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I. INTRODUCTION

In this paper we discuss an algorithm for computing lot sizes for

multi-stage assembly systems. In a multi-stage assembly system each

stage, or facility, requires inputs from a number of immediate predeces-

sor stages, and supplies, in turn, one immediate successor. This structure

includes the important special case of facilities arranged in series. We

consider the case of constant demand over an infinite horizon, with

instantaneous production.

Our objective is the choice of a lot size for each facility which

minimizes average per period production and inventory holding costs, where

This paper is a synthesis of papers submitted to Management Science
in February, 1971 by Crowston and Wagner [4] and Williams [16] . Sections
I - VIII represent a combination of material from both. The proof of

integrality contained in the Appendix was unique to reference [4]. In

addition, reference [4] presents results for finite horizon models of

multi-stage assembly systems which are omitted here.
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at each facility production costs consist of a setup cost and possibly a

linear component, and inventory holding costs are linear. Under these

and a few additional assumptions to be described in section II, we prove

that an optimal set of lot sizes exists such that the lot size at each

facility is a positive integer multiple of the lot size at its successor

facility. This fact is used in the development of a dynamic programming

algorithm for determining optimal lot sizes.

In recent years a number of new algorithms for production scheduling

in multi-echelon systems have been developed. Both the finite horizon

case, where decisions are made at discrete points in time, and the

infinite horizon case have been discussed. Discrete dynam^. programming

models developed by Zangwill [17-20] > and Veinott [14], and Love [9]

assume a finite horizon and a known but possibly varying demand. Produc-

tion and holding costs in these models are assumed to be concave. Love

shows that his approach may be extended to the infinite horizon case for

the facilities in series structure. This allows periodic lot sizes at

each stage, a possibility which we explicitly rule out in our development.

Love's algorithm cannot be extended in any obvious fashion to the general

assembly system structure. We remark in this connection that our reason

for assuming that the lot size at a stage is constant over time is

primarily computational, but that this restriction may often be reasonable

in practice in light of scheduling and administrative considerations.

Discrete linear programming models have been developed by Manne [10],

Von Lanzenauer [15], and Gorenstein [6,7]. These models schedule several

different products and assume a finite horizon and known demand. However,

Manne 's model neglects holding cost. The objective function in his model
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minimizes overtime requirements. In [15] Von Lanzenauer has integrated

production scheduling and sequencing decisions for multi-stage, multi-

product systems. However, successful implementation of [15] depends on

the development of more efficient zero-one programming techniques. The

assembly system structure in particular is considered by Gorenstein [ 7] .

Published models for the infinite horizon case assume constant demand

and time invariant cost parameters. For the facilities in series

structure there have been two recent contributions in addition to the

aforementioned work of Love. The model of Taha and Skeith [12] allows

non-instantaneous production, delay between stages, and back-orders for

the product of the final stage. They assume that in an op^ mal solution

the lot size at a stage is an integer multiple of the lot size at the

succeeding stage and suggest the problem be solved by examining all

combinations of such integer values. Jensen and Khan [8] also allow

non-instantaneous production but do not use the assumption of positive

integers. Instead they have constructed a simulation model which

evaluates the average inventory at a stage, given the lot size at that

stage and at the succeeding stage, along with the production rate at

both stages. A dynamic programming algorithm is then formulated in

which the simulation model is used in evaluation of each functional

equation. They note that high average inventories result if the integer

multiple assumption is not followed and discuss a problem for which

non-constant lot size is optimal.

For the multiple predecessor case Schussel [11] develops a simulation

model and heuristic decision rule which again assumes that integer

multiples are optimal. He adds a "learning curve" function so that unit
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production cost decreases with lot size and allows costs to be discounted

over time. Crowston, Wagner and Henshaw [3] tested four heuristic rules

and compared them with a version of the dynamic programming algorithm

developed in this paper.

The concept of echelon stock which we find useful for computing total

system inventory holding cost was originally propounded by Clark and Scarf [12].

They define installation stock at any given facility as the stock which is

stored between that facility and its immediate successor facility. The

average installation stock depends both upon the lot size at the Dre-

decessor and successor stages. Echelon stock, on the other hand, is

defined to be the number of units in the system which have ^assed through

facility i but have not as yet been sold. The use of the echelon stock

concept allows inventory holding cost to be regarded as a function of

only the predecessor facility. Echelon n stock may often be considered

to be the facility n value-added inventory, and the concept has broad

implications for more general multi-echelon structures than the assembly

system which we consider. The Clark-Scarf models allow stochastic demand

and convex holding costs, but setup costs are assumed to be associated

with no more than two facilities.

We present our results in the following order. In section II we

describe the problem. We follow in section III with a statement of

Theorem 1, which characterizes the form of the optimal solution. The

result is used in the derivation of the total cost model provided in

section IV. Simple extensions of the model are considered in section V.

We then present the basic dynamic programming algorithm in Section VI.

Some computational refinements are discussed in section VII. We conclude
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in Section VIII with a summary of results and a brief discussion of

implications of the model. Proof of Theorem 1 is provided in the

Appendix.

II. PROBLEM DESCRIPTION

In a multi-stage system, the manufacture of final product requires

completion of a number of operations or stages. We use interchangeably

the terms stage and facility. A stage might consist of an operation

such as procurement of raw materials, fabrication of parts, or assembly.

A fixed, sequence of operations is assumed, so that output from one stage

serves as input to an immediate successor stage. The final stage is an

exception in that its output is a finished product used to service

customer demand. Output from any stage may be stored until needed in

that stage's installation inventory.

A multi-stage assembly system is characterized by the restriction

that each stage has at most one immediate successor. We emphasize that,

in general, a stage may have any number of immediate predecessors.

Examples of multi-stage assembly systems are depicted in Figures 1 and

2, with Figure 1 illustrating the facilities in series case.

We shall denote a stage F , where n is an index ranging from 1 to
n

N, and F is the final stage. Let a(n) be the index of the Immediate

successor of F , A(n) the set of indices of all successors (immediate or
n

otherwise), b(n) the set of indices for all immediate predecessors and

B(n) for all predecessors. In Figure 2 for example

a(6) = [7], b(6) = [4.5], A(6) = [7.17], B(7) = [1,2,3,4,5,6].
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For expositional convenience, we introduce the notion of a level, where

stages are assigned to levels according to: the final stage F is in

level L^., and F is in level L if its successor F . , is in L_. , .

li n m a(n) nH-l

It is assumed throughout that demand is known with certainty.

The objective is minimization of the cost of satisfying all demand with

no backorders. Costs are assumed to depend upon the stage, F , there

being a fixed charge for production setup, S ($/setup) , and a linear

per unit installation inventory holding cost, H ($/unit/time) . One

\mit at a stage is the quantity required in one unit of final product.

We will find it convenient to refer to the n-echelon per unit

holding cost, h , defined by: h =H - L .,.H. The concept of" ' n ' n n m£b(n) m ^

an incremental holding cost is closely related to that of "value added"

at a production stage. In fact, the holding cost in many situations

and c is a cost of carrying inventory per dollar of inventory and hj^ = v c, where

v = value per unit added by the stage n process. We note that a direct per unit

production cost, P , can easily be added to the models discussed herein,

but such a term has no effect upon the lot size decision and simply adds

a constant to the total costs.

We now list our assumptions.

1. Stages are arranged in an assembly structure with each stage

having at most one successor.

2. Inventory can be stored between facilities. Where some facilities

do not allow this, we can redefine facilities so that a model facility

corresponds to two or more actual facilities and storage between

model facilities is allowed.





3. If there are delays in moving from one facility to the next, the

delays are constant and thus not a function of the lot size.

4. There are no capacity constraints.

5. At each facility, production is instantaneous.

6. Final product demand is constant: D per period. We initially

assume demand is discrete, but consider the continuous case in

section VII.

7. Stockouts are not permitted.

8. At any given facility, marginal production costs are constant. Thus

they may be ignored in the optimization.

9. There are setup costs or ordering costs at each facility. If a

given facility has a setup cost of zero, total costs are minimized

by producing, at that facility, the least possible amount at the latest

possible time, subject to input requirements from the successor

facility. Thus the lot size for a facility with a setup cost of

zero should be the same as the lot size at its immediate successor

facility. In the model, such a facility should be combined with its

successor to form a single model-facility.

10. Holding cost per period on installation stock at a given facility

is a linear function of the quantity of stock at that facility.

Furthermore, at any given facility, installation stock holding cost

per product unit per time period is never smaller than installation

stock holding cost per product unit per time period at any predecessor

facility. (Product units are defined such that a product unit at

any given facility is a quantity which will eventually form one unit

of final product.)
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II. The lot size at a given facility is constant (rational number).

We shall refer to the problem of minimizing the average cost per unit

time under assumptions 1 - 11 as the Basic Problem.

III. FORM OF THE OPTIMAL SOLUTION

We consider only solutions which can be characterized by a single

lot size for each stage. Let k^ =
q^/q^^^^ and K^ =

Q^/Q^. A particular

solution is given by k^ = ^^j.k^^ '
'

'
'

'^^-l'
^^ ^^^

^N
°^ ^^ ^' = ^4^4'

•'•'^-1' '^ ^"^ %• ^^'^'^ it can be shown that the ratio of lot sizes

between successor and predecessor stages, k^, must be a positive integer.

The result is summarized in Theorem 1.

^^°^^°^ ^
- ^°™ °f the Optimal Solution. Of the set of all solutions

to the Basic Problem which can be characterized by a set of rational

lot size multiples, k^ and final stage quantity Q^, a minimum cost

solution exists with Q^ and k^ all positive integers.

A detailed proof is given in the Appendix. An expression is derived

for the costs associated with a lot size Q^ given
Q^^^^ . This function

is shown to be minimized with k^ =
QjQ^^^^ a positive integer. Proof

then follows by induction over the levels of the system.

We wish to emphasize that the assumption of a time-variant lot size

for each stage is quite strong. The possibility of cyclic lot sizes, for

example, is thus eliminated. The restriction may be justified, in some

cases, by the costs of administering changing lot sizes. In any event.

Theorem 1 leads to computationally powerful algorithms for finding the

optimum in a class of easily implemented solutions. Given the results
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of Theorem 1, we now derive expressions for the total costs of a

particular solution k.-', Q^.

IV. THE COST STRUCTURE

If all lot sizes within the system were equal, then, given assump-

tion 5, inventory would only be held at the final stage. However, if

Q_ ?* Q / \ then installation stock is created at F and the average level

of such inventory is a complicated function of Q and Q , ^ . In Figure

3 we show the installation stock at each stage of a 3-stage serial

production process with Q. = 6Q- and Q„ = 2Q„. In Figure 4 the echelon

stock for each stage of the system is shown to form the familiar saw-

tooth pattern of the ordinary Wilson lot size formula. Given assumption

6 the average echelon inventory at stage F is (Q - l)/2. Thus the total

holding and setup cost for the echelon stock will be

'n^V = °^n/Qn "^
^^n " ^^\^^ ^1)

and the total cost for the system, s, will be

T= E f^(V (2)
n=l

This may be rewritten as

N
T = I {l^S^/^N -^ (Vn - ^>\/2} (3)

n-1

Note that for a particular vector K^ the optimal value of Q would be

4 = y(2DI(S^/K^)}/lh^K (^>
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V. SIMPLE EXTENSIONS OF THE MODEL

In this section we briefly consider a special case of non-instanta-

neous production and the case of transfer delay between stages. If we

assume production rate p at F and given p ^ p , . then the result of

Theorem 1 applies. The cost f'jnction for the product of F will be

^^n =^^n/VN -^ ^^\% - ^)/2][l- D/pJ h^ . (5)

Finally we observe that a transfer delay between stages simply adds a

constant inventory term to either equation (3) or (5) and therefore does

not affect the optimal solution. The fact that constant delays do not

alter optimal policies is also mentioned in [12, 18].

VI. THE DYNAMIC PROGRAMMING ALGORITHM

The dynamic programming algorithm is written in terms of the

simplest cost structure although it is clear that it could be modified

to include the cost function for non-instantaneous production. Solution

proceeds from the r;

defined as follows.

Let I denote the set of all positive integers, and let T (Q ) represent

Then,

T (Q ) = f (Q ) + I ,, . minimum T (2,Q ) (6)n^n n^n' meb(n) m ^n

T = optimal T = min T (Q ) (7)

The computations proceed successively from the first level of the system to

Optimal solutions for the system of Figure 2 have been obtained with

this algorithm in approximately ten seconds of computation time
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on a time-shared GE 645 system [3].

VII. COMPUTATIONAL REFINEMENTS

We will now develop both upper and lower bounds on Q so as to

improve the computational efficiency of the dynamic programming

algorithm.

If we assume a problem with the cost structure given in IV, then

at F a lower bound, z , on the cost of system inventory of that stage

will be

2 = DS /yjlDS /h + i/[(2DS /h )- l]h /2 (8)
n nynn y nn n

This assumes no interdependency between successive stages. Then a

lower bound for the complete system, L, will be

n
'

L = Z z„ . (9)

n=l

An upper bound on total cost, U, for the system may be derived from a

feasible heuristic solution [3] to the problem, or from a modified

dynamic programming solution using a coarse grid. This approach will

be discussed below. With either method an upper bound on the cost of

echelon stock for F may be determined:

U - (L - z_).

Since f (Q ) is convex in Q , by setting F (Q ) equal to its cost upper

bound, that is

DS^/Q^ + (Q^- l)\/2 = 2^ + U - ^ (10)

u £
we may solve directly for upper and lower bounds, Q and Q on Q .
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In addition, from Theorem 1, Q ^ Q , .. Therefore better bounds
' ^n a(n)

on the optimal Q , such that Q - optimal Q - Q , can be obtained

as follows:

'<

C
m £ B(n)

and

c
'<

l<. e A(n)

Similar bounds may be calculated for the cost structure of equation

(5)

It may be possible to improve these bounds as the dynamic programming

algorithm is in progress. For example, if the facilities are in series.
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T (Q_ ) = f (Q ) + I minimum T (iQ ) (12)
riTi nn ^^ / \ „ -r

mn
meb(n) lei

and

U = minimum
"^N^^N^ * ^^"^^

Q = r,2r, . . .
,mr

Thus only quantities Q which are integer multiples of r need be considered.

^ 3T-4r1 ^ •\7i^1no r\-^ WXJ.X UC t^UUClXiiC

i*
solution may be improved by solving equation (A) for an optimal Qr^ , given

as an upper bound. Finally we note that if we had allowed continuous

withdrawal, rather than discrete withdrawal, the formulation of equations

(12), (13) would have been required for solution with Q^/2 replacing (Qn_i)/2

VIII. SUMMARY AND MODEL IMPLICATIONS

In this paper we have presented a dynamic programming algorithm

which exploits the concept of echelon stock to obtain optimal constant

lot sizes in a multi-stage assembly system.

A variety of heuristic rules have been suggested for problems

having a structure similar to that of the multi-stage assembly system

[3,11]. In addition, in industrial applications heuristics such as

"constant lot size" at all stages, where the lot size is taken to be

Q = -i/2DS /H^ , or "independent determination of lot size" at each stage

are used. For the cost structure of (2) the optimal "constant lot size"
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would be -1/2025 /2h although experimentation shows that this is a

poor decision rule [3]. If "independent determination of lot size" is

used, a common model is Q = -i/2DS /H . This implies the carrying cost

of a unit of in-process inventory of F is a function of the total value

of its components. Our model indicates that this results in double-

counting. Finally, we would suggest that if heuristic decision rules

are constructed for the more complicated case of multiple successors,

incremental holding costs are again appropriate.
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APPENDIX

Theorem 1 : Form of the Optimal Solution

Of the set of all solutions to the Basic Problem which can be

characterized by a set of rational lot size multiples k-* and Q^, a

minimum cost solution exists with Q^ and k"' all positive integers.

Proof ; We will use Proposition 1, Proposition 2, and Lemma 2.

Proposition 1: An optimal solution to the Basic Problem with rational

lot size multipliers k is in phase; that is, for each stage n, there

is some point in time at which production occurs simultaneously with

production at the successor stage a(n).

Proof: Since and Q , . are rational, the quantity levels of

installation stock at stage n cycle with period P where P = qj^Q^^/D =

q / \Q / \/D and q , q , s are relatively prime integers. Let At be the
^a(n)^a(n) ^n' ^a(n)

smallest interval of time between production at stage n and subsequent pro-

duction at stage n+1 during the cycle. If At # 0, then all production at

stage n (and stage n's predecessors B(n)) can be transferred to the future by

the amount At with no increase in setup costs and reduced inventory costs.

Proposition 2: In a two-stage system with the successor stage lot size

held constant at some level R (R is a positive rational number) , and with

the system in phase in accordance with Proposition 1, the total cost/unit

time associated with lot-size Q^ is given by
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Z(Q^) = S^D/Q^+ h^(Q^ - l)/2 + RH^Cq^ - l)/q2

where q2 is defined by q^/q^ = Q^/r and q ,q2 are relatively prime

integers.

Proof: There are three components of cost to consider:

1. The set-up cost— S D/Q .

2. The familiar inventory holding cost which arises from periodic

addition to the entire system of the amount Q , and the intermittent

flow out of the system of D units— h^ (Q - l)/2. Note that the per

unit holding cost is taken to be h , the echelon cost, even though the

physical product does not remain in Stage 1 inventory.

3. The permanent Stage 1 installation stock that must be maintained to

ensure that product is always available when required. Since Q-. and R

are assumed to be rational, we can find a cycle. The permanent component

of installation stock is the amount which must be on hand at the beginning

of the cycle to insure that Stage 1 Installation stock remains non-negative,

This amount can be found assuming that Stage 1 installation stock is zero

at the start of the cycle, and finding the minimum (most negative) level

which is attained during the cycle.
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Kt) 3^

P = 1

Examole: Q^ = 3

R = 4

P = 12

!

f
i
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min I(t) = min ([i^R/Q^] - R/Q^[ iR/R])Q3_ + Q^
"

I integer

I integer
([flR/Qj^] - WQ3^)Q3^ +

Qi
- R

min -('^a-a^^i " Uq2/qi])Qi + Qi
- R

£ integer

= min -(«.q2 "^od q^) Q^/^^ +
Q^^

- R.

I integer

Since q„, q, are relatively prime, iq- mod q^^
takes on all the values

l,2,...,q,-l. In particular, for some £, Iq^ mod q^ = q^ " 1- Therefore,

min I(t) = Q^(l - Q;^)/^^ + Q^ - R = R(l -
q^^

+
q^^

- q2)/q2

- R(q2 - l)/q2 •

*

Thus, R(q^- l)/qj units of installation stock must be kept on hand

permanently, at a cost of RH, (q_- l)/q_.

Lemma 2: A function

:(Q) = C^/Q + C^CQ - l)/2 + Q2C2(S2 "
^^^"iz

This result was suggested by William M. Hawkins, Sloan School of Management,





21

where C , C ,Q- are constants and q defined as in Proposition 2 is

minimized for q^ = 1> that is, v;ith Q/Q2 an integer.

* *

,

Proof: Suppose Q minimizes Z and Q,/Q^ not integer. Define Q by

*
,

Q = Q + AQ with Q,/Q2 ^^i integer and < AQ <_ Q . This can be done

Z(Q^) = C^/(Q^ + AQ2) + C2(Q^ + AQ2)/2 + Q2C2(q2 " ^^^2

p'lv \ Q^ not integer, (q2 - l)/q2 1 1/2

Z(Q*) > C^/(Q^ + AQ2) + C2(Q2 +'aQ2)/2 + C2Q2/2

>_ C^/(Qj_ + Q2) ^- C2(QjL +^^2^/2 + C^q^/2 since Q2 1 AQ2.

> C^/(Q^ + Q2) + C2(Q^ + Q2)/2 = Z(Q^ + Q^)

.

Thus Z(Q*) - Z(Q^+ Q2). Since Q3^/Q2 is an integer by construction,

(Q^+ Q2)/Q2 is an integer.

Proof of Theorem 2 follows by induction over the levels of the multi-

stage system. We assume we have an optimal solution Q and show that it

must be integer. Let Z (Q ) be the cost for stage n and all predecessor
n n

stages, given that Q is produced at stage n and all predecessors produce

optimally given Q . Consider the stages belonging to the first level, L^.

If n e L, , then h = H . Substituting Q , . far R in Proposition 2,
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^n^V = V^n + \%. - ^^'^ " »n<(n)^^a(n)-^>/^a(n)-

Lemma 2 applies implying k is a positive integer.

Now suppose k. is integer for all stages F., i e L^ L^ ,..•> L._..

Let n e L., Then the total cost associated with the choice of lot size

Q is evidently ^

Z (Q ) = DS /Q + h (Q - l)/2 + Q . .H (1 - q , .)/q , .n^n n^n n^n ^a(n) n a(n) ^a(n)

+ Z. , , s Z.(k,Q ).
lEb(n) 1 i^n

Noting that (1 - q ,.s)/q /->. = if k. is integral, then for each

predecessor i e b(n)

Z.(k.Q^) = DS./k.Q^ -f h.(k.Q^ - l)/2 + ^,,b(i)^^^.^iQn)

thus, Z (Q ) = D/Q -Z. ^. .S. + Q /2 Z. „. .h. + H Q . . (1 - q , O/q ^ v
' n^u ^n icB(n) i ^n leB(n) i n^a(n) ^a(n) 'a(n)

Since, by definition, H = Z. „. . h.. Lemma 2 applies directly and k must

be an integer. The induction argument proves the theorem for all stages

*
including the final stage if Q , . is taken to be D.
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