
Portable Fault-Tolerant File I/O

by

Igor B. Lyubashevskiy

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Computer Science and Engineerin4

at the O -

MASSACHUSETTS INSTITUTE OF TECHNOLOGY -

June 1998

© Igor B. Lyubashevskiy, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author.. .~./
0 Department of Electrical Eng i ring and Computer Science

\ ^ June 1, 1998

Certified by

/

Certified by

2?

Volker Strumpen

Postdoctoral Associate

Thesis Supervisor

-

Charles E. Leiserson

Professor

esis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Uns.

Portable Fault-Tolerant File I/O

by

Igor B. Lyubashevskiy

Submitted to the Department of Electrical Engineering and Computer Science
on June 1, 1998, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract

The ftIO system provides portable and fault-tolerant file I/O by enhancing the func-
tionality of the ANSI C file system without changing its application programmer
interface and without depending on system-specific implementations of the standard
file operations. The ftIO-system is an extension of the porch compiler and its runtime
system. The porch compiler automatically generates code to save the internal state of
a program in a portable checkpoint. These portable checkpoints can be recovered on
a binary incompatible architecture. The ftIO system ensures that the state of stable
storage is recovered along with the internal state of a program. The porch compiler
automatically generates code to save bookkeeping information about ftIO's trans-
actional file operations in portable checkpoints. We developed a new algorithm for
supporting transactional file operations based on a private-copy/ copy-on-write ap-
proach. In this thesis, we discuss design choices for the ftIO system, describe our new
algorithm, provide experimental data for our prototype, and outline opportunities for
future work with ftIO.

Thesis Supervisor: Volker Strumpen
Title: Postdoctoral Associate

Thesis Supervisor: Charles E. Leiserson
Title: Professor

Acknowledgments

I would like to express my sincere gratitude to Dr. Volker Strumpen whose day-to-

day involvement for the last two years made this project possible. He was involved

in everything from showing me how to use LATEX to countless brainstorming sessions.

At the end, I made him suffer through all the drafts of this thesis.

I would also like to thank Prof. Charles Leiserson for his support, guidance, di-

rection, and invaluable feedback. His sense of humor and Wednesday-night pizza

provided the needed stimulus to keep working.

Likewise, I would like to note Edward Kogan, Dimitriy Katz, and Ilya Lisansky

for proof reading an early version of this write-up and for their feedback.

I am greateful to Anne Hunter for her encouragement and motivation.

Last, but not least, I would like to express my appreciation to my girfriend, Marina

Fedotova, and all my relatives for their care, support, and understanding.

This work has been funded in part by DARPA grant N00014-97-1-0985.

Contents

1 Introduction

2 The porch Compiler

3 The

3.1

3.2

3.3

4 The

4.1

4.2

ftIO System Design Alternatives

Undo-Log Approach

Private-Copy Approach

Comparison of Implementations

ftIO Algorithm

The ftIO Finite Automaton

Append Optimization

5 Experimental Results

6 Related Work

7 Conclusion and Future Research

A More Experimental Results

13

16

18

19

23

27

30

36

38

43

48

List of Figures

4-1 The "live" subset of of transition diagram for the ftIO finite automaton. 30

4-2 Complete transition diagram of the ftIO finite automaton. 32

4-3 Execution phases. 33

4-4 Recovery phases if failure occurred during normal execution or during

porch checkpointing (top), and if failure occurred during ftIO commit

(bottom). 35

4-5 Transition diagram of the ftIO finite automaton including append op-

timization. 37

5-1 Performance of reading (left) and appending (right) 10 Mbytes of data

from and to a file. Checkpoints are taken after about 106 file operations

in the experiments marked "with checkpointing" and those marked

"with append optimization." 39

5-2 Runtimes of random file accesses with spatial locality. The variation

of the number of blocks simulates the behavior of a shadow-block im-

plementation with different block sizes. 40

5-3 Runtimes of 2D short-range molecular dynamics code for 5, 000 parti-

cles. The checkpointing interval is 20 minutes. 42

A-1 Sun Sparcstation4. Sequential read/write 49

A-2 Sun Sparcstationl0. Sequential read/write 49

A-3 Sun Sparcstation20. Sequential read/write 49

A-4 Sun UltraSparcl. Sequential read/write 50

A-5 Sun UltraSparc2. Sequential read/write 50

A-6 Sun Ultra-Enterprise. Sequential read/write

A-7 Sun Sparcstation4. Random access

A-8 Sun Sparcstation10. Random access

A-9 Sun Sparcstation20. Random access

A-10 Sun UltraSparcl. Random access

A-11 Sun UltraSparc2. Random access

A-12 Sun Ultra-Enterprise. Random access . . .

A-13 Sun Sparcstation4. Molecular dynamics .

A-14 Sun SparcstationlO. Molecular dynamics

A-15 Sun Sparcstation20. Molecular dynamics

A-16 Sun UltraSparcl. Molecular dynamics

A-17 Sun UltraSparc2. Molecular dynamics

A-18 Sun Ultra-Enterprise. Molecular dynamics

. 50

. 51

. 5 2

. 52

. 52

. 53

. 53

. 54

. 5 5

. 55

. 56

. 56

List of Tables

3.1 Time and space overheads for undo-log, copy-on-write, and shadow-

block implementations. 24

3.2 Worst case time and space overheads for undo-log, copy-on-write, and

shadow-block implementations 25

Chapter 1

Introduction

Much work has been done on the development of tools that allow programmers to

quickly and effortlessly add fault tolerance to their existing code. Two general ap-

proaches have received the most attention: fault tolerance through redundancy and

fault tolerance through checkpointing. Using hardware redundancy is the more costly

approach, which can easily double (or triple) the cost of hardware required to com-

plete the task. The benefit of redundant systems is that they are able to provide

continuous availability. Checkpointing systems, on the other hand, do not require

any additional hardware. They guarantee that, upon restart, a failed process can be

recovered from the latest checkpoint and continue making progress with little work

lost due to a failure. Checkpointing systems do not provide continuous availability,

though.

There are two classes of checkpointing systems: system-level checkpointing and

application-level checkpointing [13]. System-level checkpointing comprises hardware

and/or OS support for taking periodic checkpoints of the running process. Most of

those systems perform a periodic code dump to save the state of the memory and

processor registers. Checkpoints of those systems, however, are often many times

larger than the "live" state of the process. Also, the saved checkpoints are not useful

in heterogeneous environments, because a failed process cannot be recovered on a

binary-incompatible architecture.

With application-level checkpointing, a user process saves periodic checkpoints of

itself. Because the application knows more about the data that need to be saved as

well as their types, it can save only "live" data, as well as produce checkpoints that

can be used to recover the process on any supported architecture. The porch compiler

[18, 22] has been developed to automatically transform C programs into semantically

equivalent C programs that are capable of saving and recovering from portable check-

points. This technology can be exploited to provide fault tolerance in heterogeneous

systems and may also be used for debugging or retrospective diagnostics [5]. To the

latter end, a portable checkpoint can be used to restart or inspect a program on a

binary-incompatible system architecture.

The problem of most checkpointing systems is that they only allow for checkpoint-

ing the internal state of a process. It is not sufficient, however, to recover the stack,

heap, and data segments upon restarting the process. Most applications make use of

stable storage, and the data in stable storage also need to be recovered. For example,

suppose that a process reads a value from a file, increments it, and stores it back.

Further, suppose that the process had saved a checkpoint before reading that value,

and then failed some time after storing the incremented value. What will happen

when the process is restarted, if only the internal state of the process was saved dur-

ing the checkpoint? Upon recovery, the process will perform the same operations it

executed after it saved the checkpoint-reading the value from the file, incrementing

it, and storing the result back in the file. Clearly, this behavior is incorrect since the

value is now incremented twice, and the state of the file is inconsistent with the state

of the application. This example demonstrates the need for checkpointing systems

that not only recover the internal state of a process but also revert the stable storage

to a consistent state.

This thesis presents an extension to the porch compiler and its runtime system

(RTS for short) to support portable fault-tolerant file I/O. My studies are based

on my prototype implementation of the ftIO system. The ftIO system enhances the

functionality of ANSI C file operations [10, 20] without changing its application pro-

grammer interface and without depending on a system-specific implementation of file

operations. As the result, application programs using formatted file I/O can be made

fault-tolerant by precompiling them with porch. Object code can be generated there-

after with a conventional C compiler. System-specific C library implementations can

be used without modifications, because porch generates code based on the standard

ANSI C function prototypes.

The problem we are tackling can be decomposed into three subproblems:

1. Providing transactional file operations for fault tolerance.

2. Checkpointing the state maintained by transactional files operations in a portable

manner, allowing for recovery on a binary-incompatible machine.

3. Maintaining the data stored in a file in a machine-independent format.

When all three functionalities are present, we can save a checkpoint of a process,

including the files it accesses, and recover the computation on a binary incompati-

ble machine. The current implementation of the ftIO system provides the first two

functionalities. Maintaining file data in a machine-independent fashion can be imple-

mented by extending the porch compiler. The support for architecture-independent

binary file I/O requires future research and is discussed in Section 7.

We provide transactional file operations to support atomic transactions. We con-

sider an atomic transaction to be the execution of a program between two consecutive

checkpoints. The program either commits its state during checkpointing or aborts at

some point during the execution, in which case it can be recovered from the last

checkpoint. Problems arise if a program writes to a file and aborts before the write

has been committed. The reason is that the files are generally kept in nonvolatile

storage. A value written before a crash is likely to remain in the file and will therefore

erroneously be visible after recovery.

To avoid such incorrect behavior, I designed and integrated a new protocol with the

porch compiler. This protocol is based on the copy-on-write approach [19], in which

the entire file is copied upon the first write operation. Subsequent file operations are

performed on the file replica. During checkpointing, the modifications are committed

by simply replacing the original file with its replica. The protocol is based on a single

global bit of information to ensure fault tolerance.

The ftIO system maintains bookkeeping information about the copy and the orig-

inal file to preserve consistency with the remaining state of the application. This

bookkeeping information comprises the protocol state of the file, e.g. clean or dirty,

the file position, the mode in which the file was opened, an optional user buffer,

the buffering policy (e.g. full, line, none), the ungetch state (up to 1 character, as

required by ANSI C), and "meta information" such as the existence of the file and

its name. It is important to checkpoint this information in a portable manner to

facilitate recovery of an application on a binary incompatible machine. We utilize

the porch compiler to automatically generate code for checkpointing the bookkeeping

data in a machine-independent format by precompiling the ftIO runtime system itself

with porch. This approach allows me to implement the runtime portion of ftIO as a

shallow layer of wrapper routines for the complete set of file operations defined in the

ANSI C standard.

The porch compiler and the ftIO system have been developed for the design of

fault-tolerant systems based on the notion of portable checkpoints. This technology

may be valuable for a variety of applications. Besides the most obvious use for

providing fault tolerance in a network of binary incompatible machines, the technology

can, for example, be used in the design of embedded systems. We envision the use

of porch in embedded systems that use the C language for software development.

Embedded systems are often built around commodity processors for which C (cross-)

compilers and linkers exist or are relatively easy to port. The ftIO system requires

that a subset of the ANSI C file operations is implemented, which is usually the case

anyway.

Once a C compiler and I/O library are available, porch can be used in single-

processor systems to capture the state of a computation, including the files it accesses,

in a portable checkpoint. This checkpoint could be inspected on a binary incompat-

ible machine, for example by using a debugger on a workstation. The capability of

porch to automatically generate code for converting data representations can simplify

the design of multiprocessor systems because machine-independent file data can be

exchanged across binary incompatible processors without explicitly coding for porta-

bility. I believe that porch and ftIO could be a viable aid for software development

and debugging as well as simplifying the software for fault-tolerant heterogeneous

systems.

This thesis is organized as follows. I first give a brief review of the porch compiler

technology in Chapter 2. In Chapter 3, I discuss design alternatives for the imple-

mentation of ftIO. In Chapter 4, I present the ftIO algorithm, which is in principle

independent of the porch technology. Experimental results of the ftIO prototype are

presented in Chapter 5, and more results available in Appendix A. I present an

overview of related work in Chapter 6. Finally, I conclude with a discussion of the

possibilities for future research in Chapter 7.

Chapter 2

The porch Compiler

The porch compiler [18, 22] is a source-to-source compiler that translates C pro-

grams into equivalent C programs capable of saving and recovering from portable

checkpoints. Portable checkpoints capture the state of a computation in a machine-

independent format, called Universal Checkpoint Format-UCF. The code for saving

and recovering as well as converting the state to and from UCF is generated automat-

ically by porch. This chapter presents an overview of the porch compiler and provides

a brief summary of the techniques used to provide fault tolerance.

The porch compiler technology solves three key technical problems to making

checkpoints portable.

Stack environment portability The stack environment is deeply embedded in a

system, formed by hardware support, operating system and programming lan-

guage design. A key design decision to implement porch as a source-to-source

compiler has been the necessity to avoid coping with the system-specific state

such as program counter or stack layout. It is not clear whether this low-

level system state could be converted across binary incompatible machines. In-

stead, porch generates machine-independent source code to save and recover

from checkpoints. At the C language level, variables can be accessed by their

names without worrying about low-level details such as register allocation or

stack layout done by the native compiler.

Data representation conversion Two issues of data representations are of con-

cern: bit-level representations and data layout. Basic data types are stored in

different formats at the bit level. The most prominant formats are little en-

dian and big endian. Furthermore, different system designs require different

memory alignments of basic data types. These determine the layout of complex

data types such as structures. Consequently, all basic data types and the lay-

out of complex data types are translated into a machine-independent format.

The porch compiler generates code to facilitate the corresponding conversions

automatically.

Pointer portability The portability of pointers is ensured by translating them into

machine-independent offsets within the portable checkpoint. Since the target

address of a pointer is not known in general at compile-time, porch is supported

by its runtime system to perform the pointer translation during checkpointing

and recovery.

To enable code generation, potential checkpoint locations are identified in a C

program by inserting a call to the library function checkpoint (). For these potential

checkpoint locations, porch generates code to save and recover the computation's state

from portable checkpoints.

The porch compiler generates code for programs that compile and run on sev-

eral target architectures without the programmer modifying the source code. This

strategy does not prevent system-specific coding such as conditionally compiled or

hardware-specific code fragments, but requires structuring a program appropriately.

The means of hiding system-specific details from porch are structuring the program

into multiple translation units and functions. The porch compiler employs interpro-

cedural analysis to instrument only those functions that are on the call path to a

potential checkpoint location. The functions that are not may safely be system spe-

cific. A reasonable convention would be to group all system-specific functions and

data into a translation unit separate from the portable code. Only the portable por-

tion of the code would be precompiled with porch. The nonportable portion could

be different for any particular system, because it would not affect the state of the

computation during checkpointing.

Chapter 3

The ftIO System Design

Alternatives

In this chapter we discuss alternative implementations of transactional file operations

in the context of checkpointed applications. We study the performance of ftIO by

estimating the space and runtime overheads of these implementations. As the result of

this study, we conclude that the most reasonable implementation for the ftIO system

is the copy-on-write implementation of the private-copy approach.

The task of the ftIO system is analogous to the task of any transaction system.

Indeed, we can think of all file operations between two checkpoints as belonging to

one large transaction. Hence, an implementation of ftIO is in fact an implementation

of a transaction system [6], where a transaction consists of the computation executed

between subsequent checkpoints. Transactions are atomic operations. Either all op-

erations within a transaction are executed, or none are. Instead of implementing a

general transaction system, however, several factors allow us to argue for a simpli-

fied version. The two obvious ones are the absence of nested transactions and the

availability of the internal state of the system during recovery (due to porch [18, 22]).

Transaction systems are generally classified as undo-log systems or private-copy

systems [23]; the latter also called side-file [6] systems. Undo-log systems maintain

a log of undo records, with an undo record for each operation within a transaction.

If a failure occurs, the log is used to undo the modifications of an unfinished trans-

action. Private-copy systems maintain a private copy of all the data accessed by the

operations of a transaction and update the original data only when the transaction

commits. There are several implementations to optimize the private-copy approach.

They differ in what is copied and when. Usually the trade-off is between perfor-

mance, storage overhead, and complexity of the implementation. The design choice

usually depends on the size of the transactions, the amount of data involved in the

transaction, the performance and space requirements for the program (e.g., real-time

response, limited stable storage), and the stable storage technology.

In the design of the ftIO system there were three important goals:

1. The support of heterogeneous computing environments.

2. The ability to generate fault-tolerant code automatically.

3. The efficiency (speed) of programs using the ftIO system.

I ensure platform independence of ftIO by implementing it as a set of shallow

wrappers around the I/O functions from the standard C library. Since the ftIO

runtime code is written entirely in the ANSI C language without any extensions (even

without UNIX extensions), it can be used without modifications on any architecture.

Due to a rich set of analysis and transformation capabilities of the porch compiler,

I am able to automate the translation of ANSI C programs for use with the ftIO

system. That translation is completely transparent to the programmer and does not

require any code to be changed manually.

In the following sections we identify the most efficient implementation of the ftIO

system. To do so, we discuss the undo-log approach, the private-copy approach,

and three possible implementations of the latter one, namely the copy-on-write, the

shadow-block, and the twin-diff implementations. We conclude this chapter with a

comparison of the performance and space overheads of different implementations.

3.1 Undo-Log Approach

This section describes the undo-log approach, a popular approach for implementing

transaction systems. The assumption behind this approach is that the system fails

rarely, and most transactions commit normally. Therefore, undo-log systems make all

changes directly to the files that the changes affect and keep a separate log to undo

the changes. If a transaction commits normally, the undo-log is simply discarded. In

this section we discuss the performance and implementation of the undo-log approach

in the context of checkpointed applications and conclude that this approach is not

well-suited for the ftIO system.

The undo-log approach works well for small transactions. Large transactions,

however, impose a serious time and space penalty. Since the undo-log approach

requires logging of undo operations for every write operation, the cost of maintaining

the undo-log is proportional to the number of write operations between subsequent

checkpoints. For n writes between checkpoints, the runtime overhead is O(n) for

committing the associated undo records. The overhead includes reading the original

value at the write location and writing the undo record to the undo-log. The space

overhead due to n writes is also of order 0(n). Therefore, the runtime and space

overheads are not bound by the size of the files. Instead, they depend on the time

interval between checkpoints.

The other problem with the undo-log approach is that one must ensure that all

undo records are committed (flushed) to stable storage before the corresponding file

operations are committed to the disk files. If this is not the case, a system failure after

a file operation is committed to the disk, but before a corresponding undo operation is

written, can make recovery impossible. Buffering file opeartions in memory is a very

effective file I/O optimization implemented by most ANSI C libraries. However, to

implement the undo-log approach in ANSI C, one would have to sacrifice the benefits

of buffering file operations by flushing every undo record to disk before performing the

actual write operation. Undo records cannot be buffered in memory, since there is no

guarantee that they will be flushed to disk before the corresponding write operations.

It is conceivable that one could reimplement ANSI C file buffering in ftIO to ensure

that buffers with undo records are flushed before the corresponding buffers with writes.

However, very often memory buffering of file I/O is also implemented on the level of

the operating system. Ensuring that an operating system flushes buffers with undo

records before it flushes the buffers with writes would require functionality beyond

that provided by ANSI C.

The last potential problem with the undo-log approach is that support for renam-

ing and removing files is not straightforward. Because all file operations are performed

on the original files, remove and rename operations would remove and rename the ac-

tual files. Hence, undoing rename and remove operations is not straightforward with

the undo-log approach.

3.2 Private-Copy Approach

This section discusses the private-copy approach, an alternative to the undo-log ap-

proach. Private-copy systems, unlike undo-log systems, do not modify files until a

transaction is committed. Instead, they keep a separate private copy of the data and

perform all operations on that copy. During the commit phase of the transaction, the

original is reconciled with the copy. In this section, we discuss implementations and

system trade-offs that affect the performance of the private-copy approach in prac-

tice. Namely, we will discuss three implementations of the private-copy approach:

copy-on-write, shadow-block, and twin-diff. We will find that copy-on-write is the

preferred implementation, since it attains the best worst-case performance and space

overhead.

The space overhead of a private copy is bound by the size of the original file

N plus the potential bookkeeping overhead. The runtime overhead of the private-

copy approach is bound by O(N). The constant factor hidden by O depends on the

individual implementation. Note that both space and runtime overheads depend on

the file size N in the private-copy approach.

Since the amount of data that must be copied is at most the total size of all files

affected by the changes, private-copy systems are likely to perform better than undo-

log systems in the context of relatively large transactions and relatively small files.

Additionally, since the private copy is an ordinary file, ANSI C file buffering can be

fully utilized during the execution of the program.

Another advantage of private-copy systems is that it is easier to maintain the

transactional properties of operations such as renaming, removing, and creating new

files. Indeed, since private-copy systems do not modify the original files, undoing

renames, removals, and file creations involves no more than discarding private copies

of the affected files.

Copy-on-write Implementation

Copy-on-write was first developed for virtual memory management in the Mach op-

erating system [19]. It can be applied in the context of file I/O, where it may be

viewed as an implementation technique of the private-copy approach. In fact, our

ftIO system is based on a copy-on-write implementation.

Copy-on-write is an implementation of the private-copy approach where a private

copy of a file is made upon the first write operation after the last checkpoint or after

the program begins execution. All subsequent operations are performed on the replica

until the next checkpoint is saved, when the original file is replaced with the replica.

Copy-on-write is an optimization of the private-copy in the sense that a copy is only

made when the first write occurs, as opposed to copying at the very first access, which

may be an open or read.

The copy-on-write implementation suffers runtime overhead only during the first

write operation after a checkpoint. All other file operations incur virtually no over-

head, with the exception of ftIO-related bookkeeping. During the commit or recovery

phase, the original file is replaced by the replica via a single rename operation. An

atomic rename operation is used to this end, as provided by POSIX-compliant oper-

ating systems [16].

Copy-on-write incurs no overhead if a file is accessed by read operations only. If

there are write accesses, copy-on-write performs best for environments with relatively

infrequent checkpoints in the presence of a large number of write operations whose

modifying accesses are scattered across the entire address range of a file. In this

case, write accesses are expected to amortize the copy overhead, because infrequent

block-copying of files utilizes disk technology and memory bandwidth very efficiently.

During the commit phase, the original is simply replaced with the replica via a

single rename operation. Also, the files that were marked to be removed during the

transaction are actually removed during commit.

Shadow-block Implementation

Replicating files may be considered prohibitive if either runtime is critical, such as in

real time applications, or if the capacity of non-volatile storage is limited, as is often

the case in embedded systems design. Moreover, one can argue that if a program

exhibits spatial locality in file I/O, only parts of the file would be modified during a

transaction. Hence, a straightforward algorithm might create replicas of the modified

blocks only, instead of copying the entire file. This block-based algorithm is known

as the shadow-block implementation [23], or shadow-page algorithm in [6]. It is an

optimization of the copy-on-write implementation that is suited for use in operating

systems. Files on the disk are typically fragmented into disk blocks, and the file system

maintains bookkeeping information about the fragmentation. In such an environment,

rather than copying an entire file upon the first write, only the block accessed by a

write operation is copied. Each block of a file can be copied, committed, and recovered

independently.

The shadow-block implementation is not well suited for use in ftIO, however,

because ftIO is implemented at user level for portability reasons. At user level, the

fragmentation of files is invisible. Besides adding another level of fragmentation at

user level, a shadow-block implementation in ftIO would cause additional overhead

during the commit phase, as we discuss now.

Fragmenting a file at the user level into several independent blocks prevents us

from using a single rename operation to commit the changes. Instead, replicas of the

changed blocks must be copied back into the original file (master file). Hence, during

the course of a single transaction, each updated block is copied twice-first when the

replica of the block is made, and second when the changes to the block are committed.

In the worst case, when all blocks of a file must be copied during a single transaction,

the performance penalty of the shadow-block implementation doubles the penalty of

the copy-on-write implementation and suffers some overhead for the bookkeeping and

added complexity.

Like the undo-log approach, the shadow-block implementation works best for small

transactions, involving programs that exhibit strong spatial locality and use large

files, because only few blocks are likely to be updated during a single transaction.

In a larger transaction, however, more blocks are likely to be modified, and the

performance is more likely to resemble the worst-case performance.

Twin-Diff Implementation

Another alternative for implementing ftIO is the twin-diff technique, popular for

building distributed shared memory systems [26]. There, memory consistency must

be provided at the smaller unit of basic data types rather than at the block level or,

in case of distributed shared memory systems, at the level of virtual-memory pages.

A typical twin-diff implementation maintains replicas of pages (twins) in memory.

During the commit phase, the number of copies is minimized by reconciling only the

differences-the modified data-between the original page and the replica.

The twin-diff implementation seems appealing, because it allows for copying only

blocks modified and minimizes the number of copies during the commit phase, which

has been identified as the crucial disadvantage of the shadow-block implementation.

Computing the diffs, however, requires reading both the original page and the replica.

Then, relatively small, generally noncontiguous data items (the diffs) are written back

into the file.

Due to the performance characteristics of the modern I/O systems, the twin-diff

implementation is not well-suited for ftIO. First of all, during the commit operation,

both the original file and the replica need to be read to compute the diff. Due to

delayed disk writes, however, reads on modern architectures are more expensive than

writes. Additionally, due to the block-oriented nature of disk I/O, there is usually

no performance gain in writing only a small portion of a block instead of the whole

block. Finally, since the commit phase of the twin-diff approach is not atomic, and

the diffs are kept in memory, ensuring a correct recovery from crashes during commit

operation is hard.

3.3 Comparison of Implementations

This section compares space and runtime overheads of the undo-log, copy-on-write,

and shadow-block implementations discussed above. We are primarily interested in

the worst-case analysis, since it provides upper bounds on the overheads. We will also

show a comparative analysis of the copy-on-write and shadow-block implementations.

Finally, we will show that for the modern disk I/O systems that are optimized for

block transfer of data, the copy-on-write implementation is almost always preferable.

Below are the definitions of the variables used in the following discussion:

n The number of write operations performed on a file

N The number of bytes in the file

b The number of blocks in the file

f The ratio of the modified blocks to the number of blocks in the file

t, Startup time required for reading or writing data (moving disk head)

d Incremental time (beyond startup time) required to read or write one byte

D Incremental time required to read or write the entire file (D = Nd)

S Space overhead

T Time overhead

For simplicity, we assume that read and write times (ts, d, D) are the same. Vari-

ables b and f apply only to the shadow-block implementation of copy-on-write ap-

proach. Since f is a fraction of the modified blocks, we have 1/b < f < 1, given that

at least one write operation has been performed on the file, and therefore at least one

block is modified.

The overheads for n write operations for the different implementations are pre-

sented in Table 3.1. For the undo-log implementation, the space overhead is propor-

tional to the number of write operations, since each write generates a new undo record.

The time overhead is n(ts + O(d)) since each write involves writing a separate undo

record. The space overhead of copy-on-write is N for the copy of a file, and the time

overhead is 2(ts + D) to copy the whole file upon the first write. The space overhead

of the shadow-block implementation is proportional to the number of blocks modified,

and the time overhead is the overhead for copying each modified block twice, once to

generate a replica and once to commit the relpica.

Implementation Space overhead S Time overhead T

ungo-log 0(n) n(ts + O(d))
copy-on-write N 2(ts + D)
shadow-block fN 4f (b - ts + D)

Table 3.1: Time and space overheads for undo-log, copy-on-write, and shadow-block
implementations.

Table 3.2 presents the worst-case space and time overheads for the three imple-

mentations. The O(n) space overhead of the undo-log implementation is not bound

by the file size N but by the number of file operations between checkpoints. In par-

ticular, n > N represents a possible scenario. In contrast, the space overhead of

copy-on-write is always S = N. Also, the runtime overhead T = n(ts + O(d)) for

committing n undo records could be substantially larger than T = 2(ts + D) for the

copy-on-write implementation. The worst case senario, for which f = 1 when all

blocks are modified, yields a higher runtime overhead for the shadow-block imple-

mentation than for the copy-on-write implementation: 4(b. t, + D) > 2(t, + D), while

both implementations imply S = N.

Besides the worst-case analysis, it is instructive to compare the overheads of the

copy-on-write and shadow-block implementations, as there exists a ratio f* of modified

blocks, where both implementations incur the same runtime overhead. Comparing f*

to f can help choose the best implementation for a particular problem. Specifically,

Implementation Space overhead S Time overhead T

ungo-log 0(n) n(ts + 0(d))
copy-on-write N 2(ts + D)

shadow-block when f = 1 N 4(b - ts + D)

Table 3.2: Worst case time and space overheads for undo-log, copy-on-write, and
shadow-block implementations.

for f > f*, the copy-on-write implementation is faster, whereas for f < f*, the

shadow-block implementation is faster. We find that

1 t, +D
T = 4f*(bts +D) = 2(t,+D) for f* =

2 bt, + D

Depending on the disk technology used and the file size, there are two boundary cases:

1. If the startup time ts is an insignificant part of the time to write one block

of data ts + D/b, then b -t, < D, and both implementations incur the same

runtime overhead for f* = 1/2. In this case, the copy-on-write implementation

would be preferred only if at least half of the blocks are modified during the

time between two checkpoints.

2. If the startup time is large, or the file is small, then t > D and thus f* = 1/(2b).

Since f > 1/b by definition, then f* < f for all problems. Therefore, copy-on-

write always incures less runtime overhead.

An important observation is that the larger the time between checkpoints is,

the larger f becomes, and the larger the overhead the shadow-block implementation

incurs. It is not clear, however, what the optimal number of blocks b for a particular

problem is. On one hand, the runtime overhead T = 2f(b - ts + D) for the shadow-

blok implementation grows as b increases, but the fraction of modified blocks f may

decrease with larger b, thereby reducing T. According to the experimental data (see

Section 5), however, the difference in performance between a user-level shadow-block

and copy-on-write implementations is likely to be insignificant. As a result of this

discussion, we used the copy-on-write implementation in the ftIO system, which is

also substantially simpler than the other alternatives.

Chapter 4

The ftIO Algorithm

This chapter describes the algorithm underlying the ftIO system. In Section 4.1, we

introduce the ftIO finite automaton and describe its operation. We also discuss the

ftIO commit operation and the ftIO recovery phase. In Section 4.2, we conclude by

presenting an effective optimization to the ftIO's copy-on-write implementation for

the case when files are opened in the append mode.

The ftIO algorithm is a private-copy/copy-on-write design for checkpointing sys-

tems. Checkpointing systems are characterized by alternating phases of normal ex-

ecution and checkpointing unless a failure occurs. The ftIO algorithm is based on a

finite automaton built upon a set of ftIO states for each file accessed by the appli-

cation. State transitions occur if certain file operations are executed. All ftIO file

operations are implemented as wrappers around the standard ANSI C file operations.

These wrapper functions maintain for each file a data structure that contains its state.

The state maintained for each file includes the name of the file and its replica, the

ftIO state (see below), the mode in which the file is opened, the buffering policy for

the file, the location and size of an optional user's buffer, a push-back character, eof

and error flags, and the current position in the file.

ftIO States

Each file is associated with three orthogonal ftIO states. A file may be dirty or clean,

it may be open or closed, and it may be live or dead.

clean/dirty A file is clean if it has not been modified since the last checkpoint (or since

the beginning of the execution, before the first checkpoint); otherwise, it is dirty.

By this definition, files that do not exist (and have not been removed since the

last checkpoint) are clean. In a private-copy implementation, no replicas exist

for clean files.

open/closed A file can be either open or closed. By default, all files are considered

closed, unless they are explicitly opened. In particular, files that do not exist

are closed by this definition.

live/dead A file can be scheduled for removal, in which case it is dead. Otherwise, it

is alive.

Besides the file-specific states, a global boolean ftIO state is maintained.

FIN (for finished) is a bit used to record the success of the ftIO commit operation.

It will be explained in detail in Section 4.1.

ftIO File Operations

We distinguish ANSI C file operations from ftIO file operations. The latter define

the input alphabet of the ftIO finite automaton as listed below:

create creates and opens a file. If the file exists already, it is erased before being

created again. This ftIO file operation corresponds to the ANSI C file operation

fopen with opening mode "w", or "a" if the file does not already exist.

createTmp creates and opens a temporary file, which is to be removed automatically

when closed. By definition, this file has a unique name. The corresponding

ANSI C operation is tmpfile.

open opens an existing file. The corresponding ANSI C file operation is fopen with

opening mode "r", or "a" if the file exists.

write modifies the contents of an open file, including appending data to that file. The

corresponding ANSI C file operations are fprintf, vfprintf, fputc, fputs,

putc, and fwrite.

close closes an open file. This operation corresponds to the ANSI C file operation

fclose.

remove removes a closed file. This operation corresponds to the ANSI C file operation

remove.

renameSrc (to B) moves an existing and closed file to location B. This operation cor-

responds to a part of ANSI C operation rename and is applied to the file that is

the source of rename operation. The definition of the input alphabet for ftIO's

finite automaton requires splitting the ANSI C file operation rename into two

parts, renameSrc and renameDst, because a rename affects the source and the

destination files differently.

renameDst (from A) replaces a closed (possibly nonexisting) file with a file from loca-

tion A. If this file exists, it is overwritten with A. This operation corresponds

to that part of the ANSI C operation rename, which affetcs the destination file

of the rename operation.

A note concerning portability: ANSI C does not define the behavior of rename

if the destination file exists. According to the UNIX specification, however,

the rename operation atomically replaces the destination file with the source

file [16]. The ftIO system implements the UNIX-like behavior for rename and

requires the UNIX-like behavior from the native C library.

Note that ANSI C operations that read data, check for an error or the end of file,

change the current position in a file, and change the buffering mode do not have an

equivalent ftIO operation. Those ANSI C operations do not change the state of a file

and therefore do not cause a state transition of the ftIO finite automaton.

4.1 The ftIO Finite Automaton

In this section we explore the ftIO finite automaton. We start by describing the

the operation of the ftIO system for live files. Then, we present the complete finite

automaton by broadening the context to include the dead files and the support for

temporary files as well as file operations remove and rename. During the discussion of

the ftIO commit and recovery phases, we introduce the global FIN bit and investigate

the idempotency of the commit operation. We conclude with an informal argument

about the correctness of the ftIO algorithm.

Figure 4-1 shows the transition diagram of the ftIO finite automaton based on

a subset of the ftIO states and file operations that affect live files only. This subset

does not contain file operations remove, renameSrc, renameDst, and createTmp. The

start state of the automaton is clean & closed; the accepting states after a commit

operation are shown in black.

commit commit dirty

closed

create
open close open close

write dirtycommit & write
commit open

Figure 4-1: The "live" subset of of transition diagram for the ftIO finite automaton.

Opening and closing files does not affect the initial clean/dirty state. Open files

can be written, causing the file to become dirty. In our copy-on-write implementation

of ftIO, a clean file is copied upon a write, and the write, as well as all future writes,

are performed on the replica. Upon file creation the dirty state is set.

If a file is clean, no replica of the file exists, and the file has not been modified since

the last checkpoint. Therefore, all operations are performed on the actual file until

a write operation is performed on that file. Upon the first write operation, a private

copy of the file is generated, and the file becomes dirty. Henceforth, all operations

are performed on the replica of the file until the next checkpoint is saved, when the

changes to the file are committed. During the commit operation, the original file is

replaced by its replica, and the file becomes clean again.

Temporary Files, Removal, and Renaming

ANSI C supports renaming and removing files. Additionally, it defines temporary

files, which are removed automatically when closed. The live/dead state is introduced

in ftIO to support these features. The dead state indicates that a file, including its

replica, must be removed during the commit phase, provided the file is in a closed

state. If the file is open during the commit phase, then the file is treated as if it were

alive.

Figure 4-2 shows the complete transition diagram of ftIO's finite automaton. It

incorporates three additional states besides the four "live" states to support the ftIO

operations remove, renameSrc, renameDst, and createTmp.

The states "clean & open & dead" and "dirty & open & dead" are used for temporary

files (created with createTmp) while they are open. All files that are removed, renamed,

or were created as temporary and are closed are in the "closed & dead" state. Files

in state "closed & dead" can be clean or dirty.

When a temporary file is created, that file is created as dead. Consequently, when

the temporary file is closed, it will be removed during the commit operation. While it

is open, the live/dead state is ignored, and the temporary file is treated as an ordinary

file.

The live/dead state enables checkpointing removed and renamed files. If a remove

operation is applied to a file (it must be closed to be removed), the file's state becomes

dead. When a file is marked dead, the f open and freopen file operations treat that

file as if it does not exist, because the file is effectively removed. The file will be

actually removed, however, only during the commit phase.

If a rename operation is invoked (both source and destination files must be closed

commit

Figure 4-2: Complete transition diagram of the ftIO finite automaton.

for that), the source file's state becomes dead. We also need to ensure that the

replica of the destination file contains the data from the source file. Therefore, we

either rename the replica of the source file to be the replica of the destination file, if

the source file is dirty, or copy the source file to become the replica of the destination

file, if the source file was clean. Also, the destination file is marked dirty because it

has been modified, and the destination file is marked live, if it is dead before.

Checkpointing

We separate the checkpointing process into two phases. First, the porch RTS saves the

volatile state, including register and memory values. Second, the ftIO system commits

the changes made to the files. The two phases are accompanied by a third action,

the maintenance of the FIN bit. Figure 4-3 shows the sequence of the checkpointing

phases.

porch ftlO
normal execution checkpointing o normal execution

FIN=true v. * FIN=false + FIN=true tme

Figure 4-3: Execution phases.

Upon checkpointing, the volatile state of a process is saved by the porch RTS in

UCF format in a temporary checkpoint file. This checkpoint file includes the FIN

bit, explained in detail below. When the volatile state is gathered in the temporary

checkpoint file, it replaces the previous checkpoint file by means of the atomic rename

operation of the ANSI Standard C library [16], thereby committing the checkpoint.

After the porch RTS has saved the checkpoint, the ftIO system performs commit

operations for all files. The commit operation affects files in the following way:

For each dirty file, the original file is replaced with its replica, and the file

state transitions to clean. If a file is dead and closed, however, both the

actual file and the replica (if one exists) are removed irrespective of the

clean/dirty state.

The FIN bit ensures the atomicity of the ftIO commit operation. It occupies a bit

in the checkpoint. The porch RTS initializes a new temporary checkpoint file with

the FIN bit value set to false. At the end of the ftIO commit phase, the FIN bit is

set to true in the checkpoint file. This happens in the actual checkpoint file, which

was created during the porch checkpointing phase and contains the internal state of

the program. In Figure 4-3 the FIN bit represents a global state, which is defined as

the value of the FIN bit in the last checkpoint file. Therefore, the FIN bit becomes

false in Figure 4-3 only after the porch checkpointing phase, when the new checkpoint

file with the FIN bit set to false is committed by replacing the previous checkpoint.

Also note that writing the FIN bit does not require an atomic disk-write operation.

Instead, we only must ensure that the FIN bit has been written to disk before the

first write operation after checkpointing.

Failure Cases and Recovery

Figure 4-3 above shows the two checkpointing phases embedded in periods of normal

execution. Failures may strike during any of these phases. There are, however, only

two distinguished failure cases, which simplifies reasoning about the correctness of

the ftIO algorithm.

1. If the application aborts due to a failure during the normal execution or during

the porch checkpointing phase, recovery is based on the previous checkpoint.

Since all modifying file operations have been performed on private copies, the

original files are untouched. Because none of the file modifications have been

committed yet, recovery from the previous checkpoint involves only discarding

the replicas.

2. If the application aborts during the ftIO-commit phase, only a subset of the

files may have been committed before the failure. In this case, the previous

checkpoint has been replaced with the new checkpoint already, and recovery will

restore the computation from the new checkpoint. Files are recovered simply

by executing the ftIO commit operations during the ftIO recovery phase before

returning control to the application. Since committing files involves no more

than replacing the original files with their replicas, those files that have not been

committed due to a failure can be committed before the application continues.

Files that have been committed already remain untouched. The ftIO commit

code does not even have to be changed because rename and remove operations

are idempotent. These operations are idempotent because only the first call to

rename or remove will succeed, and the following calls fail quietly. When the

recovery phase is finished, the FIN bit is set to true in the checkpoint file, just

as it would be set after the commit phase.

Recovery, analogously to the checkpointing process, is split into two phases:

1. During the porch recovery, the volatile state of a computation is restored, and

the FIN bit is read from the checkpoint file, which determines the mode of the

ftIO recovery.

2. Files are recovered during the ftIO recovery phase.

porch ftlO recovery normal execution
recovery (noop)

FIN=true time

porch ftlO recovery normal execution
recovery (commit)

FIN=false - - FIN=true time

Figure 4-4: Recovery phases if failure occurred during normal execution or during
porch checkpointing (top), and if failure occurred during ftIO commit (bottom).

The FIN bit serves to distinguish the two modes of recovery. Figure 4-4 shows the

values of the FIN bit for both modes; cf. Figure 4-3. In the following, we argue infor-

mally why the ftIO algorithm works due to the FIN bit. Recall from the description

above that the FIN bit is initialized to false within a new temporary checkpoint file.

It is only changed to true when the ftIO commit phase is finished.

The value of FIN in the checkpoint is true upon recovery, if the checkpointing

process succeeded. In this case the ftIO recovery phase is a noop, as shown at the

top of Figure 4-4. Only if a failure occurs during the ftIO commit phase, does the

FIN bit in the checkpoint remain false. In this case, files are committed during the

ftIO recovery phase by executing the commit operation (see page 33). Since rename

and remove are idempotent, the subset of files that have been committed before the

crash will not be affected during recovery.

The only failure case remaining to be discussed is a failure during recovery, cf.

Figure 4-4. No special treatment is required for this case. Since during recovery either

the idempotent ftIO commit operation is executed or a noop, the recovery phase can

safely be executed again to recover from a failure during recovery. No distinction is

necessary as to whether the failure occurs during the porch recovery phase or the ftIO

recovery phase.

To ensure that all files are committed correctly after the program has ended,

porch saves the very last checkpoint after the main routine in the application code

returns. That last checkpoint does not contain any state from the application, but

only the state of ftIO. Hence, if the process fails during the ftIO commit operation,

the program commits all files after recovery and terminates.

4.2 Append Optimization

According to [17], many long-running scientific applications store data by appending

them to an output file. The analysis in Section 3.3 shows that the append scenario

presents the best case for the shadow-block implementation, since only a few blocks

at the end of the file are modified during the time between checkpoints. It is straight-

forward, however, to optimize the copy-on-wrnte implementation for this case. I

implemented the append optimization for ftIO that avoids copying a file upon the

first write and performs therefore at least as well as the shadow-block implementation

in the append scenario. The experimental results, presented in Section 5, confirm the

claim for a significant performance improvement due to the append optimization.

The append optimization is based on the idea that instead of generating a replica of

the original file upon the first write, a temporary file is created, and all writes before

the next checkpoint are appended to this temporary file. During the ftIO commit

operation, this temporary file is appended to the original file. Since the original file

is not modified until the next checkpoint, discarding the temporary file is sufficient

to recover from failures that occurred during execution.

Unlike renaming or removing replicas, as necessary to commit in the unoptimized

cases, appending the temporary file to the original is not an idempotent operation.

The ftIO recovery described in Section 4.1, however, requires the commit operation

to be idempotent. The ftIO system stores the size of the original file in the checkpoint

and truncates the original file to the recorded size before appending the temporary file

to ensure idempotency. Hence, if a failure occurs while appending the temporary file,

recovery involves first undoing the aborted append and then reexecuting the commit

operation for the file.

If a file, opened in append mode, is closed and then reopened in a different mode,

a replica is generated by concatenating the original file with the temporary file con-

taining the appended data.

commit write v / /

S. open , //

\ commit dead / / /

write d
commit ope write

commit ive

Figure 4-5: Transition diagram of the ftIO finite automaton including append opti-
mization.

Figure 4-5 shows the transition diagram for ftIO'a finite automaton that includes

the append optimization. The grey states and dashed transitions are added to the

finite automaton presented in Figure 4-2. No other changes are necessary.

Chapter 5

Experimental Results

We designed three synthetic benchmarks to exhibit the performance characteristics

of our copy-on-write implementation of ftIO: a read benchmark, a write benchmark,

and a random write-access with spatial locality. We also present the performance of

a molecular dynamics code to show that the overhead of checkpointing a scientific

application that writes a large amount of simulation results to a file is reasonably

small. All runtimes presented in this chapter were gathered on a Sun SparcstationlO

with checkpointing to local disk. Appendix A presents data for other machines.

Sequential Access: read and write

Figure 5-1 presents accumulated runtimes of the read benchmark and the write bench-

mark in the presence of checkpointing compared to the original, not porchified code.

The read benchmark reads consecutive bytes from a file. The write benchmark writes

(appends) bytes to a file. For both benchmarks, the interval between checkpoints

is 2 seconds to exaggerate the checkpointing overhead. The runtimes reported are

accumulated over the bytes read or written. Therefore, the runtime corresponding

to a particular number of reads or writes includes the number of checkpoints saved

during the period of executing that particular number of file operations.

Figure 5-1 shows that the overhead of the checkpointed version of the read-

benchmark is due to two factors. First, checkpointing the program's state introduces

l 1 I I I I I I I I I I

55- 55

50 - 50

45 45 -
R R
u 40- - U 40 - with checkpointing
n 35 - n 35 -
t t
i 30 1 30 with append

m 25 m 25 optimization -

[s] 20 with checkpointing [s] 20
15 15 -

10 - 10 -

5 -original code (not porchified) 5 - original code (not porchified)
0 1 1 1 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Number of Reads (x 106) Number of Writes (x 106)

Figure 5-1: Performance of reading (left) and appending (right) 10 Mbytes of data
from and to a file. Checkpoints are taken after about 106 file operations in the exper-
iments marked "with checkpointing" and those marked "with append optimization."

small jumps when saving the internal state. Second, the overhead of the files operation

wrappers leads to a slightly larger slope of the runtime curves between checkpoints.

Since no write operations are performed in the read benchmark, no cost is incurred

due to replicating the file.

The checkpointed version of the write benchmark, however, exhibits the expected

overhead due to file replication upon the first write after a checkpoint has been saved.

Each step in that curve corresponds to the overhead of file replication. The monoton-

ically increasing step size of the checkpointed version without append optimization

is a result of the growing file size. Clearly, file replication dominates the checkpoint-

ing overhead. The curve of the checkpointed version with the append optimization

exhibits a constant step size, which corresponds to checkpointing the program state

and copying the appended data from a temporary file to the original file. The step

size is constant, because the same amount of bytes is appended between subsequent

checkpoints, taken at equal intervals.

Random Access

Figure 5-2 presents runtimes of our third benchmark. This benchmark analyzes the

performance of ftIO with file operations randomly distributed over the address range

of a file, and where file accesses exhibit spatial locality. Spatial locality is incorporated

by computing the location of a file access to be normally distributed around the

location of the previous file access with a standard deviation of 10.24 KBytes. This

value corresponds to 0.1 % of the total file size of 10 MBytes. Our benchmark performs

106 file operations, 90 % of which are read operations, and 10 % are write operations.

Ten checkpoints are taken at equal intervals during the execution of the benchmark.

1000

900 with checkpointing

800
R
u 7006--
n 600-
t original code (not porchified)
i 500 -

m 400 -
e

[s] 300 -

200 -

100 -

1 2 4 8 16 32 64 128 256

Number of Blocks

Figure 5-2: Runtimes of random file accesses with spatial locality. The variation of
the number of blocks simulates the behavior of a shadow-block implementation with
different block sizes.

Figure 5-2 includes runtimes of the copy-on-write implementation for different

numbers of blocks. We simulate a shadow-block implementation by splitting the

10 MByte file into files (blocks) of equal size and accessing these blocks with our ran-

dom strategy as if they occupied a contiguous address space. This simulation models

a lower bound for the shadow-block implementation. By physically partitioning the

data set into separate files we avoid copying of blocks during the commit operation.

Instead, each modified file (block) is committed by renaming.

The runtimes in Figure 5-2 indicate that the copy-on-write implementation is

more reasonable than the shadow-block implementation. As the number of blocks

increases from 1 to 32, performance improves by 8 % only. For larger numbers of

blocks, performance degrades, primarily due to the cost of the rename operations.

Another observation involves a comparison of the runtimes in Figure 5-2 with

those in Figure 5-1. Accessing a file randomly (106 accesses) is almost three orders

of magnitude more expensive than contiguous read or write accesses, even with the

spatial locality of the accesses. This allows us to argue that modern disk I/O systems

have a high startup time for disk reads and writes.

Finally, the performance of the benchmark without checkpointing in Figure 5-2

improves as the number of files (blocks) increases. We attribute this behavior to the

file caching mechanisms in the Solaris operating system, which seems to be optimized

for smaller files.

Molecular Dynamics Code

Figure 5-3 presents the cumulative runtime for a 2D short-range molecular dynam-

ics code, written by Greg Johnson, Rich Brower, and Volker Strumpen. The code

outputs the simulation results, including potential, kinetic, and total energy of the

particle system (a total of 53 bytes) every 10 iterations to a file. The period between

checkpoints is set to 20 minutes. The program generates approximately 400 bytes of

data between checkpoints, and the total size of the output file after 60, 000 iterations

is 150 Kbytes.

Presented are the accumulated runtimes for the original code and the checkpointed

code with the append optimization. We observe that the overhead of checkpointing,

including the ftIO overhead, is less then 6 % for any number of iterations.

The small steps in the runtime curve "with checkpointing" correspond to the

checkpointing overhead, which is approximately 60 seconds each on Sun Sparcsta-

tionl0. Hence, even as the file size increases, the append optimization keeps the

commit cost constant. The runtime overhead of each checkpoint is 75 % due to

checkpointing the internal state of the program by the porch RTS [22]. The difference

of the slopes of the two curves in the regions between checkpoints corresponds to the

--
with checkpointing

original code

1 5 10 15 20 25 30 35 40 45 50 55 6

Number of Iterations (x 103)

Figure 5-3: Runtimes of 2D short-range molecular dynamics
The checkpointing interval is 20 minutes.

code for 5, 000 particles.

runtime overhead of the ftIO bookkeeping. The ftIO overhead per file operation is

insignificant, because the difference of the slopes is marginal.

300

250

200
R
u
n
t
i
m
e

[min]

Chapter 6

Related Work

I are not aware of any checkpointing system that implements portable, fault-tolerant

file I/O. According to Gray [6, p. 723], "a large variety of methods exists for moving

data back and forth between main memory and external storage." To my knowledge,

the ftIO algorithm is new in that it uses only an atomic rename operation and a single

state bit to implement transactional file operations.

The libfcp library [24] provides support for transactional file operations. This

library implements the undo-log approach, using a two-phase commit protocol to

commit a transaction. Besides requiring explicit denotation of a program to mark the

start and end of a transaction, libfcp does not provide portability. In combination with

libckp [24, 25] and libft [8, 24], libfcp can be used to checkpoint the state of persistent

storage in the context of checkpointed applications in homogoneous environments.

Paxton [14] presents a system that uses a combination of the shadow-block and

undo-log techniques to support transactional file I/O. He uses the shadow-block tech-

nique, implementated at the level of the operating system, to store the data modified

during a transaction. An undo-log (intentions log in [14]) is kept to facilitate book-

keeping of the shadow-block data structures. This system is not designed for check-

pointing and is not portable, since it requires modification of the operating system.

Eden is a transaction-based file system [9], which is not, however, designed for

fault tolerance. It supports concurrent transactions by maintaining multiple versions

of a file. In the presence of only one process, Eden's algorithm is similar to ftIO's

copy-on-write implementation since it creates a replica for all modified files during a

transaction. The implementation of Eden is by no means portable, since it is tightly

integrated with the operating system.

A number of checkpointing systems exist for homogeneous environments, such as

libckpt [15], a supplement of the Condor system [11, 12], and the CLIP system for Intel

Paragon [4]. Not only are these systems tied to a particular machine architecture,

they also do not support transactional file operations. By saving only the name of

the file and the current file position in their checkpoints, these systems limit the

applications to read-only or write-only file I/O.

There are two approaches to migration across binary incompatible machines, the

Tui system [21] and the work on Dynamic Reconfiguration [7]. Neither of these sys-

tems supports transactional file operations. The Dome system [1] provides architecture-

independent user-level checkpointing. However, it does not support transactional file

operations either.

The work on I/O benchmarking by Chen and Patterson [2, 3] inspired the develop-

ment of our synthetic benchmarks for transactional file-I/O. Likewise, the survey of

I/O intensive scientific applications [17] increased our understanding of the trade-offs

in the ftIO design.

Chapter 7

Conclusion and Future Research

I have presented the ftIO system, which extends the porch compiler by providing

portable, fault-tolerant file I/O. Due to the ftIO system, C programs that use format-

ted file I/O can be rendered fault-tolerant in a transparent fashion by precompilation

with porch. Furthermore, no changes are necessary to the system-specific C library.

I have analyzed performance characteristics of the undo-log approach and the

private-copy approach, including three implementations of the latter: copy-on-write,

shadow-block, and twin-diff. As the result of the analysis I found that a copy-on-write

implementation of the private-copy approach is the most reasonable choice for the

ftIO system. I have introduced the ftIO algorithm, which provides transactional file

operations using only a single state bit. The ftIO runtime system is written entirely

in ANSI C, and the ftIO code itself is compiled with porch, thereby ensuring that a

checkpoint contains all ftIO-state information in a machine-independent format.

I provided experimental results measuring the performance overhead of the ftIO

system under sequential and random access workloads and comparing it with the per-

formance of the shadow-block implementation of the private-copy approach. The ex-

periments show that the copy-on-write implementation is the most reasonable choice

for the ftIO system. Moreover, the performance of the molecular dynamics code indi-

cates that the ftIO system incures relatively low runtime overhead for this and similar

applications.

Future research can extend the ftIO system in several directions. It can be mod-

ified to support other file operations besides the ones from the ANSI C library, to

incorporate the support for architecture-independent binary file I/O, and to provide

new functionalities such as fault-tolerant socket I/O.

Architecture-independent Binary File I/O

To allow true architecture-independent checkpointing of the program state, data

writte to a file on one machine should be readable from the file on a binary-incompatible

machine after recovery. In the current ftIO prototype the only way to ensure that

data can be read on a different architecture is to use formatted file I/O [20], which

implies that all data must be stored in ASCII format. However, ANSI C supports

binary file I/O via the fread and fwrite operations, which allow a program to read

and write blocks of binary data from and to the main memory.

The problem of architecture-independent binary file I/O resembles the problem of

storing and recovering from architecture-independent checkpoints, since in both cases

the data must be converted to and from an architecture-independent intermediate

format. The two problems differ, however, in that the data type-which is required

from a proper conversion-is unknown when the binary data is read from a file. I

envision two ways to approach the problem. First, one can store the data together

with its type for binary file I/O. Second, with the assistance of a compiler, one can

attempt to infer the type of the data read. I believe that the second approach is

preferable. It avoid the overhead of storing the type information with the data.

Supporting Multiple Streams to a File

ANSI C [20, 10] and POSIX [16] specifications distinguish the notion of a stream

and a file. A file is a data object stored on a disk, whereas a stream, according to

[10], "is a source or destination of data that may be associated with a disk or other

peripheral." Hence, the ANSI C operation fopen opens a stream to a specified file.

The current implementation of ftIO does not support multiple open streams to a

single file. Adding this support, however, is not difficult. The ftIO finite automaton

operates on files, not on streams. Hence, the open/closed state marks whether there

are any open streams associated with a file independent of the number of streams.

Adding support for multiple streams would require reorganizing the ftIO bookkeeping

to separate the information about the state of a stream from the information about

the state of a file.

Supporting UNIX File I/O

The algorithm developed for ftIO is not limited to support only standard ANSI C

file operations. With small changes, I believe, ftIO can support any set of existing

file operations. Implementing UNIX file I/O, for example, requires only changing

the way that bookkeeping information is stored since UNIX file operations are very

similar to the ANSI C ones.

Appendix A

More Experimental Results

Appendix A presents experimental performance data of our benchmarks on a variety

of machines. The data show that the overhead of the ftIO system, measured as the

percentage of the runtime of the program, stays almost constant for machines of very

different computational power.

The figures are organized in the order of increasing computational power. Note,

however, that some of the less powerful machines, like Sparc4, have apparently supe-

rior disk I/O characteristics.

Sequential Access: read and write

The figures below present the performance of reading (left) and appending (right)

10 Mbytes of data from and to a file. Ten checkpoints are taken after about 106 file

operations (less then every 2 seconds for all machines) in the experiments marked

"with checkpointing" and those marked "with append optimization."

60 1 I I I I I 60 I I I I 1

55- - 55

50- - 50

45 45
R R
u 40- 40

n 35 n 35 - with checkpointing
t t
i 30 - 30

m 25 -_ m 25 with appende e

[] 20 s] 20 - optimization

15 15

10 with checkpointing 10-

0 ode original code

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Number of Reads (x 106) Number of Writes (x 106)

Figure A-1: Sun Sparcstation4. Sequential read/write

60 I I II 60 III I

55 - -55 -

50 -50

45 45
R R
u 40 - u 40 with checkpointing
n 35 n 35
t t
i 30 i 30 with append -

m 25 m 25 - optimization

[s] 20 with checkpointing [s] 20
15 15

10 - - 10

5 original code (not porchified) - 5 - original code (not porchified)
0 0 i I 1

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Number of Reads (x 106) Number of Writes (x 106)

Figure A-2: Sun SparcstationlO. Sequential read/write

50 1I 1 1 11 50 I I I

45 - - 45 -

40- 40 - with checkpointing
R 35- R 35
u u
n 30 - n 30
t t
i 25- - i 25
S20 -20 - with append

[s] 15 with checkpoitig - [s] 15 optimization

10 - 10

c 5 original code

0 I I I I

0 1 2 3 4 5 6 7 8 9 1011 0 1 2 3 4 5 6 7 8 9 1011

Number of Reads (x 106) Number of Writes (x 106)

Figure A-3: Sun Sparcstation20. Sequential read/write

25

R
u 20
n
t
i 15

m
e

[s] 10

5

0 1 2 3 4 5 6 7 8 9 10 11

Number of Reads (x 106)

u-0 1 2 3 4 5 6 7 8 9 10 11

Number of Writes (x 106)

Figure A-4: Sun UltraSparcl. Sequential read/write

R
u
n
t

10
m
e

[s]
5

0
0 1 2 3 4 5 6 7 8 9 10 11

Number of Reads (x 106) Number of Writes (x 106)

Figure A-5: Sun UltraSparc2. Sequential read/write

20

with cl
15

R
u
n
t
i 10

m
e

with checkpominting [s]

0 1 2 3 4 5 6 7 9 10 11

Number of Reads (x 106)

0 1 2 3 4 5 6 7 8 9 10 11

Number of Writes (x 106)

Figure A-6: Sun Ultra-Enterprise. Sequential read/write

R
u 20
n
t
i 15

m
e
[e 10
[s]

5

I IIIIIIIII

with checkpointing

original code

I I I I I I I I I I

with checkpointingwith check/

with append

optimization

onriginal code

with checkpointing

original code

1 ' 1 1 1 1

20

15
R
u
n
t
i 10

m
e

[s]
5

I I

original code
II IIL

Random Access

The figures below present the runtimes of random file accesses with spatial locality.

The variation of the number of blocks simulates the behavior of a shadow-block

implementation with different block sizes. This benchmark analyzes the performance

of ftIO with file operations randomly distributed over the address range of a file,

and where file accesses exhibit spatial locality. Spatial locality is incorporated by

computing the location of a file access to be normally distributed around the location

of the previous file access with a standard deviation of 10.24 KBytes. This value

corresponds to 0.1 % of the total file size of 10 MBytes. Our benchmark performs 106

file operations, 90 % of which are read operations, and 10 % are write operations. Ten

checkpoints are taken at equal intervals (less then every 1.5 minutes for all cases)

during the execution of the benchmark.

600
5_with checkpointing

500
R
u 400 original code (not porchified)
n
t
i 300 -
m
e 200 -
[s]

100

1 2 4 8 16 32 64 128 256

Number of Blocks

Figure A-7: Sun Sparcstation4. Random access

1000

900

800

700

600

500

400

300

200

100

01
64 128 256

Figure A-8: Sun SparcstationlO. Random access

2 4 8 16 32

Number of Blocks

64 128 256

Figure A-9: Sun Sparcstation20O. Random access

2 4 8 16 32 64

Number of Blocks

Figure A-10: Sun UltraSparcl. Random access

] i I i I I I

- with checkpointing

original code (not porchified)

-

2 4 8 16 32

Number of Blocks

i I I I I I I

with checkpointing

- gina -'-S --- , p,
- original code (not porchified)

I I I I t I

300

250

100 f

_ I I I I I I -

_- with checkpointing

_ original code (not porchified)

256

300

250

200

150

100

50

01

Figure A-11:

2 4 8 16 32 64 128 256

Number of Blocks

Sun UltraSparc2. Random access

50
with checkpointing

00

original code (not porchified)
50

2 4 8 16 32

Number of Blocks

64 128 256

Figure A-12: Sun Ultra-Enterprise. Random access

with checkpointing

- c

S original code (not porchified)

- I I I I I I "

I

Molecular Dynamic Code

The figures below present the cumulative runtimes for a 2D short-range molecular

dynamics code for 5, 000 particles. The code outputs the simulation results (53 bytes)

every 10 iterations to a file, and checkpoints are taken every 20 minutes. The program

generates approximately 400 bytes of data between checkpoints, and the total size of

the output file after 60, 000 iterations is 150 Kbytes. From the data below, we can see

that the performance overhead of the ftIO system is relatively low. In fact, it ranges

from approximately 8 % on Sun Sparkstation4 to as low as 2 % on Sun UltraSparcl.

R
u
n
t
i

m
e

[min]

200

175

150

125

100

75

50

25

0 10 15 20 25 30 35 40 45 50 55

Number of Iterations (x 103)

Figure A-13: Sun Sparcstation4. Molecular dynamics

- I I] I I I .I -

-

with checkpointing

original code

-

I

'-

300 I I I

250

R with checkpointing
u 200 -
n
t

S 150 original code
m
e

[min] 100

50

0 1 I I I
0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Iterations (x103)

Figure A-14: Sun SparcstationlO. Molecular dynamics

200 I I I I

175-

150
R with checkpointing

u 125
t
i 100

m original code
e 75

[min]
50

25

0 I I I I I I I 1
0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Iterations (x 103)

Figure A-15: Sun Sparcstation20. Molecular dynamics

R
u
n
t
i

m
e

[min]

Number of Iterations (x 103)

Figure A-16: Sun UltraSparcl. Molecular dynamics

R
u
n
t
i

m
e

[min]

with checkpointing

S5original code

5 10 15 20 25 30 35 40 45 50 55 6

Number of Iterations (x 103)

Figure A-17: Sun UltraSparc2. Molecular dynamics

with checkpointing

original code

5 10 15 20 25 30 35 40 45 50 55 6

80 : i i i i

70

60 - with checkpointing

R

u 50

t
i 40 - original code
m
e 30

[min]
20

10

0 II I I I II
0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Iterations (x103)

Figure A-18: Sun Ultra-Enterprise. Molecular dynamics

Bibliography

[1] Adam Beguelin, Erik Seligman, and Peter Stephan. Application level fault tol-

erance in heterogeneous networks of workstations. Journal of Parallel and Dis-

tributed Computing, 43(2):147-155, June 1997.

[2] P. M. Chen and D. A. Patterson. A new approach to I/O performance

evaluation-self-scaling I/O benchmarks, predicted I/O performance. ACM

Transactions on Computer Systems, 12, 4:309-339, 1994.

[3] Peter M. Chen and David A. Patterson. Storage Performance-Metrics and

Benchmarks. Proceedings of the IEEE, 81(8):1151-1165, August 1993.

[4] Yuqun Chen, James S. Plank, and Kai Li. CLIP: A checkpointing tool for

message-passing parallel programs. Technical Report TR-543-97, Princeton Uni-

versity, Computer Science Department, May 1997.

[5] Stuart I. Feldman and Channing B. Brown. Igor: A System for Program Debug-

ging via Reversible Execution. ACM SIGPLAN Notices, Workshop on Parallel

and Distributed Debugging, 24(1):112-123, January 1989.

[6] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, San Mateo, CA, 1993.

[7] Christine Hofmeister. Dynamic Reconfiguration. PhD thesis, Computer Science

Department, University of Maryland, College Park, 1993.

[8] Y. Huang and C. Kintala. Software implemented fault tolerance: Technologies

and experience. In Jean-Claude Laprie, editor, Digest of Papers-23rd Inter-

national Symposium on Fault- Tolerant Computing, pages 2-9, Toulouse, France,

June 1993.

[9] W. H. Jessop, J. D. Noe, D. M. Jacobson, J. L. Baer, and C. Pu. The EDEN

transaction-based file system. In IEEE Symp. on Reliability in Distributed Soft-

ware and Database Systems, IEEE CS 2, Wiederhold(ed), Pittsburgh PA, pages

163-169, July 1982.

[10] B. W. Kernighan and D. M. Ritchie. The C Programming Language, 2nd edition.

Prentice-Hall, 1988.

[11] Michael Litzkow and Marvin Solomon. Supporting checkpointing and process

migration outside the UNIX kernel. In USENIX Association, editor, Proceedings

of the Winter 1992 USENIX Conference: January 20 - January 24, 1992,

San Francisco, California, pages 283-290, Berkeley, CA, USA, Winter 1992.

USENIX.

[12] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint

and migration of UNIX processes in the condor distributed processing system.

Technical Report CS-TR-97-1346, University of Wisconsin, Madison, April 1997.

[13] A. Nangia and D. Finkel. Transaction-based fault-tolerant computing in dis-

tributed systems. In Jha Niraj and Donald S. Fussell, editors, Proceedings of

the IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, pages

92-97, Amherst, MA, July 1992. IEEE Computer Society Press.

[14] W. H. Paxton. A client-based transaction system to maintain data integrity.

In Proceedings of the 7th ACM Symposium on Operating Systems Principles

(SOSP), pages 18-23, 1979.

[15] James S. Plank, Micah Beck, and Gerry Kingsley. Libckpt: Transparent Check-

pointing under Unix. In USENIX Winter 1995 Technical Conference, pages

213-233, New Orleans, Louisiana, January 1995.

[16] Peter J. Plauger. The Standard C Library. Prentice Hall, Englewood Cliffs, 1992.

[17] James T. Poole. Preliminary survey of I/O intensive applications. Technical

Report CCSF-38, Scalable I/O Initiative, Caltech Concurrent Supercomputing

Facilities, Caltech, 1994.

[18] Balkrishna Ramkumar and Volker Strumpen. Portable Checkpointing for Hetero-

geneous Architectures. In Digest of Papers-27th International Symposium on

Fault- Tolerant Computing, pages 58-67, Seattle, Washington, June 1997. IEEE

Computer Society.

[19] Richard Rashid, Avadis Tevanian Jr., Michael Young, David Golub, Robert

Baron, David Black, William J. Bolosky, and Jonathan Chew. Machine-

Independent Virtual Memory Management for Paged Uniprocessor and Multipro-

cessor Architectures. IEEE Transactzons on Computers, 37(8):896-908, August

1988.

[20] Herbert Schildt. The Annotated ANSI C Standard. McGraw-Hill, 1990.

[21] Peter W. Smith. The Possibilities and Limitatzons of Heterogeneous Pro-

cess Migration. PhD thesis, Department of Computer Sience, University of

British Columbia, October 1997. (http://www.cs.ubc. ca/spider/psmith/

tui. html).

[22] Volker Strumpen. Compiler Technology for Portable Checkpoints. submitted for

publication (http: //theory. lcs. mit. edu/~strumpen/porch. ps .gz), 1998.

[23] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[24] Y. M. Wang, P. Y. Chung, Y. Huang, and E. N. Elnozahy. Integrating Check-

pointing with Transaction Processing. In Digest of Papers-27th International

Symposium on Fault-Tolerant Computing, pages 304-308, Seattle, Washington,

June 1997. IEEE Computer Society.

[25] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpoint-

ing and its applications. In Digest of Papers-25th International Symposium on

Fault- Tolerant Computing, pages 22-32, Los Alamitos, June 1995. IEEE Com-

puter Society.

[26] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software Write

Detection for a Distributed Shared Memory. In 1st Symposium on Operating

Systems Design and Implementation, pages 87-100, Monterey, CA, November

1994. USENIX.

