test circuit designs are presented and additional test circuit designs are demonstrated. The
design trade-offs between realistic waveform generation and internal device accessibility
are analyzed and clarified. Recommendations for optimal test-circuit design for hot-carrier
reliability characterization and model calibration are proposed.

In the area of circuit-level hot-carrier reliability simulation, this thesis examines
key issues involved in the calibration and verification of the hot-carrier degradation
models that are used for AC hot-carrier reliability simulation. The need to account for the
stress oxide-field dependence of the degradation model coefficients is demonstrated. The
statistical confidence limits of the extracted degradation model parameters are analyzed.
The sensitivity of degradation to drain and substrate current modeling errors is examined.
Base on these results, the AC degradation model's statistical confidence limits are
evaluated, and the accuracy and precision of AC hot-carrier reliability simulation is
rigorously benchmarked against a comprehensive set of experimental AC circuit
measurements. It is shown that statistical variation in the degradation model parameters
has as much of an impact on the final degradation model accuracy as major changes in the



circuit-design itself. In addition, knowledge about CMOS digital circuit behavior is shown
to be useful in optimizing the calibration of both the degradation and SPICE model
parameters. Specific recommendations are made about improving the consistency and
accuracy of both degradation and SPICE model parameter extraction.

Finally, the major factors that cumulatively contribute to circuit-level hot-carrier
reliability are identified. The inherent inverse relationship between lifetime-
underestimation/criteria-overspecification and the amount of known device/circuit
information are explored. Lifetime-underestimation/criteria-overspecification are shown
to depend quite strongly on the particular "worst-case" approximations used. Each of the
above concepts are illustrated using representative circuit examples and case studies.

Thesis Supervisor: James E. Chung
Title: Associate Professor, Electrical Engineering
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Chapter 1

Introduction

1.1 Overview

The semiconductor and computer industries have made great progress in the last

three decades. Discrete MOS devices have been merged into integrated circuits. Integrated

circuits have gradually incorporated more and more functions on each chip. Today, it is

possible to put an entire mainframe computer on a single piece of silicon. This tremendous

growth is directly attributable to the scalability of the silicon MOS transistor to ULSI

dimensions.

With the continued scaling of device dimensions, the power-supply voltage should

be reduced according to constant-electric field scaling principles [1.1]. This would enable

the reduction of power dissipation and maintain relatively constant internal MOSFET

electric fields. However, circuit-speed reduction would then become significant due to the

increasing non-scalability of parasitic capacitances for device dimensions below 1 gm; the

low signal-to-noise margin would also become increasingly unacceptable due to the non-

scalability of the MOSFET threshold voltage and subthreshold slope. In addition, a higher

power-supply voltage is desirable for reasons of better tolerance to process variation and

compatibility with former process generations. For these reasons, a non-constant field-

scaling methodology is used in practice. As a result, the internal electric fields within

devices tend to increase with scaling since the operational voltage is only scaled down

marginally.



The most important electric fields in MOS devices are the transversal fields in the

gate insulator and the lateral field in the channel. The high lateral-electric field generates

energetic carriers near the drain region of the MOSFET when the device is biased under

saturation conditions. Under the influence of this high lateral field, mobile carriers in the

channel gain sufficient energy such that the effective temperature of these carriers is much

higher than that of the lattice temperature; these highly energetic carriers are referred to as

"hot" carriers.

Hot-carriers may induce a number of performance and long-term reliability

problems [1.1]-[1.5]. Hot-carrier-induced impact-ionization produces substrate current

that can lead to latch-up in CMOS structures [1.6]-[1.7]. Also, the MOSFET parasitic

bipolar transistor can turn on, if excess current in the substrate creates a large enough

potential drop over the distributed substrate resistance. The above problems usually occur

abruptly and may induce unwanted drastic changes in the device characteristics.

Hot-carriers may also generate damage in the gate oxide [1.8]-[1.17], which can

permanently change device characteristics. This oxide damage is caused by the injection

of highly energetic electrons and holes from the channel into gate-oxide region. This

results in the generation of electron and/or hole traps in the oxide, electrically active states

at the Si-SiO 2 interface, and gate current. The oxide and interface damage induces

gradual changes in key MOSFET parameters such as the drain current, threshold voltage

and transconductance. These changes in device characteristics can lead to long-term

circuit performance degradation or malfunction.

In order to minimize hot-carrier degradation problems, a number of technological

solutions have been proposed. Lightly-Doped-Drain (LDD), Double-Diffused-Drain

(DDD) as well as Phosphorus-Drain (PD) MOSFET structures have been developed to



lower the drain-side lateral-electric field and thus reduce the number of hot-carriers [1.18]-

[1.22]. Nitrided or fluorinated gate oxides have also been introduced to improve the gate-

dielectric robustness against hot-carrier-induced damage [1.23]-[1.24]. However, each of

these technological reliability improvements introduces greater process complexity and

less ease-of-scalability for a process. It becomes more and more difficult to implement

these processes in future technology generations.

Improving reliability, in general, requires some form of performance sacrifice. In

choosing a particular device structure and circuit design, it is necessary to optimize

between performance and reliability. Since there is no longer the luxury of maintaining

such wide reliability margins as had previously existed, it is increasingly important that

improved understanding, more quantitative modeling, and better analysis be utilized to

insure that the required circuit reliability exists under field-operation conditions, while at

the same time, maximum possible circuit performance is enabled.

1.2 Motivation

Traditional hot-carrier criteria have been based on DC device performance

degradation, such as a 10% drain current change or a 10mV threshold voltage shift.

However, as technology scales, this type of reliability criteria is no longer practical; it

poses a very stringent limit on device scaling and it comes at the cost of increasingly

complex processes and sacrificed performance. In addition, DC device hot-carrier criteria

are very ambiguous because it is not clear which device parameter is the most appropriate

parameter for determining the hot-carrier reliability criteria. Furthermore, the amount of

device parameter change that is used as the definition of lifetime criteria (such as 10%

current degradation, etc.) is often quite arbitrary. It is not obvious how this particular



amount of device degradation actually impacts circuit performance since the design and

operating conditions of a given circuit are as important in determining overall hot-carrier

reliability as is the degradation of the particular device itself. Thus, understanding the AC

hot-carrier degradation of MOSFETs in the actual circuit environment and their

corresponding impact on circuit performance becomes very important.

Different approaches can be used to assess circuit-level hot-carrier reliability. One

approach is to characterize hot-carrier reliability by testing final products. In order to

observe the impact of hot-carrier-induced device degradation on circuit performance

within a reasonable amount of time, a significantly higher than operational voltage often

has to be applied to accelerate the product degradation. This reliability evaluation process

is destructive, time consuming and costly. If the reliability of the final product is found to

be unsatisfactory, then the entire development process must be repeated.

An alternative approach is to predict hot-carrier reliability in the early design- and

technology-development phase using reliability simulation. This eliminates costly

iteration through the overall product development process, although there will still be

some overhead required in the early stages of the process and circuit development. Thus,

accurate and precise simulation of hot-carrier reliability is essential. The precision and

accuracy of hot-carrier reliability simulation depends on the following issues: 1) the

validity of the DC hot-carrier degradation model under AC conditions; 2) the accuracy of

the simulated device degradation over the time period of interest; 3) the accuracy of the

simulated impact of device degradation on circuit performance.

To understand the first issue, this thesis will examine key issues involved in the

calibration and verification of the hot-carrier degradation models used for simulating AC

circuit-level reliability. Test-circuits will be designed and optimized for reliability



evaluation. Experimental AC hot-carrier degradation results will be compared to reliability

simulation results. The AC degradation model will be improved to account for the oxide-

field dependence of the degradation model parameters.

To understand the second and third issues, the major factors that cumulatively

determine circuit-level hot-carrier reliability will be explored. The relative importance of

each factor on circuit reliability will be examined. The inherent inverse relationship

between lifetime-underestimation and the amount of known device/circuit information

will be discussed.

1.3 Outline of the Thesis

The outline of this thesis is described as follows. Chapter 2 reviews the major hot-

carrier degradation models and degradation mechanisms for both NMOS and PMOS

transistors. It also reviews the impact of hot-carrier-induced degradation on circuit

performance.

Chapter 3 concentrates on hot-carrier reliability test-circuit design and

optimization. These test circuits can provide realistic stress-voltage waveforms. They can

also provide access to the internal device nodes; therefore the fresh and degraded device I-

V characteristics can be individually measured and the AC hot-carrier degradation of

devices can be directly related to the corresponding circuit-performance degradation. New

insights about previous test circuit designs are presented and additional new test-circuit

designs are demonstrated. The design trade-offs between realistic waveform generation

and internal device accessibility are explored. Optimized test-circuit design for hot-carrier

reliability characterization and model calibration are proposed.



Chapter 4 addresses key issues involved in the calibration of the hot-carrier

degradation models that are used for simulating AC circuit-level reliability. First, the

oxide-field dependence of the degradation model coefficients extracted from DC device-

level stress measurements are shown to have significant impact on the accuracy of hot-

carrier degradation prediction, particularly when devices experience a wide range of bias

conditions. Second, the statistical confidence limits of the extracted degradation model

parameters are analyzed. Third, the sensitivity of degradation to drain- and substrate-

current modeling errors is examined. Specific recommendations are made about

improving the consistency and accuracy of both degradation- and SPICE-model parameter

extraction.

In Chapter 5, the AC hot-carrier simulation models are calibrated using DC stress

data. The calibrated simulation results are compared against experimental data obtained

from AC test circuits for two representative industrial technologies. The impact of the

degradation model's statistical confidence limits on AC hot-carrier degradation prediction

is evaluated. Statistical variation in the degradation model parameters is observed to have

as much of an impact on the final degradation model accuracy as major changes in the

circuit-design itself. Finally, it is demonstrated that knowledge about CMOS digital-circuit

behavior is useful in optimizing the calibration of both the degradation- and SPICE-model

parameters.

In Chapter 6, the major factors that determine circuit-level hot-carrier reliability

are identified. These factors are the following: 1) Hot-Carrier Degradation Model

Precision and Accuracy; 2) The Specific MOSFET Terminal Voltage Waveforms; 3)

MOSFET Switching Activity; 4) Circuit Performance Sensitivity to Device Degradation;



5) Relative Importance of the Degraded Circuit Path. Each factor is illustrated and its

relative importance is analyzed.

Chapter 7 attempts to define different-levels of approximations for circuit

reliability evaluation based on the amount of known information about the circuit. The

relationship between lifetime-underestimation and the amount of known device/circuit

information is explored. The circuit lifetime-underestimation is shown to depend quite

strongly on the particular "worst-case" approximations used. These concepts are

illustrated using a digital-circuit case study.

Chapter 8 summarizes the research results of this thesis and proposes future work.
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Chapter 2

Overview of Hot-Carrier-Induced
Degradation

When a MOSFET is biased in the saturation region, a high lateral-electric field

exists which peaks near the drain [2.1]. The channel carriers passing through this high-

field region get accelerated to considerably higher energy than the thermal energy of the

surrounding lattice and are labeled as "hot" carriers. Some of these hot-carriers can create

electron-hole pairs through impact ionization. Others can acquire sufficient energy to

overcome the Si - Si0 2 barrier height and get injected into gate oxide [2.2]-[2. 10].

Figure 2.1 illustrates these hot-carrier effects for an NMOSFET, as well as the

corresponding lateral channel-electric field. The injection of hot-carriers into the gate

oxide is responsible for various types of oxide damage such as interface states, electron

and/or hole traps. This long-term damage of the Si - Si0 2 interface and gate oxide leads to

degradation in MOSFET device performance.

There has been a tremendous effort to understand hot-carrier degradation

mechanisms and to develop models for evaluating hot-carrier reliability in MOSFETs

[2.10]-[2.12]. Since all hot-carrier effects have a common driving force, the lateral-

electric field in the channel, the more easily-measurable hot-carrier effects can be used as

a monitor to predict other, more difficult to measure, hot-carrier effects. For example,

both hot-carrier-generated substrate and gate currents can be correlated to the amount of

resulting hot-carrier oxide damage. The substrate current can be used as a monitor for
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NMOSFET oxide degradation and gate current can be used as a monitor for PMOSFET

oxide degradation.

In this section, the most commonly-used NMOS and PMOS degradation models

will be reviewed. The impact of hot-carrier degradation on device and circuit performance

will be also illustrated.

2.1 NMOS Hot-Carrier Degradation Model

In NMOSFETs, the most important degradation mechanism is acceptor-type

interface state generation [2.1]. Under DC stress conditions, NMOS degradation reaches a

maximum at peak-substrate-current stress-bias conditions, when the gate-to-source stress

voltage is about one third of the drain-to-source stress voltage (Vgs - 1/3 Vds). These

acceptor-type interface states are neutral when empty and negatively charged when

occupied, resulting in a threshold-voltage increase and a mobility decrease for an

NMOSFET.

Besides interface-state generation, electron and/or hole trapping may also occur,

depending on the applied stress-bias conditions. When the gate-to-source stress voltage is

near the threshold voltage (Vgs - Vt) and the drain-to-source voltage is large, positive-

charge generation (hole trapping) is observed [2.9]. This positive charge in the gate oxide

reduces the local threshold voltage near the drain, thus slightly enhancing the NMOSFET

current-drive capability. Therefore, hole trapping is typically not considered a major

NMOS device reliability problem.

When the gate-to-source stress voltage is about the same as the drain-to-source

stress voltage (Vgs - Vds), negative-charge generation (electron trapping) dominates

device degradation [2.10]. Although this negative charge trapping reduces the current



drive, the magnitude of this oxide damage mechanism is typically much less than that of

interface-state generation.

Interface-state generation is the dominant degradation mechanism for

NMOSFETs. The hot-electron-induced interface-state generation can be modeled as a

function of the lateral-electric field [2.1],

I D --D it/(qXEm) )n
ANit W e (1)

where ANit is interface state density, ID is the drain current, W is the width of the device,

(Dit is the critical energy for interface-state generation, X is the electron mean free path, Em

is the peak lateral-electric field, and n is the degradation rate.

Since it is difficult to measure directly the maximum lateral-electric field Em, a

degradation model with more directly measurable quantities is preferred. The hot-

electron-induced substrate current can be used as a monitor of Em. Substrate current can

be modeled by the following relation[2.13]:

-4 il/(qXE )

IsuB 0C * e (2.1)

where Di is the critical energy for impact ionization. By eliminating E, from the above

two equations, the most commonly used DC NMOS degradation model can be derived

[2.1]:

D 'SUB
AN. TI- * * t (2.2)

it W I H ID

where m = dit / Di and H is a technology dependent constant. The hot-carrier-generated

interface-state density ANit is found to be proportional to such common matrix for device



reliability as the percentage change in drain current (AId / Id), the percentage change in

transconductance (Agm/gm), as well as the threshold-voltage shift (AVt).

2.2 PMOS Hot-Carrier Degradation Model

Compared to NMOSFETs, PMOSFET hot-carrier degradation is typically

perceived to be less of problem. This is because fewer hot-carriers are generated due to the

shorter mean-free path and higher oxide barrier for holes in PMOSFETs. It is generally

believed that electron trapping in the gate oxide is responsible for most PMOSFET hot-

carrier degradation. Electron trapping results in a shortening of the effective channel

length, which leads to an increase in drain current. This electron trapping also results in a

threshold-voltage decrease and a subthreshold-leakage-current increase, which has been

identified as a performance-limiting factor for PMOSFETs in the submicron and deep-

submicron region.

For PMOSFETs, device degradation reaches a maximum at peak gate-current

stress conditions, whereas for NMOSFETs, it occurs at peak substrate-current stress

conditions. The PMOSFET hot-carrier degradation models that have been reported [2.8],

[2.14]-[2.18] can be divided into two major types.

Certain PMOSFET hot-carrier degradation models are based on gate current

[2.15]:

A = Ag . *) *t (2.3)



where A is the hot-carrier-induced oxide damage, IG is the gate current, W is the width of

the device, t is the total time of operation, and mg, ng, Hg are the degradation parameters

which can be extracted from stressing experiments. Other PMOSFET degradation models

are based on the total charge injected into the gate oxide during device operation [2.16]-

[2.17].

A= (A • (IG Q nj n )  (2.4)

where IG is the gate current, Qij is the amount of charge injected into the gate oxide, A, m,

and n are technology-dependent parameters which need to be extracted from stressing

experiments.

2.3 Impact of Hot-Carrier-Induced Degradation on
Circuit Performance

Under static DC stress conditions, hot-carrier-induced device degradation for both

NMOS and PMOS transistors produces changes in the threshold voltage,

transconductance and current-driving capability. When the transistors are under the

dynamic operating conditions of a CMOS circuit, the MOSFET terminal voltages changes

over time. Therefore, the drain current and substrate current should be modeled as

functions of time. If the quasi-static assumption is valid, then the hot-carrier degradation

model developed under DC static conditions can be modified to predict the degradation of

devices undergoing AC circuit operation [2.1]:

1 -m (2.5)
ANit = (W ID  (t) *ISUB(t)dt (2.5)

LH
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Chapter 3

Digital Test Circuit Design and
Optimization for AC Hot-Carrier

Reliability Characterization under High
Frequency Stress Conditions

3.1 Introduction

The focus of hot-carrier reliability assessment has shifted from device-level to

circuit-level evaluation. Under circuit operational conditions, devices experience dynamic

terminal voltage waveforms. Therefore, it is important to understand the behavior of hot-

carrier degradation under dynamic voltage conditions. It has been reported that the hot-

carrier degradation of an NMOSFET under dynamic stress conditions is worse than that

predicted by the quasi-static approximations (AC enhancement effect). Some of these

enhancement results have been attributed to measurement errors [3.7], others have been

explained as the result of alternating hole-electron injection since NMOSFETs are swept

through the three different degradation regions (hole injection, interface-state generation,

and electron injection) under typical digital circuit operational conditions [3.2], [3.18].

Almost all of these AC enhancement effects were observed when dynamic voltages were

applied to discrete devices. Although the proposed alternating hole-electron injection may

cause enhanced AC degradation of a single NMOSFET when its gate-to-source voltage is

swept from low to high and the drain-to-source voltage is kept at a constant value,

however, electron injection of an NMOSFET in actual digital circuits is much weaker

since the drain-to-source voltage decreases as the gate-to-source voltage increases.



Therefore, the AC enhancement effect due to alternating hole-electron injection needs to

be carefully re-evaluated under circuit operational conditions.

In order to make accurate assessments of hot-carrier lifetime in a realistic circuit

environment, hot-carrier reliability test circuits are necessary in order to generate realistic

AC stress waveforms which are required for circuit simulation and reliability tool

calibration. Test circuits are also needed to provide insight about AC degradation

mechanisms and to provide a realistic circuit response to hot-carrier damage.

Earlier studies [3.1]-[3.6], which focused on the AC stressing of individual

transistors, suffered from inherently unrealistic stress waveforms; other studies also

suffered from mismatch between the external signal sources and the devices under test,

and from inductive noise coupling to the power supply terminals [3.7]. In addition,

different circuit sensitivities to hot-carrier damage could not be obtained from individual

AC device measurements. Recent studies utilized on-chip oscillators to generate realistic

voltage waveforms [3.9], [3.13]-[3.16]. However, the design of the test structure was not

optimized for typical circuit operational conditions [3.9], or for accurate internal device

characterization [3.13]-[3.16], or for relating device and circuit performance degradation

[3.13].

Another previously-used option, which characterizes hot-carrier reliability using

test circuits which have only been designed for performance evaluation alone [3.8], is also

inadequate since, without access to internal device nodes, it is difficult to delineate

between NMOS and PMOS device degradation, and to distinguish between the circuit's

effect on creating damage from the circuit's sensitivity to that damage.

To address these problems, this chapter discusses key issues involved in designing

hot-carrier reliability test circuits that can provide realistic stress voltage waveforms,



allow access to the internal device nodes, and provide insight about circuit performance

sensitivity to hot-carrier damage. Insights about previous test circuit designs will be

presented and additional test circuit designs will be demonstrated. The inherent design

trade-offs that exist between realistic waveform generation and internal device

accessibility will be analyzed and clarified. Recommendations for optimal test-circuit

design for hot-carrier reliability characterization and model calibration will be proposed.

3.2 Test Circuit Design

For general hot-carrier reliability characterization, test circuits designed as ring

oscillators and inverter chains are advantageous because of their relative ease of delay

measurement and because of their ability to relate directly the impact of hot-carrier

damage to circuit performance. In addition, ring oscillators and inverter chains can easily

be designed to cover a wide range of the circuit-design space by adjusting the transistor

sizes, fanouts and the number of stages.

Figure 3.1 illustrates a general schematic for hot-carrier test circuits designed in

the ring-oscillator configuration; these circuits allow internal node access for the devices

of a representative stage within the oscillator. Similar test structures were designed for

inverter chain circuits as well. The inputs of the inverter chain circuits were driven by an

on-chip voltage-controlled-oscillator (VCO). For both the ring oscillator and inverter

chain circuits, no external signal sources were needed; only an external DC power supply

was required.
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Figure 3.1 General circuit schematic of a ring oscillator AC test structure for hot-
carrier reliability evaluation.

The ring oscillator and inverter chain structures were designed such that the ratio

of PMOS and NMOS transistors sizes is (W/L)p /(WIL) n = 2 in order to have relatively

equal rise and fall times. In digital CMOS circuits, the typical loading of a stage ranges

from 1 to 5 fanins/fanouts. Our test structures were designed to have fanin/fanout values

ranging from 1 to 15.

When laying out the representative inverter stage (indicated as DUT in Figure 3.1),

it is recommended that the NWELL and PWELL of this stage be separated from WELLS

of the other stages, if a twin well process is available. This design allows the substrate

currents of NMOS and PMOS transistors of the DUT to be measured accurately. The hot-



carrier test structures can be laid out small enough to fit into a scribe line. Figure 3.2

shows an example of the layout of a ring oscillator test structure.

Figure 3.2 Microphotograph of a test structure.

3.3 Test Circuit Operation

For the ring oscillator test circuits (and for the inverter-chain circuits as well), the

stress and measurement procedure can be divided into two distinct modes:

3.3.1 Stress Mode

In the stress mode, all the DC probing switches (labeled as switches G and D in

Figure 3.1) are turned off and the circuit is isolated from the external probing pads. The

design of these switches will be discussed in the next section. The desired stress supply

voltage is then applied to pads VCC and VCCS, generating the internal AC stress voltage

waveforms.



3.3.2 Measurement Mode

In the measurement mode, the stress-voltage waveforms are stopped, either by

floating the power supply, VCC, or by disconnecting the ring oscillator via a pass gate.

The probing switches are then turned on, thereby allowing access to the internal device

nodes. By properly biasing the relevant nodes, the degraded internal NMOS, PMOS and

inverter characteristics can be measured for this representative stage within the ring

oscillator.

The output buffers were designed with a separate power supply in order to

minimize the effects of inductive noise. During stress, any degradation-induced change in

the oscillation frequency was monitored at the buffered output pad (typically using a

picoprobe in order to minimize loading). The stage ratio of the output buffer is 3 in our

design. The stage ratio is defined as the width of the next stage divided by the width of the

current stage.

3.4 Internal Node Switch Design

An ideal switch for these hot-carrier reliability test circuits should have the

following characteristics: First, it should minimally disturb the circuit during stress in

order to maintain as realistic circuit operating conditions as possible. Second, it should be

able to pass through a wide range of measurement voltages in order to allow full

measurement of the device characteristics before and after each stress. Third, it should be

able to measure accurately the voltage at the internal node of interest.

Shown in Figure 3.3 are four different design implementations (A, B, C, D) for the

special probing structures to allow internal node access. Note, that there is always a design

trade off between realism of the AC stress waveforms and accessibility to the internal



devices. It is impossible to access the internal nodes of a circuit without introducing some

disturbance to the circuit itself. The goal is to maximize the obtainable information while

minimizing the impact on the circuit behavior.

Design A

The most straightforward way to access the individual devices within a ring

oscillator is to connect the internal nodes directly to probing pads as shown in Figure 3.3a

[3.9]-[3.11]. Although convenient, this direct connection of the probing pads can add

significant capacitance to the internal nodes. Figure 3.4 shows that the probing pads can

change the voltage waveforms significantly. Thus, this particular test circuit design can

only represent the case of extremely large loading; it cannot be used to represent typical

circuit operating conditions and is not suitable for high frequency stressing.

Design B

Using a pass transistor to isolate the probing pad (Figure 3.3b) offers a good

solution to the previously described problem since it only adds a small capacitance to the

circuit (an overlap capacitance and a junction capacitance) while allowing access to the

internal nodes.

Figure 3.5 shows that the effect of the probing pass transistors, when turned off, on

the ring oscillator waveforms is very small. Note, in Figure 3.3b, that both the TD1 and

TD2 pass transistors are necessary, since, during the measurement mode, there is a current

flowing through TD2 and the devices under test (DUT) when a voltage is applied to

Vddrive. Because of the ensuing voltage drop across TD2, TD1 is introduced to measure

the real voltage that exists at node D.



DUT

SWITCH-G SWITCH-D

DUT

IGND

Vgdrive Vdsense Vddrive

DUT

I I

IGND

-TG1 -] TG2 ---------- -, TD1 -TD2

Igdirve Iddrive

(b)

(c)

Vgsense Vgdirve Vdsense Vddrive

DUT

- G I f

L__I___I

Vgdrive Vdsense Vddrive

Circuit design of special probing structures for internal node
access.

(d)

H TD2

Iddrive

Figure 3.3



Ideally, on the gate side, there should be no current flowing through TG2 during

the measurement mode However, we found that there was an unexpected leakage current

path going through TG2 and the NMOS device Np (see Figure 3.1 ) of the previous

inverter stage when a voltage was applied to Vgdrive. This is because the input node, INp,

of the previous inverter stage must have been floating during the measurement mode. This

floating node is very unstable and sensitive to capacitive coupling. As the voltage Vgdrive

is increased, the transistor Np is gradually turned on due to coupling of the overlap

capacitance between the drain and gate. Figure 3.6 shows that this leakage current rises as

the voltage Vgdrive increases. Thus, the switch design in Figure 3.3b, while allowing a

realistic stress waveform, can potentially induce errors due to leakage-current-induced

inaccuracies in measurements of the device node voltage VG ( Figure 3.7 ). Note, that this

is an inherent problem not only for this particular test-circuit design, but also for other

previous test-circuit designs which are based on the same measurement principle [3.12]-

[3.17].

Design C

In order to solve the leakage current problem that exists for Design B, the real

voltage that exists at node G, can be directly measured by introducing a new additional

pass transistor, TG1, as shown in Figure 3.3c; this greatly improves the accuracy of the I-

V characterization. However, even with TG1, the leakage current still exists. For

sufficiently high leakage current, the voltage VG will appreciably differ from Vgdrive due

to the ohmic drop across TG2. If sufficiently high (the exact value depends on the

particular technology), the leakage current can actually limit the maximum applicable

measurement voltage that can be applied to the node VG. It is worth emphasizing that this

leakage current is not present during the ring oscillator stress mode since all the pass
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transistors are switched off and no internal nodes are floating. The design in Figure 3.3c,

although it still places limitations on the range of possible characterization voltages, does

generate more realistic stress waveforms and allows more accurate internal device

measurements.

Design D

Shown in Figure 3.3d is a new switch design which uses an extra switch gate, TS,

to cut-off completely the leakage path that exists during the measurement mode. With no

leakage current flowing, the node voltage VG can be accurately measured using just TG1

(no ohmic drop); no limitation also exists on the range of applicable VG measurement

values. However, these benefits come at the cost of adding a small on-resistance during the

stress mode.

In the stress mode, the voltage applied to the gate of the switch transistor TS

should be at least one body-effected threshold higher than the stress voltage applied to

VCC. This is to ensure that the voltage at node G won't be clamped because of the

threshold-voltage drop. This is also to ensure that the on-resistance of device TS is kept

small. Figure 3.8 shows that the device TS has minimal effect on the ring oscillator

waveform. The design in Figure 3.3d, although it produces a small acceptable impact on

the stress waveform, allows the most accurate and robust measurement of the internal

device nodes.

3.5 Experimental Results

The LDD (Lightly-Doped-Drain) devices and test circuits used for this study were

fabricated using either a 0.4um (technology A) or a 0.6um (technology B) NWELL

CMOS process. Test circuits in both the ring oscillator and inverter-chain configurations
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were fabricated with an array of different fanouts, number of stages, and structures for

internal device node access. For all test circuits, the NMOS and PMOS device widths were

5um and 10um, respectively. Ring-oscillator test structures were stressed with periodic

interruptions in order to monitor the degradation of the device and inverter characteristics.

Take the test structure shown in Figure 3.3d as an example. During the stress

mode, the switch gate TS is overdriven by setting the gate voltage of TS to (Vstress +

Vth(B)), where Vstress is the stress voltage and Vth(B) is the body-affected threshold

voltage. This is to ensure that waveforms at the input of the DUT have a full voltage

swing. The VCC and VCCS nodes (Figure 3.1) of the ring oscillators are connected to

Vstress. The power supply of the output buffer is set at the operational voltage of the ring

oscillator in order to avoid any degradation of the buffer due to stressing.

During measurement, the switch gate TS is turned off so that the DUT is isolated

from other stages in the ring oscillator. The probing switches TG 1, TD 1 and TD2 are then

turned on. The node voltage Vgdrive becomes the gate voltage of the NMOS (or PMOS)

device under test, the node voltage Vdsence becomes the drain voltage, and Iddrive becomes

the corresponding drain current of the NMOS (or PMOS) device. By properly biasing

Vgdrive and Vdsence and measuring Iddrive, the NMOS and PMOS I-V characteristics can be

determined. The node voltages Vgdrive and Vdsence can also be used to determine the

inverter transfer characteristic.

Figure 3.9 shows typical fresh and degraded internal NMOS and PMOS DC I-V

characteristics taken from one stage of a 23-stage, fanout 1, oscillator test circuit after

having undergone high-frequency (100 to 350 MHZ) AC stress for 20 hours. The stress

voltage is 4.5V. Figure 3.10 shows the associated degradation in the inverter transfer

characteristic.



The complex nature of the device/circuit interaction in hot-carrier degradation

necessitates distinguishing between the different NMOS and PMOS characteristics. For

example, Figure 3.11 and Figure 3.12 compare the internal device and circuit performance

degradation characteristics for ring-oscillator test circuits from technologies A and B.

From Figure 3.11, it is clear that for technology A, NMOS device degradation dominates

that circuit's performance degradation, whereas, for technology B, first PMOS and then

NMOS device degradation is responsible for that circuit's performance degradation (as

observed in the initial speed up and then slow down in the oscillation frequency). Without

internal node access, allowing direct device measurements, it would be impossible to

determine the root cause for the circuit performance degradation from the frequency

characteristics alone.

3.6 Summary

We have critically analyzed test circuits for AC hot-carrier reliability

characterization and have proposed two new AC test structures (Figure 3.3c and Figure

3.3d) which can provide realistic high-frequency voltage waveforms and can allow more

robust and accurate internal device measurements. The degradation characteristics of

devices stressed under realistic AC conditions and the impact of hot-carrier damage on

circuit performance can be directly obtained.
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Chapter 4

Key Hot-Carrier Degradation Model
Calibration Issues for Accurate AC
Circuit-Level Reliability Simulation

4.1 Introduction

In order to establish realistic hot-carrier reliability criteria based on circuit rather

than device performance, several different models for predicting AC circuit-level

degradation have been developed [4.1]-[4.5]. However, there currently does not exist any

complete or consistent methodology on how to calibrate these models to existing

experimental data; inconsistent model calibration techniques can result in widely differing

predicted AC degradation values. In addition, each AC model suffers from a severe lack of

any detailed experimental verification; thus, there is little clear basis upon which to

evaluate and compare different models.

In this chapter, key issues involved in the calibration of the hot-carrier degradation

models used for simulating AC circuit-level reliability are examined based on device and

circuit data from two representative industrial technologies. First, the need to account for

the stress drain-oxide-field dependence of the degradation model coefficients extracted

from DC device-level stress measurements is demonstrated. Next, the statistical

confidence limits of the extracted degradation model parameters is analyzed. Then, the

sensitivity of degradation to drain and substrate current modeling errors is examined.

Finally, specific recommendations are made about improving the consistency and

accuracy of both degradation and SPICE model parameter extraction.



4.2 Experimental Details

The device experimental data used in this study was obtained from two

representative CMOS technologies: Technology A is a 0.4 micron, LDD process with an

oxide thickness of 7nm; Technology B is a 0.6 micron, LDD process with an oxide

thickness of 12.3nm.

DC stress measurements for parameter extraction were performed on NMOS

devices distributed across the wafer. Linear-current degradation, measured in the same

polarity as the stress bias; was chosen as the principal degradation monitor because of its

well-understood relationship to hot-electron-induced interface states [4.6].

4.3 NMOS Degradation Modeling Issues

4.3.1 Degradation Parameter Extraction

As summarized in Chapter 2, the basic DC equation for NMOS acceptor-type

interface-state generation, which underlies almost all major hot-carrier reliability

simulation tools, is the following [4.7]:

AID D SUB
-D AN = D t (4.1)

where the parameter n is the time acceleration coefficient; the parameters m and H are the

voltage acceleration coefficients; ID and ISUB stand for the drain and substrate current,

respectively; W is the width of the device, and ANit stands for the hot-carrier-induced

interface damage.



Figure 4.1 a and Figure 4. lb show the DC forward-linear drain-current degradation

characteristics versus time for the two technologies. It can be seen that the asymptote for

NMOS hot-carrier degradation follows a simple power-law relationship [4.8], from which

the time acceleration factor n and the device lifetime " can be extracted by plotting the

amount of degradation versus time on a log-log scale. In order to calculate the lifetime of a

MOSFET due to hot-electron degradation, a lifetime criterion needs to be defined. A

typical lifetime criterion is a 10% or 20% reduction in linear drain current.

Traditionally, in order to account for the "worst-case" hot-electron degradation

scenario, the stressing condition has been chosen such that ISUB is at a maximum. It has

long been believed that the NMOSFET undergoes the most hot-carrier degradation under

peak ISUB conditions, because ISUB is produced by the high lateral-electric field, which

also creates hot-carriers. However, devices in circuits do not always experience worst-case

stress conditions during circuit operations. Since the ultimate goal of degradation model

parameter extraction enable predictions of circuit lifetime, it is important to explore the

bias dependence of the these degradation parameters.

In this study, a range of different stress biases were applied. For Technology A:

Vgs = 1.0, 1.1, 1.3, 1.5 V; Vds = 4.0, 4.1, 4 .3 , 4 .5 V; for Technology B: Vgs = 3.0, 3.2, 3.4,

3.7 V; Vds = 6.1, 6.3, 6.5, 6.7 V.

For both Technologies A & B, the oxide-field dependence of the time-acceleration

factor is observed to be relatively weak. Thus, constant n values are assumed for all

subsequent analysis. This assumption allows lifetime extrapolation complications due to

non-constant n values [4.9] to be avoided.
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To extract the degradation parameters m and H, the degradation equation (4.1) can

be rearranged as;

* * ID 1/n (ISUB - m'D = H (AD) * I (4.2)
W ID

where AD is the lifetime criteria defined in Equation 4.1, (such as a 10% or 20% linear

drain current degradation), t is the corresponding lifetime extracted from the slope of the

log(AD) - log(t) plot. Based on Equation 4.2, the parameters m and H can be extracted

from the lifetime correlation plot 'r ID/W versus ISUB/ID on a log-log scale. By stressing

devices with different ISUB/ID ratios, the data can be fitted to Equation 4.2. The parameters

m and log(H) can be derived from the slope and the y-intercept of the fitted line.

Figure 4.2a and Figure 4.2b show the lifetime-correlation plots for the two

technologies, from which the voltage-acceleration coefficients, m and H can be extracted.

Both m and H display a pronounced dependence on the stress oxide-electric field at the

drain, which is defined as EOx = (Vgs - Vds - Vfb) / Tox. For each particular Eox, the

observed scatter in the lifetime data is due to statistical variation in the MOSFET

structural parameters that impact the degradation process (and which are manifested in

variation of the parameters m, n, and H) [4.10]-[4.11].

4.3.2 Evaluating Degradation Model Validity

Although the parameters m & H depend noticeably on the stress oxide field, Eox

[4.12], these two degradation model parameters have often been assumed to be single-

valued constants, extractable at peak substrate-current conditions [4.2]-[4.4]. However, in

the AC circuit environment, devices experience a wide range of terminal voltages and
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stress oxide fields. Therefore the validity of the degradation model under these circum-

stances needs to be evaluated.

DC stress experiments were performed over a wide range of stress-bias conditions

(Figures 4.2a-b), from which the degradation parameters n, m and H were extracted,

based either on variable-EOx or on peak-Isu B conditions. Using these extracted n, m, H

parameters, along with the in-situ measured DC ID and ISUB values during stress, DC

linear-current degradation was first calculated using Equation 4.1 and then compared with

the original experimental degradation data. Figures 4.3a-b illustrate the correlation

between the actual measured data and the predicted values for Technology A for the two

different sets of extracted degradation model parameters.

Since the DC substrate- and drain- current values used in the calculation were

experimentally measured in-situ for each device, any discrepancies between the measured

and calculated degradation results seen in Figures 4.3a-b must be due to inaccuracies in

the degradation model parameter extraction and/or intrinsic statistical variation. As

summarized in Table 4.1, for both technologies, a high correlation between the

degradation model and data is only achievable if the oxide-field dependence of the

parameters m & H is properly taken into account. It is also shown that using only a single

value for the parameters m & H, extracted based on peak-ISUB data, results in a poor fit to

the experimental data.

One speculative explanation for the observed oxide-field dependence of the

parameters m and H is energy band bending of the Si substrate due to the applied oxide

field, which forces the drain-current path deeper into the silicon, further away from the Si-

SiO2 interface [4.13]. Figure 4.4 illustrates the energy band diagram near the drain when
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NMOSFET is biased in saturation region. The higher the oxide field, the larger the amount

of band bending, and the greater the distance hot-carriers must travel to reach the gate

oxide. As a result, additional energy is required for hot-electrons to cross over the Si-SiO 2

barrier height to create interface states.

Gate

Figure 4.4

SiO 2
Substrate

The energy band diagram near the drain when NMOSFET is biased in
saturation region.



The oxide-field dependence of the degradation parameter m can be related to the

change in critical energy required for hot-electron-induced interface-state generation.

However, the exact functional form for this oxide-field dependence is not known [4.7]. In

this study, a piece-wise linear model is adopted with the assumption that the m and

Log(H) parameter values remain constant outside of the regions with experimental data.

Figure 4.5 shows the parameter m as a function of Eox, experimentally extracted

for both technologies along with empirical fits by piece-wise linear functions, as well as

second and third order polynomials. As can be seen from Figure 4.5, the difference

between the three fitted expressions is small within the measured range of data, while

outside this range, the difference between the three models can be quite large. Sensitivity

to the choice of model for the parameter m as well as sensitivity to model fitting error can

be reduced by fitting the model using m values extracted for both a sufficiently large

number and over a sufficiently wide range of Eox values.

4.3.3 Evaluating Degradation Model Precision

Across a die, wafer or lot, device degradation characteristics may statistically vary

due to differences in poly CD (Leff), oxide thickness, substrate and source/drain doping

concentration or LDD spacer dimensions, etc. This device variation produces scatter in

the hot-carrier lifetime, as can be observed in Figures 4.2a-b. For each extracted value of

m & H for a particular Eox value, the corresponding statistical confidence interval can be

determined.

Figure 4.6 illustrates the mean (dashed line) and the 95% prediction intervals

(dotted line) for a linear regression. The two asymptotes of the prediction interval (solid

lines) are very good approximations for the prediction interval in the regions of



extrapolation. The 95% confidence bounds for the degradation model parameters m and H

can be obtained from the slope and intercept of each asymptote.

Figures 4.7a-b display the associated 95% and 99% confidence intervals for each

of the m & H values extracted from Figure 4.2 for technology A and B. For simplicity,

piece-wise linear interpolation was used to generate analytical expressions for the upper

and lower confidence limits as a function of EOx. Note, that differences in the confidence

interval size can be caused by (1) larger intrinsic parameter variation, (2) different data

sample sizes, (3) different parameter sensitivity to lifetime variation. Reason (3) is

illustrated in Figure 4.2b and Figure 4.7b where the lifetime correlation slope becomes

increasingly sensitive to lifetime variation as the Eox magnitude gets larger. The statistical

confidence intervals can be reduced by taking more data from DC stress experiments.



2 1 0 -1 -2 -3 -4 -5

Eox (arb. units)

8

7

05
o0
-
S04

E3

2

1
2 1 0 -1 -2 -3 -4 -5

EOx (MV / cm)

Model parameter m as a function of Eox. The dashed and dotted lines
represent second- and third-order polynomial models, respectively.
The solid lines represent a piecewise-linear model. The use of different
fitting models can introduce significant differences in m values outside
the range of data.

Figure 4.5



Illustration of mean, prediction interval, upper and lower bound of
the slope and intercept for linear regression.

Figure 4.6



C

I
0
0-J

8

7

6

5

E4

3

2

1

0
14

14

12

10

8

E 6

4

2

0

0 -1 -2 -3 -4

Eox (arb. units)

8

6

4

S2

0
I

0-2

-4

o •

a 

\

--

1 0 -1 -2 -3

E0x (arb. units)

1 0 -1 -2 -3 -4 1 0 -1

EOx (MV / cm) EOx (MV

-2

/ cm)

-3 -4

The oxide-field dependence of parameters m and H as well as the
statistical confidence intervals. The solid, dashed and dotted lines rep-
resent the mean values, 95% and 99% confidence intervals of the
extracted m and Log(H) parameters as a function of EOx. (a) Technol-
ogy A, (b) Technology B.

-8

-10

Figure 4.7



4.4 SPICE Modeling Issues

4.4.1 SPICE Modeling Validity

The calculated amount of hot-carrier degradation is sensitive to the simulated

substrate- and drain-current values. Therefore, the SPICE MOSFET model used for

degradation simulation should be as accurate as possible in order to minimize lifetime

prediction error. Typically, SPICE parameter extraction is optimized for circuit

performance simulation. However, since experimental AC hot-carrier degradation data is

typically obtained under stress voltage conditions, SPICE I-V parameter extraction should

be optimized around these stressing voltages, when comparing AC simulated and

experimental results.

Figure 4.8 shows measured I-V data as well as SPICE simulations using two

different sets of SPICE model parameters: one optimized around the stress-bias

conditions, the other around operational-bias conditions. As can be seen, significant error

can be introduced in simulating the drain current around stress conditions, if the wrong

SPICE model parameters are used. Note, that although SPICE parameter optimization at

high stress voltages is important when performing comparisons between simulations and

AC degradation experimental results, it is unnecessary for reliability simulation at

operational voltages (for example, to calculate the operational 10-year AC lifetime).

4.4.2 Degradation Sensitivity to ID and ISUB Variation

Drain and substrate currents vary from device to device due to process variation.

These current variations correlate with changes in hot-carrier degradation that are not

captured using simulation based on only a single SPICE model to represent the varying
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device I-V characteristics across a die or wafer. Assume 6 ID and 8 ISUB are modeling

errors in the drain current ID and substrate current ISUB, respectively, and 8ANit represents

the corresponding error in the predicted degradation. Then, based on Equation 4.1 and

assuming the parameters n, m, and H as constants, the degradation error sensitivity to 8ID

and 5ISUB can be expressed as:

3AN.it 8I D  
61SUB= (1- m) -+m r+mn 

ANt D SUB

30

20

10

R 0

z

(4.2)

Sensitivity of hot-carrier degradation to variations in drain and sub-
strate currents. Degradation parameter values: n = 0.3, m = 5.

Figure 4.9



Figure 4.9 illustrates the sensitivity of ANit (for degradation parameters n = 0.3, m

= 5) to simulation errors in ID and ISUB. Depending on the sign of 6ID and 8ISUB, as can

been seen from Equation 4.2, the two error components can either add constructively or

destructively. As one can see from Figure 4.9, 5% errors in ID and ISUB can result in a

maximum of 30% errors in current degradation.

4.5 Summary

This chapter has analyzed key hot-carrier degradation modeling calibration and

verification issues. Accurate reliability simulation requires accounting for stress drain

oxide-field dependence and inherent statistical variation in the degradation model

coefficients as well as errors due to SPICE modeling inaccuracies.
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Chapter 5

Experimental Verification of AC Hot-
Carrier Degradation Using Calibrated

Reliability Simulation

5.1 Circuit-Level Hot-Carrier Reliability Simulation

Circuit behavior can be analyzed by using circuit simulators which usually

consists of several build-in circuit analysis modules. For example, SPICE can perform

DC, AC small-signal, transient, as well as temperature analyses. Transient analysis is used

for circuit-level reliability simulation. Transient analysis outputs the variables of interest

as a function of time over a user-specified time interval, i.e. circuit response to input-

stimuli versus time analysis. The idea behind using the transient mode of a circuit

simulator, instead of using some dedicated reliability simulator, is to make reliability

simulation possible during normal circuit-performance simulation.

However, since hot-carrier degradation is a long term wear-out process, using real-

time transient circuit simulation to calculate the actual amount of transistor damage due to

hot-carrier effects would require an excessively long analysis time. Therefore, hot-carrier

degradation is generally simulated for only the first few waveform cycles, and this result is

then used to extrapolate to the user-specified time, such as 10 years, to estimate the total

cumulative damage during product lifetime.

Several circuit reliability simulation tools have been developed during the past few

years, most of which are based upon transistor-level circuit simulation environments such

as SPICE, or different timing simulators. The advantage of using a transistor-level circuit



simulator, that outputs analog node voltage and current waveforms, is two fold. First, it

allows failure and degradation prediction in any circuit that the circuit simulator can

simulate. Second, model implementation is straightforward because the outputs of the

simulator can be used directly to calculate the amount of hot-carrier-induced degradation

(using Equation 2.2).

Certain hot-carrier reliability simulators use SPICE-level circuit simulators as their

core simulation engine. Among them are the programs BERT, developed at University of

California, Berkeley [5.1]-[5.2]; HOTRON, developed at Texas Instruments [5.3]; RELY,

developed at University of Southern California [5.4]-[5.5]; iSMILE, developed at

University of Illinois at Urbana-Champaign [5.6].

These SPICE-level reliability simulators share very similar characteristics.

Figure 5.1 illustrates the flow diagram of these simulators. All these simulators consist of

a SPICE-level circuit simulator, a pre-processor and a post-processor. The simulation

procedure is as follows. First, the SPICE-level simulator simulates a circuit using fresh

device I-V model parameters, and the voltage and current waveforms are obtained for each

transistor in the circuit. Next, the post-processor calculates the value of hot-carrier-

induced degradation for each transistor. Then, the pre-processor generates new degraded

device I-V SPICE model parameters for each transistor based on the degradation level of

each transistor. Finally, the degraded circuit performance is analyzed with the SPICE-level

circuit simulators utilizing the degraded device parameter files.

There are also hot-carrier reliability simulators which use timing-level circuit

simulators as their core simulation engine. Among them are the programs ILLIADS-R

[5.7] and iPROBE-D [5.8], developed at University of Illinois at Urbana-Champain.
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Figure 5.1 General block diagram of a SPICE-level hot-carrier reliability simulator.

The program ILLIADS-R uses a similar simulation methodology as for BERT.

First it simulates the circuit using fresh device I-V parameters. The voltage and current

waveforms are obtained. Then the hot-carrier-induced damage level of each device is

estimated for the user-specified time. This damage level is then used to determine the

degraded device I-V model parameters of each device by interpolating the pre-determined

aged device parameters of two adjacent stress levels. After that, the aged circuit

performance is simulated. The advantage of ILLIADS-R is its improvement in circuit

simulation speed. By assuming piece-wise linear input waveforms for the circuit and by

using a regional quadratic model for the device I-V characteristics, analytical solutions

can be obtained for the voltage and current waveforms. Therefore, the speed simulation

gain can be significant when compared to SPICE-level circuit simulators, where

differential equations need to be solved in order to obtain the voltage waveforms. The

disadvantage of ILLIADS-R is its poorer accuracy due to the non-physical device I-V

model and the simplified hot-carrier degradation model.



The program iPROBE-D adopts both timing and probabilistic simulation

techniques to estimate hot-carrier degradation. In probabilistic simulation, an event is

defined as the switching of a voltage waveform with non-zero probability. Given statistical

descriptions of the primary input signals, probabilistic techniques can then be used to

obtain the corresponding statistical descriptions of the voltage and current waveforms

inside the circuit. These probabilistic waveforms are then used to calculate the degradation

of each transistor. Although this method is very fast, it is less accurate than other

simulation methods. It also has difficulty in analyzing circuits with feedback.

5.2 Simulation Methodology

Little effort has been spent on comparing and benchmarking the different

reliability simulators. Since the program BERT is one of the most mature circuit hot-

carrier reliability simulators and has the highest degree of visibility in the literature and in

industry, other hot-carrier reliability simulators are typically compared to BERT to

evaluate their simulation accuracy. In this chapter, a commercial version of BERT -

BTABERT is used for a rigorous comparison between one of the most accurate hot-carrier

reliability simulation [5.9] and experimental data.

The program BTABERT simulates changes in the circuit performance due to hot-

carrier effects, time-dependent breakdown and electromigration. BTABERT uses HSPICE

as its core circuit simulation engine, and uses pre- and post-processors to handle the

different reliability calculations and to provide the links to the SPICE simulation results.

In this chapter, we focus on BTABERT's hot-carrier reliability simulation

calibration. The main goal of BTABERT is to estimate the amount of hot-carrier

degradation each transistor experiences during circuit operation. To accomplish this task, a



parameter called AGE is introduced. This parameter quantifies the amount of degradation

of each device as a function of bias conditions and stress time. The parameter AGE is

defined as:

T1

AGE(T) = I dt (5.1)

0

where T1 is the duration of SPICE simulation (usually a few clock cycles), IDS and ISUB

are drain and substrate currents, m and H are degradation parameters which need to be

extracted from DC stress experiments. The total AGE of a device at the time of interest T,

can then be calculated by assuming periodic circuit behavior,

AGE(T) = ( H).AGE(T 1) (5.2)

Once the AGE(T) of each transistor in the circuit is calculated, the actual aged

device SPICE model parameters of each device can be obtained by interpolating each

parameter from the pre-stressed device parameters of adjacent AGE levels. Then the

circuit performance degradation after stress can be predicted by simulating the entire

circuit behavior using the degraded device parameters.

Figure 5.2 shows the flow diagram of BTABERT simulation. The major steps in

BTABERT simulation are the following:

(1) Extract the degradation parameters n, m and H as a function of the stress oxide

field as described in Section 4.3. In order to allow the user to define the oxide-field depen-

dence of the parameters m, n, and log(H) as either piece-wise linear functions or polyno-

mials, a modified version of BTABERT was developed in collaboration with BTA

Technology, Inc. The degradation parameters m and H for different Eox values were

extracted from the DC stress measurements shown in Figures 4.2a-b. The piece-wise lin-



ear functions in Figure 4.7 were used to model the Eox dependence of the parameters m

and log(H) as well as for their associated 95% confidence intervals.

(2) Extract device SPICE model parameters from a fresh device, followed by succes-

sive extractions of the same device after it has been subjected to DC hot-carrier stress for

increasing AGE intervals.

BERT simulation flow diagramFigure 5.2



(3) Calculate the AGE for each of the devices in the circuit of interest using Equation

5.1-5.2.

(4) Simulate the desired circuit using the fresh device I-V parameters.

(5) Determine the AGE(T) that each device in the circuit would have if the SPICE

analysis is repeated up to the user-specified time T.

(6) Compare the AGE(T) of each device in the circuit with that of the pre-stressed

model parameter files, and calculate the new aged model parameters of the devices in the

circuit by linear interpolation between the model parameters of two adjacent degradation

levels.

(7) Simulate the aged circuit behavior using SPICE with the set of aged model param-

eters for each device in the circuit to evaluate the impact of hot-carrier damage on circuit

performance.

5.3 Experimental Methodology

AC hot-carrier effects in actual circuit environments can be better understood

through the use of test structures which can monitor both post-stress device parameter

degradation and circuit performance degradation. Figure 5.3 shows a circuit schematic of

a ring oscillator AC test structure with fanout 1 [5.10]. The measurement methodology is

the same as described in Section 3.3. The circuit hot-carrier degradation data are obtained

from a set of inverter ring oscillator test structures. These ring oscillators are fabricated

using two CMOS technologies A and B as described in Section 4.2. The characteristics of

the ring oscillators are summarized in Table 5.1.
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Circuit schematic of a ring oscillator AC test structure with fanout 1
for hot-carrier reliability evaluation.

Table 5.1: Ring Oscillator Test Structures

Technology Fanout Number of Stages NMOS PMOS
Sizes Sizes

A 1, 2, 3, 6, 15 23, 23, 23, 23, 11 5 gm 10 gm

B 1, 2, 4 23, 13, 13 5 gm 10 gm

VCC

GND

OUTPUT

Figure 5.3



5.4 Benchmarking Calibrated AC Hot-Carrier
Reliability Simulation Using Experimental Results

5.4.1 AC Degradation Model Validation

Using test circuits as shown in Figure 5.3, one can evaluate the validity of the AC

degradation model directly by comparing the experimental AC degradation data with

BTABERT simulation. Figures 5.4 & 5.5 compare, for both technologies, the DC-stress

NMOS degradation, the 95% confidence interval bounds of the simulated AC-stress

NMOS degradation, and the experimental AC-stress NMOS data for different circuit fan-

outs.

For both technologies A & B, the AC experimental data is observed to fall within

the 95% confidence interval for the BTABERT simulations. The general agreement

between the simulated and experimental results in both Figures 5.4 & 5.5 is significant in

that the simulated results were based entirely on DC-extracted model parameters with no

after-the-measurement matching to the AC data.

5.4.2 AC Degradation Model Precision

Comparing Figures 5.4 & 5.5, we observe that the simulated results for

Technology B have a wider 95% confidence interval than for Technology A. This is

because the corresponding confidence interval for the extracted parameters m and H, as

shown in Figure 4.7, happens to be larger for Technology B than for Technology A in the

region of high EOx where the inverters spend most of their switching time.

It is worth emphasizing that the 95% confidence intervals for the NMOS current

degradation in Figures 5.4 & 5.5 were simulated without taking into account the impact of

any statistical variation in either the drain and/or substrate currents. As discussed before,



these factors can introduce additional uncertainty to the simulation. As a result, the actual

95% confidence intervals in Figures 5.4 & 5.5 will likely be somewhat larger than those

shown.

It should also be noted from Figure 5.4 & 5.5 that the AC experimental

degradation sensitivity due to different inverter fanouts is of comparable magnitude to the

sensitivity due to statistical variations in the parameters m and H. This suggests that

statistical variation in the degradation model can impact the precision of reliability

simulation as much as changes in the circuit design itself, and that greater reliability

simulation accuracy could be obtained through optimized degradation model parameter

extraction procedures.

5.5 Optimizing Degradation Model Calibration for
Accurate AC Hot-Carrier Reliability Simulation

In static CMOS digital circuits, most AC hot-carrier stress occurs during switching

[5.11]. This time period corresponds to only a certain limited range of stress oxide field

across the NMOS device (Figure 5.6). Thus, in calibrating either the degradation or SPICE

models, efforts should be focused just on those E0 x regions of major importance (as

dictated by the digital-circuit AC voltage waveforms).

In modeling the oxide-field dependence of the degradation model parameters m &

H, DC degradation data should be taken within the relative Eox window estimated by prior

AC circuit simulation in order to allow for more accurate and efficient interpolation and

modeling. Care should be taken since, if the inverter Eox window falls outside of the Eox

calibration range, severe extrapolation error can arise.
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Comparison of NMOS DC and AC linear drain-current degradation for
Technology A. The experimental AC current degradation values are
taken from CMOS ring oscillators. The number of stages for fanout 1,
2, 3, and 6 is 23; for fanout 15, the number of stages is 11. The 95%
confidence interval of ring oscillator with fanout 1 is simulated using
the upper and lower bounds of the parameters m and H. The stress
voltage is 4.5 V.
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Comparison of NMOS DC and AC linear drain-current degradation for
Technology B. The experimental AC current degradation values are
taken from CMOS ring oscillators. The number of stages for fanout 1 is
23; for fanout 2 and 4, the number of stages is 13. The 95% confidence
interval for the ring oscillator with fanout 1 is simulated using the upper
and lower bounds of the parameters m and H. The stress voltage is 6.8 V.
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Simulated NMOS substrate current in a CMOS inverter for Technol-
ogy A. The key substrate current region is not very sensitive to differ-
ent input rise times and different output loads. The power supply
voltage in this figure is 4.5 V.

80

70

60

50

40

30

20

10

0

70
(D
N

Cz
E
0

C,
(0

Figure 5.6



5.6 Summary

State-of-the-art AC hot-carrier simulation models, which have been calibrated

solely using DC stress data, have been benchmarked against AC test circuit data from two

representative industrial technologies. The AC degradation model's statistical confidence

limits have been evaluated, and the accuracy and precision of AC hot-carrier reliability

simulation have been rigorously benchmarked against a comprehensive set of

experimental AC circuit measurements. Statistical variation in the degradation model

parameters is observed to have as much of an impact on the final degradation model

accuracy as major changes in the circuit-design itself. Finally, knowledge about CMOS

digital circuit behavior is shown to be useful in optimizing the calibration of both the

degradation and SPICE model parameters.
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Chapter 6

Major Factors Contributing to Circuit-
Level Hot-Carrier Reliability

6.1 Introduction

Existing hot-carrier (HC) reliability criteria, based on device-performance metrics

alone, are too ambiguous, resulting in excessive guard-banding, sacrificed device

performance, and unnecessary process complexity. Although significant work has been

carried out on hot-carrier degradation modeling [6.1]-[6.3] and reliability circuit-

simulation tool development [6.4]-[6.6], no consistent method yet exists as to how to

assess hot-carrier lifetime in terms of more realistic circuit, rather than device,

performance. What is lacking is a comprehensive understanding of the major factors that

contribute to circuit-level hot-carrier reliability.

This chapter attempts to define and characterize the major factors that

cumulatively determine circuit-level hot-carrier reliability and to determine each particular

factor's relative importance.

6.2 Major Factors Determine Hot-Carrier Reliability

NMOS hot-carrier degradation can be modeled as shown in Equation 6.1, where ID

and ISUB stand for drain and substrate currents; n, m and H are the degradation

parameters; Ts is the time duration per transition; Ns is the total number of transitions or

switches:



Ns Ts 1 -m m
ANit C-WHJ0  D (t) * ISUB(t)dt (6.1)

This degradation equation provides the link between the specific device terminal voltage

waveforms and the corresponding amount of extrapolated possible oxide damage.

We consider two aspects of HC degradation. One is the degradation of individual

transistors within a circuit, and the other is the effect of such degradation on circuit

performance. Digital circuit-level hot-carrier reliability can be expressed as a cumulative

function of the following five major Factors:

6.2.1 Factor I: Hot-Carrier Degradation Model Precision and Accuracy

From Equation 6.1, one can see that the accuracy of degradation parameters n, m

and H affects the simulation results of all the transistors in the circuits. It is observed that

degradation model parameters n, m and H have statistical variation. The impact of this

statistical variation on hot-carrier lifetime can be assessed using the statistical confidence

interval. Figure 4.7 shows the oxide-field dependence of the degradation model

parameters m and H as well as their statistical confidence intervals. All measurements are

performed at the wafer level and at room temperature. Each set of m and H parameters are

extracted under the same oxide field. The oxide field, Eox, is defined as (Vg - Vd -Vfb)/Tox.

Details about the impact of the oxide-field dependence and statistical variation of m and H

on AC hot-carrier device degradation have been discussed earlier in Section 5.4.

6.2.2 Factor II: The Specific MOSFET Terminal Voltage Waveforms

From Equation 6.1, one can see that hot-carrier degradation depends on the

specific transistor terminal voltage waveforms which determine the amount of damage



created per switching transition. These terminal voltage waveforms depend on two main

factors:

II (A). Circuit Topology and Operating Conditions: The terminal voltage

waveforms are functions of the input rise/fall times, the capacitive loading and the

particular circuit configuration [6.8]-[6.11]. Figure 6.1a shows the simulation results of

the NMOS AC degradation/per transition as a function of fanout and input rise time in a

CMOS inverter. Figure 6.1 b compares the NMOS degradation in an inverter and in a three

input NAND gate. The sizes of NMOS and PMOS devices in the circuits are (W / L)N = 5

/ 0.6 (um) and (W / L)p = 10 / 0.6 (um), respectively. The simulation was performed at 4V.

As we can see from Figures 6.1 a-b, degradation is sensitive to input rise time, capacitive

loading and circuit topology.

II (B). Capacitive-Coupling-Induced Voltage Overshoot: The terminal voltage

waveforms are also sensitive to capacitive coupling [6.12]. This capacitive coupling

includes the intrinsic coupling between the gate to the drain device terminals and the

extrinsic coupling to different metal lines. The intrinsic capacitive coupling can be

considered a local effect, which only involves the transistor itself. However, the voltage

overshoot due to extrinsic capacitive coupling to different metal lines can be considered a

more global effect. The exact amount of the overshoot depends on the relative timing of

the signals on the corresponding metal lines, and the ratio of the coupling capacitance to

the load capacitance [6.12]. Therefore, voltage overshoot will depend on the overall circuit

input signal patterns and the relative delays of signals. It is difficult to predict when and

where the voltage overshoot will occur. The information needed to calculate voltage

overshoot includes the coupling capacitance value and the relative timing of the coupled

signals involved.
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Illustration of Factor II (A). Figure 6.1(a) shows NMOS AC degrada-
tion per transition as function of fanout and input rise time in a CMOS
inverter. Figure 6.1(b) compares the NMOS degradation in an inverter
and in a three-input NAND gate. The simulation was performed at 4V.
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Figure 6.2 illustrates voltage overshoot due to capacitive coupling. Cpl is the

overlap capacitance between gate and drain. Cp2 is the interconnect coupling capacitance.

CL is the fixed load capacitance. (CL + Cp2) is total load capacitance Ctotal-

Voltage overshoot due to Cpl always occurs at worst-case phasing. It is more

severe when the input rise time and output loading are both small. Voltage overshoot due

to Cp2 depends on the relative phase of the input (Vin) and coupling signal (Vcouple) as

well as the capacitive coupling ratio Cp2/Ctotal-

Shown in Figure 6.2b are the SPICE simulation results for output voltage

overshoot due to three different Cp2/Ctotal ratios at the worst case phasing. The rise time

for Vin and Vcouple are 0.8ns and 0.4ns, respectively. The phase difference between Vin

and Vcouple is 0.3ns. The coupling ratio values used in the simulation are: 0 (solid line);

0.1 (dotted line) and 0.2 (dashed line).

A I (b)
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Figure 6.2
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Illustration of voltage overshoot due to capacitive coupling. Power
supply voltage is 4V. Transistor sizes: (W /L)N = 5 / 0.6 (um), (W / L)p
= 10 /0.6 (um). AV is the amount of voltage overshoot.



Figure 6.3 shows the impact of voltage overshoot on NMOS device linear-current

degradation. As one can see, device degradation increases exponentially as the amount of

voltage overshoot (AV) increases.

0.1
0.0 0.2 0.4 0.6

Amount of Overshoot AV

0.8

(V)

1.0

Illustration of Factor II(B). AC linear drain-current degradation as a
function of voltage overshoot when overshoot occurs at worst-case

6.2.3 Factor III: MOSFET Switching Activity

Most transistor level circuit reliability simulators assume that a set of input

waveforms are continuously applied to the circuit inputs. However, the influence of

different input patterns also has to be taken into account. Large number of input signals

are needed to obtain meaningful average effects on individual transistors. From Equation

6.1, one can see that hot-carrier degradation is proportional to the average switching

When overshoot occurs
at worst-case phasing

Operating Voltage: 4V

I I I I I

Figure 6.3



frequency of a transistor. The estimation of average switching activity can be performed

using probabilistic techniques or Monte Carlo based statistical techniques [6.13]-[6.15].

The amount of switching activity depends on overall circuit input patterns as well as

relative timing of each gate. Figure 6.4 shows the transition probability of a 16 bit ripple

carry adder. A random input pattern is assumed in this case.
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Figure 6.4 Illustration of Factor III. Switching activity in a 16 bit ripple carry
adder implemented in static CMOS logic. The schematic of a one-bit
adder cell for the circuit is shown in Figure 7.1.



6.2.4 Factor IV: Circuit Performance Sensitivity to Device Degradation

The circuit design determines how overall circuit performance is affected by the

hot-carrier-induced degradation of individual devices. Figure 6.5 shows the circuit

sensitivity to hot-carrier damage in a CMOS inverter chain with fanout 1. Depending on

the particular circuit design, each circuit possesses a certain performance sensitivity to

device degradation. For example, analog circuits generally have very different sensitivity

to hot-carrier degradation compare to digital circuits. In addition, circuit performance may

be more sensitive to some "critical" devices in the circuit than to other devices. For

example, a certain transistor TI may experience 25% drain current degradation but affect

the circuit output minimally, while another transistor T2 may suffer only 5% degradation

and yet cause substantial degradation in circuit performance. In general, different classes

of circuit applications display different sensitivities to hot-carrier-induced device

degradation; different circuits also have different "critical" devices which contribute

significantly to circuit performance degradation.

6.2.5 Factor V: Relative Importance of the Degraded Circuit Paths

In order to meet specified performance requirements over the lifetime of products,

critical paths of circuits need to be evaluated to satisfy timing constraints before and after

hot-carrier degradation. Since the amount of hot-carrier-induced degradation depends on

specific circuit design and operating conditions, hot-carrier degradation can change the

relative importance of circuit critical paths.

6.3 Summary

Factors I-III determine both the magnitude and distribution of hot-carrier-induced

oxide damage throughout the circuit. Factors IV and V determine how this created



damage impacts overall circuit performance. Depending upon the particular technology or

circuit design, each of the above reliability Factors can vary significantly in magnitude,

having a different impact on the estimated lifetime.

o

-

5 10 15 20
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Illustration of Factor IV. Circuit sensitivity to hot-carrier damage in a
CMOS inverter chain with fanout 1. The operation voltage is 4V. (W /
L)N = 5 / 0.6 (um) and (W / L)p = 10 /0.6 (um).
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Chapter 7

Assessing Hot-Carrier Lifetime Based On
"Worst-Case" Approximations

7.1 Different-Levels of Approximation

The degree of lifetime-underestimation/criteria-overspecification strongly depends

on the realism of each Factor's "worst-case" approximations. If insufficient data about a

Factor exists, then more conservative "worst-case" approximations must be adopted,

resulting in greater lifetime-underestimation. However, with sufficient data, more realistic

"worst-case" approximations can be used, reducing lifetime-underestimation. Note, that

acquiring detailed device/circuit information may not always be feasible (e.g. there is a

circuit-size limit to practical SPICE-level simulation; higher-level simulation tools have

reduced model accuracy). Thus, each reliability Factor possesses an inherent trade-off

between its degree of realism and its ease of evaluation.

In this chapter, the inherent inverse relationship between lifetime-underestimation/

criteria-overspecification and the amount of known device/circuit information will be

explored. Lifetime-underestimation/criteria-overspecification is shown to depend quite

strongly on the particular "worst-case" approximations used. Each of the above concepts

will be illustrated using representative circuit examples and case studies.

For Factors II-IV, Table 7.1 lists different "worst-case" approximations along with

the corresponding required level of device/circuit information. Approximation (A) is the

most conservative; (B) is more realistic, etc. Depending upon the level of approximation

chosen for each Factor, a wide range of different lifetime values can be calculated.



Table 7.1: Worst-Case Approximations

Reliability Different Levels of "Worst-Case" Necessary Device/
Factor Approximation Circuit Data

II. The Specific (Al) Determine device-level "worst-case" DC stress (A) Device-level stress data
MOSFET condition
Terminal (A2) Apply this DC stress condition identically to
Voltage all devices
Waveforms

(B 1) Determine "worst-case" AC hot-carrier stress (B) All of (A) plus AC hot-
per switching-transition over circuit's design/ carrier reliability
operating space simulation

(B2) Apply this AC stress condition identically to
all devices

(C1) Evaluate AC hot-carrier stress per transition (C) All of (B) plus circuit
over circuit's design/operating space back-annotation of AC

(C2) Back-annotate each device with its specific AC stress information
stress condition

III. MOSFET (Al) DC stress condition implies 100% duty cycle (A) None
Switching
Activity (B 1) Use operating clock frequency (B) Basic circuit operating

condition

(C1) Determine "worst-case" circuit switching (C) All of (B) plus switching
activity value activity evaluation

(C2) Apply this switching activity value identically
to all devices

(D1) Evaluate circuit switching activity distribution (D) (C) plus circuit back-
(D2) Back-annotate each device with its specific annotation of specific

switching activity switching activity

IV. Circuit (Al) Evaluate device degradation over range of (A) Parameter extraction for
Performance possible stress conditions determined from stressed devices and
Sensitivity to Factors I-III circuit performance
Device (A2) Simulate performance sensitivity using simulation
Degradation "worst-case" age for all devices

(B 1) Evaluate device degradation over range of (B) All of (A) plus circuit
possible stress conditions determined from back-annotation of
Factors I-III degraded device

(B2) Back-annotate each device with its specific characteristics and circuit
degraded I-V characteristic performance simulation

(B3) Simulate circuit performance sensitivity
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7.2 Illustrated Case Studies

The above concepts can be illustrated using an example of a 4-bit ripple-carry

adder implemented in static CMOS logic. Figure 7.1 shows the circuit schematic of a one-

bit adder cell. The circuit and reliability simulation tools [7.17] were calibrated using

experimental data from a representative 0.6um N-well CMOS technology. The circuit-

level reliability criteria for this case study was defined as a 3% reduction in the critical

path delay.

B B B
A-C A c B Cin A

SA-Cou Sum in
cA dIE

Figure 7.1 Schematic of a one-bit mirror adder cell. Transistor sizes:
(W/L)N = 5/0.6; (W / L)p = 10/0.6.



Table 7.2 summarizes four different case studies, the specific assumptions used for

the reliability Factors II-IV, and the corresponding normalized lifetime values.

Table 7.2: Case Study Results

Case Reliability Approximations Used
Life

Study Factor II Factor III Factor IV time

#1: (Al, A2): VG = 2V, VD = 4V (Al): Duty cycle (Al): 2 0 % (AID / ID lin) 1
= 100%

#2: (Bl, B2): "Worst-Case" stress per (B 1): Clock fre- (A2): 3% (ATd / Td )= 23
transition: 3 x 10 -22 at VCC = 4V quency = 200MHz 18% (AID / ID lin)

#3: (Cl, C2): Distribution of stress per (B 1): Clock fre- (B 1, B2, B3) 148
transition: between 1.2 x 10 -25 and quency = 200MHz
3 x 10 -22 at VCC = 4V

#4: (Cl, C2): Distribution of stress per (D1, D2): (B 1, B2, B3) 344
transition: between 1.2 x 10 -25 and Back-annotate
3 x 10 -22 at VCC = 4V switching activities

of each device

* Lifetime is normalized to case study #1.

Case study #1 assumes that each device in the ripple carry adder is stressed at the

"worst-case" DC stress condition. This assumption implies that the following

approximations are made in Table 7.1: (Al, A2) of Factor II, Al of Factor III and Al of

Factor IV. If the lifetime criteria is defined as 3% delay degradation in the adder's critical

path, then the normalized lifetime for this case is 1.

Case studies #2-4 assume more and more realistic "worst-case" approximations,

resulting in less and less lifetime underestimation.

Case study #2 evaluates the different amounts of gate-oxide damage resulting from

each switching transition over a wide range of circuit topologies and operating conditions

for each MOSFET in the circuit of Figure 7.1. The value of the "worst-case" damage per

transition is identified and is assumed to apply to each MOSFET in the circuit. To
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determine the hot-carrier lifetime, this "worst-case" value is then multiplied by the total

number of clock cycles required to reach failure. This assumption implies that the

following approximations are made in Table 7.1: (B 1, B2) of Factor II, B1 of Factor III

and A2 of Factor IV. Note, by applying one "worst-case" value to every device within the

circuit, no "back-annotation" (the assigning of specific data to individual MOSFETs) is

required. By accounting for the AC nature of the hot-carrier stress, the lifetime

underestimation is reduced (compared with the DC estimate) by a factor of 22.8.

Case study #3 is identical to #2 except that now the specific damage per transition

value is used for each MOSFET in the circuit (rather than the uniformly applied "worst-

case" value). This assumption implies that the following approximations are made in

Table 7.1: (Cl, C2) of Factor II, B 1 of Factor III and (B 1, B2, B3) of Factor IV. Although

this approximation is more realistic, this method now requires "back-annotation",

necessitating a considerable increase in computation and simulation effort. This more

realistic accounting for the AC hot-carrier stress conditions reduces the lifetime

underestimation by a further factor of 6.5.

As mentioned in previous section, not every MOSFET in a circuit switches at the

clock frequency (or undergoes AC degradation every cycle) as is assumed in the prior AC

case studies. Case study #4 is identical to #3, except that now, the more realistic

switching activity of each individual MOSFET is evaluated and taken into account in the

calculation of device degradation. Therefore, additional back-annotation is required. This

assumption implies that the following approximations are made in Table 7.1: (Cl, C2) of

Factor II, (DI, D2) of Factor III and (B1, B2, B3) of Factor IV. This additional analysis

reduces the lifetime underestimation by a further factor of 2.3.
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7.3 Summary

By making more realistic "worst-case" assumptions, the amount of hot-carrier

lifetime underestimation/criteria-overspecification can be significantly reduced. However,

the more realistic the "worst-case" assumptions, the more device/circuit information

required, and the more effort that needs to be expended. Understanding these trade-offs

provides insight in deciding where reliability assessment efforts would be most

productively allocated.
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Chapter 8

Summary and Future Work

8.1 Summary

The goal of this research is to contribute to the assessment of hot-carrier reliability

in digital CMOS circuits. Several critical issues that face circuit-level hot-carrier

reliability evaluation have been investigated, including AC hot-carrier test circuit design

and characterization, AC hot-carrier degradation model calibration, the major factors

determining circuit-level hot-carrier reliability, and the trade-offs between circuit-level

hot-carrier lifetime underestimation and the amount of information required.

Hot-carrier reliability assessment is undergoing a rapid transition from a

conservative, device-level approach, to a realistic circuit-level approach. In this transition,

one of the most important questions is whether AC hot-carrier degradation can be

predicted based on the DC degradation model. If the AC degradation results agree with the

prediction based on DC measurements, then AC degradation can be modeled as a quasi-

static process. However, if the AC hot-carrier degradation behavior can not be predicted

by the DC degradation model, then new physical insights need to be obtained to

understand the cause of the deviation. The only way to answer this question is to obtain

experimental AC hot-carrier degradation results under realistic circuit operations and

compare then directly to the predictions based on calibrated hot-carrier reliability

simulation.

This thesis provides a comprehensive understanding of the key issues in designing

and characterizing hot-carrier reliability test circuits. These circuits can operate under
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realistic stress voltage waveforms and allow access to the internal device nodes to obtain

device I-V characteristics before and after hot-carrier degradation. These circuits can also

be used relate the circuit performance degradation to device degradation. Insights about

previous test circuit designs are presented and additional test circuit designs are

demonstrated. The design trade-offs between realistic waveform generation and internal

device accessibility are analyzed and clarified. Recommendations for optimal test-circuit

design for hot-carrier reliability characterization and model calibration are proposed.

This thesis also examines key issues involved in the calibration and verification of

the hot-carrier degradation models used for simulating AC circuit-level reliability based

on device and circuit data from two representative industrial technologies. First, the need

to account for the stress drain oxide-field dependence of the degradation model

coefficients extracted from DC device-level stress measurements is demonstrated.

Second, the statistical confidence limits of the extracted degradation model parameters are

analyzed. Third, the sensitivity of degradation to drain and substrate current modeling

errors is examined. Fourth, the AC degradation model's statistical confidence limits are

evaluated, and the accuracy and precision of AC hot-carrier reliability simulation, which

has been calibrated solely by model parameters extracted from DC device stress

experiments, is rigorously benchmarked against a comprehensive set of experimental AC

circuit measurements. Finally, knowledge about CMOS digital circuit behavior is shown

to be useful in optimizing the calibration of both the degradation and SPICE model

parameters. Specific recommendations are made about improving the consistency and

accuracy of both degradation and SPICE model parameter extraction.

Finally, this thesis identifies the major factors that cumulatively contribute to

circuit-level hot-carrier reliability. The inherent inverse relationship between lifetime-
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underestimation/criteria-overspecification and the amount of known device/circuit

information has been explored. Lifetime-underestimation/criteria-overspecification has

been shown to depend quite strongly on the particular "worst-case" approximations used.

Each of the above concepts have been illustrated using representative circuit examples and

case studies.

Experimental and simulation methodology that we have provided in this thesis can

serve a wide range of needs, such as AC hot-carrier model verification, circuit lifetime

prediction, technology qualification and understanding technology and circuit design

trade-offs from a hot-carrier perspective.

8.2 Future Work

All the reliability simulation tools developed so far have been based on transistor-

level circuit simulators. These simulators are useful for detailed analyses of circuit nodes.

However, they cannot be used to analyze large circuits of several million transistors due to

the long simulation time. In addition, these simulators can not provide information about

all the major factors that contribute circuit-level reliability in an automated and integrated

way. Thus, higher-level reliability simulator need to be developed, which take into account

the factors such as switching activity, voltage overshoot and circuit sensitivity to hot-

carrier degradation, etc.
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