
Derivation of Context Axioms and Semantics of Data
with the Domain Model Editor

by

Christopher Leung

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science
and

Bachelor of Science in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

@ Christopher C. Leung. MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the
right to do so.

Signature of Author
Department of Electrical Engieering and Computer Science

May 20, 1998

Certified by , -
Stuart E. Madnick

John Norris 1Maguir Professor Of Information Technology
Thesis Supervisor

Accepted by
Arthur SMt

Chair
Department Committee on Graduate Students

- -, 11. 1, - -1

Derivation of Context Axioms and Semantics of Data

with the Domain Model Editor

by

Christopher C. Leung

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science
and

Bachelor of Science in Electrical Science and Engineering

Abstract

The Context Interchange Strategy [Siegel and Madnick, 1991] presents a novel
perspective for mediated data access in which the Context Mediator detects and
reconciles semantic conflicts among heterogeneous systems through comparison of
contexts associated with any two systems such as a database and a web site. Examples of
conflicts are use of different currencies and scale factors for representing the money
amounts. To resolve these conflicts, the Context Interchange System generates mediated
queries that take into account all the possible conflicts when retrieving the data from the
sources. This involves the Context Mediation process [Goh, 1996], which is made
possible by representing semantics of the data source in the form of contexts and domain
models, which will be interpreted by the context mediator and transformed into a
mediated query. A User can define and hand-code the context of a data source, but it is
difficult to visualize and understand how each semantic type relates to the others in text
format. It also requires users a lot of time to learn how to do the coding.

To solve this problem, I designed a system, which consists of: 1) the domain model
editor, a graphical tool which enables the users to define the domain model graphically
using a web browser; 2) the domain-to-context translator, which generates the domain
model into source code written in PENNY; and 3) the remote method invocation tool,
which stores the data source information in the host machine obtained from the client,
and allows the PENNY compiler to generate the information to be evaluated by the
Context Mediator.

Thesis Supervisor: Stuart Madnick
Title: John Norris Maguire Professor of Information Technology

Acknowledgments

As part of the work in the Context Interchange Project, this thesis constitutes years of

research and design work by the Context Interchange Group. It brings to me an precious

and exciting experience as I enter the next phase of my life.

I would like to acknowledge and thank all the people in the group who have

contributed their time and effort in the world of Information Technology. First of all, I

would like to thank Professor Stuart Madnick for his admired leadership and inspirational

research work that started the Context Interchange Project. I would like to thank Dr.

Michael Siegel for giving me the opportunity to work for this project. His generosity and

constructive advice create the key driving forces that make me work harder and do better.

I would also like to express my gratitude to Dr. Stephane Bressan, Tito Pena, Allen

Moulton, and Natalia Levina who have provided invaluable support to me in carrying out

the design work of my thesis project, as well as to my coworkers Ahmed Shah, Steven

Tu, Ricardo Ambrosia who have taken their precious time sharing ideas with me

regarding the project. And my appreciation to my friends (in no particular order) Priscilla

Lee, Lawrence Yee, Jervis Lui, Henry Tang, Ernie Yeh, Ed Kim, Wai Kit Lau Mike Shao,

James Chen, Yu Zhou, Preston Li, Albert Wong and Francis Wong, who have shared

friendship and a fun and memorable college life with me. Thanks for their kindness and

genuine concern when I was in grief.

I would like to express my deep love to my family, especially my parents Michael and

Mary, who have granted me unconditional love throughout my life; my brother Terence,

my sister Gladys, who have given me all kinds of support in both my career and my life;

and my beloved nanny Man Ying Wong, who has spent a lot her effort in bringing me up

and helping my entire family. Finally, I would like to thank God, for His love, mercy, and

forgiveness. Without Him, nothing can happen.

Contents

1. Introduction to Context Interchange 6

1.1 M otivation of the Project.. 7

1.2 Thesis O utline .. 9

2. Construction of the Context Interchange Data Model 10

2.1 Overview of the Context Interchange System.............................. 10

2.2 Integration Scenario 14

2.3 The COIN Framework.. 20

2.4 Domain Modeling in COIN................................. 30

3. Concepts of Mapping Data to the Domain Model with the PENNY Language 34

3.1 Defining Semantics Relations in the Domain Model................................. 35

3.2 Mapping Sources to the Domain Model via Elevation Axioms........................ 37

3.3 Defining Context with Context Axioms ... 40

4. Design and Implementation of the Domain Model Editor 43

4.1 Overview of the Context Interchange Prototype 43

4.2 Design of the Domain Model Editor System ... 45

4.3 Implementation of the Client Application with Java .. 51

5. Conclusion: Limitations and Future Work 54

5.1 Using Java Development Kit... 54

5.2 Domain M odel Editor... 56

5.3 Integration with the Current COIN Components 57

Bibliography 58

Appendix A User Guide and Programmer's Reference 60

A l-1 G etting Started ... 65

A1-2 Using the Graphical User Interface 66

A1-3 Graphical Representation of the Domain Model 68

A1-4 Using the Code Generation Wizard 70

A1-5 Saving and Loading Different Formats of Documents 77

A 2-1 Class H ierarchy 81

A2-2 Functional Specifications of Each Class and Description of All Functions 83

List of Figures

Figure 2-1 Illustration of Data Retrieval Problems from Multiple Databases 12

Figure 2-2 Architecture of the Context Interchange System................................. 13

Figure 2-3 Looking for Company's Financial Information from Disclosure.................16

Figure 2-4 A Subset of Financial Data retrieved from Disclosure by the Wrapper

on 05/10/98 16

Figure 2-5 Subset of Data from Worldscope compared to Data from Disclosure 18

Figure 2-6 Subset of Currency Data from Olsen web site 19

Figure 2-7 A summary of how queries are processed within the Context

Interchange strategy ... 22

Figure 2-8 Context Mediator Internals.. 24

Figure 2-9 Assumptions of Sources and User's Preference 27

Figure 2-10 Queried Results from Worldscope without Mediation 28

Figure 2-11 Mediated Queried Results using Exchange Rates from Olsen....................30

Figure 2-12 Graphical Representationof Different Components in the Domain Model....31

Figure 3-1 The Domain Model for the Integration Scenario ... 35

Figure 4-1 Architecture of the Context Interchange (COIN) System 44

Figure 4-2 The Architecture of the Domain Model Editor System.............................. 46

Figure 4-3 Components of the Domain Model Editor .. 47

Figure A-i The Domain Model Editor .. 66

Figure A-2 The File and Edit M enus ... 67

Figure A -3 The V iew M enu... .. 67

Figure A-4 GraphicalRepresentationof Different Components in the Domain Model......69

Figure A-5 Creating new system and semantic nodes and changing the names 70

Figure A-6 The Code Generation Wizard Box 71

Figure A-7 Generating Context Axiom s ... 73

Figure A-8 Assigning Entities to the Domain Model 74

Figure A-9 Generating Elevation Axioms .. 75

Figure A- 10 Generating Elevation Axioms ... 76

Chapter 1

Introduction to Context Interchange

In the fast-growing Information Technology world, database systems are essential

tools for companies and organizations to store large amount of data related to their

businesses across different parts of the world. With the introduction of the Internet, the

World Wide Web provides an easy way to quickly access data from different database

systems. Many researchers have been paying close attention to the various issues

regarding database system integration because the number of information sources that are

being physically connected has grown rapidly. With this growing abundance of data

existing in different systems, the problem of understanding and interpreting it all has

become a definite challenge [Madnick, 1996]. While the Internet has provided an

excellent infrastructure for physical connectivity (the ability to exchange data) among

disparate data sources and receivers, it has problems providing a logical connectivity (the

ability to exchange data meaningfully) among them [Pena, 1997]. The real problem

occurs when the data sources and the receivers maintain different assumptions about the

data being exchanged [Goh, 1996]. We refer to such difference as the contextual

difference among sources.

One example that illustrates this problem is the handling of dates such as the

beginning date of the fiscal year. The date "7/1/97" means July 1, 1997 in American

standard whereas it means January 7, 1997 to a European. Another example would be the

use of the dollar sign "$." It can represent amount of money in U.S. dollars, but it can also

represent Hong Kong dollars. The data would have a different meaning, depending upon

different assumption about the data. Under these circumstances, physical connectivity

does not lead to logical connectivity. Such issue is referred to as the semantic

interoperability among autonomous and heterogeneous systems [Sheth and Larson,

1990].

The Context Interchange (COIN) provides a strategy that gives a novel approach to

detecting and reconciling semantic conflicts [Siegel and Madnick, 1991] between any two

systems. The logical connectivity of two systems can be essential when manipulating the

information because the meaning of this information can depend on a particular context of

the data source. In essence, each information source is associated with a context [Pena,

1997], which is a set of axioms describing certain assumptions about the data. An attempt

by the Context Interchange to identify a formal conceptual basis of systems during the

Context Mediation process is the use of the domain model, a derivation of the semantic-

value model [Sciore, Siegel, and Rosenthal, 1994] that defines the data property of a

context. The provision of the Context Mediation service by the Context Interchange

[Siegel and Madnick, 1991] only requires that the user furnish a logical (declarative)

specification of how data are interpreted in the form of a domain model and how

conflicts should be resolved. The Context Mediator that provides such service will take

care of detecting and reconciling semantic conflicts, and these operations are designed to

be transparent to the user.

1.1 Motivation of the Project

In order for the Context Mediator to identify and reconcile the conflicts that may arrive

from evaluating the data from different data sources, we need to define a data model that

specifies how the data are interpreted in terms of the contexts of their sources. In COIN,

the model used is called the Domain Model. It is a "logical" data model that uses

mathematical logic as a way for representing the values of data and a language for

expressing operations on an underlying data structure. It is also an "object-oriented" data

model that supports object-identity, type hierarchy, inheritance, and overriding methods.

The main purposes of deriving the Domain Model for Context Mediation are to:

* Describe the semantic objects and relations presented in the context of the sources,

e.g. databases and web sites;

* Map the data through the definition of Elevation Axioms; and

* Define methods for converting the data from one context to another with the

definition of Context Axioms.

As the Context Interchange Project began in 1996, the Domain Model is defined in a

language called COINL [Goh, 1996]. The expressions and symbols used in this language

are meant to illustrate the concepts of defining semantics relationships and data mapping

in the Domain Model. Its complexity makes it hard to read and inconvenient to program

because the various symbols do not appear on a keyboard. About a year later, the PENNY

language and the PENNY compiler [Pena, 1997] were implemented to simplify COINL

by redefining the expressions in a more readable format'. However, defining the new

language is not the complete solution because one would still have a hard time visualizing

and understanding the complex relationships between the data in the Domain Model. In

addition, as we shall discuss in Chapter 4, the source code resides in the server system

and is hard to be retrieved by an end user who wants to read or edit the code. In order to

resolve these problems, I designed the Domain Model Editor System which:

* Helps the users, who have trouble understanding or deriving the Domain Model in

COINL or PENNY, better visualize the relationships between data with a graphical

representation of the Domain Model; and

* Provides a user friendly programming environment for users to derive the Domain

Model, map the data from the sources to the model, and define conversion functions

for the Context Mediation process.

For more details including the syntax of PENNY, please refer to Chapter 4.

1.2 Thesis Outline

The previous sections briefly explain the use of Domain Model as a basis for

reconciliation of data in COIN. This thesis will give more insightful details on how the

construction of the model helps the process of Context Mediation.

Chapter 2, "Construction of the Context Interchange Data Model," gives an

overview of the COIN framework and the data modeling concepts behind it. It describes

how the Context Mediator interprets the Domain Model and generates mediated queries

in order to return appropriate answers to the users. The chapter includes an example that

explains a data integration scenario that involves data modeling and mapping in three

financial data sources, namely Disclosure, Worldscope, and Olsen.

Chapter 3, "Concepts of Mapping Data to the Domain Model with PENNY

Language," goes into details on how to actually define the Domain Model in the PENNY

language. It also explains how to map the data sources to the Domain Model via

Elevation Axioms represented in PENNY; and how to define the conversion functions

with the Context Axioms.

Chapter 4, "Design and Implementation of the Domain Model Editor," looks into

the system perspective of Context Interchange, particularly the Domain Model Editor. It

discusses the advantages and disadvantages of implementing the Editor in Java and Java

RMI based on different design issues such as extensibility, portability, security, etc.

For conclusion, Chapter 5, "Conclusion: Limitations and Future Work,"

discusses the limitations in the current versions of the Java Development Kit and of the

Domain Model Editor, and the possible future work that might improve the current

implementation.

At last, Appendix A, "User's Guide and Programmer's Reference," provides a

step-by-step guide on how to run and use the Domain Model Editor. It is also a complete

Programmer's Reference for anyone who is interested in extending this application.

Chapter 2

Construction of the Context Interchange Data

Model

The focus of the this chapter is to describe the composition of the Context Interchange

data model that is used by the Context Mediator to answer an SQL query submitted by the

user. The first section gives an overview of the components in the COIN System that are

responsible for evaluating the Domain Model and generating mediated queries for

answering users' queries. As a practical example, the second section presents an

integration scenario that introduces some conflicts which might appear when retrieving

data from different data sources. It also describes how the Context Mediation process can

reconcile these conflicts by identifying the contextual differences from the context

definition of each source. The last two sections will go further into explaining how to

construct the Domain Model as the knowledge base of contexts for Context Mediation,

and how to map to the Domain Model.

2.1 Overview of the Context Interchange Architecture

Context Interchange, or COIN, provides a mediator-based architecture for logical

connectivity among disparate data sources. A conventional database query only retrieves

the "raw" data directly from a database. It does not take into account the real meanings of

such data as well as the conflicts that might arrive from integration among multiple data

sources.

2.1.1 Major Operation in Context Interchange

The major goal of Context Mediation is to rewrite the user's SQL query such that

the data exchange among sites can be achieved under consistent conditions, for example,

by converting all money amounts to a single currency, keeping the same date format as

"mm/dd/yy", and using a scale factor of 1, etc. Suppose that a user, for example, a

financial analyst, wants to know which publicly-traded Japanese companies were

profitable last year from database A (dbA). The user also wants to find out the stock

prices of these companies at the end of last fiscal year from database B (dbB). The user

can formulate an SQL query as follow:

SELECT dbA.companyName, dbA.revenue, dbB.stockprice FROM dbA, dbB

WHERE dbA.revenue > dbA.expense

AND dbA.companyName - dbB.tickername AND dbA.fiscalDate = dbB.date;

The query is trying to look for any company in database A which has positive profit

(revenue > expense), match its name with the corresponding entry found in database B,

and list its the stock price on last day of the fiscal year. The results will contain the name,

revenue and stock price of any company with more than zero profit. For the inquired

results in this example to display the correct values, the following assumptions have to be

true:

* Use of Names

In order to retrieve the company's information from both databases, the convention

for company names must be consistent. Generally, a stock price stored in a database is

referred by the ticker name of the company instead of its official name. For instance,

database B may use "HMC" to represent the name for Honda Motor CO. Therefore

the above query entered by the user will not be able to match the right names in both

databases. This problem is presented in Figure 2-1 as an illustrative example.

* Date Format

The fiscal date in database A and the date that the stock price corresponds to in

database B must be in same format (both in "mm/dd/yy" or "dd/mm/yy"). Otherwise,

the stock price might be obtained from the wrong day or it might not be found. Figure

2-1 shows that database A uses "mm/dd/yy", whereas database B uses "dd/mm/yy."

Database A - Listed: Company Name, Revenue, and Expense

Honda Motor Co 5,290,000,000 5,080,000,000 31/03/98
Toyota Motor Corp 7,200,000,000 6,890,000,000 31/03/98

Database B - Listed: Company's Ticker Name, Date of Trade •

HMC 63.875 03/31/98
TOYOY 50.625 03/31/98

Figure 2-1 Illustration of Data Retrieval Problems from Multiple Databases

Currency

As shown in Figure 2-1, database A might hold money amounts in Japanese Yen (Y)

while database B might present the stock prices in US Dollars ($). The users would be

confused by the mixture of different currencies and could make mistakes as they do

calculations based on these two values.

The Context Mediator helps reconcile the conflicts like those described above by

taking into account all the contextual differences among the data sources. There may be

more conflicts arriving from data integration, as described in Section 2.2. Section 2.3,

"Query answering by the Context Mediator" will discuss the mediation process in more

details.

2.1.2 Context Interchange Architecture

Let us first look at the overall architecture of Context Interchange System and the

responsibilities that each component takes:

2 Conventionally, the stock prices are presented in fractions, e.g. 63.875 should have been 63 7/8 as seen in
web sites like: http:llquotes.yahoo.coml. This example is showing decimals for simplicity.

CONTEXT MEDIATION SERVICES

LocalDBMS Domain

supporting intermediateprocessing

Execution Optizer Context
Optimized Mediated Mediator
SQL Query Query

I

A.ioms . .

User

Query

ntensional Ansive

Extensional Answers

--------------- *~"" apper

Elmdaton
Axiom

(C-oxt
SAxiornms - '-

LocalDBMS-
..................................... •

I NK. Wrapper

Elmtioa
',. Non-traditional

L-J Data Sources
bAxioms~ ~ (eg, web-paes)

... ' ' ' ' ' ' '

Figure 2-2 Architecture of the Context Interchange System

The primary operations of Context Interchange include:

Context Mediator

The Context Mediator, as seen in Figure 2-2, translates an SQL query submitted by an

end-user to a well-formed mediated query. The translation is based on the semantics

information provided from the Domain Model, as well as the Context and Elevation

Axioms that describe the source by specifying the semantic relationships and

conversion functions. An example of an end-user can be a financial analyst who

wants to look at some financial information that may be derived from the data

provided by several vendors' database servers and web sites. Section 2.3 will describe

more of this process.

* Optimizer

Generates an optimized SQL Query plan that reduces some redundancy in the

mediated query. This process helps to reduce the number of possible query statements

and hence speeds up data retrieval from the sources.

I I
: I

* Executioner

Executes the plan by dispatching subqueries to obtain data from the sources, collates

and operates on the intermediary results, and returning the final answer to the user

who submits the query. There are two processes that serve as data collection tools for

the outside sources: 1) database gateways, which provide physical connectivity to

databases and network and 2) wrappers, which collects the data from the web pages

generated by the web sites. The goal is to insulate the Mediator Processes from the

idiosyncrasies of different database management systems by providing a uniform

protocol for database access as well as a canonical query language for formulating the

queries [Goh, 1996].

Chapter 4 will give a more detailed system perspective view of the Context

Interchange System. This chapter will focus more on the composition of the COIN data

model necessary for the Context Mediation process, as described in the following

sections.

2.2 Integration Scenario

This section gives an example that helps the users understand how the data from different

sources, namely Disclosure, Worldscope 3, and Olsen, are mapped together and integrated

in the Context Interchange system. It shows that every data source may have a different

context associated with it, for example, it may use a different date format, or the money

amounts may use different scale factors and currencies. Such conflicts would cause

difficulties or even problems in deriving some values from the data of more than one

sources. To resolve this problem, the Context Mediator in the Context Interchange

System uses a strategy that maps the data to the Domain Model, which consists of 1)

semantic types that represent these data, and 2) conversion functions that finds the output

value based on both the context of the source and of user's preference.

3 For more information on Disclosure and Worldscope, please visit their web sites at:

http:llwww.worldscope.coml and http:/www.disclosure.coml

First of all, let us look into the data available in the sources:

Disclosure

A unit of Primark Corporation, Disclosure is a provider of financial information delivered

via online and CD-ROM-based research tools. Subscribers of the Disclosure's web site

have access to company financial and management information, updates and analysis of

insider trading, and business news from over 2,500 publications and news wires. The

company also provides data service for other web sites such as CNNfn (http://cnnfn.com)

and Quicken (http:llwww.quicken.coml).

Disclosure uses the Oracle's relational database server4 for storing the data.

Generally, to retrieve data from a database, one has to write a procedure that sends SQL

(Standard Query Language) queries to the server and returns column(s) of data as results;

whereas in the Context Interchange System, the wrapper does the data gathering job by

retrieving the data from a web page generated by the source - Disclosure in this case.

As an example, we look at Chrysler Corporation's information from the Disclosure

web site:

4 Oracle Corporation (http://www.oracle.com/) has released a new object-relational database server
(Version 8) which combines object-oriented designing structures with current relational databases. Any
Oracle Server whose version is 7.3.x or below is a relational database.

IE -s

Figure 2-3 Looking for Company's Financial Information from Disclosure

We enter the name "Chrysler Corp" in the search form and the site returns the

information shown in the above web page. It displays a handful of financial information

useful for analyzing the performance of a company, but it may be very time-consuming

for a user who wants to obtain similar information for 3 different companies because the

user has to repeat the same search 3 times. The wrapper of the Context Interchange does a

faster job by sending 3 queries to obtain the following list or portfolio of data:

Company Name Fiscal Date Net Income Net Sales Country

'CHRYSLER CORP 12131/97 2,805,000 61,147,000 'UNITED STATES'

'FORD MOTOR CO' 12/31/96 4,446,000 146,991,000 'UNITED STATES'

'HONDA MOTOR CO LTD' 03/31/97 221,168 5,293,302 'JAPAN'

Figure 2-4 A Subset of Financial Data retrieved from Disclosure by the Wrapper on

05/10/98

de-Wled U' S.&
inte.ri ational

DISCLOSURE I Investor company, reports

The Disclosure database consists of a single relation:

discaf(companyName, fiscalDate, netincome, netSales, locationlncorp)

Each item inside the brackets represents the names of the column of data in the

database table. The relation describes the financial performance of each company. There

are a few notes regarding the "meanings" of the data of this site:

1. Choice of Currency

First, take a look at all the numbers in the above table. Without any prior knowledge

of the source, one would be confused about the currency that the money amounts

represent: Is the Honda's net sales "5,293,302" in U.S. Dollars ($) or Yen (Y), or in

another currency? (According to the web site, all the values are in U.S. Dollars.)

2. Use of Scale Factor

Second, notice the labels "Net Sales (000's)" and "Net Income (000's)" inside the

web page in Figure 2-1: the net income and net sales are presented in thousands of

dollar units. The Context Mediator, which evaluates and integrates such values, must

have known the existence of the scale factor. Otherwise, it would read the wrong net

sales as "5,293,302" instead of "5,293,302,000."

In the above example, we discover the "ambiguities" of data presented in a single data

source. The introduction of another data source would possibly cause more conflicts due

to the contextual differences in the way they present the data. Let us look into another

web site as an example.

Worldscope

Worldscope is an international financial database useful for portfolio managers, securities

analysts, corporate finance professionals and researchers. It covers more than 90% of the

world's market value, with 10 to 18 years of historical data on over 15,000 public

companies in more than 50 developed and emerging markets. Worldscope also stores the

data in Oracle database servers, but the relation is represented differently as:

worldAF(companyName, latestFinDate, netincome, netSales, currency)

The following gives a table of data queried from Worldscope as a comparison to data

from Disclosure:

WORLDSCOPE - worldAF(companyName, latestFinDate, netincome, netSales, currency)

'CHRYSLER CORP' 12131197 2,804,900,000 61,146,900,000 'USD'

'FORD MTR CO' 12131196 4,450,000,000 147,000,000,000 'USD'

'HONDA MTR CO LTD' 03/31/97 29,393,227,200 588,479,835,800 'JPY'

DISCLOSURE - discaf(companyName, fiscalDate, netincome, netSales, locationlncorp)

'CHRYSLER CORP 12131197 2,805,000 61,147,000 'UNITED STATES'

'FORD MOTOR CO' 12/31/96 4,446,000 146,991,000 'UNITED STATES'

'HONDA MOTOR CO LTD' 03/31/97 221,168 5,293,302 'JAPAN'

Figure 2-5 Subset of Data from Worldscope compared to Data from Disclosure

Let us take a look at the major differences between these two formats that might cause

confusion to users who are looking at these two sites:

1. Conflict over scale factor and currencies

First notice the differences in the net income and net sales of say, HONDA MOTOR

CO shown in each of the two tables. This is due to the use of different scale factors

and currencies by each web site: For Worldscope, Honda's net income, represented as

"29,393,227,200" is in Japanese Yen (Y) with a scale factor of one, whereas for

Disclosure, its net income: "221,168" is in thousands of U.S. Dollars ($). These two

numbers are conceptually the same thing but represented in different contexts.

2. Conflict over company name

Observe the different conventions in naming the companies by the two web sites.

Worldscope is using an abbreviated term 'MTR' in place of 'MOTOR' probably for

saving memory space. Unlike conflicts such as using different scale factors (1 --

1000), the conversion in names are idiosyncratic and there are no systematic rules for

mapping from one representation to another. One might refer to some multiple

widely-adopted standards for acquiring proper company names (e.g. Reuters, Dun &

Bradstreet).

As described in the beginning of this chapter, we know that in order to ensure

accurate results in evaluating the data, it is very important that the Context Mediator

know about all the possible conflicts arriving from contextual differences. To achieve

this, we have to derive the domain model, context axioms, elevation axioms, and

conversion functions for the Context Mediator to reconcile these conflicts. The following

sections will explain how to create the context information and formulate the conversion

functions based on the integration scenario..

Olsen

Before going on, we introduce another web site that provides the exchange rates and the

reference dates for the Context Mediator in order to convert the money amount to the

appropriate values. Figure 2-5 shows the data retrieved from Olsen for this example:

Olsen - exchange(sourceCurr, targetCurr, date, rate)

'Japanese Yen' 'US Dollar' 31/12/96 .0086
'Japanese Yen' 'US Dollar' 31/12/97 .0092
'Japanese Yen' 'US Dollar' 31/03/97 .0090

Figure 2-6 Subset of Currency Data from Olsen web site

From the Olsen database, which has a relation of:

exchange(fromCur, toCur, date, rate)

we can retrieve the currency exchange rates valid for a particular date. There are a few

considerations we should make notice of before using the data from such database and

also databases in general:

1. Use of a different format in date

The dates in Figure 2-3 show that the format is in European style "dd/mmlyy"

whereas from Figure 2-1 and 2-2 that date formats are in American style "mm/dd/yy."

That means when we are mapping the date to the Domain Model, we must apply

conversion functions to change the format so that the Context Mediator will not get

confused.

2. Whether use of such reference date is correct

Currency conversion requires the use of an appropriate reference time-point,

which may be different from site to site. For example, one source may use the latest

financial-reporting date as reference, while the other may use the exchange rate "as

of' the day the money amount is loaded into the database. In general, this information

constitutes a piece of meta-data which needs to be made explicit in the corresponding

context if variations in change rates are important for the problem domain we are

interested in.

2.3 The COIN Framework

According to Goh [1996], the COIN framework builds on the COIN data model to

provide a formal characterization of the Context Interchange strategy for the integration

of heterogeneous data sources. The COIN framework Fc is a quintuple <D, E, C, S, u>. It

consists of:

* a domain model, D, which present the definitions for the types of information units

called semantic types. It constitutes a common vocabulary for capturing the semantics

of data in disparate systems;

* the elevation set, E, a multi-set {E1,...,Em}, which is the set of elevation axioms Ei

corresponding to si in the source set S. Each Ei creates a semantic relation

corresponding to each extensional relation, and which defines the semantics of objects

in this semantic relation by relating them to types and their attributes in the domain

model;

* the context set, C, consisting of a collection of context providing a condensed

definition of the semantic of data with no references to underlying schemas;

* the source set, S, is a multi-set with labels {si := Si,..., Sm:= Sm}. The label si is the

name of the source. S is the collection of facts in the sources and the relevant integrity

constraints of each; and

* source to context mapping, y, which identifies each data source with some context in

the context set. The relation is defined by u(si) = cj, where the source si is in context

c1.

One of the best features of this scheme is that it allows the semantics of data element

to be described at different levels of specificity independent of how data is physically

structured in the underlying system. For example, all the financial numbers such as net

income and net sales reported in US Dollars in Disclosure can be mapped as instances of

a semantic object, whose properties (currency = 'USD', scale factor = 1000, etc.) and

modifier functions are pre-defined in the Domain Model. Thus, the system does not

require administrator to explicitly define the semantics and modifier functions for every

piece of data. One disadvantage is that the process of defining the Domain Model and

context for each source can be complicated and time consuming. This is part of the

motivation for implementing the graphical Domain Model Editor.

The COIN data model is a customized subset of the deductive object-oriented model

called Gulog [Dobbie and Topor, 1995]. COIN can be described as a "logical" data model

for representing knowledge and for expressing operations [Goh, 1996]. The COIN

framework can be translated to a normal program [Lloyd, 1981] (equivalently, a

Datalogneg program) that defines the semantics and computational procedures for query

answering. Under this logical framework, the COIN presents no real distinction between

factual statements (i.e., data in sources) and knowledge (i.e., statements encoding data

semantics). Therefore, both queries on data sources (data-level queries) as well as queries

on data semantics (knowledge-level queries) can be processed in an identical manner.

COIN can also be described as an "object-oriented" data model because it adopts an

"object-centric" view of the world [Goh, 1996] and supports many of the features

commonly associated with object-orientation, for example, object-identity, type hierarchy,

inheritance, and overriding). In COIN, we use the Domain Model as a way to represent

this structure. It uses data abstraction to represent the "meanings" of data as semantic

objects, which inherit from primitive objects (e.g. string, number); and to model

conversion functions (for transforming the representation of data between contexts) as

methods that are associated with these semantic objects. Section 2.4 will give more

explanations.

We investigate on the adoption of an abductive framework [Kakas et al., 1993] as one

possible way for query processing during Context Mediation. Under the abductive

framework as we shall explain in Section 2.3.2, the Context Mediator compute the

intensional answers, which can be interpreted as the corresponding mediated query in

which database accesses are interleaved with data transformations required for mediating

potential conflicts.

2.3.1 Overview of the COIN Query Framework

Figure 2-7 illustrates how the Context Interchange System evaluates the queries:

Data/Knowledge-Level
Query

Intensional
Answer

Extensional Mediated
Answer Query

a Query Optimizer/Executio

Database Web-

COIN Query . , Abductive Query

(1) (2)

Domain Model (D) I
Theory (T)

Context Set (C)

Elevation Set (E) Integrity Constraints (1)

I I

Source-to-Context Abductibles (A)
Smapping (u) I

I + evaluable

' Source Set (S) '(3) predicates

e extensional predicates
ner i

S(4) Abductive Answer

-site

System Perspective COIN Framework Abductive Framework

Figure 2-7 A summary of how
strategy

queries are processed within the Context Interchange

,

I I

As we see in the above diagram, the COIN framework consists of three levels that

process the queries entered by users and returns the answers that they want.

1. Transforms an SQL query to a well-formed COIN query;

2. Performs the COIN to DATALOGneg translation;

3. Abduction computation which generates an abductive answer corresponding to the
given query; and

4. Transforms the answer from clausal form back to SQL.

The power of this system is that all of the intermediate processes are transparent to

the users. This means that the users are submitting the queries need not worry about the

underlying assumptions about the data sources (such as use of currency or scale factor),

because the system is already taking care of it. What matters is the output format that the

users requested, and the system allows them to select a context for reporting the values of

the output data. Although we are saying that the processes are transparent to the users,

they can still find out the source information such as the context definitions and semantics

relation from the Domain Model Editor that I implemented in this project.

2.3.2 Query Answering by the Context Mediator

This section briefly describes the query answering process done by the Context Mediator

based on the abductive framework. To better illustrate the mediated results generated by

the Context Mediator, we use the integration scenario discussed in Section 2.2.

The task of the Context Mediator is to use abductive reasoning to rewrite the SQL

query submitted by the user. This is to make sure that all the possible data conflicts that

may happen during the data integration are being taken care of. The resulting query, the

mediated query, contains expressions that will provide an intensional answer for the

original query. As seen in Figure 2-8 below, the Context Mediator consists of the

following processes:

1. SQL-to-HC compilation - Compiles the user-defined SQL query and context (the

output format that the user wants) into a Horn-clause (HC), or equivalently statements

in Datalog neg used for computing the abductive answer;

2. COIN-to-HC translation - Transforms the COIN framework to the Horn-clause (HC)

framework;

3. Abduction - Deduces the abductive answer from the output from 1 and 2; and

4. HC-to-SQL Compilation - Translates the answer in HC back to SQL format. The

output of the whole process will be the mediated SQL query.

SQL Query User Context

SQL-to-HC
SCompiler

COIN-to-HC
Abductive Query translator

Abduction
Engine

Abductive Answer

HC-to-SQL
Compiler

...................

Domain Model

Context Axioms

Elevation Axioms

Mediated SQL Query

(to Optimizer)

Figure 2-8 Context Mediator Internals

Following the Context Mediation process, the Optimizer (reduces the redundancies)

and Executioner (dispatches all the expressions into subqueries and sends them to the

appropriate sources) will in turn process the mediated query and obtain the extensional

answer for the user. The difference between extensional and intensional answers is that

extensional answers give the fact-sets (the data) which one normally expects of a database

retrieval, whereas intensional answers give the "explanation" of what type of answers can

be retrieved without actually retrieving data from the sources. In a sense, an intensional

answer is a characterization of the extensional answer.

Transformation to an Abductive Framework

Abduction [Kowalski, 1990] refers to a particular kind of hypothetical reasoning which,

in the simplest case, takes the form:

From observing A and the axiom B -- A (B leads to A)

Infer B as a possible "explanation" of A.

Abduction is typically used for identifying explanations for observations. It a form of

non-monotonic reasoning, because explanations which are consistent with one state of a

knowledge base (theory) may be inconsistent with new information [Goh, 1996]. For

instance, given two axioms (B1 -4 A; B2 -- A): 1. "It rained" -- "the grass field is wet,"

and 2. "sprinkler was on" --> "the grass field is wet", the observation that "the grass field

is wet" will lead us to conclude that "it rained" or that "the sprinkler was on." In order to

ensure consistency, if we have already known that it did not rain, we have to retract the

explanation that "it rained." We can see that the remaining explanation "sprinkler was

on" does not necessarily explain the situation because we did not include all the possible

explanations.

Abductive reasoning has been used in diagnostic reasoning (e.g., as in medical

diagnosis where observations are symptoms to be explained), natural language

understanding, and database view updates [Kakas et al., 1993]. As in the case of Context

Interchange, the Context Mediator deduces an abductive solution in the form of a

mediated query, based on the "observation" of the contexts of the data sources. According

to Goh [1996], all semantic-comparisons are performed in the context of the user issuing

the query. In other words, in comparing two values (e.g. company names, revenues)

originating from two different sources, the values are said to be "identical" if they have

the same value in the context of the user. For example, the ticker name "HMC" used in

Yahoo and the name "Honda Motor CO" in Disclosure both represent the same company:

Honda.

Following Eshghi and Kowalski [1989], we define an abductive framework, as seen

in Figure 2-7, to be a triple <T, I, A>, where T is a theory, I is a set of integrity

constraints, and A is a set of predicate symbols, called abducible predicates. Given the

COIN framework Fc = <D, E, C, S, pu>, this can be mapped to a corresponding abductive

framework FA given by <T, I, A> where

* T is the Datalog n g translation of the set of expressions given by E u D u C u ,

where the symbol 'u' means in union with, or together with;

* I consists of the integrity constraints defined in the source set S; and

* A consists of the extensional predicates defined in S, the build-in predicates

corresponding to arithmetic and relational (comparison) operators, and predicates

corresponding to externally defined functions.

Consider, for instance, the theory T that summarizes a set of events based on their

observations:

T = { broken spokes -4floundering wheel.

flat tire -->floundering wheel.

punctured tube -- flat tire.

leaky valve -+flat tire. }

where A = { broken spokes, punctured tubes, leaky valve I is the set of predicates from

Source S. Given the abductive query Q = floundering wheel (an example of an

observation), we can deduce the following three abductive answers as the abducible

explanations for the given observation:

A, = { punctured tube }

A2 = { leaky valve }

A3 = { broken spokes }

Note that "flat tire" is excluded because it is led by other explanations.

Given an abductive framework, Fc = <T, I, A> and a sentence (the observation), the

Context Mediator should be able to provide an explanation for the observation derived

from:

TuA

under the integrity constraints that:

T u A must satisfy I in <T, I, A>.

Thus, the abductive answer A can be transformed to the intensional answer as the

mediated query5.

2.3.2 Illustrative Example: Automatic Detection and

Reconciliation of Conflicts by the Context Mediator

In this section, we use the integration scenario from section 2.2 to illustrate the

computation of the intensional answer to a query. Let us first summarize the context

assumptions inscribed in the three web sites and user's preference for the output:

Disclosure (d) 1000 USD American "I"

Worldscope (w) 1 Local American "1"

Olsen (o) NIA NIA European "I"

Users's Preference (u) 1 USD American "I"

Figure 2-9 Assumptions of Sources and User's Preference

The above figure shows that the user prefers that all the money amounts queried

through the system be in US Dollars with a scale factor of one. Of course the user is

allowed to have other choices such as thousands of German Marks (GEM) or millions of

Japanese Yen (JPY).

First let us start out with a simple query. Suppose that we want to know the net

income for the US companies (with revenue greater than US $1 billion) listed in

5 This thesis gives a brief explanation on theabductive reasoning behind Context Mediation. For more details

on how to derive the mediated query under the COIN framework, please refer to Representing and

Reasoning about Semantic Conflicts in Heterogeneous Information Systems" by Cheng Hian Goh [1996].

Disclosure. Without any knowledge of contextual assumptions in Disclosure, one would

enter the following query (Q1):

01: SELECT d.companyName, d.netlncome FROM d

WHERE d.netSales > 1000000000;

Without using the Context Interchange system, the query would have only retrieved

any company that had sales of more than US $1 trillion (that's 1,000,000,000,000) from

the database because all the recorded sales numbers in Disclosure are in thousands of US

Dollars (that means each has been divided by 1000). To correct this and to show the result

using a scale factor of one, the Context Mediator would produce the following mediated

query (MQ 1) as the intensional answer:

MOl: SELECT d.companyName, d.netlncome * 1000 FROM d

WHERE d.netSales * 1000 > 1000000000;

In order to achieve this, the Context Mediator must have observed from the COIN

framework that netincome and netSales in the context of Disclosure are using a scale factor

of 1000, and have transformed them in the user's context.

As another example, we extend into the use of multiple sources, namely Worldscope,

and Olsen. Suppose we want to list the names and net sales of the Japanese companies

found in Worldscope, with the condition that these companies have made a net income of

at least US $100 million during the last reported fiscal year. We enter the following

query:

Q2: SELECT w.companyName, w.netSales FROM w, o

WHERE w.currency = 'JPY' and w.netlncome > 100000000;

and would obtain the following result illustrated in Figure 2-10:

Source: Worldscope

companyName fiscalDate netIncome netSales currency
'TOYOTA MTR CORP' 03/31/97 42,879,555,560 1,360,426,111,000 'JPY'
'FORD MTR CO' 12/31/96 4,450,000,000 147,000,000,000 'USD'
'SUZUKI MTR CO LTD' 03/31/97 9,845,342,500 562,325,433,200 'JPY'

'HONDA MTR CO LTD' 03/31/97 29,393,227,200 588,479,835,800 'JPY'

Queried Results (without Mediation)
'TOYOTA MTR CO LTD' 1,360,426,111,000
'SUZUKI MTR CO LTD' 562,325,433,200
'HONDA MTR CO LTD' 588,479,835,800

Figure 2-10 Queried Results from Worldscope without Mediation

We found that this result has some error but it may not look obvious to the user who

submitted the query. First, Suzuki's net income (in US$ is $89million) is actually less

than US $100 million when calculated using the rate: US $1 = JPY Y111. Second,

although the values for net sales are correct in Japanese Yen, they are not presented in the

user's preference. This might confuse the user in some sense. In order to resolve all the

possible conflicts, the Context Mediator generates the following query.

MQ2: SELECT w.companyName, w.netSales * o.rate FROM w, o, u

WHERE w.currency = 'JPY' AND o.date = '31/03/97'

AND w.currency = o.fromCur AND u.currency = o.toCur

AND w.scaleFactor = u.scaleFactor AND w.netlncome * o.rate > 100000000;

UNION

SELECT w.companyName, w.netSales * o.rate * w.scaleFactor / u.scaleFactor FROM w, o, u

WHERE w.currency = 'JPY' AND o.date = '31/03/97'

AND w.currency = o.fromCur AND u.currency = o.toCur

AND w.scaleFactor < > u.scaleFactor

AND w.netlncome * o.rate * w.scaleFactor / u.scaleFactor > 100000000;

Notice there are two sets of expressions. They are basically doing the same thing, but

the second part is trying to take care of the difference in scale factors. But in this case, as

seen in Figure 2-10, both Worldscope's (w) and user's contexts (u) are using the same

scale factor of one. So the second part is redundant in this case and should be removed by

the Optimizer. The conditions in the "where" clause make sure that:

* All companies listed are using a currency of 'JPY', meaning that their origin is Japan;

* Their net income, adjusted by the exchange rate, must be greater than US $100

million;

The date for the exchange rate must correspond to the end of fiscal year (translated to

format in Olsen) for the companies.

The summary of results and the exchange rates and the system uses are listed in

Figure 2-11:

fromCur toCur date rate
'Japanese Yen' 'US Dollar' 31/12/96 .0086
'Japanese Yen' 'US Dollar' 31/12/97 .0092
'Japanese Yen' 'US Dollar' 31/03/97 .0090

Queried Results (with Mediation; the net sales below are transformed to US dollars)
Company with Sales > US $100 million netSales I rate
'TOYOTA MTR CO LTD' 12,243,835,000
'HONDA MTR CO LTD' 5,296,318,522

Figure 2-11 Mediated Queried Results using Exchange Rates from Olsen

2.4 Domain Modeling in COIN

As part of the basis for reconciliation of data by the Context Mediator, the Domain

Model presents the definitions for the types of information units (called semantic-types)

that constitute a common vocabulary for capturing the semantics of data in disparate

systems. The Domain Model used in Context Interchange, or COIN, is a "logical" data

model that uses mathematical logic as a way for representing data and a language for

expressing operations on an underlying data structure. It is also an "object-oriented" data

model that supports object-identity, type hierarchy, inheritance, and overriding methods.

The main purposes of deriving the Domain Model for the Context Mediator are to:

1. Describe the semantic objects and relations presented in the context of the

sources, e.g. databases and web sites.

2. Map the data: through the definition of Elevation Axioms.

3. Define methods for converting the data from one context to another with the

definition of Context Axioms.

2.4.1 Structural Elements of the Domain Model

Here are the notions that represent the components in the Domain Model of the current
system 6:

* System Node - A rounded rectangle denoting a
primitive data type (or system type) from which the
semantic type inherits. The most common system types

number are String and Number (could be an integer or non-
integer).

* Semantic Node - An ellipse denoting a semantic type.
It is a derived data type that must inherit from a system

type or another semantic type. It represents a piece of
companyFinancials meaningful data, such as "companyFinancials", which

can be mapped as the asset value, the profit, or yearly
sales of a company.

* Inheritance Link - A dark line with a big solid arrow
string showing the relationship between a system type and its

subtype, i.e. the semantic type. The direction of the
arrow shows that the semantic type inherits from the
system type. There is no name attached to the link
because it simply describes the inheritance relationship
between the system type and the semantic type.

* Attribute Link - A red line, with a small solid arrow
companyName and the attribute name, joins two nodes and denotes

that one semantic type obtains the attribute value from
another semantic type. For example, a semantic type
defined as "companyName" of type String represents

ountryIncorp the name of a company. It has an attribute named
"countrylncorp", and the value comes from another

countryName semantic type called, "countryName" (also of type
String) which gives the name of the country that the
company belongs to.

Modifier Link - A blue line with an outlined arrow
and the modifier name. This type of link shows that the
value returned from a data source has to be modified

6 There are different ways to represent an object-oriented model. One convention, used by Object
Management Group, an organization approved by vendors like Microsoft, IBM, and Oracle, discusses about
the agreeable standards on the representation. Please refer tdchttp://www.omg.org/ for more details.

according to its context. For example, we put a
number modifier link labeled "scaleFactor" between the

system type, Number, and its subtype,
"companyFinancials", implying that the represented

scaleFactor value of the "companyfinancials" is the result of
scaling a piece of data (in this case, a number) from a
data source of a different context. For more details of a

companyFinancials modifier, see the example in Chapter 2.

Figure 2-12 Graphical Representationof Different Components in the Domain Model

System and Semantic Types

As seen in Figure 2-11, the System type represents a primitive data type in the Context

Interchange system. The most common examples are: string and number, which can be an

integer, float, double, real, etc. The Semantic type in Context Interchange is a derived

type as in any object-oriented model. It inherits from the System type as a subtype. For

example, the name of the company can be defined as a Semantic type which is a subtype

of string because the name can be best represented as a string.

The definitions of different Semantic types help the system understand the

"meaning" of data when they are passed between subsystems or functions within the same

system. The instance of the Semantic type is called a semantic object, which represents a

variable from a data source. For example, an instance of the Semantic type companyName

can be a variable: cname from the table in the Worldscope database and it holds such

values as "Oracle Corporation", "Delta Airlines, Inc.", etc. Notice that these values may

differ from one context to another.

Inheritance, Attribute, and Modifier

An Inheritance link describes the structural and behavioral inheritance relationships

between a supertype and its subtype. Structural inheritance allows a Semantic type to

inherit all the declarations of methods defined for its supertype. Behavioral inheritance

allows the definitions or implementations of these methods to be inherited as well. The

inheritance in this model can be non-monotonic, which means that both declaration and

definition of a method can be overridden in a subtype. This allows the inherited

definitions to be changed to reflect any specific data conversion.

An Attribute is a structural component assigned to a Semantic object which is an

instance of a Semantic type. The purpose of the attribute link in the Domain Model is to

associate one semantic object to another. For example, companyName has an attribute

country whose value can be retrieved from the countryName object. The data relationships

that the attribute links develop help define the elevation axioms for data mapping and

deriving extensional relation in a database. The example in next section will explain how

to associate one data type with another through the attributes assignments.

A Modifier captures any variation in the representation of semantic objects. Every

modifier link assigns a conversion function to a semantic object. The main purpose is to

derive the value of each semantic object according to the context of the source. It is the

basis for context axioms that describes the semantics of individual data elements within

sources.

Chapter 3

Concepts of Mapping Data to the Domain Model

with the PENNY Language

Section 2.4.1 describes the components and the hierarchical properties of the Domain

Model. In this chapter, we are going to explore the mapping of data and definition of

contexts for the Domain Model. First, we show the construction of the Domain Model,

which is a feasible model that defines the semantics relation in the integration scenario

discussed in chapter 2. It will explain how each piece of financial data from the data

sources can be represented by a semantic type in the Domain Model. Then we show how

these values can be mapped to the Domain Model via elevation axioms. Last, we explains

how the user can define the conversion functions that can transform the values of the data

among different contexts.

To illustrate the definitions of the Domain Model and the elevation and context

axioms that correspond to the data sources, we use PENNY for representing the

information. As discussed in chapter 1, PENNY is a simplified and easily readable

language derived from COINL [Pena, 1997]. One advantage of using PENNY to describe

the definitions is that the Domain Model Editor is compatible with PENNY. Thus, it

allows a user to understand how to use the Domain Model Editor for defining contexts

more easily. For a complete user guide on the user interface and functions of the Domain

Model Editor, please refer to Appendix A: "User's Guide and Programmer's Reference."

3.1 Defining Semantics Relations in the Domain Model

With the integration scenario exercise at hand, we design a Domain Model that describes

the semantcs relationships for the underlying data sources. Figure 3-1 shows the TASC

Domain Model that helps the Context Mediator perceive the information needed to do the

integration:

numberexchangeRa curTypeS strin

fromCur. *

toCur

currencyType official * r cy
----* -- ------- countryName

•sca eFactor j da eFmt

curre cy fyEnding.-- :
.- * countryIncorp

companyFinancials------ - --------- companyNa..e

... Inheritance

-- Attribute

Modifier

Figure 3-1 The Domain Model for the Integration Scenario

From the diagram, we can clearly see how each data type is related to each other. As

described in chapter 2, each oval represents a Semantic type, and each rectangles

represents a System type. Every piece of data retrieved from the sources will be mapped

to one of these types. For example, all the values regarding the company financials are

declared as "companyFinancials" and they become the instances of that Semantic type.

To explain the relationship between each data type, let us start by looking at the

Inheritance link. All the Semantic types must inherit from a super type, which can be a

System type or Semantic type. For example, "companyName" and "countryName" inherit

from type "string" because they represent the name of the company and of its country

respectively. The second type, the Attribute links, assigns an appropriate attribute value to

the Semantic type. For example, as we know from the Disclosure and Worldscope data in

Figure 2-5 that the net sales or the net income, both instances of "companyFinancials", are

associated with the company and the fiscal year end date. So we assign the attributes

"company" and "fyEnding" to "companyFinancials." Similarly, the relation for Olsen requires

that the exchange rate be associated with the reference date, source currency, and target

currency, so we assign appropriate attributes to "exchangeRate" to depict the relationships.

Next, we look at the Modifiers that are responsible for defining the conversion

functions during the integration. Notice that each Modifier link in the Domain Model are

only labeled with a name. All the required conversion functions are defined separately in

the set of Context and Elevation Axioms for each source (in this case, there will be three

sets because we have of three sources, each having its own context). Take the Semantic

type "date" for example, when Context Mediator needs to evaluate the U.S. Dollar

amount of Honda's net income represented in Japanese Yen from Worldscope (as seen in

Figure 2-5), the Context Interchange system needs to look up the exchange rate at some

particular date. Since the date format in Olsen is in "dd/mm/yy" and the date format in

Disclosure is in "mnm/dd/yy", a special conversion function denoted by the Modifier

named "dateFmt" has to be applied before the Context Mediator convert the net income

from Japanese Yen to U.S. Dollar. Another example is the use of the Modifier link to

convert the company financials from one context to another regarding the scale factor.

From the diagram, we assign the Modifier "scaleFactor" to "companyFinancials." For

Disclosure, the scale factor is declared as 1000, meaning that the financial values are

presented in thousands of dollar units; whereas for Worldscope, the scale factor is

declared as 1 because each financial value in the source shows the actual money amount.

When the Context Mediator comes to evaluate the net income and net sales from both

sources, it will look up the scale factor declared in the Elevation Axioms. The following

section will describe how the user should define the conversion functions and return

values in the Context and Elevation Axioms.

An equivalent program written in PENNY that describes the same information is

shown below:

semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;
modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

};
semanticType companyName::String {

modifier string format(ctx);
attribute string countryincorp;

semanticType exchangeRate::number {
attribute currencyType fromCur;
attribute currencyType toCur;
attribute date txnDate;

semanticType date::string {
modifier string dateFmt(ctx);

semanticType currencyType::string {
modifier string curTypeSym(ctx);

semanticType countryName::string {
attribute currencyType officialCurrency;

};

Each entry in the program is a semantic type, the body of each contains all the

attribute and modifier definitions associated with the type. The inheritance information is

denoted by '::' and the super type (e.g. string) attached to the semantic type name in the

declaration. Notice that each modifier is a function of the context '(ctx)' of the source, for

example, Disclosure. Such definition allows the Context Mediator to evaluate the values

corresponded to a particular context when it is deriving the mediated queries.

3.2 Mapping Sources to the Domain Model via Elevation

Axioms

The mapping of data and data-relationships from the sources to the domain model is

accomplished via the elevation axioms. There are three distinct operations which define

the elevation axioms [Goh, 1996]:

* Define a virtual semantic relation corresponding to each extensional relation

* Assign to each semantic object defined, its value in the context of the source

* Map the semantic objects in the semantic relation to semantic types defined in the

domain model and make explicit any implicit links (attribute initialization)

represented by the semantic relation

As discussed in section 2.3, "Transformation to Abductive Framework," we present

the abductive reasoning done by the Context Mediator to derive intensional answers from

some observations. In COIN, we use sets of elevation and context axioms to derive the

theory T, which gives the abductive answer, in the abductive framework that can evaluate

the answer from a query (i.e., the observation).

Examining the elevation axioms for DiscAF below, it shall be shown how each of the

three criterion above is met.

1. Elevate 'DiscAF'(cname, fyEnding, shares, income, sales, assets, incorp)
2. in c disc
3. as'DiscAF_p'(^ cname: companyName, ^fiscalDate: date, ^shares: void,

^netlncome : companyFinancials, AnetSales : companyFinancials,
^assets: companyFinancials, ^incorp : countryName)

{
^cname.countrylncorp = ^incorp;

^income.company = ^cname;
Aincome.fyEnding = ^fyEnding;

^sales.company - Acname;
^sales.fyEnding = ^ fyEnding;

^assets.company = ^cname;
^assets.fyEnding - ^fyEnding;

Aincorp.officialCurrency - - curType;

- curType.value = $ <-
- curType = Incorp.officialCurrency,
Y - Incorp.value;
'Currencytypes'(Y,);

The first thing that needs to be done is to define a semantic relation for DiscAF. Every

semantic object is mapped to a semantic type defined in a domain model and any links

present in the semantic relation are explicitly established in the beginning of line 3. The

first line gives the external relation being elevated. The second signifies in which context

the source values are to be defined. Finally, the third line gives the elevated relation name

and the elevated semantic objects (preceded by "A"). The variables (e.g. cname, netincome)

represent the values of the data. We can call these data entities. They are instances of the

semantic objects. Since netIncome, netSales, and assets all represent money amounts, we can

define all of them as the type companyFinancials.

There are several things to note in these elevation axioms:

* Not all semantic objects need to be derived from a semantic relation. For example, the

object curType is not an elevated semantic object. Rather it is a user defined semantic

object and has no existence in the relation 'DiscAF'. These are called virtual sementic

objects because they have no grounding in a semantic relation. The compiler will

automatically generate unique semantic object-ids and the system types that go along

with them.

* Because such definition is user-defined, the Domain Model Editor cannot automally

generate such code and it has to be manually typed in by the user.

Very similarly, the elevation axioms for WorldAF looks like:

Elevate 'WorldAF'(cname, fyEnding, shares, income, sales, assets, incorp)
in c world
as 'World_p'(^cname: companyName, ^fiscalDate : date, ^shares: number,

^netlncome : companyFinancials, ^netSales: companyFinancials,

^assets: companyFinancials, ^incorp : countryName)

{
^cname.countrylncorp A ^incorp;

Aincome.company - ^cname;
Aincome.fyEnding = ^fyEnding;

^sales.company = ^cname;
^sales.fyEnding =

^ fyEnding;

^assets.company = ^cname;

^assets.fyEnding - ^fyEnding;

^incorp.officialCurrency - - curType;

- curType.value - $ <-
- curType = Incorp.officialCurrency,

Y = Incorp.value;
'Currencytypes'(Y,$);

The only differences are the declaration names for the elevation set and the context.

The differences in their contexts will be seen in next section. Next, we look at the

elevation axioms for Olsen:

Elevate 'Olsen'(exchanged, expressed, rate, date)
in c olsen
as 'Olsen_p'(^ exchanged : currencyType, ^expressed : currencyType,

^rate: exchangeRate, ^date: date)
{

^rate.fromCur = ^expressed;
^rate.toCur = ^exchanged;
^rate.txnDate - ^date;

The mapping is simpler for Olsen because it maps only four pieces of data directly

and requires no conversions.

3.3 Defining Context with Context Axioms

The next task is to define the context axioms in PENNY for the two data sources, namely

WordAF and DiscAF. Context axioms are a set of definitions for the modifiers of each

semantic type given in the domain model. The domain model in text format was stored in

a file called mydomain. pny and one would like to use the information from the domain

model to help derive the context axioms, which will be used by the context mediator for

reconciliation of conflicted data. The following code shows the definition of the context

axioms of DiscAF:

1. use('homelproac/Pennylexampleslthesis/mydomain.pny');

2. context cdisc;

3. scaleFactor < companyFinancials > - 0(1000);

4. currency < companyFinancials > = - ($) <-
Comp = self.company,
Country = Comp.countrylncorp,
CurrencyType - Country.officialCurrency,
$ = CurrencyType.value;

5. format < companyName > = - ("ds_name");

6. dateFmt < date > = - ("American Style I");

7. curTypeSym < currencyType > - ("3char");

8. end cdisc;

The above code defines c_disc as a context object, which consists of 5 modifiers,

namely scaleFactor, currency, format, dateFmt, and curTypeSym. The objects in "< >" are

semantic types and the objects in -(" ") are the return values specific for the data source

DiscAF. The "-" operator is used to create a semantic object. Line 3 illustrates a

modifier as an example. The declaration, -(1000), creates a virtual semantic object whose

value is initialized to 1000. This object is then assigned to the scaleFactor modifier. The

virtual object created here has no name or explicit type. The PENNY [Pena, 1997]

compiler takes care of generating unique object-id for the virtual object and generating its

correct type using the information in the domain model.

1. use('homelproac/Pennylexamples/thesis/mydomain.pny');

2. context c world;

3. scaleFactor < companyFinancials > - - (1);

4. currency < companyFinancials > - - ($) <-
Comp - self.company,
Country = Comp.countrylncorp,
CurrencyType = Country.officialCurrency,
$ - CurrencyType.value;

5. format < companyName > = - ("ws_name");

6. dateFmt < date > = - ("American Style I");

6. curTypeSym < currencyType > = - ("3char");

7. end c world;

PENNY allows the definition of modifiers explicitly, as shown in the currency

modifier in line 4:

currency < companySales > - ($) <-

Comp = self.company,

Country - Comp.countrylncorp,

CurrencyType = Country.officialCurrency,

$ - CurrencyType.value;

Line 4 defines the value of the object returned by the currency modifier obtained from the

official currency from the country, whose name is retrieved from the company, which is

retrieved from the data source.

Chapter 4

Design and Implementation of the Domain Model

Editor

4.1 Overview of the Context Interchange Prototype

The previous chapter provides an overview of the Context Interchange Framework

and illustrates how to construct the COIN data model for the Context Mediation process.

This chapter acts as a programmer's guide which focuses on the implementation of the

Domain Model Editor written in Java. Before we go on, let us look at the overall

architecture of the Context Interchange System. Figure 3-1 shows the architecture of the

Prototype which is being implemented.

i
CLIENT PROCESSES MEDIATOR PROCESSES

Web Client Web Request Broker:
................

End-User COIN
I [http] web Repository

SQL Queryweb : r_ I CONTEXT
I' •MEDIATOR.. Mediated

Query
Results OPTIMZER

oI imized Query EXECUTIONER

Us .1Queried DataEnd-User . eedDa

: Data Storage

Intermediary
Results

SERVER PROCESSES

* aaae Wbst

*

Figure 4-1 Architecture of the Context Interchange (COIN) System

It consists of three distinct groups of processes:

* Client Processes

They provide the interaction with receivers and route all database requests to the

Context Mediator. Currently the system uses two types of input methods: a CGI script

program that produces a web page with forms that allow users to submit queries from

a web browser; and an ODBC-compliant application such as Microsoft Excel that

issues an SQL query encapsulated as an ODBC request. In the current

implementation, this request is intercepted by a custom ODBC driver, which redirects

the request to the Context Mediator.

* Mediator Processes

The Mediator Processes refer to the system components which collectively provide

the mediation services, as described in the first section of Chapter 2. These include:

1. The Context Mediator - rewrites a user-query to a mediated query

2. The Optimizer - produces an optimal query evaluation plan based on the

mediated query

44

3. The Executioner - executes the plan by dispatching subqueries to the Server

Processes, collating and operating on the intermediary results, and returning the

final answers to the Client)

Currently, these components are being developed and implemented in Java. They

are still in the test phase, yet unable to interpret the information from the domain

model and context axioms in formulating mediated queries, but read the information

from the specification files manually typed in by the developer. In the future, the end-

users will be able to design their own Domain Models and let the mediator

dynamically generate queries based on the information they provide.

* Server Processes

The Server Processes serve as the interfaces that collect data from different

outside sources. The components include the database gateway, which submits SQL

queries to the database servers and returns sets of data from the database tables, and

the wrapper7 , which sends an URL consisting of the requested data entry to a web

site, reads the web pages generated by the web server, and retrieves the data from the

pages. This is accomplished by defining an export schema for each of these web-sites,

and describing how attribute values can be extracted from the web pages using regular

expressions.

4.2 Design of the Domain Model Editor

In chapter 2, we showed that the Domain Model, along with the Context and Elevation

Axioms, act as a knowledge base of the data sources used by the Context Mediator.

Without any help of a graphical tool, such construction process is very difficult to carry

out because the user has to spend a lot of time learning how to write the PENNY code to

describe all the information. The semantics relations are hard to follow and visualize by

just looking at the source code. In addition, the files are stored in a local system which are

not easily accessible by many users.

7 See Also:A more detailed description on extracting data from web pages is available in "Data Wrapping
on the World Wide Web" by J. F. Qu, 1996.

To solve the above problems, I designed a system, which consists of: 1) the Domain

Model Editor, a graphical tool which enables the users to define the domain model

graphically using a web browser; 2) the Code Generation Wizard, which translates the

picture and PENNY code back and forth; and 3) the Remote Method Invocation Tool,

which is a file server that allows users to perform file input/output on the host machine

(for saving and loading the Domain Model code).

Figure 4-2 The Architecture of the Domain Model Editor System

4.2.1 Architecture

Figure 4-2 shows the architecture of the Domain Model Editor System implemented in

Java version 1.1. On the client side at the left, the user interface runs as a Java applet that

is started in a web browser (such as Netscape 4.0 and Internet Explorer 4.0). The "host

machine" shown in the middle of the diagram does the following jobs:

1. Runs a web server that receives any user's requests through HTTP and sends the

applet source code back to the user's machine, which will in turn run the applet with a

Java virtual machine available from the applet-compliant web browser.

An ORB web server containing
the source code for the Domain Model
Editor, Context Translator, and Remote

Client running Method Invocation Tool
Database for storing
intermediary results

DBMS

HTML
Pages

Remote
DBMS

Heterogeneous
Sources

Context Axiom

semanticType companyFinancials: number

attribute companyName company;
attribute date fyEnding;
modifier number scaleFactore(ctx);
modifier currencyType currency(ctx);

2. Runs the Remote Method Invocation Tool (File I/O server) that performs file

input/output on the host machine.

3. Contains the PENNY compiler that compiles the Domain Model and context axioms

into code that is interpreted by the Context Mediator.

4.2.2 Design of the Domain Model Editor - User Interface and

Representation of the Domain Model

Figure 4-3 shows the components in the Domain Model Editor:

Figure 4-3 Components of the Domain Model Editor

It consists of mainly two parts, namely the user interface components and the Domain

Model Components.

User Interface components

As described in section 1, the user interface components include the Main Window,

Palette, Document Window with its drawing Canvas and Code Generation Wizard Box as

well as the Main Applet. Each of these components is defined in a separate class:

* MainApplet - inherits from java.applet.Applet that initiates the program. It receives

requests from the web browser which gives calls that start and stop the applet.

* MainWindow - the entry point to start the application. The single MainWindow

object is instantiated within MainApplet, or directly by the command:

java MainWindow

if the user chooses to run the program as a local Java application. This class handles

the opening and closing of the DocumentWindow and the PaletteBox.

* PaletteBox - inherits from java.awt.Dialog. As discussed in chapter 1, it contains a

set of buttons for drawing a DomainModel component corresponding to the label

of each button. The PaletteBox object is contained within the MainWindow class.

* DocumentWindow - each DocumentWindow contains a single object of each of

the following classes: DomainModel, MainCanvas, and CodeDialog (the Code

Generation Wizard Box). It handles local file input/output functions that load and

save the files for the DomainModel and the codes for the context and elevation

axioms. Since the application is a multiple-document interface, the MainWindow

object keeps a list of DocumentWindow objects being created.

O CodeDialog - subclass of java.awt.Dialog, It provides the interface for user's

generation of the source code derived from the DomainModel. The

CodeDialog object is instantiated and contained within DocumentWindow.

O MainCanvas - this class takes care of all the drawing of the application. It

contains the painto method and the reference to the java.awt.Graphics object that

repaints the DomainModel on itself (the drawing area) whenever the program

requests a redraw. MainCanvas contains the DomainModel object and triggers

it to redraw itself by passing the Graphics object to DomainModel.

* MultiLineLabel - A generic string-drawing class inherited from java.awt.Canvas

primarily for displaying a string message in Dialog boxes, namely YesNoDialog and

MessageDialog in this application.

* MessageDialog - A simple Dialog box displaying a MultiLineLabel message used

for notifying the user with some important information, such as a warning or error

message.

* YesNoDialog - A Dialog box that contains a question asking for user's intention

before some operation starts to take place. One example is to ask the user whether to

save a modified document before closing the DocumentWindow. To answer, the user

clicks one of the following buttons: "Yes", "No", or "Cancel."

Domain Model components

* DomainModel - the DomainModel class is the heart of the application because it

contains all the information of the Domain Model. It saves all the Links and Nodes in

two instances of class java.util.Vector, an implementation that links a list of objects

together. One of the Vector objects stores a list of Node objects: both objects of class

Systemnode and Semanticnode; the other stores a list of Link objects: Inheritance,

Attribute, and Modifiers. Whenever the program needs to add, remove, draw, cut,

save and load a Node or Link object, it will call the methods in DomainModel to

perform the operations. It also contains the implementation that translates the picture

to PENNY format or does it backward.

* Node interface - contrary to a class that can be instantiated, Node is declared as an

interface, which is an abstract class that declares the methods for the subclass that

inherits from it. Its primary function is to allow an object to be cast from a Vector list

since the retrieved object's class is unknown from the list. It declares several methods

that are common to Systemnode and Semanticnode, such as getNameO, getNodelndexO,

getType(), etc. The bodies of these methods are implemented separately in class

Systemnode and class Semanticnode because each class has its own properties and

different ways of responding a method call. For example, when getType() is called, the

Systemnode object will return the string "System", whereas the Semanticnode object

will return "Semantic." Please see more description on the methods in this interface in

Appendix A.

* Systemnode - it is the class that represents a System Node in the Domain Model. It

implements the methods declared in the Node interface Whenever the user requests to

create a new System Node, DomainModel will instantiate a new Systemnode object

and adds it to the Vector list of Node objects. Whenever the picture needs to be

redrawn, it receives a request and the Graphics object handle from DomainModel and

draws itself with the methods provided in class Graphics.

* Semanticnode - the class that represents a Semantic Node. Similar to Systemnode,

this class does the same basic operations such as drawing, returning its type, name,

node index, etc. It also contains an integer that stores the index of the node that it

inherits from.

* Link interface - similar to Node, this interface is the abstract class for all types of

links in the Domain Model. For a list of methods declared in this interface, please go

to chapter 4.

* Inheritance - a class that represents an Inheritance link in the Domain Model. It

stores two indexes, one for the super type (in most cases the Systemnode) and the

other for the subtype (Semanticnode). Its draw() method draws the link based on

the locations of the two nodes it is connecting; and an arrow which shows that the

direction pointing to is the subtype, and the other is the super type.

* Attribute - this class represents an Attribute link in the Domain Model. It

contains the name of the attribute, and the indexes of the Semanticnodes that it is

connecting. It also draws an arrow which is pointing the Semantic type that

represents the attribute value.

* Modifier - denotes the Modifier link. It indicates that there is a conversion

function or value that the Semantic type is applying to its super type. The name

that attaches to the Modifier link represents the name of the conversion function

or the conversion value (e.g. scaleFactor which represents values like 1, 1000,

etc.).

Arrow - this class creates a generic drawing object, an arrow. Every Link object

initiates and contains an arrow object, whose drawing properties (size and color)

depend on the type of Link. For example, an Inheritance link has an arrow which is

drawing as a solid black and large triangle, whereas an Attribute link holds an arrow

which is drawing itself as a small, red solid triangle, and so on.

4.3 Implementation of the Client Application with Java

Because the Domain Model Editor is primarily a client application, more than 90% of the

code is written for this part. The rest of it is for the remote File I/O Server using Java

RMI. The Java programming language is developed by SunSoft, a division of Sun

Microsystems. Its major goal is to make the program portable such that they can run on

many different platforms. The criteria that we use to choose Java over other languages for

implementing the Domain Model Editor include:

* Object-oriented design and General Issues

The primary goal of this application is to construct an object-oriented Domain Model,

which consists of hierarchies of semantic data types inherited from primitive data

types such as strings and integers. The instances of these types are the data values

from the data sources. Such object-oriented structure is best presented in an object-

oriented language such as Java and C++, which is probably the most popular object-

oriented programming language to date.

Because the Domain Model Editor is very graphically intensive, it requires a

lot of hands-on drawing and user interface libraries in support of the program. If only

based on the completeness of such libraries, C++ should be the best choice for

implementing this application because many vendors such as Microsoft, Borland, and

Symantec have developed sophisticated software that can produce complex

applications with appreciable performance. But one has to possibly sacrifice much

effort on changing and porting the code to run on a different platform, such as from

Windows 3.1 (16-bit) to Window 95 (32-bit), or totally different systems like Sun

Solaris or Mcintosh.

The Java language itself (excluding the API functions) in a sense is a subset of

C++ because the structure is the same except that it forbids the use of pointers. It

makes Java an easier programming language than C++ because it avoids the

confusion over the use of different references of identifiers for the instances of

classes, but at the same time does not lose much functionality. Java also has improved

features such as garbage collection, which reduces the chance of memory leak when

the program is running; and exception handling, which returns any detailed message

during runtime.

Portability/Scalability

The major advantages of Java over other languages such as C++, PERL, CGI-scripts

are its portability and scalability. Java allows program running on many different

platforms. This is very important for building web applications such as the

components in the Context Interchange System. The network availability allows a

user to run the application from a local machine with having to worry about what

platform it is running, as long as the user has installed a Java virtual machine that

usually comes with the web browser. The programs are downloadable via the Internet

and usually it requires loading the application from a browser with a mouse click, so

minimum installation is needed.

Unlike PERL or CGI-scripts programs which consists of procedure calls, Java

uses objects that is capable of recording states and transactions of an operation. Such

feature allows the reproduction of the same object to serve several clients with the

same functionality. This enables the server to respond to the clients more efficiently.

If one uses PERL or CGI-scripts to implement the program, the web server may have

problems of bottle-necking because it cannot handle multiple clients requesting to run

the same procedure at the same time.

Extensibility

Java uses the RMI (Remote Method Invocation) model for implementation of

distributed applications. Sunsoft is developing a tool that supports the IIOP (Internet

Inter-Orb Protocol) and can make Java programs compliant with CORBA. CORBA is

a multi-vendor supported architecture that enables programs of different languages

(such as C, C++, PERL, Java) to interact with each other through a standard interface

language called IDL, or Interface Definition Language. This makes life easier for

users who want to integrate their Java programs with other applications that are

written in another language.

Visual Basic and Visual C++, developed by Microsoft, allow export of the source

code to other Microsoft Applications using the ActiveX technology. Since our project

is dealing a variety of languages such as PROLOG on UNIX platforms, we want to

allow more flexibility in exporting the code to DEC system, Sun Solaris, not just

Windows. As a result, Java is a better choice over Visual Basic and C++ in terms of

extensibility.

Security

Because Java applications are often widely used across the Internet, security is

important in limiting any unauthenticated use of private data and applications. By

default, the web browsers do not allow any local access (i.e. save, load, print, or

execute files) to the client machine by any applet downloaded from the host. To

enable functions to operate in the host machine safely, users can apply different

authentication schemes such as SSL to write an encrypted Java client applet and

install an encryption protected web server in the host. This allows the server to have

limited access only available through a user password and a specific key.

Chapter 5

Conclusion: Limitations and Future Work

In conclusion, I listed out the problems that I have encountered when implementing the

Domain Model Editor system using Java. As of time of writing this thesis, Java is still in

an early phase of development. There are still many ways to make Java more robust.

The last section will discuss some of the issues regarding integration of the

application in the current system. While most of the components including the Optimzer

and Executioner in the Context Interchange systems are still being developed (as

discussed in last chapter), they exist as loosely pieces and need time to be integrated

together to form one completely functional application. Ideally, we would like the server

part of the system to be easily accessible by an administrator or an end-user from a client

machine. As an extension, we can have more than one servers running the system at the

same time. All these allow the system to run in scalable and global networking

environment useful for enterprises and international business.

5.1 Programming with the Java Development Kit

As of the day this document is written, the latest release of Java Development Kit (JDK)

is version 1.1.6. The very first major release of the Java Development Kit is version 1.0.2

back in 1996, and the next release, 1.2, is still in beta version. The following are the

limitations found in JDK 1.1 that affect this application:

* Drawing - as part of java.awt API library, the drawing package does only the basic

job of drawing. Although the package is capable of drawing various types of

rectangles, circles, and polygons, it does not have shadows, arrows, slanted fonts, or

any kind of dotted lines. In addition, it does not support the stacked and transparent

drawing panes, which is an important feature for moving the components around

smoothly on the picture. It causes flicking when a component on the canvas is being

moved. These limitations greatly affects the Domain Model Editor in terms of the

drawing features.

* Graphical User Interface - also part of the java.awt API, the user interface package

loosely contains user interface components such as buttons, simple list boxes, choice

boxes, and menus. Moreover, the list box and pop up menu classes are known to have

problems and do not work properly in JDK 1.1. In summary, the JDK user interface

and drawing packages are incompetent as compared to Visual C++ which provides

advanced user interface features such as directory tree and database tables.

Nevertheless, from the descriptions in the SunSoft web site, the latest version of JDK,

1.2 seems to provide more useful functions.

* Application Distribution - As mentioned in last section, SunSoft is planning to

make Java applications compatible with applications written in other languages by

support IIOP, a protocol being used by CORBA. As of the day of writing this

document, there is no tool that can effectively make Java programs work with

programs in common languages like C, C++, PERL, CGI, or perhaps PROLOG which

is the language that implements the Context Mediator and the PENNY compiler.

Currently, vendors such as Visibroker are developing IDL packages under CORBA

that support interactions between programs written in C, C++, PERL and Java.

Oracle's Networking Computing Architecture is also supporting the languages

mentioned above. However, due to relatively rare usage in the market, PROLOG is

not reportedly supported. One plausible but very complicated way is to define IDL

interfaces under CORBA to allow the Java program to interact with a C program,

which in turn communicates with the PROLOG programs through special libraries.

5.2 Domain Model Editor

* Server Capabilities - currently the server part provides the File input/output

services on the host machine. It is incapable of triggering the PENNY compiler to

compile the Domain Model because the current implementation of the Context

Mediator requires that the server reboot every time to update the new Domain Model.

In the future, one can redesign the system such that it can skip the rebooting part and

allows the Domain Model Editor to restart the system.

* Code Generation Wizard - at this moment the application only supports parsing

the PENNY code. Since the PENNY compiler will eventually translate the PENNY

code to PROLOG , the Code Generation Wizard should also support the parsing of

PROLOG.

* Defining Conversion Functions - the user has to manually type in the conversion

functions on the editing box. A library of standard conversion functions such as

deriving the annuity should be available in the future.

* "Illegal" Domain Model Checking Rules - the Domain Model Editor right now

does not do a complete checking of all the possible errors in creating the Domain

Model. The errors that the program can detect are:

Violation of rules involving Links - Logical Errors

* a System type cannot inherit from a Semantic type.

* user can assign an attribute link if and only if both of the Nodes are Semantic

nodes

* user can only assign a Modifier to a Semantic type. The Modifier link must point

to the super type that the Semantic type inherits from. These are the errors done by

user that cannot be detected by can possibly be detected by the PENNY compiler

* looping: for example, when System type "A" inherits from System type "B", the

user can create a new System type "C" that inherits from "B" and allows "A" to

inherit from "C". This is a logical error.

duplicate names: currently, any two components, Nodes or a Links, can have the

same name. This should be illegal and detected.

5.3 Integration with the Current COIN Components

The major interaction between the Domain Model Editor and the rest of the system right

now is the passing of output files (Domain Model and context definitions) for the

PENNY compiler to compile. The implementation of File Server does the job by saving

the files in the server that runs the COIN system. In the future, we can improve the

current application by adding a trigger module that starts the compiler. One problem that

exists is that the current system has to be restarted whenever the context information is

updated. This limits the controllability by the application that is run remotely because the

administrator must sit next to the host machine in order to restart the system. We have to

investigate more on this. Another issue, as stated at the beginning of the chapter, that we

might focus on is the network accessibility by the end-user of the system.

In conclusion, the goal of the Context Interchange strategy is provide novel approach

for reconciliation of conflicts in heterogeneous systems. We discussed the fact that it

would be a good feature if a user has full access to the system away from the server. This

allows the system to run a global environment. In addition, we can design the system in

the future such that more than one servers are running. This will speed up the mediation

process such that users can utilize the truly powerful features of the Context Interchange

System.

Bibliography

Bressan, S., Fynn, K., Pena, T., and et al. (1997). Demonstration of the context
interchange mediator prototype. In Proceedings of the ACM SIGMOD/PODS
Conference on Management of Data, Tucson, AZ, May 1997.

Bressan, S., Lee, T., Goh, C., and et al. (1997). A procedure for context mediation of
queries to disparate sources.

Dobbie, G. and Topor, R. (1995). On the declarative and procedural semantics of
deductive object-oriented systems. Journal of Intelligent Information Systems,
4:193-219.

Eshghi, K and Kowalski, R.A. (1989). Abduction compared with negation by failure. In
Proc. 6th International Conference on Logic Programming, pages 234-255, Lisbon.

Goh, C.H. (1996). Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems. PhD thesis, Sloan School of Management,
Massachusetts Institute of Technology.

Kakas, A.C. and et al. (1993). Abductive logic programming. Journal of Logic and
Computation, 2(6):719-770.

Kowalski, R.A. (1990). Problems and promises of computational logic. In Lloyd [1990],
pages 1-36.

Lloyd, J.W. (1987). Foundations of logic programming. Springer-Verlag, 2 nd, extended
edition.

Madnick, S. (1996). Are we moving toward an information superhighway or a tower of
babel? The challenge of large-scale semantic heterogeneity. In Proceedings of the
IEEE International Conference on Data Engineering, pages 2-8, April 1996.

Siegel, M. and Madnick, S. (1991). A metadata approach to solving semantic conflicts. In
Proceedings of the 1 7th International Conference on Very Large Data Bases, pages
133-145.

Pena, F. (1997). PENNY: A Programming Language and Compiler for the Context
Interchange Project. Master thesis, Sloan School of Management, Massachusetts
Institute of Technology.

Sciore, E., Siegel, M., and Rosenthal, A. (1994). Using semantic values to faciliate
interoperability among heterogeneous information systems. ACM Transactions on
Database Systems, 19(2):254-290.

Sheth, A.P. and Larson, J.A. (1990). Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183-236.

APPENDIX A

User's Guide and Programmer's Reference

Domain Model Editor Version 1.1

Updated: 05/18/98

For Context Interchange System

@ 1998 Context Interchange Group
Sloan School of Management, M.I.T.

Preface

User's Guide and Programmer's Reference: Domain Model Editor Version
1.1 is both a how-to and a reference guide on using the Domain Model
Editor to 1) create the domain model, and 2) generate the context axioms,
elevation axioms, and conversion functions that correspond to the contexts
(how the data are represented and related) of the sources. This information
allow the Context Mediator to identify and resolve the conflicts that may
come up when evaluating the data from different sources, namely relational
databases and World Wide Web sites. The major goal of the Domain Model
Editor is to help define the meanings of data and the relationships between
them, given that the context of the source is known.

Who should read this?

The Domain Model Editor Application along with this document provide a
user friendly and easy-to-visualize approaches for users who plan to develop
a knowledge base of the data sources for the Context Interchange System
that resolves data conflicts arriving from data integration. After following the
example in this manual and the step by step guide to create the domain
model and context axioms, the user will have a basic understanding on how
to generate information for the Context Mediator that converts data among
different contexts. For descriptions on the concepts behind the Context
Mediation Strategy developed by the Context Interchange Group at
Sloan School of Managment, M.I.T., please refer to the thesis: "Representing

and Reasoning about Semantic Conflicts in Heterogeneous Information
Systems' written by Cheng Hian Goh, 1996. Also see the next section for a
list of more references regarding the studies of Context Mediation.

The Domain Model Editor is targeted for users who wish to apply
the Context Mediation concepts to resolve the semantic conflicts among
different data sources through the Context Mediation process. The
application is perhaps the most useful tool for people who have trouble
understanding and writing code in PENNY language that describes the
domain model, context axioms, and elevation axioms for use in the context
mediation process. With the Domain Model Editor, the user can design the
domain model graphically instead of taking time to write the PENNY code.
The program can also convert the existing PENNY code to a picture that is
100% equivalent. With the picture of the model, the user can easily visualize
how all the data types are represented and related to each other. The user can
also create the context axioms and the elevation axioms with the help of
Code Generation Wizard that comes with the application.

This is a MUST-SEE document for any software developer who is
planning to extend this application because this is the complete guide that

describes the design, implementation, limitations, as well as usage of the
Domain Model Editor as a Java distributed application.

More References

For more details on how to theoretically construct the Context Interchange
Data Model, please refer to my thesis: "Derivation of Context Axioms from
the Domain Model Editor in a Networking Architecture" (1998). For
information on the PENNY language and the PENNY compiler, please
refer to: "PENNY: A Programming Language and Compiler for the
Context Interchange Project' written by Fortunato Pena, 1997.

What's in this?

This document consists of 2 sections.

Section 1, "Overview of the Domain Model Editor," gives a tour on how
to use the basic features and user interface of the Domain Model Editor. It
describes how to create a pictorial representation of a simple domain model
and how to use the Code Generation Wizard to generate PENNY code from
the picture or to generate the picture from the source code.

Section 2, "Functional Specifications and Class Descriptions," consists
of the description of all the classes and functions in the Domain Model
Editor 1.1 source code. It is a useful reference for developers who are
planning to extend this application and/or use as a prototype to develop
another Java client/server application.

Requirements

For user running the client application:
Any user who would like to run this application as a Java applet must have
installed one of the following:
* Internet Explorer 4.0 or above (http://www.microsoft.com/)

* Netscape Communicator 4.0 or above (http://www.netscape.com/)

* HotJava Browser for Java 1.1.x (http://java.sun.com/products/hotjava/)
* Appletviewer included in the Java Development Kit Version 1.1.x or

above (http://java.sun.com/)
* Or: Any web browser that supports running Java 1.1 applets

Memory: 32MB of RAM or above recommended
Mouse or other types of pointing device required

For administrator setting up the application on the server:

The administrator must have installed an HTTP web server that allows the
end-user to download the Java bytecodes from the server to the client
machine. The server must also contain Java Development Kit 1.1.x or above
in order to start the server daemon.

Memory: 32MB of RAM or above recommended

Hard Disk Space:

* Web Server: Software dependent

* Java Development Kit 1.1.x - approximately 20MB downloadable from

http:lljava.sun.coml
* Domain Model Editor - 2MB, including the whole package and full

documentation.

For developer:
The current version of the Domain Model Editor is written and compiled
using Java Development Kit version 1.1.5 for Windows 95/NT from

SunSoft (http://java.sun.com/). It is compatible with JDK version 1.1.x or 1.2.

Request for Comments

If you find any errata in this guide, or would like to report a bug or suggest
better features for the next version of the Domain Model Editor, please feel
free to let me know. Your response will be valuable to the future
development of the Context Interchange Project. The best way to contact

me is by email at proac@mit.edu or visit our web site at http://llcontext.mit.edul.

Al. Domain Model Editor

IN THIS SECTION
* Getting Started
* Using the Graphical User Interface
* Graphical Representation of the Domain Model

* Using the Code Generation Wizard

* Saving and Loading Different Formats of Documents

Getting Started
Because the Domain Model Editor is implemented in Java 1.1, you must
obtain a web browser or the Java Development Kit that supports running

Java applets version 1.1.x or above. Many web browsers capable of running

Java 1.1.x applets are downloadable from the web (some license restrictions
or charge may apply):

1. Internet Explorer 4.0 for Windows 95/NT/3.1
http://www.microsoft.coml

2. Netscape Communicator 4.0 for Solaris 2.4, 2.5, Windows 95/NT

http://www.netscape.coml
3. SunSoft HotJava 1.1.2 for Solaris 2.4, 2.5, Windows 95/NT

http:ll//java.sun.comlproducts/hotjava

If you are planning to develop your own Java 1.1.x application, you
can download the Java Development Kit from
http:/ljava.sun.com/products/jdkl.1.

Upon completion of the installation of the required software, you will
now be able to run the Domain Model Editor. Launch your web browser
and type the following URL:

http://llsoloaudio.mit.eduljavaldomain 11 Istart.html

The final release version will be available at:

http:l//context.mit.edul - coin/

You can have the option of downloading the entire Domain Model
Editor program and examples onto your own machine so that you can free
use the local save and load functions to access the files in your own machine
(Because of internet security, a Java applet downloadedfrom a web site has limited usage of
save/load/print functions in the local machine from which the user is opening the web site.
This ensures that the applet from the host cannot harm any client machine that is
downloading it. Please see Chapter 3 for more details on the limitation of the Domain
Model Editor).

Although not necessary, you can download the entire Domain Model
Editor program such that you can use the save and load features in your local
machine. To download, enter the following URL in your web browser:

http://soloaudio.mit.eduljavaldomain 11 domain11.zip

Choose the "Save" or "Save As" option and save the file in a new

directory in your hard disk. For example: c:\java\domainll 1 in Windows or
Ihomelproacljavaldomain111 in Unix. Unzip the file and you should see the
following directory structure and files:
c:\java\domain 11\start.html

IReadme.txt + {a number of .java and .class files}
\docs\Allnames.html

\{a bunch of other .html help files}
\out\

The start.html file in the new directory is the one that the web
browser opens in order to start the applet. The README.TXT contains
information on how to compile and run the source code. If you have already
installed the Java Development Kit, you could run the following commands:

> cd javaldomain 11 - change to the program's directory
> javac *.java - recompile the files using your own JDK

To run, open start.html in your browser, or type at the prompt:
> appletviewer start.html - run as an applet
or
> java MainWindow - run as an application (equivalent)

Using the Graphical User Interface

The Domain Model Editor will pop up as three windows: The Main Editor
Window, an empty Document Window entitled, "Untitled_l", and the
Palette Box.

Main
Window I- _Palette

Box

Document
Window

Figure A-1 The Domain Model Editor

As shown in Figure A-I, the Main Window on top of the screen
consists of a Menu Bar. Its primary functions are to launch a new Document
Window, open an existing document, Show/Hide the Palette Box and exit
the program. The "Help" Menu allows you to view the help content.

The Document Window consists of the Menu Bar and the Canvas in
which the picture of the Domain Model is drawn. The menu contains the
following functions:

Figure A-2 The File and Edit Menus

1. File
New - Creates a new Document Window

Open - Opens a new Document (picture or code) in a new window
Save, Save As - Saves the picture information in ascii text format
Print - Prints the picture

Close - Closes the current Document Window. Asks user if the file
needs to be saved before closing.

2. Edit

Undo - Cancels last creation of components, cut, or move.

Copy - Copies the select component: a node or a link
Paste - Pastes the component (node only) that was cut or copied
Rename - Renames the selected component
Find - Locates and highlights a component

Figure A-3 The View Menu

Eii PI
ZFJ

3. View
Zoom Ratio - Selects the zoom ratio of the picture

Picture Size - Selects the size of the canvas

4. Tools
Code Generation Wizard - Opens or Closes the Code Generation

Wizard Box

The Palette Box allows you to select which component to draw. The
first button labeled "Select/Move" enables you to highlight a component,
move it, and/or change its name. The other five buttons allow you to create
the nodes and links on the canvas. The following section describes what each
component means and how to create them.

Graphical Representation of the Domain Model

Here are the notions that represent the components in the Domain Model:

* System Node - A rounded rectangle denoting a
primitive data type (or system type) from which the
semantic type inherits. The most common system types

number are String and Number (could be an integer or non-
integer).

* Semantic Node - An ellipse denoting a semantic type.
It is a derived data type that must inherit from a system

type or another semantic type. It represents a piece of
companyFinancials meaningful data, such as "companyFinancial'", which can

be mapped as the asset value, the profit, or yearly sales
of a company.

* Inheritance Link - A dark line with a big solid arrow
string showing the relationship between a system type and its

subtype, i.e. the semantic type. The direction of the
arrow shows that the semantic type inherits from the
system type. There is no name attached to the link
because it simply describes the inheritance relationship

companyName between the system type and the semantic type.

* Attribute Link - A red line, with a small solid arrow
companyName and the attribute name, joins two nodes and denotes that

one semantic type obtains the attribute value from
another semantic type. For example, a semantic type
defined as "companyName" of type String represents the

\countryIncorp name of a company. It has an attribute named
"countyIncorp", and the value comes from another
semantic type called, "countyName" (also of type String)
which gives the name of the country that the company
belongs to.

* Modifier Link - A blue line with an outlined arrow and
the modifier name. This type of link shows that the

number value returned from a data source has to be modified
according to its context. For example, we put a modifier
link labeled "scaleFacto"' between the system type,

scaleFactor Number, and its subtype, "companyFinanials', implying
that the represented value of the "companyfinandal' is the
result of scaling a piece of data (in this case, a number)

companyFinancials from a data source of a different context. For more
details of a modifier, see the example in Chapter 2.

Figure A-4 GraphicalRepresentationof Different Components in the Domain Model

The above description might be way too brief to fully explain the
concepts of mapping the data into a domain model. Nevertheless, you can
now start drawing a simple Domain Model as a way to get familiar with the
drawing tool. The drawing tool is fairly simple to use.

Before drawing any link you must start by drawing a system node or a
semantic node. Try clicking the "System Node" button on the Palette box,
then click on the white area (Canvas) of the Document Window. A system
node with the default name "(0)" will show up. The number "0" means that
it is the very first node that you create. Try creating a semantic node by
clicking the "Semantic Node" on the palette box and then clicking on the
canvas of the same document window. A semantic node labeled "(1)" will
show up on the screen. The next created node will labeled "(2)" and so on,
until you change the name of any of the nodes.

Figure A-5 Creating new system and semantic nodes and changing the
names

To change the name of a node, click the "Select/Move" button on
the Palette box, and then double-click the node. The name will be
highlighted and you can start typing in the new name. Press "Enter" on the
keyboard to denote finishing typing the name or press "Esc" to resume the
name before the change. Let's call the system node "String" and the semantic
node "companyName". Notice that the program will not accept a space or any
other characters except for the alphabets and numbers. This is because all the
names in the picture will be used by the compiler for declaration of data
types. An empty space or a symbol other than the underscore: "_" would
possibly cause a compiling error.

Now you can try creating an inheritance link, pointing from the
system node labeled "String" to the semantic node labeled "companyName". As
mentioned, an inheritance link must point from a type to its subtype. Because
String is a primitive system type, we can only join an inheritance link from the
system node to the semantic node and not the other way around. You can
possibly define a semantic type that inherits from another semantic type, but
not a system type that inherits from a semantic type because it violates the
object-oriented modeling rule. Doing so would result in getting a warning
signal from the program.

Using the Code Generation Wizard Box
The main purposes of the Code Generation Wizard Box are:

1. Converting from picture to code:

.........................
"),N, V
.....

* Converts the graphical representation of the Domain Model to the
equivalent domain model in PENNY format.

* Based on the modifiers information provided in the picture,
generates the context axioms code in PENNY format.

2. Converting from code to picture:
* Converts the PENNY domain model to the graphical representation.

(Current version (1.1) only supports the PENNY format. The next
update will include PROLOG, a common program-ming language that the
PENNY domain model will be convert-ed to eventually)

The functions provided in the Code Generation Wizard Box allows
users to convert back and forth the picture and source code. This makes it
easier for users who want to view the semantic relationships of the existing
code written in PENNY, and also for those who would like to create a new
model without writing any code.

To open the Code Generation Wizard box, click on the menu:
"Tools" of the Document Window's menu bar, then click on the menu item:
"Code Generation Wizard:

Figure A-6 The Code Generation Wizard Box

After you open the Code Generation Wizard Box, you will see three
buttons on the top of the box labeled: "Domain Model", "Context

a

mmmomodpGprratin Vmmar

Axioms Template", and "Elevation Axioms." These buttons correspond
to three different displaying panels within the Code Generation Wizard Box.
In the next release version, the Code Generation Wizard module will also
include code generation for PROLOG. Currently, it is only compatible with
PENNY code
Click on each of the three buttons to display each panel:

Domain Model Panel

Figure A-6 displays the PENNY code that corresponds to the picture in the
canvas of the Document Window. The editing area in the Domain Model
panel should be empty when you first open the Code Generation Wizard
Box. To generate the code of the domain model that you just drew, click on
the "Generate Code" button at the bottom of the box. The "Generate
Picture" button next to it is for generating the picture from the code shown
in the editing area. It is useful if the user chooses to edit the code instead of
editing the picture. The editing area shows the following code generated
from the picture:

semanticType companyName::string {
attribute countryName country;
modifier string format(ctx);
};

semanticType countryName::string {
};

You can see how the semantic types are defined in the PENNY code
shown above. The picture in Figure A-6 shows two semantic types:
"companyName" and "countryName", both inherited from the system type:
"string", which appears after the "::" sign Within each semantic type
declaration there exist the modifiers and attributes belonged to it. Notice that
"countryName" has no modifier or attribute defined. The modifier and
attribute links are pointing from "companyName", meaning that they belong
to "companyName".

Context Axioms Panel

This is the panel that provides the editing of context axioms - definitions
of modifiers defined for a particular context. The context axioms template
can be retrieved from the domain model by first clicking the "Context

Axioms Template" button and then click "Generate Code." The reason to

call the panel "Context Axioms Template" because the domain model only

provides the modifiers information for the set of context axioms. Users have

to input the extra conversion functions specific to the context. You can go

ahead and try opening the Context Axioms panel, typing in the Context

name (name of the source), and hit the "Generate Code" button:

Figure A-7 Generating Context Axioms

The generated code in the editing area shows the declaration of the
modifier: "format" of semantic type "companyName". Notice that the return
value and the conversion functions for the modifier are missing because the
users have to determine them. In this simple example, the return value is
simply a format type named "ws_name.":

context cWorldScope;

format < companyName > = - ("wsname");

end c_WorldScope;

The conversion function is omitted because "ws_name" is a constant string
value. In some complicated case in which the return value of, say, currency, has
to be derived from some other parameters such as countyIncorp and
currencyType, the users have to input the conversion functions. For example:

currency < companyFinancials > = - ($) <-
Comp = self.company.
Country = Comp.countrylncorp,
CurrencyType = Country.officialCurrency,

$ = CurrencyType.value;

The variables: Comp, Count, and CurrencyType are intermediate values
that give the final result stored in $.

Elevation Axioms Panel

The Elevation Axioms panel provides the interface for mapping a piece of
data from the data source to the attributes of the semantic types in the
domain model. Defining the set of elevation axioms for a data source
requires the users a knowledge of the data to be retrieved. For example, a
web site called Worldscope provides the following data that the users want to
map to the domain model:

aetName C cname incorp
.scription Name of the company Name of the country that

the company belongs to
Semantic Type companyName exchangeRate
Being Mapped To

Figure A-8 Assigning data to semantic types

The first row shows two pieces of data, or entities, which can be
retrieved from Worldscope, the data source. The values are applied to the
semantic types that represent them. To assign entities values to the domain
model, open the Elevation Axioms panel by clicking "Elevation Axioms" in
the Code Generation Wizard Box. Then click on the "Assign Entities" to
display the assigning entities section:

Figure A-9 Assigning Entities to the Domain Model

There are three input fields in the "Assign Entities" section:
1. Enter source name - enter name of the data source here: e.g. Worldscope.
2. Enter new entity - type in entity here one at a time, e.g. cname, incorp, etc.
3. Select data type - from the choice box, select a data type (system or

semantic) defined in the domain model.
4. Click on "Add" to add the new entity. It is above the "Remove" button.
5. Repeat steps 2 to 4 for adding a new entity.

After adding all the new entities, click on "Generate Code". The code
will appear in the elevation axioms editing box:

Figure A-10 Generating Elevation Axioms

Let us look into the declaration part generated code:

elevate 'Worldscope'(cname, incorp)
in c WorldScope
as 'Worldscope_p'(cname: companyName,

incorp: countryName)
{

Acname.country = ̂ incorp;

};

The elevation set contains two entities: cname of type companyName
and incorp of type countyName. The label "c_WorldScope" represents the
context name specified in the Context Axiom panel. The body part labeled
"Worldscope_p" assigns the entities values to the related attributes. Back to
the Domain Model in Figure A-6, companyName has an attribute called
"countrV' whose value is given by "counttyName", to which incorp is assigned.
The result is shown in the line:

^cname.country = ^incorp;

The symbol '^' denotes the assignment of a value. Again, this simple
example shows the assignment of values that do not require any conversions.
A more detailed example will follow in the next chapter.

Saving and Loading the Documents
The file saving and loading mechanisms are rather complicated because they
involve different formats. Also, due to the security feature of web browsers,
any Java applet that a browser downloads from a server and running on the
client machine is unable to use the save, load, as well as print functions on
the client side. The Domain Model Editor program will detect and decide
whether the file saving and loading are to be done on a remote or local
machine.

Saving

a) From menu, choose File - Local or Server -+ Save As
b) Select the directory and type the file name in the File Dialog Box.

All the files are in ascii text format. There are two ways to save a domain
model:

1. Save as Picture with x, y coordinates for each component.

An example output file has the following format (note: Do not modify
any of the code. Only make the change within the Domain Model
Editor):

%% Nodes %%
System 0 -1 string (120 94)
Semantic 1 0 companyName (155 260)
Semantic 2 0 countryName (291 140)

%% Links %%
Attribute 0 1 2 country (162 256) (279 150)
Inheritance 10 2 (136 100) (275 135)
Inheritance 2 0 1 (132 112) (147 250)
Modifier 3 1 0 format (159 249) (140 105)

The first three rows store the values for the three nodes of the Domain
Model in Figure A-6, and the rest store the values for links. The first

number after "System" and "Semantic" shows the index of the node, the

second number the index of its parent, i.e. its supertype. The "-1" means

the system node "string" is not assigned to any type as a subtype. The

numbers in the brackets show the x, y coordinates of the node.

Similarly, the first number of the link is the link index, the second is the
index of the node that the link is pointing away from, and the third is the

index of the node that it is pointing. The rest shows the x,y coordinates
of the starting and end points.

2. Save as Domain Model in PENNY format

As shown in Figure A-6, the PENNY code in the domain model section
describes the same thing as in the picture format, except that it does not
store the coordinates. When the program retrieves the domain model
picture from the PENNY code, it will generate the coordinates
randomly. Therefore, the users have to spend some time arranging the
components.

To save the context axioms and elevation axioms code, simply click the
"Save" button on the Code Generation Wizard Box. A dialog box will show
up. Select the directory and type in the file name. Although not strictly
enforced, try using the following extensions:

" Picture: .txt

" Domain Model: .pny

" Context Axioms: .ca

* Elevation Axioms: .ea

Loading

The loading part is also as straight forward except that the users might easily
make mistakes by loading the wrong file into a section of the Code
Generation Wizard Box. The console in Wizard Box will display a warning
line if it recognizes a wrong file format. For example, in the Domain Model
panel of the Wizard, if you click "Load" and choose the a file, the program
will try to detect the word "semanticType" that appears in every PENNY
Domain Model file. If not found, the console will display, "Error: File might
be in wrong format."

1. Loading the picture

a) From menu, choose File -> Local or Server -+ Open -- Picture

b) Select file from the File Dialog Box.

2. Loading the code

a) Domain Model in PENNY, from menu:

Choose File -- Local or Server -- Open -- PENNY code

or from Tools -> Code Generation Wizard:

Click on "Domain Model" button to display panel, click "Load."

b) Context Axioms File

From Tools -- Code Generation Wizard, click on "Context
Axioms" button to display panel, then click "Load" and choose
the file.

c) Elevation Axioms
From Code Generation Wizard, click on "Elevation Axioms"
button to display panel, then click "Load" and choose the file.

A2. Functional Specifications & Class Descriptions

IN THIS SECTION

* Class Hierarchy

* Functional Specifications of Each Class and Description of
All Functions

Introduction

The previous chapter gives a discussion on the architectural design of the
Domain Model Editor System. This chapter looks more deeply into each
class and describes the functionality. The first section lists out the hierarchy
of the components in the application. Each of the class inherits from the

standard Java 1.1 API package developed by SunSoft. The next section
describes the functionality of each method of each class. Any Java compiler
obtained from the Java Development Kit Version 1.1.x should be able to

compile all the code. Any web browser that has Java Virtual Machine and

supports Java applets 1.1 can run the entire application.

Class Hierarchy

Key: * - User defined classes for this Application

* - Classes developed in Java Development Kit 1.1.x

1. User Interface Classes

class java.lang.Object

* class java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable)
* class java.awt.Container

* class java.awt.Panel

* class java.applet.Applet
* class MainApplet

* class java.awt.Window
* class java.awt.Frame (implements

java.awt.MenuContainer)
* class MainWindow (implements

java.awt.event.ActionListener)
* class DocumentWindow (implements

java.awt.event.ActionListener,

java. awt. event. ItemListener)

* class java.awt.Dialog

* class CodeDialog (implements

java.awt.event.ActionListener)
+ class PaletteBox (implements

java.awt.event.ActionListener)
* class YesNoDialog (implements

java.awt.event.ActionListener)
* class MessageDialog (implements

java.awt.event.ActionListener)

class java.awt.Container
* class java.awt.Canvas

+ class MainCanvas (implements

java.awt.event.MouseListener,
java.awt.event.MouseMotionListener,
java.awt.event.KeyListener)

* class MultiLineLabel

2. Domain Model classes

* class DomainModel
* interface Node

• class Systemnode (implements Node)

* class Semanticnode (implements Node)

* interface Link

* class Inheritance (implements Link)

* class Modifier (implements Link)

* class Attribute (implements Link)

+ class Arrow

3. Server Application Classes

* interface FilelOServer (extends java.rmi.Remote)

* class java.rmi.server.RemoteObject (implements java.rmi.Remote,

java.io.Serializable)
* class java.rmi.server.RemoteServer

* class java.rmi.server.UnicastRemoteObject
* class FilelOServerImpl (implements FileIOServer)

Functional Specifications of Each Class and Description of All
Functions

Class Library Functions Descriptions Available online:

Please go to the URL at

http:llsoloaudio.mit.eduljavaldomain 1 l/docsltree.html

for the full class library functions of the Domain Model Editor. The release version of the
application and documentation will be at our group's main web site in June, 1998 at:

http://context.mit.edul'-coin/

