
Cilk: Efficient Multithreaded Computing

by

Keith H. Randall

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 21, 1998

I %

Certified by....... (. V. -.J.. .. .
.' .'

"...

Charles E. Leiserson
Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by... u

A Smith

Chairman, Departmental Committee on Graduate Students

ts;Jrc.LOG, . .Y.

Cf!f t?9~41*L ;;h" C;~ rP-C"~d%'Se~irB~Yc~~

Cilk: Efficient Multithreaded Computing

by

Keith H. Randall

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1998, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

This thesis describes Cilk, a parallel multithreaded language for programming con-
temporary shared memory multiprocessors (SMP's). Cilk is a simple extension of
C which provides constructs for parallel control and synchronization. Cilk imposes
very low overheads - the typical cost of spawning a parallel thread is only between
2 and 6 times the cost of a C function call on a variety of contemporary machines.
Many Cilk programs run on one processor with virtually no degradation compared
to equivalent C programs. We present the "work-first" principle which guided the
design of Cilk's scheduler and two consequences of this principle, a novel "two-clone"
compilation strategy and a Dijkstra-like mutual-exclusion protocol for implementing
the ready queue in the work-stealing scheduler.

To facilitate debugging of Cilk programs, Cilk provides a tool called the Nonde-
terminator-2 which finds nondeterministic bugs called "data races". We present two
algorithms, ALL-SETS and BRELLY, used by the Nondeterminator-2 for finding data
races. The ALL-SETS algorithm is exact but can sometimes have poor performance;
the BRELLY algorithm, by imposing a locking discipline on the programmer, is guaran-
teed to run in nearly linear time. For a program that runs serially in time T, accesses
V shared memory locations, and holds at most k locks simultaneously, BRELLY runs
in O(kT a(V, V)) time and O(kV) space, where ac is Tarjan's functional inverse of
Ackermann's function.

Cilk can be run on clusters of SMP's as well. We define a novel weak mem-
ory model called "dag consistency" which provides a natural consistency model for
use with multithreaded languages like Cilk. We provide evidence that BACKER, the
protocol that implements dag consistency, is both empirically and theoretically effi-
cient. In particular, we prove bounds on running time and communication for a Cilk
program executed on top of BACKER, including all costs associated with BACKER
itself. We believe this proof is the first of its kind in this regard. Finally, we present
the MULTIBACKER protocol for clusters of SMP's which extends BACKER to take
advantage of hardware support for shared memory within an SMP.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Acknowledgments

I would like to thank Charles Leiserson, my advisor, for the guidance and intellectual

challenge he has given me over the past 9 years. One seldom finds a person with

such boundless energy and enthusiasm. It's been a wild ride, from all of the world

travel (watching the Superbowl in Singapore at 5:00 in the morning) to all of the late

night paper writing sessions. It is nice to see that with all of his time commitments,

Charles still has enough free time to write a book about golf.

I would also like to thank the rest of my thesis committee, Arvind and Martin

Rinard, for being both patient and flexible with my hectic schedule.

This thesis would not be possible without the efforts of the Cilk team. These Cilk

"worms" include Guang-len Cheng, Don Dailey, MingDong Feng, Matto Frigo, Chris

Joerg, Bradely Kuszmaul, Phil Lisiecki, Alberto Medina, Rob Miller, Aske Plaat,

Harald Prokop, Bin Song, Andrew Stark, Volker Strumpen, and Yuli Zhou. I would

especially like to thank my grad-student-in-arms Matteo Frigo for being a wonderful

collaborator. The rapport between Matteo and myself has made Cilk development a

joy.

I would like to thank the Air Force Office of Scientific Research (AFOSR) for

their generous support of my graduate studies through a National Defense Science and

Engineering Graduate (NDSEG) Fellowship. Their support gave me the independence

to focus on my research without distractions. Additional support was provided by

the Defense Advanced Research Projects Agency (DARPA) under Grants N00014-

92-J-1310, N00014-94-1-0985, and F30602-97-1-0270. I would also like to thank Sun

Microsystems and Digital Equipment Corporation for donating equipment used in

this thesis.

Finally, I would like to thank my family for giving me all the opportunity in the

world to pursue my dreams.

Contents

1 Introduction 9

1.1 Performance 9

1.2 Programmibility 11

1.3 Debugging 12

1.4 Distributed implementation 13

1.5 Contributions of this thesis 14

2 The Cilk language 18

2.1 The history of Cilk 18

2.2 Spawn and sync 20

2.3 Inlets 21

2.4 Abort 23

2.5 Locks 24

2.6 Shared and private variables 25

2.7 Cactus stack 26

2.8 Computation model 28

2.9 Memory model 30

3 SMP Cilk 31

3.1 The work-first principle 33

3.2 Cilk's compilation strategy 36

3.3 Implemention of work-stealing 41

3.4 Benchmarks 47

3.5 Conclusion 52

4 Applications 53

4.1 Dense matrix algorithms 53

4.1.1 Matrix multiplication 54

4.1.2 LU decomposition 58

4.2 Sparse Cholesky factorization 60

4.3 Barnes-Hut 63

4.4 Rubik's cube 65

4.4.1 Search 66

4.4.2 Pruning heuristics 67

4.4.3 Symmetry 68

4.4.4 Experim ents 70

5 The Nondeterminator-2 73

5.1 Data races 74

5.2 The All-Sets algorithm 80

5.3 The Brelly algorithm 85

5.4 Experim ental results 93

5.5 Abelian programs 95

5.6 Conclusion 105

6 Dag consistency 107

6.1 Introduction 107

6.2 Example: matrix multiplication 110

6.3 The BACKER coherence algorithm 111

6.4 Implementation 116

6.5 An analysis of page faults 118

6.6 Perform ance 121

6.7 Conclusion .. 124

7 Analysis of dag consistency 126

7.1 Introduction 127

7.2 Analysis of execution time 129

7.3 Analysis of page faults 138

7.4 Analysis of space utilization 141

7.5 Example analyses of Cilk programs 147

7.6 Conclusion 150

8 Distributed Cilk 153

8.1 Introduction 153

8.2 Multilevel shared memory 153

8.3 Distributed scheduling 156

8.4 Distributed Cilk performance 158

9 Conclusion 160

A Connecting deadlock-free programs and computations 162

List of Figures

1-1 The performance of some example Cilk programs 10

1-2 Comparision of codes for the Barnes-Hut algorithm 11

2-1 Computing Fibonacci numbers in Cilk 21

2-2 Inlets . 22

2-3 Cilk locks . 24

2-4 Private variables 26

2-5 A cactus stack 27

2-6 Computation dag 28

3-1 Compiling a Cilk program 32

3-2 The fast clone for fib 37

3-3 the THE protocol 44

3-4 Ready deque states in the THE protocol 45

3-5 Performance of some Cilk examples 48

3-6 Breakdown of spawn overheads 50

3-7 Normalized speedup curve for knary benchmark 51

4-1

4-2

4-3

4-4

4-5

Recursive decomposition of matrix multiplication

Cilk code for recursive blocked matrix multiplication.

Matrix multiplication without temporaries

Performance of matrix multiplication algorithms .

Quadtree matrix representation

4-6 Speedup of sparse Cholesky algorithm.

54

55

56

57

60

4-7

4-8

4-9

4-10

4-11

Speedup of Barnes-Hut algorithms .

The superflip cube

Speedup for Rubik's cube

Histogram of Rubik's cube

Histogram of the corner cube

5-1 Data race example

5-2 Violating the umbrella methodology

5-3 Parse tree of a Cilk computation

5-4 The ALL-SETS algorithm

5-5 Umbrella example

5-6 The BRELLY algorithm

5-7 A sample execution of the BRELLY algorithm

5-8 Nondeterminator-2 performance

5-9 An infeasable data race

6-1 Performance of distributed matrix multiplication

6-2 Dag of blocked matrix multiplication

6-3 Illustration of the definition of dag consistency

6-4 Histogram of the cache warm-up fraction

6-5 Normalized speedup curve for matrix multiplication

7-1 An illustration of the definition of a dominator set

8-1 Performance of the Fibonacci program on distributed Cilk

. 64

. 66

.. . . . 70

.. 71

. 71

75

78

80

83

87

88

89

95

96

109

110

113

120

122

143

159

Chapter 1

Introduction

Multiprocessor shared-memory machines (SMP's) are rapidly becoming commodity

items in the computer industry. Despite the prevalence of such machines, exploit-

ing their computing power remains difficult because programming environments are

cumbersome or inefficient.

I am a principal designer of Cilk (pronounced "silk"), a parallel multithreaded

language being developed at MIT, which is designed to make high-performance par-

allel programming easier. This thesis describes the Cilk language, its programming

environment, and its implementations. The Cilk language is a simple extension to

C that provides constructs for easily expressing parallelism in an application. Cilk

insulates the programmer from many low-level implementation details, such as load

balancing and communication. Nevertheless, the Cilk compiler and runtime system

work together to execute Cilk code efficiently on an SMP, typically with only a few

percent overhead and near linear speedup.

1.1 Performance

Figure 1-1 gives some performance numbers for some sample applications written in

Cilk, run on a Sun Enterprise 5000 with 8 167MHz UltraSPARC processors. Three

metrics for each application are measured. The metric T, is the running time of the

Cilk program on 1 processor, and the metric T is the running time of the Cilk program

fib 35 3.63 8.0 2.2
blockedmul 1024 1.05 7.0 6.6
notempmul 1024 1.05 7.6 7.2
strassen 1024 1.01 5.7 5.6
*cilksort 4,100,000 1.21 6.0 5.0
tqueens 22 0.99 8.0 8.0
tknapsack 30 1.03 8.0 7.7
lu 2048 1.02 7.7 7.5

*cholesky BCSSTK32 1.25 6.9 5.5
heat 4096 x 512 1.08 6.6 6.1
fft 220 0.93 5.6 6.0
barnes-hut 216 1.02 7.2 7.1

Figure 1-1: The performance of some example Cilk programs. Times are are accurate
to within about 10%. Ti and T8 are the running times of the Cilk program on 1 and 8
processors, respectively (except for the nondeterministic programs, labeled by a dagger (t),
where Ti is the actual work of the computation on 8 processors, and not the running time
on 1 processor). Ts is the running time of the serial algorithm for the problem, which is
the C elision for all programs except those that are starred (*), where the parallel program
implements a different algorithm than the serial program. The quantity Ti/Ts gives the
overhead incurred in parallelizing the program. The quantity T/Ts represents the speedup
on 8 processors relative to the 1 processor run, and the quantity Ts/Ts represents the
speedup relative to the serial program.

on 8 processors. The metric Ts is the running time of the best serial program for the

application. For applications which did not have to be reorganized to expose their

parallelism, the best serial program is just the C elision of the Cilk program, the

Cilk program with all of the Cilk keywords deleted. Cilk's semantics guarantee that

the C elision is a semantically correct implementation of the Cilk program. For other

applications, namely cilksort and cholesky, the best serial program implements a

different algorithm than the parallel Cilk code.

The column Ti/Ts in Figure 1-1 gives the ratio of the running time of the Cilk

program on 1 processor to the running time of the best serial program. The quantity

T1/Ts represents the work overhead, or the extra work required when converting

from a serial program to a parallel program. For most applications, the work overhead

is only a few percent. Only fib, a program to compute Fibonacci numbers, experi-

ences a high work overhead because of its extremely short threads. Even programs

that were reorganized to expose parallelism have small work overheads, despite the

Program Size T1 /Ts T1 /T Ts/T8

Original Cilk SPLASH-2
lines 1861 2019 2959
A lines 0 158 1098
diff lines 0 455 3741

T 1/Ts 1 1.024 1.099

T1/Ts N/A 7.2 7.2

Ts/T8 N/A 7.1 6.6

Figure 1-2: Comparision of codes for the Barnes-Hut algorithm. The three codes
listed include the original Barnes-Hut C code, the Cilk parallelization, and the
SPLASH-2 parallelization. The row "A lines" counts the number of lines of code
that were added to the original code to parallelize it. The row "diff lines" counts
the number of lines the diff utility outputs when comparing the original and par-
allel versions of the code, a rough measure of the number of lines of code that were
changed. The last three lines show a comparison of the performance of the two paral-
lel codes. The quantity Ts for the Cilk code is just the running time of the original C
Barnes-Hut code. The quantity Ts for the SPLASH-2 code was obtained by remov-
ing the parallel constructs from the SPLASH-2 code by hand. (The SPLASH-2 code
cannot be directly compared to the original C code because it contains some (serial)
optimizations which are not present in the original C code.)

fact that the best serial program is more efficient than the C elision.

The example Cilk programs get good speedup. The quantity T1/Ts is the speedup

obtained by running the Cilk program on 8 processors. The important metric Ts/Ts

measures the end-to-end application speedup that a programmer can expect when

parallelizing his serial application for use on an 8 processor machine. Figure 1-1

shows that Cilk gives good end-to-end speedup for a wide variety of applications.

1.2 Programmibility

Programming in Cilk is simple. To back up this claim, Figure 1-2 presents some

comparisions among three versions of Barnes-Hut (the last application listed in Fig-

ure 1-1), an application which simulates the motion of galaxies under the influence

of gravity. The three versions are the serial C version obtained from Barnes's web

page [5], the Cilk parallelization of that code, and the SPLASH-2 parallelization [101].

SPLASH-2 is a standard parallel library similar to POSIX threads developed at Stan-

ford. The SPLASH-2 Barnes-Hut code, derived from the serial C code [92], is part of

the SPLASH-2 parallel benchmark suite.

Figure 1-2 shows some rough measures of the effort required to parallelize the

original C code using both Cilk and SPLASH-2. One simple measure of effort is the

number of lines that were added to the code. The entry "A lines" counts the number

of lines that were added to the original code to parallelize it using both parallelization

techniques. This measure shows that Cilk requires almost an order of magnitude less

additional code than SPLASH-2. The entry "diff lines" gives the number of lines

that were changed, measured by counting the number of lines that the UNIX diff

utility1 outputs when comparing the original C code to each of the parallel codes.

Again, there is an order of magnitude difference between the changes required for the

Cilk parallelization versus the SPLASH-2 parallelization. In fact, almost all lines of

the C code had to be changed for the SPLASH-2 parallelization. The changes required

in order to parallelize the application using SPLASH-2 include explicit load balancing

(requiring additional indirections and load-balancing phases), passing a thread ID to

every function, and using the thread ID as an index for every private variable access.

Automatic load balancing and linguistic support for private variables eliminate all

of this programmer overhead in the Cilk parallelization. Although the measures of

coding effort used here are arguably imprecise, they nevertheless suggest that less

effort is required to parallelize the original C code using Cilk than using a thread

library like SPLASH-2, and the resulting parallelization obtains better end-to-end

speedup.

1.3 Debugging

Parallel codes are notoriously hard to debug [80]. Much of this difficulty arises from

either intentional or unintentional nondeterministic behavior of parallel programs.

Unintentional nondeterminism often occurs because of a "data race", when two par-

allel threads holding no locks in common access the same memory location and at least

Idiff -w is used to eliminate any differences in whitespace.

one of the threads modifies the location. In order to help Cilk programmers debug

their parallel code, Cilk provides a parallel debugger called the Nondeterminator-

2 to identify possible unintentional nondeterminism caused by data races. The

Nondeterminator-2 provides two algorithms, called ALL-SETS and BRELLY, that

check a Cilk computation, the result of executing a Cilk program on a particu-

lar input, for data races. The ALL-SETS algorithm is exact but may be too inefficient

in the worst case. The BRELLY algorithm, by imposing a simple locking discipline on

the programmer, can detect data races or violations of the discipline in nearly linear

time. For a program that runs serially in time T, accesses V shared memory locations,

and holds at most k locks simultaneously, BRELLY runs in O(kT a(V, V)) time and

O(kV) space, where a is Tarjan's functional inverse of Ackermann's function. Like its

predecessor, the Nondeterminator (which checks for simple "determinacy" races) the

Nondeterminator-2 is a debugging tool, not a verifier, since it checks for data races

only in a single computation, and a program can generate many computations.

For the class of "abelian" programs, ones whose critical sections commute, how-

ever, the Nondeterminator-2 can provide a guarantee of determinacy. We prove that

any abelian Cilk program produces a determinate final state if it is deadlock free

and if it generates any computation which is data-race free. Thus, either of the

Nondeterminator-2's two algorithms can verify the determinacy of a deadlock-free

abelian program running on a given input.

1.4 Distributed implementation

For Cilk programs that require more computing power than one SMP can provide, we

give a distributed version of Cilk that can run on multiple SMP's. We define a weak

consistency model for shared memory called "dag consistency" and a corresponding

consistency protocol called BACKER. We argue that dag consistency is a natural con-

sistency model for Cilk programs, and we give both theoretical and empirical evidence

that the BACKER algorithm efficiently implements dag consistency. In particular, we

prove strong bounds on the running time and number of page faults (cache misses)

of Cilk running with BACKER. For instance, we prove that the number of page faults

(cache misses) incurred by BACKER running on P processors, each with a shared-

memory cache of C pages, is the number of page faults of the 1-processor execution

plus at most 2C "warm-up" faults for each procedure migration. We present empiri-

cal evidence that this warm-up overhead is actually much smaller in practice than the

theoretical bound, as typically less than 3% of the possible 2C faults actually occur.

We define the MULTIBACKER algorithm, an extension of BACKER for clusters of

SMP's. The MULTIBACKER algorithm modifies BACKER by using a unified shared-

memory cache for each SMP and implements a "local bias" scheduling policy for

improving scheduling locality. We have implementations of BACKER on the Connec-

tion Machine CM5 and MULTIBACKER on clusters of Sun and Digital SMP's.

1.5 Contributions of this thesis

This thesis advocates the use of Cilk as a programming environment for parallel

computers. This thesis supports this advocacy through the following contributions:

* The Cilk language. Cilk provides simple yet powerful constructs for express-

ing parallelism in an application. Important concepts like the C elision and

novel features like "implicit atomicity" provide the programmer with parallel

semantics that are easy to understand and use.

* An efficient implementation of the Cilk language on an SMP. A principled com-

pilation and runtime strategy is proposed and used to guide the implementation

of Cilk-5, our latest Cilk release. Figure 1-1 shows that a wide range of applica-

tions obtain good performance when written in Cilk. Speedups relative to the

best serial programs are quite good, reflecting both the low work overhead and

good speedup of the parallel program.

* Demonstrated performance of Cilk on a variety of realistic parallel applications.

This thesis presents a set of interesting applications in Cilk to show Cilk's appli-

cability and efficiency across a variety of problem domains. These applications

include a Barnes-Hut algorithm, sparse and dense matrix algorithms including

LU decomposition and Cholesky factorization, and the world's fastest Rubik's

cube solver.

* A parallel debugging tool called the Nondeterminator-2. The Nondeterminator-2

checks a parallel program for data races, which are a potential source of un-

wanted nondeterminism. We present two algorithms, ALL-SETS and BRELLY,

used by the Nondeterminator-2 for finding data races in a Cilk computation.

The ALL-SETS algorithm is exact but can sometimes have poor performance;

the BRELLY algorithm, by imposing a locking discipline on the programmer, is

guaranteed to run in nearly linear time.

* A proof that the Nondeterminator-2 can guarantee determinacy for the class of

abelian program. Although the Nondeterminator-2 is guaranteed to find any

data races in a Cilk computation, different runs of a Cilk program on the same

input may generate different computations, and thus the Nondeterminator-2

cannot in general guarantee determinacy of the program on that input. We

prove, however, that for the class of abelian programs, the Nondeterminator-2

can provide a guarantee. Specifically, if the Nondeterminator-2 does not find

a data race in a single execution of a deadlock-free abelian program run on a

given input, then that progrm is determinate (always generates the same final

memory state) for that input.

* A weak memory-consistency model called "dag consistency" and BACKER, a

protocol that implements dag consistency. Dag consistency is a novel memory

model that escapes from the standard "processor-centric" style of definition

to a more general "computation-centric" definition. Dag consistency provides

a natural consistency model for use with multithreaded languages like Cilk.

BACKER, the protocol that implements dag consistency, is a simple protocol

that nevertheless provides good performance on the Connection Machine CM5

for a variety of Cilk applications.

* A proof that BACKER, together with the work-stealing scheduler from [16], gives

provably good performance. By weakening the memory consistency model to

dag consistency, we are able to use BACKER, a memory consistency protocol

that we can analyze theoretically. We are able to prove bounds on the running

time and communication use of a Cilk program executed on top of BACKER,

with all the costs of the protocol for maintaining memory consistency included.

We believe this proof is the first of its kind in this regard.

* An extension of BACKER, called MULTIBACKER, for multi-level memory hier-

archies like those found in clusters of SMP's. The MULTIBACKER protocol ex-

tends BACKER to take advantage of hardware support for shared memory within

an SMP while still using the theoretically and empirically efficient BACKER pro-

tocol between SMP's. MULTIBACKER is implemented in our latest distributed

version of Cilk for clusters of SMP's.

The remainder of this thesis is logically composed of three parts. The first part,

Chapter 2, describes the Cilk language. We describe how parallelism and synchro-

nization are expressed using spawn and sync statements, and we show how nonde-

terminism can be expressed using inlets and an abort mechanism. We describe a

performance model for Cilk programs in terms of "work" and "critical path" that

allows the user to predict the performance of his programs on a parallel computer.

The second part of the thesis, Chapters 3, 4, and 5, describes our Cilk-5 system

for contemporary shared-memory SMP's. Chapter 3 describes our implementation

of the Cilk language and the techniques we use to reduce the scheduling overhead.

In Chapter 4 we describe some realistic applications that we have coded in Cilk and

show how these applications illuminate many of Cilk's features. Lastly, in Chapter 5,

we describe the Nondeterminator-2 debugging tool for Cilk programs.

In the third part of the thesis, Chapters 6, 7, and 8, we describe the implementa-

tion of Cilk on distributed platforms. In Chapter 6 we describe dag consistency, our

memory model, and BACKER, its implementation. In Chapter 7, we prove bounds on

the running time and communication used by Cilk programs running with BACKER.

We also demonstrate how these bounds can be applied to many of the Cilk appli-

cations. Finally, in Chapter 8 we describe the latest distributed version of Cilk for

clusters of SMP's, and outline MULTIBACKER, our multilevel consistency protocol.

Chapter 2

The Cilk language

This chapter presents a overview of the Cilk extensions to C as supported by Cilk-5.

(For a complete description, consult the Cilk-5 manual [24].) The key features of the

language are the specification of parallelism and synchronization, through the spawn

and sync keywords, and the specification of nondeterminism, using inlet and abort.

In this chapter, we also describe a simple performance model based on "work" and

"critical path" which allows a Cilk programmer to predict the performance of his Cilk

programs on parallel machines.

2.1 The history of Cilk

Cilk is a multithreaded language for parallel programming that generalizes the se-

mantics of C by introducing linguistic constructs for parallel control. The original

Cilk-1 release [11, 14, 58] featured a provably efficient, randomized, "work-stealing"

scheduler [11, 16], but the language was clumsy, because parallelism was exposed "by

hand" using explicit continuation passing. The Cilk-2 language provided better lin-

guistic support by allowing the user to write code using natural "spawn" and "sync"

keywords, which the compiler then converted to the Cilk-1 continuation-passing form

automatically.

With the introduction of Cilk-3, shared memory was added to the Cilk language.

Shared memory was provided by our BACKER algorithm between processors on the

Connection Machine CM5. The shared memory support in Cilk-3 was explicit, requir-

ing the user to denote which pointers referenced shared objects and which pointers

referenced private objects. Only explicitly allocated memory (from the stack or heap)

could be shared in Cilk-3.

The Cilk-4 and Cilk-5 languages witnessed the transition from the Connection

Machine CM5 as our main development platform to an Enterprise 5000 UltraSPARC

SMP. With shared memory provided in hardware, much of the explicit shared mem-

ory support could be made implicit, simplifying the language and enabling sharing of

all memory, including global and stack variables.

The Cilk language implemented by our latest Cilk-5 release [24] still uses a the-

oretically efficient scheduler, but the language has been simplified considerably. It

employs call/return semantics for parallelism and features a linguistically simple "in-

let" mechanism for nondeterministic control. Cilk-5 is designed to run efficiently on

contemporary symmetric multiprocessors (SMP's), which feature hardware support

for shared memory. We have coded many applications in Cilk, including scientific

applications like Barnes-Hut, dense and sparse linear algebra, and others. We have

also coded non-scientific applications including a Rubik's cube solver, raytracing and

radiosity programs, and the *Socrates and Cilkchess chess-playing programs which

have won prizes in international competitions.

The philosophy behind Cilk development has been to make the Cilk language

a true parallel extension of C, both semantically and with respect to performance.

On a parallel computer, Cilk control constructs allow the program to execute in

parallel. When we elide the Cilk keywords for parallel control to create the C elision,

however, a syntactically and semantically correct C program results. Cilk is a faithful

extension of C, because the C elision of a Cilk program is a correct implementation

of the semantics of the program. Moreover, on one processor, a parallel Cilk program

"scales down" to run nearly as fast as its C elision.

The remainder of this chapter describes the features of the Cilk-5 language and

a simple performance model which allows programmers to reason about the perfor-

mance of their program. The intent of this chapter is to give a feel for the simplicity

of the Cilk language. Readers familiar with the Cilk language and its performance

model of "work" and "critical path" can skip to Chapter 3.

2.2 Spawn and sync

The basic Cilk language can be understood from an example. Figure 2-1 shows a

Cilk program that computes the nth Fibonacci number.' Observe that the program

would be an ordinary C program if the three keywords cilk, spawn, and sync are

elided.

The type qualifier cilk identifies fib as a Cilk procedure, which is the parallel

analog to a C function. Parallelism is introduced within a Cilk procedure when the

keyword spawn preceeds the invocation of a child procedure. The semantics of a spawn

differs from a C function call only in that the parent procedure instance can continue

to execute in parallel with the child procedure instance, instead of waiting for the child

to complete as is done in C. Cilk's scheduler takes the responsibility of scheduling

the spawned procedure instances on the processors of the parallel computer.

A Cilk procedure cannot safely use the values returned by its children until it

executes a sync statement. The sync statement is a local "barrier," not a global one

as, for example, is used in message-passing programming. In the Fibonacci example, a

sync statement is required before the statement return (x+y) to avoid the anomaly

that would occur if x and y are summed before they are computed. In addition to

explicit synchronization provided by the sync statement, every Cilk procedure syncs

implicitly before it returns, thus ensuring that all of its children terminate before it

does.

Cilk imposes the following restrictions on the appearance of the keywords cilk,

spawn, and sync in a Cilk program. The spawn and sync keywords can appear only

in Cilk procedures, that is C functions annotated with the cilk keyword. A spawn

statement can spawn only Cilk procedures, not C functions, and Cilk procedures can

1This program uses an inefficient algorithm which runs in exponential time. Although
logarithmic-time methods are known [26, p. 850], this program nevertheless provides a good di-
dactic example.

#include <stdlib.h>

#include <stdio.h>

#include <cilk.h>

cilk int fib (int n)

if (n<2) return n;

else {
int x, y;

x = spawn fib
y = spawn fib

(n-1);
(n-2);

sync;

return (x+y);

cilk int main (int argc, char *argv[])

{
int n, result;

n = atoi(argv[I]);

result = spawn fib(n);

sync;

printf ("Result: %d\n", result);

return 0;

Figure 2-1: A simple Cilk program to compute the nth Fibonacci number in parallel

(using a very bad algorithm).

be invoked only via spawn statements. 2 These restrictions ensure that parallel code

is invoked with parallel spawn calls and serial code is invoked with regular C calls.

2.3 Inlets

Ordinarily, when a spawned procedure returns, the returned value is simply stored

into a variable in its parent's frame:

x = spawn foo(y);

2 The keyword cilk enables static checking of this condition. Functions which are spawned must

have the cilk qualifier in their type, and functions which are called must not have the cilk qualifier
in their type.

cilk int fib (int n)

{
int x = 0;

inlet void summer (int result)

{
x += result;
return;

}

if (n<2) return n;

else {
summer(spawn fib (n-1));

summer(spawn fib (n-2));

sync;

return (x);

Figure 2-2: Using an inlet to compute the nth Fibonnaci number.

Occasionally, one would like to incorporate the returned value into the parent's frame

in a more complex way. Cilk provides an inlet feature for this purpose, which was

inspired in part by the inlet feature of TAM [28].

An inlet is essentially a C function internal to a Cilk procedure. In the normal

syntax of Cilk, the spawning of a procedure must occur as a separate statement and

not in an expression. An exception is made to this rule if the spawn is performed as an

argument to an inlet call. In this case, the procedure is spawned, and when it returns,

the inlet is invoked. In the meantime, control of the parent procedure proceeds to

the statement following the inlet call. In principle, inlets can take multiple spawned

arguments, but Cilk-5 has the restriction that exactly one argument to an inlet may

be spawned and that this argument must be the first argument. If necessary, this

restriction is easy to program around.

Figure 2-2 illustrates how the fib() function might be coded using inlets. The

inlet summer() is defined to take a returned value result and add it to the variable

x in the frame of the procedure that does the spawning. All the variables of fib()

are available within summer(), since it is an internal function of fib(). 3

No lock is required around the accesses to x by summer, because Cilk provides

atomicity implicitly. The concern is that the two updates might occur in parallel,

and if atomicity is not imposed, an update might be lost. Cilk provides implicit

atomicity among the "threads" of a procedure instance, where a thread is a maxi-

mal sequence of instructions not containing a spawn or sync statement, or a return

(either explicit or implicit) from a Cilk procedure. Threads are determined dynam-

ically at runtime based on the actual control flow of a procedure instance. An inlet

is precluded from containing spawn and sync statements (as it is only allowed to

contain C code), and thus it operates atomically as a single thread. Implicit atom-

icity simplifies reasoning about concurrency and nondeterminism without requiring

locking, declaration of critical regions, and the like.

Cilk provides syntactic sugar to produce certain commonly used inlets implicitly.

For example, the statement x += spawn fib(n-1) conceptually generates an inlet

similar to the one in Figure 2-2.

2.4 Abort

Sometimes, a procedure spawns off parallel work which it later discovers is unnec-

essary. This "speculative" work can be aborted in Cilk using the abort primitive

inside an inlet. A common use of abort occurs during a parallel search, where many

possibilities are searched in parallel. As soon as a solution is found by one of the

searches, one wishes to abort any currently executing searches as soon as possible so

as not to waste processor resources. The abort statement, when executed inside an

inlet, causes all of the already-spawned children of the enclosing procedure instance

to terminate.

3 The C elision of a Cilk program with inlets is not ANSI C, because ANSI C does not support
internal C functions. Cilk is based on Gnu C technology, however, which does provide this support.

typedef struct

{
Cilk_lockvar lock;

int count;
} entry;

cilk void histogram(int *elements, int num, entry *hist)

{
if (num == 1) {

entry *e = &hist[*elements];
Cilk_lock(&e->lock);

e->count++;

Cilk_unlock(&e->lock);

}
else {

spawn histogram(elements, num/2, hist);
spawn histogram(elements + num/2, num - num/2, hist);

sync;

}

Figure 2-3: A Cilk procedure to compute the histogram of an array of elements. This
procedure uses locks to protect parallel accesses to the count variables.

2.5 Locks

Release 5.1 of Cilk provides the user with mutual-exclusion locks. A lock has type

Cilk_lockvar. The two operations on locks are Cilklock to acquire a lock, and

Cilkunlock to release a lock. Both functions take a single argument which is a

pointer to an object of type Cilk_lockvar. Any number of locks may be held si-

multaneously. For a given lock A, the sequence of instructions from a Cilk_lock(&A)

to its corresponding Cilkunlock(&A) is called a critical section, and we say that

all accesses in the critical section are protected by lock A. Cilk guarantees that

critical sections locked by the same lock act atomically with respect to each other.

Acquiring and releasing a Cilk lock has the memory consistency semantics of release

consistency [55, p. 716]. Locks must be initialized using the function Cilk_lockinit.

An example procedure that uses locks is shown in Figure 2-3. This program

computes a simple histogram of the elements in the array elements. Locks are used

to protect parallel updates to the count fields of the hist array.

Locks were a reluctant addition to the Cilk language. Locks force the programmer

to follow a protocol, and therefore they make programming more difficult. The pro-

grammer needs to make sure his locking strategy is deadlock free and that it guards all

of the appropriate accesses. The Nondeterminator-2 helps with some of these issues,

but it is not a panacea. Unfortunately, we currently have no other mechanism for

programmers to modify in parallel shared data structures other than with locks. In

future research, we hope to provide a more principled mechanism to provide atomic

operations on shared data.

Also, locks are not yet supported on our distributed implementations of Cilk.

The stronger memory semantics of locks, together with the arbitrary nature of their

acquire and release pattern, potentially make locking on a distributed platform very

costly. We are currently investigating techniques to add locks to our distributed

versions of Cilk.

2.6 Shared and private variables

Each global variable declaration in Cilk is shared by default. That is, all references

to a global variable in a program refer to the same memory location. This memory

location's value is maintained by default in a dag-consistent fashion, or in a stronger

fashion if the hardware supports it. A shared declaration can be requested explicitly

using the shared keyword.

Sometimes, however, it is useful to declare a variable which is "private". A private

variable is declared by adding the keyword private to a variable declaration. Each

thread in a Cilk program receives its own logical copy of each private variable. Each

private variable is initialized to an undefined value when the thread starts. Once

initialized, however, private variables cannot be changed except by the owning thread

(unlike shared variables which can be changed by simultaneously executing threads).

Private variables are useful for communicating between a Cilk thread and C functions

it calls, because these C functions are completely contained in the Cilk thread. An

private char alternates [10] [MAXWORDLEN];

int checkword(const char *word)

{
/* Check spelling of <word>. If spelling is correct,

* return 0. Otherwise, put up to 10 alternate spellings
* in <alternates> array. Return number of alternate spellings.

cilk void spellcheck(const char **wordarray, int num)

{
if (num == 1) {

int alt = checkword(*wordarray);
if (alt) {

/* Print <alt> entries from <alternates> array as

* possible correct spellings for the word <*wordarray>.
*/

}
}
else {

spawn spellcheck(wordarray, num/2);

spawn spellcheck(wordarray + num/2, num - num/2);

sync;

Figure 2-4: An example of the use of private variables. The procedure spellcheck checks
the spellings of the words in wordarray and prints alternate spellings for any words that
are misspelled. The private variable alternates is used to pass alternate spellings from
the C function checkword to the Cilk function spellcheck. If the variable alternates
was shared, one instance of the checkword function could overwrite the alternate spellings
that another instance had generated.

example of the use of private variables is shown in Figure 2-4.

2.7 Cactus stack

Some means of allocating memory must be provided in any useful implementation

of a language with shared memory. We implement a heap allocator along the lines

of C's malloc and free, but many times a simpler allocation model suffices. Cilk

provides stack-like allocation in what is called a cactus-stack [52, 77, 94] to handle

these simple allocations.

From the point of view of a single Cilk procedure, a cactus stack behaves much like

B

D E

1 P2 P3

Figure 2-5: A cactus stack. Procedure P spawns P2, and P2 spawns P3 . Each
procedure sees its own stack allocations and the stack allocated by its ancestors.

The stack grows downwards. In this example, the stack segment A is shared by

all procedures, stack segment C is shared by procedures P2 and P3 , and the other

segments, B, D, and E, are private.

an ordinary stack. The procedure can access memory allocated by any of its ancestors

in the "spawn tree" of the Cilk program. A procedure can itself allocate memory and

pass pointers to that memory to its children. The cactus stack provides a natural

place to allocate procedure local variables as well as memory explicitly allocated with

a parallel version of alloca.

The stack becomes a cactus stack when multiple procedures execute in parallel,

each with its own view of the stack that corresponds to its call history, as shown in

Figure 2-5. In the figure, procedure P allocates some memory A before procedure

P2 is spawned. Procedure P1 then continues to allocate more memory B. When

procedure P2 allocates memory from the cactus stack, a new branch of the stack is

started so that allocations performed by P2 do not interfere with the stack being used

by P1 . The stacks as seen by PI and P2 are independent below the spawn point, but

they are identical above the spawn point. Similarly, when procedure P3 is spawned

by P2 , the cactus stack branches again.

Cactus stacks have many of the same limitations as ordinary procedure stacks [77].

For instance, a child procedure cannot return to its parent a pointer to an object that

it has allocated from the cactus stack. Similarly, sibling procedures cannot share

Figure 2-6: Dag of threads generated by the computation fib(3) from Figure 2-1. The
threads of each procedure instance are ordered by horizontal continue edges. Downward
spawn edges connect a procedure with its spawned child, and upward return edges connect
the last thread of a procedure with the next sync in its parent procedure.

storage that they create on the stack. Just as with a procedure stack, pointers to

objects allocated on the cactus-stack can be safely passed only to procedures below

the allocation point in the call tree.

2.8 Computation model

The computation of a Cilk program on a given input can be viewed as a directed

acyclic graph, or dag, in which vertices are instructions and edges denote ordering

constraints imposed by control statements. A Cilk spawn statement generates a vertex

with out-degree 2, and a Cilk sync statement generates a vertex whose in-degree is

1 plus the number of subprocedures syncing at that point. Normal execution of

serial code results in a linear chain of vertices, which can be grouped into threads.

A computation can therefore be viewed either as a dag of instructions or a dag of

threads. For example, the computation generated by the execution of fib(3) from

the program in Figure 2-1 generates the thread dag shown in Figure 2-6.

Any computation can be measured in terms of its "work" and "critical-path

length" [9, 15, 16, 60]. Consider the computation that results when a given Cilk

program is used to solve a given input problem. The work of the computation, de-

noted TI, is the number of instructions in the dag, which corresponds to the amount of

time required by a one-processor execution.4 The critical-path length of the com-

putation, denoted T,, is the maximum number of instructions on any directed path

in the dag, which corresponds to the amount of time required by an infinite-processor

execution.

The theoretical analysis presented in [11, 16] cites two fundamental lower bounds

as to how fast a Cilk program can run. For a computation with T work, the lower

bound Tp > T1 /P must hold, because at most P units of work can be executed in a

single step. In addition, the lower bound Tp > T, must hold, since a finite number

of processors cannot execute faster than an infinite number.5

Cilk's randomized work-stealing scheduler [11, 16] executes a Cilk computation

that does not use locks 6 on P processors in expected time

TP = T1/P + O(TM) , (2.1)

assuming an ideal parallel computer. This equation resembles "Brent's theorem"

[19, 48] and is optimal to within a constant factor, since T 1/P and To are both

lower bounds. We call the first term on the right-hand side of Equation (2.1) the

work term and the second term the critical-path term. This simple performance

model allows the programmer to reason about the performance of his Cilk program

by examining the two simple quantities, work and critical-path, exhibited by his

application. If the programmer knows the work and critical path of his application,

he can use Equation (2.1) to predict its performance. Conveniently, the Cilk runtime

system can measure the work and critical path of an application for the programmer.

We shall revisit the running time bound in Equation (2.1) many times in this thesis

4For nondeterministic programs whose computation dag depends on the scheduler, we define T
to be the number of instructions that actually occur in the computation dag, and we define other
measures similarly. This definition means, however, that T1 does not necessarily correspond to the
running time of the nondeterministic program on 1 processor.

5This abstract model of execution time ignores real-life details, such as memory-hierarchy effects,
but is nonetheless quite accurate [14].

6The Cilk computation model provides no guarantees for scheduling performance when a program
contains lock statements. If lock contention is low, however, the performance bounds stated here
should still apply.

when examining our various Cilk implementations.

2.9 Memory model

To precisely define the behavior of a Cilk program, we must define a "memory model",

which specifies the semantics of memory operations such as read and write. Every

implementation of Cilk is guaranteed to provide at least dag-consistent shared mem-

ory. The definition of dag consistency is techical in nature and is discussed in detail

in Chapter 6. Intuitively, a read can "see" a write in the dag-consistency model only

if there is some serial execution order consistent with the dag in which the read sees

the write. Two different locations, however, can observe different orderings of the

dag. Dag consistency provides a natural "minimal" consistency model that is useful

for many programs. As stated in Section 2.5, the use of locks in a Cilk program

guarantees the stronger release consistency memory model for locations protected by

a lock.

Of course, on machines where a stronger memory model is supported, the program-

mer may use that stronger consistency. Any program written assuming a stronger

memory model than dag consistency, however, may not be portable across all Cilk

implementations.

Chapter 3

SMP Cilk

This chapter describes our SMP implementation of Cilk-5.1 Cilk-5 uses the same

provably good "work-stealing" scheduling algorithm found in earlier versions of Cilk,

but the compiler and runtime system have been completely redesigned. The effi-

ciency of Cilk-5 was aided by a clear strategy that arose from the Cilk performance

model: concentrate on minimizing overheads that contribute to the work, even at

the expense of overheads that contribute to the critical path. Although it may seem

counterintuitive to move overheads onto the critical path, this "work-first" principle

has led to a portable Cilk-5 implementation in which the typical cost of spawning

a parallel thread is only between 2 and 6 times the cost of a C function call on a

variety of contemporary machines. Many Cilk programs run on one processor with

virtually no degradation compared to their C elision. This chapter describes how the

work-first principle was exploited in the design of Cilk-5's compiler and its runtime

system. In particular, we present Cilk-5's novel "two-clone" compilation strategy and

its Dijkstra-like mutual-exclusion protocol for implementing the ready deque in the

work-stealing scheduler.

Unlike in Cilk-1, where the Cilk scheduler was an identifiable piece of code, in

Cilk-5 both the compiler and runtime system bear the responsibility for scheduling.

Cilk-5's compiler cilk2c is a source-to-source translator [74, 24] which converts the

1The contents of this chapter are joint work with Matteo Frigo and Charles Leiserson and will
appear at PLDI'98 [41].

fib.cilk

rts.a

Figure 3-1: Generating an executable from a Cilk program. Our compiler cilk2c trans-
lates Cilk code into regular C code which we then compile with gcc. The result is linked
with our runtime system library to create an executable.

Cilk constructs into regular C code. As shown in Figure 3-1, a Cilk executable is

created from a Cilk program by first preprocessing the program using cilk2c, com-

piling the result with gcc, 2 and then linking with our runtime system. Importantly,

our cilk2c source-to-source translator is machine independent and does not need to

be changed when porting from one machine to another. Machine dependencies are

isolated to one machine-dependent file in the runtime system.

To obtain an efficient implementation of Cilk, we have, of course, attempted to

reduce scheduling overheads. Some overheads have a larger impact on execution time

than others, however. A theoretical understanding of Cilk's scheduling algorithm and

the performance model of work and critical path from Section 2.8 has allowed us to

identify and optimize the common cases. Within Cilk's scheduler, we can identify a

given cost as contributing to either work overhead or critical-path overhead. Much

of the efficiency of Cilk derives from the following principle, which we shall justify in

Section 3.1.

The work-first principle: Minimize the scheduling overhead borne by
the work of a computation. Specifically, move overheads out of the work
and onto the critical path.

This principle is called the work-first principle because it emphasizes the importance of

minimizing the work overhead in relation to other overheads. The work-first principle

played an important role during the design of earlier Cilk systems, but Cilk-5 exploits

the principle more extensively.

2We use some gcc extensions in the output of cilk2c which tie us to the gcc compiler. We hope
to remedy this situation in the future.

fib

The work-first principle inspired a "two-clone" strategy for compiling Cilk pro-

grams. Our cilk2c source-to-source translator produces two clones of every Cilk

procedure-a "fast" clone and a "slow" clone. The fast clone, which is identical in

most respects to the C elision of the Cilk program, executes in the common case

where serial semantics suffice. The slow clone is executed in the infrequent case that

parallel semantics and its concomitant bookkeeping are required. All communication

due to scheduling occurs in the slow clone and contributes to critical-path overhead,

but not to work overhead.

The work-first principle also inspired a Dijkstra-like [29], shared-memory, mutual-

exclusion protocol as part of the runtime load-balancing scheduler. Cilk's scheduler

uses a "work-stealing" algorithm in which idle processors, called thieves, "steal"

threads from busy processors, called victims. Cilk's scheduler guarantees that the

cost of stealing contributes only to critical-path overhead, and not to work overhead.

Nevertheless, it is hard to avoid the mutual-exclusion costs incurred by a potential vic-

tim, which contribute to work. To minimize work overhead, instead of using locking,

Cilk's runtime system uses a Dijkstra-like protocol, which we call the THE protocol,

to manage the runtime deque of ready threads in the work-stealing algorithm. An

added advantage of the THE protocol is that it allows an exception to be signaled to

a working processor with no additional work overhead, a feature used in Cilk's abort

mechanism.

The remainder of this chapter is organized as follows. Section 3.1 justifies the

work-first principle. Section 3.2 describes how the two-clone strategy is implemented,

and Section 3.3 presents the THE protocol. Section 3.4 gives empirical evidence that

the Cilk-5 scheduler is efficient. Finally, Section 3.5 presents related work and offers

some conclusions.

3.1 The work-first principle

This section justifies the work-first principle by showing that it follows from three

assumptions. First, we assume that Cilk's scheduler operates in practice according

to the theoretical model presented in Section 2.8. Second, we assume that in the

common case, ample "parallel slackness" [99] exists, that is, the average parallelism

of a Cilk program exceeds the number of processors on which we run it by a sufficient

margin. Third, we assume (as is indeed the case) that every Cilk program has a C

elision against which its one-processor performance can be measured.

As shown in Section 2.8, Cilk's randomized work-stealing scheduler executes a Cilk

computation on P processors in expected time Tp = T1/P + O(T,). Importantly, all

communication costs due to Cilk's scheduler are borne by the critical-path term [11,

16], as are most of the other scheduling costs. To make these overheads explicit, we

define the critical-path overhead to be the smallest constant c" such that the

following equation holds for all programs:

TP <_ T/P + co T . (3.1)

The second assumption needed to justify the work-first principle focuses on the

"common-case" regime in which a parallel program operates. Define the average

parallelism as P = T1/T, which corresponds to the maximum possible speedup

that the application can obtain. Define also the parallel slackness [99] to be the

ratio P/P. The assumption of parallel slackness is that PIP > ca, which

means that the number P of processors is much smaller than the average parallelism

P. Under this assumption, it follows that T1/P > c,T,, and hence from Inequal-

ity (3.1) that Tp a T 1/P, and we obtain linear speedup. The critical-path overhead

co has little effect on performance when sufficient slackness exists, although it does

determine how much slackness must exist to ensure linear speedup.

Whether substantial slackness exists in common applications is a matter of opinion

and empiricism, but we suggest that slackness is the common case. The expressive-

ness of Cilk makes it easy to code applications with large amounts of parallelism.

For modest-sized problems, many applications exhibit an average parallelism of over

200, yielding substantial slackness on contemporary SMP's. Even on Sandia National

Laboratory's Intel Paragon, which contains 1824 nodes, the *Socrates chess program

(coded in Cilk-1) ran in its linear-speedup regime during the 1995 ICCA World Com-

puter Chess Championship (where it placed second in a field of 24). Section 3.4

describes a dozen other diverse applications which were run on an 8-processor SMP

with considerable parallel slackness. The parallelism of these applications increases

with problem size, thereby ensuring they will run well on large machines.

The third assumption behind the work-first principle is that every Cilk program

has a C elision against which its one-processor performance can be measured. Let us

denote by Ts the running time of the C elision. Then, we define the work overhead

by cl = T/Ts. Incorporating critical-path and work overheads into Inequality (3.1)

yields

TP ciTs/P + c.T (3.2)

SciTs/P,

since we assume parallel slackness.

We can now restate the work-first principle precisely. Minimize cl, even at the

expense of a larger c,, because cl has a more direct impact on performance. Adopt-

ing the work-first principle may adversely affect the ability of an application to scale

up, however, if the critical-path overhead c, is too large. But, as we shall see in Sec-

tion 3.4, critical-path overhead is reasonably small in Cilk-5, and many applications

can be coded with large amounts of parallelism.

The work-first principle pervades the Cilk-5 implementation. The work-stealing

scheduler guarantees that with high probability, only O(PTO) steal (migration) at-

tempts occur (that is, O(T,) on average per processor), all costs for which are borne

on the critical path. Consequently, the scheduler for Cilk-5 postpones as much of

the scheduling cost as possible to when work is being stolen, thereby removing it

as a contributor to work overhead. This strategy of amortizing costs against steal

attempts permeates virtually every decision made in the design of the scheduler.

3.2 Cilk's compilation strategy

This section describes how our cilk2c compiler generates C postsource from a Cilk

program. As dictated by the work-first principle, our compiler and scheduler are

designed to reduce the work overhead as much as possible. Our strategy is to generate

two clones of each procedure-a fast clone and a slow clone. The fast clone operates

much as does the C elision and has little support for parallelism. The slow clone has

full support for parallelism, along with its concomitant overhead. We first describe

the Cilk scheduling algorithm. Then, we describe how the compiler translates the

Cilk language constructs into code for the fast and slow clones of each procedure.

Lastly, we describe how the runtime system links together the actions of the fast and

slow clones to produce a complete Cilk implementation.

As in lazy task creation [76], in Cilk-5 each processor, called a worker, maintains

a ready deque (doubly-ended queue) of ready procedures (technically, procedure

instances). Each deque has two ends, a head and a tail, from which procedures can

be added or removed. A worker operates locally on the tail of its own deque, treating

it much as C treats its call stack, pushing and popping activation frames. When

a worker runs out of work, it becomes a thief and attempts to steal a procedure

instance from another worker, called its victim. The thief steals the procedure from

the head of the victim's deque, the opposite end from which the victim is working.

When a procedure is spawned, the fast clone runs. Whenever a thief steals a

procedure, however, the procedure is converted to a slow clone.3 The Cilk scheduler

guarantees that the number of steals is small when sufficient slackness exists, and

so we expect the fast clones to be executed most of the time. Thus, the work-first

principle reduces to minimizing costs in the fast clone, which contribute more heavily

to work overhead. Minimizing costs in the slow clone, although a desirable goal, is

less important, since these costs contribute less heavily to work overhead and more

to critical-path overhead.

3Cilk procedures can be stolen when they are suspended at a spawn statement, so the slow clone
must be able to start executing a Cilk procedure at any spawn or sync point.

fib (int n)

fib_frame *f;
f = alloc(sizeof(*f));
f->sig = fib_sig;

if (n<2) {
free(f, sizeof(*f));
return n;

}
else {

int x, y;
f->entry = 1;
f->n = n;
push(f);

x = fib (n-1);
if (pop(x) == FAILURE)

return 0;

free(f, sizeof(*f));

return (x+y);

frame pointer

allocate frame
initialize frame

free frame

save PC
save live vars
push frame
do C call
pop frame
frame stolen
second spawn
sync is free!
free frame

Figure 3-2: The fast clone generated by cilk2c for the fib procedure from Figure 2-
1. The code for the second spawn is omitted. The functions alloc and free are
inlined calls to the runtime system's fast memory allocator. The signature fib_sig
contains a description of the fib procedure, including a pointer to the slow clone.

The push and pop calls are operations on the scheduling deque and are described in
detail in Section 3.3.

We minimize the costs of the fast clone by exploiting the structure of the Cilk

scheduler. Because we convert a procedure instance to its slow clone when it is

stolen, we maintain the invariant that a fast clone has never been stolen. Furthermore,

none of the descendants of a fast clone have been stolen either, since the strategy of

stealing from the heads of ready deques guarantees that parents are stolen before their

children. As we shall see, this simple fact allows many optimizations to be performed

in the fast clone.

We now describe how our cilk2c compiler generates postsource C code for the

fib procedure from Figure 2-1. An example of the postsource for the fast clone of

int
{

fib is given in Figure 3-2. The generated C code has the same general structure as

the C elision, with a few additional statements. In lines 4-5, an activation frame

is allocated for fib and initialized. The Cilk runtime system uses activation frames

to represent procedure instances. Using techniques similar to [49, 50], our inlined

allocator typically takes only a few cycles. The frame is initialized in line 5 by storing

a pointer to a static structure, called a signature, describing fib.

The first spawn in fib is translated into lines 12-17. In lines 12-13, the state of

the fib procedure is saved into the activation frame. The saved state includes the

program counter, encoded as an entry number, and all live, dirty variables. Then,

the frame is pushed on the runtime deque in line 14. Next, we call the fib routine as

we would in C. Because the spawn statement itself compiles directly to its C elision,

the postsource can exploit the optimization capabilities of the C compiler, including

its ability to pass arguments and receive return values in registers rather than in

memory.

After fib returns, lines 16-17 check to see whether the parent procedure instance

has been stolen. If it has, then the scheduling deque is empty, and we return to the

runtime system by returning immediately with a dummy return value. Since all of the

ancestors have been stolen as well, the C stack quickly unwinds and control is returned

to the runtime system.4 The protocol to check whether the parent procedure has been

stolen is quite subtle-we postpone discussion of its implementation to Section 3.3.

If the parent procedure has not been stolen, however, it continues to execute at line

18, performing the second spawn, which is not shown.

In the fast clone, all sync statements compile to no-ops. Because a fast clone

never has any children when it is executing, we know at compile time that all pre-

viously spawned procedures have completed. Thus, no operations are required for a

sync statement, as it always succeeds. For example, line 19 in Figure 3-2, the trans-

lation of the sync statement is just the empty statement. Finally, in lines 20-21,

fib deallocates the activation frame and returns the computed result to its parent

4The setjmp/longjmp facility of C could have been used as well, but our unwinding strategy is
simpler.

procedure.

The slow clone is similar to the fast clone except that it provides support for

parallel execution. When a procedure is stolen, control has been suspended between

two of the procedure's threads, that is, at a spawn or sync point. When the slow

clone is resumed, it uses a goto statement to restore the program counter, and then

it restores local variable state from the activation frame. A spawn statement is trans-

lated in the slow clone just as in the fast clone. For a sync statement, cilk2c inserts

a call to the runtime system, which checks to see whether the procedure has any

spawned children that have not returned. Although the parallel bookkeeping in a

slow clone is substantial, it contributes little to work overhead, since slow clones are

rarely executed.

The separation between fast clones and slow clones also allows us to compile inlets

and abort statements efficiently in the fast clone. An inlet call compiles as efficiently

as an ordinary spawn. For example, the code for the inlet call from Figure 2-2 compiles

similarly to the following Cilk code:

tmp = spawn fib(n-1);
summer (tmp);

Implicit inlet calls, such as x += spawn fib(n-1), compile directly to their C elisions.

An abort statement compiles to a no-op just as a sync statement does, because while

it is executing, a fast clone has no children to abort.

The runtime system provides the glue between the fast and slow clones that makes

the whole system work. It includes protocols for stealing procedures, returning val-

ues between processors, executing inlets, aborting computation subtrees, and the like.

All of the costs of these protocols can be amortized against the critical path, so their

overhead does not significantly affect the running time when sufficient parallel slack-

ness exists. The portion of the stealing protocol executed by the worker contributes

to work overhead, however, thereby warranting a careful implementation. We discuss

this protocol in detail in Section 3.3.

The work overhead of a spawn in Cilk-5 is only a few reads and writes in the fast

clone-3 reads and 5 writes for the fib example. We will experimentally quantify the

work overhead in Section 3.4. Some work overheads still remain in our implementa-

tion, however, including the allocation and freeing of activation frames, saving state

before a spawn, pushing and popping of the frame on the deque, and checking if a

procedure has been stolen. A portion of this work overhead is due to the fact that

Cilk-5 is duplicating the work the C compiler performs, but as Section 3.4 shows, this

overhead is small. Although a production Cilk compiler might be able eliminate this

unnecessary work, it would likely compromise portability.

In Cilk-4, the precursor to Cilk-5, we took the work-first principle to the extreme.

Cilk-4 performed stack-based allocation of activation frames, since the work overhead

of stack allocation is smaller than the overhead of heap allocation. Because of the

cactus stack semantics of the Cilk stack (see Section 2.7), however, Cilk-4 had to

manage the virtual-memory map on each processor explicitly, as was done in [94]. The

work overhead in Cilk-4 for frame allocation was little more than that of incrementing

the stack pointer, but whenever the stack pointer overflowed a page, an expensive

user-level interrupt ensued, during which Cilk-4 would modify the memory map.

Unfortunately, the operating-system mechanisms supporting these operations were

too slow and unpredictable, and the possibility of a page fault in critical sections

led to complicated protocols. Even though these overheads could be charged to

the critical-path term, in practice, they became so large that the critical-path term

contributed significantly to the running time, thereby violating the assumption of

parallel slackness. A one-processor execution of a program was indeed fast, but

insufficient slackness sometimes resulted in poor parallel performance.

In Cilk-5, we simplified the allocation of activation frames by simply using a heap.

In the common case, a frame is allocated by removing it from a free list. Deallocation

is performed by inserting the frame into the free list. No user-level management

of virtual memory is required, except for the initial setup of shared memory. Heap

allocation contributes only slightly more than stack allocation to the work overhead,

but it saves substantially on the critical path term. On the downside, heap allocation

can potentially waste more memory than stack allocation due to fragmentation. For a

careful analysis of the relative merits of stack and heap based allocation that supports

heap allocation, see the paper by Appel and Shao [3]. For an equally careful analysis

that supports stack allocation, see [73].

Thus, although the work-first principle gives a general understanding of where

overheads should be borne, our experience with Cilk-4 showed that large enough

critical-path overheads can tip the scales to the point where the assumptions under-

lying the principle no longer hold. We believe that Cilk-5 work overhead is nearly

as low as possible, given our goal of generating portable C output from our com-

piler. Other researchers have been able to reduce overheads even more, however, at

the expense of portability. For example, lazy threads [46] obtains efficiency at the

expense of implementing its own calling conventions, stack layouts, etc. Although we

could in principle incorporate such machine-dependent techniques into our compiler,

we feel that Cilk-5 strikes a good balance between performance and portability. We

also feel that the current overheads are sufficiently low that other problems, notably

minimizing overheads for data synchronization, deserve more attention.

3.3 Implemention of work-stealing

In this section, we describe Cilk-5's work-stealing mechanism, which is based on a

Dijkstra-like [29], shared-memory, mutual-exclusion protocol called the "THE" pro-

tocol. In accordance with the work-first principle, this protocol has been designed to

minimize work overhead. For example, on a 167-megahertz UltraSPARC I, the fib

program with the THE protocol runs about 25% faster than with hardware locking

primitives. We first present a simplified version of the protocol. Then, we discuss

the actual implementation, which allows exceptions to be signaled with no additional

overhead.

Several straightforward mechanisms might be considered to implement a work-

stealing protocol. For example, a thief might interrupt a worker and demand atten-

tion from this victim. This strategy presents problems for two reasons. First, the

mechanisms for signaling interrupts are slow, and although an interrupt would be

borne on the critical path, its large cost could threaten the assumption of parallel

slackness. Second, the worker would necessarily incur some overhead on the work

term to ensure that it could be safely interrupted in a critical section. As an al-

ternative to sending interrupts, thieves could post steal requests, and workers could

periodically poll for them. Once again, however, a cost accrues to the work overhead,

this time for polling. Techniques are known that can limit the overhead of polling

[36], but they require the support of a sophisticated compiler.

The work-first principle suggests that it is reasonable to put substantial effort

into minimizing work overhead in the work-stealing protocol. Since Cilk-5 is designed

for shared-memory machines, we chose to implement work-stealing through shared-

memory, rather than with message-passing, as might otherwise be appropriate for a

distributed-memory implementation. In our implementation, both victim and thief

operate directly through shared memory on the victim's ready deque. The crucial

issue is how to resolve the race condition that arises when a thief tries to steal the same

frame that its victim is attempting to pop. One simple solution is to add a lock to

the deque using relatively heavyweight hardware primitives like Compare-And-Swap

or Test-And-Set. Whenever a thief or worker wishes to remove a frame from the

deque, it first grabs the lock. This solution has the same fundamental problem as the

interrupt and polling mechanisms just described, however. Whenever a worker pops

a frame, it pays the heavy price to grab a lock, which contributes to work overhead.

Consequently, we adopted a solution that employs Dijkstra's protocol for mutual

exclusion [29], which assumes only that reads and writes are atomic. Because our

protocol uses three atomic shared variables T, H, and E, we call it the THE protocol.

The key idea is that actions by the worker on the tail of the queue contribute to

work overhead, while actions by thieves on the head of the queue contribute only

to critical-path overhead. Therefore, in accordance with the work-first principle, we

attempt to move costs from the worker to the thief. To arbitrate among different

thieves attempting to steal from the same victim, we use a hardware lock, since this

overhead can be amortized against the critical path. To resolve conflicts between a

worker and the sole thief holding the lock, however, we use a lightweight Dijkstra-

like protocol which contributes minimally to work overhead. A worker resorts to a

heavyweight hardware lock only when it encounters an actual conflict with a thief, in

which case we can charge the overhead that the victim incurs to the critical path.

In the rest of this section, we describe the THE protocol in detail. We first present

a simplified protocol that uses only two shared variables T and H designating the tail

and the head of the deque, respectively. Later, we extend the protocol with a third

variable E that allows exceptions to be signaled to a worker. The exception mechanism

is used to implement Cilk's abort statement. Interestingly, this extension does not

introduce any additional work overhead.

The pseudocode of the simplified THE protocol is shown in Figure 3-3. Assume

that shared memory is sequentially consistent [63].5 The code assumes that the ready

deque is implemented as an array of frames. The head and tail of the deque are

determined by two indices T and H, which are stored in shared memory and are

visible to all processors. The index T points to the first unused element in the array,

and H points to the first frame on the deque. Indices grow from the head towards

the tail so that under normal conditions, we have T > H. Moreover, each deque has a

lock L implemented with atomic hardware primitives or with OS calls.

The worker uses the deque as a stack. (See Section 3.2.) Before a spawn, it pushes

a frame onto the tail of the deque. After a spawn, it pops the frame, unless the frame

has been stolen. A thief attempts to steal the frame at the head of the deque. Only

one thief at the time may steal from the deque, since a thief grabs L as its first action.

As can be seen from the code, the worker alters T but not H, whereas the thief only

increments H and does not alter T.

The only possible interaction between a thief and its victim occurs when the thief

is incrementing H while the victim is decrementing T. Consequently, it is always safe

for a worker to append a new frame at the end of the deque (push) without worrying

about the actions of the thief. For a pop operations, there are three cases, which are

shown in Figure 3-4. In case (a), the thief and the victim can both get a frame from

5If the shared memory is not sequentially consistent, a memory fence must be inserted between
lines 5 and 6 of the worker/victim code and between lines 3 and 4 of the thief code to ensure that
these instructions are executed in the proper order.

Worker/Victim
push(frame *f) {

deque[T] = f;
T++;

pop() {
T--;
if (H > T) {
T++;

lock(L);
T--;

if (H > T) {

T++;

unlock(L);
return FAILURE;

Thief
steal() {

lock(L);
H++;
if (H > T) {

H--;
unlock(L);
return FAILURE;

}
unlock(L);

return SUCCESS;

unlock(L);

}
return SUCCESS;

Figure 3-3: Pseudocode of a simplified version of the THE protocol. The left part
of the figure shows the actions performed by the victim, and the right part shows the
actions of the thief. None of the actions besides reads and writes are assumed to be
atomic. For example, T--; can be implemented as tmp = T; tmp = tmp - 1; T =
tmp;.

Thief1
2 H

4 H H=T

5 T

6 T Victim

(a) (b) (c)

Figure 3-4: The three cases of the ready deque in the simplified THE protocol. A
shaded entry indicates the presence of a frame at a certain position in the deque. The
head and the tail are marked by T and H.

the deque. In case (b), the deque contains only one frame. If the victim decrements

T without interference from thieves, it gets the frame. Similarly, a thief can steal the

frame as long as its victim is not trying to obtain it. If both the thief and the victim

try to grab the frame, however, the protocol guarantees that at least one of them

discovers that H > T. If the thief discovers that H > T, it restores H to its original

value and retreats. If the victim discovers that H > T, it restores T to its original

value and restarts the protocol after having acquired L. With L acquired, no thief

can steal from this deque so the victim can pop the frame without interference (if the

frame is still there). Finally, in case (c) the deque is empty. If a thief tries to steal,

it will always fail. If the victim tries to pop, the attempt fails and control returns to

the Cilk runtime system. The protocol cannot deadlock, because each process holds

only one lock at a time.

We now argue that the THE protocol contributes little to the work overhead.

Pushing a frame involves no overhead beyond updating T. In the common case where

a worker can succesfully pop a frame, the pop protocol performs only 6 operations-

2 memory loads, 1 memory store, 1 decrement, 1 comparison, and 1 (predictable)

conditional branch. Moreover, in the common case where no thief operates on the

deque, both H and T can be cached exclusively by the worker. The expensive operation

of a worker grabbing the lock L occurs only when a thief is simultaneously trying to

steal the frame being popped. Since the number of steal attempts depends on T.,

not on TI, the relatively heavy cost of a victim grabbing L can be considered as part

of the critical-path overhead c, and does not influence the work overhead cl.

We ran some experiments to determine the relative performance of the THE pro-

tocol versus the straightforward protocol in which pop just locks the deque before

accessing it. On a 167-megahertz UltraSPARC I, the THE protocol is about 25%

faster than the simple locking protocol. This machine's memory model requires that

a memory fence instruction (membar) be inserted between lines 6 and 7 of the pop

pseudocode. We tried to quantify the performance impact of the membar instruc-

tion, but in all our experiments the execution times of the code with and without

membar are about the same. On a 200-megahertz Pentium Pro running Linux and

gcc 2.7.1, the THE protocol is only about 5% faster than the locking protocol. On

this processor, the THE protocol spends about half of its time in the memory fence.

Because it replaces locks with memory synchronization, the THE protocol is more

"nonblocking" than a straightforward locking protocol. Consequently, the THE pro-

tocol is less prone to problems that arise when spin locks are used extensively. For

example, even if a worker is suspended by the operating system during the execution

of pop, the infrequency of locking in the THE protocol means that a thief can usually

complete a steal operation on the worker's deque. Recent work by Arora et al. [4] has

shown that a completely nonblocking work-stealing scheduler can be implemented.

Using these ideas, Lisiecki and Medina [68] have modified the Cilk-5 scheduler to

make it completely nonblocking. Their experience is that the THE protocol greatly

simplifies a nonblocking implementation.

The simplified THE protocol can be extended to support the signaling of excep-

tions to a worker. In Figure 3-3, the index H plays two roles: it marks the head of

the deque, and it marks the point that the worker cannot cross when it pops. These

places in the deque need not be the same. In the full THE protocol, we separate the

two functions of H into two variables: H, which now only marks the head of the deque,

and E, which marks the point that the victim cannot cross. Whenever E > T, some

exceptional condition has occurred, which includes the frame being stolen, but it can

also be used for other exceptions. For example, setting E = oc causes the worker to

discover the exception at its next pop. In the new protocol, E replaces H in line 7

of the worker/victim. Moreover, lines 8-16 of the worker/victim are replaced by a

call to an exception handler to determine the type of exception (stolen frame or

otherwise) and the proper action to perform. The thief code is also modified. Before

trying to steal, the thief increments E. If there is nothing to steal, the thief restores E

to the original value. Otherwise, the thief steals frame H and increments H. From the

point of view of a worker, the common case is the same as in the simplified protocol:

it compares two pointers (E and T rather than H and T).

The exception mechanism is used to implement abort. When a Cilk procedure

executes an abort instruction, the runtime system serially walks the tree of outstand-

ing descendants of that procedure. It marks the descendants as aborted and signals

an abort exception on any processor working on a descendant. At its next pop, a

processor working on an aborted computation will discover the exception, notice that

it has been aborted, and cause all of its procedure instances to return immediately.

It is conceivable that a processor could run for a long time without executing a pop

and discovering that it has been aborted. We made the design decision to accept the

possibility of this unlikely scenario, figuring that more cycles were likely to be lost in

work overhead if we abandoned the THE protocol for a mechanism that solves this

minor problem.

3.4 Benchmarks

In this section, we evaluate the performance of Cilk-5. We show that on 12 applica-

tions, the work overhead cl is close to 1, which indicates that the Cilk-5 implemen-

tation exploits the work-first principle effectively. We then present a breakdown of

Cilk's work overhead cl on four machines. Finally, we present experiments showing

Program Size T, T" P cl T8 T1/T Ts/Ts
fib 35 12.77 0.0005 25540 3.63 1.60 8.0 2.2
blockedmul 1024 29.9 0.0044 6730 1.05 4.3 7.0 6.6
notempmul 1024 29.7 0.015 1970 1.05 3.9 7.6 7.2
strassen 1024 20.2 0.58 35 1.01 3.54 5.7 5.6

*cilksort 4, 100,000 5.4 0.0049 1108 1.21 0.90 6.0 5.0
tqueens 22 150. 0.0015 96898 0.99 18.8 8.0 8.0
tknapsack 30 75.8 0.0014 54143 1.03 9.5 8.0 7.7
lu 2048 155.8 0.42 370 1.02 20.3 7.7 7.5

*cholesky BCSSTK32 1427. 3.4 420 1.25 208. 6.9 5.5
heat 4096 x 512 62.3 0.16 384 1.08 9.4 6.6 6.1
fft 220 4.3 0.0020 2145 0.93 0.77 5.6 6.0
barnes-hut 216 108. 0.15 720 1.02 14.8 7.2 7.1

Figure 3-5: The performance of some example Cilk programs. Times are in seconds and
are accurate to within about 10%. The serial programs are C elisions of the Cilk programs,
except for those programs that are starred (*), where the parallel program implements a
different algorithm than the serial program. Programs labeled by a dagger (t) are non-
deterministic, and thus, the running time on one processor is not the same as the work
performed by the computation. For these programs, the value for T indicates the actual
work of the computation on 8 processors, and not the running time on one processor.

that the critical-path overhead c, is reasonably small as well.

Figure 3-5 shows a table of performance measurements taken for 12 Cilk pro-

grams on a Sun Enterprise 5000 SMP with 8 167-megahertz UltraSPARC processors,

each with 512 kilobytes of L2 cache, 16 kilobytes each of L data and instruction

caches, running Solaris 2.5. We compiled our programs with gcc 2.7.2 at optimiza-

tion level -03. For a full description of these programs, see the Cilk 5.1 manual [24].

The table shows the work of each Cilk program T 1 , the critical path To, and the two

derived quantities P and cl. The table also lists the running time T on 8 processors,

and the speedup T 1 /T relative to the one-processor execution time, and speedup

Ts/Ts relative to the serial execution time.

For the 12 programs, the average parallelism P is in most cases quite large rel-

ative to the number of processors on a typical SMP. These measurements validate

our assumption of parallel slackness, which implies that the work term dominates

in Inequality (3.3). For instance, on 1024 x 1024 matrices, notempmul runs with an

average parallelism of 1970-yielding adequate parallel slackness for up to several

hundred processors. For even larger machines, one normally would not run such a

small problem. For notempmul, as well as the other 11 applications, the average par-

allelism grows with problem size, and thus sufficient parallel slackness is likely to exist

even for much larger machines, as long as the problem sizes are scaled appropriately.6

The work overhead cl is only a few percent larger than 1 for most programs, which

shows that our design of Cilk-5 faithfully implements the work-first principle. The

two cases where the work overhead is larger (cilksort and cholesky) are due to

the fact that we had to change the serial algorithm to obtain a parallel algorithm,

and thus the comparison is not against the C elision. For example, the serial C

algorithm for sorting is an in-place quicksort, but the parallel algorithm cilksort

requires an additional temporary array which adds overhead beyond the overhead of

Cilk itself. Similarly, our parallel Cholesky factorization (see Section 4.2 for details

of this algorithm) uses a quadtree representation of the sparse matrix, which induces

more work than the linked-list representation used in the serial C algorithm. Finally,

the work overhead for fib is large, because fib does essentially no work besides

spawning procedures. Thus, the overhead cl = 3.63 for fib gives a good estimate

of the cost of a Cilk spawn versus a traditional C function call. With such a small

overhead for spawning, one can understand why for most of the other applications,

which perform significant work for each spawn, the overhead of Cilk-5's scheduling is

barely noticeable compared to the 10% "noise" in our measurements.

We now present a breakdown of Cilk's serial overhead cl into its components. Be-

cause scheduling overheads are small for most programs, we perform our analysis with

the fib program from Figure 2-1. This program is unusually sensitive to scheduling

overheads, because it contains little actual computation. We give a breakdown of the

serial overhead into three components: the overhead of saving state before spawning,

the overhead of allocating activation frames, and the overhead of the THE protocol.

Figure 3-6 shows the breakdown of Cilk's serial overhead for fib on four machines.

6 Our analysis of average parallelism is somewhat suspect because it assumes an ideal memory

system. In the real world, the work, critical path, and average parallelism of an application can

change as the costs of the application's memory operations vary with the number of processors.

Nevertheless, our performance metrics give a rough estimate of the scalability of applications on

machines with adequate memory bandwidth.

466 MHz
Alpha 21164

200 MHz
Pentium Pro I
167 MHz C

Ultra SPARC I N1r U state saving

o frame allocation

0 THE protocol
195 MHz

MIPS R10000

0 1 2 3 4 5 6 7
overheads

Figure 3-6: Breakdown of overheads for fib running on one processor on various archi-

tectures. The overheads are normalized to the running time of the serial C elision. The

three overheads are for saving the state of a procedure before a spawn, the allocation of

activation frames for procedures, and the THE protocol. Absolute times are given for the

per-spawn running time of the C elision.

Our methodology for obtaining these numbers is as follows. First, we take the serial

C fib program and time its execution. Then, we individually add in the code that

generates each of the overheads and time the execution of the resulting program. We

attribute the additional time required by the modified program to the scheduling code

we added. In order to verify our numbers, we timed the fib code with all of the Cilk

overheads added (the code shown in Figure 3-2), and compared the resulting time

to the sum of the individual overheads. In all cases, the two times differed by less

than 10%.

Overheads vary across architectures, but the overhead of Cilk is typically only

a few times the C running time on this spawn-intensive program. Overheads on

the Alpha machine are particularly large, because its native C function calls are

fast compared to the other architectures. The state-saving costs are small for fib,

because all four architectures have write buffers that can hide the latency of the writes

required.

I I::::

N 0.1

E Experimental data o
O Model T 1/P + T inf

Work bound
Critical path bound -

0.01
0.01 0.1 1 10

Normalized Machine Size

Figure 3-7: Normalized speedup curve for the knary benchmark in Cilk-5. The horizontal

axis is the number P of processors and the vertical axis is the speedup Ti/Tp, but each

data point has been normalized by dividing by T1/T,. The graph also shows the speedup

predicted by the formula Tp = Ti/P + T,.

We also attempted to measure the critical-path overhead coo. We used the syn-

thetic knary benchmark [14] to synthesize computations artificially with a wide range

of work and critical-path lengths. Figure 3-7 shows the outcome from many such ex-

periments. The figure plots the measured speedup T 1/Tp for each run against the

machine size P for that run. In order to plot different computations on the same

graph, we normalized the machine size and the speedup by dividing these values by

the average parallelism P = T 1/To,, as was done in [14]. For each run, the horizon-

tal position of the plotted datum is the inverse of the slackness P/P, and thus, the

normalized machine size is 1.0 when the number of processors is equal to the aver-

age parallelism. The vertical position of the plotted datum is (T 1/Tp)/P = To/Tp,

which measures the fraction of maximum obtainable speedup. As can be seen in the

chart, for almost all runs of this benchmark, we observed Tp < T1/P + 1.0To,. (One

exceptional data point satisfies Tp _ T 1/P + 1.05T,.) Thus, although the work-

first principle caused us to move overheads to the critical path, the ability of Cilk

applications to scale up was not significantly compromised.

3.5 Conclusion

We conclude this chapter by examining some related work.

Mohr et al. [76] introduced lazy task creation in their implementation of the

Mul-T language. Lazy task creation is similar in many ways to our lazy scheduling

techniques. Mohr et al. report a work overhead of around 2 when comparing with

serial T, the Scheme dialect on which Mul-T is based. Our research confirms the

intuition behind their methods and shows that work overheads of close to 1 are

achievable.

The Cid language [82] is like Cilk in that it uses C as a base language and has

a simple preprocessing compiler to convert parallel Cid constructs to C. Cid is de-

signed to work in a distributed memory environment, and so it employs latency-hiding

mechanisms which Cilk-5 could avoid. Both Cilk and Cid recognize the attractive-

ness of basing a parallel language on C so as to leverage C compiler technology for

high-performance codes. Cilk is a faithful extension of C, however, supporting the

simplifying notion of a C elision and allowing Cilk to exploit the C compiler technol-

ogy more readily.

TAM [28] and Lazy Threads [46] also analyze many of the same overhead issues

in a more general, "nonstrict" language setting, where the individual performances

of a whole host of mechanisms are required for applications to obtain good overall

performance. In contrast, Cilk's multithreaded language provides an execution model

based on work and critical-path length that allows us to focus our implementation

efforts by using the work-first principle. Using this principle as a guide, we have

concentrated our optimizing effort on the common-case protocol code to develop an

efficient and portable implementation of the Cilk language.

Chapter 4

Applications

In this chapter, we describe some parallel applications we have written in Cilk. In

the context of Cilk, this chapter gives some anecdotal evidence that realistic applica-

tions are easy to program and perform well. In addition, some of these applications

have independent interest apart from Cilk as they are implemented with some novel

algorithms. The applications include some dense matrix algorithms including ma-

trix multiplication and LU factorization, a sparse Cholesky factorization algorithm,

a Barnes-Hut N-body simulator, and the world's fastest Rubik's cube solver.

4.1 Dense matrix algorithms

In this section, we describe the four dense matrix algorithms shown in Figure 3-5,

blockedmul, notempmul, strassen, and lu. The first three algorithms are variants

of matrix multiplication, and the last is a code for LU factorization. This section

shows how the model of work and critical path can be applied to analyze algorithms

written in Cilk and explore tradeoffs between work, average parallelism, and space

utilization.

A x B = R

C D G H CG CH DI DJ
LXL . . . = - + '
E F I J EG EH FI FJ

Figure 4-1: Recursive decomposition of matrix multiplication. The multiplication of n x n
matrices requires eight multiplications of n/2 x n/2 matrices, followed by one addition of
n x n matrices.

4.1.1 Matrix multiplication

One way to program matrix multiplication is to use the recursive divide-and-conquer

algorithm shown in Figure 4-1. To multiply one n x n matrix by another, we divide

each matrix into four n/2 x n/2 submatrices, recursively compute some products of

these submatrices, and then add the results together. This algorithm lends itself

to a parallel implementation, because each of the eight recursive multiplications is

independent and can be executed in parallel.

Figure 4-2 shows Cilk code for a "blocked" implementation of recursive matrix

multiplication in which the (square) input matrices A and B and the output matrix R

are stored as a collection of 16 x 16 submatrices, called blocks. The Cilk procedure

matrixmul takes as arguments pointers to the first block in each matrix as well as

a variable nb denoting the number of blocks in any row or column of the matrices.

From the pointer to the first block of a matrix and the value of nb, the location of any

other block in the matrix can be computed quickly. As matrixmul executes, values

are stored into R, as well as into a temporary matrix tmp.

The procedure blockedmul operates as follows. Lines 3-4 check to see if the

matrices to be multiplied consist of a single block, in which case a call is made to a

serial routine multiplyblock (not shown) to perform the multiplication. Otherwise,

line 8 allocates some temporary storage in shared memory for the results, lines 9-10

compute pointers to the 8 submatrices of A and B, and lines 11-12 compute pointers to

the 8 submatrices of R and the temporary matrix tmp. At this point, the divide step

of the divide-and-conquer paradigm is complete, and we begin on the conquer step.

Lines 13-20 recursively compute the 8 required submatrix multiplications in parallel,

1 cilk void blockedmul(long nb, block *A, block *B, block *R)

2
3 if (nb == 1)

4 multiply-block(A, B, R);

5 else {
6 block *C,*D,*E,*F,*G,*H,*I,*J;

7 block *CG,*CH,*EG,*EH,*DI,*DJ,*FI,*FJ;

8 block tmp[nb*nb];

/* get pointers to input submatrices */

9 partition(nb, A, &C, &D, &E, &F);

10 partition(nb, B, &G, &H, &I, &J);

/* get pointers to result submatrices */

11 partition(nb, R, &CG, &CH, &EG, &EH);

12 partition(nb, tmp, &DI, &DJ, &FI, &FJ);

/* solve subproblems recursively */

13 spawn blockedmul(nb/2, C, G, CG);

14 spawn blockedmul(nb/2, C, H, CH);

15 spawn blockedmul(nb/2, E, H, EH);

16 spawn blockedmul(nb/2, E, G, EG);

17 spawn blockedmul(nb/2, D, I, DI);

18 spawn blockedmul(nb/2, D, J, DJ);

19 spawn blockedmul(nb/2, F, J, FJ);

20 spawn blockedmul(nb/2, F, I, FI);

21 sync;

/* add results together into R */

22 spawn matrixadd(nb, tmp, R);

23 sync;

24 }
25 return;

26 }

Figure 4-2: Cilk code for recursive blocked matrix multiplication.

storing the results in the 8 disjoint submatrices of R and tmp. The sync statement

in line 21 causes the procedure to suspend until all the procedures it spawned have

finished. Then, line 22 spawns a parallel addition in which the matrix tmp is added

into R. (The procedure matrixadd is itself implemented in a recursive, parallel, divide-

and-conquer fashion, and the code is not shown.) The sync in line 23 ensures that

the addition completes before blockedmul returns.

The work and critical-path length for blockedmul can be computed using recur-

rences. The computational work T(n) to multiply n x n matrices satisfies T1 (n) =

8T 1(n/2) + O(n 2), since adding two matrices in parallel can be done using O(n 2)

computational work, and thus, Ti(n) = O(n 3). To derive a recurrence for the

critical-path length To(n), we observe that with an infinite number of processors,

only one of the 8 submultiplications is the bottleneck, because the 8 multiplica-

1 cilk void notempmul(long nb, block *A, block *B, block *R)
2 {
3 if (nb == 1)
4 multiplyadd_block(A, B, R);

5 else {

6 block *C,*D,*E,*F,*G,*H,*I,*J;

7 block *CGDI,*CHDJ,*EGFI,*EHFJ;

/* get pointers to input submatrices */

8 partition(nb, A, &C, &D, &E, &F);

9 partition(nb, B, &G, &H, &I, &J);

/* get pointers to result submatrices */

10 partition(nb, R, &CGDI, &CHDJ, &EGFI, &EHFJ);

/* solve subproblems recursively */

11 spawn notempmul(nb/2, C, G, CGDI);
12 spawn notempmul(nb/2, C, H, CHDJ);
13 spawn notempmul(nb/2, E, H, EHFJ);

14 spawn notempmul(nb/2, E, G, EGFI);
15 sync;

16 spawn notempmul(nb/2, D, I, CGDI);
17 spawn notempmul(nb/2, D, J, CHDJ);
18 spawn notempmul(nb/2, F, J, EHFJ);
19 spawn notempmul(nb/2, F, I, EGFI);
20 sync;

21 }
22 return;

23 }

Figure 4-3: Cilk code for a no-temporary version of recursive blocked matrix multiplica-
tion.

tions can execute in parallel. Consequently, the critical-path length To(n) satisfies

To(n) = To(n/2) + e(lg n), because the parallel addition can be accomplished re-

cursively with a critical path of length e(lg n). The solution to this recurrence is

T,, (n) = O(lg2 n).

One drawback of the blockedmul algorithm from Figure 4-2 is that it requires

temporary storage. We developed an in-place version of the same algorithm, called

notempmul, which trades off a longer critical path for less storage. The code for

notempmul is shown in Figure 4-3. The code is very similar to blockedmul except

that there is an extra sync in line 15. By adding this extra synchronization, we are

able to add in the second four recursive multiplications directly to the result matrix

instead of storing them in a temporary matrix and adding them in later. The extra

synchronization, however, makes the critical path longer. The critical-path length

recurrence becomes To(n) = 2To(n/2) + E(lg n), whose solution is T.(n) = O(n).

1200

1000 -

800 -

Co 600

400
notempmul
blockedmul -+---

Strassen --
200

0
1 2 3 4

processors

Figure 4-4: Total megaflops rate of Cilk matrix multiplication algorithms for 1024 x 1024
matrices (for the purpose of this graph, all algorithms are assumed to perform 2n3 flops,
even though Strassen performs asymptotically less flops). These experiments were run on
an Alpha 4100 SMP with 4 466MHz processors.

By lengthening the critical path, and hence reducing the average parallelism, we are

able to use less storage. The average parallelism is still quite large, however, as can

be seen from Figure 3-5, where a 1024 x 1024 notempmul multiply has a parallelism

of 1970. Thus, the use of notempmul is generally a win except on very large machines.

We also experimented with Strassen's algorithm [96], a subcubic algorithm for

matrix multiplication. The algorithm is significantly more complicated than that

shown in Figure 4-1, but still required only an evening to code in Cilk. On one

processor, Strassen is competitive with our other matrix multiplication codes for

large matrices. Because its average parallelism is small, however, the Strassen code

is less suitable for large parallel machines.

Figure 4-4 gives an absolute comparison of the three matrix multiplication algo-

rithms presented.

4.1.2 LU decomposition

A divide-and-conquer algorithm for LU decomposition can be constructed in a similar

recursive fashion to the matrix multiplication algorithms. LU decomposition is the

process of factoring a matrix A into the product of a lower triangular matrix and an

upper triangular matrix. To see how our algorithm works, divide the matrix A and

its factors L and U into four parts so that A = L U is written as

Aoo A 1 Loo 0 U oo Uol01

A 10 All L 10 L 11 0 U1

The parallel algorithm computes L and U as follows. It recursively factors Aoo into

Loo -U00. Then, it uses back substitution to solve for U01 in the formula A01 = LooUo01,

while simultaneously using forward substitution to solve for L10 in A 10 = LloUoo.

Finally, it recursively factors the Schur complement All - L1oUo0 into L11 -U11.

To understand the performance of this LU-decomposition algorithm, we must

first understand how the back- and forward-substitution algorithms work. To solve

these problems on an n x n matrix, we can also use a parallel divide-and-conquer

strategy. For back substitution (forward substitution is symmetric), we wish to solve

the matrix equation A = LX for the unknown matrix X, where L is a lower triangular

matrix. Subdividing the three matrices as we did for LU-decomposition, we solve the

equation as follows. First, solve A 00 = LooXoo for Xoo recursively, and in parallel solve

Ao0 = LooXol for Xo0 . Then, compute A'O = A1o - LIoXoo and A' = All - LloXo0

using one of the matrix muliplication routines from Section 4.1.1. Finally, solve

A' =- L 11X 10 for Xo10 recursively, and in parallel solve A' = L 11X 11 for X11 .

To analyze back substitution, let us assume that we are implementing an in-place

algorithm, so that we can use the multiplication algorithm notempmul that requires no

auxiliary space, but which has a critical path of length O(n). The computational work

for back substitution satisfies TI(n) = 4TI(n/2) + O(n3), since matrix multiplication

has computational work O(n3), which has solution Ti(n) = O(n 3). The critical-

path length for back substitution is T,(n) = 2T.(n/2) + 0(n), since the first two

recursive subproblems together have a critical path of To(n/2), as do the second

two subproblems, which must wait until the first two are done. The solution to this

recurrence is T,(n) = O(n Ig n). The results for forward substitution are identical.

We can now analyze the LU-decomposition algorithm. First, observe that if

notempmul is used to form the Schur complement as well as in the back and for-

ward substitution, the entire algorithm can be performed in place with no extra

storage. For the computational work of the algorithm, we obtain the recurrence

T1 (n) = 2T 1(n/2) + O(n 3), since we have two recursive calls to the algorithm and

O(n3) computational work is required for the back substitution, the forward sub-

stitution, and the matrix multiplication to compute the Schur complement. This

recurrence gives us a solution of Ti(n) = O(n 3) for the computational work. The

critical-path length has recurrence T,(n) = 2T,(n/2) + O(nlgn), since the back

and forward substitutions have O(nlgn) critical-path length. The solution to this

recurrence is T,(n) = O(n lg 2 n).

If we replace all of the matrix multiplication routines in the LU decomposition

algorithm with calls to blockedmul algorithm, we can improve the critical path to

O(n Ig n) at the expense of using extra temporary space. We are able to predict using

our computational model, however, that the in-place algorithm performs better on

our 8-processor SMP for large matrices. For instance, the average parallelism of the

in-place algorithm is 370 for 2048 x 2048 matrices, easily satisfying the assumption

of parallel slackness. Hence, the longer critical path length of the in-place algorithm

will not have much effect on the overall running time, and allocation costs and cache

effects from using more space dominate the performance tradeoff.

As a final note, we observe that our LU decomposition algorithm does not per-

form any pivoting, and therefore can be numerically unstable. We are investigating

techniques to adapt this algorithm to perform some form of pivoting.

M M

2 7 XX

4 5

27 1 3 45

Figure 4-5: Example of a quadtree representation of matrix M. The standard dense
representation is shown on the left, and the sparse quadtree representation is shown on
the right. The dense matrix is represented by a pointer to the first element of the matrix.
The sparse matrix is represented by a pointer to a tree-like structure representing the
nonzero elements of M. Each level of the quadtree representation contains pointers to
the four submatrices (top-left quadrant, top-right quadrant, bottom-left quadrant, bottom-
right quadrant) of the matrix. In our program, the recursion does not go down to individual
matrix elements as is shown in the figure, but instead switches to a dense representation
for a 4 x 4 matrix.

4.2 Sparse Cholesky factorization

This section describes the implementation of a sparse Cholesky factorization algo-

rithm developed by Charles Leiserson, Aske Plaat, and myself. We investigate the

quadtree representation used to store the matrix and present the factorization algo-

rithm that exploits the quadtree representation to obtain parallelism.

Traditionally, sparse matrices are stored in linked list form: each row (and possibly

column) is represented as a linked list of the nonzero elements in that row. This rep-

resentation is compact and efficient for a serial program, but presents some problems

for a parallel program. In particular, it is difficult to expose high-level parallelism

because it is difficult to represent efficiently submatrices of a matrix.

For our parallel sparse Cholesky factorization algorithm, we chose to change the

matrix representation to allow the problem to be parallelized more efficiently. We

represent a matrix as a quadtree [100], which is a recursive data structure shown

in Figure 4-5. A matrix M is represented by pointers to the four submatrices that

make up the quadrants of M. Sparsity is encoded by representing submatrices with

all zero elements as null pointers. For efficiency reasons, the recursion of the data

structure bottoms out at matrices of size 4 x 4, where we store the 16 entries of the

4 x 4 matrix in dense form.

Cholesky factorization is the process of computing, for a symmetric positive def-

inite matrix M, a lower-triangular matrix L such that M = LLT. Our parallel

algorithm for sparse Cholesky factorization is a divide-and-conquer algorithm which

follows the recursive structure of the quadtree. The algorithm for factoring a matrix

M = Moo M1 into a matrix L = Loo 1 is similar to the LU decomposi-
MI0 MIl L10 L11

tion algorithm and proceeds as follows:

1. Recursively Cholesky factor the upper-left quadrant of M, i.e. compute Loo

such that Moo = LooL0o.

2. Solve for L 10 in the equation M10 = LloL o using parallel back substitution.

3. Compute M11 - L 1oLW using parallel matrix multiplication and subtraction.

4. Compute L11 as the Cholesky factorization of M 1 - LloLTo.

When the recursion reaches a 4 x 4 matrix at the leaves of the quadtree, we do

a direct Cholesky factorization of the dense 4 x 4 matrix. The code for the parallel

back substitution and matrix multiplication is similar to the dense algorithms for

these problems given in Section 4.1. The only fundamental difference in the sparse

algorithms is that opportunities for optimization can occur if one or more submatrix

of the quadtree is all zero. Our algorithms for back substitution and matrix multipli-

cation use these opportunities to take advantage of the sparsity. Unfortunately, these

optimizations depend on the structure of the sparse matrix, and hence analyzing the

work and critical path of sparse Cholesky is difficult. Fortunately, the Cilk runtime

system can measure the work and critical path of a Cilk computation, so we can

experimentally determine T1 and To for the Cholesky algorithm run on specific input

matrices. Figure 3-5 shows the results of an experiment for the matrix bcsstk32 ob-

tained from Matrix Market [17]. We can see that with an average parallelism of 420,

the Cholesky algorithm run on this particular problem instance should scale well.

7

6

a. 5

a)

CO 4

3

linear speedup--

2-

1 2 3 4 5 6 7 8
processors

Figure 4-6: Speedup of our sparse Cholesky algorithm on the matrix bcsstk29.

Figure 4-6 shows, for a different problem instance, that sparse Cholesky does scale

well. These experiments were run with the sparse matrix bcsstk29 obtained from

Matrix Market [17], reordered using MATLAB's column minimum degree permu-

tation. The matrix has 13, 992 rows with 316, 740 nonzero elements. Despite the

irregular nature of our parallel sparse matrix computation, the Cilk runtime system

is able to schedule the computation efficiently on our 8 processor UltraSPARC SMP.

Furthermore, the nature of the algorithm lends itself very easily to its expression in

Cilk. The entire factorization program, including I/O, timing, and testing code, is ex-

pressed in less than 1000 lines of Cilk. The combination of simplicity and performance

makes Cilk a good fit for this application.

We did have to reorganize the representation of the sparse matrix in order to obtain

parallelism, however. The overhead of the quadtree organization adds about 20%

overhead to the running time of the Cilk code on one processor. This work overhead

is unfortunate, but we see no simple way of parallelizing Cholesky factorization using

the more efficient linked-list representation. It is an open question whether linked-list

parallelizations can achieve similar speedups to those shown in Figure 4-6.

Finally, we note that as with our LU decomposition algorithm, our factorization

algorithm does no pivoting. We do not know how our algorithm might be adapted

to do partial or complete pivoting. Thus, our algorithm is only recommended for

matrices which are well-conditioned.

4.3 Barnes-Hut

Barnes-Hut is an algorithm for simulating the motion of particles under the influence

of gravity. Barnes-Hut is part of the SPLASH-2 benchmark suite from Stanford [101],

a set of standard parallel benchmark applications. We currently have a version of

the Barnes-Hut algorithm coded in Cilk, derived from a C version of the algorithm

obtained from Barnes's home page [5]. This C code was also the basis for the SPLASH-

2 benchmark program.

The Barnes-Hut code is organized into four phases, a tree-build phase which builds

an octtree describing the hierarchical decomposition of space, a force calculation phase

which calculates gravitational forces on each particle, and two particle-push phases

which move particles along their calculated trajectories. Our parallel Barnes-Hut

code parallelizes all four phases. The most computation-intensive portion of the

code, the force calculation phase, is easily parallelizable because there are no depen-

dencies between particles in this phase. The two particle-push phases are also easily

parallelizable. The only difficult phase to parallelize is the tree-building phase, be-

cause there are complicated dependencies between particles. The tree building phase

is parallelized by taking advantage of the write-once nature of the tree. Although

the parallel tree building may result in nondeterministic intermediate states, the fi-

nal tree that results is deterministic. The critical path of the parallel algorithm is

only O(lg n), assuming no lock conflicts and a distribution of particles that leads to

a balanced tree.

A comparison of our Cilk Barnes-Hut code is made with the SPLASH-2 Barnes-

Hut code in Section 1.2. That comparison shows that the effort required to parallelize

the original C code using Cilk is significantly less than the effort required to parallelize

7

6

5

4

3

Cilk
SPLASH-2 -+---

2-
perfect speedup --

1-

0 1 2 3 4 5 6 7 8
processors

Figure 4-7: End-to-end speedup (Ts/Tp) of Cilk and SPLASH-2 versions of the Barnes-
Hut algorithm. These experiments were run on a Sun Enterprise 5000 with 8 167MHz
UltraSPARC processors.

the original C code using the SPLASH-2 thread library. For a performance compari-

son, Figure 1-2 compares the performance of the Cilk and SPLASH-2 parallelizations.

The Cilk version of Barnes-Hut runs only 2.4% slower than the C version, showing

that the overhead of spawn and sync is quite low, even for this relatively fine-grained

application (each tree insertion, force calculation, and particle push is its own thread

in the Cilk version). In contrast, the work overhead of the SPLASH-2 code is 9.9%

due to the explicit load balancing and partitioning code that is required. In this

section, we additionally show speedup curves for both parallelizations in Figure 4-7.

This figure indicates that no scalability is lost when writing a program in Cilk versus

writing a program in a thread library like SPLASH-2. Although both parallelizations

achieve approximately the same speedup T 1/T8 , when we look at end-to-end speedup

Ts/T8 the Cilk parallelization does better because of its lower work overhead. From

these numbers, we conclude that Cilk provides both a programming environment

which enables parallel programming at a higher level of abstraction, and performance

competitive with implementations that use no such abstractions.

4.4 Rubik's cube

Rubik's cube has fascinated mathematicians and laypeople alike since its introduction

by Ern6 Rubik [93, 85]. Despite the fact that a large amount of research has been

done on Rubik's cube, some important questions remain unanswered. This section

will focus on one particular unanswered question - what is the hardest position to

solve? Although we will not answer this question definitively, we present some strong

evidence that the hardest cube to solve is the one pictured in Figure 4-8, called

"superflip" because it is the solved cube with each edge piece flipped in place.

In order to find the hardest position, we need to define what it means for a

position to be hard to solve. We examine the problem of solving Rubik's cube using

the quarter-turn metric. In this metric, each quarter-turn of a face of the cube

counts as one move. Thus, there are twelve possible moves, turning each of the six

faces either clockwise or counterclockwise. 1 We denote the six clockwise moves as

F,B,U,D,L,R for the front, back, up, down, left, and right faces of the cube, and the

counterclockwise moves are denoted with a prime ('). With this definition of a move,

a cube is hard to solve if the minimum number of moves to solve that position, called

its depth, is large. The depth of the superflip cube is known to be 24, and it has

been conjectured that it may be the hardest Rubik's cube position. Although the

depth of superflip is known, little else is known about other deep cubes. This work

is the first to produce an approximate histogram of cube depths.

Determining the depth of a position is a difficult task. There are 43, 252, 003, 274,

489, 856, 000 possible positions of Rubik's cube, which is too many to exhaustively

search with today's computers. Don Dailey and I have developed a program, however,

that can find the minimum depth of most cubes in at most a few hours. We describe

how this program works and how we have used it to provide evidence that the superflip

cube is in fact a very hard cube.

10ther metrics include the half-turn metric, in which half turns of the faces count as one move,
and the half-slice metric, in which quarter and half turns of the center slices also count as one
move.

Figure 4-8: The superflip cube, conjectured to be the hardest Rubik's cube position to

solve. It is formed by flipping in place each of the edge pieces of the solved cube.

4.4.1 Search

In this section, we describe the method we use to find minimal solution sequences

(and hence depths) of cube positions. Our method is basically a brute-force search

algorithm with very agressive pruning heuristics. Our program can solve an average

cube in about 20 minutes, and most in a few hours, on a 4-processor 466MHz Alpha

machine using about 1.2 gigabytes of memory.

Our search algorithm is simple. From a cube position, we try all possible move

sequences of a certain length and see if any reach the solved position. We use a tech-

nique called iterative deepening in which we try successively longer move sequences

until we find a solution. Thus, the first move sequence found gives a minimal solution

sequence. Of course, some move sequences are redundant. For instance, the move

sequence F F and the move sequence F' F' both generate the same cube. In order

to reduce the branching factor of our search, we try to eliminate as many of these

redundant move sequences as possible. We do this pruning using four rules:

1. Do not undo the last move.

2. Do not play three of the same move in a row.

3. Do not play two counterclockwise moves in a row.

4. Play "parallel" moves in increasing order. Parallel moves are moves of opposite

faces. For instance, the move sequences F B and B F both generate the same

position. We do not play the lexicographically larger of these two sequences.

These rules reduce the branching factor from 12 to an asymptotic value of approx-

imately 9.374. Why only these four rules? Interestingly, there are no more simple

rules like the ones above. The above rules can all be enforced by disallowing certain

triples of moves. If we disallow quadrouples or quintuples of moves, we get no further

improvement in the branching factor. In other words, all sequences of 5 moves are

distinct when filtered with the above four rules. Additionally, less than 1% of all 6

move sequences are redundant. Thus, these four rules provide all the branching factor

pruning we can reasonably expect.

4.4.2 Pruning heuristics

Once we have removed most redundant sequences, we apply pruning heuristics that

eliminate certain positions from possible consideration for a minimal move sequence.

Our rules generate assertions of the form "this position cannot be solved in less than

x moves." When searching a particular position to a particular depth, we apply all of

our rules, and if one of them asserts that the position in question cannot be solved in

the given number of moves, we prune the search. We have considered many different

pruning rules, but only two rules are currently used by our solver.

Our first rule is that a position cannot be solved in less moves than the corners

of the cube can be solved. The "corners cube", consisting of Rubik's cube minus

the edge pieces, can be solved by brute force because it has only 88, 179, 840 possible

positions. We use a table of the depths of these positions, stored at 4 bits per entry

(42MB), to determine the number of moves required to solve the corner cube. 2

Our second rule uses a hash table to determine a bound on the depth of a cube.

Each hash table entry contains a lower bound on the minimum depth of all cubes that

hash to that entry. To fill the table, we use an exhaustive enumeration of all cubes

2We would like to use an edge cube rule as well, but the edge cube has 490,497,638,400 positions,

slightly too large for the memory of our machines.

near the solved cube and compute the minimum depth cube that maps to each table

entry. When searching, we hash our unknown cube and determine the minimum

possible depth of that cube using the hash table. If we are looking for a shorter

solution than allowed by the hash table information, we can prune the search. We

currently use a 1 GB hash table, stored with 2 bits per entry. An entry can encode

one of four states: no cube < 12 in depth, no cube < 11 in depth, no cube < 10 in

depth, and no lower bound.

4.4.3 Symmetry

We also take advantage of the symmetries of the cube. A symmetry of a cube

position is obtained by recoloring the facets of the cube in a way that preserves oppo-

siteness of colors. There are 6 x 4 x 2 = 48 possible recolorings, and hence symmetries.

Alternatively, the 48 symmetries can be viewed as the rigid transformations of space

that take the cube to itself. For instance, there is a symmetry obtained by rotating

the cube 90 degrees around a face, 120 degrees around a corner, etc. We can apply

these symmetries to any cube position to obtain another "symmetric" position. The

set of cube positions obtained by applying the 48 symmetry operators to a particular

position gives the equivalence class of that position. These equivalence classes

partition the set of cube positions.

An important property of positions in the same equivalence class is that they

have the same depth. To prove this fact, consider a possible solution sequence

M = mi, m 2 , ... , ink-1, mk of a position P. Then, viewing the moves in the solution

sequence as operators on the cube state, we have SOLVED = mkmk-l ' ' m 2.mlP.

Multiplying on the left by a symmetry s, and adding some identity symmetries s-is

following each move, we get the following equation:

sSOLVED = (SmkS- 1)(mk-18-1) ... (sm 2 8- 1)(smlS- 1)sP

Because any symmetry applied to SOLVED gives the same position, sSOLVED is

equal to SOLVED. Thus, if M is a solution sequence for P, then

M' = sm1-1 , Sm 2 s- 1 ,..., Smk - 1 8-1 , Smk S - 1

is a solution sequence for sP.3 Therefore, two symmetric positions have solution

sequences of the same length and therefore those positions have the same depth.

We take advantage of the fact that all positions in the same equivalence class have

the same depth by storing only a canonical representative of each equivalence class

in the hash table. Because most equivalence classes are of size 48, we save almost a

factor of 48 in hash table space.

Calculating the canonical representative of an equivalence class can be expensive.

In the worst case, we have to enumerate all positions in the equivalence class by

applying all 48 symmetry operators to a position in order to determine which position

is the canonical representative. We use a trick, however, which lets us compute the

canonical representative quickly in most cases. The trick uses a crafty definition

of the canonical representative. For an equivalence class of cubes, the canonical

representative is the one with the lexicographically smallest representation, where

the representation is ordered so that the state of the corner cubies is in the high order

bits and the state of the edge cubies is in the low order bits. Thus, the canonical

representative of a position's equivalence class is completely determined by the state

of the corners of that position, as long as no two members of the equivalence class

have the same corner state. It turns out that less than 0.26% of positions belong to

an equivalence class that has two or more positions with the same corner state.

In order to calculate canonical representatives quickly, then, we again use the cor-

ner cube and an auxiliary 84 MB table to figure out which symmetry generates the

canonical representative for a particular position. For each corner state, we store the

symmetry operator that, when applied to the given position, generates the canonical

representation. Therefore, we only need to apply one symmetry operator, instead

of 48, to determine the canonical representative of a position's equivalence class. In

3It is easy to verify that the conjugates smis - 1 are operators representing legal moves.

3

2

rubik
linear speedup--

1 2 3 4
processors

Figure 4-9: Speedup (T1/Tp) for our Rubik's cube solver. The work overhead cl for the
solver is less than 1.12.

the rare case when this operator is not completely determined by the corner state,

a dummy value is stored in the table, and if this dummy value is detected, all 48

symmetry operators are applied to the position and the minimum lexicographic po-

sition is found. Since only 0.26% of positions require this additional work, however,

we usually only need to compute one symmetry.

4.4.4 Experiments

Using our search and heuristic techniques, we can solve a random cube in about 20

minutes on a four-processor 466MHz Alpha machine using about 1.2 GB of memory.

We use Cilk to exploit all four processors of the machine. This application is very

easy to program using Cilk because of its recursive tree structure. The work overhead

of Cilk is only 12% (cl = 1.12) for this application. This overhead is somewhat

higher than most Cilk applications because the average thread length, 2.9ps, is very

short. This overhead, however, is well worth the dynamic load balancing and ease of

expression provided by Cilk. Rubik's cube requires dynamic load balancing because

0.5

0.45

0.4

0.35

. 0.3

o 0.25

t 0.2

0.15

0.1

0.05

0
0 5 10 15 20 25

depth

Figure 4-10: Sampled histogram of depths of random cubes. This histogram represents
data from over 400 random cubes.

0.4

0.35

0.3

0 2 4 6 8
depth

10 12 14

Figure 4-11: Exact histogram of depths of the 2 x 2 x 2 "corner" cube. The maximum

depth of a corner cube is 14, and only a 0.000075 fraction of corner cubes have this depth.

the depth of search subtrees can vary widely depending on when the heuristic cutoffs

kick in. Thus, Cilk provides a natural language in which to express this parallel

program. For searches with deterministic amounts of work (those which find no

solution and hence have to search the entire tree), we get near-perfect linear speedup

for this application (see Figure 4-9).

We now return to the central question. What is the hardest position to solve?

We have used our program to generate Figure 4-10, a randomly sampled histogram

of cube depths. After solving over 400 random cubes, we have found only a few cubes

with depth 23, and no cubes of depth 24, showing statistically that few cubes are

depth 23 or greater. In fact, this research has found the first depth 23 cubes which

are not near superflip. The only previously known depth 23 equivalence classes are

the one adjacent to superflip, superflip + F U F, and superflip + F F B. If we compare

this sampled histogram with the exact histogram for the 2 x 2 x 2 cube in Figure 4-11,

we see that they are quite similar. Since the maximum-depth corner cube, which is

of depth 14, is only 3 greater than the depth of the corner cubes at the peak of the

distribution, we can expect the maximum-depth full cube to be only a few depths

away from the peak of its distribution as well. Since the depth of the superflip cube

is known to be 24, 3 greater than the peak of the distribution, we conjecture that

superflip is likely to be the hardest position of Rubik's cube.

Chapter 5

The Nondeterminator-2

Recall from Chapter 1 that a data race occurs when two parallel threads holding

no locks in common access the same memory location and at least one of the threads

modifies the location. This chapter describes the algorithms and strategies used by

the Nondeterminator-2 debugging tool to find data races in Cilk programs.' Like its

predecessor, the Nondeterminator (which checks for simple "determinacy" races), the

Nondeterminator-2 is a debugging tool, not a verifier, since it checks for data races

only in the computation generated by a serial execution of the program on a given

input.

We give an algorithm, ALL-SETS, which determines whether the computation

generated by a serial execution of a Cilk program on a given input contains a race.

For a program that runs serially in time T, accesses V shared memory locations, uses

a total of n locks, and holds at most k < n locks simultaneously, ALL-SETS runs

in O(nkT a(V, V)) time and O(nkV) space, where a is Tarjan's functional inverse of

Ackermann's function.

Since ALL-SETS may be too inefficient in the worst case, we propose a much

more efficient algorithm which can be used to detect races in programs that obey

the "umbrella" locking discipline, a programming methodology that is more flexible

than similar disciplines proposed in the literature. We present an algorithm, BRELLY,

1The contents of this chapter are joint work with Guang-Ien Cheng, Mingdong Feng, Charles
Leiserson, and Andrew Stark and will appear at SPAA'98 [23].

which detects violations of the umbrella discipline in O(kT a(V, V)) time using O(kV)

space.

We also prove that any "abelian" Cilk program, one whose critical sections com-

mute, produces a determinate final state if it is deadlock free and if it generates any

computation which is data-race free. Thus, the Nondeterminator-2's two algorithms

can verify the determinacy of a deadlock-free abelian program running on a given

input.

5.1 Data races

In a parallel multithreaded computation, a data race exists if logically parallel

threads access the same location, the two threads hold no locks in common, and at

least one of the threads writes to the location. A data race is usually a bug, because

depending on how the threads are scheduled, the program may exhibit unexpected,

nondeterministic behavior. If the two threads hold a lock in common, however, the

nondeterminism is usually not a bug. By introducing locks, the programmer presum-

ably intends to allow the locked critical sections to be scheduled in either order, as

long as they are not interleaved.

Figure 5-1 illustrates a data race in a Cilk program. The procedures fool, foo2,

and foo3 run in parallel, resulting in parallel accesses to the shared variable x. The

accesses by fool and foo2 are protected by lock A and hence do not form a data

race. Likewise, the accesses by fool and foo3 are protected by lock B. The accesses

by foo2 and foo3 are not protected by a common lock, however, and therefore form a

data race. If all accesses had been protected by the same lock, only the value 3 would

be printed, no matter how the computation is scheduled. Because of the data race,

however, the value of x printed by main might be 2, 3, or 6, depending on scheduling,

since the statements in foo2 and foo3 are composed of multiple machine instructions

which may interleave, possibly resulting in a lost update to x.

Since a data race is usually a bug, automatic data-race detection has been studied

extensively. Static race detectors [78] can sometimes determine whether a program

int x; cilk void foo3() {
Cilk_lockvar A, B; Cilk_lock(&B);

x++;

cilk void fool() { Cilk_unlock(&B);

Cilk_lock(&A); }
Cilk_lock(&B);

x += 5; cilk int main()

Cilk_unlock(&B); Cilk_lock_init(&A);

Cilk_unlock(&A); Cilk_lock_init(&B);

} x = 0;

spawn fool ()O;

cilk void foo2() { spawn foo2();

Cilk_lock(&A); spawn foo3();

x -= 3; sync;

Cilk_unlock(&A); printf("%d", x);

} }

Figure 5-1: A Cilk program with a data race. The data race is between the accesses to

x in foo2 and foo3.

will ever produce a data race when run on all possible inputs. Since static debuggers

cannot fully understand the semantics of programs, however, most race detectors are

dynamic tools in which potential races are detected at runtime by executing the pro-

gram on a given input. Some dynamic race detectors perform a post-mortem analysis

based on program execution traces [34, 53, 72, 79], while others perform an "on-

the-fly" analysis during program execution. On-the-fly debuggers directly instrument

memory accesses via the compiler [30, 31, 37, 38, 71, 83], by binary rewriting [89], or

by augmenting the machine's cache coherence protocol [75, 84].

The race-detection algorithms in this chapter are based on the Nondeterminator

[37], which finds "determinacy races" in Cilk programs that do not use locks. The

Nondeterminator executes a Cilk program serially on a given input, maintaining an

efficient "SP-bags" data structure to keep track of the logical series/parallel relation-

ships between threads. For a Cilk program that runs serially in time T and accesses V

shared-memory locations, the Nondeterminator runs in O(T a(V, V)) time and O(V)

space, where a is Tarjan's functional inverse of Ackermann's function, which for all

practical purposes is at most 4.

The Nondeterminator-2, which is currently under development, finds data races

in Cilk programs that use locks. This race detector contains two algorithms, both of

which use the same efficient SP-bags data structure from the original Nondetermina-

tor. The first of these algorithms, ALL-SETS, is an on-the-fly algorithm which, like

most other race-detection algorithms, assumes that no locks are held across parallel

control statements, such as spawn and sync, and thus all critical sections are sequen-

tial code. The second algorithm, BRELLY, is a faster on-the-fly algorithm, but in

addition to reporting data races as bugs, it also reports as bugs some complex (but

race-free) locking protocols.

The ALL-SETS algorithm executes a Cilk program serially on a given input and

either detects a data race in the computation or guarantees that none exist. For a

Cilk program that runs serially in time T, accesses V shared-memory locations, uses

a total of n locks, and holds at most k < n locks simultaneously, ALL-SETS runs

in O(nkTa(V, V)) time and O(nkV) space. Tighter, more complicated bounds on

ALL-SETS will be given in Section 5.2.

In previous work, Dinning and Schonberg's "lock-covers" algorithm [31] also de-

tects all data races in a computation. The ALL-SETS algorithm improves the lock-

covers algorithm by generalizing the data structures and techniques from the original

Nondeterminator to produce better time and space bounds. Perkovic and Keleher [84]

offer an on-the-fly race-detection algorithm that "piggybacks" on a cache-coherence

protocol for lazy release consistency. Their approach is fast (about twice the serial

work, and the tool runs in parallel), but it only catches races that actually occur

during a parallel execution, not those that are logically present in the computation.

Although the asymptotic performance bounds of ALL-SETS are the best to date,

they are a factor of nk larger in the worst case than those for the original Nonde-

terminator. The BRELLY algorithm is asymptotically faster than ALL-SETS, and its

performance bounds are only a factor of k larger than those for the original Nondeter-

minator. For a Cilk program that runs serially in time T, accesses V shared-memory

locations, and holds at most k locks simultaneously, the serial BRELLY algorithm

runs in O(kTa(V,V)) time and O(kV) space. Since most programs do not hold

many locks simultaneously, this algorithm runs in nearly linear time and space. The

improved performance bounds come at a cost, however. Rather than detecting data

races directly, BRELLY only detects violations of a "locking discipline" that precludes

data races.

A locking discipline is a programming methodology that dictates a restriction

on the use of locks. For example, many programs adopt the discipline of acquiring

locks in a fixed order so as to avoid deadlock [57]. Similarly, the "umbrella" locking

discipline precludes data races. It requires that each location be protected by the

same lock within every parallel subcomputation of the computation. Threads that

are in series may use different locks for the same location (or possibly even none, if

no parallel accesses occur), but if two threads in series are both in parallel with a

third and all access the same location, then all three threads must agree on a single

lock for that location. If a program obeys the umbrella discipline, a data race cannot

occur, because parallel accesses are always protected by the same lock. The BRELLY

algorithm detects violations of the umbrella locking discipline.

Savage et al. [89] originally suggested that efficient debugging tools can be devel-

oped by requiring programs to obey a locking discipline. Their Eraser tool enforces a

simple discipline in which any shared variable is protected by a single lock throughout

the course of the program execution. Whenever a thread accesses a shared variable, it

must acquire the designated lock. This discipline precludes data races from occurring,

and Eraser finds violations of the discipline in O(kT) time and O(kV) space. (These

bounds are for the serial work; Eraser actually runs in parallel.) Eraser only works

in a parallel environment containing several linear threads, however, with no nested

parallelism or thread joining as is permitted in Cilk. In addition, since Eraser does

not understand the series/parallel relationship of threads, it does not fully understand

at what times a variable is actually shared. Specifically, it heuristically guesses when

the "initialization phase" of a variable ends and the "sharing phase" begins, and thus

it may miss some data races.

In comparison, our BRELLY algorithm performs nearly as efficiently, is guaranteed

to find all violations, and importantly, supports a more flexible discipline. In particu-

lar, the umbrella discipline allows separate program modules to be composed in series

int x; cilk void bar3() {
Cilk_lockvar A, B, C; Cilk_lock(&B);

Cilk_lock(&C);
cilk void barl() { x += 3;

Cilk_lock(&A); Cilk_unlock(&C);

Cilk_lock(&B); Cilk_unlock(&B);

x += 1;
Cilk_unlock(&B);

Cilk_unlock(&A); cilk int main() {
} Cilk_lock_init(&A);

Cilk_lock_init (&B);
cilk void bar2() { Cilk_lock_init(&C);
Cilk_lock(&A); x = 0;
Cilk_lock(&C); spawn barl();
x += 2; spawn bar2();

Cilk_unlock(&C); spawn bar3();
Cilk_unlock(&A); sync;

} }

Figure 5-2: A Cilk program with no data race which violates the umbrella methodology.
Accesses to the variable x are each guarded by two of the three locks A, B, and C, and thus
do not race with each other. The three parallel accesses to x do not agree on a single lock
to protect x, however, so this program violates the umbrella methodology.

without agreement on a global lock for each location. For example, an application

may have three phases-an initialization phase, a work phase, and a clean-up phase-

which can be developed independently without agreeing globally on the locks used to

protect locations. If a fourth module runs in parallel with all of these phases and ac-

cesses the same memory locations, however, the umbrella discipline does require that

all phases agree on the lock for each shared location. Thus, although the umbrella

discipline is more flexible than Eraser's discipline, it is more restrictive than what a

general data-race detection algorithm, such as ALL-SETS, permits. For example, the

data-race free program in Figure 5-2 can be verified by ALL-SETS to be data-race

free, but BRELLY will detect an umbrella discipline violation.

Most dynamic race detectors, like ALL-SETS and BRELLY, attempt to find, in

the terminology of Netzer and Miller [81], apparent data races-those that appear

to occur in a computation according to the parallel control constructs-rather than

feasible data races-those that can actually occur during program execution. The

distinction arises, because operations in critical sections may affect program control

depending on the way threads are scheduled. Thus, an apparent data race between

two threads in a given computation may not actually be feasible, because the compu-

tation itself may change if the threads were scheduled in a different order. Since the

problem of exactly finding feasible data races is computationally difficult,2 attention

has naturally focused on the easier (but still difficult) problem of finding apparent

data races.

For some classes of programs, however, a feasible data race on a given input exists

if and only if an apparent data race exists in every computation for that input. To

check for a feasible data race in such a program, it suffices to check a single com-

putation for an apparent data race. One class of programs having this property are

"abelian" programs in which critical sections protected by the same lock "commute":

intuitively, they produce the same effect regardless of scheduling. For a computation

generated by a deadlock-free abelian program running on a given input, we prove that

if no data races exist in that computation, then the program is determinate: all

schedulings produce the same final result. For abelian programs, therefore, ALL-SETS

and BRELLY can verify the determinacy of the program on a given input. Our results

on abelian programs formalize and generalize the claims of Dinning and Schonberg

[31, 32], who argue that for "internally deterministic" programs, checking a single

computation suffices to detect all races in the program.

The remainder of this chapter is organized as follows. Section 5.2 presents the

ALL-SETS algorithm, and Section 5.3 presents the BRELLY algorithm. Section 5.4

gives some empirical results obtained by using the Nondeterminator-2 in its ALL-

SETS and BRELLY modes. Section 5.5 defines the notion of abelian programs and

proves that data-race free abelian programs produce determinate results. Section 5.6

offers some concluding remarks.

2Even in simple models, finding feasible data races is NP-hard [80].

S

S {}
/ s printf %d", x)

x=O /
{A,B) P
x+=5 / \

(A) (B)
x-=3 x++

Figure 5-3: The series-parallel parse tree for the Cilk program in Figure 5-1, abbreviated
to show only the accesses to shared location x. Each leaf is labeled with a code fragment
that accesses x, with the lock set for that access shown above the code fragment.

5.2 The All-Sets algorithm

In this section, we present the ALL-SETS algorithm, which detects data races in

Cilk computations that use locks. We first give some background on Cilk and the

series-parallel control structure of its computations. We then discuss locking in Cilk.

Finally, we present the ALL-SETS algorithm itself, show that it is correct, and analyze

its performance.

As described in Section 2.8, the computation of a Cilk program on a given input

can be viewed as a directed acyclic graph (dag) in which vertices are instructions and

edges denote ordering constraints imposed by control statements. The computation

dag generated by a Cilk program can itself be represented as a binary series-parallel

parse tree, as illustrated in Figure 5-3 for the program in Figure 5-1. In the parse

tree of a Cilk computation, leaf nodes represent threads. Each internal node is either

an S-node if the computation represented by its left subtree logically precedes the

computation represented by its right subtree, or a P-node if its two subtrees' compu-

tations are logically in parallel. (We use the term "logically" to mean with respect to

the series-parallel control, not with respect to any additional synchronization through

shared variables.)

A parse tree allows the series/parallel relation between two threads el and e2

to be determined by examining their least common ancestor, which we denote by

LCA(el, e 2). If LCA(el, e2) is a P-node, the two threads are logically in parallel, which

we denote by el 1 I e2 . If LCA(el, e2) is an S-node, the two threads are logically in

series, which we denote by el -4 e2, assuming that el precedes e2 in a left-to-right

depth-first treewalk of the parse tree. The series relation -< is transitive.

Cilk provides the user with mutual-exclusion locks as described in Section 2.5. We

assume in this chapter, as does the general literature, that any lock/unlock pair is

contained in a single thread, and thus holding a lock across a parallel control construct

is forbidden.3 The lock set of an access is the set of locks held by the thread when the

access occurs. The lock set of several accesses is the intersection of their respective

lock sets.

If the lock set of two parallel accesses to the same location is empty, and at least

one of the accesses is a WRITE, then a data race exists. To simplify the description

and analysis of the race detection algorithm, we shall use a small trick to avoid the

extra condition for a race that "at least one of the accesses is a WRITE." The idea

is to introduce a fake lock for read accesses called the R-LOCK, which is implicitly

acquired immediately before a READ and released immediately afterwards. The fake

lock behaves from the race detector's point of view just like a normal lock, but during

an actual computation, it is never actually acquired and released (since it does not

actually exist). The use of R-LOCK simplifies the description and analysis of ALL-

SETS, because it allows us to state the condition for a data race more succinctly: if

the lock set of two parallel accesses to the same location is empty, then a data race

exists. By this condition, a data race (correctly) does not exist for two read accesses,

since their lock set contains the R-LOCK.

The ALL-SETS algorithm is based on the efficient SP-BAGs algorithm used by the

original Nondeterminator to detect determinacy races in Cilk programs that do not

use locks. The SP-BAGS algorithm executes a Cilk program on a given input in serial,

depth-first order. This execution order mirrors that of normal C programs: every sub-

computation that is spawned executes completely before the procedure that spawned

it continues. While executing the program, SP-BAGS maintains an SP-bags data

structure based on Tarjan's nearly linear-time least-common-ancestors algorithm [98].

3The Nondeterminator-2 can still be used with programs for which this assumption does not
hold, but the race detector prints a warning, and some races may be missed. We are developing
extensions of the Nondeterminator-2's detection algorithms that work properly for programs that
hold locks across parallel control constructs.

The SP-bags data structure allows SP-BAGS to determine the series/parallel rela-

tion between the currently executing thread and any previously executed thread in

O(a(V, V)) amortized time, where V is the size of shared memory. In addition, SP-

BAGS maintains a "shadow space" where information about previous accesses to each

location is kept. This information is used to determine previous threads that have

accessed the same location as the current thread. For a Cilk program that runs in

T time serially and references V shared memory locations, the SP-BAGS algorithm

runs in O(T a(V, V)) time and uses O(V) space.

The ALL-SETS algorithm also uses the SP-bags data structure to determine the

series/parallel relationship between threads. Its shadow space lockers is more complex

than the shadow space of SP-BAGS, however, because it keeps track of which locks

were held by previous accesses to the various locations. The entry lockers[l] stores a

list of lockers: threads that access location 1, each paired with the lock set that was

held during the access. If (e, H) E lockers[l1], then location 1 is accessed by thread e

while it holds the lock set H.

As an example of what the shadow space lockers may contain, consider a thread

e that performs the following:

Cilk_lock(&A); Cilklock(&B);

READ(l)

Cilk_unlock(&B); Cilk_unlock(&A);

Cilklock(&B); Cilk_lock(&C);

WRITE(1)

Cilk_unlock(&C); Cilk_unlock(&B);

For this example, the list lockers[l] contains two lockers-(e, {A, B, R-LOCK}) and

(e, {B, C}).

The ALL-SETS algorithm is shown in Figure 5-4. Intuitively, this algorithm

records all lockers, but it is careful to prune redundant lockers, keeping at most

one locker per distinct lock set. Lines 1-3 check to see if a data race has occurred and

report any violations. Lines 5-11 then add the current locker to the lockers shadow

space and prune redundant lockers. A locker (e, H) is redundant if there exists a

ACCESS(1) in thread e with lock set H
1 for each (e', H') E lockers[l]
2 do if e' e and H' nH = 0

3 then declare a data race
4 redundant +- FALSE

5 for each (e', H') E lockers[l]

6 do if e' - e and H' D H

7 then lockers[l] +- lockers[1] - {(e', H')}

8 if e' I e and H' C H

9 then redundant <- TRUE
10 if redundant = FALSE

11 then lockers[l] +- lockers[l] U {(e, H)}

Figure 5-4: The ALL-SETS algorithm. The operations for the spawn, sync, and return

actions are unchanged from the SP-BAGS algorithm on which ALL-SETS is based. Addi-

tionally, the Cilk_lock() and Cilkunlock() functions must be instrumented to add and

remove locks from the lock set H appropriately.

stronger locker in lockers[l], one which races with a future access whenever (e, H)

races with that future access. We remove the redundant locker (e', H') in line 7 be-

cause the locker (e, H) is stronger than (e', H'). Similarly, we do not add the locker

(e, H) to lockers[l] if we record in line 9 that another stronger locker (e', H') is already

in lockers[l].

Before proving the correctness of ALL-SETS, we restate two important lemmas

from [37].

Lemma 1 Suppose that three threads el, e2 , and e3 execute in order in a serial,

depth-first execution of a Cilk program, and suppose that el -< e2 and el e3. Then,

we have e 2 II e 3 .-

Lemma 2 (Pseudotransitivity of 11) Suppose that three threads el, e2, and e3 ex-

ecute in order in a serial, depth-first execution of a Cilk program, and suppose that

el I e2 and e2 11 e3 . Then, we have el 1I e3 .

We now prove that the ALL-SETS algorithm is correct.

Theorem 3 The ALL-SETS algorithm detects a data race in a computation of a Cilk

program running on a given input if and only if a data race exists in the computation.

Proof: (=) To prove that any race reported by the ALL-SETS algorithm really exists

in the computation, observe that every locker added to lockers[l] in line 11 consists

of a thread and the lock set held by that thread when it accesses 1. The algorithm

declares a race when it detects in line 2 that the lock set of two parallel accesses (by

the current thread e and one from lockers[l]) is empty, which is exactly the condition

required for a data race.

(4=) Assuming a data race exists in a computation, we shall show that a data race

is reported. If a data race exists, then we can choose two threads el and e2 such that

el is the last thread before e2 in the serial execution which has a data race with e2.

If we let H 1 and H2 be the lock sets held by el and e2, respectively, then we have

el 1I e2 and H n H 2 = 0.

We first show that immediately after el executes, lockers[l] contains some thread

e3 that races with e2. If (el,H 1) is added to lockers[l] in line 11, then e1 is such

an e3. Otherwise, the redundant flag must have been set in line 9, so there must exist

a locker (e 3 , H3) E lockers[l] with e 3 II el and H 3 C H 1. Thus, by pseudotransitivity

(Lemma 2), we have e3 11 e2. Moreover, since H3 C H 1 and H1 n H 2 = 0, we have

H3 n H2 = 0, and therefore e3, which belongs to lockers[l], races with e2.

To complete the proof, we now show that the locker (e 3, H3) is not removed from

lockers[l] between the times that el and e2 are executed. Suppose to the contrary that

(e4, H4) is a locker that causes (e3 , H3) to be removed from lockers[l] in line 7. Then,

we must have e3 -4 e4 and H3 D H4 , and by Lemma 1, we have e4 II e2. Moreover,

since H3 D H4 and H3 n H2 = 0, we have H 4 n H 2 = 0, contradicting the choice of el

as the last thread before e2 to race with e2.

Therefore, thread e3, which races with e2 , still belongs to lockers[l] when e2 exe-

cutes, and so lines 1-3 report a race. .

In Section 5.1, we claimed that for a Cilk program that executes in time T on

one processor, references V shared memory locations, uses a total of n locks, and

holds at most k < n locks simultaneously, the ALL-SETS algorithm can check this

computation for data races in O(nkT a(V, V)) time and using O(nkV) space. These

bounds, which are correct but weak, are improved by the next theorem.

Theorem 4 Consider a Cilk program that executes in time T on one processor, ref-

erences V shared memory locations, uses a total of n locks, and holds at most k locks

simultaneously. The ALL-SETS algorithm checks this computation for data races in

O(TL(k + a(V, V))) time and O(kLV) space, where L is the maximum of the number

of distinct lock sets used to access any particular location.

Proof: First, observe that no two lockers in lockers have the same lock set, because

the logic in lines 5-11 ensure that if H = H', then locker (e, H) either replaces (e', H')

(line 7) or is considered redundant (line 9). Thus, there are at most L lockers in the

list lockers[l]. Each lock set takes at most O(k) space, so the space needed for lockers

is O(kLV). The length of the list lockers[l] determines the number of series/parallel

relations that are tested. In the worst case, we need to perform 2L such tests (lines 2

and 6) and 2L set operations (lines 2, 6, and 8) per access. Each series/parallel test

takes amortized O(a(V, V)) time, and each set operation takes O(k) time. Therefore,

the ALL-SETS algorithm runs in O(TL(k + a(V, V))) time. 0

The looser bounds claimed in Section 5.1 of O(nkTa(V, V)) time and O(nkV)

space for k < n follow because L < Ek = O(nk/k!). As we shall see in

Section 5.4, however, we rarely see the worst-case behavior given by the bounds in

Theorem 4.

5.3 The Brelly algorithm

The umbrella locking discipline requires all accesses to any particular location within

a given parallel subcomputation to be protected by a single lock. Subcomputations in

series may each use a different lock, or even none, if no parallel accesses to the location

occur within the subcomputation. In this section, we formally define the umbrella

discipline and present the BRELLY algorithm for detecting violations of this discipline.

We prove that the BRELLY algorithm is correct and analyze its performance, which

we show to be asymptotically better than that of ALL-SETS.

The umbrella discipline can be defined precisely in terms of the parse tree of

a given Cilk computation. An umbrella of accesses to a location 1 is a subtree

rooted at a P-node containing accesses to 1 in both its left and right subtrees, as is

illustrated in Figure 5-5. An umbrella of accesses to I is protected if its accesses have

a nonempty lock set and unprotected otherwise. A program obeys the umbrella

locking discipline if it contains no unprotected umbrellas. In other words, within

each umbrella of accesses to a location 1, all threads must agree on at least one lock

to protect their accesses to 1.

The next theorem shows that adherence to the umbrella discipline precludes data

races from occuring.

Theorem 5 A Cilk computation with a data race violates the umbrella discipline.

Proof: Any two threads involved in a data race must have a P-node as their least

common ancestor in the parse tree, because they operate in parallel. This P-node

roots an unprotected umbrella, since both threads access the same location and the

lock sets of the two threads are disjoint. .

The umbrella discipline can also be violated by unusual, but data-race free, locking

protocols. For instance, suppose that a location is protected by three locks and that

every thread always acquires two of the three locks before accessing the location.

No single lock protects the location, but every pair of such accesses is mutually

exclusive. The ALL-SETS algorithm properly certifies this bizarre example as race-

free, whereas BRELLY detects a discipline violation. In return for disallowing these

unusual locking protocols (which in any event are of dubious value), BRELLY checks

programs asymptotically much faster than ALL-SETS.

Like ALL-SETS, the BRELLY algorithm extends the SP-BAGS algorithm used in

the original Nondeterminator and uses the R-LOCK fake lock for read accesses (see

Section 5.2). Figure 5-6 gives pseudocode for BRELLY. Like the SP-BAGS algorithm,

* p \

Figure 5-5: Three umbrellas of accesses to a location 1. In this parse tree, each shaded
leaf represents a thread that accesses 1. Each umbrella of accesses to 1 is enclosed by a
dashed line.

BRELLY executes the program on a given input in serial depth-first order, maintain-

ing the SP-bags data structure so that the series/parallel relationship between the

currently executing thread and any previously executed thread can be determined

quickly. Like the ALL-SETS algorithm, BRELLY also maintains a set H of currently

held locks. In addition, BRELLY maintains two shadow spaces of shared memory:

accessor, which stores for each location the thread that performed the last "serial

access" to that location; and locks, which stores the lock set of that access. Each

entry in the accessor space is initialized to the initial thread (which logically precedes

all threads in the computation), and each entry in the locks space is initialized to the

empty set.

Unlike the ALL-SETS algorithm, BRELLY keeps only a single lock set, rather than

a list of lock sets, for each shared-memory location. For a location 1, each lock in

locks[l] potentially belongs to the lock set of the largest umbrella of accesses to I

that includes the current thread. The BRELLY algorithm tags each lock h E locks[l]

with two pieces of information: a thread nonlocker[h] and a flag alive[h]. The thread

nonlocker[h] is a thread that accesses 1 without holding h. The flag alive[h] indicates

whether h should still be considered to potentially belong to the lock set of the

umbrella. To allow reports of violations to be more precise, the algorithm "kills" a

lock h by setting alive[h] +- FALSE when it determines that h does not belong to the

lock set of the umbrella, rather than simply removing it from locks[l].

Whenever BRELLY encounters an access by a thread e to a location 1, it checks

for a violation with previous accesses to 1, updating the shadow spaces appropriately

ACCESS(l) in thread e with lock set H
1 if accessor[l] -< e
2 then > serial access

locks[l] +- H, leaving nonlocker[h] with its old
nonlocker if it was already in locks[l] but
setting nonlocker[h] +- accessor[l] otherwise

3 for each lock h E locks[l]
4 do alive[h]i - TRUE
5 accessor[l] +- e
6 else > parallel access
7 for each lock h E locks[l] - H
8 do if alive[h] = TRUE
9 then alive[h] +- FALSE

10 nonlocker[h] +- e
11 for each lock h E locks[l] n H
12 do if alive[h] = TRUE and nonlocker[h] I e
13 then alive[h] +- FALSE
14 if no locks in locks[l] are alive (or locks[l] = 0)
15 then report violation on I involving

e and accessor[1]
16 for each lock h E H n locks[l]
17 do report access to I without h

by nonlocker[h]

Figure 5-6: The BRELLY algorithm. While executing a Cilk program in serial depth-
first order, at each access to a shared-memory location 1, the code shown is executed. Not
shown are the updates to H, the set of currently held set of locks, which occur whenever
locks are acquired or released. To determine whether the currently executing thread is in
series or parallel with previously executed threads, BRELLY uses the SP-bags data structure
from [37].

for future reference. If accessor[l] -< e, we say the access is a serial access, and the

algorithm performs lines 2-5, setting locks[l] +- H and accessor[1] -- e, as well as

updating nonlocker[h] and alive[h] appropriately for each h E H. If accessor[l] I e,

we say the access is a parallel access, and the algorithm performs lines 6-17, killing

the locks in locks[l] that do not belong to the current lock set H (lines 7-10) or

whose nonlockers are in parallel with the current thread (lines 11-13). If BRELLY

discovers in line 14 that there are no locks left alive in locks[l] after a parallel access,

it has discovered an unprotected umbrella, and it reports a discipline violation in

/

\ {A,Bj S
e / \\

\\ {A} {A,B} /
\ e 2 3 //

/

thread access type accessor[1] locks[l]

eo

el
el

el

e4

e 5

es5

es5

{}
{A,B}

{A,B}

{A,B}

{A,B}

{A,B}

{A,B}

P

, S {},

e44 /
'(A,B} (B) /
\ e5 e6 /

A nonlocker [A]

alive
alive
alive

alive
killed
killed

B nonlocker[B]

alive
killed
killed

alive
alive
killed

Figure 5-7: A sample execution of the BRELLY algorithm. We restrict our attention to
the algorithm's operation on a single location 1. In the parse tree, each leaf represents an
access to 1 and is labeled with the thread that performs the access (e.g., el) and the lock set

of that access (e.g., {A, B}). Umbrellas are enclosed by dashed lines. The table displays the

values of accessor[l] and locks[l] after each thread's access. The state of each lock and its

nonlocker are listed after locks [1]. The "access type" column indicates whether the access
is a parallel or serial access.

lines 15-17.

When reporting a violation, BRELLY specifies the location 1, the current thread

e, and the thread accessor[1]. It may be that e and accessor[1] hold locks in common,

in which case the algorithm uses the nonlocker information in lines 16-17 to report

threads which accessed 1 without each of these locks.

Figure 5-7 illustrates how BRELLY works. The umbrella containing threads el,

e2, and e3 is protected by lock A but not by lock B, which is reflected in locks[l] after

thread e3 executes. The umbrella containing e5 and e6 is protected by B but not by A,

which is reflected in locks[l] after thread e6 executes. During the execution of thread

e6, A is killed and nonlocker[A] is set to e6 , according to the logic in lines 7-10. When

initial
el

e2

e3

e4

es5

es6

e7

serial
parallel
parallel
serial
serial
parallel
parallel

e7 executes, B remains as the only lock alive in locks[l] and nonlocker[B] is e4 (due to

line 2 during es's execution). Since e4 11 e7 , lines 11-13 kill B, leaving no locks alive

in locks[l], properly reflecting the fact that no lock protects the umbrella containing

threads e4 through e7. Consequently, the test in line 14 causes BRELLY to declare a

violation at this point.

The following two lemmas, which will be helpful in proving the correctness of

BRELLY, are stated without proof.

Lemma 6 Suppose a thread e performs a serial access to location I during an execu-

tion of BRELLY. Then all previously executed accesses to 1 logically precede e in the

computation. M

Lemma 7 The BRELLY algorithm maintains the invariant that for any location I

and lock h E locks[l], the thread nonlocker[h] is either the initial thread or a thread

that accessed 1 without holding h. .

Theorem 8 The BRELLY algorithm detects a violation of the umbrella discipline in

a computation of a Cilk program running on a given input if and only if a violation

exists.

Proof: We first show that BRELLY only detects actual violations of the discipline,

and then we argue that no violations are missed. In this proof, we denote by locks* []

the set of locks in locks[l] that have TRUE alive flags.

(=>) Suppose that BRELLY detects a violation caused by a thread e, and let

eo = accessor[1] when e executes. Since we have eo 10 e, it follows that p = LCA(eo, e)

roots an umbrella of accesses to 1, because p is a P-node and it has an access to I

in both subtrees. We shall argue that the lock set U of the umbrella rooted at p is

empty. Since BRELLY only reports violations when locks*[l] = 0, it suffices to show

that U c locks*[1] at all times after eo executes.

Since eo is a serial access, lines 2-5 cause locks*[l] to be the lock set of e0o. At

this point, we know that U C locks*[l], because U can only contain locks held by

every access in p's subtree. Suppose that a lock h is killed (and thus removed from

locks* []), either in line 9 or line 13, when some thread e' executes a parallel access

between the times that eo and e execute. We shall show that in both cases h g U,

and so U C locks*l] is maintained.

In the first case, if thread e' kills h in line 9, it does not hold h, and thus h g U.

In the second case, we shall show that w, the thread stored in nonlocker[h] when

h is killed, is a descendant of p, which implies that h V U, because by Lemma 7,

w accesses 1 without the lock h. Assume for the purpose of contradiction that w is

not a descendant of p. Then, we have LCA(w, eo) = LCA(w, e'), which implies that

w 1I eo, because w | e'. Now, consider whether nonlocker[h] was set to w in line 10

or in line 2 (not counting when nonlocker[h] is left with its old value in line 2). If

line 10 sets nonlocker[h] +- w, then w must execute before eo, since otherwise, w

would be a parallel access, and lock h would have been killed in line 9 by w before

e' executes. By Lemma 6, we therefore have the contradiction that w < e0o. If line 2

sets nonlocker[h] +- w, then w performs a serial access, which must be prior to the

most recent serial access by eo. By Lemma 6, we once again obtain the contradiction

that w -< eo0.

(=) We now show that if a violation of the umbrella discipline exists, then BRELLY

detects a violation. If a violation exists, then there must be an unprotected umbrella

of accesses to a location 1. Of these unprotected umbrellas, let T be a maximal one

in the sense that T is not a subtree of another umbrella of accesses to 1, and let p be

the P-node that roots T. The proof focuses on the values of accessor[1] and locks[l]

just after p's left subtree executes.

We first show that at this point, accessor[1] is a left-descendant of p. Assume

for the purpose of contradiction that accessor[l] is not a left-descendant of p (and is

therefore not a descendant of p at all), and let p' = LCA(accessor[1], p). We know

that p' must be a P-node, since otherwise accessor[l] would have been overwritten in

line 5 by the first access in p's left subtree. But then p' roots an umbrella which is a

proper superset of T, contradicting the maximality of T.

Since accessor[l] belongs to p's left subtree, no access in p's right subtree overwrites

locks[l], as they are all logically in parallel with accessor[1]. Therefore, the accesses

in p's right subtree may only kill locks in locks[l1]. It suffices to show that by the time

all accesses in p's right subtree execute, all locks in locks[l] (if any) have been killed,

thus causing a race to be declared. Let h be some lock in locks*[l] just after the left

subtree of p completes.

Since T is unprotected, an access to 1 unprotected by h must exist in at least one

of p's two subtrees. If some access to I is not protected by h in p's right subtree,

then h is killed in line 9. Otherwise, let eleft be the most-recently executed thread

in p's left subtree that performs an access to 1 not protected by h. Let e' be the

thread in accessor[l] just after eleft executes, and let eright be the first access to I

in the right subtree of p. We now show that in each of the following cases, we have

nonlocker[h] II eright when eright executes, and thus h is killed in line 13.

Case 1: Thread eleft is a serial access. Just after eleft executes, we have h V locks[l]

(by the choice of eleft) and accessor[l] = eleft. Therefore, when h is later placed in

locks[l] in line 2, nonlocker[h] is set to eleft. Thus, we have nonlocker[h] = eleft II

eright.

Case 2: Thread eleft is a parallel access and h E locks[l] just before eleft executes.

Just after e' executes, we have h c locks[l] and alive[h] = TRUE, since h E locks[l]

when eleft executes and all accesses to 1 between e' and eleft are parallel and do not

place locks into locks[l]. By pseudotransitivity (Lemma 2), e' II eleft and eleft II eright

implies e' II eright. Note that e' must be a descendant of p, since if it were not, T would

be not be a maximal umbrella of accesses to 1. Let e" be the most recently executed

thread before or equal to eleft that kills h. In doing so, e" sets nonlocker[h] +- e" in

line 10. Now, since both e' and eleft belong to p's left subtree and e" follows e' in the

execution order and comes before or is equal to eleft, it must be that e" also belongs

to p's left subtree. Consequently, we have nonlocker[h] = e" II eright.

Case 3: Thread cleft is a parallel access and h V locks[l] just before Cleft exe-

cutes. When h is later added to locks[l], its nonlocker[h] is set to e'. As above, by

pseudotransitivity, e' I eleft and cleft II eright implies nonlocker[h] = e' II eright.

In each of these cases, nonlocker[h] II eright still holds when eright executes, since

eleft, by assumption, is the most recent thread to access 1 without h in p's left subtree.

Thus, h is killed in line 13 when eright executes. M

Theorem 9 On a Cilk program which on a given input executes serially in time

T, uses V shared-memory locations, and holds at most k locks simultaneously, the

BRELLY algorithm runs in O(kT a(V, V)) time and O(kV) space.

Proof: The total space is dominated by the locks shadow space. For any location 1,

the BRELLY algorithm stores at most k locks in locks[l] at any time, since locks are

placed in locks[l] only in line 2 and IHI < k. Hence, the total space is O(kV).

Each loop in Figure 5-6 takes O(k) time if lock sets are kept in sorted order,

excluding the checking of nonlocker[h] II e in line 12, which dominates the asymptotic

running time of the algorithm. The total number of times nonlocker[h] II e is checked

over the course of the program is at most kT, requiring O(kT a(V, V)) time. .

5.4 Experimental results

We are in the process of implementing both the ALL-SETS and BRELLY algorithms as

part of the Nondeterminator-2 debugging tool. Our experiences are therefore highly

preliminary. In this section, we describe our initial results from running these two

algorithms on four Cilk programs that use locks. Our implementations of ALL-SETS

and BRELLY have not yet been optimized, and so better performance than what we

report here is likely to be possible.

According to Theorem 4, the factor by which ALL-SETS slows down a program is

roughly O(Lk) in the worst case, where L is the maximum number of distinct lock sets

used by the program when accessing any particular location, and k is the maximum

number of locks held by a thread at one time. According to Theorem 9, the worst-case

slowdown factor for BRELLY is about 0(k). In order to compare our experimental

results with the theoretical bounds, we characterize our four test programs in terms

of the parameters k and L:4

maxflow: A maximum-flow code based on Goldberg's push-relabel method [45].

Each vertex in the graph contains a lock. Parallel threads perform simple operations

asynchronously on graph edges and vertices. To operate on a vertex u, a thread

acquires u's lock, and to operate on an edge (u, v), the thread acquires both u's lock

and v's lock (making sure not to introduce a deadlock). Thus, for this application, the

maximum number of locks held by a thread is k = 2, and L is at most the maximum

degree of any vertex.

barnes-hut: The n-body gravity simulation code from Section 4.3. In the tree-

building phase, parallel threads race to build various parts of the octtree.5 Each part

is protected by an associated lock, and the first thread to acquire that lock builds

that part of the structure. As the program never holds more than one lock at a time,

we have k = L = 1.

bucket: A bucket sort [26, Section 9.4]. Parallel threads acquire the lock associ-

ated with a bucket before adding elements to it. This algorithm is analogous to the

typical way a hash table is accessed in parallel. For this program, we have k = L = 1.

rad: A 3-dimensional radiosity renderer running on a "maze" scene. The original

75-source-file C code was developed in Belgium by Bekaert et. al. [6]. We used Cilk

to parallelize its scene geometry calculations. Each surface in the scene has its own

lock, as does each "patch" of the surface. In order to lock a patch, the surface lock

must also be acquired, so that k = 2, and L is the maximum number of patches per

surface, which increases at each iteration as the rendering is refined.

Figure 5-8 shows the preliminary results of our experiments on the test codes.

These results indicate that the performance of ALL-SETS is indeed dependent on the

parameter L. Essentially no performance difference exists between ALL-SETS and

BRELLY when L = 1, but ALL-SETS gets progressively worse as L increases. On all

4 These characterizations do not count the implicit "fake" R-LOCK used by the detection
algorithms.

5The tree-building algorithm in our version of Barnes-Hut is different from the tree-building
algorithm in the SPLASH-2 code.

Parameters Time (sec.)

program input k L orig. ALL. BR. ALL. BR.

maxflow sp. 1K 2 32 0.05 30 3 590 66
sp. 4K 2 64 0.2 484 14 2421 68
d. 256 2 256 0.2 263 15 1315 78
d. 512 2 512 2.0 7578 136 3789 68

barnes-hut 1K 1 1 0.6 47 47 79 78
2K 1 1 1.6 122 119 76 74

bucket 100K 1 1 0.3 22 22 74 73

rad iter. 1 2 65 1.2 109 45 91 37

iter. 2 2 94 1.0 179 45 179 45
iter. 5 2 168 2.8 773 94 276 33
iter. 13 2 528 9.1 13123 559 1442 61

Figure 5-8: Timings of our implementations on a variety of programs and inputs. (The

input parameters are given as sparse/dense and number of vertices for maxflow, number

of bodies for barnes-hut, number of elements for bucket, and iteration number for rad.)
The parameter L is the maximum number of distinct lock sets used while accessing any

particular location, and k is the maximum number of locks held simultaneously. Running

times for the original optimized code, for ALL-SETS, and for BRELLY are given, as well as

the slowdowns of ALL-SETS and BRELLY as compared to the original running time.

of our test programs, BRELLY runs fast enough to be useful as a debugging tool. In

some cases, ALL-SETS is as fast, but in other cases, the overhead of ALL-SETS is too

extreme (iteration 13 of rad takes over 3.5 hours) to allow interactive debugging.

5.5 Abelian programs

By checking a single computation for the absence of determinacy races, the original

Nondeterminator can guarantee that a Cilk program without locking is determinate:

it always produces the same answer (when run on the same input). To date, no similar

claim has been made by any data-race detector for any class of programs with locks.

We cannot make a general claim either, but in this section, we introduce a class of

nondeterministic programs for which a determinacy claim can be made. We prove

that the absence of data races in a single computation of a deadlock-free "abelian"

program implies that the program (when run on the same input) is determinate. As a

consequence, ALL-SETS and BRELLY can verify the determinacy of abelian programs

Slowdown

int x, y; cilk void barl() {
Cilk_lockvar A; Cilk_lock(&A);

x++;
cilk int main() { if (x == 1)

Cilk_lock_init(&A); y = 3;
x = 0; Cilk_unlock(&A);
spawn barl (); }
spawn bar2();

sync; cilk void bar2() {
printf("Y.d", y); Cilk_lock(&A);

x++;
Cilk_unlock(&A);

y = 4;

Figure 5-9: A Cilk program that generates a computation with an infeasible data race
on the variable y.

from examining a single computation. We do not claim that abelian programs form an

important class in any practical sense. Rather, we find it remarkable that a guarantee

of determinacy can be made for any nontrivial class of nondeterministic programs.

Locking introduces nondeterminism intentionally, allowing many different compu-

tations to arise from the same program, some of which may have data races and some

of which may not. Since ALL-SETS and BRELLY examine only one computation, they

cannot detect data races that appear in other computations. More subtlely, the data

races that these algorithms do detect might actually be infeasible, never occurring in

an actual program execution.

Figure 5-9 shows a program that exhibits an infeasible data race. In the compu-

tation generated when barl obtains lock A before bar2, a data race exists between

the two updates to y. In the scheduling where bar2 obtains lock A first, however,

barl's update to y never occurs. In other words, no scheduling exists in which the

two updates to y happen simultaneously, and in fact, the final value of y is always 4.

Thus, the computation generated by the serial depth-first scheduling, which is the

one examined by ALL-SETS and BRELLY, contains an infeasible data race.

Deducing from a single computation that the program in Figure 5-9 is determinate

appears difficult. But not all programs are so hard to understand. For example, the

program from Figure 5-1 exhibits a race no matter how it is scheduled, and therefore,

ALL-SETS and BRELLY can always find a race. Moreover, if all accesses to x in

the program were protected by the same lock, no data races would exist in any

computation. For such a program, checking a single computation for the absence

of races suffices to guarantee that the program is determinate. The reason we can

verify the determinacy of this program from a single computation is because it has

"commuting" critical sections.

The critical sections in the program in Figure 5-1 obey the following strict defini-

tion of commutativity: Two critical sections R 1 and R2 commute if, beginning with

any (reachable) program state S, the execution of R 1 followed by R 2 yields the same

state S' as the execution of R 2 followed by Ri; and furthermore, in both execution

orders, each critical section must execute the identical sequence of instructions on

the identical memory locations.6 Thus, not only must the program state remain the

same, the same accesses to shared memory must occur, although the values returned

by those accesses may differ. The program in Figure 5-1 also exhibits "properly nested

locking." Locks are properly nested if any thread which acquires a lock A and then

a lock B releases B before releasing A. We say that a program is abelian if any pair of

parallel critical sections that are protected by the same lock commute, and all locks in

the program are properly nested. The programs in Figures 5-1 and 2-3 are examples

of abelian programs.

The idea that critical sections should commute is natural. A programmer presum-

ably locks two critical sections with the same lock not only because he intends them

to be atomic, but because he intends them to "do the same thing" no matter in what

order they are executed. The programmer's notion of commutativity is usually less

restrictive, however, than what our definition allows. First, both execution orders

of two critical sections may produce distinct program states that the programmer

6It may be the case that even though R 1 and R 2 are in parallel, they cannot appear adjacent in
any execution because a lock is acquired preceeding R 1 and released after R 1 which is also acquired
by R 2 (or vice versa). Therefore, we require the additional technical condition that the execution
of R 1 followed by any prefix R' of R 2 generates for R' the same instructions operating on the same
locations as executing R' alone.

nevertheless views as equivalent. Our definition insists that the program states be

identical. Second, even if they leave identical program states, the two execution or-

ders may cause different memory locations to be accessed. Our definition demands

that the same memory locations be accessed.

In practice, therefore, most programs are not abelian, but abelian programs nev-

ertheless form a nontrivial class of nondeterministic programs that can be checked

for determinacy. For example, all programs that use locking to accumulate values

atomically, such as the histogram program in Figure 2-3, fall into this class. Al-

though abelian programs form an arguably small class in practice, the guarantees of

determinacy that ALL-SETS and BRELLY provide for them are not provided by any

other existing race-detectors for any class of lock-employing programs. It is an open

question whether a more general class of nondeterministic programs exists for which

an efficient race-detector can offer a provable guarantee of determinacy.

In order to study the determinacy of abelian programs, we first give a formal

multithreaded machine model that more precisely describes an actual execution of a

Cilk program. We view the abstract execution machine for Cilk as a (sequentially

consistent [63]) shared memory together with a collection of interpreters, each with

some private state. (See [15, 28, 51] for examples of multithreaded implementations

similar to this model.) Interpreters are dynamically created during execution by each

spawn statement. The ith such child of an interpreter is given a unique interpreter

name by appending i to its parent's name.

When an instruction is executed by an interpreter, it maps the current state of

the multithreaded machine to a new state. An interpreter whose next instruction

cannot be executed is said to be blocked. If all interpreters are blocked, the machine

is deadlocked.

Although a multithreaded execution may proceed in parallel, we consider a se-

rialization of the execution in which only one interpreter executes at a time, but

the instructions of the different interpreters may be interleaved.7 The initial state

7The fact that any parallel execution can be simulated in this fashion is a consequence of our
choice of sequential consistency as the memory model.

of the machine consists of a single interpreter whose program counter points to the

first instruction of the program. At each step, a nondeterministic choice among the

current nonblocked interpreters is made, and the instruction pointed to by its pro-

gram counter is executed. The resulting sequence of instructions is referred to as an

execution of the program.

When an instruction executes in a run of a program, it affects the state of the

machine in a particular way. To formalize the effect of an instruction execution, we

define an instantiation of an instruction to be a 3-tuple consisting of an instruction

I, the shared memory location I on which I operates (if any), and the name of the

interpreter that executes I. We assume that the instantiation of an instruction is a

deterministic function of the machine state.

We define a region to be either a single instantiation other than a LOCK or

UNLOCK instruction, or a sequence of instantiations that comprise a critical section

(including the LOCK and UNLOCK instantiations themselves).8 Every instantiation

belongs to at least one region and may belong to many. Since a region is a sequence

of instantiations, it is determined by a particular execution of the program and not

by the program code alone. We define the nesting count of a region R to be the

maximum number of locks that are acquired in R and held simultaneously at some

point in R.

The execution of a program can alternatively be viewed as sequence of instantia-

tions, rather than instructions, and an instantiation sequence can always be generated

from an instruction sequence. We formally define a computation as a dag in which

the vertices are instantiations and the edges denote synchronization. Edges go from

each instantiation to the next instantiation executed by the same interpreter, from

each spawn instantiation to the first instantiation executed by the spawned inter-

preter, and from the last instantiation of each interpreter to the next sync instantia-

tion executed by its parent interpreter.

We can now give a more precise definition of a data race. A data race exists in a

sThe instantiations within a critical section must be serially related in the dag, as we disallow
parallel control constructs while locks are held.

computation if two logically parallel instantiations access the same memory location

without holding the same lock, and at least one of the accesses is a WRITE. Since

a memory location is a component of each instantiation, it is unambiguous what it

means for two instantiations to access the same memory location. In contrast, if the

computation were constructed so that the nodes were instructions, it would not be

apparent from the dag alone whether two nodes reference the same memory location.

A scheduling of a computation G is a sequence of instantiations forming a per-

mutation of the vertex set of G. This sequence must satisfy the ordering constraints

of the dag, as well as have the property that any two LOCK instantiations that ac-

quire the same lock are separated by an UNLOCK of that lock in between. A partial

scheduling of G is a scheduling of a prefix of G, and if any partial scheduling of G

can be extended to a scheduling of G, we say that G is deadlock free. Otherwise,

G has at least one deadlock scheduling, which is a partial scheduling that cannot

be extended.

Not every scheduling of G corresponds to some actual execution of the program.

If a scheduling or partial scheduling does correspond to an actual execution as defined

by the machine model, we call that scheduling a true scheduling of G; otherwise

it is a false scheduling. Since we are only concerned with the final memory states

of true schedulings, we define two schedulings (or partial schedulings) of G to be

equivalent if both are false, or both are true and have the same final memory state.

An alternate definition of commutativity, then, is that two regions R1 and R 2 commute

if, beginning with any reachable machine state S, the instantiation sequences RIR 2

and R 2R 1 are equivalent.

Our study of the determinacy of abelian programs will proceed as follows. Starting

with a data-race free, deadlock-free computation G resulting from the execution of

an abelian program, we first prove that adjacent regions in a scheduling of G can be

commuted. Second, we show that regions which are spread out in a scheduling of G

can be grouped together. Third, we prove that all schedulings of G are true and yield

the same final memory state. Finally, we prove that all executions of the abelian

program generate the same computation and hence the same final memory state.

100

Lemma 10 (Reordering) Let G be a data-race free, deadlock-free computation re-

sulting from the execution of an abelian program. Let X be some scheduling of G. If

regions R1 and R 2 appear adjacent in X, i.e., X = X 1R1R 2X 2, and R 1 11 R 2, then

the two schedulings XIR 1R 2X 2 and XIR 2R 1X 2 are equivalent.

Proof: We prove the lemma by double induction on the nesting count of the regions.

Our inductive hypothesis is the theorem as stated for regions R1 of nesting count i

and regions R 2 of nesting count j.

Base case: i = 0. Then R 1 is a single instantiation. Since R1 and R 2 are adjacent

in X and are parallel, no instantiation of R2 can be guarded by a lock that guards R 1,

because any lock held at RI is not released until after R2. Therefore, since G is data-

race free, either R1 and R2 access different memory locations or R1 is a READ and R2

does not write to the location read by R1. In either case, the instantiations of each of

R and R2 do not affect the behavior of the other, so they can be executed in either

order without affecting the final memory state.

Base case: j = 0. Symmetric with above.

Inductive step: In general, R1 of count i > 1 has the form LOCK(A) ... UNLOCK(A),

and R 2 of count j > 1 has the form LOCK(B) ... UNLOCK(B). If A = B, then R1 and

R2 commute by the definition of abelian. Otherwise, there are three possible cases.

Case 1: Lock A appears in R2, and lock B appears in R1. This situation cannot

occur, because it implies that G is not deadlock free, a contradiction. To construct a

deadlock scheduling, we schedule X1 followed by the instantiations of R1 up to (but

not including) the first LOCK(B). Then, we schedule the instantiations of R 2 until a

deadlock is reached, which must occur, since R 2 contains a LOCK(A) (although the

deadlock may occur before this instantiation is reached).

Case 2: Lock A does not appear in R 2. We start with the sequence XIRIR 2X 2

and commute pieces of R1 one at a time with R2: first, the instantiation UNLOCK(A),

then the (immediate) subregions of R1, and finally the instantiation LOCK(A). The

instantiations LOCK(A) and UNLOCK(A) commute with R 2, because A does not appear

anywhere in R2. Each subregion of R commutes with R 2 by the inductive hypothesis,

because each subregion has lower nesting count than R1. After commuting all of R1

101

past R 2 , we have an equivalent execution X 1R 2R 1X 2.

Case 3: Lock B does not appear in R1. Symmetric to Case 2.

Lemma 11 (Region grouping) Let G be a data-race free, deadlock-free computa-

tion resulting from the execution of an abelian program. Let X be some scheduling

of G. Then, there exists an equivalent scheduling X' of G in which the instantiations

of every region are contiguous.

Proof: We shall create X' by grouping the regions in X one at a time. Each grouping

operation will not destroy the grouping of already grouped regions, so eventually all

regions will be grouped.

Let R be a noncontiguous region in X that completely overlaps no other noncon-

tiguous regions in X. Since region R is noncontiguous, other regions parallel with R

must overlap R in X. We first remove all overlapping regions which have exactly one

endpoint (an endpoint is the bounding LOCK or UNLOCK of a region) in R, where by

"in" R, we mean appearing in X between the endpoints of R. We shall show how

to remove regions which have only their UNLOCK in R. The technique for removing

regions with only their LOCK in R is symmetric.

Consider the partially overlapping region S with the leftmost UNLOCK in R. Then

all subregions of S which have any instantiations inside R are completely inside R and

are therefore contiguous. We remove S by moving each of its (immediate) subregions

in R to just left of R using commuting operations. Let Si be the leftmost subregion

of S which is also in R. We can commute S1 with every instruction I to its left until

it is just past the start of R. There are three cases for the type of instruction I. If I

is not a LOCK or UNLOCK, it commutes with S1 by Lemma 10 because it is a region in

parallel with S1. If I = LOCK(B) for some lock B, then S1 commutes with I, because

S1 cannot contain LOCK(B) or UNLOCK(B). If I = UNLOCK(B), then there must exist

a matching LOCK(B) inside R, because S is chosen to be the region with the leftmost

UNLOCK without a matching LOCK. Since there is a matching LOCK in R, the region

defined by the LOCK/UNLOCK pair must be contiguous by the choice of R. Therefore,

we can commute Si with this whole region at once using Lemma 10.

102

We can continue to commute S1 to the left until it is just before the start of R.

Repeat for all other subregions of S, left to right. Finally, the UNLOCK at the end of

S can be moved to just before R, because no other LOCK or UNLOCK of that same

lock appears in R up to that UNLOCK.

Repeat this process for each region overlapping R that has only an UNLOCK in R.

Then, remove all regions which have only their LOCK in R by pushing them to just

after R using similar techniques. Finally, when there are no more unmatched LOCK

or UNLOCK instantiations in R, we can remove any remaining overlapping regions by

pushing them in either direction to just before or just after R. The region R is now

contiguous.

Repeating for each region, we obtain an execution X' equivalent to X in which

each region is contiguous. M

Lemma 12 Let G be a data-race free, deadlock-free computation resulting from the

execution of an abelian program. Then every scheduling of G is true and yields the

same final memory state.

Proof: Let X be the execution that generates G. Then X is a true scheduling of G.

We wish to show that any scheduling Y of G is true. We shall construct a set of

equivalent schedulings of G that contain the schedulings X and Y, thus proving the

lemma.

We construct this set using Lemma 11. Let X' and Y' be the schedulings of

G with contiguous regions which are obtained by applying Lemma 11 to X and Y,

respectively. From X' and Y', we can commute whole regions using Lemma 10 to put

their threads in the serial depth-first order specified by G, obtaining schedulings X"

and Y". We have X" = Y", because a computation has only one serial depth-first

scheduling. Thus, all schedulings X, X', X" = Y", Y', and Y are equivalent. Since

X is a true scheduling, so is Y, and both have the same final memory state. 0

Theorem 13 An abelian Cilk program that produces a deadlock-free computation with

no data races is determinate.

103

Proof: Let X be an execution of an abelian program that generates a data-race

free, deadlock-free computation G. Let Y be an arbitrary execution of the same

program. Let H be the computation generated by Y, and let Hi be the prefix of H

that is generated by the first i instantiations of Y. If Hi is a prefix of G for all i,

then H = G, and therefore, by Lemma 12, executions X and Y have the same final

memory state. Otherwise, assume for contradiction that io is the largest value of i for

which Hi is a prefix of G. Suppose that the (io + 1)st instantiation of Y is executed by

an interpreter with name r. We shall derive a contradiction through the creation of

a new scheduling Z of G. We construct Z by starting with the first io instantiations

of Y, and next adding the successor of Hio in G that is executed by interpreter r1.

We then complete Z by adding, one by one, any nonblocked instantiation from the

remaining portion of G. One such instantiation always exists because G is deadlock

free. By Lemma 12, the scheduling Z that results is a true scheduling of G. We thus

have two true schedulings which are identical in the first io instantiations but which

differ in the (io + 1)st instantiation. In both schedulings the (io + 1)st instantiation

is executed by interpreter r/. But, the state of the machine is the same in both Y and

Z after the first io instantiations, which means that the (io + 1)st instantiation must

be the same for both, which is a contradiction. M

We state one more lemma which allows us to show that ALL-SETS and BRELLY

can give a guarantee of determinacy for deadlock-free abelian programs. We leave

the proof of this lemma to Appendix A because of its technical nature.

Lemma 14 Let G be a computation generated by a deadlock-free abelian program. If

G is data-race free, then it is deadlock free.

Corollary 15 If the ALL-SETS algorithm detects no data races in an execution of

a deadlock-free abelian Cilk program, then the program running on the same input is

determinate.

Proof: Combine Theorems 3 and 13 and Lemma 14.

104

Corollary 16 If the BRELLY algorithm detects no violations of the umbrella disci-

pline in an execution of a deadlock-free abelian Cilk program, then the program run

on the same input is determinate.

Proof: Combine Theorems 5, 8, and 13 and Lemma 14.

5.6 Conclusion

Although ALL-SETS and BRELLY are fast race-detection algorithms, many practical

questions remain as to how to use these algorithms to debug real programs. In

this section, we discuss our early experiences in using the Nondeterminator-2, which

currently provides both algorithms as options, to debug Cilk programs.

A key decision by Cilk programmers is whether to adopt the umbrella locking dis-

cipline. A programmer might first debug with ALL-SETS, but unless he has adopted

the umbrella discipline, he will be unable to fall back on BRELLY if ALL-SETS seems

too slow. We recommend that programmers use the umbrella discipline initially,

which is good programming practice in any event, and only use ALL-SETS if they are

forced to drop the discipline.

The Nondeterminator-2 reports any apparent data race as a bug. As we have seen,

however, some data races are infeasible. We have experimented with ways that the

user can inform the Nondeterminator-2 that certain races are infeasible, so that the

debugger can avoid reporting them. One approach we have tried is to allow the user

to "turn off" the Nondeterminator-2 in certain pieces of code using compiler pragmas

and other linguistic mechanisms. Unfortunately, turning off the Nondeterminator-

2 requires the user to check for data races manually between the ignored accesses

and all other accesses in the program. A better strategy has been to give the user

fake locks-locks that are acquired and released only in debugging mode, as in the

implicit R-LOCK fake lock. The user can then protect accesses involved in apparent

but infeasible races using a common fake lock. Fake locks reduce the number of false

reports made by the Nondeterminator-2, and they require the user to manually check

for data races only between critical sections locked by the same fake lock.

105

Another cause of false reports is "publishing." One thread allocates a heap object,

initializes it, and then "publishes" it by atomically making a field in a global data

structure point to the new object so that the object is now available to other threads.

If a logically parallel thread now accesses the object in parallel through the global

data structure, an apparent data race occurs between the initialization of the object

and the access after it was published. Fake locks do not seem to help much, because

it is hard for the initializer to know all the other threads that may later access the

object, and we do not wish to suppress data races among those later accesses. We do

not yet have a good solution for this problem.

With the BRELLY algorithm, some programs may generate many violations of the

umbrella discipline that are not caused by actual data races. We have implemented

several heuristics in the Nondeterminator-2's BRELLY mode to report straightforward

data races and hide violations that are not real data races whenever possible.

False reports are not a problem when the program being debugged is abelian, but

programmers would like to know whether an ostensibly abelian program is actually

abelian. Dinning and Schonberg give a conservative compile-time algorithm to check

if a program is "internally deterministic" [31], and we have given thought to how the

abelian property might likewise be conservatively checked. The parallelizing compiler

techniques of Rinard and Diniz [87] may be applicable.

We are currently investigating versions of ALL-SETS and BRELLY that correctly

detect races even when parallelism is allowed within critical sections. A more ambi-

tious goal is to detect potential deadlocks by dynamically detecting the user's accor-

dance with a flexible locking discipline that precludes deadlocks.

106

Chapter 6

Dag consistency

This chapter defines dag consistency, a weak memory model for multithreaded com-

puting, and presents the BACKER algorithm for maintaining dag consistency.' We

argue that dag consistency is a natural consistency model for Cilk programs, and we

give both theoretical and empirical evidence that the BACKER algorithm is efficient.

We prove that the number of page faults (cache misses) Fp(C) incurred by BACKER

running on P processors, each with a shared-memory cache of C pages, is at most

F1 (C) + 2Cs, where where s is the number of steals executed by Cilk's scheduler. The

F (C) term represents the page faults incurred by the serial execution, and the 2Cs

term represents additional faults due to "warming up" the processors' caches on each

steal. We present empirical evidence that this warm-up overhead is actually much

smaller in practice than the theoretical bound.

6.1 Introduction

Why do we care about weak memory consistency models? Architects of shared mem-

ory for parallel computers have attempted to support Lamport's strong model of

sequential consistency [63]: The result of any execution is the same as if the opera-

tions of all the processors were executed in some sequential order, and the operations

1The contents of this chapter are joint work with Robert Blumofe, Matteo Frigo, Christopher
Joerg, and Charles Leiserson and appeared at IPPS'96 [12].

107

of each individual processor appear in this sequence in the order specified by its pro-

gram. Unfortunately, they have generally found that Lamport's model is difficult to

implement efficiently, and hence relaxed models of shared-memory consistency have

been developed [33, 43, 44] that compromise on semantics for a faster implementa-

tion. By and large, all of these consistency models have had one thing in common:

they are "processor centric" in the sense that they define consistency in terms of ac-

tions by physical processors. In contrast, dag consistency is defined on the abstract

computation dag of a Cilk program, and hence is "computation centric".

To define a computation-centric memory model like dag consistency, it suffices

to define what values are allowed to be returned by a read. Intuitively, a read can

"see" a write in the dag-consistency model only if there is some serial execution

order consistent with the dag in which the read sees the write. Unlike sequential

consistency, but similar to certain processor-centric models [43, 47], dag consistency

allows different reads to return values that are based on different serial orders, but

the values returned must respect the dependencies in the dag.

The mechanisms to support dag-consistent distributed shared memory on the

Connection Machine CM5 are implemented in software. Nevertheless, codes such as

matrix multiplication run efficiently, as can be seen in Figure 6-1. The dag-consistent

shared memory performs at 5 megaflops per processor as long as the work per pro-

cessor is sufficiently large. This performance compares fairly well with other matrix

multiplication codes on the CM5 (that do not use the CM5's vector units). For ex-

ample, an implementation coded in Split-C [27] attains just over 6 megaflops per

processor on 64 processors using a static data layout, a static thread schedule, and

an optimized assembly-language inner loop. In contrast, Cilk's dag-consistent shared

memory is mapped across the processors dynamically, and the Cilk threads performing

the computation are scheduled dynamically at runtime. We believe that the overhead

in our CM5 implementation can be reduced, but that in any case, this overhead is

a reasonable price to pay for the ease of programming and dynamic load balancing

provided by Cilk.

The primary motivation for any weak consistency model, including dag consis-

108

0x notempu --o -

0. v--------

2
4096x4096 notempmul
1024x1 024 notempmul .
1024x1024 blockedmul --.

0
4 8 16 32 64

processors

Figure 6-1: Megaflops per processor versus the number of processors for several matrix

multiplication runs on the Connection Machine CM5. The shared-memory cache on each

processor is set to 2MB. The lower curve is for the blockedmul code in Figure 4-2 and the

upper two curves are for the notempmul code in Figure 4-3.

tency, is performance. In addition, however, a memory model must be understandable

by a programmer. We argue that dag consistency is a reasonable memory model for

a programmer to use. If the programmer wishes to ensure that a read sees a write, he

must ensure that there is a path in the computation dag from the write to the read.

The programmer ensures that such a path exists by placing a sync statement between

the write and read in his program. In fact, our experience shows that most of the

Cilk programs from Chapter 4 already have this property. Thus, they work without

modification under dag consistency. All Cilk applications that do not require locks,

including all of the matrix algorithms from Section 4.1 and Section 4.2, a version of

the Barnes-Hut algorithm from Section 4.3 that does not parallelize the tree build,

and the Rubik's cube solver from Section 4.4 require only dag consistency.

Irregular applications like Barnes-Hut and Strassen's algorithm provide a good

test of Cilk's ability to schedule computations dynamically. We achieve a speedup of

9 on an 8192-particle Barnes-Hut simulation using 32 processors, which is competitive

with other software implementations of distributed shared memory [59] on the CM5.

Strassen's algorithm runs as fast as regular matrix multiplication on a small number

of processors for 2048 x 2048 matrices.

109

Figure 6-2: Dag of the blocked matrix multiplication algorithm blockedmul.

The remainder of this chapter is organized as follows. Section 6.2 gives a moti-

vating example of dag consistency using the blockedmul matrix multiplication al-

gorithm. Section 6.3 gives a formal definition of dag consistency and describes the

abstract BACKER coherence algorithm for maintaining dag consistency. Section 6.4

describes an implementation of the BACKER algorithm on the Connection Machine

CM5. Section 6.5 analyzes the number of faults taken by Cilk programs, both theo-

retically and empirically. Section 6.6 investigates the running time of dag-consistent

shared memory programs and presents a model for their performance. Section 5.6

compares dag-consistency with some related consistency models and offers some ideas

for future work.

6.2 Example: matrix multiplication

To illustrate the concepts behind dag consistency, consider once again the parallel

matrix multiplication algorithm from Figure 4-1. Like any Cilk computation, the

execution of blockedmul can be viewed as a dag of threads. Figure 6-2 illustrates

the structure of the dag for blockedmul. The spawn and sync statements of the

procedure blockedmul break it up into ten threads X 1,...,Xlo, where thread X 1

corresponds to the partitioning of the matrices and the spawning of subproblem M1

in lines 1-13, threads X2 through Xs correspond to the spawning of subproblems M 2

through Ms in lines 14-20, thread X9 corresponds to the spawning of the addition S

in line 22, and thread Xo10 corresponds to the return in line 25.

Dag-consistent shared memory is a natural consistency model to support a shared-

memory program such as blockedmul. Certainly, sequential consistency can guaran-

110

tee the correctness of the program, but a closer look at the precedence relation given

by the dag reveals that a much weaker consistency model suffices. Specifically, the 8

recursively spawned children M1 , M 2,..., Ms need not have the same view of shared

memory, because the portion of shared memory that each writes is neither read nor

written by the others. On the other hand, the parallel addition of tmp into R by the

computation S requires S to have a view in which all of the writes to shared memory

by M1 , M 2 ,... , M8 have completed.

The intuition behind dag consistency is that each thread sees values that are

consistent with some serial execution order of the dag, but two different threads may

see different serial orders. Thus, the writes performed by a thread are seen by its

successors, but threads that are incomparable in the dag may or may not see each

other's writes. In blockedmul, the computation S sees the writes of MI1 , M2,..., Ms,

because all the threads of S are successors of M1 , M 2,..., M8 , but since the Mi

are incomparable, they cannot depend on seeing each others writes. We define dag

consistency precisely in Section 6.3.

6.3 The BACKER coherence algorithm

This section describes our coherence algorithm, which we call BACKER, for main-

taining dag consistency. We first give a formal definition of dag-consistent shared

memory and explain how it relates to the intuition of dag consistency that we have

gained thus far. We then describe the cache and "backing store" used by BACKER

to store shared-memory objects, and we give three fundamental operations for mov-

ing shared-memory objects between cache and backing store. Finally, we give the

BACKER algorithm and describe how it ensures dag consistency.

Shared memory consists of a set of objects that threads can read and write. To

track which thread is responsible for an object's value, we imagine that each shared-

memory object has a tag which the write operation sets to the name of the thread

performing the write. We assume without loss of generality that each thread performs

at most one read or write. In addition, we make the technical assumption that an

111

initial sequence of instructions writes a value to every object. We now define dag

consistency in terms of the computation. A computation is represented by its graph

G = (V, E), where V is a set of vertices representing threads of the computation, and

E is a set of edges representing ordering constraints on the threads. For two threads

u and v, we say u -< v if u 5 v and there is a directed path in G from u to v.

Definition 1 The shared memory M of a computation G - (V, E) is dag consistent

if for every object x in the shared memory, there exists an observer function fX
V -+ V such that the following conditions hold.

1. For all instructions u E V, the instruction fx(u) writes to x.

2. If an instruction u writes to x, then we have fx(u) = u.

3. If an instruction u reads x, it receives a value tagged with fx(u).

4. For all instructions u G V, we have u 7 fx(u).

5. For each triple u, v, and w of instructions such that u -< v -< w, if fx(v) : f (u)

holds, then we have fx(w) y fx(u).

Informally, the observer function fx(u) represents the viewpoint of instruction u

on the contents of object x, that is, the tag of x from u's perspective. Therefore, if

an instruction u writes, the tag of x becomes u (part 2 of the definition), and when it

reads, it reads something tagged with f,(u) (part 3). Moreover, part 4 requires that

future execution does not have any influence on the current value of the memory. The

rationale behind part 5 is shown in Figure 6-3. When there is a path from u to w

through v, then v "masks" u, in the sense that if the value observed by u is no longer

current when v executes, then it cannot be current when w executes. Instruction w

can still have a different viewpoint on x than v. For instance, instruction w may see

a write on x performed by some other instruction (such as s and t in the figure) that

is incomparable with v.

For deterministic programs, this definition implies the intuitive notion that a

read can "see" a write only if there is some serial execution order of the dag in

112

Figure 6-3: Illustration of the definition of dag consistency. When there is a path
from u to w through v, then a write by v to an object "masks" u's write to the object,
not allowing u's write to be read by w. Instruction w may see writes to the object
performed by instructions s and t, however.

which the read sees the write. As it turns out, however, this intuition is ill defined

for certain nondeterministic programs. For example, there exist nondeterministic

programs whose parallel execution can contain reads that do not occur in any serial

execution. Definition 1 implies the intuitive semantics for deterministic programs and

is well defined for all programs.

Programs can easily be written that are guaranteed to be deterministic. Non-

determinism arises when there is a "determinacy race", a write to an object that is

incomparable with another read or write to the same object. To avoid nondetermin-

ism, it suffices that no write to an object occurs that is incomparable with another

read or write to the same object, in which case all writes to the object must lie on a

single path in the dag. Moreover, all writes and any one given read must also lie on

a single path. Consequently, by Definition 1, every read of an object sees exactly one

write to that object, and the execution is deterministic. This determinism guarantee

can be verified by the Nondeterminator [37], which checks for determinacy races.2

We now describe the BACKER coherence algorithm for maintaining dag-consistent

shared memory.3 In this algorithm, versions of shared-memory objects can reside

simultaneously in any of the processors' local caches or the global backing store. Each

processor's cache contains objects recently used by the threads that have executed

2The Nondeterminator-2 is not required in this case because locks are not part of the definition
of dag consistency.

3See [58] for details of a "lazier" coherence algorithm than BACKER based on climbing the spawn
tree.

113

on that processor, and the backing store provides default global storage for each

object. For our Cilk system on the CM5, portions of each processor's main memory

are reserved for the processor's cache and for a portion of the distributed backing

store, although on some systems, it might be reasonable to implement the backing

store on disk. In order for a thread executing on the processor to read or write an

object, the object must be in the processor's cache. Each object in the cache has a

dirty bit to record whether the object has been modified since it was brought into

the cache.

Three basic operations are used by the BACKER to manipulate shared-memory

objects: fetch, reconcile, and flush. A fetch copies an object from the backing store

to a processor cache and marks the cached object as clean. A reconcile copies a

dirty object from a processor cache to the backing store and marks the cached object

as clean. Finally, a flush removes a clean object from a processor cache. Unlike

implementations of other models of consistency, all three operations are bilateral

between a processor's cache and the backing store, and other processors' caches are

never involved.

The BACKER coherence algorithm operates as follows. When the user code per-

forms a read or write operation on an object, the operation is performed directly

on a cached copy of the object. If the object is not in the cache, it is fetched from

the backing store before the operation is performed. If the operation is a write, the

dirty bit of the object is set. To make space in the cache for a new object, a clean

object can be removed by flushing it from the cache. To remove a dirty object, it is

reconciled and then flushed.

Besides performing these basic operations in response to user reads and writes,

the BACKER performs additional reconciles and flushes to enforce dag consistency.

For each edge i -- j in the computation dag, if threads i and j are scheduled on

different processors, say p and q, then BACKER reconciles all of p's cached objects

after p executes i but before p enables j, and it reconciles and flushes all of q's cached

objects before q executes j. Although flushing all of q's objects seems extreme, we are

nevertheless able to achieve good performance with BACKER, because these flushes

114

do not happen very often. In a production implementation of BACKER, however,

some means of keeping objects in a cache across multiple synchronizations might be

warranted.

The key reason BACKER works is that it is always safe, at any point during the

execution, for a processor p to reconcile an object or to flush a clean object. Suppose

we arbitrarily insert a reconcile of an object into the computation performed by p.

Assuming that there is no other communication involving p, if p later fetches the

object that it previously reconciled, it will receive either the value that it wrote earlier

or a value written by a thread i' that is incomparable with the thread i performing

the read. In the first case, part 5 of Definition 1 is satisfied by the semantics of

ordinary serial execution. In the second case, the thread i' that performed the write

is incomparable with i, and thus part 5 of the definition holds because there is no

path from i' to i. The other four parts of Definition 1 are easy to verify.

The BACKER algorithm uses this safety property to guarantee dag consistency

even when there is communication. Suppose that a thread i resides on processor

p with an edge to a thread j on processor q. In this case, BACKER causes p to

reconcile all its cached objects after executing i but before enabling j, and it causes

q to reconcile and flush its entire cache before executing j. At this point, the state

of q's cache (empty) is the same as p's if j had executed with i on processor p, but a

reconcile and flush had occurred between them. Consequently, BACKER ensures dag

consistency.4

With all the reconciles and flushes being performed by the BACKER algorithm,

why should we expect it to be an efficient coherence algorithm? The main reason

is that once a processor has fetched an object into its cache, the object never needs

to be updated with external values or invalidated, unless communication involving

that processor occurs to enforce a dependency in the dag. Consequently, the pro-

4For a rigorous proof that BACKER maintains dag consistency, see [69]. In fact, BACKER main-
tains a stronger memory model, called location consistency, which is the weakest memory model

stronger than dag consistency that is constructible (exactly implementable by an on-line algo-

rithm). For a full discussion of constructibility in memory models and the relation of dag consistency

to other memory models, see [40, 42].

115

cessor can run with the speed of a serial algorithm with no overheads. Moreover,

in Cilk, communication to enforce dependencies can be amortized against steals, so

such communication does not happen often if the computation has enough parallel

slackness.

6.4 Implementation

This section describes our implementation of dag-consistent shared memory for the

Cilk-3 runtime system running on the Connection Machine Model CM5 parallel super-

computer [66]. We describe the grouping of shared memory into pages and describe

the "diff" mechanism [61] for managing dirty bits. Finally, we discuss minor anoma-

lies in atomicity that can occur when the size of the concrete objects supported by

the shared-memory system is different from the abstract objects that the programmer

manipulates.

The Cilk-3 system on the CM5 supports concrete shared-memory objects of 32-

bit words. All consistency operations are logically performed on a per-word basis. If

the runtime system had to operate on every word independently, however, the system

would be terribly inefficient. Since extra fetches and reconciles do not adversely affect

the BACKER coherence algorithm, we implemented the familiar strategy of grouping

objects into pages [54, Section 8.2], each of which is fetched or reconciled as a unit.

Assuming that spatial locality exists when objects are accessed, grouping objects

helps amortize the runtime system overhead.

An important issue we faced with the implementation of dag-consistent shared

memory was how to keep track of which objects on a page have been written. Current

microprocessors do not provide hardware support for maintaining user-level dirty bits

at the granularity of words. Rather than using dirty bits explicitly, Cilk uses a diff

mechanism as is used in the Treadmarks system [61]. The diff mechanism computes

the dirty bit for an object by comparing that object's value with its value in a twin

copy made at fetch time. Our implementation makes this twin copy only for pages

loaded in read/write mode, thereby avoiding the overhead of copying for read-only

116

pages. The diff mechanism imposes extra overhead on each reconcile, but it imposes

no extra overhead on each access [102].

Dag consistency can suffer from atomicity anomalies when abstract objects that

the programmer is reading and writing are larger than the concrete objects supported

by the shared-memory system. For example, suppose the programmer is treating two

4-byte concrete objects as one 8-byte abstract object. If two incomparable threads

each write the entire 8-byte object, the programmer might expect an 8-byte read of

the structure by a common successor to receive one of the two 8-byte values written.

The 8-byte read may nondeterministically receive 4 bytes of one value and 4 bytes

of the other value, however, since the 8-byte read is really two 4-byte reads, and the

consistency of the two halves is maintained separately. Fortunately, this problem

can only occur if the abstract program is nondeterministic, that is, if the program

is nondeterministic even when the abstract and concrete objects are the same size.

When writing deterministic programs, the programmer need not worry about this

atomicity problem.

As with other consistency models, including sequential consistency, atomicity

anomalies can also occur when the programmer packs several abstract objects into a

single system object. Fortunately, this problem can easily be avoided in the standard

way by not packing together abstract objects that might be updated in parallel.

The size of the backing store determines how large a shared-memory application

one can run. On the CM5, the backing store is implemented in a distributed fashion by

allocating a large fraction of each processor's memory to this function. To determine

which processor holds the backing store for a page, a hash function is applied to the

page identifier (a pair of the virtual address and the allocating subcomputation). A

fetch or reconcile request for a page is made to the backing store of the processor

to which the page hashes. This policy ensures that backing store is spread evenly

across the processors' memory. In other systems, it might be reasonable to place the

backing store on disk a la traditional virtual memory.

117

6.5 An analysis of page faults

In this section, we examine the number Fp(C) of page faults that a Cilk computation

incurs when run on P processors using the implementation of the BACKER coherence

algorithm with cache size C described in Section 6.4. Although we will prove tighter

bounds later in Section 7.2, this analysis is provided to give an intuition for why

BACKER performs well when exectuing Cilk programs. We prove that F(C) can

be related to the number FI(C) of page faults taken by a 1-processor execution by

the formula Fp(C) < FI(C) + 2Cs, where C is the size of each processor's cache

in pages and s is the total number of steals executed by the scheduler. The 2Cs

term represents faults due to "warming up" the processors' caches, and we present

empirical evidence that this overhead is actually much smaller in practice than the

theoretical bound.

We begin with a theorem that bounds the number of page faults of a Cilk ap-

plication. The proof takes advantage of properties of the least-recently used (LRU)

page replacement scheme used by Cilk, as well as the fact that Cilk's scheduler, like

C, executes serial code in a depth-first fashion.

Theorem 17 Let Fp(C) be the number of page faults of a Cilk computation when

run on P processors with a cache of C pages on each processor. Then, we have

Fp(C) 5 F (C) + 2Cs, where s is the total number of steals that occur during Cilk's

execution of the computation.

Proof: The proof is by induction on the number s of steals. For the base case,

observe that if no steals occur, then the application runs entirely on one processor,

and thus it faults F(C) times by definition. For the inductive case, consider an

execution E of the computation that has s steals. Choose any subcomputation T

from which no processor steals during the execution E. Construct a new execution

E' of the computation which is identical to E, except that T is never stolen. Since

E' has only s - 1 steals, we know it has at most FI(C) + 2C(s - 1) page faults by

the inductive hypothesis.

118

To relate the number of page faults during execution E to the number during

execution E', we examine cache behavior under LRU replacement. Consider two

processors that execute simultaneously and in lock step a block of code using two

different starting cache states, where each processor's cache has C pages. The main

property of LRU we exploit is that the number of page faults in the two executions

can differ by at most C page faults. This property follows from the observation that

no matter what the starting cache states might be, the states of the two caches must

be identical after one of the two executions takes C page faults. Indeed, at the point

when one execution has just taken its Cth page fault, each cache contains exactly the

last C distinct pages referenced [25].

We can now count the number of page faults during the execution E. The fault

behavior of E is the same as the fault behavior of E' except for the subcomputation T

and the subcomputation, call it U, from which it stole. Since T is executed in depth-

first fashion, the only difference between the two executions is that the starting cache

state of T and the starting cache state of U after T are different. Therefore, execution

E makes at most 2C more page faults than execution E', and thus execution E has

at most F1 (C) + 2C(s - 1) + 2C = F1 (C) + 2Cs page faults. .

Theorem 17 says that the total number of faults on P processors is at most the

total number of faults on 1 processor plus an overhead term. The overhead arises

whenever a steal occurs, because in the worst case, the caches of both the thieving

processor and the victim processor contain no pages in common compared to the

situation when the steal did not occur. Thus, they must be "warmed up" until the

caches "synchronize" with the cache of a serial execution. If most stolen tasks touch

less than C shared-memory pages, however, then the warm-up overhead will not be

as large as the worst-case bound in Theorem 17.

To measure the warm-up overhead, we counted the number of page faults taken by

several applications-including blockedmul, notempmul, and Strassen's algorithm-

for various choices of cache, processor, and problem size. For each run we measured

the cache warm-up fraction (Fp(C) - F1 (C))/2Cs, which represents the fraction

of the cache that needs to be warmed up on each steal. We know from Theorem 17

119

60

50
E

40
x

o 30

E 20

10

<0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 >3

cache warm-up fraction (%)

Figure 6-4: Histogram of the cache warm-up fraction (Fp(C) - F (C))/2Cs for a variety
of applications, cache sizes, processor counts, and problem sizes. The vertical axis shows
the number of experiments with a cache warm-up fraction in the shown range.

that the cache warm-up fraction is at most 1. Our experiments indicate that the

cache warm-up fraction is, in fact, typically less than 3%, as can be seen from the

histogram in Figure 6-4 showing the cache warm-up fraction for 153 experimental

runs of the above applications, with processor counts ranging from 2 to 64 and cache

sizes from 256KB to 2MB. Thus, we see less than 3% of the extra 2Cs faults.

To understand why cache warm-up costs are so low, we performed an experiment

that recorded the size of each subproblem stolen. We observed that most of the

subproblems stolen during an execution were small. In fact, only 5-10% of the stolen

subproblems were "large," where a large subproblem is defined to be one that takes

C or more pages to execute. The other 90-95% of the subproblems are small and are

stolen when little work is left to do and many of the processors are idle. Therefore,

most of the stolen subproblems never perform C page faults before terminating. The

bound Fp(C) < FI(C) + 2Cs derived in Theorem 17 thus appears to be rather loose,

and our experiments indicate that much better performance can be expected.

120

6.6 Performance

In this section, we model the performance of Cilk on synthetic benchmark applications

similar to blockedmul. In order to model performance for Cilk programs that use

dag-consistent shared memory, we observe that running times will vary as a function

of the cache size C, so we must introduce measures that account for this dependence.

Consider again the computation that results when a given Cilk program is used to

solve a given input problem. We shall define a new work measure, the "total work,"

that accounts for the cost of page faults in the serial execution, as follows. Let m be

the time to service a page fault in the serial execution. We now weight the instructions

of the dag. Each instruction that generates a page fault in the one-processor execution

with the standard, depth-first serial execution order and with a cache of size C has

weight m + 1, and all other instructions have weight 1. The total work, denoted

T (C), is the total weight of all instructions in the dag, which corresponds to the serial

execution time if page faults take m units of time to be serviced. We shall continue

to let T1 denote the number of instructions in the dag, but for clarity, we shall refer

to T as the computational work. (The computational work T corresponds to

the serial execution time if all page faults take zero time to be serviced.) To relate

these measures, we observe that the number of instructions with weight m + 1 is just

the number of page faults of the one processor execution, or FI(C). Thus, we have

T, (C) = T, + mF1 (C).

The quantity Ti(C) is an unusual measure. Unlike T1, it depends on the serial

execution order of the computation. The quantity T (C) further differs from T in

that TI(C)/P is not a lower bound on the execution time for P processors. It is

possible to construct a computation containing P subcomputations that run on P

separate processors in which each processor repeatedly accesses C different pages in

sequence. Consequently, with caches of size C, no processor ever faults, except to

warm up the cache at the start of the computation. If we run the same computation

serially with a cache of size C (or any size less than CP), however, the necessary

multiplexing among tasks can cause numerous page faults. Consequently, for this

121

a) 0.1
()
CD

N

0.01
o

S/ Linearspeedup -----
S Parallelism bound -----

0.001 ,Curve fit

0.001 0.01 0.1 1 10

normalized machine size

Figure 6-5: Normalized speedup curve for matrix multiplication. The horizontal axis is
normalized machine size and the vertical axis is normalized speedup. Experiments consisted
of 512 x 512, 1024 x 1024, and 2048 x 2048 problem sizes on 2 to 64 processors, for matrix
multiplication algorithms with various critical paths.

computation, the execution time with P processors is much less than Ti(C)/P. In

this thesis, we shall forgo the possibility of obtaining such superlinear speedup on

computations. Instead, we shall simply attempt to obtain linear speedup.

Critical-path length can likewise be split into two notions. We define the total

critical-path length, denoted Too(C), to be the maximum over all directed paths in

the computational dag, of the time, including page faults, to execute along the path

by a single processor with cache size C. The computational critical-path length

Too, is the same, but where faults cost zero time. Both Too and T"o(C) are lower

bounds on execution time. Although Too(C) is the stronger lower bound, it appears

difficult to compute and analyze, and our upper-bound results will be characterized

in terms of Too, which we shall continue to refer to simply as the critical-path length.

The ratio T (C)/Too is the average parallelism of the computation. We found

that the running time Tp(C) of the benchmarks on P processors can be estimated as

Tp(C) . 1.34(T(C)/P) + 5.1(Too). Speedup was always at least a third of perfect

linear speedup for benchmarks with large average parallelism and running time was

always within a factor of 10 of optimal for those without much parallelism.

To analyze Cilk's implementation of the BACKER coherence algorithm, we mea-

122

sured the work and critical-path length for synthetic benchmarks obtained by adding

sync statements to the matrix multiplication program shown in Figure 4-2. By judi-

ciously placing sync statements in the code, we were able to obtain synthetic bench-

marks that exhibited a wide range of average parallelism. We ran the benchmarks

on various numbers of processors of the CM5, each time recording the number P of

processors and the actual runtime Tp(C).5

Figure 6-5 shows a normalized speedup curve [15] for the synthetic benchmarks.

This curve is obtained by plotting speedup TI(C)/Tp(C) versus machine size P,

but normalizing each of these values by dividing them by the average parallelism

TI(C)/TO. We use a normalized speedup curve, because it allows us to plot runs of

different benchmarks on the same graph. Also plotted in the figure are the perfect

linear-speedup curve Tp(C) = Ti(C)/P (the 450 line) and the limit on performance

given by the parallelism bound Tp(C) > To (the horizontal line).

The quantity To is not necessarily a tight lower bound on Tp(C), because it

ignores page faults. Indeed, the structure of blockedmul on n x n matrices causes

Q(lgn) faults to be taken along any path through the dag. Although the bound

Tp(C) > To(C) is tighter (and makes our numbers look better), it appears difficult

to compute. We can estimate using analytical techniques, however, that for our

matrix multiplication algorithms, To,(C) is about twice as large as To. Had we used

this value for T, in the normalized speedup curve in Figure 6-5, each data point

would shift up and right by this factor of 2, giving somewhat tighter results.

The normalized speedup curve in Figure 6-5 shows that dag-consistent shared-

memory applications can obtain good speedups. The data was fit to a curve of the

form Tp(C) = clTi(C)/P + cT,. We obtained a fit with cl = 1.34 and co = 5.1,

with an R 2 correlation coefficient of 0.963 and a mean relative error of 13.8%. Thus,

the shared memory imposes about a 34% performance penalty on the work of an

algorithm, and a factor of 5 performance penalty on the critical path. The factor of

5 on the critical path term is quite good considering all of the scheduling, protocol,

5The experiments in this chapter were run using an earlier version of Cilk, Cilk-3, which had
explicit shared memory pointers and software page fault checks.

123

and communication that could potentially contribute to this term.

There are two possible explanations for the additional 34% on the work term.

The extra work could represent congestion at the backing store, which causes page

faults to cost more than in the one-processor run. Alternatively, it could be because

our TI(C) measure is too conservative. To compute TI(C), we run the backing store

on processors other than the one running the benchmark, while when we run on P

processors, we use the same P processors to implement the backing store. We have

not yet determined which of these two explanations is correct.

6.7 Conclusion

Many other researchers have investigated distributed shared memory. To conclude,

we briefly outline work in this area and offer some ideas for future work.

The notion that independent tasks may have incoherent views of each others' mem-

ory is not new to Cilk. The BLAZE [70] language incorporated a memory semantics

similar to that of dag consistency into a PASCAL-like language. The Myrias [7]

computer was designed to support a relaxed memory semantics similar to dag con-

sistency, with many of the mechanisms implemented in hardware. Loosely-Coherent

Memory [64] allows for a range of consistency protocols and uses compiler support

to direct their use. Compared with these systems, Cilk provides a multithreaded

programming model based on directed acyclic graphs, which leads to a more flexible

linguistic expression of operations on shared memory.

Cilk's implementation of dag consistency borrows heavily on the experiences from

previous implementations of distributed shared memory. Like Ivy [67] and others [20,

39, 61], Cilk's implementation uses fixed-sized pages to cut down on the overhead

of managing shared objects. In contrast, systems that use cache lines [21, 62, 86]

require some degree of hardware support [91] to manage shared memory efficiently. As

another alternative, systems that use arbitrary-sized objects or regions [22, 59, 88, 90,

97] require either an object-oriented programming model or explicit user management

of objects.

124

The idea of dag-consistent shared memory can be extended to the domain of file

I/O to allow multiple threads to read and write the same file in parallel. We anticipate

that it should be possible to memory-map files and use our existing dag-consistency

mechanisms to provide a parallel, asynchronous, I/O capability for Cilk.

125

Chapter 7

Analysis of dag consistency

In Chapter 6, we proposed dag-consistent distributed shared memory as a shared

memory model for multithreaded parallel-programming systems such as Cilk. In this

chapter, we analyze the execution time, page faults, and space requirements of Cilk

programs where dag consistency is maintained by the BACKER coherence algorithm.1

We prove that under the assumption that accesses to the backing store are random

and independent, Cilk with BACKER executes a program with total work T(C) and

critical path T, in expected time O(Ti(C)/P + mCTo), where C is the size of the

cache in pages and m is the minimum page transfer time. As a corollary to this

theorem, we improve upon the bounds in the previous section to prove that the

number of page faults Fp(C) is bounded by FI(C) + O(CPT).

We also prove bounds on Sp, the space used by a Cilk program on P proces-

sors, and F1 (C), the faults of the serial execution, for "regular" divide-and-conquer

Cilk programs. We use these bounds to analyze some of the example applications

in Chapter 4. For instance, we show that blockedmul for n x n matrices incurs

F,(C, n) = O(n 3/m 3/2 v/C) faults and uses Sp(n) = O(n2pl/3) space.

1The contents of this chapter are joint work with Robert Blumofe, Matteo Frigo, Christopher
Joerg, and Charles Leiserson and appeared at SPAA'96 [13].

126

7.1 Introduction

To analyze the performance of Cilk programs which use a shared virtual address

space implemented by BACKER, we must take into account all of the protocol ac-

tions required by BACKER. The BACKER algorithm implements this virtual space

by cacheing physical pages from a backing store which is distributed across the pro-

cessors. We assume that when a page fault (cache miss) occurs, no progress can be

made on the computation during the time it takes to service the fault, and the fault

time may vary due to congestion of concurrent accesses to the backing store. We

shall further assume that pages in the cache are maintained using the popular LRU

(least-recently-used) [25] heuristic. In addition to servicing page faults, BACKER must

reconcile pages between the processor page caches and the backing store so that the

semantics of the execution obey the assumptions of dag consistency.

Recall from Section 2.8 that both T1/P and T, are lower bounds on the running

time of any computation. The randomized work-stealing scheduler used by Cilk

achieves performance close to these lower bounds for the case of Cilk programs that

do not use shared memory. Specifically, for any such program and any number P of

processors, the scheduler executes the program in T 1/P + O(T,) expected time.

To analyze the complete system, however, we must include the overhead costs

of BACKER as well. As in Section 6.6, we assume a Cilk program is executed on

a parallel computer with P processors, each with a cache of size C, and a page

fault that encounters no congestion is serviced in m units of time. We define the

measures F, (C), T (C), Tp(C), and T,(C) as in that section. In addition, we assume

that accesses to shared memory are distributed uniformly and independently over

the backing store-often a plausible assumption, since BACKER hashes pages to the

backing store. Then, for any given input problem, the expected execution time Tp(C)

is O(TI(C)/P + mCT,). In addition, we give a high-probability bound.

This result is not as strong as we would like to prove, because accesses to the

backing store are not necessarily independent. For example, procedures may concur-

rently access the same pages by program design. We can artificially solve this problem

127

by insisting, as does the EREW-PRAM model, that the program performs exclusive

accesses only. More seriously, however, congestion delay in accessing the backing

store can cause the computation to be scheduled differently than if there were no

congestion, thereby perhaps causing more congestion to occur. It may be possible

to prove our bounds for a hashed backing store without making this independence

assumption, but we do not know how at this time. The problem with independence

does not seem to be serious in practice, and indeed, given the randomized nature of

our scheduler, it is hard to conceive of how an adversary can actually take advantage

of the lack of independence implied by hashing to slow the execution. Although our

results are imperfect, we are actually analyzing the effects of congestion, and thus

our results are much stronger than if we had assumed, for example, that accesses to

the backing store independently suffer Poisson-distributed delays.

In this chapter, we also analyze the number of page faults that occur during pro-

gram execution. Under the same assumptions, we show that for any Cilk program, the

expected number of page faults to execute the program on P processors, each with an

LRU cache of size C, is at most F1 (C) + O(CPT,). In addition, for "regular" divide-

and-conquer Cilk programs, we derive a good upper bound on F1 (C) in terms of the in-

put size of the problem. For example, we show that the total number of page faults in-

curred by the divide-and-conquer matrix-multiplication algorithm blockedmul when

multiplying n x n matrices using P processors is O(n /(m3 /2v/-) + CP lg2 n), assum-

ing that the independence assumption for the backing store holds.

Finally, in this chapter, we analyze the space requirements of "simple" Cilk pro-

grams that use dag-consistent shared memory. For a given simple Cilk program, let S 1

denote the space required by the standard, depth-first serial execution of the program

to solve a given problem. In an analysis of the Cilk scheduler, Blumofe and Leiserson

have shown that the space used by a P-processor execution is at most SIP in the

worst case [11, 16]. We improve this characterization of the space requirements, and

we provide a much stronger upper bound on the space requirements of regular divide-

and-conquer Cilk programs. For example, we show that the blockedmul program on

P processors uses only O(n2P1 /3) space when multiplying n x n matrices, which is

128

tighter than the O(n2P) result obtained by directly applying the S 1P bound.

The remainder of this chapter is organized as follows. Section 7.2 analyzes the

execution time of Cilk programs using the BACKER coherence algorithm. Section 7.3

analyzes the number of page faults taken by divide-and-conquer Cilk programs, and

Section 7.4 does the same for space requirements. Section 7.5 presents some sample

analyses of algorithms that use dag-consistent shared memory. Finally, Section 7.6

offers some comparisons with other consistency models and some ideas for the future.

7.2 Analysis of execution time

In this section, we bound the execution time Cilk programs when dag consistency

is maintained by the BACKER algorithm, under the assumption that accesses to the

backing store are random and independent. For a given Cilk program, let Tp(C)

denote the time taken by the program to solve a given problem on a parallel com-

puter with P processors, each with an LRU cache of C pages, when the execution

is scheduled by Cilk in conjunction with the BACKER coherence algorithm. In this

section, we show that if accesses to backing store are random and independent, then

the expected value of Tp(C) is O(Ti(C)/P + mCT,), where m denotes the minimum

time to transfer a page and To is the critical-path length of the computation. In

addition, we bound the number of page faults. The exposition of the proofs in this

section makes heavy use of results and techniques from [11, 16].

In the following analysis, we consider the computation that results when a given

Cilk program is executed to solve a given input problem. We assume that the compu-

tation is executed by Cilk's work-stealing scheduler in conjunction with the BACKER

coherence algorithm on a parallel computer with P homogeneous processors. The

backing store is distributed across the processors by hashing, with each processor

managing a proportional share of the objects which are grouped into fixed-size pages.

In addition to backing store, each processor has a cache of C pages that is main-

tained using the LRU replacement heuristic. We assume that a minimum of m time

steps are required to transfer a page. When pages are transferred between processors,

129

congestion may occur at a destination processor, in which case we assume that the

transfers are serviced at the destination in FIFO (first-in, first-out) order.

The work-stealing scheduler assumed in our analysis is the same work-stealing

scheduler used in Chapter 3, but with a small technical modification. Between suc-

cessful steals, we wish to guarantee that a processor performs at least C page transfers

(fetches or reconciles) so that it does not steal too often. Consequently, whenever a

processor runs out of work, if it has not performed C page transfers since its last suc-

cessful steal, the modified work-stealing scheduler performs enough additional "idle"

transfers until it has transferred C pages. At that point, it can steal again. Similarly,

we require that each processor perform one idle transfer after each unsuccessful steal

request to ensure that steal requests do not happen too often.

Our analysis of execution time is organized as follows. First, we prove a lemma

describing how the BACKER algorithm adds page faults to a parallel execution. Then,

we obtain a bound on the number of "rounds" that a parallel execution contains.

Each round contains a fixed amount of scheduler overhead, so bounding the number

of rounds bounds the total amount of scheduler overhead. To complete the analysis,

we use an accounting argument to add up the total execution time.

Before embarking on the analysis, however, we first define some helpful termi-

nology. A task is the fundamental building block of a computation and is either

a local instruction (one that does not access shared memory) or a shared-memory

operation. If a task is a local instruction or references an object in the local cache,

it takes 1 step to execute. Otherwise, the task is referencing an object not in the

local cache, and a page transfer occurs, taking at least m steps to execute. A syn-

chronization task is a task in the dag that forces BACKER to perform a cache flush

in order to maintain dag consistency. Remember that for each interprocessor edge

i -+ j in the dag, a cache flush is required by the processor executing j sometime

after i executes but before j executes. A synchronization task is thus a task j having

an incoming interprocessor edge i - j in the dag, where j executes on a proces-

sor that has not flushed its cache since i was executed. A subcomputation is the

computation that one processor performs from the time it obtains work to the time

130

it goes idle or enables a synchronization task. We distinguish two kinds of subcom-

putations: primary subcomputations start when a processor obtains work from a

random steal request, and secondary subcomputations start when a processor starts

executing from a synchronization task. We distinguish three kinds of page transfers.

An intrinsic transfer is a transfer that would occur during a 1-processor depth-first

execution of the computation. The remaining extrinsic page transfers are divided

into two types. A primary transfer is any extrinsic transfer that occurs during a

primary subcomputation. Likewise, a secondary transfer is any extrinsic transfer

that occurs during a secondary subcomputation. We use these terms to refer to page

faults as well.

Lemma 18 Each primary transfer during an execution can be associated with a cur-

rently running primary subcomputation such that each primary subcomputation has at

most 3C associated primary transfers. Similarly, each secondary transfer during an

execution can be associated with a currently running secondary subcomputation such

that each secondary subcomputation has at most 3C associated secondary transfers.

Proof: For this proof, we use the fact shown in Section 6.6 that executing a subcom-

putation starting with an arbitrary cache can only incur C more page faults than the

same block of code incurred in the serial execution. This fact follows from the obser-

vation that a subcomputation is executed in the same depth-first order as it would

have been executed in the serial execution, and the fact that the cache replacement

strategy is LRU.

We associate each primary transfer with a running primary subcomputation as

follows. During a steal, we associate the (at most) C reconciles done by the victim

with the stealing subcomputation. In addition, the stolen subcomputation has at

most C extrinsic page faults, because the stolen subcomputation is executed in the

same order as the subcomputation executes in the serial order. At the end of the

subcomputation, at most C pages need be reconciled, and these reconciles may be

extrinsic transfers. In total, at most 3C primary transfers are associated with any

primary subcomputation.

131

A similar argument holds for secondary transfers. Each secondary subcomputa-

tion must perform at most C reconciles to flush the cache at the start of the sub-

computation. The subcomputation then has at most C extrinsic page faults during

its execution, because it executes in the same order as it executes in the serial order.

Finally, at most C pages need to be reconciled at the end of the subcomputation. .

We now bound the amount of scheduler overhead by counting the number of

rounds in an execution.

Lemma 19 If each page transfer (fetch or reconcile) in the execution is serviced by

a processor chosen independently at random, and each processor queues its transfer

requests in FIFO order, then, for any e > 0, with probability at least 1 - C, the total

number of steal requests and primary transfers is at most O(CPT, + CP lg(1/f)).

Proof: To begin, we shall assume that each access to the backing store takes one

step regardless of the congestion. We shall describe how to handle congestion at the

end of the proof.

First, we wish to bound the overhead of scheduling, that is, the additional work

that the one-processor execution would not need to perform. We define an event as

either the sending of a steal request or the sending of a primary-page-transfer request.

In order to bound the number of events, we divide the execution into rounds. Round 1

starts at time step 1 and ends at the first time step at which at least 27CP events

have occurred. Round 2 starts one time step after round 1 completes and ends when

it contains at least 27CP events, and so on. We shall show that with probability at

least 1 - c, an execution contains only O(T + lg(1/e)) rounds.

To bound the number of rounds, we shall use a delay-sequence argument. We

define a modified dag D' exactly as in [16]. (The dag D' is for the purposes of

analysis only and has no effect on the computation.) The critical-path length of D' is

at most 2T,. We define a task with no unexecuted predecessors in D' to be critical,

and it is by construction one of the first two tasks to be stolen from the processor on

which it resides. Given a task that is critical at the beginning of a round, we wish

to show that it is executed by the start of the next round with constant probability.

132

This fact will enable us to show that progress is likely to be made on any path of D'

in each round.

We now show that at least 4P steal requests are initiated during the first 22CP

events of a round. If at least 4P of the 22CP events are steal requests, then we are

done. If not, then there are at least 18CP primary transfers. By Lemma 18, we know

that at most 3CP of these transfers are associated with subcomputations running at

the start of the round, leaving 15CP for steals that start in this round. Since at most

3C primary transfers can be associated with any steal, at least 5P steals must have

occurred. At most P of these steals were requested in previous rounds, so there must

be at least 4P steal requests in this round.

We now argue that any task that is critical at the beginning of a round has a

probability of at least 1/2 of being executed by the end of the round. Since there

are at least 4P steal requests during the first 22CP events, the probability is at least

1/2 that any task that is critical at the beginning of a round is the target of a steal

request [16, Lemma 10], if it is not executed locally by the processor on which it

resides. Any task takes at most 3mC + 1 < 4mC time to execute, since we are

ignoring the effects of congestion for the moment. Since the last 4CP events of a

round take at least 4mC time to execute, if a task is stolen in the first part of the

round, it is done by the end of the round.

We want to show that with probability at least 1 - e, the total number of rounds

is O(T, + lg(1/e)). Consider a possible delay sequence. Recall from [16] that a delay

sequence of size R is a maximal path U in the augmented dag D' of length at most

2T,, along with a partition II of R which represents the number of rounds during

which each task of the path in D' is critical. We now show that the probability of a

large delay sequence is tiny.

Whenever a task on the path U is critical at the beginning of a round, it has a

probability of at least 1/2 of being executed during the round, because it is likely

to be the target of one of the 4P steals in the first part of the round. Furthermore,

this probability is independent of the success of critical tasks in previous rounds,

because victims are chosen independently at random. Thus, the probability is at

133

most (1/ 2)R - 2T- that a particular delay sequence with size R > 2T, actually occurs

in an execution. There are at most 2 2T T RT,) delay sequences of size R. Thus, the

probability that any delay sequence of size R occurs is at most

22Too(R + 2T,], I) R-2T,

S2T 2

< 4e (R + 2T) 2T lR

S2ToO 2

which can be made less than e by choosing R = 14T, + lg(1/e). Therefore, there are

at most O(T, + lg(1/e)) rounds with probability at least 1 - C. In each round, there

are at most 28CP events, so there are at most O(CPT, + CPlg(1/e)) steal requests

and primary transfers in total.

Now, let us consider what happens when congestion occurs at the backing store.

We still have at most 3C transfers per task, but these transfers may take more than

3mC time to complete because of congestion. We define the following indicator

random variables to keep track of the congestion. Let Xuip be the indicator random

variable that tells whether task u's ith transfer request is delayed by a transfer request

from processor p. The probability is at most 1/P that one of these indicator variables

is 1. Furthermore, we shall argue that they are nonpositively correlated, that is,

Pr Xuip = 1 lAi , xp 'i,P = 1 } 1/P, as long as none of the (u', i') requests execute

at the same time as the (u, i) request. That they are nonpositively correlated follows

from an examination of the queuing behavior at the backing store. If a request (u', i')

is delayed by a request from processor p' (that is, xu,,,p, = 1), then once the (u', i')

request has been serviced, processor p"s request has also been serviced, because we

have FIFO queuing of transfer requests. Consequently, p"s next request, if any, goes

to a new, random processor when the (u, i) request occurs. Thus, a long delay for

request (u', i') cannot adversely affect the delay for request (u, i). Finally, we also have

Pr {xip = 1 Ap, pZxup, = 1) < 1/P, because the requests from the other processors

besides p are distributed at random.

134

The execution time X of the transfer requests for a path U in D' can be written

as X < E,, u(5mC + m Eip uip). Rearranging, we have X < 10mCTo + m Euip Zuip,

because U has length at most 2To. This sum is just the sum of 10CPT, indicator

random variables, each with expectation at most 1/P. Since the tasks u in U do not

execute concurrently, the Zxup are nonpositively correlated, and thus, their sum can

be bounded using combinatorial techniques. The sum is greater than z only if some

z-size subset of these 10CPT variables are all 1, which happens with probability:

Pr E x > Z} (1OCPT,) (1 Z

- zr(101cT P

This probability can be made less than (1/2)z by choosing z > 20eCTo. Therefore,

we have X > (10 + 20e)mCTo with probability at most (1/ 2)x - l mcToo. Since there

are at most 2To tasks on the critical path, at most 2T, + X/mC rounds can be

overlapped by the long execution of page transfers of these critical tasks. Therefore,

the probability of a delay sequence of size R is at most (1/ 2)R - o(T). Consequently,

we can apply the same argument as for unit-cost transfers, with slightly different

constants, to show that with probability at least 1 - e, there are O(Too + lg(1/e))

rounds, and hence O(CPTo + CP lg(1/E)) events, during the execution. E

We now bound the running time of a computation.

Theorem 20 Consider any Cilk program executed on P processors, each with an

LRU cache of C pages, using Cilk's work-stealing scheduler in conjunction with the

BACKER coherence algorithm. Let m be the service time for a page fault that encoun-

ters no congestion, and assume that accesses to the backing store are random and

independent. Suppose the computation has T computational work, F (C) serial page

faults, T, (C) = T1 + mF (C) total work, and To critical-path length. Then for any

E > 0, the execution time is O(TI(C)/P + mCTo + m lg P + mC lg(1/e)) with proba-

bility at least 1 - e. Moreover, the expected execution time is O(T(C)/P + mCTo).

135

Proof: As in [16], we shall use an accounting argument to bound the running time.

During the execution, at each time step, each processor puts a dollar into one of 5

buckets according to its activity at that time step. Specifically, a processor puts a

dollar in the bucket labeled:

* Work, if the processor executes a task;

* Steal, if the processor sends a steal request;

* StealWait, if the processor waits for a response to a steal request;

* Xfer, if the processor sends a page-transfer request; and

* XferWait, if the processor waits for a page transfer to complete.

When the execution completes, we add up the dollars in each bucket and divide by

P to get the running time.

We now bound the amount of money in each of the buckets at the end of the

computation by using the fact, from Lemma 19, that with probability at least 1 - E',

there are O(CPT, + CPlg(1/c')) events:

Work. The WORK bucket contains exactly T dollars, because there are exactly

T1 tasks in the computation.

Steal. We know that there are O(CPTo + CPlg(1/E')) steal requests, so there

are O(CPToo + CPlg(1/')) dollars in the STEAL bucket.

StealWait. We use the analysis of the recycling game ([16, Lemma 5]) to bound

the number of dollars in the STEALWAIT bucket. The recycling game says that if

N requests are distributed randomly to P processors for service, with at most P re-

quests outstanding simultaneously, the total time waiting for the requests to complete

is O(N+Plg P + Plg(1/e')) with probability at least 1 -'. Since steal requests obey

the assumptions of the recycling game, if there are O(CPTo +CP Ig(1/c')) steals, then

the total time waiting for steal requests is O(CPT, +Plg P+CP lg(1/6')) with prob-

ability at least 1 - '. We must add to this total an extra O(mCPToo + mCP lg(1/'))

dollars because the processors initiating a successful steal must also wait for the cache

136

of the victim to be reconciled, and we know that there are O(CPToo + CP Ig(1/e'))

such reconciles. Finally, we must add O(mCPT, + mCPlg(1/c)) dollars because

each steal request might also have up to m idle steps associated with it. Thus, with

probability at least 1 - c', we have a total of O(mCPToo + P Ig P + mCP lg(1/E'))

dollars in the STEALWAIT bucket.

Xfer. We know that there are O(FI(C) + CPT, + CPlg(1/E')) transfers during

the execution: a fetch and a reconcile for each intrinsic fault, O(CPToo +CP lg(1/E'))

primary transfers from Lemma 19, and O(CPT, + CP lg(1/E')) secondary transfers.

We have this bound on secondary transfers, because each secondary subcomputation

can be paired with a unique primary subcomputation. We construct this pairing as

follows. For each synchronization task j, we examine each interprocessor edge entering

j. Each of these edges corresponds to some child of j's procedure in the spawn tree.

At least one of these children (call it k) is not finished executing at the time of the

last cache flush by j's processor, since j is a synchronization task. We now show that

there must be a random steal of j's procedure just after k is spawned. If not, then k is

completed before j's procedure continues executing after the spawn. There must be a

random steal somewhere between when k is spawned and when j is executed, however,

because j and k execute on different processors. On the last such random steal, the

processor executing j must flush its cache, but this cannot happen because k is still

executing when the last flush of the cache occurs. Thus, there must be a random

steal just after k is spawned. We pair the secondary subcomputation that starts at

task j with the primary subcomputation that starts with the random steal after k is

spawned. By construction, each primary subcomputation has at most one secondary

subcomputation paired with it, and since each primary subcomputation does at least

C extrinsic transfers and each secondary subcomputation does at most 3C extrinsic

transfers, there are at most O(CPTo + CP lg(1/')) secondary transfers. Since each

transfer takes m time, the number of dollars in the XFER bucket is O(mFi(C) +

mCPT, + mCP lg(1/E')).

XferWait. To bound the dollars in the XFERWAIT bucket, we use the recycling

game as we did for the STEALWAIT bucket. The recycling game shows that there are

137

O(mFi(C) + mCPT, + mP Ig P + mCP Ig(1/c')) dollars in the XFERWAIT bucket

with probability at least 1 - e'.

With probability at least 1 - 3', the sum of all the dollars in all the buckets is T +

O(mFi(C)+mCPTo +mPlg P+mCPlg(l/e')). Dividing by P, we obtain a running

time of Tp < O((Ti + mFj(C))/P + mCT, + m Ig P + mC lg(1/6')) with probability

at least 1 - 3E'. Using the identity T1 (C) = T + mFI(C) and substituting 6 = 36'

yields the desired high-probability bound. The expected bound follows similarly. .

We now bound the number of page faults.

Corollary 21 Consider any Cilk program executed on P processors, each with an

LRU cache of C pages, using Cilk's work-stealing scheduler in conjunction with the

BACKER coherence algorithm. Assume that accesses to the backing store are ran-

dom and independent. Suppose the computation has FI(C) serial page faults and

To critical-path length. Then for any E > 0, the number of page faults is at most

Fi (C) + O(CPToo + CP lg(1/c)) with probability at least 1 - 6. Moreover, the expected

number of page faults is at most Fi (C) + O(CPTo).

Proof: In the parallel execution, we have one fault for each intrinsic fault, plus an

extra O(CPT, + CPlg(1/e)) primary and secondary faults. The expected bound

follows similarly.

7.3 Analysis of page faults

This section provides upper bounds on the number of page faults for "regular" divide-

and-conquer Cilk programs when the parallel execution is scheduled by Cilk and dag

consistency is maintained by the BACKER algorithm. In a regular divide-and-

conquer Cilk program, each procedure, when spawned to solve a problem of size n,

operates as follows. If n is larger than some given constant, the procedure divides the

problem into a subproblems, each of size n/b for some constants a > 1 and b > 1, and

then it recursively spawns child procedures to solve each subproblem. When all a of

138

the children have completed, the procedure merges their results, and then returns. In

the base case, when n is smaller than the specified constant, the procedure directly

solves the problem, and then returns.

Corollary 21 bounds the number of page faults that a Cilk program incurs when

run on P processors using Cilk's scheduler and the BACKER coherence algorithm.

Specifically, for a given Cilk program, let FI (C, n) denote the number of page faults

that occur when the algorithm is used to solve a problem of size n with the standard,

depth-first serial execution order on a single processor with an LRU cache of C pages.

In addition, for any number P > 2 of processors, let Fp(C, n) denote the number

of page faults that occur when the algorithm is used to solve a problem of size n

with the Cilk's scheduler and BACKER on P processors, each with an LRU cache

of C pages. Corollary 21 then says that the expectation of Fp(C,n) is at most

FI(C, n) + O(CPT(n)), where To(n) is the critical path of the computation on a

problem of size n. The O(CPT.(n)) term represents faults due to "warming up" the

processors' caches.

Generally, one must implement and run an algorithm to get a good estimate of

FI(C, n) before one can predict whether it will run well in parallel. For regular divide-

and-conquer Cilk programs, however, analysis can provide good asymptotic bounds

on Fi (C, n), and hence on Fp(C, n).

Theorem 22 Consider any regular divide-and-conquer Cilk program executed on 1

processor with an LRU cache of C pages, using the standard, depth-first serial exe-

cution order. Let nc be the largest problem size that can be solved wholly within the

cache. Suppose that each procedure, when spawned to solve a problem of size n larger

than or equal to nc, divides the problem into a subproblems each of size n/b for some

constants a > 1 and b > 1. Additionally, suppose each procedure solving a problem of

size n makes p(n) page faults in the worst case. Then, the number F (C, n) of page

faults taken by the algorithm when solving a problem of size n can be determined as

follows:2

20ther cases exist besides the three given here.

139

1. Ifp(n) = O(nogb a-) for some constant e > 0, then Fi (C, n) = O(C(n/nc)ogb a),

if p(n) further satisfies the regularity condition that p(n) < ayp(n/b) for some

constant - < 1.

2. If p(n) = 0(nlogb),then

F, (C, n) = O(C(n/nc)l
o

g b a lg(n/nc)).

3. If p(n) = (nlogb a+E) for some constant e > 0, then FI (C, n) = O(C(n/n c)gb a+

p(n)), if p(n) further satisfies the regularity condition that p(n) > a7p(n/b) for

some constant 7 > 1.

Proof: If a problem of size n does not fit in the cache, then the number F1 (C, n) of

faults taken by the algorithm in solving the problem is at most the number F1 (C, n/b)

of faults for each of the a subproblems of size n/b plus an additional p(n) faults for the

top procedure itself. If the problem can be solved in the cache, the data for it need

only be paged into memory at most once. Consequently, we obtain the recurrence

(C, n) aF(C, n/b) + p(n) if n > nc ,(7.1)

C if n < nc

We can solve this recurrence using standard techniques [26, Section 4.4]. We

iterate the recurrence, stopping as soon as we reach the first value of the iteration

count k such that n/bk < nc holds, or equivalently when k = [logb(n/nc)] holds.

Thus, we have

k-1

FI(C, n) < akFi (C, n/bk) + a'p(n/b')
i=0

k-1

< Cak + aip(n/bi)

i=0

logb(n/nc)

- C(n/nc)og b a + ap(n/bi)

If p(n) satisfies the conditions of Case 1, the sum is geometrically increasing and is

dominated by its last term. For p(n) satisfying Case 2, each term in the sum is the

140

same. Finally, for p(n) satisfying Case 3, the first term of the sum dominates. Using

the inequality p(nc) < C, we obtain the stated results. "

7.4 Analysis of space utilization

This section provides upper bounds on the memory requirements of regular divide-

and-conquer Cilk programs when the parallel execution is scheduled by a "busy-

leaves" scheduler, such as the Cilk scheduler. A busy-leaves scheduler is a scheduler

with the property that at all times during the execution, if a procedure has no living

children, then that procedure has a processor working on it. Cilk's work-stealing

scheduler is a busy-leaves scheduler [11, 16]. We shall proceed through a series of

lemmas that provide an exact characterization of the space used by "simple" Cilk

programs when executed by a busy-leaves scheduler. A simple Cilk program is a

program in which each procedure's control consists of allocating memory, spawning

children, waiting for the children to complete, deallocating memory, and returning,

in that order. We shall then specialize this characterization to provide space bounds

for regular divide-and-conquer Cilk programs.

Previous work [11, 16] has shown that a busy-leaves scheduler can efficiently ex-

ecute a Cilk program on P processors using no more space than P times the space

required to execute the program on a single processor. Specifically, for a given Cilk

program, if S 1 denotes the space used by the program to solve a given problem with

the standard, depth-first, serial execution order, then for any number P of proces-

sors, a busy leaves scheduler uses at most PSi space. The basic idea in the proof

of this bound is that a busy-leaves scheduler never allows more than P leaves in the

spawn tree of the resulting computation to be living at one time. If we look at any

path in the spawn tree from the root to a leaf and add up all the space allocated

on that path, the largest such value we can obtain is S1. The bound then follows,

because each of the at most P leaves living at any time is responsible for at most

S1 space, for a total of PS 1 space. For many programs, however, the bound PS 1

is an overestimate of the true space, because space near the root of the spawn tree

141

may be counted multiple times. In this section, we tighten this bound for the case of

regular divide-and-conquer programs. We start by considering the more general case

of simple Cilk programs.

We first introduce some terminology. Consider any simple Cilk program and

input problem, and let T be the spawn tree of the program that results when the

given algorithm is executed to solve the given problem. Let A be any nonempty set

of the leaves of T. A node (procedure) u E T is covered by A if u lies on the path

from some leaf in A to the root of T. The cover of A, denoted C(A), is the set of

nodes covered by A. Since all nodes on the path from any node in C(A) to the root

are covered, it follows that C(A) is connected and forms a subtree of T. If each node

u allocates f(u) memory, then the space used by A is defined as

S (A) = E f (u)
ucC(A)

The following lemma shows how the notion of a cover can be used to character-

ize the space required by a simple Cilk programs when executed by a busy leaves

scheduler.

Lemma 23 Let T be the spawn tree of a simple Cilk program, and let f(u) denote the

memory allocated by node u E T. For any number P of processors, if the computation

is executed using a busy-leaves scheduler, then the total amount of allocated memory

at any time during the execution is at most S *, which we define by the identity

S* = max S (A) ,
IAI<P

with the maximum taken over all sets A of leaves of T of size at most P.

Proof: Consider any given time during the execution, and let A denote the set of

leaves living at that time, which by the busy-leaves property has cardinality at most P.

The total amount of allocated memory is the sum of the memory allocated by the

leaves in A plus the memory allocated by all their ancestors. Since both leaves and

ancestors belong to C(A) and AI < P holds, the lemma follows. M

142

2 10

1C8 2 6

77 5E 05 0 2"2 4

Figure 7-1: An illustration of the definition of a dominator set. For the tree shown,
let f be given by the labels at the left of the nodes, and let A = {F, H}. Then, the se-
rial space S is given by the labels at the right of the nodes, C(A) = {A, B, C, D, F, H}
(the shaded nodes), and D (A, G) = {C, D}. The space required by A is S (A) = 12.

The next few definitions will help us characterize the structure of C(A) when A

maximizes the space used. Let T be the spawn tree of a simple Cilk program, and let

f(u) denote the memory allocated by node u E T, where we shall henceforth make

the technical assumption that f(u) = 0 holds if u is a leaf and f(u) > 0 holds if u is

an internal node. When necessary, we can extend the spawn tree with a new level of

leaves in order to meet this technical assumption. Define the serial-space function

S(u) inductively on the nodes of T as follows:

0 ifu is a leaf;

S(u) = f(u) + max {S(v) : v is a child of u}

if u is an internal node of T.

The serial-space function assumes a strictly increasing sequence of values on the path

from any leaf to the root. Moreover, for each node u E T, there exists a leaf such that

if 7r is the unique simple path from u to that leaf, then we have S(u) = vc,, f(v).

We shall denote that leaf (or an arbitrary such leaf, if more than one exists) by A(u).

The u-induced dominator of a set A of leaves of T is defined by

D (A, u) = {v T: 3w E C(A) such that w is a child

of v and S(w) < S(u) < S(v)} .

The next lemma shows that every induced dominator of A is indeed a "dominator"

143

of A.

Lemma 24 Let T be the spawn tree of a simple Cilk program encompassing more

than one node, and let A be a nonempty set of leaves of T. Then, for any internal

node u c T, removal of ID (A, u) from T disconnects each leaf in A from the root of T.

Proof: Let r be the root of T, and consider the path 7r from any leaf 1 E A to r. We

shall show that some node on the path belongs to D (A, u). Since u is not a leaf and S

is strictly increasing on the nodes of the path 7r, we must have 0 = S(I) < S(u) < S(r).

Let w be the node lying on 7 that maximizes S(w) such that S(w) < S(u) holds, and

let v be its parent. We have S(w) < S(u) < S(v) and w E C(A), because all nodes

lying on 7 belong to C(A), which implies that v E D (A, u) holds. .

The next lemma shows that whenever we have a set A of leaves that maximizes

space, every internal node u not covered by A induces a dominator that is at least as

large as A.

Lemma 25 Let T be the spawn tree of a simple Cilk program encompassing more than

one node, and for any integer P > 1, let A be a set of leaves such that S (A) = S *

holds. Then, for all internal nodes u V C(A), we have ID (A, u)l > JA.

Proof: Suppose, for the purpose of contradiction, that P (A,u)l < JAI holds.

Lemma 24 implies that each leaf in A is a descendant of some node in D (A, u).

Consequently, by the pigeonhole principle, there must exist a node v E D (A, u) that

is ancestor of at least two leaves in A. By the definition of induced dominator, a child

w E C(A) of v must exist such that S(w) < S(u) holds.

We shall now show that a new set A' of leaves can be constructed such that we

have S (A') > S (A), thus contradicting the assumption that S achieves its maximum

value on A. Since w is covered by A, the subtree rooted at w must contain a leaf

1 E A. Define A' = A - {l} U {A(u)}. Adding A(u) to A causes the value of S (A)

to increase by at least S(u), and the removal of 1 causes the path from 1 to some

descendant of w (possibly w itself) to be removed, thus decreasing the value of S (A)

144

by at most S(w). Therefore, we have S (A') _ S (A) - S(w) + S(u) > S (A), since

S(w) < S(u) holds. M

We now restrict our attention to regular divide-and-conquer Cilk programs, as

introduced in Section 7.3. In a regular divide-and-conquer Cilk program, each pro-

cedure, when spawned to solve a problem of size n, allocates an amount of space

s(n) for some function s of n. The following lemma characterizes the structure of the

worst-case space usage for this class of algorithms.

Lemma 26 Let T be the spawn tree of a regular divide-and-conquer Cilk program

encompassing more than one node, and for any integer P > 1, let A be a set of leaves

such that S (A) = S * holds. Then, C(A) contains every node at every level of the tree

with P or fewer nodes.

Proof: If T has fewer than P leaves, then A consists of all the leaves of T and the

lemma follows trivially. Thus, we assume that T has at least P leaves, and we have

IAI = P.

Suppose now, for the sake of contradiction, that there is a node u at a level of the

tree with P or fewer nodes such that u V C(A) holds. Since all nodes at the same

level of the spawn tree allocate the same amount of space, the set D (A, u) consists of

all covered nodes at the same level as u, all of which have the same serial space S(u).

Lemma 25 then says that there are at least P nodes at the same level as u that are

covered by A. This fact contradicts our assumption that the tree has P or fewer nodes

at the same level as u. "

Finally, we state and prove a theorem that bounds the worst-case space used by

a regular divide-and-conquer Cilk program when it is scheduled using a busy-leaves

scheduler.

Theorem 27 Consider any regular divide-and-conquer Cilk program executed on P

processors using a busy-leaves scheduler. Suppose that each procedure, when spawned

to solve a problem of size n, allocates s(n) space, and if n is larger than some constant,

145

then the procedure divides the problem into a subproblems each of size n/b for some

constants a > 1 and b > 1. Then, the total amount Sp(n) of space taken by the

algorithm in the worst case when solving a problem of size n can be determined as

follows:3

1. If s(n) = E(lgk n) for some constant k > 0, then Sp(n) = O(Plgk+1(n/P)).

2. If s(n) = O(nl1ob a-) for some constant E > 0, then Sp(n) = E(Ps(n/Pl'o°gba)),

if, in addition, s(n) satisfies the regularity condition yis(n/b) < s(n) < a72s(n/b)

for some constants 71 > 1 and 72 < 1.

3. If s(n) -= (nlogba), then Sp(n) = E(s(n) Ig P).

4. If s(n) = Q(nlogb a +) for some constant E > 0, then Sp(n) = e(s(n)), if, in

addition, s(n) satisfies the regularity condition that s(n) > ays(n/b) for some

constant 7 > 1.

Proof: Consider the spawn tree T of the Cilk program that results when the program

is used to solve a given input problem of size n. The spawn tree T is a perfectly

balanced a-ary tree. A node u at level k in the tree allocates space f(u) = s(n/bk).

From Lemma 23 we know that the maximum space usage is bounded by S*, which

we defined as the maximum value of the space function S (A) over all sets A of leaves

of the spawn tree having size at most P.

In order to bound the maximum value of S (A), we shall appeal to Lemma 26

which characterizes the set A at which this maximum occurs. Lemma 26 states that

for this set A, the set C(A) contains every node in the first [log a PJ levels of the spawn

tree. Thus, we have

[loga PJ-1

Sp(n) < E a's(n/b') +)(PSl(n/p/l1ogb)) . (7.2)
i=O

To determine which term in Equation (7.2) dominates, we must evaluate SI(n),

30Other cases exist besides those given here.

146

which satisfies the recurrence

Sl (n) = S((n/b) + s(n) ,

because with serial execution the depth-first discipline allows each of the a subprob-

lems to reuse the same space. The solution to this recurrence [26, Section 4.4] is

* Sl(n) = O(lgk +l n), if s(n) = O(lgk n) for some constant k > 0, and

* Sl(n) = O(s(n)), if s(n) = Q(n) for some constant E > 0 and in addition

satisfies the regularity condition that s(n) _ ys(n/b) for some constant y > 1.

The theorem follows by evaluating Equation (7.2) for each of the cases. We only

sketch the essential ideas in the algebraic manipulations. For Cases 1 and 2, the serial

space dominates, and we simply substitute appropriate values for the serial space. In

Cases 3 and 4, the space at the top of the spawn tree dominates. In Case 3, the total

space at each level of the spawn tree is the same. In Case 4, the space at each level

of the spawn tree decreases geometrically, and thus, the space allocated by the root

dominates the entire tree.

7.5 Example analyses of Cilk programs

In this section we show how to apply the analysis techniques of this chapter to spe-

cific Cilk programs. We focus first on analyzing matrix multiplication, and then

we examine LU-decomposition. We show that the algorithms given for these prob-

lems in Section 4.1 are efficient with respect to the measures of time, page faults,

and space. In our analyses, we shall assume that the cache memory of each of the

P processors contains C pages and that each page holds m matrix elements. We

shall also assume that the accesses to backing store behave as if they were random

and independent, so that the expected bounds Tp(C) = O(T(C)/P + mCTo) and

Fp(C) = FI(C) + O(CPToo) are good models for the performance of Cilk programs.

147

Let us first apply our results to the naive "blocked" serial matrix multiplication

algorithm for computing R = AB in which the three matrices A, B, and R are

partitioned into m x m submatrix blocks. We perform the familiar triply nested

loop on the blocked matrix-indexing i through the row blocks of R, j through the

column blocks of R, and k through the row blocks of A and column blocks of B-

updating R[i, j] - R[i, j] + A[i, k] - B[k, j] on the matrix blocks. This algorithm

can be parallelized to obtain computational work Ti(n) = O(n3) and critical-path

length Too(n) = O(lgn) [65]. If the matrix B does not fit into the cache, that is,

mC < n2, then in the serial execution, every access to a block of B causes a page fault.

Consequently, the number of serial page faults is F1 (C, n) = (n/V)3 = n3/ 3/2,

even if we assume that A and R never fault.

The divide-and-conquer blockedmul algorithm from Section 4.1.1 uses the pro-

cessor cache much more effectively. To see why, we can apply Theorem 22 to analyze

the page faults of blockedmul using a = 8, b = 2, nc = V , and p(n) = O(n 2 /m).

Case 1 of the theorem applies with e = 1, which yields FI(C, n) = O(C(n/ mC)) =

O(n3/3/2V)/--), a factor of V/ fewer faults than the naive algorithm.

To analyze the space for blockedmul, we use Theorem 27. For this algorithm, we

obtain a recurrence with a = 8, b = 2, and s(n) = O(n2). Case 2 applies, yielding

a worst-case space bound of Sp(n) = O(P(n/P/ 3)2) = (n 2p 1 /3). 4 Note that this

space bound is better than the O(n 2P) bound obtained by just using the O(S 1P)

bound from [11, 16].

We have already computed the computational work and critical path length of

the blockedmul algorithm in Section 4.1.1. Using these values we can compute the

total work and estimate the total running time Tp(C, n). The computational work of

blockedmul is Ti(n) = O(n3), so the total work is Ti(C, n) = Ti(n) + mF1(C, n) =

0(n3). The critical path is T,, = O(lg 2 n), so using our performance model, the

4In recent work, Blelloch, Gibbons, and Matias [10] have shown that "series-parallel" dag com-
putations can be scheduled to achieve substantially better space bounds than we report here. For
example, they give a bound of Sp(n) = O(n2 + Plg2 n) for matrix multiplication. Their improved
space bounds come at the cost of substantially more communication and overhead than is used by
our scheduler, however.

148

total expected time for blockedmul on P processors is Tp(C, n) = O(Ti(C, n)/P +

mCT(n)) = O(n3/P + mC Ig2 n). Consequently, if we have P = O(n3/(mC Ig2 n)),

the algorithm runs in O(n 3/P) time, obtaining linear speedup. A parallel version of

the naive algorithm has a slightly shorter critical path, and therefore it can achieve

O(n 3/P) time even with slightly more processors. But blockedmul commits fewer

page faults, which in practice may mean better actual performance. Moreover, the

code is more portable, because it requires no knowledge of the page size m. What is

important, however, is that the performance models for dag consistency allow us to

analyze the behavior of algorithms.

Let us now examine the more complicated problem of performing an LU-decomp-

osition of an n x n matrix A without pivoting. The ordinary parallel algorithm

for this problem pivots on the first diagonal element. Next, in parallel it updates

the first column of A to be the first column of L and the first row of A to be the

first row of U. Then, it forms a Schur complement to update the remainder of

A, which it recursively (or iteratively) factors. This standard algorithm requires

E(n3) computational work and it has a critical path of length O(n). Unfortunately,

even when implemented in a blocked fashion, the algorithm does not display good

locality for a hierarchical memory system. Each step causes updates to the entire

matrix, resulting in FI(C, n) = O(n3 /m 3/2) serial page faults, similar to blocked

matrix multiplication.

The divide-and-conquer algorithm presented in Section 4.1.2 for LU decomposition

incurrs fewer page faults, at the cost of a slightly longer critical path. To bound the

number of page faults, we first bound the page faults during the back substitution

step. Observe that page faults in the one step of back substitution are dominated by

the E(n3/m 3/2V)-- page faults in the matrix multiplication, and hence we obtain the

recurrence F1 (C, n) = 4F 1(n/2) + O(n3/m3/2 JC). Therefore, we can apply Case 3

of Theorem 22 with a = 4, b = 2, nc = v C, and p(n) = O(n3/3/2V) to obtain

the solution F, (C, n) = E(n3/m 3 /2 v/).

We now analyze the page faults of the LU-decomposition algorithm as a whole.

The number of serial page faults satisfies F1 (C, n) = 2FI(C, n/2) + O(n3/m3/2V),

149

due to the matrix multiplications and back substitution costs, which by Case 3 of

Theorem 22 with a = 2, b = 2, nc = mC, and p(n) O(n3m 3/2 C) has solution

F, (C, n) = (n3/m3 /2 C).

Using our performance model, the total expected time for LU-decomposition

on P processors is therefore Tp(C, n) = O(Ti(C, n)/P + mCTo(n)) = O(n 3/P +

mCn Ig2 n). If we have P = O(n 3 /mCn lg2 n), the algorithm runs in O(n3/P) time,

obtaining linear speedup. As with blockedmul, many fewer page faults occur for

the divide-and-conquer algorithm for LU-decomposition than for the corresponding

standard algorithm. The penalty we pay is a slightly longer critical path--O(n lg 2 n)

versus O(n)-which decreases the available parallelism. The critical path can be

shortened to O(n Ig n) by using the more space-intensive blockedmul algorithm dur-

ing back and forward substitution, however.

We leave it as an open question whether Cilk programs with optimal critical paths

can be obtained for matrix multiplication and LU-decomposition without compromis-

ing the other performance parameters.

7.6 Conclusion

We briefly relate dag consistency to other distributed shared memories, and then we

offer some ideas for the future.

Like Cilk's dag consistency, most distributed shared memories (DSM's) employ a

relaxed consistency model in order to realize performance gains, but unlike dag con-

sistency, most distributed shared memories take a low-level view of parallel programs

and cannot give analytical performance bounds. Relaxed shared-memory consistency

models are motivated by the fact that sequential consistency [63] and various forms

of processor consistency [47] are too expensive to implement in a distributed setting.

(Even modern SMP's do not typically implement sequential consistency.) Relaxed

models, such as Gao and Sarkar's location consistency [43] (not the same as Frigo's

location consistency [40]) and various forms of release consistency [1, 33, 44], ensure

consistency (to varying degrees) only when explicit synchronization operations occur,

150

such as the acquisition or release of a lock. Causal memory [2] ensures consistency

only to the extent that if a process A reads a value written by another process B,

then all subsequent operations by A must appear to occur after the write by B. Most

DSM's implement one of these relaxed consistency models [20, 59, 61, 90], though

some implement a fixed collection of consistency models [8], while others merely

implement a collection of mechanisms on top of which users write their own DSM

consistency policies [64, 86]. All of these consistency models and the DSM's that

implement these models take a low-level view of a parallel program as a collection of

cooperating processes.

In contrast, dag consistency takes the high-level view of a parallel program as a

dag, and this dag exactly defines the memory consistency required by the program.

Like some of these other DSM's, dag consistency allows synchronization to affect

only the synchronizing processors and does not require a global broadcast to update

or invalidate data. Unlike these other DSM's, however, dag consistency requires no

extra bookkeeping overhead to keep track of which processors might be involved in a

synchronization operation, because this information is encoded explicitly in the dag.

By leveraging this high-level knowledge, BACKER in conjunction with Cilk's work-

stealing scheduler is able to execute Cilk programs with the performance bounds

shown here. The BLAZE parallel language [70] and the Myrias parallel computer [7]

define a high-level relaxed consistency model much like dag consistency, but we do not

know of any efficient implementation of either of these systems. After an extensive

literature search, we are aware of no other distributed shared memory with analytical

performance bounds for any nontrivial algorithms.

We are also currently working on supporting dag-consistent shared memory in our

Cilk-NOW runtime system [11] which executes Cilk programs in an adaptively parallel

and fault-tolerant manner on networks of workstations. We expect that the "well-

structured" nature of Cilk computations will allow the runtime system to maintain

dag consistency efficiently, even in the presence of processor faults.

Finally, we observe that our work to date leaves open several analytical questions

regarding the performance of Cilk programs that use dag consistent shared memory.

151

We would like to improve the analysis of execution time to directly account for the

cost of page faults when pages are hashed to backing store instead of assuming that

accesses to backing store "appear" to be independent and random as assumed here.

We conjecture that the bound of Theorem 20 holds when pages are hashed to backing

store provided the algorithm is EREW in the sense that concurrent procedures never

read or write to the same page. We would also like to obtain tight bounds on the

number of page faults and the memory requirements for classes of Cilk programs

that are different from, or more general than, the class of regular divide-and-conquer

programs analyzed here.

152

Chapter 8

Distributed Cilk

8.1 Introduction

This chapter describes our implementation of Cilk on a cluster of SMP's. In particu-

lar, we define MULTIBACKER, an extension of the BACKER algorithm from Chapter 6

which takes advantage of hardware support for sharing within an SMP while main-

taining the advantages of BACKER across SMP's. Also, we give our "local bias"

scheduling policy for modifying the Cilk scheduler to improve the locality of schedul-

ing decisions without breaking the provable properties of BACKER given in Chapter 7.

With these two modifications to BACKER and the Cilk scheduler, we show that Cilk

programs achieve good speedups on networks of SMP's.

8.2 Multilevel shared memory

In this section, we describe modifications to the BACKER algorithm from Chapter 6

to operate on clusters of SMP's. The original BACKER algorithm is designed for

a network of uniprocessors, that is, a network where each processor has its own

shared-memory cache. In a cluster of SMP's, however, multiple processors on an

SMP have the opportunity to share a single shared-memory cache. The design of

MULTIBACKER, our multilevel shared memory protocol, attempts to share a shared-

memory cache among several processors on an SMP and provide hardware-based

153

memory consistency between those processors.

One obvious solution to implementing BACKER on a cluster of SMP's is to give

each processor its own separate shared-memory cache. We call this solution disjoint

BACKER. Disjoint BACKER ignores the fact that the processors in an SMP are

connected by hardware support for shared memory. Thus, it has two inefficiencies.

The first is that if a particular shared-memory page is referenced by more than one

processor, multiple copies of the page are stored in one SMP, one in each cache of each

referencing processor. These multiple copies artificially reduce the amount of shared

memory that can be cached in the case when the processors on an SMP exhibit some

commonality of reference, which we expect to be the case. Second, by keeping the

shared-memory caches separate for each processor, we lose the opportunity to use the

hardware consistency mechanism provided by the SMP. Because references to the

same virtual page by two different processors go to two different physical pages, no

hardware sharing is possible between processors.

Another solution is to treat the SMP as a single processor within the BACKER

algorithm. We call this solution unified BACKER. The SMP has a single unified

cache for all processors on the SMP. The processors of the SMP operate on the cache

just as if they were executing as timeslices of a single processor. Most distributed

shared memory protocols use this model for their SMP caches [61, 35], because it

does not cache redundant pages and allows hardware sharing within an SMP.

Unified BACKER does have a drawback, however. In particular, when one proces-

sor requires a consistency operation to be performed on a page, it must be performed

with respect to all processors. For instance, if a processor needs to invalidate a page

because of a consistency operation, it must be invalidated by all processors on the

SMP. Erlichson et al [35] call this the TLB synchronization problem, because in-

validations are done by removing entries from a page table, and cached page table

entries in the TLB must be removed as well. Invalidating TLB entries on multiple

processors requires some form of interprocessor synchronization and can be expensive.

Erlichson et al found that TLB synchronization on a 12-processor SGI machine takes

over 350ps.

154

For many parallel programming environments, in particular those with frequent

global barriers, requiring TLB synchronization is not too cumbersome because when

one processor is required to invalidate a page, all processors are required to invalidate

that page. In BACKER, however, most synchronization operations are bilateral in

nature, from one processor on one SMP to one processor on another SMP. This

limited synchronization means that processors on one SMP do not necessarily need

to invalidate pages simultaneously. Therefore, forcing all processors to invalidate a

page that only one processor needs to invalidate can lead to high TLB synchronization

overheads. Additionally, processors who must unnecessarily invalidate a page may be

forced to refetch that page and thus generate additional memory traffic.

The third alternative, called MULTIBACKER, is used in our implementation of

distributed Cilk. In the MULTIBACKER protocol, we keep one central cache for each

SMP, but control the access to each page of the cache on a per-processor basis. This

solution has all of the advantages of unified BACKER. In particular, no multiple

copies of a page are kept and sharing within a machine is provided in hardware.

However, each processor keeps a separate set of access permissions (in practice, a

separate virtual memory map) that it can update individually. No processor on an

SMP needs to synchronize its TLB with any other processor, except when pages need

to be removed from the cache because of capacity constraints. In this case, however,

the TLB synchronization overhead can be amortized by evicting several pages from

the cache at once. By maintaining separate access permissions, processors only need

to invalidate, and consequently refetch, pages which actually require invalidation.

The flexibility of MULTIBACKER requires a slightly more complicated protocol

than either disjoint or unified BACKER, however. Because some processors may have

a page mapped invalid while others have it mapped valid, a page fetch cannot simply

copy a page into the cache, because pages with dirty entries cannot be overwritten.

Instead, we use a procedure called two-way diffing, described in [95] as "outgoing"

and "incoming" diffs. Just as with the BACKER algorithm described in Section 6.4,

an outgoing diff compares the working copy of a page with its twin, and sends any

data that have been written since the twin was created to the backing store. An

155

incoming diff, on the other hand, compares a page fetched from the backing store

with the twin, and writes any changes that have occurred at the backing store since

the twin was fetched to the working copy (and to the twin itself). In this way, changes

can be propegated both from a processor cache to the backing store via outgoing diffs,

and from the backing store to a processor cache via incoming diffs.

The MULTIBACKER protocol also needs to maintain timestamps to keep track of

which processors are allowed to access which pages. Each processor has a permission

number which identifies how recently it has performed an off-SMP synchronization

operation. Similarly, each page in the cache has a timestamp which records when

the page was last updated from the backing store. The invariant maintained by

MULTIBACKER is that a processor may access a page in the cache if its permission

number is smaller than the timestamp of the page. When a page is fetched from

backing store, its timestamp is set to be greater than the permission numbers of

all processes in the SMP, giving all processors on the SMP permission to access the

up-to-date page. When a processor does an off-SMP synchronization operation, its

permission number is set to be greater than the timestamp of any page in the cache,

thereby invalidating all of that processor's pages. When processors synchronize within

an SMP, they set their permission numbers to the maximum permission number of

the synchronizing processors, ensuring that if the page is out-of-date with respect to

any synchronizing processor, it becomes out of date with respect to all synchronizing

processors.

8.3 Distributed scheduling

The work-stealing scheduler presented in Section 3.2 makes no distinction between

stealing from a processor on the same SMP or a processor on a different SMP. As a

practical matter, however, we would like to schedule related threads on the same SMP

whenever possible. This section outlines our strategy for providing some measure of

locality of scheduling while at the same time retaining the provably-good properties

of the work-stealing scheduler from Chapter 7.

156

The obvious way to increase the locality of scheduling is to always steal from a

processor on the local SMP if there is any work on the SMP. Only when the whole

SMP runs out of work are any steal attempts allowed to go to another SMP. Although

this strategy, which we call the maximally local strategy, provides good locality, it

breaks the provable bounds of the Cilk scheduler. In particular, the following scenario

demonstrates how the maximally local scheduling algorithm can go wrong. Let our

cluster consist of M SMP's, each with P processors. The first M - 1 SMP's have a

single, long-running, nearly serial piece of work. The last SMP has a large chunk of

work with lots of parallelism. In this situation, because no steal attempts leave an

SMP, the M - 1 machines never realize that the last SMP has a lot of work that they

can steal and work on. Thus, this configuration executes only M - 1+ P instructions

at every time step when there is the potential to execute MP instructions per time

step. For a large cluster (M > P), this configuration forces such a maximally local

scheduler to use only one processor on every machine.

How can we modify the Cilk scheduler to improve scheduling locality without

introducing such performance anomalies? Our solution lies examining the proof of

the optimality of the Cilk scheduler given in Chapter 7. If we modify the scheduling

algorithm in such a way that the proof is preserved, then we are guaranteed that no

such performance anomalies can occur.

We modify the scheduling algorithm as follows. We use a local bias strategy

where instead of stealing randomly with a uniform distribution, we steal with a biased

distribution. We bias the choice of the victim processor to be weighted in favor of

the local processors. Let a be the ratio of the probability of picking a local processor

versus the probability of picking a remote processor. We observe that the running

time bound obtained in Chapter 7 depends linearly on the minimum probability of any

processor being chosen as a steal target. Since the local bias strategy underweights

the remote processors by a factor of at most O(a), the running time bounds increase

by a factor of O(a). As long as we choose a to be a constant, instead of 00 as was

done with the maximally local strategy, we maintain provable performance (albeit

with a larger constant hidden in the big-Oh) while augmenting the locality of Cilk's

157

scheduler.

Now that we have identified the local bias strategy as the proper modification to

make to Cilk's stealing algorithm, we need to decide on the scheduling parameter a. A

natural choice for a is the largest a possible while still maintaining a remote stealing

rate close to the rate obtained when a = 1. Maintaining the remote stealing rate is

important for distributing work quickly at the beginning of the computation or after

a serial phase. This value of a is just the ratio of the latency of a remote steal to

the latency of a local steal, because if a local steals are performed per remote steal,

the rate of remote stealing drops by only a factor of 2. (Larger values of a lower the

remote stealing rate proportionally to the increase in a.) For our implementation on

a cluster of 466MHz Alpha SMP's connected with Digital's Memory Channel, this

choice of a is about 100, derived from a local steal latency of about 0.5ps and a

remote steal latency of about 50ps.

8.4 Distributed Cilk performance

We have a preliminary version of distributed Cilk running with MULTIBACKER and

our local bias scheduling strategy on a cluster of SMP's. Distributed Cilk runs on

multiple platforms and networks. There are currently implementations for Sun Ultra

5000 SMP's, Digital Alpha 4100 SMP's, and Penium Pro SMP's. Currently supported

networks include UDP over Ethernet, Digital's Memory Channel, and MIT's Arctic

network [18, 56]. This section gives some preliminary performance numbers for our

Alpha 4100 SMP implementation running with the Memory Channel interconnect.

Figure 8-1 shows the performance of the Fibonacci program from Figure 2-1.

Importantly, no changes were made to the source code of the program to run it

on distributed Cilk. Except for the presence of a relaxed consistency model,' the

programming environment is the same as Cilk on one SMP. We can see from Figure 8-

1 that for a simple program like Fibonacci, near-linear speedup is achievable even

when dynamically load balancing across a cluster of SMP's.

1And, as a consequence, the absence of locking primitives

158

processors configuration
1 1
2 2
2 1,1
3 2,1
3 1,1,1
4 2,2
4 2,1,1
5 2,2,1
6 2,2,2

speedup
1.00
2.00
1.99
2.98
2.97
3.97
3.93
4.93
5.87

Figure 8-1: Performance of Fibonacci program from Figure 2-1 for various machine

configurations. These experiments were run on a cluster of 3 Alpha 4100 machines
with 4 466MHz processors each connected with Digital's Memory Channel network.
The configuration column shows how many processors on each machine were used for

computation. An additional processor on each machine (not included in the above
numbers) was dedicated to polling.

We are currently working on evaluating the performance of our cluster of SMP

version of distributed Cilk on programs with more demanding shared-memory re-

quirements.

159

Chapter 9

Conclusion

This thesis presents a parallel multithreaded language called Cilk. I believe that Cilk

can go a long way to provide a robust programming environment for contemporary

SMP machines. Here is a summary of Cilk's features and how each one simplifies

the life of a programmer wishing to take advantage of his new commodity SMP (or

SMP's):

* simple language semantics By providing a simple, faithful, parallel exten-

sion of C, Cilk makes the transition from serial C programming to parallel Cilk

programming easier. Also, by leveraging the power of modern C compilers, Cilk

retains all of the efficiencies of serial C programming.

* low parallel overhead Historically, a common obstacle to programming in

parallel has been that parallel programs are not efficient to run on one, or even

a few, processors. Only with very large parallel computers was the effort of

programming in parallel worthwhile. Because the parallel overhead of Cilk is

so small, however, programmers can now program for very small SMP's, only

a few processors, and expect to get good performance. In fact, the overhead of

Cilk is so small that it makes sense to use the Cilk program even when running

on a uniprocessor. That way, a programmer needs to maintain only a single

code base, simplifying program development considerably.

160

* automatic load balancing Cilk's provably efficient work-stealing scheduler

alleviates the programmer from having to worry about which part of his pro-

gram executes on which processor. The programmer needs only to express the

parallelism in his application, the Cilk system does the rest.

* good speedup The efficiency of the Cilk language together with the efficiency

of its scheduler combine to give good overall application speedups when a serial

program is converted to a Cilk program. A programmer can be fairly confident

that if he can expose enough parallelism in his code using Cilk, the system will

be able to exploit that parallelism to obtain good speedups.

* parallel debugging Programming in parallel is difficult because reasoning

about all possible behaviors of a program can become intellectually intractable.

Cilk provides a debugging tool called the Nondeterminator-2 that can detect

many of the misbehaviors of parallel programs quickly and robustly. This tool

greatly simplifies the intellectual effort required to design and debug a parallel

program.

* distributed implementation Because a Cilk program can be easily ported

to a cluster of SMP's, a programmer can convieniently scale from a small SMP

to a large cluster of SMP's without having to rewrite his application. Thus, the

concept of the single code base extends even to very large, distributed memory

computers.

161

Appendix A

Connecting deadlock-free programs

and computations

In this appendix, we prove Lemma 14, which shows that a deadlock in a data-race free

computation of an abelian program always corresponds to a deadlock in the program.'

In our current formulation, proving that a deadlock scheduling of a computation is

true is not sufficient to show that the machine actually deadlocks. A deadlock schedul-

ing is one that cannot be extended in the computation, but it may be possible for the

machine to extend the execution if the next machine instruction does not correspond

to one of the possibilities in the dag. In this appendix, in order to prove machine

deadlocks, we think of a LOCK instruction as being composed of two instructions:

LOCKATTEMPT and LOCKSUCCEED. Every two LOCK_SUCCEED instantiations that

acquire the same lock must be separated by an UNLOCK of that lock, but multiple

interpreters can execute LOCK_ATTEMPT instantiations for the same lock without an

intervening UNLOCK. In other words, LOCK_ATTEMPT instructions can always be ex-

ecuted by the interpreter, but LOCK_SUCCEED instructions cannot be executed unless

no other interpreter holds the lock. If an interpreter executes a LOCK_ATTEMPT in-

struction, the next instruction executed by the interpreter must be a LOCK-SUCCEED

instruction for the same lock. A true deadlock scheduling is therefore an actual ma-

1The contents of this appendix are joint work with Andrew Stark.

162

chine deadlock, because the LOCK_SUCCEED instantiations that come next in the dag

are always the same as the next possible instantiations for the machine.

A LOCK_ATTEMPT instantiation commutes with any other parallel instantiation.

For convenience, we still use the instantiation LOCK to mean the sequence LOCK_

ATTEMPT LOCKSUCCEED.

To prove Lemma 14, we first introduce new versions of Lemmas 10, 11, and 12

that assume a deadlock-free program instead of a deadlock-free dag. We then prove

Lemma 14.

Lemma 28 (Reordering) Let G be a data-race free computation resulting from the

execution of a deadlock-free abelian program, and let R 1 and R2 be two parallel regions

in G. Then:

1. Let X be a partial scheduling of G of the form X 1R 1R 2X 2 . The partial scheduling

X and the partial scheduling X 1R 2R 1X 2 are equivalent.

2. Let Y be a true partial scheduling of G of the form Y = Y 1R 1R, where R2 is a

prefix of R 2 . Then then the partial scheduling YR'2 is true.

Proof: We prove the lemma by double induction on the nesting count of the regions.

Our inductive hypothesis is the theorem as stated for regions R 1 of nesting count i

and regions R 2 of nesting count j. The proofs for part 1 and part 2 are similar, so

sometimes we will prove part 1 and provide the modifications needed for part 2 in

parentheses.

Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 (R') are

parallel and are adjacent in X (Y), no instantiation of R 2 (R') can be guarded by a

lock that guards R 1, because any lock held at R1 is not released until after R 2 (R').

Therefore, since G is data-race free, either R 1 and R 2 (R2) access different memory

locations or R 1 is a READ and R 2 (R2) does not write to the location read by R1. In

either case, the instantiations of each of R1 and R2 (R') do not affect the behavior of

the other, so they can be executed in either order without affecting the final memory

state.

163

Base case: j = 0. Symmetric with above.

Inductive step: In general, R 1 of count i > 1 has the form LOCK(A) ... UNLOCK(A),

and R 2 of count j > 1 has the form LOCK(B) ... UNLOCK(B). If A = B, then R 1 and

R 2 commute by the definition of abelian. Parts 1 and 2 then both follow from the

definition of commutativity. Otherwise, there are three possible cases.

Case 1: Lock A does not appear in R2 (R'). For part 1, we start with the sequence

X 1RIR 2X 2 and commute pieces of R 1 one at a time with R 2: first, the instantia-

tion UNLOCK(A), then the immediate subregions of R 1, and finally the instantiation

LOCK(A). The instantiations LOCK(A) and UNLOCK(A) commute with R 2, because

A does not appear anywhere in R2. Each subregion of R1 commutes with R 2 by

the inductive hypothesis, because each subregion has lower nesting count than R 1.

After commuting all of R 1 past R 2, we have an equivalent execution X 1R 2R1X 2-

For part 2, the same procedure can be used to drop pieces of R1 in the true partial

schedule YR 1IR' until the true partial schedule YR' is reached.

Case 2: Lock B does not appear in R 1. The argument for part 1 is symmetric with

Case 1. For part 2, we break up R' into its constituents: R' = LOCK(B)R 2 ,1 ... R 2,,Rf,

where R 2,1 through R 2,n are complete regions, and R" is a prefix of a region. The

instantiation LOCK(B) commutes with R1 because B does not appear in R 1, and the

complete regions R 2,1 through R2,n commute with R1 by induction. From the sched-

ule Y1LOCK(B)R 2,1 ... R 2,n,R"f', we again apply the inductive hypothesis to drop R1,

which proves that Y1LOCK(B)R 2,1 ... R2,,,R" = Y1R' is true.

Case 3: Lock A appears in R2 (R'), and lock B appears in R1. For part 1, if both

schedulings X 1R1R 2X 2 and X 1R2R1X 2 are false, then we are done. Otherwise, we

prove a contradiction by showing that the program can deadlock. Without loss of

generality, let the scheduling X1RIR 2X 2 be a true scheduling. Because X 1R1 R 2 X 2 is

a true scheduling, the partial scheduling X1RIR 2 is true as well.

We now continue the proof for both parts of the lemma. Let al be the prefix of

R1 up to the first LOCK_ATTEMPT(B) instantiation, let P1 be the rest of R1, and let

a 2 be the prefix of R2 (R') up to the first LOCK_ATTEMPT of a lock acquired in R2

(R') that is acquired but not released in al. At least one such lock exists, namely A,

164

so a 2 is not all of R 2 (R2).

We show that the partial scheduling Xlala2 is also true. This partial scheduling,

however, cannot be completed to a full scheduling of the program because a 1 and a 2

each hold the lock that the other is attempting to acquire.

We prove the partial scheduling Xia la 2 is true by starting with the true partial

scheduling X 1Rla 2 = Xl aiia 2 and dropping complete subregions and unpaired

unlocks in i1 from in front of a 2 . The sequence P1 has two types of instantiations,

those in regions completely contained in /1, and unpaired unlocks.

Unpaired unlocks in P1 must have their matching lock in a1 , so that lock does

not appear in a 2 by construction. Therefore, an unlock instantiation just before a 2

commutes with a 2 and thus can be dropped from the schedule. Any complete region

just before a 2 can be dropped by the inductive hypothesis. When we have dropped

all instantiations in !1, we obtain the true partial scheduling Xlala 2 which cannot

be completed, and hence the program has a deadlock. 0

Lemma 29 (Region grouping) Let G be a data-race free computation resulting

from the execution of a deadlock-free abelian program. Let X 1XX 2 be a scheduling of

G, for some instantiation sequences X 1, X, and X 2. Then, there exists an instantia-

tion sequence X' such that X 1X'X 2 is equivalent to X 1XX 2 and every region entirely

contained in X' is contiguous.

Proof: As a first step, we create X" by commuting each LOCKATTEMPT in X to

immediately before the corresponding LOCKSUCCEED. In this way, every complete

region begins with a LOCK instantiation. If there is no corresponding LOCKSUCCEED

in X, we commute the LOCK_ATTEMPT instantiation to the end of X".

Next, we create our desired X' by grouping all the complete regions in X" one

at a time. Each grouping operation will not destroy the grouping of already grouped

regions, so eventually all complete regions will be grouped.

Let R be a noncontiguous region in X" that completely overlaps no other noncon-

tiguous regions in X". Since region R is noncontiguous, other regions parallel with

R must overlap R in X". We first remove all overlapping regions which have exactly

165

one endpoint (an endpoint is the bounding LOCK or UNLOCK of a region) in R, where

by "in" R, we mean appearing in X" between the endpoints of R. We shall show how

to remove regions which have only their UNLOCK in R. The technique for removing

regions with only their LOCK in R is symmetric.

Consider the partially overlapping region S with the leftmost UNLOCK in R. Then

all subregions of S which have any instantiations inside R are completely inside R and

are therefore contiguous. We remove S by moving each of its (immediate) subregions

in R to just left of R using commuting operations. Let S1 be the leftmost subregion

of S which is also in R. We can commute S1 with every instruction I to its left until

it is just past the start of R. There are three cases for the type of instruction I. If I

is not a LOCK or UNLOCK, it commutes with S1 by Lemma 28 because it is a region in

parallel with S1. If I = LOCK(B) for some lock B, then S1 commutes with I, because

S1 cannot contain LOCK(B) or UNLOCK(B). If I = UNLOCK(B), then there must exist

a matching LOCK(B) inside R, because S is chosen to be the region with the leftmost

UNLOCK without a matching LOCK. Since there is a matching LOCK in R, the region

defined by the LOCK/UNLOCK pair must be contiguous by the choice of R. Therefore,

we can commute Si with this whole region at once using Lemma 28.

We can continue to commute S1 to the left until it is just before the start of R.

Repeat for all other subregions of S, left to right. Finally, the UNLOCK at the end of

S can be moved to just before R, because no other LOCK or UNLOCK of that same

lock appears in R up to that UNLOCK.

Repeat this process for each region overlapping R that has only an UNLOCK in R.

Then, remove all regions which have only their LOCK in R by pushing them to just

after R using similar techniques. Finally, when there are no more unmatched LOCK

or UNLOCK instantiations in R, we can remove any remaining overlapping regions by

pushing them in either direction to just before or just after R. The region R is now

contiguous.

Repeating for each region, we obtain an execution XIX'X 2 equivalent to XIXX 2

in which every region completely contained in X' is contiguous. .

166

Lemma 30 Let G be a data-race free computation resulting from the execution of a

deadlock-free abelian program. Then every scheduling of G is true and yields the same

final memory state.

Proof: The proof is identical to the proof of Lemma 12, using the Reordering and

Region Grouping lemmas from this appendix in place of those from Section 5.5.

We restate and then prove Lemma 14.

Lemma 14 Let G be a computation generated by a deadlock-free abelian program. If

G is data-race free, then it is deadlock free.

Proof: By contradiction. Assume that a deadlock-free abelian program P can gen-

erate a data-race free computation G that has a deadlock. We show that P can

deadlock, which is a contradiction.

The proof has two parts. In the first part, we generate a true scheduling Y of

G that is "almost" a deadlock scheduling. Then, we show that Y can be modified

slightly to generate a deadlock scheduling Z which is also true, which proves the

contradiction.

Every deadlock scheduling contains a set of threads el, e2,... en, some of which

are completed and some of which are not. Each thread ei has a depth, which

is the length of the longest path in G from the initial node to the last instan-

tiation in ei. We can define the depth of a deadlock scheduling as the n-tuple

(depth(el), depth(e2),... , depth(en)), where we order the threads such that depth(el) >

depth(e2) > ... > depth(en). Depths of deadlocked schedulings are compared in the

dictionary order.2

We generate the scheduling Y of G which is almost a deadlock scheduling by

modifying a particular deadlock scheduling of G. We choose the deadlock scheduling

X from which we will create the scheduling Y to have the maximum depth of any

deadlock scheduling of G.

2The dictionary order <D is a partial order on tuples that can be defined as follows: The size
0 tuple is less than any other tuple. (ii,i 2 ,. . . ,im) <D (jl,j2, .. ,jn) if il < j or if il = jl and

(i 2 ,i 3 , -. ,im) <D (j 2 , j 3 ,. - ,jn).

167

Let us examine the structure of X in relation to G. The deadlock scheduling X di-

vides G into a set of completely executed threads, X 1, a set of unexecuted threads X 2 ,

and a set of partially executed threads T = {t,,... , t,}, which are the threads whose

last executed instantiation in the deadlock scheduling is a LOCK_ATTEMPT. We divide

each of the threads in T into two pieces. Let A {al,..., a} be the parts of the ti

up to and including the last executed instantiation, and let B = {1,..., /,} be the

rest of the instantiations of the ti. We say that a, blocks pj if the first instantiation

in ,3 is a LOCKSUCCEED on a lock that is acquired but not released by ai.

X is a deadlock scheduling containing the instantiations in X 1 U A. To isolate the

effect of the incomplete regions in A, we construct the legal scheduling X' which first

schedules all of the instantiations in X 1 in the same order as they appear in X, and

then all of the instantiations in A in the same order as they appear in X.

The first instantiations of the /, cannot be scheduled in X' because they blocked

by some a,. We now prove that the blocking relation is a bijection. Certainly, a

particular Pi can only be blocked by one aj. Suppose there exists an aj blocking

two or more threads in B. Then by the pigeonhole principle some thread ak blocks

no threads in B. This contradicts that fact that X has maximum depth, because

the deadlock scheduling obtained by scheduling the sequence Xltk, all subsequently

runnable threads in X 2 in any order, and then the n - 1 partial threads in A - {ak}

is a deadlock scheduling with a greater depth than X.

Without loss of generality, let a2 be a thread in A with a deepest last instantiation.

Since the blocking relation is a bijection, only one thread blocks 02; without loss of

generality, let it be a,. Break al up into two parts, at = LeLo R , where the first

instantiation of a attempts to acquire the lock that blocks 02. (afL may be empty.)

To construct a legal schedule, we start with X' and remove the instantiations in a R

from X'. The result is still a legal scheduling because we did not remove any unlock

without also removing its matching lock. We then schedule the first instantiation

of /2, which we know is legal because we just unblocked it. We then complete the

scheduling of the threads in T by scheduling the remaining instantiations in T (aR and

all instantiations in B except for the first one in /2). We know that such a scheduling

168

exists, because if it didn't, then there would be a deeper deadlock schedule (because

we executed one additional instantiation from 32, the deepest incomplete thread,

and we didn't remove any completed threads). We finish off this legal scheduling by

completing X 2 in topological sort order.

As a result, the constructed schedule consists of four pieces, which we call Y, Y2,

Y3, and Y4 . The instantiation sequence Y is some scheduling of the instantiations

in X 1, Y2 is some scheduling of the instantiations in aL U a2 U ... U an,, Y3 is some

scheduling of the instantiations in a' U P1 U ... U /n, and Y4 is some scheduling of

the instantiations in X 2. To construct Y, we first group the complete regions in Y'

using Lemma 29 to get Y3, and then define Y to be the schedule YY 2Y3Y4 . Since Y

is a (complete) scheduling of G, it is true by Lemma 30.

The true scheduling Y is almost the same as the deadlock scheduling X, except al

is not in the right place. We further subdivide a R into two pieces, aR = aal, where

a' is the maxmimum prefix of a R that contains no LOCKSUCCEED instantiations of

locks that are held but not released by the instantiations in a l , a2,... , an. (Such an

al must exist in aR by choice of a R , and furthermore a is contiguous in Y because

01 completes the region started at a', and both 31 and a' are part of Y3 .) We now

drop all instantiations after a' to make a partial scheduling. We then commute a'

to the beginning of Y3 , dropping instantiations as we go, to form the true scheduling

Y 1Y2a'. Two types of instantiations are in front of a'. Complete regions before

Ia are contiguous and can be dropped using Lemma 28. Unlock instantiations can

be dropped from in front of a' because they are unlocks of some lock acquired in

a , 2, ... , an, which do not appear in a' by construction. By dropping instantiations,

we arrive at the true scheduling Y 1Y2a4, which is a deadlock scheduling, as every

thread is blocked. This contradiction completes the proof. 0

169

Bibliography

[1] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture
(ISCA), pages 2-14, Seattle, Washington, May 1990.

[2] Mustaque Ahamad, Phillip W. Hutto, and Ranjit John. Implementing and
programming causal distributed shared memory. In Proceedings of the 11th
International Conference on Distributed Computing systems, pages 274-281,
Arlington, Texas, May 1991.

[3] Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus
heap cost for languages with closures. Journal of Functional Programming,
6(1):47-74, 1996.

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the Tenth Annual A CM
Symposium on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta,
Mexico, June 1998. To appear.

[5] Joshua E. Barnes. A hierarchical O(Nlog N) N-body code. Available on the
Internet from ftp: //hubble. ifa. hawaii. edu/pub/barnes/treecode/.

[6] Philippe Bekaert, Frank Suykens de Laet, and Philip Dutre. Renderpark,
1997. Available on the Internet from http://www.cs.kuleuven.ac./cwis/
research/graphics/RENDERPARK/.

[7] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. The control mech-
anism for the Myrias parallel computer system. Computer Architecture News,
16(4):21-30, September 1988.

[8] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway
distributed shared memory system. In Digest of Papers from the Thirty-Eighth
IEEE Computer Society International Conference (Spring COMPCON), pages
528-537, San Francisco, California, February 1993.

[9] Guy E. Blelloch. Programming parallel algorithms. Communications of the
ACM, 39(3), March 1996.

170

[10] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient
scheduling for languages with fine-grained parallelism. In Proceedings of the
Seventh Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 1-12, Santa Barbara, California, July 1995.

[11] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, September 1995.

[12] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,
and Keith H. Randall. Dag-consistent distributed shared memory. In Proceed-
ings of the 10th International Parallel Processing Symposium (IPPS), pages
132-141, Honolulu, Hawaii, April 1996.

[13] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,
and Keith H. Randall. An analysis of dag-consistent distributed shared-memory
algorithms. In Proceedings of the Eighth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 297-308, Padua, Italy, June 1996.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing, 37(1):55-69,
August 1996.

[15] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 207-216,
Santa Barbara, California, July 1995.

[16] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (FOCS), pages 356-368, Santa Fe, New Mex-
ico, November 1994.

[17] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard Barrett, and
Jack J. Dongarra. The matrix market: A web resource for test matrix col-
lections. In Ronald F. Boisvert, editor, Quality of Numerical Software, Assess-
ment and Enhancement, pages 125-137. Chapman & Hall, London, 1997. Web
address http: //math. nist. gov/MatrixMarket.

[18] G. A. Boughton. Arctic routing chip. In Proceedings of Hot Interconnects II,
August 1994.

[19] Richard P. Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM, 21(2):201-206, April 1974.

171

[20] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and
performance of Munin. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles (SOSP), pages 152-164, Pacific Grove, California,
October 1991.

[21] David Chaiken and Anant Agarwal. Software-extended coherent shared mem-
ory: Performance and cost. In Proceedings of the 21st Annual International
Symposium on Computer Architecture (ISCA), pages 314-324, Chicago, Illi-
nois, April 1994.

[22] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber system: Parallel programming on a network
of multiprocessors. In Proceedings of the Twelfth A CM Symposium on Operating
Systems Principles (SOSP), pages 147-158, Litchfield Park, Arizona, December
1989.

[23] Guang-len Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall,
and Andrew F. Stark. Detecting data races in Cilk programs that use locks. In
Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), Puerto Vallarta, Mexico, June 1998. To appear.

[24] Cilk-5.1 (Beta 1) Reference Manual. Available on the Internet from
http://theory.lcs.mit.edu/-cilk.

[25] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

[27] Daved E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel
programming in Split-C. In Supercomputing '93, pages 262-273, Portland, Ore-
gon, November 1993.

[28] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and
John Wawrzynek. Fine-grain parallelism with minimal hardware support: A
compiler-controlled threaded abstract machine. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 164-175, Santa Clara, California,
April 1991.

[29] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

[30] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring al-
gorithms for access anomaly detection. In Proceedings of the Second A CM SIG-
PLAN Symposium on Principles & Practice of Parallel Programming (PPoPP),
pages 1-10. ACM Press, 1990.

172

[31] Anne Dinning and Edith Schonberg. Detecting access anomalies in programs
with critical sections. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 85-96. ACM Press, May 1991.

[32] Anne Carolyn Dinning. Detecting Nondeterminism in Shared Memory Parallel
Programs. PhD thesis, Department of Computer Science, New York University,
July 1990.

[33] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering
in multiprocessors. In Proceedings of the 13th Annual International Symposium
on Computer Architecture, pages 434-442, June 1986.

[34] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchronization
analysis for debugging parallel programs. In Supercomputing '91, pages 580-588,
November 1991.

[35] Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. Soft-
FLASH: Analyzing the performance of clustered distributed shared memory. In
Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 210-220,
Cambridge, Massachusetts, October 1996.

[36] Marc Feeley. Polling efficiently on stock hardware. In Proceedings of the 1993
ACM SIGPLAN Conference on Functional Programming and Computer Archi-
tecture, pages 179-187, Copenhagen, Denmark, June 1993.

[37] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy
races in Cilk programs. In Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 1-11, Newport, Rhode
Island, June 1997.

[38] Yaacov Fenster. Detecting parallel access anomalies. Master's thesis, Hebrew
University, March 1998.

[39] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed
Filaments: Efficient fine-grain parallelism on a cluster of workstations. In Pro-
ceedings of the First Symposium on Operating Systems Design and Implemen-
tation, pages 201-213, Monterey, California, November 1994.

[40] Matteo Frigo. The weakest reasonable memory model. Master's thesis, Mas-
sachusetts Institute of Technology, 1997.

[41] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa-
tion of the Cilk-5 multithreaded language. In Proceedings of the 1998 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, June 1998. To appear.

173

[42] Matteo Frigo and Victor Luchangco. Computation-centric memory models. In
Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), Puerto Vallarta, Mexico, June 1998. To appear.

[43] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond the
memory coherence barrier. In Proceedings of the 24th International Conference
on Parallel Processing, Aconomowoc, Wisconsin, August 1995.

[44] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scal-
able shared-memory multiprocessors. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 15-26, Seattle,
Washington, June 1990.

[45] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum
flow problem. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, pages 136-146, Berkeley, California, 28-30 May 1986.

[46] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Implementing
a fast parallel call. Journal of Parallel and Distributed Computing, 37(1):5-20,
August 1996.

[47] James R. Goodman. Cache consistency and sequential consistency. Technical
Report 61, IEEE Scalable Coherent Interface (SCI) Working Group, March
1989.

[48] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416-429, March 1969.

[49] Dirk Grunwald. Heaps o' stacks: Time and space efficient threads without oper-
ating system support. Technical Report CU-CS-750-94, University of Colorado,
November 1994.

[50] Dirk Grunwald and Richard Neves. Whole-program optimization for time and
space efficient threads. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 50-59, Cambridge, Massachusetts, October 1996.

[51] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel pro-
gramming with continuation-passing threads. In Proceedings of the 2nd Inter-
national Workshop on Massive Parallelism: Hardware, Software, and Applica-
tions, Capri, Italy, September 1994.

[52] E. A. Hauck and B. A. Dent. Burroughs' B6500/B7500 stack mechanism. Pro-
ceedings of the AFIPS Spring Joint Computer Conference, pages 245-251, 1968.

[53] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Analyzing
traces with anonymous synchronization. In Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, pages 1170-1177, August 1990.

174

[54] John L. Hennessy and David A. Patterson. Computer Architecture: a Quanti-
tative Approach. Morgan Kaufmann, San Mateo, CA, 1990.

[55] John L. Hennessy and David A. Patterson. Computer Architecture: a Quanti-
tative Approach. Morgan Kaufmann, San Francisco, CA, second edition, 1996.

[56] James C. Hoe. StarT-X: A one-man-year exercise in network interface engineer-
ing. In Proceedings of Hot Interconnects VI, August 1998.

[57] Richard C. Holt. Some deadlock properties of computer systems. Computing
Surveys, 4(3):179-196, September 1972.

[58] Christopher F. Joerg. The Cilk System for Parallel Multithreaded Computing.
PhD thesis, Department of Electrical Engineering and Computer Science, Mass-
achusetts Institute of Technology, January 1996.

[59] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
performance all-software distributed shared memory. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles (SOSP), pages 213-
228, Copper Mountain Resort, Colorado, December 1995.

[60] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-
memory machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science-Volume A: Algorithms and Complexity, chapter 17, pages 869-941.
MIT Press, Cambridge, Massachusetts, 1990.

[61] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and operating
systems. In USENIX Winter 1994 Conference Proceedings, pages 115-132, San
Francisco, California, January 1994.

[62] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford
Flash multiprocessor. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture (ISCA), pages 302-313, Chicago, Illinois, April
1994.

[63] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690-691,
September 1979.

[64] James R. Larus, Brad Richards, and Guhan Viswanathan. LCM: Memory sys-
tem support for parallel language implementation. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 208-218, San Jose, California, Octo-
ber 1994.

175

[65] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays - Trees - Hypercubes. Morgan Kaufmann Publishers, San Mateo, Cali-
fornia, 1992.

[66] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,
Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and
Robert Zak. The network architecture of the Connection Machine CM-5. In
Proceedings of the Fourth Annual A CM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 272-285, San Diego, California, June 1992.

[67] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

[68] Phillip Lisiecki and Alberto Medina. Personal communication.

[69] Victor Luchangco. Precedence-based memory models. In Eleventh International
Workshop on Distributed Algorithms (WDAG97), number 1320 in Lecture Notes
in Computer Science, pages 215-229. Springer-Verlag, September 1997.

[70] Piyush Mehrotra and John Van Rosendale. The BLAZE language: A parallel
language for scientific programming. Parallel Computing, 5:339-361, 1987.

[71] John Mellor-Crummey. On-the-fly detection of data races for programs with
nested fork-join parallelism. In Proceedings of Supercomputing'91, pages 24-33.
IEEE Computer Society Press, 1991.

[72] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging
of parallel programs. In Proceedings of the 1988 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 135-144,
Atlanta, Georgia, June 1988.

[73] James S. Miller and Guillermo J. Rozas. Garbage collection is fast, but a stack
is faster. Technical Report Memo 1462, MIT Artificial Intelligence Laboratory,
Cambridge, MA, 1994.

[74] Robert C. Miller. A type-checking preprocessor for Cilk 2, a multithreaded C
language. Master's thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, May 1995.

[75] Sang Lyul Min and Jong-Deok Choi. An efficient cache-based access anomaly
detection scheme. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), pages 235-244, Palo Alto, California, April 1991.

[76] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A
technique for increasing the granularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3):264-280, July 1991.

176

[77] Joel Moses. The function of FUNCTION in LISP or why the FUNARG problem
should be called the envronment problem. Technical Report memo AI-199, MIT
Artificial Intelligence Laboratory, June 1970.

[78] Greg Nelson, K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Ex-
tended static checking home page, 1996. Available on the Internet from
http://www.research.digital.com/SRC/esc/Esc.html.

[79] Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition detection for
shared-memory programs with post/wait synchronization. In Proceedings of
the 1992 International Conference on Parallel Processing, St. Charles, Illinois,
August 1992.

[80] Robert H. B. Netzer and Barton P. Miller. On the complexity of event ordering
for shared-memory parallel program executions. In Proceedings of the 1990
International Conference on Parallel Processing, pages II: 93-97, August 1990.

[81] Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM
Letters on Programming Languages and Systems, 1(1):74-88, March 1992.

[82] Rishiyur Sivaswami Nikhil. Parallel Symbolic Computing in Cid. In Proc. Wk-
shp. on Parallel Symbolic Computing, Beaune, France, Springer-Verlag LNCS
1068, pages 217-242, October 1995.

[83] Itzhak Nudler and Larry Rudolph. Tools for the efficient development of efficient
parallel programs. In Proceedings of the First Israeli Conference on Computer
Systems Engineering, May 1986.

[84] Dejan Perkovid and Peter Keleher. Online data-race detection via coherency
guarantees. In Proceedings of the Second USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), Seattle, Washington, October 1996.

[85] Keith H. Randall. Solving Rubik's cube. In Proceedings of the 1998 MIT Stu-
dent Workshop on High-Performance Computing in Science and Engineering,
January 1998.

[86] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Ty-
phoon: User-level shared memory. In Proceedings of the 21st Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 325-336, Chicago,
Illinois, April 1994.

[87] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: A new anal-
ysis framework for parallelizing compilers. In Proceedings of the 1996 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 54-67, Philadelphia, Pennsylvania, May 1996.

[88] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level
machine-independent language for parallel programming. Computer, 26(6):28-
38, June 1993.

177

[89] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro, and Thomas
Anderson. Eraser: A dynamic race detector for multi-threaded programs. In
Proceedings of the Sixteenth A CM Symposium on Operating Systems Principles
(SOSP), October 1997.

[90] Daniel J. Scales and Monica S. Lam. The design and evaluation of a shared
object system for distributed memory machines. In Proceedings of the First
Symposium on Operating Systems Design and Implementation, pages 101-114,
Monterey, California, November 1994.

[91] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A. Wood. Fine-grain access control for distributed
shared memory. In Proceedings of the Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 297-306, San Jose, California, October 1994.

[92] Jaswinder Pal Singh. Personal communication.

[93] David Singmaster. Notes on Rubik's Magic Cube. Enslow Publishers, Hillside,
New Jersey, 1980.

[94] Per Stenstr6m. VLSI support for a cactus stack oriented memory organization.
Proceedings of the Twenty-First Annual Hawaii International Conference on
System Sciences, volume 1, pages 211-220, January 1988.

[95] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas
Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. Cashmere-2L:
Software coherent shared memory on a clustered remote-write network. In
Proceedings of the Sixteenth A CM Symposium on Operating Systems Principles
(SOSP), Saint-Malo, France, October 1997.

[96] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14(3):354-356, 1969.

[97] Andrew S. Tanenbaum, Henri E. Bal, and M. Frans Kaashoek. Programming
a distributed system using shared objects. In Proceedings of the Second Inter-
national Symposium on High Performance Distributed Computing, pages 5-12,
Spokane, Washington, July 1993.

[98] Robert Endre Tarjan. Applications of path compression on balanced trees.
Journal of the Association for Computing Machinery, 26(4):690-715, October
1979.

[99] Leslie G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111, August 1990.

[100] David S. Wise. Representing matrices as quadtrees for parallel processors.
Information Processing Letters, 20(4):195-199, July 1985.

178

[101] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: Characterization and methodological
considerations. In Proceedings of the 22nd International Symposium on Com-
puter Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

[102] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software
write detection for a distributed shared memory. In Proceedings of the First
Symposium on Operating Systems Design and Implementation, pages 87-100,
Monterey, California, November 1994.

179

