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Abstract

The goal of this research is to develop a versatile and fast code to compute the
unsteady lift and thrust forces generated by a flapping airfoil and apply it to
engineering problems. We consider both plunging and pitching types of motion
and develop a time marching simulation based on early work in unsteady
aerodynamics. The ability of the code to compute lift and thrust forces is
validated against published results. We then study ways to maximize thrust
generation by considering sinusoidal and square motions and optimizing
parameters such as flapping frequency, amplitude, and phase difference between
pitch and plunge. Finally, the code is applied to the take-off problem of a micro-
UAV to illustrate the ability of the code to compute transient forces. The novelty
of this research resides in the consideration of square motions and the
optimization of parameters to maximize thrust. Also, the ability of the code to
show transient forces and yet run faster than real time makes it a valuable tool for
a wide variety of applications.
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Nomenclature

b wing span [m]

C force coefficient

C force coefficient averaged over one period

c chord length [m]

f frequency of oscillation [rad/s]

k pitching reduced frequency

L lift force perpendicular to the airflow and per unit length [N/m in

Chapter 2 and N in Chapter 4]

1 plunging reduced frequency

P. suction force parallel to the airflow and per unit length [N/m in

Chapter 2 and N in Chapter 4]

s Laplace transform [1/s]

S suction coefficient [m3/ 2/s]

T thrust force parallel to the airflow and per unit length [N/m in

Chapter 2 and N in Chapter 4]

T one period of oscillation [s]

t time [s]

V. airflow velocity [m/s]

w downwash [m/s]

x horizontal position [m]

z vertical position [m]

z airfoil plunge rate [m/s]

z airfoil plunge acceleration [m/s 2]



angle of attack measured between the airflow and the chord [rad]

angle of attack rate of change, also pitch rate [rad/s]

circulation [m2/s]

flight path angle [deg]

vorticity [m/s]

phase difference between pitch and plunge [deg]

airflow density [sl/m 3]

non-dimensional time

natural frequency [rad/s]

damping ratio

non-dimensional distance

subscripts

0

1

a

i

L

max

n

s

T

w

steady bound

unsteady bound

airfoil

inertial

lift

maximum

normal to the chord

steady

thrust

wake

Greek

7

0

P

z~



Chapter 1

Introduction

1.1 Motivation and Perspective

Propulsion through wing flapping

has long been a compelling subject, as

the primary mode of flight propulsion in

the animal kingdom. For example, birds

such as the hawk shown on Figure 1-1,

have mastered the art of wing flapping. Figure 1-1 The Hawk

Theories as to how a typical lifting surface can be oscillated to produce both

lift and propulsion have their foundations in unsteady aerodynamics, whose

development began in the 20's [1], [2], [3] and [4] , and whose maturation has

occurred primarily for the purpose of understanding aeroelasticity [5], rather than

propulsion through flapping. The latter subject has been researched both as a

means of understanding how birds accomplish flight [6] and [7], and by those

interested in the engineering prospects of ornithopters [8], [9], [10], [11], [12] and

[13].

While much progress has been made in understanding the basic mechanisms

involved in propulsive flapping, practical ornithopters have not been developed for



various reasons. The most obvious of these is the severe mechanical challenge

associated with building a flapping wing. Even if this challenge could be overcome,

the efficiency afforded by propellers (the obvious choice for low-speed propulsion)

has not been improved upon by oscillating airfoils in any theoretical or

experimental study.

Nevertheless, interest in ornithopters has piqued recently for several reasons.

Foremost is the current interest in micro-UAVs, uninhabited aerial vehicles with

dimensions similar to that of a small bird. Because the flight regime of these

vehicles is exactly that of birds, revisiting the overall engineering question of

ornithopters has become relevant.

The question of mechanization is also mitigated by various recent

developments. Again, the issue of size stands out: flapping is more easily

mechanized in small vehicles due to scaling laws; for instance it is much easier to

make a structure that will support the forces associated with high-frequency

flapping if the wing is small. In addition, micro-machined devices, smart materials,

and advanced composites all represent new technologies that could make flapping

flight more feasible mechanically on small systems.

Two of the remaining issues motivate the research presented here. The first

is efficiency of propulsion. Several studies [8], [14], [11] and [13] indicate that the

thrust producing capability of wings, if not their efficiency, can be increased

dramatically by departing from the classical notion of a single airfoil undergoing

sinusoidal motion. Our goal is to develop a framework in which design studies can

be conducted for non-traditional types of flapping. Non-traditional flapping

includes non-sinusoidal motions, and tandem airfoils flapping with the proper

consonance.

The second issue that we would like to begin to address is stability and

control. If one is to use flapping as the sole means of propulsion, methods to

modulate thrust levels, coordinate thrust and lift, and use wing forces for vehicle



maneuvering are needed. To study stability and control issues one needs an

engineering model of unsteady aerodynamics, which is consistent (in both

complexity and versatility) with flight control design and analysis techniques. Such

an engineering model is the subject of this thesis.

1.2 Background on Unsteady Aerodynamics

The evolution of the field of unsteady aerodynamics can be divided into

three areas: the foundations, the advent of computers and application to

engineering problems. We develop in this section the contributions we found

predominant to each one of the three areas fore-defined. We also outline which

aspects in each contribution are relevant to our research and which are not.

The foundations of unsteady aerodynamics were laid down in the 20's. The

pioneers in the field of aerodynamics include Wagner, Von Karmin, Garrick and

Theodorsen. Wagner [1] was the first to publish a way to calculate the distribution

of vorticity in the wake of an airfoil undergoing unsteady motions. Later, Von

K~rmin used Kelvin circulation theory and a wake integral approach to express the

lift and thrust developed by a flapping airfoil [2] and [3]. Theodorsen [5]

approached the problem by potential flow theory and solved the wake integral with

Bessel functions, hence adding great mathematical complexity. Also, his work was

solely concerned with lift forces and applied to the problem of flutter. Garrick [4]

gave a more detailed way to calculate the thrust forces given by Von Kirmin by

combining them with the work of Theodorsen. The theoretical background of the

work presented here is inspired from these early publications, and more specifically

Von Kirmin and Garrick. Additional insight was obtained by studying

Bisplinghoff [15] and Anderson [16]. However, these approaches assume sinusoidal

motion, which does not allow one to study the possible benefits of non-sinusoidal

flapping. Transient effects are also difficult to study in a model which does not

allow time-resolved solution. Computers alleviate this problem.



The advent of computers sparked a renewed interest in the topic of flapping

wings and unsteady aerodynamics. Among the computational approaches we find

the work of Platzer [11] who applied a panel method to compute unsteady lift and

thrust forces for pitch and plunge motion of one or two airfoils. Hall and Hall [12]

address the issue of minimum power flapping flight and compute the optimal

flapping frequency by using a vortex-lattice model of the wake. These approaches

allow more detailed studies, but are not suitable for stability and control studies,

because of the large overhead associated with finding solutions. After initial trade

studies and control law designs are done using more tractable engineering models,

computationally intensive models can be used for final validation and tuning.

Hugo [9] used an unsteady lifting line theory, based on Theodorsen results to

compute lift forces and to control the unsteady lift occurring in gusty conditions.

He also applied his method to compute wing loading [10]. One disadvantage of this

method is that because it is based on Theodorsen's method it does not allow the

computation of thrust forces. McCune [8] followed a similar lifting line theory

approach based on Von Kirman's results but allowed the wake elements to freely

interact and roll-up. Interestingly, he set up his code so that it was possible to

follow the time history of the flow at each time step. However, this approach, aside

from being computationally intensive, was not originally intended for computation

of thrust forces.

1.3 Approach and Thesis Outline

In the light of the passed research discussed here and in accordance with our

goals, we decided to adopt an approach leading to a versatile and non intensive

computational tool. The work of Von Kirmin and Garrick was the most

appropriate to meet our goal since it presented equations to compute lift and thrust

forces that could be implemented with minimal computational effort. Also, the

equations they developed presented a natural way to modify the type of input

motion to fit our needs. Finally, the equations could be implemented in a way



similar to the way that McCune presented, that is provide a time history of the

forces at each time step. Such a time marching approach allows the study of

transient force generation where speed may be varying significantly.

The thesis is organized as follows in accordance with the approach and goals

stated earlier. We start in Chapter 2 by compiling the equations developed by Von

K;irm~n and Garrick for lift and thrust and adapting them to our problem through

proper non-dimensionalization and introduction of a direct relationship between

input motion and output forces. Chapter 3 is devoted to the implementation of the

computational approach and its validation. Finally, Chapter 4 of the thesis is

applied to two engineering problems. 1) An initial engineering survey of oscillatory

waveforms is conducted, to demonstrate the utility of the code and to suggest

alternate flapping strategies. 2) To demonstrate the new model's capability to

handle time-resolved transients with speed variations, a take-off time history is

conducted for a simplified one degree of freedom flight model, which models only

the forces in the thrust direction.
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Chapter 2

Model Development

2.1 Overview and Organization

This chapter presents the derivation of the equations needed to calculate the

aerodynamic forces experienced by a flapping airfoil. In steady aerodynamics these

forces are defined as a lift term, perpendicular to the airflow and calculated by the

Kutta-Joukowski formula, and a drag term, parallel to the airflow and due to viscous

forces. In unsteady aerodynamics, because the motion of the airfoil is time-varying,

vortex elements are shed into the flow and in accordance with Kelvin's circulation

theorem [16], an equivalent and opposite bound circulation will develop over the

airfoil (see Anderson, page 265). Kelvin's conservation of circulation theorem,

illustrated in Figures 2-1 and 2-2, states that the circulation IF within a bounded

flow must remain constant.

F=0

V =0

Figure 2-1 Fluid at Rest Relative to the Airfoil



F = F1 + F 2 = 0

1, 2

Figure 2-2 Fluid After Motion Has Started

After motion has started, a region of high vorticity will develop at the trailing edge

of the airfoil and travel downstream at the velocity of the airflow. The circulation

(F2 on Figure 2-2) associated with this region of vorticity will be canceled by a

bound circulation (F1, on Figure 2-2) on the airfoil in accordance with Kelvin's

conservation of circulation theorem. This bound circulation will, in turn, induce a

component of velocity normal to the chord, or downwash, and hence an unsteady

force.

These unsteady forces have been computed in the past and several different

approaches exist. We decided to follow the work of Durand, Von Kirmrn and

Burgers [2] and Von Kirmin and Sears [3] also known as the vortex-sheet approach

[15]. Their work fits our problem particularly well since they are among the only

ones to have documented how to compute the thrust force. Also, another

advantage is that their work is clear and well documented in spite of being half a

century old. Von Kirman and Sears also divided the resulting lift and thrust forces

developed over the airfoil into physically understandable forces.

The total instantaneous circulation on an airfoil is:

c /2

F= c/2 y (x,t)dx (Eq. 2.1)
J-c/2



where ya, the running bound circulation, is for convenience written as:

a, (x,t) = ,0 (x,t)+y~ (x,t) (Eq. 2.2)

where y. is called the quasi-steady bound circulation and will be used in sections

2.5 and 2.6 to compute the quasi-steady lift Ls, and the inertial force, L,. Y is the

additional circulation due to the unsteadiness of the flow according to Kelvin's

circulation theorem. Each increment to y1 generates an opposite element in the

wake; yv. y, and y~ will be used to compute the wake induced force L, and the

suction force Px.

In the equations developed by Von Kirman and Sears, a lot of emphasis was

put on the methods to derive the forces from fundamental principles such as

Kelvin's circulation theorem. Note that their original work did not present in their

paper a treatment of the thrust force. The information needed to compute thrust is

found in an earlier work by Von Kirman [2] and also a paper by Garrick [4]. In this

thesis, we start from the equations they developed and apply them to our problem.

Our goal is to show the relationship between the input airfoil motion and the

output forces. We also introduce various simplifying assumptions, such as assuming

that the downwash is constant over the airfoil. Finally, we introduce non-

dimensional parameters to further reduce the force equations and present a method

to compute the average thrust generated.

A summary of the forces exerted on the airfoil is shown on the free-body

diagram in Figure 2-3.



L cos(a) = L

x

Not to scale

Figure 2-3 Free-Body Diagram Showing Forces Exerted on the Airfoil

The resulting lift and thrust forces, defined parallel and perpendicular to the

airflow, can be found from Figure 2-3 by solving the free body diagram:

L= (L + Li +L cos() = L, + L, + L,
(Eq. 2.3)

T = Px - Lsin(a)

In terms of non-dimensional coefficients:

CL =L, L + L,+ L,

(Eq. 2.4)

CT = C - CL sin(X)

where each force L (or T) is non-dimensionalized as follows:

1
q = -pV2 is the dynamic pressure and c is the airfoil

2

L= CL qc, where

chord length.

Finally, if one is interested in the average thrust coefficient developed over

one period of oscillation (both pitch and plunge), the following equation may be



used:

-1
CT - CTdt (Eq. 2.5)

2.2 Assumptions

While developing the force equations we are faced with the necessity to

constrain our problem with simplifying assumptions about the flow and the airfoil.

The first assumption is to limit our study to a two-dimensional analysis. This

implies neglecting induced forces and assuming constant airfoil shape in the

spanwise direction. The wake flow is also dramatically simplified in a two-

dimensional model.

The second assumption, also geometric, is to consider the airfoil to be a flat

plate. Such an assumption allows us to apply the vortex sheet method to model the

airfoil. Also, it simplifies the equations by making the downwash constant along the

chord.

The third assumption is that the flow is inviscid. This means that no friction

force is generated by the boundary layer. In the steady case, this assumption would

imply that an airfoil can develop lift, but has zero drag. We will see that in unsteady

flow, drag (or thrust) forces can be generated, even without viscous effects.

Finally, our fourth assumption is that the vortex elements shed in the flow

do not interact with each other. This assumption is sometimes referred to as the

flat wake assumption [3].



2.3 Non-Dimensionalization and Notation

The equations developed by Von K6rman and Sears can be simplified by

introducing non-dimensional parameters such as non dimensional time and reduced

frequency. A non dimensional time of one unit corresponds to the time it takes a

particle at the freestream velocity to traverse half a chord length. A reduced

frequency of one unit corresponds to a sinusoidal oscillation whose period is 27r

non-dimensional time units.

The following terms will be used to express the forces in term of

dimensionless coefficients:

2V t
I - is the non-dimensional time (Eq. 2.6)

c

f pitch c

k - is the pitching reduced frequency (Eq. 2.7)
2V

f c
1= is the plunging reduced frequency (Eq. 2.8)

2V

2.4 Downwash

Section 2.1 introduced the notion that a downwash is induced over the airfoil

in unsteady motions. The "no normal flow" condition helps to explain this effect

and will lead to an expression to compute the downwash as follows: In thin airfoil

theory, it is desirable to view the chord as a streamline of the flow. This condition

requires that the component of velocity normal to the chord line must be zero at all

points along the chord (Anderson, page 268). Figure 2-4 gives physical insight as to

how one calculates wa, the vertical downwash.



x

wa(x)

Figure 2-4 Definition of Downwash, wa

It can be seen from Figure 2-4 that the condition of no flow through the

airfoil is satisfied for:

wa + V,. + zn = 0 (Eq. 2.9)

where (-) denotes the derivative with respect to the argument, which in this case is

dimensional time.

Noting that V-,. = V sin(a) and z, = zcos(a), Equation 2.9 becomes:

w, zcos(a)
a= - sin(a)-

V V0

(Eq. 2.10)

Note that in pitching motion (z= 0), wa will be negative for a positive angle of

attack.

As will be seen in subsequent sections, it is useful to differentiate Equation

2.10 with respect to time:

wa (t)
- -acos(a) -V

z cos(a) - z a sin(a)

V-
(Eq. 2.11)

V-
'2'T



Where we assume that V. is slowly time-varying and therefore its time derivative is

zero. To be perfectly clear about whether the 'dot' notation refers to differentiation

with respect to dimensional or non-dimensional time, the argument of the function

(t or t) will be shown.

2.5 The Quasi-Steady Force

The term quasi-steady is used here because its value is directly derived from

the expression for the steady lift. The force, however, is time-varying. The Kutta-

Joukowski theorem states that the resultant force acting on an object in steady and

inviscid flow is perpendicular to the airflow and its magnitude is defined according

to (Anderson, page 216):

L(t) = p V. To (t) (Eq. 2.12)

where TF is the steady airfoil circulation at time t.

Fo may be computed from the following formula (see Bisplinghoff, page 289):

F (t)y= i0(x,t)dx = -cJ l w ,(,t)d4 (Eq. 2.13)

2x

where wa was defined in Section 2.4 and - is a non-dimensional position
c

variable of integration here.

Equation 2.13 can be reduced to the following (see Appendix A.1):

F0 (t) = -ccw, (t) (Eq. 2.14)

Note that Equation 2.14 is only valid when the airfoil downwash is not position

dependent. This means that we assume the airfoil to be a flat plate. The integration

would have to be solved numerically for the case where a cambered airfoil is

considered.

Plugging Equation 2.14 into Equation 2.12, the quasi steady lift becomes:

Ls(t) = -pV nTcwa(t) (Eq. 2.15)



Equation 2.15 can be non-dimensionalized by introducing the steady lift coefficient:

2L
CL- pV= c (Eq. 2.16)

Plugging Equation 2.15 into Equation 2.16 results, after simplification and time

non-dimensionalization, in:

CL, (t) = -27C V (Eq. 2.17)

2.6 The Inertial Force

As the airfoil oscillates in the flow, the fluid surrounding the airfoil exerts an

inertial reaction on the airfoil due to the accelerated fluid masses. This force,

known as the "apparent mass contribution" (see McCune, page 3 and Von Karmin

and Sears, page 383), can be computed as follows (Bisplinghoff, page 290):

d c/2

L,(t)= -p- Jyo(x,t)xdx (Eq. 2.18)
dt f-c/2

The derivation in Appendix A.1 shows it can be inferred from Equation 2.14

that:

1+2x / c
S(x,t)= -2 x/wa(x,t) (Eq. 2.19)1 -2x/c

Plugging Equation 2.19 into Equation 2.18 and performing the following change of

variable: = 2x / c results in Equation 2.20. The change of variable is equivalent to

non dimensionalizing distance with respect to chord length; the chord length

changes from c to 2 and the limits of integration change from '-c/2 to c/2' to '-1 to

1'. Throughout the derivations, the variable x will be used for dimensional distance

in meters and will be used for non-dimensional distance in half chord lengths.



L(t) 2 d w(t) V1 d (Eq. 2.20)
2 dt (t)

Again, the downwash is assumed to not be position dependent and is pulled out of

the integral of Equation 2.20.

Equation 2.20 can be rewritten using the non-dimensional time parameter by

c
noting that dt = - dt from Equation 2.6:

2V

L,(t)= pV .cwa(t)_ d (Eq. 2.21)

The integral of Equation 2.21 is solved with the MAPLE program to give:

pV ci •
Li(2 ) - w() (Eq. 2.22)

2 w)

where wa, the rate of change of downwash, is given in Equation 2.11.

Equation 2.22 can be non-dimensionalized by introducing the inertial force

coefficient:

2L
CL pV (Eq. 2.23)

L pV 2c

Plugging Equation 2.22 into Equation 2.23 results, after simplifications, in:

CL, () (Eq. 2.24)
V.

2.7 The Wake Induced Force

Due to the oscillatory motion of the airfoil, a continuous vortex line is shed

in the wake of the airfoil. If the flow is discretized, each time step will correspond

to a new vortex point shed in the wake. Figure 2-5 presents how the airfoil wake is

discretized. We have stated before that we assume the airfoil to be a flat plate.



However, on Figure 2-5, we decide to show a pitching NACA 0009 airfoil [17] for

clarity purposes. Each vortex point will induce a vorticity distribution over the

airfoil because of Kelvin's circulation conservation theorem which will in turn

produce a force over the airfoil. A more detailed discussion of this phenomenon is

given in Von Kirmin and Sears [3], Bisplinghoff [15] and McCune [8].

not to scale

t =0

v00  >
-c/2 c/2 x

t = dt XMX
t2 = 2dt 227W

dx = V

Figure 2-5 Airfoil Wake Discretization

The resulting wake induced force is found from (Bisplinghoff, page 290):

pV c !7 r, (x,t)Lw (t) =(xt dx (Eq. 2.25)
2 c 2 X2 -(c / 2) 2

where LW is defined perpendicular to the airfoil.

Note from the integral of Equation 2.25 that the effect of the 7y's is taken into

account and as the wake elements travel further downstream, their effect on the

airfoil diminishes.



7w is determined by solving the wake integral equation, also known as the

Wagner equation (Bisplinghoff, page 289):

Fo, (t) + ,w (x,t)dx = 0
12 X-c/2

One way to solve Equation 2.26 for the yw's as a function of time is to differentiate

it with respect to time. The first step in doing so is to change the integral of

equation 2.26 from a position integral to a time integral by the following change of

(Eq. 2.26)

C
variable: x 2 (1+ ).

2
This change of variables is a statement that vortex elements

are convected downstream at a constant rate proportional to the free-stream

velocity, so their position is completely determined by the time history of their

generation.
c

Time is set to start at the trailing edge, i.e. I = 0 when x -.
2

result is shown in Equation 2.27:

Fr0 (+ wy (t)dt = 0
2 f V 7

The

(Eq. 2.27)

Equation 2.27 can now be differentiated with respect to non-dimensional time to

give:

c 2+

2= 0
(Eq. 2.28)

It is now possible to solve for yw(T) by using Equation 2.14:

yw (1) = 27 wa ( +) (Eq. 2.29)

Before solving for the wake induced force, we need to change the integral of

Equation 2.25 from a position to a time integral. As before, through the following

c
change of variable: x = 2-(1+ t), Equation 2.25 becomes:

2



L (1 ) - / d (Eq. 2.30)
L-Q) 2 Jo T(t +2)

Lw is now found by plugging Equation 2.29 into Equation 2.30. After

simplifications:

Lw (t) = 7tpV- cj 2( d' (Eq. 2.31)

Equation 2.31 can be non-dimensionalized by introducing the wake induced force

coefficient:

2L
CL - V (Eq. 2.32)

Lw pV C

Plugging Equation 2.31 into Equation 2.32 results, after simplifications, in:

2t L"wa (t)
CL, (t I dc (Eq. 2.33)

VJ 2+1

2.8 The Suction Force

As mentioned in section 2.1, in steady flow, the resultant steady force is

perpendicular to the airflow and no drag is generated. However, in terms of flat

plate theory (and that is what the code will assume) the only way to generate a force

is by a pressure differential between the upper and lower surface of the plate. The

resulting force will therefore be perpendicular to the plate and not to the flow

(unless the plate is parallel to the flow, i.e. zero angle of attack). The resulting force

will therefore contribute to both a vertical (lift) and horizontal component (drag)

and therefore violate the zero drag condition in steady state. This effect is known

as the Kutta-Joukowski paradox. To compensate for this unexpected horizontal

component, a suction force must be introduced at the leading edge. This force is

theoretically justified by the fact that the leading edge is a point of infinite vorticity.

(See Von Kirmin and Burgers, page 51 and Garrick, page 422). Garrick defines a

force, the suction force to be parallel to the airflow and with a magnitude that



exactly cancels the contribution of the lift term in the horizontal direction when the

flow is steady. In addition, the contribution of the lift term in the vertical direction

and in steady flow must equal the value given by the Kutta-Joukowski theorem.

The mathematical equation of the suction force is (Garrick, page 422):

where:

(Eq. 2.34)

(Eq. 2.35)S= lim -ya x+c/2
x=-c/2 2

where ya, the running bound circulation was defined in section 2.1 to be:

(Eq. 2.36)Ya = Yo +Y1.

As previously stated, To is called the quasi steady bound circulation and y, is the

additional circulation due to the unsteadiness of the flow.

Equation 2.36 is now rewritten after the following change of variable:

S= lim-7a
4=-12

C

2

(Eq. 2.37)

Note that t o as expressed in Equation 2.19 cannot be used to solve Equation 2.35

because the limit as x -- -c/2 (i.e. = -1) is not properly accounted for. Instead,

a more general expression for yo must be used (Bisplinghoff, page 289):

(Eq. 2.38)

where ' denotes a dummy variable of integration representing the non-dimensional

position along the chord length. After simplifications, Equation 2.38 becomes:

2wat) 1- 1+
0 ( ,) =- .(1r d (Eq. 2.39)

Px (t) = rTpS(t) 2

2 -4 1+ W. ( ' w > )Y2(t Jl- 71 + ' , dt'



An expression for 'yt is given in Von Kirmin and Sears, page 381 for the wake

circulation, ' , of a single point vortex:

1 F'
y1 - 1- +1

where is the non-dimensional position along the airfoil and '

(Eq. 2.40)

is the non-

dimensional position along the wake. To account for all the wake elements, which

our discretized formulation have a circulation of 7,d , we define:

r' = f (',Tr)d ' and the expression for y, becomes:

, (j, Y (t' ,r)
f '(.' - t)

(Eq. 2.41)

Plugging Equations 2.41 and 2.40 into Equations 2.36 and 2.35 results in (see

derivations in Appendix A.3):

S(t) = -wa ()+ ' (T) d (Eq. 2.42)
27The suction force can be obtained( + 2)

The suction force can be obtained by plugging Equation 2.42 into Equation 2.34:

Px ( ') = pc wa -(J) Y +(2) dr (Eq. 2.43)

Finally, Equation 2.43 can be non-dimensionalized by introducing the suction force

coefficient:

2P

.pV c
(Eq. 2.44)

for

d-



Plugging Equation 2.43 into Equation 2.44 results, after simplifications, in:

(2
C, (t)= 2n ,( 1 I " w dt 1

V 2rV. oo t( + 2) :

By plugging Equation 2.29 into Equation 2.45, one obtains:

Cp (t)= 2 nw()
V.

VJ 2 , 2

VJ 2+t
(Eq. 2.46)

Which can be further simplified by using 2.33 to:

( wa () CL ( t) 2

(V. 27c
(Eq. 2.47)

This concludes the presentation of the unsteady forces generated by a

flapping airfoil. To summarize, the unsteady lift and thrust forces can be obtained

by plugging Equations 2.17, 2.24, 2.33 and 2.47 into Equation 2.5.

(Eq. 2.45)



Chapter 3

Code Development and Validation

In this chapter, we present the way we implemented the equations developed

in Chapter 2 into a computer code. The validity of the code is then tested against

published results.

3.1 Matlab Implementation

The supporting computational tool to implement the equations developed in

Chapter 2 is Matlab. The code, included in Appendix B, is discussed here in some

detail. The code allows the user to calculate the unsteady aerodynamic forces

developed over a flapping airfoil for various types of motion. The user commands

the reduced frequencies, maximum amplitudes, duty cycles and phase difference for

both pitch and plunge as well as the type of motion: sinusoidal or square wave. The

program produces the resulting thrust coefficient averaged over one period of

motion. Because it is interesting to visualize the motion of the airfoil, the user can

also ask the code to create an animation of the airfoil motion. The choice of inputs

and outputs is done by executing the main program called code.m. The program

code.m will call Simulink routines and Matlab functions to produce the desired

output. The Matlab function trailing.m will plot the airfoil motion. Most quantities

defined in Chapter 2 are produced by the program forces.m and can be retrieved by

using the mapping of Table 3-1. Note that the symbols not included on Table 3-1

are the same in Chapter 2 and the Matlab code.



Table 3-1 Mapping of Symbols from the Notation of Chapter 2 to Matlab

Even though most equations in Chapter 2 are derived to allow a direct

implementation in Matlab, a few of them require special attention. In particular the

input parameters for periodic flapping motion, a and z, have to be calculated for

given reduced frequencies, maximum amplitudes, duty cycles (square motion only)

and phase difference between plunge and pitch for both square and sinusoidal

motion. Simulink was found to be the most convenient way to produce a and z for

the given input. Subsection 3.1.1 describes how the discontinuity introduced by the

square wave motion is treated and subsection 3.1.2 describes how the average thrust

coefficient calculation is implemented in Matlab.

Symbol in Chapter 2 Symbol in Matlab code
a alpha

alphadot

7 gammaw
CL, CFi

CLW CFw

CL CL
CL, CLs

CP. CPx

CT CT

CT CTave

V V

W
a

V. wav

Wa wadotv

V.
zdot

• - zddot
z



3.1.1 Treatment of Discontinuities

This subsection describes how the discontinuity introduced by square wave

motion is treated. As seen in Equations 2-10 and 2-11, the first derivative of the

pitch motion as well as the first and second derivatives of the plunge motion must

be computed to calculate the forces experienced over the airfoil. In the case of

sinusoidal motion, this does not represent a problem as the derivative of a

sinusoidal function is also sinusoidal. However, square functions are non

differentiable at the points where the function switches sign. Experience shows

that because of the infinite derivatives, the thrust coefficients would themselves

tend to infinity with finer step size. Such discontinuities can be avoided by filtering

the square wave with a second order transfer function:

output(s) (02
input(s) - s2 + 2~s+02 (Eq. 3.1)

Figure 3.1 shows a square wave and corresponding filtered motion. For our

application it is found acceptable to use a natural reduced frequency of 6 and a

damping ratio of 0.707. Acceptability, in this case, is defined as convergence of the

thrust coefficient for finer step sizes.

1.5 I I ,

1 r -- - -

0.5-

E
0

I I / I
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Non Dimensional Time, t

Figure 3-1: Filtered Square Motion Command



3.1.2 Average Thrust Coefficient Computation

This subsection describes how the average thrust coefficient calculation is

implemented in Matlab. Equation 2.5 gives a mathematical expression to compute

the average thrust coefficient. In this expression, the period T is defined as the

time it takes a signal to reproduce itself. If the two input signals are at the same

frequency, the period of the airfoil motion is equal to the period of the plunge or

pitch motion since they are equal. However, if the two motions have different

frequencies, a period of the resulting motion is the product of the two periods.

Special cases occur when the input periods are multiples of one another. Consider

the general case first, and take y, and y2 to be the pitch and plunge time histories.

Then the problem can be stated as follows:

27c
Given: y, = sin - t

y2= sin -tJ
(T2

y = y, + Y2

Find: T, the period of y

If T, and T2 are integers, the answer is the least common multiple.

If T, and T 2 are not integers, we need to find the value of T that will satisfy

the sufficient condition for a period:

T T
-eN and -eN.
T, T2

The smallest answer is the desirable one and is found to be:

T m (mn)N.
T = nT, = mT2, where - - and (mn) N.

T2 n



Based on this result we see that T,/T 2 must be rational. Note that if T, = I

(irrational) and T2 = 2re (irrational) you are still fine.

Finally, one can check that the answer satisfies the sufficient condition:

T nT1- -= n eN
T, T,

T mT2- -meN
T2 T2

Once the period has been determined, the average thrust coefficient can be

calculated by measuring the area under the curve (for example by using the

MATLAB function trapz) and dividing by the period.

3.1.3 Airfoil Motion Animation

This subsection discusses the feature implemented in the code that creates an

animation of the airfoil motion. The basic steps of how the program works are

listed below:

1. Run program code.m and input airfoil motion.

2. code.m calls the animation subroutine trailing.m.

3. Load NACA 0009 data points [17].

4. Calculate and store one period of trailing edge and leading edge

motion for the given input.

5. Define and store the chord as the line connecting the leading edge to

the trailing edge at each time step.

6. Add and store the airfoil data points to the chord line at each time

step. This step requires resampling of the airfoil data points. The

spline function of Matlab gives satisfactory results.

7. Use the moviein, getframe and movie functions of Matlab and plot

the leading and trailing edge trajectories, and the airfoil.



We show on Figure 3-2 the case where the commanded airfoil motion is shown in

Table 3-2.

Table 3-2 Commanded Inputs for the Trajectories Shown on Figure 3-2

0.5 F

-0.5 I

-1.5
-1.,5 -1 -0.5 0 0.5 1

Distance x, in Chord Lengths

Figure 3-2 Leading Edge and Trailing Edge Trajectories of NACA 0009 Airfoil

Parameter Value

Motion Sinusoidal

Zmax 1 chord length

amax 22 degrees

206 degrees

k 0.5

1 0.5

I I I I I



3.2 Validation of Unsteady Lift Calculation

The purpose of this section is to validate the code developed against

published results. McCune [8] used the equations of Von Kirman [3] and added the

non-linear effects due to point vortices in the wake affecting each other. He

applied his code to a variety of pitching motions computed lift.

In Figure 3-3, our code is compared with the results of McCune for a step

input in pitch of 1 degree applied for 30 non-dimensional time increments. Figure

3-3a shows the individual lift contributions along with the total lift that we

obtained. The total lift is recognizable by the triangles denoting each time step.

Figure 3-3b compares the total lift of McCune (dashed line) with ours (solid line).

Figure 3-3c compares the wake induced force contribution and Figure 3-3d

compares the quasi-steady lift contribution. The inertial force contribution is not

shown here because it is equal to zero. Recall from Equations 2.24 and 2.11 that

the inertial force is a function of the rate of change in angle attack. In the case of a

step input, the angle of attack is constant except for a discontinuous jump when the

function steps up and down. The quasi steady lift contribution is found to be in

perfect agreement with McCune's results. There is a minor discrepancy in the wake

induced force, which is also reflected in the total lift plot. Note that McCune's

paper includes the non-linear wake force contribution. This contribution is

removed from Figure 3-3b to give a more fair comparison.
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Figure 3-3 Lift Response to a Step Input Angle of Attack of 1 Degree

In Figure 3-4, the code is compared with the results of McCune [8] for one

period of oscillation in plunging motion of 20 non-dimensional time steps with

maximum amplitude of two degrees. On Figure 3-4a, we plot the individual lift

contributions along with the total lift that we obtained. The total lift is

recognizable by the triangles denoting each time step. Figure 3-4b compares the

total lift of McCune without the non-linear wake force contribution (dashed line) to

our total lift (solid line). Also plotted is the total lift of McCune if the contribution

of the inertial force (dashed-dot line) is considered to be in the opposite direction.

See the discussion of Figure 3-4d to understand why the inertial force was inverted.
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Figure 3-4c compares the quasi steady lift contribution, Figure 3-4d the wake

induced force contribution and Figure 3-4e compares the inertial force contribution.

The quasi steady lift contribution is found to be similar to McCune's in spite of a

shift of exactly one time step. This could be due to a difference in the way the

equations were implemented in the codes. The inertial force plot shows comparable

shapes in spite of lower amplitudes in our result. Note however that the original

results showed an opposite sign for the inertial force component. The physical

meaning of the inertial force term as worded by McCune himself was: "the

contribution to the lift which would occur in unsteady motion even if the airfoil

failed to develop any circulation ... is understood as being due to the inertial

reaction of the fluid surrounding the airfoil." (McCune, page 3) Based on this

definition, and in agreement with the mathematical derivation, the inertial force

component is expected to be opposed to the time derivative of downwash, which

has units of acceleration (in the case of plunging motion, wa = z). If we assume

that the air mass is accelerating with the airfoil, then the inertial force must oppose

this motion, and therefore be opposite to both z and a (see equations 2.24 and

2.11). Based on both the mathematical derivation and this physical insight, we trust

our own results to be correct and invert McCune's original curve for comparison

purposes.

There is a minor discrepancy in the wake induced force, similar to the one

observed in Figure 3.3, which is also reflected in the total lift plot. Also reflected

on the total lift plot is the time shift from the quasi steady lift.

Based on the results presented on Figure 3.3 and 3.4 we claim that our code

correctly calculates the lift developed by unsteady changes in angle of attack. This

includes the quasi-steady lift, the wake induced force and the inertial force

contributions.



In Figure 3-5, the code is compared with the results obtained by Hugo [9]

for the case of an airfoil oscillating in angle of attack about the mid-chord point

with a reduced frequency of 1.5 and maximum amplitude of two degrees. In his

paper, Hugo followed the methods of Theodorsen which consisted of expressing

the pitching motions in complex variables and resolving the wake integral with

Bessel functions. Figure 3-5 shows the plot of the lift coefficient as a function of

angle of attack as obtained by Hugo (dashed) compared with our result (solid).

Despite a difference in amplitude not in excess of 15%, the two curves show the

same trends. This result shows that Theodorsen's [5] approach is also matched.
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3.3 Validation of Unsteady Thrust Calculation

In this section, the ability of the code to compute thrust is tested. Both

cases of pure plunge and pure pitch motion are considered and compared with the

results of Platzer [11]. In his paper, Platzer developed a panel code to calculate lift

and thrust forces. He also considers the wake self-interaction effects, so that the

wake is not flat as originally assumed in Section 2.2. Figure 3-6 shows the net

thrust (or drag) averaged over one period at steady state for an airfoil sinusoidally

oscillating in plunge and pitch over a range of reduced frequencies. The top plot

shows very good agreement between our code (solid) and Platzer's (dashed) for

plunge motion; this is especially true at lower reduced frequencies. The bottom plot

compares the results in pitch motion. Again, a similar trend is obtained. The

results shown on Figure 3-6 validate our code for thrust calculations and plunge

motions.

2-

o1 -max plunge= 1 half chord

oo

ct-2 -
-- Platzer [9]

o - Durand
-3-

-4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Plunging Reduced Frequency, I

1

0.8

0.6

0.4

0.2
0 -

-0.2

-0.4
0

-- . - . . .. . . . . . . . .• . .

-- Platzer [9]
- -.. lr.iirc.k mnvneh--

Figure 3-6

I rar4

.... 1 I I I I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Pitching Reduced Frequency, k

Thrust Coefficient Averaged over One Period for Various Pitch and

Plunge Flapping Frequencies

I I I I II I II I



Chapter 4

Applications: Optimal

Flapping And Transient Thrust

4.1 Introduction

Having validated the code in Chapter 3, in this chapter we demonstrate its

capabilities in two applications. First, we use the possibility to input different types

of flapping motions to determine which are optimal in Section 4.2. Secondly, we

visit the take-off problem and prove that the code is suited to compute transient

thrust forces in Section 4.3.

4.2 Optimal Flapping

In this section, the code is used to determine optimal flapping combinations.

The criterion for optimality is to maximize thrust. Possible variables to optimize

over are as follows: plunging frequency, pitching frequency, plunging amplitude,

pitching amplitude, phase delay between pitch and plunge and type of motion

(sinusoidal or square). To start, the plunging and pitching frequencies will be set to

be equal:

1= k. (Eq. 4.1)



This may seem to be an arbitrary decision, but it makes sense from a mechanical

feasibility point of view. The maximum allowable plunge and pitch amplitude will

be set to:

Zm =1c/2

(Eq. 4.2)

max = lrad

The choice of setting the maximum plunge amplitude equal to one half chord

length results from physical intuition whereas the maximum angle of attack

amplitude was dictated by stall conditions. A more realistic value could be obtained

by conducting a dynamic stall analysis.

As seen in Figure 3-6, the thrust developed by an airfoil increases

monotonically with plunging frequency. Thus no optimal frequency exists and we

must choose a frequency based on other considerations. This effect also requires us

to fix the plunging frequency; frequency selection is discussed in sub-section 4.2.1.

Also, it is found that thrust increases monotonically with plunging amplitude. As a

result, the plunging amplitude will be set fixed to its maximum value of one half

chord length.

The optimal value of angle of attack is determined in sub-section 4.2.1. The

optimal phase difference between the plunging and pitching motions is also

computed in sub-section 4.2.1. Finally, a similar study will be conducted for square

flapping in sub-section 4.2.2.

4.2.1 Sinusoidal Flapping

In this section, the case of sinusoidal flapping is studied. The optimal

flapping frequency is determined first. Then, the optimal phase difference between

the pitching and plunging motion, along with the optimal pitching amplitude for

maximum plunge is determined.



Optimal Flapping Frequency

Figure 3-5 shows that the thrust generated in plunging motion increases with

the flapping frequency. This means that an optimization with no constraint on the

reduced frequency will not have a solution. Hall and Hall [12] determined the

optimal reduced frequency by considering power requirements and efficiency, and

taking into account viscous effects. They found that the optimal frequency is given

by:

fzmax
1 = m" = 0.3 (Eq. 4.3)

Note the prime notation to stress that Hall and Hall used different parameters to

non-dimensionalized the frequency. In terms of our notation we get:

fc fz 7ec 7tC
l= pt- fm - -l - 0.5 (Eq. 4.4)

opt 2V TV 2Zmax oPt 2c

Optimal Plunging to Pitching Phase Difference and Plunging

to Pitching Amplitude Ratio

The following simulation is run to determine the optimal plunging to

pitching phase difference and plunging to pitching amplitude ratio:

1= 0.5

k = 0.5

max = lC

0 <Cmax < 600

00 < 5 3600

time a crosses zero going up
- time z crosses zero going up 3600

where: p= I
one period



Figure 4-1 shows the contour plot for varying angles of attack and phase

differences. The optimal combination occurs when (Xma = 280 and = 210o. Also

shown in Figure 4-1 is one period of the optimal flapping motion. Except for a

small (- 300) change in phase, we note from Figure 4-1 that optimality is reached

when the pitch and plunge motions are opposite.

We note that the thrust generated is sensitive to changes in angle of attack.

This sensitivity comes from the presence of the rate of change of downwash (wa) in

the expression used to calculate the suction force (Eq. 2.11 and 2.46). Such an

observation is a hint that motions generating higher rates of change of downwash

might produce more thrust. Therefore, square motions will be studied in section

4.3.
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4.2.2 Square Motion

In this sub-section, we determine the optimal input flapping combination

when the motion is square. The optimal flapping frequency derived in sub-section

4.2.1 is still applicable, as are the simulation conditions laid out in sub-section 4.2.1.

Figure 4-2 shows the contour plot for varying angles of attack and phase

differences. The optimal combination occurs when am x = 460 and 0 = 180'. Also

shown in Figure 4-1 is one period of the optimal flapping motion where the notion

of 50% duty cycle can be easily understood. As in the sinusoidal case, the optimal

solution occurs when the pitch and plunge motions are opposite.
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It is also of interest to note from Figure 4-2 that the maximum thrust generated is

larger than for the sinusoidal case. This is due to the higher rates of change of

pitch and plunge producing higher rate of change of downwash (wa) as expected

from section 4.2.2. Finally, Figure 4-2 says that square motions are not as

'forgiving' as sinusoidal motion when it comes to deviation from the optimum.

Another question of interest is whether duty cycle has an effect on the

amount of thrust generated. For example, would plunging and pitching up and

down quickly, and then stopping for the remainder of the oscillation (hence low

duty cycle) be more effective than the case studied in Figure 4-2, where you spend

as much time up as down? The answer, shown on Figure 4-3, is that the duty cycle

has a very weak effect on the amount of thrust generated. A variety of cases are

presented in Figure 4-3. The first case determines the optimal flapping combination

for pitching and plunging square motions with 10 % duty cycle. The result, as for

the sinusoidal and 50 % duty cycle square case, shows that the most thrust is

generated when the changes in pitch and plunge occur simultaneously in opposite

direction. In the 50 % duty cycle and sinusoidal case, the periods during which

thrust is generated are when combinations of plunge up/pitch down and plunge

down/pitch up are occurring. However, because the duty cycle is 10% in the first

case shown on Figure 4-3, the plunge down/pitch up sequence is the only period of

thrust generation. Hence the resulting maximum thrust is reduced by about half in

the 10 % duty cycle case when compared to the 50 % case.

The second plot on Figure 4-3 shows what happens when the pitch and

plunge motions have 10 % and 90 % duty cycles, respectively. This case presents

the same amount of rest time (i.e. time between motion) as the first case shown on

Figure 4-3. However, there are twice as many thrust generating periods: plunge

down/pitch up and plunge up/pitch down. Not surprisingly, the maximum amount

of thrust generated is similar to the one obtain in the 50 % duty cycle case. Note

however that the optimum amplitude for angle of attack is higher.



Finally, the third plot on Figure 4-3 shows that the same results are obtained

whether the plunging duty cycle is 90 % and pitching duty cycle in 10 % or vice

versa. Physically, this means that the same amount of thrust will be generated

whether the wings are in the plunge up and pitch down position for 90 % or 10 %

of the time . The lift generated, on the other hand, may be significantly higher in

one case than the other!
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4.4 Take-Off Analysis

In this section, we use the capability of the code to compute transient forces

to apply it to the take-off problem. Our goal is to demonstrate that the code can be

used in simulations of aircraft dynamics, even if those dynamics involve speed

transients. We start, in sub-section 4.4.1, by transforming the non-dimensional

equations developed in Chapter 2 to dimensional equations. We then pose, in sub-

section 4.4.2, the problem we are considering, and in sub-section 4.4.3 we present

our results.

4.4.1 Dimensional Force Equations

The force equations developed in Chapter 2 are non-dimensionalized with

respect to time and force. In this application, because we want to study the

behavior of an aircraft, we dimensionalize the equations to include the atmospheric

effects of velocity, air density and earth gravity, and the physical effects of chord

length, wing span and mass. Also, because we allow the velocity to change at each

time step, the position at which the wake vortices are shed in the flow changes at

each time step. Finally, the force equations of Chapter 2 assumed wing spans of

unity and must be modified accordingly.

Equations 2.15 is an expression for the quasi steady force per unit span:

Ls (t) = -PV7tacw (t) (Eq. 4.5)

Multiplying Equation 4.5 by the wing span gives the quasi steady force in Newtons:

Ls (t) = -pV. (t)7tcbw, (t) (Eq. 4.6)



Equation 2.22 is the inertial force for non-dimensional time and unit span:

pV cr .
Ll(,)- wa ( ) (Eq. 4.7)

Equation 4.7 can be time dimensionalized by noting that:

dw.(z) dw. (C) c -
w,(Z) w( dwa() c (t) (Eq. 4.8)

d,r d2 2V.

Plugging Equation 4.8 into equation 4.7 and correcting for span gives:

pc2 b -
,(t) w,(t) (Eq. 4.9)

4

Equation 2.31 gives an expression for the wake induced force as a function

of non-dimensional time and per unit span:

L, (t) = 7pV cfo w 2- dt (Eq. 4.10)

Dimensionalizing Equation 4.10 with respect to time by using equations 4.8 and 2.6

and correcting for wing span gives:

RpV, (t)2b w(t)
L (t) W ttdt (Eq. 4.11)

2 o C+V (t)t

Equation 4.11 assumes that the wake vortices are shed at constant distances. This

assumption is only valid in the non-dimensional case when the force coefficients are

not velocity dependents. In the dimensional case, the freestream velocity changes

at each time step and therefore the wake vortices are shed at non-constant distance

x(t)
increments. To account for this effect we replace t by and Equation 4.11

V (t)

becomes:

_pc2b Iw, x(t/Lw(t) -1x(t) /  dx(t) (Eq. 4.12)
2 0 c + x(t)



Finally, Equations 2.43 gives an expression for the suction force as a

function of non-dimensional time and per unit span:

Px(T) = tpc w (T) 1 2 2,(T) dTr (Eq. 4.12)

Plugging Equation 2.29 into Equation 4.12 reduces to:

(2
Px (T) = 7Pc wa () - dr (Eq. 4.13)

2+2

As before, Equation 4.13 is dimensionalized with respect to time by using

Equations 4.8 and 2.6 and corrected for span length to give:

Px(t) = pcb w(t) -  t d (Eq. 4.14)

x(t)
To account for the time varying velocity t is replaced by V(t) and Equation 4.14

V. (t)

becomes:

P (t) = pcb w (t)- c , (t)/ dx(t) (Eq. 4.15)S2V (t) o c+ x(t)

We now recall from Equation 2.3 how the forces presented in this sub-

section add to the lift and thrust forces:

T = Px - Lsin(a) (Eq. 4.16)



4.4.2 Problem Statement

The following take-off situation is considered. Consider a vehicle to be

launched with an initial velocity, V,(0). We want to look at the average thrust

generated by the optimal sinusoidal flapping case determined in Section 4.2.1 for an

aircraft climbing at a fixed flight path angle, y. Our goal is to show that the

amount of thrust generated per period goes through a transient phase before

reaching a steady value. We wish only to show that the code is capable of

calculating thrust due to flapping during this transient period. Based on this

consideration, we simplify the problem by not including a drag term in our analysis.

Figure 4-4 shows a free body diagram of the problem under consideration.

z

T

W = mg

x

Figure 4-4 Free Body Diagram of the Take-Off Problem

4.4.3 Results and Discussion

We start this section by assigning values to the atmospheric and physical

parameters that will be needed to solve the take-off problem. The parameters and

their values are shown in Table 4-1.



Table 4-1 Parameters Needed to Solve the Take-Off Problem

Parameter Value Rationale

V. (0) 4 m/s Initial velocity for hand launched aircraft.

p 1.23 kg/m 3  Air density at sea level.

g 9.8 m/s 2  Gravitational constant.

Y 5 deg Flight path angle for climbing regime.

c 0.1 m Typical chord length for a micro-UAV.

b 0.5 m Typical wing span for a micro-UAV.

CL 1 Typical lift coefficient for take-off.

m 0.05 kg 1 1
m = -pV cbCL - for steady-state rectilinear flight.

2 g

The following steps outline the procedure used to solve the take-off problem.

Step 1: Initialize the parameters given in Table 4-1 for initial conditions.

Step 2: Compute the thrust force from Equation 4.16.

Step 3: From the free body diagram of Figure 4-4, compute the acceleration in the

direction of flight. It can be obtained from Newton's second law: F=mv.

Applied to our problem, we get: v = - gsiny.

Step 4: Update the free stream velocity, V. by using a refined Euler method [18].

Step 5: Increment the time by one time step. If time = final time go to step 6; else

go to step 2.

Step 6: Compute the average thrust generated for each period. Stop.



The result of the steps outlined for the optimal sinusoidal flapping

combination described in Section 4.2.1 and for 11 periods is shown on Figure 4-5.
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Figure 4-5 Average Acceleration Due to Thrust Showing Transient Effects

As expected, Figure 4-5 shows that the thrust averaged over one period

exhibits transient behavior. The transient behavior is due to a combination of the

unsteady aerodynamics effects and the aircraft dynamics. The transient phase due

to aerodynamics effects does not die out but is not observed on Figure 4-5 because

Figure 4-5 shows a time average force. The transient due to the aircraft dynamics is

observed in Figure 4-6 where the time history of the velocity is plotted for 12

periods. Also, it is shown in Figure 4-5 that a polynomial of order 4 fits the average

acceleration due to thrust after the third period of oscillation. This shows that the

transient behavior is stronger in the time immediately following the start of motion.
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Figure 4-6 Velocity Time History for 12 periods

The convergence of the average acceleration due to thrust can be explained

by looking back at the steps listed earlier. At each time step a new value of the

thrust force is computed in step 2. If the thrust generated overcomes the effect of

gravity, the aircraft will experience a positive acceleration, as seen in step 3. A

positive acceleration will produce an increase in velocity (step 5). This increase in

velocity will have two effects on the next thrust calculation. The first effect will be

1
to increase the thrust in accordance with the relationship: T= pV2 b c C. The

2

second effect is that an increase in velocity is equivalent to a decrease in reduced

fc
frequency, as shown by the relationship: k-2V C, is, in turn, exponentially

2Vdent on reduced frequency. Hence, the two effects oppose each other until

dependent on reduced frequency. Hence, the two effects oppose each other until



an equilibrium is reached. This phenomenon explains the convergence of the

average acceleration due to thrust.



Chapter 5

Conclusions and

Recommendations

5.1 Conclusions

We present in this section concluding remarks regarding the results

obtained in the previous chapters. This research has presented how a fast

and versatile computer code could be implemented to calculate the unsteady

forces generated by a flapping airfoil.

The derivation was based on early work in unsteady aerodynamics and

the validity of the code to compute these forces was successfully checked

against published results for the lift resulting from step and sinusoidal pitch

motions and the thrust resulting from pure pitch and pure plunge motion.

The code was then applied to maximize the thrust produced by a

combination of pitch and plunge motions for both sinusoidal and square

waves. Table 5-1 compares the optimal cases for sinusoidal and square

waves for pitching and plunging reduced frequencies of 0.5, plunge

amplitude of one half a cord length and pitch amplitude ranging from 0 to

60 degrees. In Section 4.2 we explain why these parameters were fixed.



Table 5-1 Optimal Flapping Configurations

We find that all optimal cases correspond to cases where the pitch and

plunge motion are simultaneous and opposite; this can be seen by looking at

the phase differences between pitch and plunge. We also find in Table 5-1

that square motions produce more thrust than sinusoidal ones. This is due

to the higher pitch and plunge rates. However, in the square case,

departures from the optimum phase degrade more rapidly than in the

sinusoidal case. Also, the optimal sinusoidal case requires lower amplitudes

of motion. Another interesting fact shown in Table 5-1 is that duty cycles

do not have to be equal to 50 %. Indeed, similar thrust coefficients to the

50 % duty cycle case are obtained with duty cycles of 90 % and 10 %.

Again, the important feature is that the pitch and plunge motions are

simultaneous and opposite.

The second application for the code was to study the take-off problem

faced by a micro-UAV to show the ability of the code to compute transient

forces. We find that for a given set of initial conditions, a hand launched

micro-UAV will exhibit transient behavior due to a combination of the

unsteady aerodynamics effects and the aircraft dynamics.

Type of Duty Cycles Optimized Parameters CT

Motion Pitch Plunge Pitch Amplitude Phase Difference

Sinusoidal N/A N/A 28 deg. 210 deg. 0.6

Square 50 % 50 % 46 deg. 180 deg. 2.5

Square 10 % 10 % 28 deg. and 37 deg. and 1.5

25 deg. - 37 deg.

Square 10 % 90 % 37 deg. 60 deg. 2.6

Square 90 % 10 % - 35 deg. 60 deg. 2.6



5.2 Recommendations

Research is an open ended subject. It is always a researcher's desire to see

his or her work expanded and improved. This is the reason why in this section we

propose areas of the work presented subject to improvement as well as possible

future applications made possible or easier by the development of the code included

in Appendix B. We also mention directions that we have explored to a certain

extent and did not seem to lead to improvements to our work.

The first application we studied in Section 4.2 dealt with optimal flapping.

In addition to the results presented, we investigated a variety of other flapping

combinations with no improvement over the square case. They included triangular

wave, combinations of sinusoidal and square waves and step waves. Higher thrust

coefficients may be obtained by rotating the airfoil about a different point than the

mid-chord. There is also evidence that placing a second airfoil in the wake of the

first one dramatically increases the efficiency of the thrust produced. As far as

improving the accuracy of the results obtained for optimal flapping, one may

develop a more physically realistic model for the filter used for the square wave as

discussed in sub-section 3.1.1. Also, the flat wake assumption can be lifted by

tracking the points where the wake vortices are shed.

Our second application showed the ability of the code to compute transient

forces for a micro-UAV in the climbing regime. A more rigorous analysis can be

conducted by using more realistic geometric data. Among other applications of

interest is the landing regime or how to flap the wings to bring the velocity of the

aircraft to nearly zero.

Finally, experimental data would be a perfect way to study how our analysis

expands to three-dimensional viscous flow. There is no doubt that the physical

implementation of the optimal flapping combinations that we proposed opens



another vast area of research. This is required to make the flight of a flapping

aircraft a reality.
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Appendix A

Mathematical Derivations

A.1 Analytic Solution of the Airfoil Bound

Circulation, Fo and Vorticity Distribution,

Bisplinghoff, page 289 gives (also Equation 2.13):

F0 (t)= IE y(x,t)dx =-c wa (1 *(,t)d *-c 5

where, * - and is a position dummy variable of integration
c

in Bisplinghoff.

If we now return to our notation and for wa constant for all x (i.e. along the

chord):

Fo(t)= -c wa(t) 1  dx1_x

And finally using Equation A.12:

F0o (t) = -Wa (t)cmt

(Eq. A.2)

(Eq. A.3)

(Eq. A.1)



After the change of variable: * = 2x / c; Equation A.1 may be rewritten as:

fc/2 + 2x / c 2dx
(t) = -c /2W ,(x,t)-c/2 1-2x/c c

rc/ 2  1+2x /cc/2 -2L x/ca(x,t)dx
J-c/2 1 -2x/ c

Now, comparing Equations A.1 and A.4 yields the airfoil bound vorticity

distribution:

1+2x/c
y 0 (x,t) =-2 Wa (x,t)

1-2x/c

S1+ xxA.2 Computation of J_1  + x dx

From Schaum's Mathematical Handbook, page 64:

px + q (ax + b)(px + q) aq - bp dS dx= +
ax+b a 2a (ax+b

With a=-l, b=l1, p=l and q=l,

(-x+1)(x+1) -1-1 1 dx

-1 2(-1) 1 (-x+1)(x+1)

After simplifications:

S dx

1(X + 1)(-x + 1)

From Schaum's Mathematical Handbook, page 63:

r dx 2 tan - p(ax + b)
S(ax + b)(px + q) -ap a(px + q)

x

)(px + q)
(Eq. A.6)

(Eq. A.7)

(Eq. A.8)

(Eq. A.9)

(Eq. A.4)

(Eq. A.5)

ap < 0



With a=1, b=l1, p=-l and q= 1:

2 1(x+ 1)

Smi -  1(-x + 1)

After simplifications:

x+l
I= tan-' x+1

-x+1
-1

= 2 tan-' (o) - 2 tan-' (0) (Eq. A.11)

Conclusion:

1+x
I=J dx = (Eq. A.12)

A.3 Computation of S the suction coefficient

Plugging Equations 2.35 and 2.33 into Equation 2.31 and 2.30 results in:

+ 1 ,
d'

Y(5 t) + 4 ,

(4, - ) 1 1

Canceling the C+1 term and substituting -1 for t gives:

(Eq. A.13)

- w 1 + 1 + 'T 1-C (1+)
(Eq. A.14)2+ r ,1 (4 "+1) -- l

21c (4,+1) ( 1

After simplifying the radical expressions:

S = w J 1
S_-1

(Eq. A.10)

-2w, 1- [Wa rj

1 c 2 1+ f

S =lim- -4=-, 2 2 1 1 /- "++ ,
' +(

+ f- ,w (4',t) d4,2+ d1 42
IF _

(Eq. A.15)



The first integral has a closed form solution and is evaluated with MAPLE.

Equation A.15 becomes:

s= - ;l + d (Eq. A.16)
a 27 c

The wake integral can be changed from a non-dimensional position integral to a

non-dimensional time integral with the change of variables: = 1+ t

S = -Swa + d, (Eq. A.17)
2n o J ( + 2)



Appendix B

Matlab Code

The files included in this appendix are matlab and simulink functions. The files are:

code.m
simsin.mdl

simsquare.mdl
forces.m

This is the first file to run, to enter inputs and choose outputs.
This is a simulink block diagram that will be executed if the input
sinusoidal motion is selected in code.m. It computes alpha,
alphadot, z, zdot and zddot.
This is like simsin.mdl when the input square motion is selected.
This is a matlab function that will compute the forces experienced
by the airfoil as described in Chapter 2.

%%%%%%%%%%%%%/o% CODE.M %%%%%%%%%%%%%%%%%%%%%%

%% This is the first file to run to enter inputs and choose outputs %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

%% select sinusoidal or square motion

motion2=input('Choose type of motion: l=sinusoidal, 2=square: ');

if motion2==1

%% sinusoidal selected
%% select frequencies, max amplitudes and phase difference

k=input('Enter pitching reduced frequency: ');
I=input('Enter plunging reduced frequency: ');
alphamax=input('Enter maximum pitching amplitude in degrees: ');



zmax=input('Enter maximum plunging amplitude in half chord lengths: ');

phi=input('Enter phase between plunge and pitch in degrees: ');
ds=0.01*pi/min(k,l);
sf=8*pi/min(k,l)
sft=6*pi/min(k,1)

%% select desired output

out=input('Enter desired output: 1=average thrust coefficient only,
2=average thrust coefficient and trailing edge motion, 3=trailing edge
motion only: ');

if out==1

%% sinusoidal, CTave only: start simulink program simsin and matlab
%% program forces

sim('simsin')
forces

elseif out==2

%% sinusoidal, CTave and airfoil motion: start simulink program
%% simsin, matlab program forces, simulink program trailsin and
%% matlab program trailing

sim('simsin')
forces
sim('trailsin')
trailing

elseif out==3

%% sinusoidal, airfoil motion only: start simulink program trailsin
%% and matlab program trailing

sim('simsin')
trailing

end

elseif motion2==2

%% square selected
%% select frequencies, max amplitudes, duty cycles and phase difference

k=input('Enter pitching reduced frequency: ');
l=input('Enter plunging reduced frequency: ');
alphamax=input('Enter maximum pitching amplitude in degrees: ');
zmax=input('Enter maximum plunging amplitude in half chord lengths: ');



dutyalpha=input('Enter pitching duty cycle in %: ');
dutyz=input('Enter plunging duty cycle in %: ');
phi=input('Enter phase between plunge and pitch in degrees: ');
wn=3; ksi=0.707;
ds=0.002*pi/min(k,l);
sf=8*pi/min(k,l);
sft=6*pi/min(k,l);

sim('simsquare')
forces

end

%%%%%%%%%%%%%% SIMSIN.MDL %%%%%%%%%%%%%%%%%%%
%% This simulink block diagram is executed if the sinusoidal input motion is %%
%% selected in code.m. It computes alpha, alphadot, z, zdot and zddot. %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Generatorzdudt zdot du/dt zddot

Plunge
Generator

Figure F-1: Simulink Block Diagram for Sinusoidal Motion



Table F-1: Definition of the Blocks shown in Figure F-1

%%%%%%%%%%%%%% SIMSQUARE.MDL %%%%%%%%%%%%%%%%
%% This is like simsin.mdl when the input square motion is selected. %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Pulse Fcn1 Phase Lag State-Space Demuxalphadot
Generator1

Pulse Fcn
Generator

State-Spacel Demuxl

Figure F-2: Simulink Block Diagram for Square Motion

Block Diagram Name Characteristic Value
Parameters Start time 0

Stop time sf
Type Fixed-step

Discrete
Fixed step size ds

Plunge Generator Name Signal Generator
Wave form Sine
Amplitude zmax+0.0001
Frequency 1
Units rad/sec

Pitch Generator Name Signal Generator
Wave form Sine
Amplitude alphamax*pi/180+0.0001
Frequency k
Units rad/sec

Phase Lag Name Transport Delay
Time delay pi*phi/180/k



Table F-2: Definition of the Blocks shown in Figure F-2

Block Diagram Name Characteristic Value
Parameters Start time 0

Stop time sf
Type Fixed step

ode5
Fixed step size ds

Plunge Generator Name Pulse Generator
Period (secs) 2*pi/l
Duty cycle (% of period) dutyz
Amplitude zmax*2+0.0001

Pitch Generator Name Pulse Generator
Period (secs) 2*pi/k
Duty cycle (% of period) dutyalpha
Amplitude alphamax*pi/180*2+0.0001

Fcnl Name Function
Expression u-alphamax*pi/ 180

Fcn Name Function
Expression u-zmax

State Space Name State Space
A [0 1; -wn^2 -2*wn*ksi]
B [0; wn^2]
C [1 0; 0 1]
D [0; 0]

State Spacel Name State Space
A [0 1; -wn^2-2*wn*ksi
B [0; wn^2]
C [1 0; 0 1; -wn^2 -2*wn*ksi]
D [0; 0; wn^2]

Phase Lag Name Transport Delay
Time delay pi*phi/180/k



%%%%%%%%%%%%%% FORCES.M %%%%%%%%%%%%%%%%%%%%
%% This is a matlab function that will compute the forces experienced by the %%
%% airfoil as described in Chapter 2. %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

start=cputime;

V=1;

s=(0:ds:sf)';

% wa (Eq. 2.7);
wav=-sin(alpha) - zdot.*cos(alpha)/V;

% wadot (Eq. 2.8)
wadotv=-alphadot.*cos(alpha) -...
(zddot.*cos (alpha)-zdot.*sin(alpha).*alphadot) /V;

% CLs (Eq. 2.14)
CLs=-2*pi*wav;

% gammaw (Eq. 2.24)
gammaw=2*pi*sqrt(s./(2+s)).*wadotv;

% CFw (Eq. 2.27)
X=1./(s+2);
for n=l:sf/ds+l

CFw(n)=2*pi*wadotv(l:n)'*X(n:-1:1)*ds;
end
CFw=CFw';

% CFi (Eq. 2.21)
CFi=pi*wadotv;

% CPx (Eq. 2.41)
CPx=2*pi*(wav-CFw/(2*pi)).^2;

% CL (Eq. 2.2)
CL=CLs+CFw+CFi;

% CT (Eq. 2.2)
CT= CPx-(CLs+CFw+CFi).*sin(alpha);

CTperiod= CT(round(length(s)-2*T/ ds):length (s));
CLperiod= CL(round (length (s)-2*T/ ds):length(s));
period= [s(length(s))-2*T:ds:s(length(s))];
ctint= 1/2/T*trapz(period, CTperiod);
clint=1/2/T*trapz(period, CLperiod);



stop=cputime;
run=stop-start;

info=['CT = ', num2str(ctint), '; sf = ', num2str(sf), '; ds = ', num2str(ds), ';
cputime = ', num2str(run), ' seconds']

%%%%%%%%%%%% % TRAILING.M %%%%%%%%%%%/%%%%%/%%
%% This is a matlab function that will plot the airfoil motion in a movie style %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

start=cputime;

load naca009

s=0:ds:sf;

x= naca009(:,1)/50-1;
xtr=cos(alpha);
ztr= sin (-alpha) +z;
xl=-cos(alpha);
zl= sin(alpha)+z;

zu=naca009(:,2)/50;
xc=x*cos(alpha');

for n=l:length(s)
for m=1:18

zc (m,n)= z (n)-xc(m)*sin(alpha(n));
end

end

M=moviein(21);
for n=13:10:143

N=(n-12+9)/10;
hold off
plot(xc(:,n), zc(:,n)+zu)
hold on
plot(xc(:,n), zc(:,n)-zu)
axis([-2 2 -2 2]); grid
set(gca, 'Visible', 'on')
M(:,N)=getframe;

end
movie(M);


