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Abstract

An experiment is presented in which an attempt is made to arrive at a

mathematical description of physical signals that embodies, more realistic-

ally than the usual functional representation, our limitations in performing

measurements. The object is to achieve a closer relation between the struc-

ture of the mathematical description and the finite-resolution properties of

the detector that characterizes any real measurement process.

An algebra of signals is obtained, appropriate to the model in which essen-

tially frequency-limited signals interact with linear, time-invariant systems,

and observations are made by means of a linear, finite-resolution oscilloscope.

The properties of this algebra are studied, and a metric that indicates which

operators give physically indistinguishable outputs is defined. The algebra

is used to study problems in uniform and nonuniform sampling, the discrim-

ination of two events from one in noisy, radar-like systems, and the condi-

tions under which a signal is indistinguishable from its short-time average.

A general procedure for linear, least-peak-error prediction is obtained.

In the limit as the detector resolution becomes perfect, the present model is

shown to tend smoothly to the usual functional model.
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CHAPTER I

INTRODUCTION

1,1 THE PROBLEM.

In studying a communications problem or the interaction of

a signal with a system analytically, the usual approach is to start

by representing signals as functions, make what appear to be intui-

tively reasonable assumptions about the analytic properties of these

functions, and proceed from there. We do this so often and so

naturally that we tend to forget that there is nothing self-evident

about thinking of signals as functions, and even less about what, in

effect, we actually do, which is to identify signals and functions.

While it is true that any process occurring in time can be

thought of as defining, in some way, a function of time, this function

must forever remain unknown to us, because when we observe the

process through instruments, and, ultimately, our own senses - and

thlese are the only ways that we can ever be aware of the process -

what we perceive is, of course, not the process itself, but the process-

as-seen-through-our-instruments. If the instruments were ideal,

there would be no difference. But our instruments are not ideal: they

have finite resolution, finite noise, finite inertia, and so forth. And

the final display, which might take the form of an oscillographic

recording or a pencilled graph, is a finite collection of dots of finite

size observed by the imperfect mechanism of the human eye.
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The relation between the functions that we talk about on

paper and the physical phenomena observed in the laboratory is

a somewhat arbitrary one. If it simplifies our work, we can, if

we want to, study functions instead of signals, and say that we shall

think of functions as models of the physical phenomena. But there

is nothing inevitable about this choice. It is completely arbitrary,

there exist no theoretical justifications for it, and the only criteria

for doing it that we can appeal to are: it is simple; it works. All

this is obvious and well-known, and therefore sometimes forgotten.

The functional modelling of signals is so successful so often that it

is sometimes overlooked that it is just a model And far from being

an obvious model, it is, if one thinks about it, if anything rather

surprising that the functional model is so successful, because in

many ways there is very little resemblance between a signal and a

function.

Let us discuss this a bit further. We shall, here and in the

remainder of this paper, restrict the use of the word "signal" to the

thing that actually exists in the laboratory, voltages on wires, cur-

rents issuing from plugs, and so forth. If we wish to study a signal,

we must do it through instruments (real ones, with real limitations),

and ultimately through our senses. Let us now imagine that we are

going to study a signal, the object of this brief study being the com-

parison of the properties of a signal with those of a mathematical

function. Some of the most fundamental properties of functions are

their analytical properties. Let us start our study with them.
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In mathematics, when we say that a function f(t) is contin-

uous at the point to, we mean that, given any positive number E,

r however small, there exists a positive number 6 with the property

that If(to) - f(t) I < E whenever Ito - t I < 6. The function is contin-

uous on an interval if it is continuous at every point of that interval.

What do we mean when we ask whether or not a signal is

continuous ? If we think of signals as identified with functions, then

presumably we mean that the same test should be applied to signals,

and, of course, we must do this through our instruments. We run

into difficulties immediately: first of all, it is impossible to make

measurements at every point of an interval of time, as the definition

requires; next, even if we limit our question to asking about contin-

uity at a point, it is usually impossible to identify one specific time

to exactly. But even ignoring these problems, it is clear that we

cannot implement the definition because, sooner or later, we shall

reach a value of E or 6 that will be below our limit of resolution.

Since the definition requires specifically that we perform the test

for every value of however small (otherwise, how can we be sure

that the function does not have discontinuities of magnitude smaller

than our limit of resolution ?), we see that we cannot verify the con-

tinuity of a signal.

Clearly, the same thing would happen if we considered dif-

ferentiability, or, more generally, if we considered any property

whose definition depends on a limit process. Questions about such

properties all have in common the fact that, because of our and our
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instruments' limitations, they are operationally meaningless (see,

e.g., Bridgeman (1)). That is, we cannot prescribe a set of ex-

periments that will decide them.

Let us try a different tack. A mathematical function is

defined (see, e.g., Hobson (2)) as follows:

If, to each point of the domain of the independent
variable x, there be made to correspond in any
manner a definite number, such that all such
numbers form a new aggregate which can be re-
garded as the domain... of a new variable y,
this variable y is said to be a (single-valued)
function of x. ... the conception of the functional
reai'6on contains nothing more than the notion of
determinate correspondence

Now, is a signal a function? As seen through our instruments and

senses, clearly, no, because we cannot establish the required deter-

minate correspondence if we cannot isolate instants in time and if,

for example, our voltage-measuring devices have finite resolution

(say, a meter needle of finite width).

The point of this perhaps unnecessarily long discussion was

to show that there is nothing inevitable about thinking of signals as

functions. The functional representation is just one possible model,

and in some ways not a very close one at that. Thus refreshed, we

can proceed to consider other possibilities.

What is a signal? Obviously, there is no general answer

to this. If we persevere in our operational viewpoint, a signal is

completely unknown to us until we observe it, and what it is when

we observe it depends very much on what we observe it with. How

should we construct a model to talk about signals ? Again, there is

no general answer, but it is possible that something in the way of
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simplicity or efficiency might be gained from making the model

resemble the signal as we observe it. (For example, the most

economical model of a signal-as-observed-on-a-linear-oscilloscope

is probably different from that of a signal-as-observed-on-a-zero-

crossing-detector.) From this point of view, the functional model

is the model of signals-as-observed-on-infinite-resolution-ideal-

instruments.

The functional model serves us well, but we know that in

most of our work our equipment has finite resolution. The model

should therefore be of signals-as-observed-with-finite-resolution.

Can such models be constructed? And can greater simplicity result

from using such a model? There is no unqualified answer to this

question, because the simplicity of a model depends to a great ex-

tent on the available analytical technique. As it happens, the most

extensively developed one is the calculus, which is the technique

appropriate to the functional model. (It is largely to this some-

what fortuitous circumstance that the functional model owes its

success, rather than to any intrinsic appropriateness of the func-

tional representation of signals.) But there are other branches of

mathematics that are fairly well developed, enough perhaps to be

able to work with them with reasonable ease. Perhaps one could

be found that will allow us to construct, and work easily with, a

model of signals-as-observed-with-finite-resolution. It is clear

that there are always two elements that must somehow be combined:

properties desirable on physical grounds, and mathematical possi-

bilities.
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Attempting to construct such a model is, perhaps, a

somewhat academic project, but it seems to be an experiment

worth trying (once, at any rate) because, after all, in most phys-

ical situations we are limited to observation with finite resolution.

1.2 THE THESIS.

This dissertation is a report on just such an experiment.

We construct a model of signals, and study their interactions with

linear, time-invariant systems, under the supposition that the ulti-

mate observation instrument is a linear oscilloscope with finite

trace width. We do not, in this model, attempt to include all pos-

sible signals - only those which, like phonograph music or FCC-

controlled broadcast signals, suggest the idea of band-limitation or,

more generally, of frequency-limitation. As described in Section

2. 1, the model of a signal is taken to be a class of functions rather

than a single function. It then follows, as is shown in Sections 2. 2

and 2. 3, that the linear systems with which the signals interact can

be represented as elements of a unitary linear vector space, on which

is also defined a commutative multiplication. This gives us an alge-

bra whose properties are then studied, with examples, for the

remainder of Chapter 2.

In the limit, as the resolution of our oscilloscope becomes

better and better, our results should approach smoothly those

of the functional model. This is shown to be the case in

Chapter 3, where we also present various examples of the
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application of our model to the study of signals and other

questions. Among these results is the derivation of a min-

imal requirement for the discrimination of individual events

in noisy radar-like systems; and the derivation of the opti-

mum (in the sense of least peak error) predicting filter. The

latter is a special case of the derivation of the procedure for least-

peak-error interpolation and extrapolation.

The derivation of this optimum filter gives us at least one

example of a problem that can be solved (quite easily, too) with

our model, and that cannot (or, at least, apparently never has been)

solved with the functional model, because here is one case where

the usually compliant calculus becomes intractable. And since there

is a smooth transition from our model to the functional one, the

solution within our model suggests the solution within the functional

one. This hints at (but no more than hints, since one single exam-

ple is hardly a compelling argument in favor of anything) an addi-

tional benefit to be derived from this model, or, more generally,

to be derived from having available a multiplicity of models that

are consistent in some appropriate limit. This benefit, of course,

is the availability of alternative lines of attack on problems.

This dissertation does not by any means exhaust the results

and applications inherent in even this model, let alone those in

the many useful variants of this model that are mentioned here or

that will suggest themselves to the reader. But it does perhaps

give a hint of the possibilities for the construction of useful, simple

models that are designed purposely to be cogent, economical
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representations of physical situations. It is our thesis that per-

haps modelmaking, considered as a problem in its own right, can

lead to simpler and therefore more successful analyses of some

of our unsolved problems.

1.3 HISTORICAL SKETCH.

This problem has virtually no history, at least not in

the technical literature. Its philosophical basis, extensive both

in time and quantity, is splendidly presented by such authors as,

for example, Mach (3), Born (4), Bridgeman (2), and, more re-

cently, Brillouin (5), (6). The starting point for this work was a

paper by Cerrillo (7), which first suggested to the author the

tangible benefits potentially derivable from the explicit inclusion

of a finite error in the formulation of a problem. The physical

sources of finite resolution are discussed in Gabor (8), but he

does not study the modelling problem further. A very large amount

of work has of course been done on approximate techniques for the

study of signal/system interaction and the synthesis of systems,

but these are not models, they are just computational aids. An

exhaustive bibliography of these papers (up to 1954) is given in

Winkler (9). More pertinent to the present work is a group of

papers on signal theory (31) in which some of these general questions

are discussed. Recently, some of the ideas in this thesis were

applied by Jacobs (10).
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CHAPTER II

AN ALGEBRA OF SIGNALS

In this chapter we present and develop a formalism for the

analysis of signals and their interactions with linear systems specifi-

cally suited to the case when the signals are viewed with a linear,

finite-resolution measurement device. For simplicity and brevity,

the presentation will be axiomatic rather than heuristic. Examples

illustrating the physical significance of the mathematical concepts will

be interspersed at appropriate points in the discussion.

2. 1 INITIAL ASSUMPTIONS: THE MEASUREMENT PROCESS

The thought experiment appropriate to the analysis is the

following:

We consider two linear, time-invariant networks, excited

from a common source, and observe the outputs on an oscilloscope,

as in Fig. 2. 1.1.

Fig. 2.1. 1.

The measurement process.

Concerning the experiment, we make the following three assumptions:
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1. The oscilloscope is linear, with a trace of finite length

and width.

2. The probe (i. e., the excitation) is any member of the class

S of functions that are L2 solutions of the equation

f(t) = 2- d (2. 1. 1)

where is any real, L 2 function with an idempotent

spectrum.

The probe functions f(t) are thought of as representative of bandlimited

or, more generally, frequency-limited signals such as, for example,

phonograph or broadcast music. This does not mean, for example,

that we think of some specific f (t) Sas being a particular per-

formance of Beethoven's Ninth Symphony, since this would be logically

and semantically absurd. It does not even mean that we suppose that

any sort of correspondence can be established between individual mem-

bers of the set of performed symphonies and individual members of

a set St. All that it means is that we shall further assume that

3. A network or experiment that is simultaneously successful

with all the functions in any one S class will also be

successful with, say, phonograph music represented by

that class.

The spectrum' (0) of (t) is idempotent if it assumes only the values

O or 1, so that it is a solution of the equation0 ('w) = Lp(,)jn for any

positive integer n. In particular, this implies thati (ai) is real. Since

the + (t) we are interested in are also real, the corresponding (at) are

even, and therefore so are the+ (t) also. Examples of acceptable

spectra are shown in Fig. 2. 1. 2, at the end of this section.
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The last assumption states the possibility of supposing a

relationship to exist between ensembles of functions (the classes SS)

and sets of physical signals (e. g., phonograph music) without making

any definite claims about the possibility of representing a specific

signal by a specific function. Accordingly, it specifies that any mathe-

matical result, to be physically useful or even interpretable, must be

established for a whole ensemble Si of functions rather than for just

one member function. This assumption seems to be intuitively reason-

able and in accord with the point of view of modern communication

theory.

Besides establishing the ground rules for the game, the function

of the third assumption is to provide a bridge between the mathematical

model to be developed here and a useful set of physical situations. As

usual, there exists no paper method for establishing such a relationship.

The very desire to attempt to do so is logically meaningless, since it

corresponds to trying to prove propositions concerning the equivalence

or correspondence of pairs of objects of which half are mathematical

and the other half physical. Such a bridge between model and physical

situation can, apparently, only be intuitive, and is subject to partial

confirmation or complete rejection by experiment.

I eia n +n-nJ ni

Fig. 2.1.2.

Acceptable spectra.
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2.2 SINGULAR NETWORKS AND THEIR ELEMENTARY PROPERTIES

A time-invariant linear network whose impulse response con-

sists of a finite number of impulses of finite area distributed over a

finite time interval shall be called a singular network. The impulse

response of a typical singular network might be

N
h(t) = Z an J(t - tn) (2. 2. 1)

n= 1

Such a network shall be represented by the operator

N -t
= . aE n (2. 2. 2)

n= 1 n

-t
where the shift operator E n is defined by

-t
E nf(t) = f(t - t) (2. 2. 3)

so that, if f(t) is applied to a network characterized by-A, the output

will be

N
fo(t) =12f(t) Z anf(t- tn) (2.2.4)

n= 1

It is clear that the same input f(t), when convolved with the impulse

response of (2. 2. 1), results in the same output fo(t), so that the repre-

sentations (2. 2. 1) and (2. 2. 2) are indeed equivalent.

Clearly, many other representations are possible, and some

(2 -transforms, time-series) are extensively discussed in the literature

(for references, see e.g., (18), (19), (20), (20)). The numerical

methods are rather rigid and cumbersome and therefore somewhat

sterile except for actual computation. The transform approaches are
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rather sophisticated and therefore tend to cloud the issues without

any compensating advantages. Formally, of course, they are no dif-

ferent from the operators used here. We shall employ the operator

representation (2. 2. 2); it is simple, direct, and, as later developments

will show, very suggestive.

We consider now the interaction of probe functions and singular

networks. From (2. 1.1), a probe function is any L 2 solution of the

equation
oo

f(t) = 2 / f() 4 (t -) dr (2. 5)

where "i, which is descriptive of the particular class of signals under

consideration, is considered fixed in any one discussion. If the probe

function f(t) is used as input to a network L, the output can be repre-

sented by
oo0

n n 

= f(Z) 2 n4(t - t - dt) d / f(r) [>(t - d 
T n -

(2.2.6)

Since, in (2. 2. 5), the change of variable u = t - : is legitimate, and yields

f(t) = 2 f(t - u)5(u) du

the reasoning leading to (2. 2. 6) would produce, in this case,

fo(t) =2f(t) 2r L2 a f(t-t -U')1(u) du= 2 a [J f(t-u (u) du
n 2.7)

(2. . 7)

13



If now./Z is time invariant, so that the an are constants, we can

change back to t = u + , obtaining

oQ

fo(t) = f(t) 2= / f[2f(r)1(t -t)dr (2.2.8)

Eq. (2. 2. 8) expresses the fact that if f(t) is a solution of (2. 2. 5) and

-2 is time-invariant, then the output f(t) is also a solution of (2. 2. 5).

This establishes the obvious result that, for time-invariant networks,

A. f(t) is a probe function if f(t) is one, and that both belong to the same

class S4. It is therefore meaningful to define a succession of opera-

tions and therefore, as will be done later, a multiplication for the J2's.

The conclusion about class preservation is not true when the coefficients

a in (2. 2. 7) are functions of time. It is for this reason that time-n

varying systems will not be considered here.

Before continuing, it will be convenient to present some

elementary identities which, while somewhat dull in themselves, will

be useful later on.

Let the symbol 12 denote the operator obtained from

N -t
= an E n (2. 2. 9)

n= 1

by replacing tn, in the exponent of the shift operator, with +t n . That is,

if J- is given by (2. 2. 9), then-2* is defined by

N +t
a .= Za E n (2. 2. 10)

n= 1

so that 2 is just . folded over in time. Clearly, (.a)* =2. (There

is an obvious analogy between the star operation and complex conjugation,
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the reason being the parallelism between operator notation and the

Fourier transform of the impulse response represented by the opera-

tor.) In terms of this notation we have

1. j f(t)[2'(t)J dt= / r[2f(t) t) dt (. 2.11)

Proof: Starting from the left side,

Jf(t)[_ft)] dt= If(t) ani(t -tn) dt = an/ f(t)4(t- tn) dt
n n

In the n t h term of the sum, the change of variable u = t - tn then yields

= n If(u+ tn) 4(u) du / an f(u + tn) (u)du

= J/l.'[f(t) ]i(t) dt

Before presenting the next identity, we must first specify how to

interpret the successive application of operators. If- 1 - a n E n
-t n

and2 2 = PM E m, then
m

,2 fa, f(t)] 2 [ an f(t - tn)] = L nJ2 f(t - tn)
n n

n , a ( tn) an PM f( m n
n m n m

;L , aP E n mf(t) (2. 2. 12)
n m

m L an f(t tn tm) Z Pm21 f(t- tm)

2 1 m f(t - tm) = 2 l2 f(t) (2.2. 13)
m
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These results show that

-2 2 k 1 f(t)] = (2 2R2l) f(t) = ( 1j22 ) f(t) = 12 f(t)]

so that the successive application of two operators can be considered

as a "product" of the operators, with multiplication defined as for

polynomials (Cauchy product) as shown in (2. 2. 12).

We now obtain

2. J [i21 f(t)][J2.2
4 (t)J dt = 2JZ1 f(O) (2. 2. 14)

Proof: From (2. 2. 8) we have

00

1 f(t)= 2 1 f(r)]4(t-r) d

and from (2.2.6)

O0

'42 [J21 f(t)] = 2r [1A f(r )JL' 2 r(t -r)j dr

At t = 0,

0@

-2'4 f(0) d= IP1 f(t|[r2aI( -r)3

In the second factor of the integrand, because of the evenness of 6(r),

-a24(-r) z an/ (-tm -r) Z an4(tn + Z) 2 - 2( =)
n n

Making this substitution establishes (2. 2. 14).

00

3. ] [lf(t)J dt = *J2 Rf(O) (2. 2. 15)

where Rf(r) is the autocorrelation function of f(t) defined by

00

Rf(r) / f(t) f(t +) dt
0
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The proof is obtained by straightforward substitution, in (2. 2. 15),

of 2 expressed in terms of shifts.

4. (t] 2dt = 2r S(O)

Proof: This result is obtained from (2. 2. 14) by setting f(t) = 4(t) and

'1 = 2 = J2, or from (2. 2. 15) by noting that, because of the idem-

potence of the spectrum of 4(t),

R; (r) = 21 (r)

(2.2. 16)

(2.2. 17)

whence (2. 2. 16) follows directly.

Before closing this section, we notice that, with the operators A

and the probe functions as defined, it is possible to place an upper bound

on the output of any network when the input is a probe function. In

fact, if the input to 2 is

f(t) = -2 f(r)4(t -) d

then, as usual, the output is

-a f(t):=2 1=
and use of the Schwartz inequality in this last integral yields

1- f(t) at f2 d . 1(24)2 d f2r ( 

where the last relation follows from (2. 2. 16). Furthermore, the

bound (2. 2. 18) is the best obtainable, since if

f(t) = J2#4(t)

then equality is actually reached, and

) (2. 2. 18)

(2. 2. 19)
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f (-C) [A 4 (t - )] d 'r



Ia f(t) Imax = l'25(t4)aL = x' -J2(0) (2. 2. 20)

The reason for our interest in bounding the output fromJ2 is

that in performing the thought experiment of section 2. 1 we must

use an oscilloscope whose trace length is finite, which implies that

we must be able to guarantee a priori that the signal applied to the

oscilloscope never exceeds some preassigned maximum amplitude. It

is precisely because of the possibility of arriving at a relation like

(2. 2. 18) that we chose as probes function-classes that can be given an

integral characterization like (2. 2. 1). An important feature of this

way of characterizing probe functions is that the input f(t) appears on

both sides of the equation, which permits the bound (as in (2. 2. 18)) to

be expressed in terms of a product of two numbers, of which one is

characteristic of the input alone (in our case essentially the square

root of the input energy) and the other is characteristic of the system

alone. This form of expression will be very useful in succeeding

sections.

2.3 PROBE FUNCTIONS AND OPERATORS AS ELEMENTS OF

VECTOR SPACES

In this section we shall study the operators .2 as elements of

a vector space. While this formalization does not add any new content

to our work, it will clarify and streamline it because it will allow us

to apply our geometric intuition to the study of the problem.

First, and more for the sake of orderliness than for its intrinsic

interest, we notice that the set S4 of probe function, together with

addition and multiplication by a (real) scalar as usually defined for
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functions, constitute a linear vector space. (For the axioms of a

linear vector space, see, for example, Halmos (11), von Neumann (12),

Kolmogorov and Fomin (13).) This vector space, which we shall

denote with the same symbol S4 as we use for the underlying set of

functions, is the domain on which our operators . are defined, and

herein lies its main interest.

For our purposes, the only interesting feature of the space S*

is that it is possible to define on it a norm (i. e., a distance function,

a metric). That is, with every vector f E S4 , we can associate a number

Iif II, given by

i f i 1 f (t (2. 3. 1)

with the properties (axioms of the norm):

a) I f > 0, and Il fl = 0 if and only if f = 0

b) Iafifl = la l ff0 (2. 3. 2)

c) U f+g gfll + Igll

Proof: Property (a) follows immediately from the non-negativeness of

the integrand in (2. 3. 1). (Actually, this only establishes that IIl f = 0

if and only if f = 0 almost everywhere; however, it will be shown

later that, for any4, every f E S is continuous (in fact, analytic

entire) so that f = 0 almost everywhere implies f = 0.) Property (b)

also follows by inspection from (2. 3. 1). To establish (c), notice that

1f+glI 2 = 1 1 (f+g)2 = 1 ff2 + 2 Jgfg2 f l+ g f + 2 /fg

But, by the Schwartz inequality,

2r I jg (2) (1 g2) lf I. ug1
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Therefore I f + gl 1f 1 g2 + g 2 + U f 11 g =: [I f + gUj2

and taking square roots of both sides establishes the desired result.

Now consider the set of all finite linear combinations of shift
N t

operators, i. e., the set of objects .2 of the form = 2 an E n
n= 1

(where tn is any real number). It is clear from their definition that

the are a set of linear operators on the space S4 and that, because

of the class-conservation property (2. 2. 8), f S 4 implies (f) S.

If, in the usual way we define addition ( 1 + 2) by

(l2 + 22 )f = 21
f +2 2 f (f S)

and multiplication by a (real) scalar (al) by

(aa)f = a(nf) (f S*)

corresponding to the physical situations shown in Fig. 2. 3. 1, then we

obtain the usual result that the set of operators-q, together with the

operations just defined, also constitute a vector space. This space,

which is the principal object of study, will be denoted by O.

u I II

A} 

Q b c

Fig. 2.3.1

Illustrating a) vector addition, b) multiplication of a

vector 1 by a real scalar a, and c) multiplication of

two operators (or vector product).
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The reader will notice that the-2, as defined, have a dual

nature, being operators on the space S and vectors in the space O.

This is convenient when we come to make analogies between our

mathematical definitions and physical operations. The linear operations

represented by Fig. 2. 3. la and b are "natural" operations in a linear

vector space; on the other hand, there is no abstract concept of

vector product, and this would leave us at a loss in attempting to obtain

the mathematical equivalent of the cascading operation shown in

Fig. 2. 3. c. Here it is "natural" to think of the .2 as operators

because, while the sort of operation required to represent cascading

is not natural within the structure of a linear vector space, it is a

natural way of combining operators. For operators, "multiplication"

corresponds simply to "successive application," and that is precisely

what we mean by cascading.

In symbols, we define the product of 1 and 22 by

(J2 1 ) f = n 2 ( 1 f) (f S)

As was shown in sect. 2. 2 (Eqs. 2. 2. 12, 2. 2. 13), when the a are

represented as combinations of shifts, the product is formally the

same as that for polynomials. It is also easy to verify that a product

of 2's corresponds to a convolution of the corresponding impulse

responses. Notice, incidentally, that for time-invariant 2's (the

only kind that we shall consider in this paper) the product is com-

mutative.

2.4 THE NORM OF O

The most interesting thing about the space O is that it is possible
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to define on it a metric that is quite meaningful physically. We shall

first simply define it and then show, by studying its properties and

by an example in the next section, what its physical meaning is.

With every vector 2 d O0 we associate a number 11? Ra defined

by

)/ 4 (t)J2 dt = (2. 4. 1)

J (0) 4(0)

This number [AI .U is the norm of . (Note that the subscript in

11 ... serves as a reminder of which probe ensemble is being

studied, and hence which function 4 appears in the definition of the

norm. The numerical values, though not the properties, of the norm

are different for different functions. However, since is usually

fixed in any one discussion, or else is arbitrary, the subscript will

usually be omitted, and only be inserted when there is room for

confusion.) To see that the name "norm" is deserved, we must show

that RA t 1 satisfies the following requirements:

a) I.-J >, 0, and -a .D = 0 if and only if- = 0

b) I laa.I11 = Ila 1 · 11

c) 11 +az214 < l 1l14 + 11 2114

Proof: If we note that. (t) is just a function contained in So, we can

immediately use the results (2. 3. 2) to establish (b), (c) and the first

part of (a). To see that I.Al11 = 0 if and only if -a = O, we must prove

that the functions form a linearly independent set with respect to

translations; that is, that for arbitrary distinct t, ., tn there exists

no set of coefficients al, ..., an with values other than zero, and with
n

the property that . aQit(t - ti) 0. This result is obtained in Appendix Al.
i= 1
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The denominator in (2.4. 1) was chosen so that 11 E11 = 1 1 11 = 1.

Two features of this definition of the operator norm are

interesting. First we shall present a result that justifies the use of

this norm on the grounds of its physical meaningfulness, and then

show that the norm induces a useful inner product.

We notice first that, in the notation of the present section, the

inequality (2. 2. 18) becomes

IJ f(t)l 1If II -I-111,i = f I1 · all, 111 (2.4.2)

If we consider all probes f S whose norm is one (i. e., all probes

of the form (t) or, what is the same thing, all points on the unit

sphere of S) then we see that for all such inputs, the cutput of the

network, -a f(t), is small whenever Il.ll ,4 is small.

A sufficiently strong converse is also true: whenever the output

l f(t) is small for all inputs on the unit sphere, then I.l.,l is also

small. This results from the fact that (2.4. 2) was originally obtained

by means of the Schwartz inequality, so that there always exists one

specific function f for which (2. 4. 2) becomes an equality for at least

one value of t. It has already been shown (2. 2. 19) that this function -

clearly the one that gives the tallest output - turns out to be f(t) = 2*(t).

Therefore, if the output If(t) I < d for all non-zero inputs f · S',

then, in particular, for the maximal input .(A.2)) < for all

values of t. Therefore, at t= 0,

4l il*nl I = S. ~ I~ea2 1 lnll c

If now 2 is the difference between two specified operators 121

andt22, .2 = l2 - J, then the discussion indicates that (a) if the distance
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J2ll - 22 II is small, then the difference in the outputs, I - 1 f(t) -22 f(t) =

I(1l -'A 2 )f(t) l , will also be small for all acceptable inputs; and (b) that

if the difference in outputs is small for all acceptable inputs, then the

distance -1 - 2 || is small. Notice that the impulse responses corre-

sponding to 1 and 2 can, at the same time, be wildly different.

Since the quantity 121 f(t) - A 2 f(t) is precisely what is meas-

ured by the oscilloscope in our thought experiment, the above result

establishes a two-way correspondence between CRO-measurable dif-

ferences and spheres in O-space. That is, if a difference is too small

to be measured on an oscilloscope with resolution ( trace-width/trace-

length) 6, the corresponding operators must be contained in a sphere

in space of radius less than , and conversely. This result will

become clearer when it is applied to a specific experiment in the next

section; for the moment, we proceed to the study of another useful

property of the norm, which is that it induces an inner product, or dot

product.

The abstract idea of inner product (in our case real) is given in

the following definition: The inner product is a real number j21 ,nIzI

associated with each pair of elements 2 1 and 2 of such that:

a) [A 1 ,A 2]= &12'2 21,

b) 1[i2 1Al] > 0 if AJ2 1 (2.4.3)

c) [a2l,i 2 ] = a[12l,12] (where a is a real number)

d) [J 1 + 2' "3] = - 1 , 2,J+[ 122,n13]1

As is shown in von Neumann (12), Theorem 12. 10, the necessary and

sufficient condition that an inner product EJ21,12] may be defined in

such a way thatJ[4.lq 1 j 1= l ll is
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1 +122112 + 11 2 2= 2(l 11 2 + a 2 2) (2.4.4)

Furthermore, the appropriate inner product is unique.

/2 , (0)
Straightforward substitution of 14 I = - > (0) immediately

establishes that the identity (2. 4. 4) is satisfied by our norm. This

is the existence theorem. The inner product induced by a norm can

be constructed from the norm, but it is easier simply to guess at it,

the uniqueness of the correct answer being a sufficient guide in choosing

the right guess. We therefore define

A L-'w1~' l((t) dt= 2 (2.4.5)

the second equality following from the identity (2. 2. 14) when f(t) is

replaced by 4(t). It is immediately verified that the definition (2.4. 5)

has all the properties (2. 4. 3), the truth of (b) having already been

verified in connection with the discussion of the norm, and all the rest

being trivial. Therefore, f[.2 1 ,J22 is an inner product. Since it

obviously yields the right norm, it is the unique inner product induced

by the norm. The same remark as was made in connection with the

definition (2.4. 1) regarding the subscript in ... ]. applies here also.

It is worth noticing, by the way, that the Schwartz inequality,

which is true for any inner product, holds here also:

2I l,2]2 <11 2 111 .l 211 (2. 4. 6)

The existence of an inner product gives us the possibility of

defining orthogonality for the. 's, and hence of constructing orthonormal

bases in 0. More importantly, perhaps, it establishes that O is a

unitary vector space and hence in many respects similar to the Euclidean

space of ordinary experience, thus allowing us to use our geometric
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intuition in suggesting relations and results. One of the important

respects in which differs from the Euclidean space of ordinary

experience is that it is not finite-dimensional. These matters will be

discussed in detail in section 2. 6. Meanwhile, we stop to describe

an experiment with which some of the properties of the norm are

exhibited and interpreted.

2.5 AN EXPERIMENT OF CERRILLO

Consider the following experiment, performed by Dr. M. V.

Cerrillo and K. Joannou. A set of M networks is prepared, whose

impulse responses are the Cerrillo pure transmission kernels of orders

0, 1, . . ., M. These kernels are derived and discussed in Cerrillo (7).

The kernel of order m is composed of m+ 1 contiguous, unidirectional

pulses, of base-width 2 chosen appropriately small; only the area, not the

shape, of these pulses is defined, the k t h pulse (k < m+ 1) having an

area

ULkm = ( 1 ) m (- 1 )k ( k+l (2. 5. 5.1)

where the last symbol represents the binomial coefficient. A few of

these impulse responses are sketched in Fig. 2. 5. 1.

Suppose that, as was actually done in the laboratory, these

networks are all excited by an arbitrary band-limited source (phonograph

music was used in the experiment) and that the outputs of the networks

are compared with the input and with each other by placing them, two

at a time, on the vertical and horizontal plates of a laboratory oscil-

loscope. The arrangement is shown in Fig. 2. 5. 1. It turned out that,
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Fig. 2.5.1

Illustrating Cerrillo's experiment.
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for all networks of order higher than a sufficiently large N, the network

outputs could not be distinguished from the input or from each other.

This result indicates, first, that Cerrillo kernels of sufficiently high

order are actually capable of producing pure transmission, as far

as a CRO with finite resolution can tell; and second, that as far as such

an oscilloscope can tell, there is no difference, in the operation per-

formed, between any two networks of order greater than N. (This

number N can be as small as zero if the pulse width is small enough,

or the oscilloscope crude enough. The relationships between pulse

width, CRO resolution, bandwidth, and replaceability of pulses by

impulses will be explored fully in Chapter III. For the moment, it

must be assumed that the phrases "small enough," "crude enough,"

and so forth can be given definite meanings.)

To analyze the experiment, let us assume that (as will be shown

in Chapter III) it is possible to replace the pulses in the Cerrillo kernels

by impulses located at the centers of the corresponding pulses and with

areas equal to those of the pulses. Then the vector corresponding to

the transmission kernel of order m can be written

m E E - ( 2 k +l 1) E- (k (m+1) E-k (2.5.2)
k= 0 k= 0

It can then be shown (see Appendix A. 2) that the vectors Tm satisfy

the difference equation

Tm = E- V M (m= 1,2,...) (2. 5. 3)

with T = E . The operator Vm is the mth backward difference

operator, with sampling spacing 2, defined recursively starting from

72 ft = f(t) - ft - 2 ); 2(t) = v f(t)) = f(t) - 2f(t - 2) +f(t - 4X); ... ;

Vnf(t) = (V n- 1 f(t)). (See Hildebrand (14).) For consistency, V is
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defined to be the identity operator E ° , so that V ° f(t) = E f(t) = f(t).

Summing both sides of (2. 5. 3) with respect to m from 1 to

n yields, since the left-hand side telescopes,

T n = E- E (2. 5.4)
i= 0

a representation which is considerably more convenient than (2. 5. 2).

We need not go any farther than this to see, for example, that

for n large enough (or small enough), the operation of two succes-

sive kernels can be made indistinguishable. From (2. 4. 2), we obtain

I Tnf(t) - Tnlf(t) = (Tn - T )f(t) 1< ilfil I T - T fa411 (2. 5. 5)

But, from (2. 5. 3)

TI , - T,-1I1 ' II E- V' n # ,n nX 11 (2. 5. 6)lITn T n -1 I = |IE 2 = 2 (2.5.6)

At this point, where we need definite estimates for the norms of

operators, we must specialize the function i(t) to that appropriate to

the model of the actual experiment. We shall assume

(t) = 2W sin Wt (2.5.7)wt 

where W is the radian/sec bandwidth of the low-pass idempotent spec-

trum A'((O). It can then be shown (see Appendix A. 3) that

n ( 2 1 / W
7ll I 2 X || +1)</2 ( 2)W)n (2. 5. 8)

1
As long as 2X <- , it is therefore clearly possible to choose n and X

so as to make the bound in (2. 5. 5) smaller than the resolution of any

preassigned oscilloscope.

As a matter of fact, we can show that, beyond some order n,

any two networks (not just successive networks) are indistinguishable
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if 2X <--. For suppose we wish to compare T and T+p (p is any
W ' n n+p

positive integer). From (2. 5. 5) we see that we need only obtain a

bound on the norm of the difference Tn+p - Tn. But, using (2. 5.4)

n+p

Tn+p T = E-i n+.
1= n+ 1

so that, using (2. 5. 8),

n+p n+p n+

nIT T1 V'lI 1< ' (2 XW)ii= n 1 i= n+ 1 i= n+

p(l2. (2kw~n+1(2 n+ 1p-l (2XW)n+I
= (2W) L (2KW) i < for all p > 0. (2. 5. 9)

i= 0 1 - 2W

(It is certainly possible to obtain better bounds, but this one suffices

1
for our present purpose. Note also that the condition 2 < is sufficient,

but certainly not necessary.)

It is natural to wonder what it is that Tn approaches as n-oo.

If our space were complete (see remarks at the beginning of section 2. 6)

then, since (2. 5. 9) shows that for 2 < the sequence {Tn} is Cauchy-

convergent, (2. 5. 9) would prove that a limit To exists. We shall,

purely formally, determine what this limit To might be. (We have

to proceed formally because, among other reasons, we do not even

know yet how to interpret an infinite series of operators.)

Notice first that

(1-) Vi = 1 (2.5.10)
i= 

because, multiplying out,
0 00 co 0

7 VI Vi= 2 i v 0 = 1
0 0 0 1
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From (2. 5. 10), it is therefore also true that

(1-v) E - i = E k (2.5.11)

T,, =E E- X T i
0

so that (2. 5. 11) becomes

(1-V) T = E

or, expanding

(1 - (1 - E-)) T = E- X To = E k

Multiplying both sides by E k thus yields T. = 1. That is, in the

infinite limit the Cerrillo kernels produce pure transmission.

We can use this result to show that, beyond a sufficiently high

order N, the outputs of the Cerrillo networks, besides being indis-

tinguishable from each other, are indistinguishable from the input.

Let us use T., to represent pure transmission. Then

I1l - Tn JlTo-TJ|= |i _ 4;vi f= n 
0

n+l EX -7i i 1 17 n+l T = 117+ll
0

Using (2. 5. 8), we see that for 2X < our statement is true.

To us, the interesting feature of this experiment is that, although

the impulse responses of the networks of Fig. 2. 5. 1 differ enormously,

for m > n the networks are indistinguishable in their mode of operation
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on music. That this is possible is not surprising, since the result

obtains only for a restricted, although large, class of sources, and

the oscilloscope has finite resolution. In fact, in the frequency domain,

the responses of the networks are approximately equal at low-pass

and differ appreciably only at frequencies higher than those of the excita-

tion. But it raises the question: How can we describe or explicitly

exhibit in the time domain the fact that, in spite of their very different

impulse responses, these networks are so similar in their mode of

operation that their outputs are indistinguishable ?

In terms of the metric established by our norm, the property

that is common to the networks of Fig. 2. 5. 1 (of order higher than

some n) is that they are all contained within a hypersphere in O-space

of radius smaller than the resolution of the oscilloscope that is

used for measuring.

2.6 THE GEOMETRY OF O: ORTHOGONAL BASES

In this section we shall study the geometry of our vector space

O. After some introductory observations concerning the structure of

O, we shall use the definition of inner product given in section 2.4 to

obtain a meaning for orthogonality, and use this concept to construct an

orthonormal set. We then prove that this set is complete with respect

to our vectors J2.

Recall that O was defined as the set of all vectors 32 that are

finite linear combinations of shift operators. Despite the superficial

impression of finite dimensionality caused by the wording of the defini-

tion, O is not a finite-dimensional space. The reason for this is that

32



we have not restricted in any way the exponents of the shift operators,

so that any arbitrary shifts, not only, for example, integral multiples

of some basic shift, are allowed. The fact that arbitrary shifts entail

infinite dimensionality will become clearer when we study orthonormal

bases in 0, and discover that for such a base to be complete it must

have an infinite number of members. In any case, there is no satis-

factory way of making a space like O finite dimensional because, as

has been shown, the cascading of systems corresponds to a vector

(or operator) multiplication in which the dimensionality of the product

vector is, in general, one less than the sum of the dimensions of the

component vectors. As a result, no matter how we fix the finite dimen-

sion, the attempt to consider the vectors under study as members of

a finite-dimensional space would lead to vectors (corresponding to

perfectly acceptable physical systems) that are outside the space.

The second remark is purely technical; it concerns the fact

that, as defined, the space O is not complete, in the sense that a

Cauchy-convergent, or fundamental, sequence in O does not necessarily

have a limit in 0. (Convergence is defined with the metric determined

by the norm.) This difficulty results from the fact that a Cauchy-

convergent sequence of vectors composed of a finite number of shifts

(and therefore members of O) might have as limit a vector composed

of an infinite number of shifts (and therefore not a member of 0). Such

a sequence would then have no limit in 0. This problem is not important

until we study orthonormal bases and, in any case, it is immediately

obviated by the theorem (see, e. g., Kolmogorov and Fomin (13), p. 40)

that every metric space has a completion, and all of its completions are
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isometric. Thus we may as well consider our space O to be embedded

in an appropriate completion, and ignore the whole question. However,

in all questions concerning representation or completeness (of ortho-

normal sets) we shall remember that we are only interested in the members

of 0, and not in those of its completion that are not in 0, and will

therefore limit ourselves to establishing our results for members of

O only.

We begin by recalling the definition (2.4. 5) of the inner product

0

= 2 J21 A (0) - 0() (2. 6. 1)

It will be instructive to determine the meaning of orthogonality,

that is, the physical situation that corresponds to two 2 -vectors

being orthogonal in the sense of definition (2. 6. 1). Notice that the

very definition of orthogonality depends on the function that is char-

acteristic of a particular problem. Because various cases have to be

distinguished in discussing orthogonality and completeness with arbitrary

+S-functions, the presentation will be clearer if we restrict ourselves

to the case for which

(t) = 2W sin Wt (2. 6.2)
Wt

For brevity, we shall denote this specific 4 -function by a. For practical

problems, this is perhaps the most important case. Substantially the

same procedure as used on will establish our results for other

'i-functions.
t 1 t 2

Consider a pair of shift vectors E and E . Under what conditions
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will these vectors be orthogonal ? The inner product will be zero when

t t ( t t
CE l ,Et o 1) E l E t x(0) 1 E(t ) = ((0 ) (t -t )= 0 (2.6.3)

-(0) q(0) E t 2

The zeros of b occur at the points (t 2 - tl) = W (n = l,±2,...). If
kit

we choose one of the vectors to be E ° , the set of vectors EW (k = ±1,±2,...-)
kz-

is therefore orthogonal to it. We shall now prove that the set E

(k = 0, ± 1, ±2,...) is a complete orthogonal basis in 0.
-t

Let E o be an arbitrary shift vector, and let us see to what

extent we can approximate it by a linear combination of N orthogonal
kir -t

vectors E W, k = 1, 2, .. , N. That is, we wish to approximate E 0

N kw
with a vector = k E W and we shall choose the coefficients k

k= 1 -t
by requiring -a to be the projection of E in the linear manifold spanned

kTr

by the vectors {E , k = 1,..., N. Accordingly, we have first that

the components of E o along the vectors (E~ are

_br-t liT (t-~) 1 it
[EtoE WWI= 1 _ ,(0) = (t ) (2. 6. 4)

Next we see that the corresponding components of Z are

iT it 

[2,aE = [I; a E W E Wj= 27a [E W E Wj

ir 2

a= i E W' if i e (1,2,...,N) (2.6. 5)

= 0 if i (1,2,. .,N)

We shall achieve our object if we set

il 2

lE ||i c= o(0) (t0 ) for i= 1,2,...,N
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ir 2 ir iTr

or, noting that E W() = 1, if we set

T ai = E(0 ) (2.6.6)

These coefficients determine the vector 2 that we wish to use to approxi-
-t -t

mate E . If now the two networks J2 and E are excited by a common

input f S, what is the peak difference in their outputs ? As usual,
-t

the peak difference is determined by the norm IIE -o 2 11, which we

now proceed to evaluate.

We can use our geometric language to advantage here. is the
-t n N~r

projection of E o onto the manifold defined by the set {E W .,E W }
-t

Therefore, E o -2 must be a vector perpendicular to J2 (this can be

verified by taking the inner product of these two vectors). But (as is

easily proved) if two vectors u and v are perpendicular, 1 u + v 112 =

u 2 + v 112. Therefore,

lIE ° - + (a)2 Z = rE to _z#2 + l2- lIE to°2 (2.6.7)

so that
-t -t

liE °- 112= E a2 2 (2. 6. 8)

The norms on the right are given by:

-to 2 1 t -t
IE tol = EV E 0 o(o) = 

2 i(ZWIw) -i-- L 1) (,0)P-a2 = () g ak EW a E a a 1 z )11.12.1k j J)k (0) k,j kjkj

Z ak2 (2. 6. 9)
k

Therefore,
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-t 2 N
nE - = 1 1 ak (2.6.10)

k= 1

Let us denote the index set of the linear manifold containing a2 by r.

Using (2.6. 6) the sum in (2. 6.9) can be written more explicitly as

E [sin W(t kl (2.6.

k fr W(t -)

The known identity

7 [sin W(t ki 2
z L oW ~j 1 for allt

k= -oo W(t o - W0

then shows that, as the index set r in (2. 6. 11) stretches to include
-t

all integers, I E o - A.ll -- . In the limit it must then be true that
-t

E = 2 (properties of the norm, axiom (a), section 2.4). Note that

in this case it must also be true that E 011 = 1 9.-I2 = which

is Parseval's Theorem for our orthogonal set.

We have shown that any shift operator can be represented without
kTr

error with our orthogonal base EWJ (k = 0,i1, i2,...). Since any

2t O0 is a finite linear combination of shifts, any ./ O can be repre-

sented also. This establishes the completeness of (EW} with respect

to our vector space 0.

Notice that the completeness of our orthogonal base is equivalent

to the Shannon Sampling Theorem (Shannon (15) and (16) To see the

equivalence, suppose we wish to represent E o with {EW}. In the

manifold determined by the finite index set r we obtain, by proceeding

as before

_2 = A° EW

kr () k
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Then, for any f ,

|ot 0 f ) E/ SL() / f(t)|= j(E - 2)f(t)f II f IIE o -0III/, !

Therefore,

I···. 1ks (to_ ~ - Ltr k

f(t + t ) - f(t + f E - g 
0o k6P ~(o) ~ J ' [f· lIE o -J.I~11

As r is stretched to cover all integers, D Eto -j211--O (Parseval's theorem).

Therefore, in the limit,

f(t + to) = f(t + kir)t 
k= -

At t = 0, o

f(to) = f(W a) (2. 6. 12)
k= -_ ,(O)

Equation (2. 6. 12), with the meaning (2. 6. 2) substituted for , has pre-

cisely the form of Shannon's theorem. The content is the same too:

(2. 6. 12) says that the value of any f S at any arbitrary point to can

klr
be determined exactly if the values of f at the points (k = 0, ;1,...)

are known.

Other orthogonal systems can be constructed, and other S 4

classes used in their study. However, without a specific problem in

mind there is not much point in going into these further details. In

the next section we study briefly a question of a different kind: what

can be done with basis vectors that correspond to time-limited or

nonuniform sampling.
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2.7 THE GEOMETRY OF O: NON-ORTHOGONAL BASES

It will be easier to visualize the following discussion if we

think in terms of the impulse responses associated with our vectors.

For example, if a unit impulse is applied at t= 0 to a network repre-
-t

0sented by the vector E , then the corresponding impulse response

consists of a unit impulse at t = t . An analogous result would of

course be obtained for a vector consisting of more than one shift. Let

us consider the impulse response which would correspond to a vector
kiT

having unit components along all the orthogonal axes EW if such a

vector existed. This impulse response would consist of a train of

unit impulses spaced regularly (with spacing ) along the time axis on

both sides of the origin, and with a unit impulse at the origin corresponding

to the component E. This situation is sketched in Fig. 2.7. 1.

Suppose that, because of considerations of physical realizability

or practical limitations, we only have available for representation

purposes the portion of the time axis shown darkened in Fig. 2. 7. 1.

Fig. 2.7.1
kir

The orthogonal base EW} as impulse response.

If we wish to continue restricting ourselves to the use of orthogonal

vectors for representation purposes, and if at the same time we accept

our physical limitations as constraints, then, from the discussion of the
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last section (still restricting ourselves to probes in S ) we have the

following situation:
-t

Suppose we wish to represent E o and, in accordance with the
_2 Nwr

above discussion, limit ourselves to use of the set {E W ... ,E W

for representation purposes. From (2.6. 10), the error will be deter-

mined by

-t 2 N
E o # = 1 - a (2.7.1)

k= 1

in which

N N sin W( . t 2

E =Ekr | = 1 if t= j W' j= 12, . . .,N (2. 7. 2)
k= 1 k= W(IS - to ) ·1

= 0 if to = j j= 0,-1,-2,...

(2. 7. 3)
N+ 1, N+2, ...

and k a is greater than zero for any other t (the first assertion is
Qk is greater than0

obvious, since then none of the terms of the sum is zero, and the second

follows from Parseval's theorem). What does this mean If t has
-t

one of the values in (2. 7. 2) then E belongs to our set and of course

we can represent it without error; if to has one of the values in (2. 7. 3)

then it is orthogonal to our set, and we can't represent it at all; and
-t

if to has any other value, then, although E o is not orthogonal to our

set ( l > 0), it is linearly independent of our set ( La < 1, whence

error > 0). This means, for example, that shift vectors whose impulses

are located between those of members of our set, being linearly inde-

pendent of our set, must have components elsewhere. That is, they

must have components in the part of O that is outside the manifold

spanned by our orthogonal vectors, and therefore, with those components,
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must be bringing in information from outside our manifold, as sketched
-t

in Fig. 2. 7. 2. Notice that when a vector E as shown in Fig. 2. 7. 2

I l < 
0 n NA

w 4 w

Fig. 2.7.2

The effect of dense sampling.
T NTr

is added to our original set E . .,E W , there are no outside pure

shift vectors perpendicular to all the vectors of our new set, so that

the error in representing vectors at the positions (2. 7. 3) is immediately

reduced.

This demonstrates the obvious fact that by increasing the density

of sampling, we can reduce the approximation error. As the density

is increased indefinitely, there are two possibilities: either the error

approaches a constant greater than zero, so that an irreducible error

exists, or the error tends to zero. The second possibility can in fact

be realized. This follows from the two observations:

1. Any function belonging to a -class is an analytic entire

function of t, when t is considered a complex variable

(see Appendix A. 4 for proof; for the special case ~ = ,

this is also noted in Whittaker (17)).

2. The Wierstrass theorem asserts that knowledge of the

samples of an analytic function over any countable set

containing a limit point specifies the function uniquely over
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the region of analyticity. Since any bounded countable

set contains at least one limit point (Bolzano-Wierstrass

theorem), this shows that time-limited, dense sampling can,

in the limit, specify any probe function uniquely for all

values of t.

This implies that we can represent an arbitrary shift vector

with arbitrary accuracy using vectors corresponding to a time-limited

impulse response. It therefore also implies that we can represent any

J.2 0, with arbitrary accuracy, so that it is possible to obtain vector

sets, with time-limited impulse responses, that are complete in 0.

This result has, however, little practical value since, as will be

shown in Chapter III, when the measurement process has finite resolu-

tion (caused either by instrument limitations or noise) there exists a

finite density level such that no new information is made perceptible

by increasing the density beyond that level.

The actual mechanics of expanding an arbitrary vector in terms

of a non-orthogonal (but linearly independent) set of vectors E . . . EN

is simple in principle, but involved in practice. The error expression

can also be written down immediately, but no general answer has been

obtained to the most interesting practical question, which is: How fast

does the error decrease with increasing density ?
t

To represent E in terms of the set E1 , ... .,E N we determine
N t

coefficients ai such that 2 a. E. equals the projection of E in the
=1 1

manifold determined by { E 1 , .... EN. These coefficients are clearly

specified by the set of linear simultaneous equations

t N
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To obtain the a's it is therefore necessary to invert the N X N matrix
P(t. - t.)

whose elements are the inner products[Ei,E] = Since it is
1 J (0)

still true that the error will be determined by

II E- Z aiEi = aE°I1 - [l E (2. 7. 5)
i i

we must determine the second term in (2. 7. 5):

Z aiEi2 2 Z a E i Z ajEj P(O0) = Z aiaj [Ei, E j ]
i J ii

= i [i,]a] (2.7. 6)

These results will be used in section 3. 6.
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CHAPTER III

DENSITY THEOREMS AND APPLICATIONS

We have two objectives in this chapter: first, to study the

relation between the present model and the functional model, especially

in the limit as they approach each other; and second, to illustrate

the use of the present model and its algebra in the solution of sme

physical problems. The first goal is reached in obtaining a theorem

of, roughly speaking, the type: singular systems are dense in the

space of all systems. This result suggests that, since finite resolution

prevents us from distinguishing systems that are closer than some

determinable finite distance, we can, whenever it is easier to do so,

use the present model to solve problems. Scattered throughout the

chapter, but mainly in the last section, we present some examples of

such questions and the simplicity with which their answers are obtained.

One of these answers, the one concerned with least-peak-error inter-

polation and extrapolation, is a rather useful result in itself.

3. 1 PREPARATORY RESULTS: THE EFFECT OF SMALL SHIFTS

In this section we present some lemmas which are not particu-

larly meaningful in themselves, but are useful in the sequel.

We wish to determine the effect, at the output of a singular

network, resulting from shifting the impulse response of the network

by a small amount X, as in Fig. 3. 1. 1. We note, to start, that shifting

an impulse response by an amount X (further into the past) corresponds

to multiplying the associated vector
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12 = n E (3. 1. 1)J2 Z E nnn

by E , thus obtaining

_)-fi -X= E E-(tn+X)
E 2 =2E = an E (3. 1. 2)

n

Let us denote E-'2 byJ2 . Our problem then is to place a bound on

112f(t) - 21 f(t)l = ( -1l) f(t)l. We shall, in this section and the

ne v al o : * wil useful ifo.'. i.

FIRST BOUND. Starting from I a we obtain, as

Ilusuale -lFig. 3.1.1

Impulse response shifted an amount X.

next, always present two such bounds: one which istanc useful for the

numriginal determination of the nrelatived) vector, but is somewhat conserva-

tive, and another which is more complicated, but has the advantage

of being a "best possible" bound, in the sense that we shall, in every

case, exhibit an f S* that makes the inequality an equality for at least

one value ofs will be useful iven bythe work to follow.

FIRST BOUND. Starting from (2- .fl) f(t)|, we obtain, as

usual,

I(a-1) f(t)l < Ilf II 4 a .I1¥ -{ .1 Ii (3. 1.3)

so that our problem is to determine the distance I.2 -12 ii from the

original to the new (shifted) vectoril1. In terms of the inner product,

the distance is givenunaffected by a translation,

!IA-J2 1 11 = [A-l,_a-al] = fIz,A]+ [l, 121J -[Jl,j2l] -. a1 ,1 12] (3.1.4)

Since the norm is unaffected by a translation,
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A J l,-l 11f =l Il 2=l-l12 =- J2

and, because of the symmetry of the inner product, the last two terms

in (3. 1.4) are equal, so that

Il2- R2( 2 = 2(1l.. 112 -C[n,nl]) . (3. 1. 5)

From the definition (2.4. 8) of the inner product, we see that

00

=2.v(0) Cola(t)jl[aQ(t-X)] dt = R (X) (3. 1. 6)
2,rrT (o) o 2rr*(O) 

where R4 (X) is the autocorrelation function of /I evaluated at X.

Since X = 0 corresponds to the special case 2 = 2 1, we have also

1
[Ia,J2] = II 2 = 2= Ra( ) -(0)

2,TR(0) ()

Using these results in (3. 1. 5), we have

2

J2-a1, 2 = 2 R,(o) - R ( (3. 1. 7)
2w¥(0)

To obtain an explicit bound in terms of X, we must now specialize the

function ' . If we choose

4(t) = 2W sin Wt

which corresponds to the low-pass idempotent spectrum of radian band-

width W, (i. e., spectrum nonzero only on (-W,W)) then it has been

shown (see Wernikoff (22), p. 38) that

Ral(o) - < R) R () (W) 2 (3. 1.8)

Substituting in (3. 1. 7), we obtain

IA- iJ2 1 i24( - R (0) (W) = 2aS f2 (WX) 2

2-rr() -4#
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Substituting back in (3. 1.3) we therefore find that, fcr the chosen

) (t), the difference in output from an operator .1 and the same operator

shifted by an amount is bounded by

(a-.a,) f(t)l . f · l i · IIL.II · F5Wl 1 (3. 1.9)

This is the desired first result. It is conservative for any 4t function

whose highest cutoff frequency does not exceed W. The first three

factors in (3. 1. 9) define, essentially, the maximum output from . .

We can normalize with respect to them, and find that the relative error

due to a shift X is bounded by 2 W Xi.

SECOND BOUND. We can obtain a sharper bound (in fact, the

best possible bound) from the following calculation:

J(A- 1 ) f(t)j =a.(1 - E - ) f(t)1 = I27 f(t)l

: W V(nf(t)) II-a f !11 11 * 1 x 11 (3. 1. 10)

In (3. 1. 10), the last step follows from consideringaf(t) as a probe,

used as input to VX. The last factor can be determined exactly, from

the definition of the norm (2.4. 1):

*t ~ * X Xiv 112 1 V+V~X(o) (1 - ) (1 - E I)(0) = (- E )( - E-)~(0)

X ?t (O) Z (O) - (O)

_ (2 - E E) )^(0) = r( ) ())1 (3. 1. 11)
~(0) ' (0

Substituting the result in (3. 1. 10), we obtain

I ( - 1) f(t) < l[' ] *1.i 11 [ * A(o)- 4())],/
*'(0)

Therefore

(f- 1) f(t)l Iiaf 1 (1 - ) (3.1. 12)
-4(o)
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This is the desired result. It is the best general result in the sense

that it is possible to find an operator A and a probe f(t) that make

the inequality (3. 1. 12) an equation for at least one value of t. In fact,

it is easily verified from (3. 1. 10) that (3.1. 12) is an equality when

2 = V EY and f(t) = '(t+) (3. 1. 13)

where y and are arbitrary. To see this, recall that (3. 1. 10) was

originally derived from the Schwartz inequality, which reaches

equality when the component integrands become equal; this is the

condition brought about by (3. 1. 13).

Let us evaluate the bound (3. 1. 12), under the maximizing condi-

tion (3. 1. 13), to compare it with our first bound under the same con-

ditions. Substituting (3. 1. 13) in (3. 1.9) yields, for the right-hand side,

2 ' II F2857>. W (3.1.14)211z I vx I! wlxl

On the other hand, (3. 1. 12) yields, noticing that 2f 2 = 2 1/ [V] 2 dt

= ''(0)o [I v il2 and that 1i'1I= J(o)

2 *[ 2 (1 - (3. 1. 15)

usI ivXi [2 (1-,(0))J

Equation (3. 1.9) was determined for (t) = 2W Wt so we must deter-
Wt

mine (3. 1. 15) for the same case. Noticing that

() (WX) 2 (W) + ... ...
*(o) 3: 5:

we obtain

_ (k))_ V (WX)2 4 (W (W)2 4
(ici ~f4 (W)2c 1 F 1-(+2 W(WX) -

,(0), 3 5.4.3 u 3 5.4 6.5.4

(3. 1. 16)
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If WX < 1 (this is what we mean by the phrase " is a small shift")

then the terms of the series in the second factor decrease monotonically

in absolute value and, from the elementary theory of alternating series

(see, e.g., Knopp (32), p. 250) we obtain

/(WX· [X 1 2-(Wk\)o [2(1 2 (3.1.17)5. 4 j 1 XD

This shows that if we estimate the middle term with W , we shall
47

be off by less than 3 per cent for WX < 1. Substituting in (3. 1. 15), we

can compare with (3. 1. 14) and find that our first bound is a factor

of = 2.4 larger than the best bound. Thus we have gained some idea

of the quality of our bound.

3.2 APPROXIMATION THEOREMS

So far we have always restricted our analysis to singular net-

works; in this section we shall begin to attempt to decide whether this

is only a special case, or whether, as in fact turns out to be the case,

the study of singular networks is as general as that of more arbitrary

linear systems. Intuitively, we feel that,using instruments of limited

resolution on specified classes of signals, it must be impossible, beyond

a certain point, to decide in the laboratory whether the black box under

study should be modelled by a singular or a functional impulse response.

A striking physical example of this situation is provided in the study

of ionospheric multipath transmission problems. There, with a trans-

mitter of essentially limited bandwidth and power, and in the inescap-

able presence of noise, it ultimately becomes impossible to decide

whether the transmission medium, considered as a linear system, consists
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of a finite number of closely spaced, discrete paths, or of a con-

tinuum of paths.

Our ultimate problem, more specifically, is to determine how

the two models, singular and smooth responses, are related; and to

do this in terms of the spacings, the probe-class parameters, and the

resolution appropriate to a given situation. We shall give our present

results in the form of bounds on the maximum difference in the outputs

from the singular network and its corresponding smooth network. As

before, two types of bound will be presented: the first very simple

analytically, capable of yielding a relative error, but conservative;

the second less simple, but sharper. These derivations will be followed

by examples and physical interpretations.

FIRST BOUND. We shall proceed as follows: Using the results

of the last section, which specify what happens to the output when a

singular response is shifted slightly, we shall determine what happens

with a combination of such shifts, as in Fig. 3.2. 1, and then use this

technique to build up pulses out of impulses. Thus we shall obtain

I 1 t --- t oI I I
I I .Ill.,ii~ii Iud~ b
I a 
I I 

I I I~~~~~~~~

,,lih,llh,J~h--- ,,Jib, b
1(1 ~~~~~~~~~~~~~,

I I I *!

A , v

Fig. 3.2. 1

Derivation of pulses from impulses.
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smooth networks, or simple-function approximations to smooth networks,

from impulses.

We start with an operatorl2. Consider, instead, the operator

12i = ai-2 (a i , a real number) and shiftj i by an amount k.. Then, from

(3. 1.9), we have

_X

(ai -E ia i) f(t)l * IU4l l l1ai lU I x; (3. 2.0)

and since 1la2ilJ = ai I · 1I ,

|(i -E i ) f(t) | |fll l.U· *f V xaili W 

Suppose that this is done several times (i. e., for a sequence of values

of i) and that the results are added:

(iJ2f(t) - ail2f(t- i) fif Il U'II . II-Au W L l ii (3. 2. 1)
i i

Since it is always true that

I ci < z2 lc i l (3.2. 2)
i i

equation (3. 2. 1) implies that

2 ai(-f(t) - Z iJ2f(t-Xi)l</V lf 4U * ll · W Z kiail. (3.2.3)
i i i

Now suppose that our purpose is to convert each impulse of the original

response into the pulse p(k) (origin of at each impulse). Let ai =

P(i) AX, so that an impulse shifted to the position ki has its area multi-

plied by a number i which is proportional to the desired pulse height

at that point. Then (3. 2. 3) becomes

IJf(t)[L P(Xi)AX] - fi[ P(Xi) f(t-Xi)XJ /fl U ' II 11a II W -
1 1

Zlxi (Xi)l X

*Notice that by using (3. 1.9) we have already restricted ourselves to the

case 4(t) = 2W sin WtWt
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In the limit, as the number of shifts increases and AX-,O, the sums

tend to Riemann integrals; and, since it is easily shown that the

inequality is preserved in the course of the limit process, we obtain

[jp(X) dJA f(t) - 2. [p(X) f(t-kX)dx j / / fl · 112 · 11-- · w

lX p(X)I dX . (3. 2. 4)

In (3. 2.4), AI is the base or support of the pulse p(X). This is the desired

bound.

To interpret (3. 2.4), let us first normalize our pulses p(k) so

that $p(X) dX = 1. Then the first term on the left-hand side is just

.2f(t), which is the output from the singular network A. The second term,

p(X) f(t-X) dX , (3. 2. 5)

is just the output of the smooth network that is obtained from by

replacing all its impulses with pulses in such a way that corresponding

N -t
impulses and pulses have the same area. To see this, let = akE k;

k= 1
then the corresponding smooth response, denoted by h(t), can be written

h(t) = ak p(t- tk) = a k Ek pt) = .p(t) (3.2.6)
k=i k

The response from h(t) to an input f(t) is given by

/h(k) f(t-X) dX = /.Jp(X) f(t-X) dX = ./p(k) f(t-X) dX

which is just the expression (3. 2. 5) since p(X) _ 0 outside the interval .

Before continuing to the derivation of the second type of bound,

we pause briefly to examine some of the content of the present result.

Notice first that if p(X) is a unidirectional pulse (i. e., a pulse

that does not change sign), if it is normalized, and if it extends from
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-X to X0, then in (3. 2.4) the last factor becomes

A IX pX 0 A
X p()IdX = 1 X p()J dX < °0 p(X)jdX = ° p(X)dX = X

(3. 2. 7)

so that for this case, (3. 2.4) becomes

f(t) - o p(X) f(t-X) dX < / l II 4 II I-all wx (3.2.8)
0

so that the bound on the error is independent of pulse shape.

We remark, parenthetically, that since unidirectional pulses are

precisely what Cerrillo calls "windows," (3. 2. 6) shows that it is pos-

sible to associate a singular response with every window function, with

a very clear estimate of the error incurred by this procedure (or, with

a conservative estimate of how small the probe bandwidth W must be

in order to make the right-hand side of (3. 2.6) less than the prescribed

tolerable error). Furthermore, since a singular response is just a

numerical operator, the procedure shows how to use the results of

numerical analysis to obtain the Cerrillo kernel appropriate to a given

operation directly. (This topic is more fully discussed in Wernikoff (23),

p. 44.) More generally, since the pulse p(k) may be chosen rectangular,

(3. 2.4) or (3. 2. 6) show the relationship between singular responses

and simple-function, or staircase, responses. Since it is known that

the set of simple functions is uniformly dense in the set of time-limited

continuous functions, these equations show that it is possible to associate

a singular response with any continuous (time-limited) response, and

that this can be done with arbitrarily small error at the output, for

all members of a specified ensemble of inputs. This last possibility
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will be discussed more fully later.

Returning now to a consideration of the first bound (3. 2. 4),

we notice that there are two reasons for suspecting that it is rather

conservative: 1) the result that ultimately determined the bound

entered the derivation as early as (3. 2. 0), before anything at all could

be said about the pulse we wanted to construct, so that no use could

be made of the pulse information; and 2) the use of (3.2.2), a crude

inequality and, in our context, a somewhat unnatural one because there

is no reasonable set of circumstances that make the inequality an

equality.

So much for the simple bound. Now we proceed to obtain its

corresponding "best" bound.

SECOND BOUND.

To avoid the difficulties in the first derivation, we shall attempt

to go from (a) to (b) in Fig. 3. 2. 1 directly, without considering, as

before, the error due to individual displacements. That is (still with

reference to Fig. 3. 2. 1), we shall consider each aggregate of impulses

in (b) associated with an impulse in (a) as an operator in its own right,

and denote it by

N -.

_f p = Z p(Xi) E (3.2.9)
i= 1

We shall then suppose that each impulse of the original operator .12

has been replaced by.2p multiplied by the corresponding area. It is

clear that the new operators 1 depicted in (b) is given by

-t -Xi
.21 - .2np = L an E n Z p(xi ) 1 X E

n i

"2 aZ p(Xi) X E ni (3.2. 10)
n 1
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We are, as usual, interested in the difference

I(_- 21 ) f(t)J = ( - 2p ) f(t)f = 12( -p) f(t)l

1af 11 U II - p II (3. 2. 11)

Our problem is to determine the last term in the product, that is, to

evaluate

(j - 2 j ] [( -i21t tIj2 dt/6 (3. 2. 12)

If we apply our usual identity (2.4. 1), we shall obtain a determination

in the time domain that turns out to be somewhat too unwieldy for use.

On the other hand, it is possible to obtain a very succinct frequency-

domain expression. Using the convention

f(t) = F(&) et dJ; F(w) = .n | f(t) e - j t dt (3. 2. 13)

the Parseval theorem for Fourier transforms is

00 00

f2(t) dt = 21r j F() |2 dj (3.2. 14)

Making the identification

f(t) = ( -p) (t)- (t) - p P(Xi) iX (t - i )

we obtain

F(6J) = ()1 - ZP(i)k e i

whence, using Parseval's theorem in (3. 2. 12), we have
00

2! 1 /*2P -X 2
- 112 = ---- 2 (w)l - L P(X i) e 'AX d (3.2.15)

2T4(o) 1o i

Substituting back in (3. 2. 11), and remembering that (O) = II 112, we

obtain
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2f(t) - 122 P(Xi)f(t-ki)X) < afl 1- P(Xi) e X d1/
(3. 2. 16)

The integral inside the bracket in (3. 2. 16) is infinite only in appearance;

actually, it can only extend over a set of finite total length because ()

is both idempotent and L2 by assumption. There is no difficulty now in

performing the limit process in which

Z p(Xi) f(t - i) x - p(X) f(t-X) d}
1 

Z P( i ) e 1
i

J -- jp(k) e CJ dX u P(w) (3. 2. 17)

P(aj) is 2r times the Fourier transform of p(X), since p(k) = 0 outside

of A. Since, in (3. 2. 16), () is nothing more than the characteristic

function of the frequency-set on which our probe functions have energy,

we can omit it and just indicate with the symbol / the limited range

of integration. With these changes, our results, substituted into

(3. 2. 16), yield

(3.2. 18)I j2f(t) - -a2/(X) f(t-X) dA In 2fl - X II - P() 2 d

which is the desired result.

It is instructive to examine this expression carefully because,

as will be proved presently, (3. 2. 18) is the best possible general

result, in the sense that, given a desired arbitrary p(X), it is always

possible to find an operator A. 2 O and a probe f S that make the

inequality an equality for at least one value of t. Thus no sharper

or smaller general upper bound is possible: relation (3. 2. 18) specifies

the least upper bound.
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We notice first that (3. 2. 18) has a very good chance of being

an improvement on the previous expressions because it predicts that

the error can be made identically zero by a very reasonable choice of

pulse shape p(X). If, for example, in (3. 2. 18) we set P(W) = 1 for

( E X and zero outside, so that p(k) = 4 (X), we see that the error

vanishes identically. This is reasonable because p(X) is the function

that is being used to replace impulses in the impulse response of 2,

so that for probes f S ,(X) is the impulse as they see it. Therefore,

there should be no difference in the outputs from the singular network and

the smooth network obtained in this way. More generally, of course,

p(t) will yield zero error if it is any L2 function such that p(t) = I(t) + g(t),

where the Fourier transform G(i) of g(t) vanishes identically for aJ s X

and is completely arbitrary (except for being L2 ) on the rest of the

real line.

It is perhaps worth emphasizing that no requirements (except

integrability) have ever been placed on the pulses p(k), or on the spacing

of the impulses in the response of 2. Both are completely arbitrary,

and pulses associated with various impulses may overlap. In the

figures the pulses were drawn narrow and the impulses were spaced

uniformly only for graphical simplicity.

To prove that (3. 2. 18) is in fact the least upper bound, we shall

show that the operator EY (y arbitrary) and the probe function

fo(t) = (t) - p(X) (t+X) d (3. 2. 19)

make (3. 2. 18) an equality when t = 0. (It is clear that E'Y 0. To

see that fo a S4, we notice that it is the sum of two terms of which the
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first is in S4 , and the second is also, as can be seen most easily by

noticing that, whatever be p(X), the Fourier transform of the second

term containsig($) as a factor, and is therefore frequency-limited in

the same way that (t) is.)

We begin by evaluating the left-hand side of (3. 2. 18):

|f(t')- -Jp(X) f(t' -X) dX fo(t)- /p(X) f0 (t-X) d (t = t' + y)

4 (t) - jp(X)i(t+X) d - P(X[4(tIx) - jp(a)t(t-X+) dqdX

= 4(t) - Jp(X)4(t+X) dX - (X#(t-) dX + /dX p(X) ld p()4(t-+)

(3. 2. 20)

Let us express the various terms of (3. 2. 20) in terms of their Fourier

transforms:

9(t)= /£() eJit d)= / eJot da) (3. 2. 21a)

Jp(X)'At+X)dX= jP*() ()J de = P*() j) d (a (3. 2. 2lb)

J(k)(t-) dk = /P((.)i(0) ej 't d"= P(w) e jt do (3. 2. i2c)

p(X) dA / p(g)(t-X+t)di = P(w) P eJttd= P()P(,)eJ'*tdo

(3. 2. 21d)

(the asterisk means complex conjugate here). Substituting these

relations in (3. 2. 20), evaluating them at t = 0, and collecting terms,

we find that (3. 2. 20) equals

/ I 1 - P() d (3. 2. 22)
X l ()2d
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This is the left-hand side of (3. 2. 18). To determine the right side, we

need only evaluate I f I1. But, by definition,

If 2= fo(t) dt

so that, using Parseval's theorem (3. 2. 14),

foIIl2 = F(W)L2 d)

where Fo(w.) is the Fourier transform of fo(t) which, from (3. 2. 19) and

(3.2. 21b), is given by

Fo() = () - P ()

Therefore,

II 0112 = (X) |1 P () 2 do= / 1 - p(ol)l 2 do (3.2.23)

Substituting II fo into the right-hand side of (3. 2. 18) we obtain again

(3.2. 23), so that (3. 2. 18) is an equality. This proves our assertion.

It is worth noting that there is nothing even remotely artificial

about the circumstances described in this last proof, in which a pulse

shape p(X) is specified a priori, and the bound is shown to be attained

for .L= E and f(t) = fo(t). This is, for example, precisely the situation

corresponding to the physically interesting question: Under what con-

ditions is a signal indistinguishable from its short-time average ? That

is, under what conditions will there be no loss of information in a signal

if the instrument with which it is observed yields (because of its limited

bandwidth, resolution, and so forth) the short-time average of the

signal rather than the signal itself ?
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This question will be studied in detail in the next section,

principally for the opportunity it gives us to insert some numbers in

our results and to compare them with intuitive thinking. The remainder

of this work will also be concerned with examining some of the

implications of the bounds (3. 1. 12) and (3. 2. 18), with special regard

to the fact that they are least upper bounds. In section 3.4 we con-

sider some examples, couched in practical language, of what the

bounds tell us about the relation between spectrum parameters, ampli-

tude resolution, and time resolution. . In section 3. 5 we discuss what

to the author seems the most thought-provoking consequence of these

bounds, the density of simple systems in the space of all (linear,

time-invariant) systems. Section 3.6 presents two simple but inter-

esting uses of the density idea; the second application, that concerned

with linear least-peak-error interpolation and extrapolation, is

rather interesting and suggestive in itself.

3.3 COMPARISON OF PURE TRANSMISSION AND SHORT-TIME

INTEGRATION

We wish to determine conditions under which a signal is

indistinguishable from its short-time average. In terms of the S

class pertinent to the signal, the signal will be indistinguishable from

its short-time average if this is true for all probe functions Belonging

to S,. To reduce this problem to our standard form, we think of a

probe f e S~ being applied to two networks, of which the first has an

impulse response consisting of just one unit impulse (pure transmission),

and the second has a rectangular pulse of unit area and base 2Xo centered
0
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at the impulse position. We compare the outputs of these two networks

on an oscilloscope with finite trace-length and -width, as in Fig. 3. 3. 1.

Ceo

Fig. 3.3.1

Comparison of exact viewing and short-time averaging.

We can immediately apply the results of (3. 2. 18) et seq., with

.= E ° = 1 and the prescribed pulse shape p(k) given by

for -X < X < X2X o o

p(X) (3.3. 1)
0o outside

From (3.2. 18), the difference in the outputs of the two networks is

bounded by

i lf(t) - 24p(k) f(t-X) d\ = f(t) 2-x tX+X f(X) dX

2X

I af 11 j|1P(o)I dw (3.3. 2)

Since P(o) is 2r times the Fourier transform of p(k), it is given by

sinu0k
P()) X= w o . To obtain a numerical evaluation of the integral in

(3. 3. 2) we must first settle on some definite set X, i. e., choose some

specific class S4. In other words, we must choose a function*(t). We

shall use

(t) = 2W sinWt (3. 3. 3)
Wt
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a function Whose spectrum is unity in -W < 4) ( W and zero outside,

so that X is the interval -W X i W. The rest of the problem is the

evaluation of the integral in (3. 3. 2), that is, just arithmetic.

NUMERICAL INTERLUDE. Consider the integral

_W sin 2 Wk 2sinx) 
I WJW (= -, g )o do = "(1 dx

0 0 0

r WX WX WX . 2
o d 2 o sin x dx + ( s x (3. 3.

0 d- 2 ----- ~ 0 (3.3.4)

where we introduced the change of variable A O = x. The last two inte-

grals cannot be determined in closed form; however, the second one is

extensively tabulated (see, e.g., (24)), and the third one can be reduced

to the second by integration by parts:

Ix 2 ( dt) sin2 2xsin t
O(sin t)( ) si x O sit dt

Ix sin t
Using the notation Si(x) for the sine-integral, Si(x) -= i t dt, (3. 3.4)

becomes

sin WX 2
I = 1 - W S i(Wo) + W Si(2WXo) 3.5)

o Wio w

Formula (3. 3. 5) is deceptively simple; actually its use is more

unpleasant than seems at first sight, because the answer comes out

as the difference of two numbers both of which are a factor of 103

larger than their difference, so that many digits have to be carried

along to make the answer meaningful. Furthermore, an expression such

as (3. 3. 5) is difficult to interpret and understand. Therefore, a very

accurate approximate evaluation of (3.3. 5) was obtained, using a series
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expansion of the integrand. It is shown in Appendix A. 5 that, for

WXO < 1 (the region of most interest),

(WX )4 (W o)4
I 5(3 2 =(3) (W 1) (3.3.6)

5(3 .3.6

This bound or I is only imperceptibly different from I itself (for

example, see the numerical comparisons following (3. 3. 10)).

We can now use these numbers to answer our original question.

Substituting back in (3.3. 2) we obtain (remembering that w = /i) = 11)

lf(t) - 2 ,/ f(X)dXj 1fIlliWi= aiflI . I o4h II fl (WX0

(3. 3. 7)

the last step being valid only for WXO < 1. Eq. (3.3. 7) gives the absolute

error, and we know from (3. 2. 19) that there exists a probe function

fo(t) S that actually reaches this maximum absolute error (except

for the negligible difference between JIand its approximate value),

this function being given by

fo(t) = (t) - 2X J (t+X) dX (3. 3. 8)
o X

o

According to our discussion, the relative error is just /I

- (Wk°) for WX < 1J. Suppose that our tolerable relative error

is 60 (that is, on our CRO with finite trace thickness, we cannot dis-

tinguish network outputs whose relative absolute difference is less than

¢o). Then, from our Initial Assumptions (sect. 2. 1), a signal and its

short-time average are indistinguishable if the relative error /,< 60

for all f _,. However, since one probe function fo(t) actually
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achieves the bound, the signal and its short-time average will be

indistinguishable if and only if

/ < (3.3.9)

For our approximate evaluation, valid for WOX 0 1, the corresponding

condition is

(Who)2
(W < (3.3. 10)

For example, using (3. 3. 10)

if = W', the tolerable relative error must satisfy o 1, 86 /

1
if k = , the tolerable relative error must satisfy 6E > 7.45 %

in order for the signal and its short-time average over an interval of

length 2o to be indistinguishable. By the way, the corresponding

numbers obtained directly from (3. 3. 5) using 9-place tables are 1, 85 %

and 7. 1 %, which shows how good the approximation is.

An interesting special case is the one in which the integration

time is chosen to be the Nyquist spacing appropriate to functions band-

limited to the radian band (-W, W). This spacing is (2ko) = -w, so that

wr 1
here =* - A rough plausibility argument, based on the relative

o 2 W'

constancy or smoothness of bandlimited functions between Shannon

sample points, might have suggested the Nyquist spacing as an integra-

tion interval for which the signal and its short-time average would not

differ appreciably. Substituting koW = in (3.3. 5) (we cannot use the

approximate determination since now W > 1), we find that the relative

error under these conditions is 16. 8 %, which shows that the plausibility

reasoning is rougher than might have been anticipated.
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Of course, it is possible that the requirements that we have

derived from analysis may be somewhat more stringent than those we

know we can get away with in practice. This is necessarily a vague

statement, but if its import is correct, it probably means that our

thought experiment is not as close a model of a real situation as it

might be. For example, it is possible that in the laboratory two

networks are accepted as equivalent even if every now and then, but

infrequently, the tolerable error level is exceeded, or if it is exceeded

only for certain inputs that are considered unimportant or unrepre-

sentative. The key words are "infrequent," "unimportant," "unrepre-

sentative," and thinking along these lines, at Prof. P. Elias's suggestion,

brings up the question of fidelity criteria [see Shannon (15), Kolmogorov

(25)]. Our requirement that an absolute difference be uniformly small

is a fidelity criterion, possibly an excessively stringent or unrealistic

one. For example, S contains a probe fo that turns our inequalities

into equalities. Is this function f "unusual" or "exceptional" in some

sense Are there many functions for which equality is almost reached ?

Is fo unusual enough so that for a large proportion of functions in S4

ours is not the best bound, and a better one could be found These

questions would be meaningful only if some value or density function were

defined on S4, something like a probability or content measure. It is

clear that if such a measure were available, its use could only cause

our bounds to decrease or remain constant - they certainly could not

increase - and our results would perhaps model physical experience

more closely.

However, there is no general criterion for choosing a criterion,
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fidelity or other. It would have to be suggested by a specific problem.

3.4 RESOLUTION OF EVENTS IN NUCLEAR COUNTERS AND RADAR

We shall consider here two quasi-practical situations in which

the only important information carried by a signal concerns the occur-

rence or nonoccurrence of events, and the number of events taking

place. The real object of the discussion is to show how our results can

be used, under certain conditions, to relate time-resolution, frequency

parameters, and amplitude resolution or signal/noise ratio.

In the case of the counter, we suppose that the events being

measured give rise to impulses which are applied to our amplifier (the

counter). The problem is to determine under what conditions two events

appearing close together will be resolved as two individual events and

not be counted as one. We assume that the linear counter-amplifier

has some specified, frequency-limited transfer function; and that the

amplifier output is observed on a thick-traced oscilloscope, or, equiva-

lently, that the amplifier generates noise, so that its noise/signal ratio

at the output is greater than zero. Fig. 3. 4. 1 summarizes the situation

in this problem.

_L / 
inPUT AMPL. 

Fig. 3.4.1

The problem of distinguishing two closely-spaced events from one event.
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In the case of radar, we might be interested in knowing whether

a target under observation consists of just one object, or of several

separate objects. The impulse response of the system "transmitter-to-

target distribution-to-receiver" is of course just that of a singular

network (in one dimension). When the radar transceiver can be con-

sidered a linear, frequency-limited system with a finite/signal noise

ratio, the problem of deciding when two targets will be seen as one is

again summarized by Fig. 3.4. 1.

Our analysis in preceding sections was done on the basis of

observation performed with a CRO whose trace has finite thickness.

It is intuitively clear, however, that in their final effect on measurement

accuracy, a thick trace and a small amount of additive noise (independent

of signal) are similar. To the extent that they are, we can consider

our "finite-resolution CRO"-situation to be like the "ideal CRO with

some noise present"-situation. In the second case, the relative error

= trace width/trace length would be obtained as a noise/signal ratio.
0

Just which noise statistics and which signal statistics are pertinent

to forming this ratio is somewhat arbitrary. They cannot be defined

once and for all, because they depend on the detailed physical properties

of a specific system, details such as persistence and luminescence

qualities of CRO phosphors, integration properties of the human eye or

other ultimate observer, and so forth. The pertinent signal parameters

might be, for example, peak signal, r. m. s. signal, etc.; and the appro-

priate noise statistic might be the noise r. m. s. value, or the amplitude

interval in which it spends, say, 90 of the time, or, in fact, any

statistic that conveys the idea of a strip of uncertainty. To make our

results applicable, the guide in defining the noise/signal ratio appropriate
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to a specific problem is to make the definition lead to the same model

as the oscilloscope with finite trace thickness.

To proceed with the problem, we notice first that the diagram

of Fig. 3.4. 1 can immediately be converted to our standard form just

by interchanging the roles of source and excitation, as in Fig. 3.4. 2.

Fig. 3.4. 2

Standard form of the resolution problem.

The probe function f S in Fig. 3.4. 2 is just the impulse response of

the amplifiers of Fig. 3.4. 1. Our problem consists simply in deter-

mining a good bound on ( 1 - 2 )f(t)f for the specific given f(t). How-

ever, since our machinery is capable of working simultaneously with

the whole class S, we may as well follow the more general procedure,

since then we shall be solving the problem for all possible frequency-

limited amplifiers simultaneously. In particular, we recall that there

exists a specific probe fo 6 S that actually achieves the least upper

bound on (- -12)f(t) . In our past formulation, this probe represented

the least favorable case since it produces the maximum possible dif-

ference in the outputs from .1 and 22. For the same reason, in the

present problem this probe represents the best possible case, since it

emphasizes as much as possible the difference between two events and

one. Therefore, the probe that actually attains the least upper bound
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defines the optimum amplifier response. We may as well determine

resolution for this optimum case, since that will yield us a number

meaningful for the whole class of amplifiers rather than for just one

specific one.

We shall examine one special case, the one for which l = E °

andJ 2 = 2 (E + E ), and merely point out how to proceed in an

arbitrary situation. This is the symmetric case shown in Fig. 3.4. 3.

The difference, .2 1 -J2 2' is given by

.Al-2 (E 2 + E= (1 - 2E- + E-2) 2 (3.4.1)

whence

(21 -J.2 2 )f(t) = 1 E f(t) 4 If I 111 (3.4.2)

As usual, (3.4. 2) becomes an equality (at t = 0) for

f(t) E= +& .)(2E 3 i ) (t) (3.4.3)
f°(t) = (0-) - X

and, by definition of the operator norm, the value reached is

II12 EX rX1j2 = Iv11 2 Z (3.4.4)

This is the maximum difference-output attainable. It is obtained using

the (unrealistic) optimum amplifier (which, incidentally, is nothing more

I

Fig. 3.4.3

Discrimination of two events from one.
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than the filter matched to the difference-input).

Precisely the same result is obtained if the more general (3. 2. 18)

is employed, using p(X) = 2 [ - ) +S( + 0 )], where'(k) is the

unit impulse at = 0. In this second way we can also treat the general

asymmetric case or, in fact, any desired distribution of input impulses.

In (3.4.4) we have the maximum difference-output. At the same

time, the actual output from, say, the first of the systems in Fig. 3.4. 3

is just fo(t). It can be shown (see Appendix A. 6) that the maximum

value of the output occurs at t = 0, and is given by

1f(0) = 1 -4() (3.4. 5)

At that point, therefore, the relative error is given by

4 __________ 112 +(0) 11v(3.4.6)
1 - ( 4[(0)(X)

~(0)

In order for two events to be distinguishable from one, this relative error

must exceed the uncertainty introduced by finite CRO resolution or noise.

If we let po stand for either the CRO resolution parameter E0 or for

the noise/signal ratio, and if we recall that this whole problem was

studied on an optimum basis, we find that the minimal condition for

discrimination is that

(0) 112 DV12

4 jT"() - Ck) > Po (3.4.7)

Using the definitions of the norm and the difference operator,

it can be shown, with some algebraic manipulation, that

iV k 12 = j )[ 3 (0) - 44(X) + (2X)]
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so that (3.4. 7) can be written more explicitly,

3'f(0) - 44(X) + 4(2x) > (3 48)
_2(L'A(O) - o (3.4.8)

To make relation (3.4. 8) more easily visualizable, it is plotted

in Fig. 3.4.4 for the special case t(t) = 4W(t) = 2W sin t with

x = kW used as abscissa. The minimal requirement for discrimination,

for a given displacent-bandwidth product, is then that Po be smaller

than the value of the curve at that point. An interesting feature of the

curve is that it is not monotonic, as might perhaps have been expected.

The same behavior is exhibited in Fig. 3.4. 5, which shows the corre-

sponding result obtained in studying the discrimination problem when,

instead of an optimum amplifier, a flat band-limited amplifier is used.

The analysis for this second case, which can also be done without

using our methods and therefore serves as a check, is as follows:

From (3.4. 1), the difference-output is given by 1E k w(t).

Because of the symmetry of the operator, the proof given before

(Appendix A. 6) shows that the peak difference-output occurs at t = 0

and is given by bW( ) - W(k). The output from the amplifier is w(t),

whose peak value, W(0), is also reached at t = 0. The relative error

(the number that must be greater than the uncertainty for successful

discrimination) is then

4W() sin x1- - = 1 -
, vp) x

where x = WX. This is the curve shown in Fig. 3.4. 5.

The most significant difference between the optimum case and the
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flat case is in the asymptotic value of the attainable relative error,

which is 3/2 in the former and 1 in the latter. This is an important

difference, but it is not as immediately useful as it might seem because

the optimum situation requires an amplifier matched to the displacement

to be detected, and in many practical cases this is unknown a priori.

Actually, real amplifiers are not frequency-limited and for them

the difference-output is greater than that predicted by (3. 4. 2). As a

result, (3. 4. 7), instead of being a minimal requirement, is a conserva-

tive one. Just how conservative, our present analysis does not allow

us to estimate exactly.

Our problem (the resolution problem) has an important analogue in

optics, with a rather extensive history both in pre-World War II classical

optics, and in the more recent statistical studies in which noise is

taken into account. In this context, the non-monotonicity of our dis-

crimination curves (Figs. 3. 4. 4 and 3. 4. 5) corresponds to the phenomenon,

well-known in optical circles, of spurious resolution." References to

the optical work on the resolution problem are grouped in the Bibliography

under Number 30.

3.5 DENSITY THEOREMS

In this section we shall examine the relation that singular networks,

considered as a class, bear to the class of all networks. [When we say

all networks, we shall always mean, in this section, linear, time-

invariant networks whose impulse responses are L 2 . ] Specifically, we

wish to show that the study of singular networks is not the study of a

very special case, but rather that it is, in a sense, just as general as

*I am indebted to Prof. Peter Elias for pointing this out.
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Fig. 3.4. 4

Plot of the ratio (maximum difference-output)/(maximum output)

versus the displacement-bandwidth product x = kW, when the opti-

mum amplifier is used.

o

/ 5 o 1

The same as

Fig. 3.4.5

Fig. 3. 4. 4, for a flat amplifier.
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studying the set of all possible impulse responses. The reason is

that the set of singular networks is, in a sense, dense in the space of

all possible networks. The special sense in which this is true involves

the nature of our measurement process - in particular, the finiteness of

its resolution - and the fact that our probes belong to restricted classes

of functions.

The statement that we shall establish is the following:

Given any arbitrary (linear, time-invariant, L 2 ) network

N, it is always possible to find a singular network J2 with the

property that, for all probes of any arbitrary (but fixed) class (3. 5. 1)

S4 , and for any preassigned (finite-resolution) oscilloscope,

the outputs from N and 2 will be indistinguishable.

Before proceeding to the proof of (3. 5. 1), two remarks:

1. It will be recalled from the discussion following Eq. (3. 2. 18)

that it is also true that with any singular network can be associated a

smooth network; and that, with respect to the probes of any arbitrary

but fixed S, the error incurred by their interchange can be made zero.

In fact, as was shown rigorously by (3. 2. 18), this occurs when the

impulses in the singular response are replaced with 4(t)-functions

because, to probes in S 4 , the 4(t)-functions are, so to speak, impulses.

2. The statement (3. 5. 1) promises slightly more than our proof

will justify. The proof holds for classes S that are completely arbi-

trary except that there must exist a finite number W beyond which

I () is definitely zero. To see that there are idempotent, L 2 spectra

for which the required W does not exist, consider the spectrum o()

defined by:
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00 1

o( ) = 1 for (U [n, n+ n] (and, of course, symmetrically for
n=O

negative frequencies)

(o ) = 0 elsewhere

, () is idempotent. To see that it is L2 , note that

J I (o)I z d = 2 )dc = z 2 1] = 2(2) = 4 <oo
-00 n=O 

Obviously, there exists no finite W beyond which @(X) is zero. Spectra

of this type are not negligible or especially unimportant, but we shall

ignore them in proving (3. 5. 1). [Actually, to include them it is only

necessary to carry along in the proof an extra contribution to the error,

due to the arbitrarily small energy which is neglected if a suitably large,

finite number W is associated with such a spectrum. ]

Proof of (3. 5. 1):

Given an arbitrary probe class S, let W be a positive number

with the property that E(cw) = 0 for Iwcl W. Define the symbol Ow(t)

to mean

(t) = ZW sin Wt (3. 5. 2)

Then w(t) is the time-function corresponding to the spectrum 43W(w) = 1

for I W, IW(o) = 0 for Il W. Clearly, for any -function that

meets the stated requirements on W, S C S4W, so that proving the

theorem for the probe class S also proves it for any other S, for which

W has the required property.

Given an arbitrary L 2 impulse response h(t), consider instead

the bandlimited response h(t) given by
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00

h(t) (r) (t- )dt (3. 5. 3)

It is easily verified (consider the Fourier transform of (3. 5. 3)) that

for probes f 6 S (and, a fortiori, for probes f SC SW ) the

difference between the outputs from h(t) and h(t) is zero. That is, for

the specified probes, nothing is changed if h is replaced with h, and

vice versa. Our problem is therefore reduced to associating a singular

network with h(t).

But this is easy, By the Shannon sampling theorem, h(t), being

bandlimited, can be expressed in the form

h(t) h( W (3.5. 4)
n= - o W( 0 )

Consider the Nth partial sum, t0N(t), of the series in (3. 5.4):

aNN(t) .( - t)

0N(t)) = (3.5.5)
n= -N W W(0)

From the discussion following (3. 2. 18) (and from the first remark pre-

ceding this proof) the singular network

N nr
n 2= Z h(n!) EW (3. 5. 6)

n= -N

can be substituted for the network with response 'N(t) with zero error

at the output, for any input f(t) S W . Since there is zero error in

going from the smooth network with response N(t) to the singular net-

workf2, all that we have to show now is that the difference between

the outputs from h(t) and N(t), for inputs f(t) SW, can be made

uniformly arbitrarily small. This, of course, can be proved immediately.
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Let

gl(t) = h(X) f(t-X) dX (3. 5. 7 a)

g2 (t) = |oN(t) f(t-k) dX (3. 5. 7b)

be the outputs from h and rN , when excited by f S W . Then

00

gl(t) - g2 (t)l = [ h(X) - N()] f(t-X) dX

' 'lz oo .I/2

( h() - N()]2 d) ( f2 d) (3. 5. 8)

Our assumptions guarantee the existence and finiteness of both integrals.

Furthermore, since the orthonormal set in the Shannon sampling theorem

is complete, Parseval's theorem holds, which implies that
00

lim / [(X) -N(X)2 dX= 0

2
This, of course, implies that given an arbitrary 6 , there exists a

sufficiently large (but finite) N so that

o

- X) _ T/_[h() - (N(k)]2 dX < 2

Substituting in (3. 5.8) we obtain the result:

lgl(t) - g2 (t)f < 6 Kf (3. 5.9)

We have written Kf for the finite second factor in (3. 5.8). T'hus we

can make the difference between the outputs from h(t) and 'N(t)

arbitrarily small - in particular, smaller than the resolution of any

preassigned oscilloscope.

Recall now, 1) that there is no difference between the outputs

77



from 0 N anda., so that we could just as well have written, in (3. 5. 7b),

g 2 (t) = 2 f(t); and, 2) that there is no difference in the outputs from

h(t) and h(t), so that we could have written, in (3. 5. 7a), gl(t) =

J h(k) f(t-X) dX. Substituting these meanings for gl and g2 in (3. 5.9),

we obtain, finally,

2f(t) - j h(I) f(t-X) dX c6 K (f ' ) (3. 5. 10)

Here h(t) was the given, arbitrary impulse response. For sufficiently

large (but finite) N, the singular network 12 given by (3. 5. 6) has the

required property. This establishes our theorem.

(We remark, by the way, that (3. 5. 6) is, from a practical point

of view, a grossly inefficient way of arriving at a suitable singular

network. Our present purpose was to prove the existence of a suitable

12, not to give a practical algorithm for its construction.)

Our proof depended heavily on the special properties of band-

limitation. It is therefore worthwhile to point out briefly that, as

Dr. M. V. Cerrillo has remarked, bandlimitation really has no funda-

mental bearing on the problem. Actually there are several different bases

for arriving at conclusions of the type represented by our density

theorem. To give one example, it is easy to show (see Wernikoff (23),

p. 44, (26), p. 70) that:

If A(t) is the step response of any physically realizable, finite-

memory network (with memory-time T), and if A(t) is continu-

ous; if An(t) is a simple-function approximation to A(t) (and

therefore the step-response of a singular network); if f(t) is an

input function and g(t) and gn(t) the corresponding outputs from

A and An respectively; then

Personal communication.
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g(t) - gn(t) I n tT d d (3. 5. 11)

In (3. 5. 11), n is the uniform bound on the approximation of A by A :

| A(t) - An(t) I < n. Several different sets of assumptions are pos-

sible, some of which are mentioned in the reference. For example,

(3. 5. 11) provides a uniform bound if f(t) has a uniformly bounded first

derivative, or, what is less restrictive, if f(t) is of uniformly bounded

variation over any interval of length T. The assumptions in these

theorems are sufficient, but they are not necessary, as is easily

shown by examples. For the statement (3. 5. 1), just consider an h(t)

that is the sum of an impulse and an L 2 response hl(t). Clearly the

sum h(t) is not L 2 . On the other hand, the conclusion of the theorem

still holds, because if we decompose h(t) into its two components, the

impulse represents a singular network to start with, so that it contrib-

utes no error; and the L 2 component, h(t), can be treated as before.

There is nothing surprising about theorems like (3. 5. 1). They

are not widely known or used, but this seems to be true mainly because

the usual approach to approximating network operation is very ambitious

Besides not recognizing explicitly the acceptability of a finite error, it

tries to perform the approximation for all possible inputs (including

impulses) simultaneously, so that the problem becomes the very dif-

ficult one of point-by-point approximation of a function (the impulse

response) rather than just the imitation of the mode of operation of

the network. It is only when the process is required to work for all

inputs and zero error that imitating the operation of a network and

approximating its impulse response are the same thing. If finite error

is admitted, and if it is recognized that in many important situations it
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is only required to have the approximation hold for a restricted class

of inputs (not including the impulse), then there is no longer a unique

impulse response to characterize the network. In fact, there is now

an infinite family of impulse responses associated with each network,

most of them wildly different in appearance. (See section 2. 5,

especially Fig. 2. 5. 1) The only criterion of approximation available

now must be in terms of the outputs of the networks resulting from all

excitations belonging to the required class. In this case, an approxi-

mation is deemed successful if the outputs of the networks are

"indistinguishable" in some sense. It is therefore possible, under these

conditions, to imitate the network operation closely and, at the same

time,have the impulse responses bear no visible relation to each other.

The real importance of (3. 5. 1) for our discussion is that it

implies that, under the restrictions of our thought experiment, it is

just as general to obtain results for singular networks as it is to obtain

them for arbitrary networks. Therefore, if it should happen that certain

types of problems are more easily studied with singular than with

ordinary networks, this provides the justification for taking the easy

way. This is really the point of the thesis. Our probe classes and

singular networks provide a working model of signal/system interaction

that is different from, but, in its special way, as complete as, the

ordinary model. Since arbitrarily close to every network there is a

singular network, and every singular network can be replaced with a

smooth network with zero error, we see that, in effect, the set of

singular networks is a subset of the set of all networks, a subset that
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is dense in the set of all networks. If a problem is simple in the

space of singular networks, then we have a set of simple systems

from which all other systems can be reached. This is especially use-

ful for problems that can be solved in the subset but not in the set of all

networks. An example of this type is given in the next section, where

we determine the optimum least-peak-error predictor using singular

networks and their algebra. This problem cannot be (or, at least,

apparently never has been) solved using ordinary methods.

3.6 MATCHED FILTERS AND LINEAR LEAST-PEAK-ERROR

INTERPOLATION AND EXTRAPOLATION

Some examples of the uses of the algebra of singular networks

have already been given. In this section, we conclude this dissertation

with two more examples. In the first one, on matched filters, a known

result is re-derived, mainly to exhibit the simplicity of the algebra,

but partly also to provide a partial check on the essential correctness

of our work. In the second one, on linear least-peak-error interpolation

and extrapolation, a new and rather interesting result is obtained. The

second problem has the additional virtue that it does not seem to be

amenable to solution by the usual methods, yet is quite easily solved here.

A. MATCHED FILTERS

We shall prove the well-known theorem concerning the opti-

mality of matched filters in detecting the presence of a signal when the

* A set A is dense in a set B if every point of B either belongs to

A or is a limit point of A. That is, all points of B can be reached starting

from points in A. For example, the set of rational numbers is dense

in the real line.

** For references, see (27) and (28).
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f(t) + n(t) o f(t) + n(t)

Fig. 3.6.1

A detection problem.

latter is submerged in noise.

With reference to Fig. 3. 6. 1, we assume the probe function

f(t) S to be the "signal" whose presence we wish to detect, and

n(t) to be noise, which we assume to have a white spectrum in the bands

where *(t) has its energy, and no energy outside of those bands. (This

last assumption seems natural, since it does not make sense, in a

filtration problem, to allow the noise to have energy in bands where

the signal does not have any.)

We are interested in maximizing the ratio

peak signal peak[. f(t)] (3. 6. 1)
r. m. s. noise r. m. s. noise

Let us first determine the root-mean-square output noise:

mean square[.Qn(t)J = n(t)n(t) t ai n(t-t i ) L aj n(t-tj)t

= ~ aia j n(t) n(t+t i - t ) = . aiaj R n ( t i - t j )
l, j i, 

=w.l Ri e n(0 ) (3.6.)

where Rn(x) is the autocorrelation function of the noise, Rn(k) =

n(t) n(t+X) t . For noise that is white in the bands of +(t), and with a

noise-power N
radian/sec o

Rn() = No0 (X) (3.6.3)
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so that the mean square noise in (3.6. 2) is given by

.2tQRn(O ) = NonIAo) = N+(0) II.11z (3.6.4)

Therefore, the r. m. s. output noise is

/No0 (O) II!.nf (3. 6. 5)

Our problem, therefore, is to maximize

peak fl f(t) 1 peak[ (t) (3. 6.6)

I NOi&(O)UIlj2.I JN 0$(O) ll2 

Now, if J2 is given, then, from (2. 2. 2l),the peak is reached

when f(t) = !L4(t). By the same proof (the Schwartz inequality) if f(t)

is given, in the form Al+(t), then the peak is reached for . = 12

In either case, the numerator in (3. 6. 6) becomes A.*24(0), so that

(o) 11 all 1 a11 II
= = = (3.6.7)

e No (O) aN O

To write this answer in a more familiar form, recall that

/7 l)~ I!!= bt /T21(O) j [4t(t)]2 dt = | f f2(t) dt

so that

/| f(t) dt

which is the well-known result (the 2 in the denominator comes from

There is a trifling bit of cheating here. Actually, 12 could very

well consist of an infinite series of terms, and if it did, it would no

longer belong to O and our algebra would not apply to it. However,

either by omitting the tail of the series or closing one eye, it is clearly

possible to carry on.
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the fact that our noise power density is defined per radian/sec rather

than the usual cycles/sec).

Recalling that a. is just i2 folded over in time, we see that our

"signal" and network bear the expected relation to each other. Also,

the final result depends only on signal energy and noise power density,

as it should.

B. LEAST-PEAK-ERROR INTERPOLATION AND EXTRAPOLATION

Suppose that we are interested in finding a network with the

property that, for any probe f(t) 6 S, the output will be the best esti-

mate of f(t i a), where by best we mean that the peak difference between

the desired output, f(t± a), and the actual output, faf(t), is a minimum.

If we can obtain such a network l, and if its specification depends only

on the class S and not on the properties of a particular f S , then

that network will also be the optimum operator for any signal corre-

sponding to the class S 4 .

It turns out that this problem can be solved very easily. With

f(t) Of (t)

Fig. 3.6.2

The desired output is f(ti a).

reference to Fig. 3. 6. 2, the instantaneous difference e(t) between actual

and desired output is

e(t) = 2f(t) - f(tc a) = (12 - E a ) f(t) (3. 6. 8)

From Chapter II we recall that
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le(t)max = (l- E'c) f(t)lmax < f 11 - 11. 11 11 - E a II (3.6.9)

It will be recalled that the bound in (3.6.9) is actually attained for

some particular fo(t) 6 S 4 . Since equality is reached for some input,

we shall solve our problem if we minimize the bound on the maximum

error.

Suppose, for example, that we want a predictor E a (a> 0), and

wish the optimum t to be physically realizable. This means that fl.

must be of the form Z; n E n (tn > 0). Clearly, 1l - E 1 is a
n

minimum when 1. is the projection of Ea into the realizable subspace
-t

of O; or, if (as is the case in some practical problems) a set { E n)

is prescribed, then II... II is a minimum when 12 is the projection of
-t

E a into the manifold spanned by E n. Since we already know how

to obtain the coefficients for these projections (see section 2. 7), the

problem is solved.

Before considering this problem a little further, it is interesting

to notice that our simple discussion has actually yielded us a surprisingly

general result:

The linear extrapolation (interpolation) derived from projection

is the best possible (in the sense of least peak error) for func-

tions belonging to any +-class. For such functions, any other (3. 6. 10)

linear extrapolation (interpolation) technique known in numerical

analysis can at best only be as good as projection.

*For example, in 3-dimensional space, picture a vector v sticking

out of a plane, but not perpendicular to it. Consider the projection vp of

v on the plane, and any other vector u in the plane. From the Pythagorean

theorem, the distance from u to v, d(u, v), is given by d (u,v) = d(u, Vp) +

dZ(Vp, vy. Since all terms are positive, and the last one is independent of

u, the distance d(u, v) will be a minimum when d(u, vp) = 0, which implies

that u = vp. This argument is the substance of the rigorous proof of our

statement, and its validity is independent of the dimensionality involved.
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Returning to the original problem, we recall that two situations

were considered: one in which the only requirement was that the opti-

mum network 2 be physically realizable, and the other in which a set

of sample points { tn) were prescribed, so that a had to be a linear
-t

combination of the set E n}.

Let us discuss the second possibility first. It might correspond

to the physically important situation in which a scanning device yields

arbitrarily spaced samples of a process. This might happen either

because of randomly imperfect operation of the device, or because of

its intrinsic nature (for example, a device that samples only when a

certain threshold is exceeded). Suppose that the device has been

operating for some time, so that a certain amount of data has been

collected, the data consisting of sample values and corresponding

sample times. The problem is; How should this information be used

to estimate with least peak error the values of the process between

sample times (interpolation) or the values of the process before or

after the sampling started or stopped (extrapolation) For probes

f S, or for signals corresponding to some 9!-class, our result gives

the best possible linear procedure.
-t

Another situation in which a set {E n} might be prescribed is

if a tapped delay line is available, and it is desired to make a predictor

(or increase the effective length of the delay line) using available equip-

ment. In that case, the tap positions on the line determine the set

itn1 

If there are no restrictions except realizability ona, the problem

is no different from the previous one until the question of efficiency is
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raised - and then it becomes prohibitively difficult. That is, if some-

one asks, for example, how should ten taps be placed on a line of fixed

length so as to obtain the smallest possible minimum error, no answer

is available. (There are, of course, a few common-sense rules: if

the problem is to represent E a , don't choose the {E n) orthogonal to

it; if E - P is contained within the available length of delay line, choose

p as a tap point.) But the general question of the efficient representa-

tion of vectors by sets of other vectors is one that mathematicians

have avoided most meticulously.
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APPENDICES

A. 1 LINEAR INDEPENDENCE OF {i(t - t)}.

We wish to show that, given an arbitrary finite set of

numbers {tn}, there exists no corresponding set of constants

{an} (not all of them zero) with the property that

f(t) = Zan q(t - tn) - 0 (A. 1.1)

n

for all values of t.

Consider the Fourier transform F() of f(t). Clearly,

(A. 1.1) requires that

F(w) = ) K_ an en = 0 almost everywhere (A. 1.2)

n

But then the known linear independence of any finite set of functions

{e 'wtn } over any interval (in particular, over the non-zero bands of

A,). implies that (A. 1.2) can be satisfied only if an = 0 for all n.

A. 2. CERRILLO KERNELS.

We wish to show that the Ceriillo pure transmission kernels

Tm, defined by

m

T = E-Z§ (-l)k(m+l) E-(2X)k (A.2 1)

k=0
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satisfy

T -T = E- Vm m-1 - ZX (A. 2. 2)

Recalling that, by definition, V = (1 - E ); V2 = Vp(V = (1 - E 

... and so forth, we have

m

V = ( 1 - E-l) m =Lml) (-E )k

k=O

(A. 2. 3)

On the other hand,

m m-1

E (T -T 1) = (k+ 1) (-E) -k- (k+) (-E-)k (A. 2.4)
k=O k=O

Equality of (A. 2. 3) and (A. 2. 4) requires that corresponding coef-

ficients be equal:

( k+1) (k+) =(k) for k = 0,..., m-l(m+1 k+l k

(A. 2. 5)

( k + (m for k = m

The second relation in (A. 2. 5) is trivial. To see that the first is

satisfied, it is only necessary to insert the meaning of the binomial

coefficients in terms of factorials.

A. 3 BOUNDS.

We desire a bound on
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I*I n n n I-v~P4~i~ i''" (A. 3 1)Since

In Vn = [(1-E-p)* (1E ~)]n = [(1-E)(l-E)]n

= (E-_E) n (E- n = (l)n En n (A. 3.2)

our problem reduces to finding a bound on

~(0) (- 1) V n) (A. 3. 3)

We notice that it is easy to obtain bounds on the derivativesof sin x
x

dTherefore, if we can obtain a relation between V and a-, we shall

have our answer.

If we consider a continuously differentiable function f, the mean

value theorem for derivatives asserts that

V f(x) = f(x) - f(x-t) = Lf'(), where E[x,x-R]

(we denote differentiation by primes). Therefore,

IV fl Lf' Imax = ji[uniform bound on f'] (A.3.4)

Similarly, since

72 f(x) = V[Vf(x)],

Iv2 f : I=V(Vf)I I I(Vf)' Imax = FVf max L If" Imax

so that

Iv 2 fi fl 
2 If " Im a

x = 2[uniform bound on f']
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Repeating this procedure n times we find that

IV n ff nIf(n)Ima x (A. 3. 5)

With this result, we can immediately place a bound on (A. 3.3).

Recalling that the spectrum of

sin Wt
~w(t) = 2W sin Wt

is unity for W I< W and zero outside, we find that

W

+(k)(t) =W

-W

W
1~ (ki j

(jo)k ejwt dw

I.olk d = 2

W
k ZWk+l 1

A d = k+l

Therefore, from (A. 3.5) and (A. 3.7),

n n 2W2 n + 1 2 n

_ V _ _(_nL) _ __ __ 2W ( i (A. 3 8)(0) 2W Zn+ n+ 

so that, finally,

b lo < I cwra (A. 3. 9)

This bound becomes increasingly better as tLW decreases to zero.
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A.4 ANALYTICITY OF f E Sj..

We wish to prove that any probe belonging to any class _Si

is, if time is considered a complex variable, an analytic entire

function of time. We shall only show this for probe classes S that

have a defining spectrum 'I(w) for which a finite number W exists

beyond which (wa) - 0. (To see that this leaves out some possible

cases, see Remark 2, Section 3. 5). For a different proof of a

similar statement, see Whittaker (17) who shows that his cardinal

functions, which correspond to our probes, are analytic entire.

Let W be a finite number with the property that (w) - 0

for w > W. Then, if f E S, it is clearly also contained in Sv,

where W is defined in (A. 3. 6). Then f(t) can be represented by

f r(t) = F(Z) e j t do = d k! F(W) (A. 4. 1)

Wek -W =

The series for the exponential is uniformly convergent for all Wa.

If the spectrum F () of f (t) is reasonably well behaved (for example,

if it is bounded), multiplying the terms of the series by F () does

not affect the uniformity of convergence. Therefore, summation and

integration may be interchanged (see, e. g., Whittaker and Watson

(29), p. 78) yielding for f (t) the series representation

f (t) X k! W F (w) d (A.4. 2)
0 -W
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To determine the radius of convergence of this series, we apply

the root test:

n ij W In(d1/n /n
la /n /X F(w) d = F(w) d-w (n!)W

(A.4. 3)

Using the Schwartz inequality on the integral, and recalling that f

and therefore F are integrable square,

1
2n+_ 2n

ai L/n It·ZnFe dr1 (A.4.4)

n (n!)1/n (2n+)1/n

As n - oo, the bracket approaches unity, and W n+l/Zn approaches

W. The important term is the factorial, and using Stirling's approx-

imation we see that a 1/n approaches zero faster than .11 as

n --. oo. Since the radius of convergence of the series (A. 4.2) is

given by

1

R = lim inf anl n I

we therefore see that the series converges for all finite I tjl. Since

(A. 4. 2) is a power series in t, f(t) must be an analytic entire func-

tion of t.

A. 5 APPROXIMATE DETERMINATION OF AN INTEGRAL.

We desire an approximate determination of
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koW

- 0oW01
(1 - sin x) dx

From the analysis preceding (3.1.16) we have that

sin x x x1 - x = 1 + -

and also that, for Ixl 1,

2 4 2x x sin x x
t -Th1 1t -ax T31

so that

koW 2 4 XkoW

4 (o 315 dx
of o

XoW
(1 - x dx */ (2)2 dx

(1 x -23x
0

(IXoWI s1)

Integrating the last member of (A. 5. 2), we obtain

I ._Lo x (xoW)4

5(3 1) 5(36)
(IXoWI 1)

It is clear from (A. 5. 2) that this bound does not differ appreciably

from I itself. A numerical confirmation of this is given in the

discussion following (3. 3. 10).

A.6 MAXIMUM VALUE OF fo(t).

We wish to determine where

fo(t) = z3($) (E s;)* 4(t) (A. 6. 1)

94

(A. 5. 1)

(A. 5. 2)

(A. 5. 2)



has its maximum value, and what this maximum value is.

From the definition of the operators

f (t) =1 E (l- ZE + E ) +(t)

- 21() (E _ - 2E0 + E\X) 4(t) (A.6. 2)

Expressing (A. 6. 2) as an inverse Fourier transform,

f1(t) =---)/ | 4X) (e j - 2 + e ) ej t d
f(t )= ?(0)

o(0)
2- (0) |1 it12 ejwt dJ

X

= - 2(0) I J I1- e I cost d (A.6.3)

X

the last step following from considerations of evenness of the inte-

grand. But

IJ I -ejIWX2 Icos tj d i - eZi Icost| I dw
X X

/ j1 - ej Z dok (A.6.4)

X

and the bound (A. 6.4) is actually reached for t = 0. This establishes

both the location and value of the maximum of fo(t).

To obtain a simpler explicit determination, we return to
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(A. 6. Z2) where, because of the symmetry of +(t) about t = 0,

f ( 0 ) = -1) (24(X) - 2Zt(0))

so that the maximum value of f is given by

Ifo(0) = 1 - i(X) (A. 6. 5)
$(0)
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