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Abstract

A systematic approach to the problems of analysis and synthesis of piecewise-

linear systems that do not contain memory is presented. These systems provide a link

between the general studies of nonlinear systems, exemplified by the work of Wiener,

Zadeh, and others, and the needs of the practical circuit designer. In the area of

analysis, straightforward procedures are developed for handling resistive piecewise-

linear networks. The methods are based upon an algebra of inequalities. Examples of

applications to analysis are given. In the area of synthesis, techniques are developed

by using diode networks for the construction of general piecewise-linear driving-point

functions, as well as generators of piecewise-linear voltage transfer functions of

several variables. Some of the properties of nonlinear resistive networks, in general,

and diode networks, in particular, are discussed. Applications of the inequality algebra

to the synthesis problem are also considered. Two forms of the transfer-synthesis

problem are treated: arbitrary function synthesis, and particular function synthesis.

Examples of the practical application of the techniques that are discussed to the con-

struction of generators of functions of one and two variables are given.
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I. INTRODUCTION

Within the past ten years, the field of nonlinear network theory has been attacked on

a large scale for the first time. The contributions to the theory have been many and

varied, indicating the intense interest that has developed since the end of the second

World War. One of the principal reasons for this interest is that the linear-system

theorists succeeded in setting upper bounds to their own capabilities. For example, if

a filter is desired to separate a signal from its associated noise, for which statistical

descriptions are given, Wiener and Lee have shown that a certain optimum linear filter

can perform this task within a certain degree of perfection, and no other type of

linear filter can come any closer to the desired performance. Naturally, as soon as an

upper limit is recognized, the question is immediately asked, "How can this limit be

exceeded ?" The answer, of course, is to use a nonlinear system.

Many techniques have recently been developed for dealing with certain specific non-

linear problems. As a rule, they are interesting as far as their limited applications

are concerned, but they cannot be generalized. The reason for this limitation is clear.

Since linear systems constitute only a minute fraction of the complete class of physical

systems, it is to be expected that the class of nonlinear systems will be of enormous

size and complexity.

Wiener (28), Zadeh (29), and Singleton (22) made important contributions to the

general theory, especially with regard to classifying nonlinear systems. Most of their

efforts were concerned with analyzing, synthesizing, and classifying two terminal-pair

" black boxes. " Although these general contributions are of fundamental importance,

they are often too unwieldy to be of much practical value.

The methods of analysis and synthesis given in this report are intended to bridge the

gap between the specific and general studies of nonlinear systems. Since piecewise-linear

systems can be used to approximate almost any type of nonlinearity, and still retain some

of the simplicity of linear systems, a thorough investigation of their properties and capa-

bilities appears to be very appropriate. The scope of this work includes the development

of a general systematic approach to the problems of piecewise-linear network analysis

and synthesis, as well as an approach to those problems that can be approximated.

It is readily apparent from past experience that the concise mathematical formu-

lation of a problem is often the most important step in proceeding to its solution. The

application of operational calculus to linear electrical networks, and more recently, of

Boolean algebra to switching circuits, are two striking examples. So far, concise

mathematical representation has been lacking in piecewise-linear networks. The first

step in this investigation is, therefore, the representation of piecewise-linear problems

by a concise, easily manipulated, algebraic symbolism. In Section II, an " algebra of

inequalities" is presented. This symbolism establishes an efficient means of character-

izing, analyzing, and synthesizing piecewise-linear networks and systems. Inequalities

play a fundamental role in these problems.
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Section III describes applications of the symbolism to problems of analysis. The

"flow diagram" of the analysis problem is

Network
Network -- Symbolism - Solution

Data J

In the case of networks with no energy storage elements (the only type considered here),

the mechanization of the first arrow is quite simple. Mechanization of the second arrow

is perfectly systematic and straightforward but requires more labor, as is to be

expected.

Section IV deals with some of the general properties of diode networks. Since the

diode network has been selected in this work as a basis for piecewise-linear synthesis,

a study of these general properties gives a useful preamble for the development of

synthesis procedures. In addition, some of the properties discussed, such as an exten-

sion of the duality principle to nonlinear resistive networks, are of interest in their

own right.

The algebraic characterization of synthesis problems introduces a new philosophy of

diode network synthesis. Section V deals with both driving-point and transfer synthesis.

The basic emphasis, however, is placed upon synthesis of voltage transfer functions of

several input variables: that is, the design of analog function generators. The synthesis

procedures involve (a) expressing the function to be synthesized in terms of the inequal-

ity algebra, and (b) mechanizing the algebraic operations with simple diode networks.

Numerous examples of the broad possibilities offered by this method in the field of

general zero memory function generation are given in Section V.

II. SYMBOLISM: AN ALGEBRA OF INEQUALITIES

2.1 MOTIVATION

In developing an efficient mathematical method of analyzing a broad class of prob-

lems, the first question that arises is " What are the basic properties peculiar to this

class of problems?" The fundamental properties of piecewise-linear systems are:

1. They are characterized by functional relationships composed of a finite number

of linear regions adjoining one another.

2. The change-over from one linear region to the next is determined by the point

at which some quantity becomes greater or less than some other quantity.

Although those systems appear to be closely related to linear systems, it is clear

that the superposition principle is not valid in piecewise-linear systems. This fact

alone increases enormously the difficulties of analysis and synthesis, and makes the

development of an algebraic method of handling them, which differs from conventional

techniques, worth while. It may be observed from property 2 that the words "greater"

and " less, " i. e., inequalities, play important roles in these systems. It was the

recognition of this fact that led to the development of a symbolism that would enable
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Fig. 1. Piecewise-linear function. Fig. 2. Piecewise-linear function.

the handling of such concepts algebraically: in effect, an " algebra of inequalities."

The basic feature of the algebra is the symbolic representation of the words

"greatest" and "least." After attempting various symbolic methods of describing

piecewise-linear functions, it appeared that two very simple transformations were

useful and efficient, both in indicating a systematic method of analysis, and in forming

the basis of a productive synthesis technique. They are both many-to-one trans-

formations, which operate on sets of numbers or functions. The first, represented

by ( ) + , selects the greatest of the set of elements appearing as its argument.

Similarly, the second, represented by ( ) 4-, selects the least of the set of elements

appearing as its argument. Suitable combinations of these transformations enable the

algebraic expression of the behavior of any piecewise-linear function without resorting

to writing several equations with inequality relationships in order to indicate the region

of validity of each equation. Two examples serve to illustrate the convenience of this

symbolism in representing piecewise-linear functions analytically.

EXAMPLE 1. Consider the relationship of Fig. 1. In conventional notation it is

described by

2x x 

y= x + 1 x < 2

3 2 x

If the lines are extended beyond the breakpoints, it is clear that the function is every-

where given by the particular line that is less than the others. Thus its algebraic

representation is

y = (2x, x+l, 3) Q

EXAMPLE 2. Consider the limiter curve of Fig. 2. A conventional description is

-1 x < -1

y= x -1 < x 1

1 1.x

3
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The symbolic description is

or equivalently,

y = [(x, -1) , 1] -

It is clear from example 2 that the symbolic representation is not necessarily unique.

It will become apparent later that the variety of possible, equivalent representations of a

particular function allows for a considerable amount of flexibility in synthesis techniques.

I -, . . I
kele2 · ·- e

n
)

e2

X0
+

en

ko- Fig. 3. + and V circuits.

(a) (b)

One important reason for choosing these particular transformations is the ease with

which they can be mechanized as voltage transfer functions, when diode networks are

used. The,circuit of Fig. 3a performs a + transformation on its input voltages; that is,

e o = X + = (ele 2 .. e n )
+

Similarly, the circuit of Fig. 3b performs a - transformation on its input voltages;

that is,

eO = k- = (e1, e 2. en) 

Note that the bias voltages in each circuit should be greater in magnitude than the most

negative value of the input voltages in the first case, or the most positive value of the

input voltages in the second case. These two circuits form the basis for piecewise-linear

voltage transfer function synthesis. It should be clear from these illustrations that, once

a network transfer characteristic is prescribed in terms of the inequality algebra, it is

theoretically a simple matter to synthesize it. With the foregoing background and moti-

vation, we are now ready to proceed with the formal structure of the algebra.

2.2 DEFINITIONS AND THEOREMS

The elements of the algebra are known as scalars and vectors. (The structure of the

inequality algebra is similar to the algebra of vector spaces.) They are formed from the

elements of an ordered field, R ; the real number system (for definitions of unfamiliar
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terms see ref. 1).

DEFINITION 1. A scalar is any member of the field. (Scalars will be denoted by

lower-case Roman letters or by numbers.)

DEFINITION 2. A vector is any proper subset of the field. A vector will be denoted

by a single Greek letter, , to indicate the whole set of elements, or by (a, b, ... , n) to

enumerate each element. The elements of a vector are scalars. Note that, unlike ordinary

vectors, the order in which the elements of appear is unimportant.

A scalar can be either a constant, (a), a variable, (x), or a function of one or more
variables, (a + bx). Likewise, a vector can contain members which are any of these

three.

It should be observed that, according to the definitions, a single element standing

alone may be either a vector or a scalar. In the development that follows, single ele-

ments will be treated as vectors or scalars interchangeably, but their status at any time

will be clear from the context.

DEFINITION 3. Scalar multiplication. The product of a scalar, c, and a vector,

X = (ll, 2 .. . n), is denoted by cX, where cX = (c2 1' cl2, ... cn)

DEFINITION 4. Vector addition. The sum of two vectors, a = (a 1 , a 2 , .. an) and

= (b1 , b2 .. bn), is denoted by a P, where a3 is the set of all scalars,

ap + bq ap in a, and bq in .

EXAMPLE. Let a = (0, 3, 3 - 2x), P = (0, -2x).

Then a p = (0, 3, 3 - 2x, -2x, 3 - 4x).

DEFINITION 5. The union of two vectors, a and , is denoted by (a, p), where

(a, p) is a set of scalars that is the union of the set of all scalars in a, and the set of all

scalars in P.

EXAMPLE. For the a and used above,

(a, p) = (0, 3, 3 - 2x, -2x)

Clearly, definitions 3 and 4 reduce to the ordinary rules for adding and multiplying

real numbers when the vectors involved contain only one element. This is essential,

since a one-element vector can be assumed also to be a scalar, the rules of combination

of scalars being the familiar rules for addition, subtraction, multiplication, and divi-

sion.

DEFINITION 6. Let a be a vector of which p is the greatest element. Then the

transformation, +, takes a into p. Or, symbolically, a+ = p.

DEFINITION 7. Let a be a vector of which q is the least element. Then the trans-

formation, p_, takes a into q. Or, symbolically, a = q. Note that a transformed

vector becomes a scalar.

With the basic definitions set forth, we can now proceed to the various theorems that

facilitate the application of the algebra to practical problems. Naturally, there are

innumerable theorems which can be derived. The few that follow are the ones that have
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most frequent application in the solutions of typical problems. Proofs are presented in

Appendix I.

THEOREM 1.

THEOREM 2.

1. Commutative law: a(3 = (a)a.

2. Associative laws: (a()P)(®y = a()(P(y)-

c(da) = (cd)a.

3. Distributive law: c(a(D1) = ca(Dcp.

(ca)+ = c(a 4+) c > 0

(ca)+4 = c(a4 ) c 0

or equivalently,

(ca)4+ = (0, c)+(a 4+ ) + (0, c)4- (a 4,)

A special case of theorem 2 is

THEOREM 3.

a = -[(-a) ]

Let a = (a). Then

a 4+ = a, = a

THEOREM 4.

THEOREM 5.

THEOREM 6.

If each fp(x) is

then

(a G) = a + 4

(a®,, p) + =(a ,)4

Inversion theorem. Let

y = F(x) = [fl(x), f(x) (X) , fn(x)] 4±

a strictly monotonic, increasing (decreasing), and continuous function,

x= F 1 (y)= [fl 1 (y), f(y ) f (y)] :( )

in which fp(y) is the inverse of fp(x), that is,

y = fp[f(y] and y = f [fp(y)]

Here and in the following discussion, the words and symbols in parentheses con-

stitute alternative statements of the theorem. For example, in this case the p: trans-

formation applies to increasing functions and the +± transformation to decreasing

functions. It should be observed (and it will be pointed out in the illustrations that

follow), that theorem 6 establishes sufficient conditions for inversion. This does not

imply that a function that does not satisfy the above conditions cannot be inverted.

EXAMPLE 1. Given the network of Fig. 4, find its impedance and admittance

functions. (In the discussion of piecewise-linear resistive networks, driving-point

6
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voltage-current and current-voltage relationships will be known as impedances and

admittances, following the terminology of linear network theory. )

First, by methods that will be described in Section III, the impedance function,

e = z(i), is easily found to be

e = (i, i - 1)4+

To find the admittance, i = y(e), theorem 6 can be applied to yield

i= [f;(e), f (e) (e, ) - = y(e)

EXAMPLE 2. Given the function y = F(x)= [fl(x), f2 (x)] 

Find x = F-l(y) when

(a). fl(x) = x2 and f2 (x) = x (See Fig. 5a.)

In this case, F exists, since the over-all function is a one-to-one transformation;

fl does not exist, since it is double-valued in x, and f21 exists. Although the function

does not satisfy the conditions of theorem 6, an expression for its inverse can be found

in the form,

x = F (y)= [g(y), y]k+

where

r -0 Y<O
g(Y) = y

Note that g(y) must be defined in this somewhat artificial manner, since it must be less

than y for all negative values of y.

Application of theorem 6 to this example would yield the meaningless result,

x = (Y, y)

Actually there would be no way of determining which sign should be assigned to the

transformation, since the functions are both increasing and decreasing.

7
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(b). fl(x) = x, and f 2 (x) = -x (See Fig. 5b.)

In this case each f is monotonic and continuous, but one is increasing while the

other is decreasing. Again, if theorem 6 were applied, the result would be ambiguous

concerning the sign of the transformation. Obviously, this should be expected, since

the over-all function, being double-valued in y, cannot be inverted.

These examples demonstrate that the conditions on theorem 6 provide a check on

the invertability of a function. However, if it is found that a particular function does

not satisfy the conditions, it is worth while to examine it more closely before deciding

that it cannot be inverted. In all of the practical problems that follow, the functions

will always be piecewise-linear so that the individual elements will be of the form

(a + bx). Therefore, strict monotonicity is assured if b 0, and the function is always

invertible if all the coefficients of x are nonzero and of the same sign.

THEOREM 7. Implicit Equation theorem. Let

F(x, y) = [fl(x, y), f(X, Y) . f . fn( )] = 

If

1. Each f is continuous in x and y;

2. Each f is strictly monotonically increasing (decreasing) in y for any constant

value of x;

3. For each x there is some value of y of such a kind that fp(x, y) = 0, for any p;

then, the implicit equation can be solved explicitly for y in the form, y = G(x) =

[gl(x), g 2(x), . gn(x)]k ( ) , where y = gp(x) is the explicit solution of the equation,

fp(x, y) = 0

Again, an example will clarify the statement of the theorem.

EXAMPLE. Consider the equation,

F(x, y) = [(-x+y, -x+2y -2)+, x+y+l] + = 0

Note first that all of the coefficients of y are of the same sign, so that condition 2 of

theorem 7 is satisfied if we attempt to solve for y. However, the coefficients of x are

not of the same sign, so that difficulty should be anticipated in attempting to solve

explicitly for x. The problem is clarified by reference to Fig. 6, which shows a

portion of the surface, z = F(x, y). The intersection of this surface with the x-y plane

is the desired explicit solution. It can be seen from Fig. 6 that this intersection is

single-valued for y as a function of x, but not for x as a function of y. Clearly,

solution for x is impossible, which is the reason why theorem 7 does not apply in this

case.

Now, to solve for y, the equation can first be written as

8



[f 1(x, y), f(x, y)] = 0

where

fl(x, y) = (-x+y, -x+2y -2) +

f2 (x, y) = x+y+l

To apply theorem 7, the equation, fl(x, y) = 0, must first be solved explicitly for

y. A preliminary application of theorem 7 performs this operation, giving

y = (x, x+2 -) = gl(x)

For the equation, f2 (x,y) = 0,

y = -x -1 = g2 (X)

Thus the explicit solution for y is

y = G(x) = [(x, 2-) , -x -1+

From the foregoing example, a corollary to theorem 7, which applies only to

piecewise-linear functions, is readily deduced.

COROLLARY. The implicit equation,

F(x, y) = (al+blX+ClY, a 2 +b 2x+c 2 y ... , an+bnX+cnY) += 0

is solvable explicitly for y as a function of x, if and only if all of the cp' s are nonzero

and of the same sign.

Theorems 6 and 7 require strict monotonicity and continuity. However, in many

analysis and synthesis problems we deal with monotonic functions that do not fulfill

the conditions of being strictly monotonic and continuous. A simple example of this is

the voltage-current characteristic of an ideal diode, which has one region of zero

slope and another of infinite slope. It is useful to be able to deal analytically with such

functions, and, to this end, the two following functions will be defined.

DEFINITION 8. The function, y = 0(x), (read zero of x) is defined as

y = lim() = 0 (for all x)
n- oo

DEFINITION 9. The function, y = oo(x), (read infinity of x) is defined as

+oao x>O

y = lim (nx) = 0 x = 0
n- - x<0ooa x<0

9
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These two functions were defined by a limiting process rather than by writing the

limiting values directly, because it is their behavior for very large but finite n which

is of interest. A function that is constant over a region, or has infinite slope, is

merely an idealization of a function derived from a physical problem, which is nearly

constant or has a very large slope. For example, the characteristic of the ideal diode

that has just been mentioned is actually an idealization of a physical diode which has a

very high forward conductance and back resistance.

Thus, the two functions just defined can be used to represent idealized functions of

zero or infinite slope, if we always keep in mind that they will be treated in the

algebraic manipulations as if n were very large but finite. One consequence of this is

that, for any finite n, they are inverses, although the two functions are not inverses

in the limit. They will be treated as inverses in the discussion that follows, and

functions containing them will be treated as if they were strictly monotonic and con-

tinuous. Some of their properties are:

1. O(X) = l(x)

2. (x) = o- (x)

3. O(x) + f(x) = f(x) (for any f)

FOO(x) x 0

4. oo(x) + f(x) = I

L f(x) x=0

EXAMPLE. The impedance of the voltage source of Fig. 7 is

e = z(i) = V

Its admittance is

i = y(e) = z-l(e)

But

10



z(i) = V = V + 0(i) = e

0(i)= e - V

i = oo(e-V)

Note that the function, 0(i) was added to V rather than subtracted, because the ideal

voltage source is actually an approximation of a source with a finite, positive resistance.

As a result, the admittance function shows that, if e becomes slightly greater than V,

a large positive current will flow, which is in keeping with the physics of the problem.

On the other hand, if 0(i) had been subtracted (or, equivalently, added to the other side

of the equation), the admittance function would be i = oo(V-e), indicating a large

negative current when e is slightly greater than V, a characteristic of a source with a

small negative resistance. Thus, when using these two functions it is wise to make

sure that the chosen function corresponds to the actual physical situation.

2.3 SYMBOLIC REPRESENTATION OF PIECEWISE-LINEAR FUNCTIONS

In the previous section the monotonic nature of the functions under discussion

played an important role. In the case of functions which are everywhere differentiable

(piecewise-linear functions are not), this property is associated with the sign of the

derivative. Another important property, which plays a vital part in synthesis pro-

cedures, is the convexity or concavity of a function. The concept of convex and con-

cave functions (not to be confused with convex sets) was originally developed by

Jensen (10) and his definitions will be used here. However, his convention regarding

convexity and concavity will be reversed to correspond with our intuitive concepts of

convex and concave shapes.

DEFINITION 10.

(a) For functions of a single variable, a function, f(x), is convex (concave), if

x1 + X2 f(x 1) + f(x2 )
f( 2 ) ( ) z

for all xl and x2.

(b) For functions of several variables, a function, f(xl, x2 . ., n), is convex

(concave) if

f(Pl) + f(P 2 )
f(P 3 ) >- 2

where P1 and P2 are any two points in the independent-variable space, and p3 is the

midpoint of the chord joining them.

If a function of a single variable is everywhere twice differentiable and its second

derivative is always non-negative (nonpositive) the function is concave (convex).

Although this test cannot be applied to piecewise-linear functions, the convexity or

concavity of a piecewise-linear function or local regions of the function can be

11
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determined in an analogous manner by examination of its breakpoints. A breakpoint

may be classed as convex (concave) if the slope of the function decreases (increases)

in passing through the breakpoint from left to right. Breaklines on piecewise-linear

surfaces can be classified in a similar manner: a ridge type of intersection like the

peak of a sloping roof being convex, and a trough or valley type of intersection being

concave. A piecewise-linear function, all of whose breakpoints or lines are convex

(concave), will be called strictly convex (concave).

The examples of section 2. 1 give an indication of the role that the classifications

of the breakpoints play in determining the symbolic representation of the function.

Each convex (concave) breakpoint must be associated with a -(4 +) transformation.

Thus, the strictly convex function of Fig. 1 was represented by a single 4- -transformed

vector. The function of Fig. 2, possessing both types of breakpoints, required

two cascaded transformations. It would be convenient if the classifications of the

breakpoints were enough to prescribe the symbolic representation of the function.

Unfortunately, this is usually not the case. The classifications of the breakpoints

prescribe the kinds of transformations which are required but they do not indicate the

order in which they must occur. Since it has already been pointed out that the symbolic

representation is not unique, we should not be surprised that the order of the trans-

formations is not specified. It will be shown in the following discussion that the

relative magnitudes of the slopes and intercepts of the function are the factors that

decide the order of the transformations.

12
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As a point of departure for rendering arbitrary functions into symbolism, a list of

several basic algebraic forms is useful.

1. The Simple Form. This is merely a single transformed vector, a . This

form is capable of representing any strictly convex or concave piecewise-linear

function of any number of variables.

2. The Cascade Form. This is the simplest form which is capable of representing

functions that have both types of breakpoints. Its general structure is

(a4 ,p) , , ) , ..., )

where each element of each vector is a linear function. This form is clearly nonre-

ducible to any simpler form because of the alternation of the signs of the transfor-

mations.

EXAMPLE. The function of Fig. 8a is represented as

Y = (y1, Y2, Y3) + , Y4)q - Y5)+

where each yn is of the form, an+bnx. To illustrate the effects of the magnitudes of

slopes and intercepts on this function, let us change the slope of the last segment, y5 ,

as in Fig. 8b. In the original function, the extension of y5 beyond its breakpoint lay

below the rest of the function. Now, however, its extension intersects the rest of the

function somewhere along Y2 . The above representation is, therefore, incorrect for

the function of Fig. 8b, since it leads to a spurious intersection. In order to find an

appropriate representation of the new function, we must go to a more general form.

3. The Cascade-Parallel Form. The structure of this form is best described by

an iterative process. Starting from the outermost transformation and working inward,

we see a single transformed vector, a . The elements of a are also transformed

vectors, p1', P2c .. . DP.n4:; the elements of the 's are in turn transformed vectors,

and so forth. Again, the alternation of the signs of the transformations indicates that

this form is nonreducible. Figure 9 is a graphical illustration of the general cascade-

parallel form. Each vertical line in the diagram indicates a transformed vector. The

type of transformation is indicated at the head of each column. The horizontal lines

joined by each vertical line represent the elements of that particular vector.

Just as the cascade form includes the simple form as a special case, the cascade-

parallel form includes all other forms, and thus it is the most general representation

of a piecewise-linear function, subject to the qualification that a function which is the

sum of several piecewise-linear functions is certainly not cascade-parallel. However,

such a function can always be rearranged into a cascade-parallel form through the

application of the theorems of section 2. 2.

EXAMPLE. Consider the function, y = (Y1l Y2) q+ + (Y3 , Y4 ) ' -

The following procedure converts it to cascade-parallel form:

13



Y=(Yy1 y2)0+ [(Y3,Y4 >J r ) + (Theorem 3)

= (YlY2)( [(Y 3 Y}, Y)] (Theorem 4)

= [yi+(Y3,Y 4 )r Y4) 2 +(y 3 , Y4 )] (Definition 4)

= [(yl) + (y 3, Y 4 )K,' (Y2 )17 + (Y3 y4) ] (Theorem 3)

{ [(yl)(y 3' Y 4)] cV, [(YZ)(Y 3) Y4 )] y} (Theorem 4)

[(yl+y 3, yl+Y 4)
- , (YZ2 Y3' Y2+y 4 )]+ (Definition 4)

Although six steps were necessary to perform this conversion, such operations can

be performed by inspection after some facility in handling the algebra is developed.

This conversion operation occurs quite often in analysis, since an analysis problem

often calls for addition of two or more piecewise-linear functions followed by some

other operation such as inversion or implicit equation solution. The form of the various

theorems makes them applicable to functions only in the cascade-parallel form.

Therefore, consolidation to this form is often required before the analysis can proceed.

In the applications to analysis in Section III, several of the intermediate steps in these

operations will often be omitted.

For an additional example of an application of the cascade-parallel form, let us

return to the function of Fig. 8b. A valid, symbolic representation can now be pre-

sented in the form,

Y= [(yY 2, Y3) + (Y4 y)+] -

No great difficulty should be experienced in finding a convenient cascade-parallel

representation for any reasonable piecewise-linear function. In fact, it requires con-

siderable ingenuity to construct a function for which it is difficult to find such a rep-

resentation. In the unusual cases, it is always possible to utilize the methods that will

be discussed in Section V, which yield representations as sums of simple piecewise-

linear functions. By the methods of the first example of the cascade-parallel form,

these sums can be converted to cascade-parallel form.

The definitions, theorems, and descriptions of the various forms of representation

of piecewise-linear functions constitute the basis for the applications to analysis and

synthesis set forth in the succeeding sections. Although these applications take many

diverse forms, it should be kept in mind that they all stem either directly or indirectly

14
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Fig. 10. Elements of a diode Fig. 11. Piecewise-linear triode
network. characteristics.

from the algebra of inequalities, or more specifically, from the p4+ and p- transfor-

mations.

III. APPLICATIONS TO ANALYSIS

3.1 SYMBOLIC DESCRIPTION OF NETWORK ELEMENTS

As a prerequisite to the application of the algebra of inequalities to network anal-

ysis, the network elements must be approximated piecewise-linearly and then rep-

resented algebraically. In this section some typical network elements will be considered.

These examples are presented for two purposes: 1. many of the elements will be used

in the applications to follow, and 2. the development of the algebraic expressions

illustrates the general method of describing any network device.

a. Elements of a Diode Network

Of all the elements of a diode network, constant sources, resistances and diodes,

only resistances have impedances that are odd functions of current, i.e., z(i) = -z(-i).

This fact makes it essential to establish a reference convention for defining their

driving-point functions. This convention is indicated in connection with the first

element in Fig. 10. Impedance and admittance functions are given for each ele-

ment in both possible orientations to emphasize the nonsymmetric nature of the

functions.

15
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b. The Vacuum Tube

Undoubtedly, the most common nonlinear element appearing in electrical engineering

problems is the vacuum tube. The crudest and most widely used approximation of the

vacuum tube is the linear incremental model, derived from the second term of the

Taylor series expansion of the tube characteristics about the quiescent operating point.

Naturally, this model is valid for small-signal behavior only. A more refined approxi-

mation, which is usually acceptable for large signals, is the piecewise-linear represen-

tation of the tube characteristics. (In this case a more descriptive term would be

" piecewise-planar," rather than piecewise-linear, since functions of two independent

variables are being considered.) A procedure for handling vacuum tubes, or, more

generally, multiterminal devices, is illustrated here with a triode.

Figure 1 la is a plot of the plate characteristics of a triode that is approximated as

piecewise-linear. Figure lb shows these same characteristics in three dimensions.

The surface describing the behavior of the tube consists of three intersecting planes:

(a) ib = I (eg + eb) (Normal operating region)

(b) ib = 0 (Cutoff)

(c) ib = r1 eb (Saturation) (r<<rp)

It can be observed from Fig. 1 lb that planes (a) and (c) intersect in a convex breakline

and that both these planes intersect the zero plane in concave breaklines. Thus, the

plate current may be expressed in the cascade form as

i b (p e + e - eb) ] 0
b Lr g r b' r b

Viewing the triode from the grid, it is reasonable, for most purposes, to ignore

the plate-to-grid transconductance, assuming the grid current to be independent of

plate voltage, and to neglect grid current for negative grid-to-cathode voltages. The

resultant expression for grid current is,

i = (0, rg e )g+
g rg g

These two piecewise-linear functional relationships completely define the behavior

of the tube as it affects its associated circuitry. In any problem involving a piecewise-

linear triode, these equations can be combined with the equations that describe the

external circuit and the combination can be solved simultaneously.

3.2 SERIES-PARALLEL NETWORKS

One important class of analysis problems is the evaluation of driving-point or

16
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Fig. 12. General ladder network. Fig. 13. Diode ladder network.

Fig. 14. Preliminary driving- Fig. 15. Driving-point
point impedance of ladder. impedance of ladder.

transfer functions of networks containing two-terminal piecewise-linear elements. Such

problems can be attacked in two different ways: 1. by combining the impedance and

admittance functions of the individual elements; and 2. by writing loop or node equations

for the network and solving them simultaneously. The first method is limited in appli-

cation to series-parallel networks. To illustrate method 1, the driving-point impedance

of a series-parallel diode network will be calculated in this section. Method 2 will be

illustrated in subsequent sections.

As an example of a series-parallel network, consider the ladder network of Fig. 12.

(For rigorous definitions of series-parallel graphs, see Appendix II. ) For the moment,

let us assume that the elements can have any type of nonlinear impedance functions so

long as they are monotonically increasing (in order to ensure the existence of corres-

ponding admittance functions, and the stability of the network). The driving-point

impedance of this network can be found by utilizing techniques of impedance and admit-

tance combination which are exactly analogous to those used for linear networks, that

is, impedance functions of elements appearing in series are added, and admittance

functions of elements appearing in parallel are added. The addition is accomplished

through the application of the vector addition theorem and the procedure of section 2.3.

Impedances are converted to admittances and vice versa by using the inversion

theorem. The impedance of a ladder network can be found by alternate additions and

inversions, starting from the end opposite the driving point.

Thus, for the network of Fig. 12, z a and zb are combined to form

17
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Zl(i) = Za(i) + Zb(i)

It should be observed that the impedances can be combined in this manner because the

reference arrows associated with the two elements point in the same direction. If box

(b) were inserted into the network with its connections reversed, then the expression

would be

Zl(i) = a(i) - Zb(-i)

This illustration again brings out the necessity of assigning reference directions when

calculating impedances of nonlinear networks. If zb were a linear passive element, it

would not make any difference which expression was used, since

Zb(i) = - Zb(-i)

The next step is to combine Zl(i) with zc(i). We must, therefore, add the inverses of

these two functions in order to obtain

Y2 (e) = Yl(e) + yc(e)

where Y1 and Yc are the inverses of Z 1 and z Then Y2 is inverted and added to Zd,

and the cycle is repeated on the next portion of the ladder.

To illustrate this method more explicitly, let us refer to Fig. 13, which is part of

the ladder of Fig. 12, with diode networks inserted in the various boxes. With a little

practice, the expression for the impedance or admittance of each box can be written by

inspection. However, for the sake of clarity, almost every step in the derivation of the

driving-point impedance will be written explicitly. Starting from the right,

i = Ya(e) = + [(e), ] + (2)+ + [ (e), O] (Theorem 3)

i ={O[oo(e),O} 0 + (Theorem 4)

i = [o(e), 2e] + (Definition 4)

e = za(i) = (0, 2i)b- (Theorem 6)

By using the same technique, or by inspection, we obtain

zb(i) = (0, 4i - 12) +

zc(i) = i

Zd(i) = (i, 2)g-

Combining z and zb yields

18



Zl(i) = Za(i) + Zb(i) = (0, i)p- + (0, 4i-12) + = [(0, 2i)c-] + + (0, 4i- 12)+

(Theorem 3)

Zl(i) = [(0, Zi)+-((0, 4i-12)] +

Zl(i) = [(0, 2i)-, 4i-12+(0, 2i)-] + =

(Theorem 4)

[(0, 2i)b-, (4i-12, 6i-12)b-] +

(Definition 4, Theorems
3, 4, Definition 4)

Part of this function is superfluous, as we can see by drawing a sketch of the expression

(see Fig. 14). It can be simplified to

Zl(i) = [(0, 2i)-, 4i-12] +

Inverting Z 1 yields

Y1 (e) {[oo(e), 2]ci+, e } 4 (Theorem 6)

Combining Y 1 and Yc yields

Y 2 (e) = e + a - = (e(a)4-

5e+34-Y2 (e) = e + [oo(e), e + 3} 

Y2 (e) = {[oo(e), e] V e + 3 

(Theorems 3, 4)

(Definition 4)

(Theorems 3,
Definition 4)

Inverting Y2 yields

Z 2 (i) = [(0, - i)4r, -- i - - = + (Theorem 6)

Combining Z2 and zd yields

ein = Zin(i) = d(i) + Z2(i) = (i, 2)4- + B + = [(i, 2)+-(O ] 
+

(Theorems 3, 4)

2 4 - T +(i, 2(-1
ein = (i, 2)4 +-+ (0, 3 i)- 4 5 + 2 

ein = (i2, i, 2 i + 2)-, (9 i- 5, 5 i -)] +

(Definition 4)

(Theorems 3, 4,
Definition 4)
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Fig. 16. Bridge diode network. Fig. 17. Driving-point admittance
of bridge.

This impedance function is plotted in Fig. 15. It can be seen from the figure that

some of the terms in the above expression for Zin(i) are superfluous. An alternative

form for expressing Zin' without the superfluous terms, is

Zin(i ) = i, i, (, i )c+ a-

It should be noted that familiarity with the algebra enables one to skip many of the

steps listed in the above derivation, so that the technique is not as cumbersome in

practice as it might at first appear from the illustrative example. The frequent use of

vector addition in the derivation often introduced superfluous terms, since the vector

sum always contains a number of terms equal to the product of the number of terms in

each of the summands. These extra terms are not incorrect, but their presence need-

lessly complicates the algebra. Therefore, the superfluous terms were eliminated as

quickly as they occurred by the artifice of sketching the function and then rewriting the

functional relationship in a more efficient form. Generally, if superfluous terms are

not removed, the method of impedance combination will result in an expression con-

taining 2n elements, where n is the number of diodes in the network. If the values of the

network parameters are given only in literal form, we cannot tell from the expression

which elements are redundant. For different combinations of parameter values, dif-

ferent elements become redundant. Thus, there is no redundancy in the original literal

expression; the redundancies are the result of particular combinations of values of

voltages, currents, and resistances.

A further note in reference to series-parallel networks is in order. The method just

illustrated can be applied equally well to transfer ratios or impedances. For example,

the transfer ratio for the network of Fig. 12 could be calculated by assuming the output

voltage, e o , across branch a, and then working back to the driving point, adding and

inverting impedance and admittance functions, until the driving-point voltage is obtained

as a function of the assumed e. The desired transfer ratio is then obtained by inverting

this function. It happens that this inversion is always possible in a series-parallel

20



diode network that contains no control sources.

3.3 NON-SERIES PARALLEL NETWORKS

a. Bridge Diode Network

Consider the network of Fig. 16, a bridge containing two ideal diodes. The driving-

point admittance looking into branch a is to be calculated. In this case, the method of

impedance combination will not suffice, since the elements do not appear in series and

parallel combinations. If this were a linear network, two alternative methods of solving

the problem would be possible: reduce the network to a series-parallel form by a

succession of Y-A transformations; or write loop or node equations for the network and

solve them simultaneously. Lacking a convenient method of extending the Y-A trans-

formation to nonlinear networks, we must use the second alternative. The general

method is to write an independent set of equations that describe the system and solve

these equations through direct substitution, utilizing the implicit equation theorem.

Unfortunately, direct substitution appears to be the only method available for solving

simultaneous piecewise-linear equations. Matrix methods and other linear techniques

are not generally valid in this situation.

Referring to Fig. 16, we can write the three following node equations:

e - e
2 + i + i = 0 (1)

e -2 3 e 2
i 2 +e - e 1 or e = 2 - 2 (2)

e - e + (-el) + i = 0 = e - 2e1 + i 1 (3)

The branch currents, i and i2, can be expressed in terms of the admittance

functions of their branches, as follows:

e -e 
i = Yl(e 1 e 2 ) = ( 61 0) -

i 2 = y(e2) = [(e 2 -1), 0] 

Now, substituting the above expressions in Eq. 1, we obtain

e2 O )- + o(e 1 0) + [ (e 2-1), + =

22
[o(e 2-1), 2 - + (26 )] = 0 (Theorems 3, 4, Definition 4)

[(e2-1)' ( 3 - 6 2' 2 (Theorems 3, 4, Definition 4)
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e2 = 1, (e4 + , e)+ j (Theorem 7)

Substituting the expressions for the branch currents in Eq. 3, we obtain

2e1 = e + i = e + ( 6 ))

Substituting Eq. 2 in Eq. 4, we obtain

e2= [1, ( e

1

e2 i e)+]
- 4 e ppj

(Theorems 3, 4, Definition 4)

e 2 = [1, (e - i, e)C+] _ - (1, '1 (+)m ) (Theorem 7) (6)

Substituting Eq. 2 in Eq. 5,

e2 1 3e e2 i) 2 ]3e - e 2 - 2i= e + °22 ~ ~~~ 6(---

( e -4 e + 1 i, e2 + i - 2e)- = 0

27i = ( 2 e -
15 1 +
-e 2 e -- 2)

(Theorems 3, 4, Definition 4)

(Theorem 7) (7)

Substituting Eq. 6 in Eq. 7, we obtain

e 215 [1, +]
e - & []

i 2e +
26 2' 2)+]+} '

(Theorem 2)

15 27 15 5 . 27
26' (26 26 39 26

- 6 e)+] )+,

1 1 i(e - e+ 9 e -- e))] + +2 I j (Theorems 3, 4, Definition 4)
(8)

By theorem 5, the +' s appearing inside the braces can be omitted. Then, adding -i

to both sides yields

27 15 6 34 6 -1 1 8 =
26 -6 - i, ( e-39 -- i,1 e - i)+-, e - 2 i, ( e - i, e i)+-] +

(Theorems 5, 3, 4, Definition 4)

i = [ 27 15 9 6 1 9 e, +
[26 17 13 2)- e-2 16 2 I! 

(Theorem 7) (9)

This is an expression for the driving-point admittance of the bridge circuit. From its
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sketch (Fig. 17), we can see that some terms are superfluous. A more concise equivalent

expression is

27 15 1 9e e ,- +i 26 e e 2' (17' 2] 

b. Triode Feedback Amplifier

The previous section demonstrated that networks of two-terminal, piecewise-linear

elements can be analyzed by solving sets of simultaneous equations, whether they are

series-parallel or not. In this section it will be shown that these identical techniques

are also applicable to networks that contain multiterminal elements, such as vacuum

tubes, transistors, and so forth.

Of\^ ~~~~~~~eb

300 

100 2
i \ 3 3 i

I I \

200
SATURATION -

e;
-230 -100 0 45

Fig. 18. Triode feedback amplifier. Fig. 19. Transfer function of amplifier.

The circuit of Fig. 18 serves as an illustrative example. In this simple, triode,

negative-feedback amplifier, it will be assumed that the tube can be approximated

piecewise-linearly by characteristics of the form of Fig. 11. The following numerical

values will be assigned to the tube parameters:

r = 5000 ohms

t, = 20

r = 100 ohms
s

r = 500, 000 ohms
g

(The last value is an unrealistic one; it was chosen to make the problem more

interesting. ) Substituting these values in the algebraic expressions for the triode

characteristics given in section 3. la, we obtain

0 e ·e (10)
i 20 e2 + b, b)- 0
b 5 g 5000 100 

i (, eg )+ (g 500,000

23

Iv
V



The transfer function eb = f(ei) will be determined as follows: First, assuming the
grid circuit to be a negligible load on the plate circuit, we write node equations about

node e and eb:

ZOO-eb -i 0 (12)
5000 b

e i - eg eb - eg eg
6 + 6 - -i :10 + o6 0 g o6

Multiplying Eq. 12 by 5000 and substituting Eq. 10 in it, we obtain

200-eb 5000- eb 5000+ (5 -0- eg 5000

Rearranging yields

200 - eb + [(-20eg- eb, - 50eb)+, = (Theorem 2)

[(200- 2Oeg - 2eb, 200 - 51eb)+ , 200-eb] = 0

(13)

(14)

(Theorems 3, 4, Definition 4)

Multiplying Eq. 13 by 106 and substituting Eq. 11 in it, we obtain

6 +eeg )+
e i + eb - 3eg - 10 (0, 500, = 0

1 g 10 (~0, , 0 =0

e i + eb -3eg +(0, - 2eg))= 0

(e i + eb - 3eg, e i + e b - 5eg) = 

Solving for eg, we obtain

e eb e eb
eg (3 3 ' 5 +5 )

(Theorem 2)

(Theorems 3, 4, Definition 4)

(Theorem 7) (15)

Substitution of Eq. 15 in Eq. 14 yields

{[200 - 20( e. e b ei e b3 3 ' 5 5 W~-2 b

200 +i(- 20 20
{[ ( 3 i 3 eb, 4e i - 4eb) +

{[(20 - e20 26 2 6eb)+,(200 - -3e i - '3e b , 200 - 4ei - 6e 04)

200 - 51eb] +, 200 - eb} = 0

2eb, 200 - 5eb] , 200-eb)q-: 0

(Theorem 2)

200 - 51eb] +, 200 - eb)i = 

(Theorems 3, 4, Definition 4)
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[(200 - 20e i 26eb, 200 - 4e i - 6 eb, 200 - 51eb)+, 200 - eb = 

(Theorem 5)

Solving for eb, we obtain

e b [(300 10 100 2 200 (Theorem 7)
eb L 1 ~ 13 i, 3 - 3 , ) 200 - (Theorem 7)

This is the desired expression for eb in terms of e i . It is plotted in Fig. 19.

The examples set forth in this section illustrate only a few of the representative

problems in the analysis of piecewise-linear systems; they were chosen to illustrate

some of the varied applications of the algebra. It can be applied equally well to many

other types of problem, for example, to mechanical systems that contain stops and

dead space, electrical systems that contain nonlinear elements, such as thyrite resist-

ors which can be approximated as piecewise-linear, and so forth.

The examples were chosen to emphasize the systematic nature of the analysis

procedure. They are not trivial examples; nor are they overly complicated. In many

cases, a person familiar with piecewise-linear circuitry could arrive at the final

answer by a shorter but less systematic route. The algebra was applied to several

different types of problems with the intention of bringing out its universal applicability

and flexibility. Its basic value lies in the fact that once one develops some confidence

in, and facility with, the algebraic manipulations he can attack any piecewise-linear

problem in a systematic rather than an intuitive manner.

IV. GENERAL PROPERTIES OF PIECEWISE-LINEAR NETWORKS

4.1 THE RESISTIVE DIODE NETWORK AS A BASIS FOR SYNTHESIS

In order to evolve a reasonable approach to nonlinear resistive network synthesis,

attention must be restricted to certain more or less artificial " ideal" circuit elements.

The choice of these elements is up to the circuit designer and is somewhat arbitrary.

Factors influencing his choice are:

1. Availability of close approximations of the " ideal" characteristics.

2. Stability and reproducibility of these approximations.

3. Amenability of circuits containing the approximations to synthesis procedures.

4. Economic factors.

5. The size of the class of networks that can be synthesized by using these elements.

An appropriate candidate is the " ideal" diode. If its associated circuitry is

properly designed, almost any inexpensive semiconductor diode will adequately repro-

duce the switching action required of an ideal diode. Here is a device that satisfies

requirements 1 and 4 admirably. Similarly, factor 2 is satisfied, since stability and

reproducibility of the characteristics are unimportant when the elements are used only

as switches.
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Diodes have already been used widely in digital computer logical networks, as well

as in a variety of analog applications, not to mention miscellaneous uses, such as

detectors, gating devices, rectifiers, and so forth - almost anywhere that some sort of

nonlinearity is desired. However, no systematic synthesis procedures have been for-

mulated for resistive diode networks. That diode networks are amenable to simple,

efficient synthesis techniques, and therefore satisfy condition 3, will be shown in

Section V.

As stated previously, the characteristics of a network containing ideal diodes and

linear elements must be piecewise-linear. Thus, selection of the ideal diode as a

building block immediately imposes a restriction to piecewise-linear synthesis rather

than general nonlinear synthesis, just as restriction to lumped R' s, L' s, and C' s

confines us to rational function synthesis in the linear case. Clearly, this restriction

is not particularly serious, since any reasonable function can be adequately approxi-

mated piecewise-linearly. Thus, condition 5 is satisfied.

In the following discussion of driving-point impedances, a network containing only

positive resistors, constant current and voltage sources, and ideal diodes will be con-

sidered, and referred to as a diode network. It will be seen that many of the properties

of such networks are similar to those of linear, lumped, passive networks and that

many of the linear synthesis techniques can be carried over by analogy to the piecewise-

linear case. This analogy should not be taken too seriously, however, since the fact

that superposition has been discarded immediately eliminates the bulk of the linear

techniques. The important analogies are to be found in the structure of the networks and

their qualitative behavior.

In considering transfer function synthesis, the link to linear networks is more ten-

uous and will be virtually discarded. More flexible networks will be employed, which

admit any linear resistive device, active or passive, but still restrict the nonlinear

elements to ideal diodes.

4.2 THEOREMS CONCERNING THE BEHAVIOR OF DIODE NETWORKS

Before proceeding with synthesis techniques, it is well to consider some of the

general properties of the diode network with a view toward utilizing these properties,

or at least setting bounds upon the capabilities of the networks. The theorems that

follow serve as a base from which to proceed. They are of importance in determining

the structure of networks and they also point the way to new and unusual applications of

the diode network. Proofs are presented in Appendix II.

THEOREM 1. A driving-point function containing 2
n -

1 breakpoints requires at least

n diodes for synthesis.

This establishes an extremely optimistic lower bound. This number is far from

sufficient in the majority of cases, as will be shown in the next two theorems. Only in

the cases wherein the successive types of breakpoints (convex or concave) follow special

patterns, and the incremental resistance values fall within certain bounds, can this
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Fig. 20. Arbitrary driving- Fig. 21. Chart of breakpoints.
point impedance.

minimum be attained.

A more stringent lower bound can be determined by the following graphical procedure,

which was suggested by Professor D. A. Huffman. Consider the impedance function of

Fig. 20. Each concave breakpoint indicates that one diode in the network has switched

from closed to open, and vice versa for the convex breakpoints. (It is assumed that only

one diode switches at a time.) If the network contains n diodes, we can represent the

" state" of the network, that is, the condition of each diode, by an n-digit binary number.

Each digit is associated with a particular diode, being a zero when the diode is open and

a one when it is closed. The order in which the concave and convex breakpoints of the

impedance function of Fig. 20 occur will indicate something about the network that is

needed to synthesize it. To keep track of these states it is convenient to make a chart,

as in Fig. 21. The numbered points of Fig. 21 correspond to the numbered regions of

Fig. 20. Starting from region 1, associated with the point at the origin of Fig. 21,

we move one step to the right in passing through a concave breakpoint to the next

region, and one step to the left if the breakpoint is convex. This procedure produces

the chart shown as Fig. 21. Since each step to the right corresponds to the opening of

a diode, and each step to the left, the closing of one, and no state can appear more than

once, all of the points appearing in the same column of the chart correspond to dif-

ferent states with the same number of diodes open and closed, or binary numbers with

the same number of ones and zeros. Also, since each column must have one more

open diode than the one immediately to its left, a chart containing n columns must

correspond to a network containing at least n-l diodes. Thus, the impedance that is

being discussed requires at least three diodes. However, from theorem 1, we also

observe that it requires at least three. The chart also tells us that there must be

enough diodes to provide the required number of states in each column. For example,

if column 3 represents two diodes open, then there must be at least four different ways

of having two diodes open in the network. This is clearly impossible in a network con-

taining only three diodes. In general, the number of different n-digit binary numbers

containing n zeros is the binomial coefficient, (n) . In this case (n)=(2) = 3. Now,

we do not know how many diodes are necessary to synthesize the given function;
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therefore n is unknown. However, a lower bound to n can be determined by picking a

trial n and writing the binomial coefficients associated with it; then sliding this

binomial distribution back and forth until it "fits" over the columns in the chart, that is,

the sum of the states in each column is equal to or less than the binomial coefficient

under that column.

This can be adequately demonstrated with the following example. The column sums

are 2, 3, 4, 2. Now, n = 3 was previously shown to be too small, so we shall try n = 4.

The binomial coefficients are 1, 4, 6, 4, 1. If we try fitting this distribution to the

column sums, the best that can be done is

3 4 2

4 6 4 1

which does not fit over the first column. Going to n = 5, we obtain a successful fit.

2 3 4 2

1 5 10 10 5 1

Thus, the lower bound has been raised from 3 to 5 diodes. A direct consequence of this

procedure is

THEOREM 2. One diode per breakpoint is a necessary and sufficient number to

synthesize any strictly concave or convex driving-point function.

THEOREM 3. One diode per breakpoint is a necessary and sufficient number to

synthesize any driving-point function in a series-parallel development.

This theorem indicates that to approach the lower bounds described previously,

bridge-type networks must be used. (Such networks have been developed in the form of

cascaded lattices. ) The proof of the necessary part of this theorem follows from the

fact that in a series-parallel network (with no negative resistances or control sources),

when the driving-point current or voltage is increased monotonically from - to +oo,

each diode can change state only once. The theorem is interesting because it illustrates

the intimate connection between the topology of the network and its capabilities. Anal-

ogous connections also arise in the linear case. For example, it is impossible to

produce transmission zeros in the right half-plane when a series-parallel network is

used. The connection shows up again in switching circuits, in which a preliminary

design of a combinatorial switching circuit is usually made as a series-parallel devel-

opment. However, modifications are generally made to minimize relay contacts

and these usually lead to non-series parallel networks. This relationship between the

structural form of a network and its electrical behavior appears to be of fundamental

importance.

The sufficiency of theorems 2 and 3 is proved in Section V, in which networks of

this kind are constructed. All the synthesis procedures given there result in series-

parallel developments that use one diode per breakpoint. This may, at first, seem

rather extravagant, considering the lower bound mentioned in theorem 1. However, the
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actual number of diodes required for a given synthesis problem depends so much on the
relative magnitudes of the various incremental resistances, that it is impractical to

determine sufficiency conditions for numbers of diodes less than the number of break-

points of the function. Also, synthesis using non-series parallel networks usually

requires solution of large numbers of simultaneous equations, making it somewhat

cumbersome. Non-series parallel developments appear to be most useful in special

cases, in which a large number of breakpoints are required, and a dramatic saving of

diodes can be made (19).

THEOREM 4. Given a resistive diode network the behavior of which at some arbi-

trary terminal pair is described by e = z(i) or equivalently, i = y(e). If all voltage

sources and all resistances are multiplied by the same positive constant, k, then the

new impedance and admittance functions are,

e = k[z(i)] and i= y-)

Theorem 5 is the dual of theorem 4, and the proof of both of these theorems follows

directly from theorem 2 of Section II (see Appendix II). A useful corollary of these two

theorems follows.

COROLLARY. If all voltage sources and current sources in a given diode network

are multiplied by the same positive constant, k, the resultant impedance and admittance

functions are

e = [z( )

i = k[y(e)]

The corollary is just the result of applying theorems 4 and 5 successively. Since,

in this process, the resistances are all multiplied by a constant, and then the con-

ductances (their reciprocal) are again multiplied by the same constant, the result is a

new network with the sources modified but the resistances unchanged. Since the control

of sources is a common operation in linear networks, while control of resistances is

more difficult, one might expect some applications of the corollary in terms of time-

varying sources. An example follows.

EXAMPLE. Variable admittance function. Consider a resistive diode network whose

admittance function is a piecewise-linear approximation of some analytic nonlinear

function over a given range, for example, the function, i = y(e) f(e) = e3 .

Assuming that all bias voltages are obtained from a common supply, let this supply

voltage be proportional to another independently variable voltage, u. Then, from the

corollary just stated,

i = ku (u = k 2 u >0

Figure 22 shows this function, the approximation being valid in the range e 50,
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3
Fig. 22. The function, i e .

Uu

when u = 50. The family of admittance characteristics demonstrates the effect of vari-

ation of u, but at the same time sharply points up the disadvantages of such a scheme.

It will be observed that as u - 0, the region of valid approximation also goes to zero

because of the crowding of the breakpoints toward the origin. However, the accuracy of

the approximation in this region is commensurately increased. The shaded area in the

figure indicates the region over which the approximation is invalid. Despite this disad-

vantage, such an arrangement affords a simple and economical method of obtaining a

class of admittance functions of two variables over a limited dynamic range. Insertion

of such a device into a suitable high-gain feedback network will convert the admittance

to a transfer function of two voltage variables.

4.3 DUALITY IN NONLINEAR RESISTIVE NETWORKS

The duality principle being considered here applies only to networks representable

by directed line graphs, that is, interconnections of two-terminal elements. Note that

this eliminates consideration of mutual inductance unless it is possible to represent the

coupled coils by an equivalent Tee. Wherever the isolating properties of the mutual

coupling are important, this is clearly impossible.

Ordinarily, the dual of a planar linear network can be obtained quite easily without

carefully considering polarities and directions of elements. This is so because linear

elements (other than sources) have voltage-current characteristics which are odd

functions. In other words, their terminals need not be marked to distinguish one from

the other, since their behavior is identical no matter which terminal is assigned the

positive reference direction. Thus, a network consisting of two-terminal linear
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/, elements other than sources can be repre-

sented by a line graph with nondirected line

segments. Sources require arrows to indi-

7!1' cate their direction because they have

--'-- ./ i-- voltage-current characteristics which are

not odd functions; not because they are

Fig. 23. Reference conventions. active elements. An ideal negative resist-

ance is an active element but it has no

preferred reference direction. In calcu-

lating the duals of networks which contain sources, their directional nature is usually

taken into account by assuming a simple reference convention and following it consist-

ently throughout the calculations. The common conventions still lead to difficulties when

nonlinear networks are considered. The addition to a network of nonlinear elements that

must be represented by directed line segments neccessitates a more careful consid-

eration of polarity and direction. Thus, the first step in applying duality to nonlinear

networks is to obtain a definition that is clear in this regard. A suitable definition

(which does not conflict with the usual definitions for linear networks) is developed in

the following discussion.

Consider a network, N, consisting of interconnected two-terminal resistive elements.

(By a resistive element is meant one whose complete behavior can be described by a

single-valued voltage-current relationship, independent of time. ) Let us examine it by

making "pliers" entries into each branch, and "soldering iron" entries across each

branch. The voltage-current relationship looking into a pliers entry in branch m will

be known as the short-circuit driving-point admittance for branch m, and will be denoted

by i = Ym(e). Similarly, the voltage-current relationship looking into a soldering iron

entry across branch m will be known as the open-circuit driving-point impedance for

branch m, and will be denoted by e = zm(i).

Figure 23a establishes reference polarities relative to the direction of branch m,

for determining Ym' and Fig. 23b establishes the convention for Zm. It should be

observed that this set of conventions was an arbitrary choice; other sets would have

been perfectly acceptable. Now that the conventions have been established, duality can

be defined.

DEFINITION. Given two networks, N and N'; they are mutually dual if and only if:

1. To each branch, m, in N, there corresponds one and only one branch, m', in

N'; and to each branch, n', in N', there corresponds one and only one branch, n, in N.

In other words, the branches of the two networks can be put in one-to-one correspond-

ence.

2. Ym =Zm for all m.

3. z = for all m.

It is clear that this definition implies topological duality as a prerequisite for elec-

trical duality, for example, all branches m, n, p, ... that appear in series around a
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(a)

Fig. 24. Voltage source and its dual. Fig. 25. Diode and its dual.

loop in N must correspond to branches m', n', p', ... across a single node-pair in N',

since m = Yn =p = ... ; therefore, = z =z

The dual of a planar nonlinear network can be constructed in the same manner as

that of a linear network; replacing loops by nodes, and directed branches by their dual

branches, always being careful to observe reference conventions.

As a first step in constructing duals of diode networks the dual of a voltage source,

a current source, and an ideal diode must be determined.

a. Voltage and Current Source Duality

Consider the open-circuited voltage source (branch m) as being shunted by a branch,

n, of infinite resistance (Fig. Z4a). Then,

e = zm(i) = K

i = Ym(e) = 0

e = zn(i) = K

i = Yn(e) = 

A network of two branches, m' and n', must be constructed in such a manner that

i = Ym, (e) = zm(e) = K

e = z(i) = ym(i) = 0

i = Yn, (e) = zn(e) = K

e = zn, (i) = Yn(i) = 0

The circuit of Fig. 24b fits this description and is, therefore, the dual of the circuit

of Fig. 24a. Note that the current source generates a current which flows in the direction

of the branch reference arrow (downward), while the voltage source generates a poten-

tial rise in a direction opposite to that of the reference arrow (upward). This is an

important consequence of the chosen reference convention.

b. Dual of a Diode

Consider the diode of Fig. 25a, shunted by a branch of infinite resistance.

Then,

e= zm(i)= [0, (i)]

i = ym(e) = 

e =Zn(i)= [0, oo(i)]K

i = yn(e) = 0

Therefore, we must construct a two-branch network in such a manner that
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i= Ym, (e) = [0, oo(e)]+

e = Zm (i) = 0

i = yn, (e) = [0, o(e)]+

e = z, (i) = 0

The circuit of Fig. 25b fits this description; hence it is the dual of that of Fig. 25a.

Note that the diode in the dual circuit is pointing in a direction opposite to the branch

reference arrow, while the diode in the original circuit is pointing in the same direction

as its reference arrow. This is a second important consequence of the chosen conven-

tion.

Thus, to summarize the above examples, THE DUAL OF A VOLTAGE SOURCE

IS A CURRENT SOURCE GENERATING A CURRENT IN THE DIRECTION OF THE

POTENTIAL DROP OF THE VOLTAGE SOURCE, and THE DUAL OF A DIODE IS

ANOTHER DIODE POINTING IN THE OPPOSITE DIRECTION. It should be noted that

these rules are a consequence of the chosen convention, and would be different had a

different convention been chosen. Using these rules, we may now proceed to the deter-

mination of the dual of a more general diode network.

c. Dual of a Diode Network

The dual of the bridge network of Fig. 26a will be determined. The procedure is:

1. Assign labels and reference directions to each branch, thus reducing it to a

network of directed line segments.

(a) (c)

(b) (d)

Fig. 26. Construction of the dual of a bridge diode network.
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2. Draw the topological dual of this line graph, using any arbitrary reference con-

vention, such as all branches converging on a node in the original graph will appear

clockwise around a corresponding loop in the dual graph.

3. Insert, in each branch of the dual, a branch that is the dual of the original

branch.

Figure 26 illustrates the procedure. Figure 26a is the original network; Fig. 26b is

the network skeletonized to a line graph; Fig. 26c is the topological dual of that graph;

and Fig. 26d is the dual network. As a check, the loop equations for the dual network

are:

i - i

e 2 + i i
2

i - i + (-il) + el = 0

where

el = z 1 (i 1' i 2 ) = ( 6 ' 0)c

e = z(i 2 ) = [(i 2 1), 0] +

If e and i are interchanged in these equations, we find that they are identical to the node

equations for the network of Fig. 26a. (The original network is the same one used for

illustration in section 3. 3a, and the original node equations appear in that section. )

Therefore, the open-circuit driving-point impedance of this network will be given ana-

lytically by the expression of section 3. 3a for the driving-point admittance of the original

network, and graphically by the plot of Fig. 19 with e and i interchanged in each case.

V. APPLICATIONS TO SYNTHESIS

5.1 INTRODUCTION

As it was stated in Section IV, the synthesis problem will be restricted to piecewise-

linear resistive network synthesis. In the case of driving-point functions, only resistive

diode networks in the strict sense will be considered, but for synthesizing transfer

functions any zero-memory linear elements, such as active summing devices, will be

admitted in conjunction with ideal diodes.

Section 5. 2, covering driving-point synthesis, follows closely the lines of modern

linear network synthesis, and is to a certain extent a classification of that which has

gone before, since many of the network configurations mentioned have been applied in

the past. These are included mainly for the sake of completeness.
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Section 5.3 will cover transfer synthesis and the approximation problem. As we

shall demonstrate, these two problems are intimately related. The general philosophy

of transfer function synthesis expressed in this work is largely influenced by the art of

analog computation. It was the investigation of a method of constructing an analog multi-

plier with diode networks that motivated this exploration of piecewise-linear network

theory. The applications to analysis actually constituted a by-product of the synthesis

techniques. Because of this influence, rather free use is made of active linear elements

and little emphasis is placed upon the linear operations. Also, since generators of arbi-

trary voltage transfer functions of a single input variable have been in fairly common

use, most of the emphasis here is placed upon generators of functions of more than one

input variable. Although there is a great demand in the analog computing field, as well

as in other fields, for such multivariable function generators, these components are very

rare, and they have so far suffered from one or more of the following deficiencies:

1. Small bandwidth;

2. Costly and cumbersome equipment;

3. Setting up the function requires a large investment in time and money;

4. Equipment restricted to certain limited types of functions;

5. Large static or dynamic inaccuracies.

Transfer function synthesis can be resolved into two parts: (a) arbitrary function

synthesis (general-purpose function generation); and (b) particular function synthesis

(special-purpose function generation). While it is desirable that a general-purpose

machine have none of the aforementioned deficiencies, a special-purpose machine might

be perfectly satisfactory even though it possessed deficiencies 3 and 4. Thus, it is

clear that the synthesis techniques should be directed specifically toward these two kinds

of components.

5.2 DRIVING-POINT FUNCTION SYNTHESIS

a. Strictly Convex or Concave Functions

In Section IV it was indicated that one diode per breakpoint is a necessary and suffi-

cient number of diodes to synthesize any strictly convex or concave driving-point func-

tion. The sufficiency of this number is shown here by the construction of several

canonical, or minimum, forms for the realization of such functions. Only monotonically

increasing functions will be considered. This does not restrict the generality of the

synthesis procedures, however, since any function containing regions of negative resist-

ance can be constructed through the series or parallel combination of a monotonically

increasing impedance function with an ideal negative resistance, whose value is equal to

or greater than the value of the greatest negative resistance segment that appears in the

desired function.

A typical concave driving-point admittance function is shown in Fig. 27a. Figure 28a

illustrates a canonical form for realizing any concave driving-point admittance. For
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Fig. 28. Foster canonical forms.
Itl

Fig. 27. Concave driving-point
functions.

monotonically increasing functions, a concave driving-point admittance is equivalent to

a convex driving point impedance. (This statement is only true for increasing functions.)

Inspection of the network indicates that for all applied voltages less than some suffi-

ciently large negative value, all of the diodes will be open and the incremental conductance

of the network will be just go. If the batteries are arranged in order of increasing

voltage (with the exception of VO) as the applied voltage is increased beyond V1, the

incremental conductance will increase by an amount, gl, producing a concave break-

point in the driving-point admittance. Similarly, other concave breakpoints will occur

as the applied voltage reaches each successively higher battery voltage. Clearly, there

will be one breakpoint for each diode and the numbered breakpoint voltages of Fig. 27a

will correspond to the numbered battery voltages in Fig. 28a. The battery voltage, Vo,

corresponds to the VO intercept shown in Fig. 27a. As indicated in the figure, the first
segment may have to be extrapolated beyond the first breakpoint to determine its inter-

cept, and therefore VO may be larger than some of the breakpoint voltages. The various

slopes are given by,

go= G

gl = G1 - Go

g 2
= G2 - G1

gn = Gn - Gn-1
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The g' s refer to the network elements of Fig. 28a. The G' s refer to the slopes of the

function of Fig. 27a. Or generally, gp = AGp, where AGp is the first backward dif-

ference of the G' s.

A typical concave driving-point impedance is shown in Fig. 27b. It is merely the

curve of Fig. 27a with its voltage and current axes interchanged, and therefore,

according to the definitions of Section IV, it is the dual of Fig. 27a. Thus, to realize

this function, we have only to construct the dual of the network of Fig. 28a. This is

shown in Fig. 28b. The duality principle saves a great deal of effort here, since

everything that was said about the network of Fig. 28a can be carried over to its dual,

replacing currents by voltages, conductances by resistances, and so forth. Thus, the

network of Fig. 28b is constructed so that its current sources, I1 , I2, ... , In, corre-

spond to the breakpoints of the desired driving-point impedance, and its resistances,

r l, r2 , . .. , rn , correspond to the first backward differences of the incremental resist-

ances of the desired driving-point impedance.

The structural form of the networks of Fig. 28 bears a marked similarity to the

so-called Foster canonical forms that are used in linear network synthesis for the

construction of arbitrary RL, LC, or RC driving-point functions. They will be referred

to here as Foster forms. These forms are sufficient to synthesize any strictly concave

or convex driving-point function that uses a minimum number of diodes. Note also, that

reversal of the reference directions at the terminals changes the driving-point function

from concave to convex or vice versa. Thus, any one of these forms can be used for

both types of function.

To complete the analogy to linear networks, consider the network of Fig. 29a, and

its dual, shown in Fig. 29b. Assume that all voltage sources in Fig. 29a, except Vo,

are arranged in order of increasing voltage. Therefore, for a sufficiently negative

value of the input voltage, all diodes are open, and the incremental conductance of the

network is just go. As the applied voltage is increased beyond V1, the incremental

conductance will increase by an amount, gl, producing a concave breakpoint in the

driving-point admittance, and so forth, for higher voltages. Hence, this network

behaves exactly like the network of Fig. 28a,

and the expressions which relate its ele-

ment values to the slopes and breakpoints

of the associated admittance function are

identical to those given for the first Foster

(a) form. This ladder structure will be known

as the first Cauer form, because of its

similarity to the Cauer forms of linear

network theory. The form shown in Fig. 29a

is applicable to concave admittances, or

with its terminals reversed, to concave

Fig. 29. Cauer canonical forms. impedances. Similarly, its dual, the second
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Cauer form, is applicable to concave impedances, or with its terminals reversed, to

concave admittances. The expressions for the network parameters of the dual are, of

course, the duals of the expressions already given. Note that all of the circuits men-

tioned can be synthesized with the use of either voltage or current sources by making

suitable source transformations on the given network forms.

The basic Foster form and its three variations, and the basic Cauer form with its

three variations constitute a total of eight canonical forms available for synthesis of

strictly convex or concave functions. The particular one to be chosen depends upon

practical considerations: e.g., the circuit of Fig. 28a would be convenient if the avail-

able sources had a common ground, or if the diodes had a common cathode or plate.

b. Arbitrary Functions

With the aid of the previously derived canonical forms, a method will now be pre-

sented by which any nondecreasing piecewise-linear driving-point function can be

synthesized with the use of one diode per breakpoint. The method utilizes a ladder

development and produces a minimum form when only series-parallel configurations

are considered.

Consider the general impedance function pictured in Fig. 30a. The synthesis

procedure is initiated by partitioning the function into strictly convex Qr concave

sections. The partitions are indicated in the figure by breaks in the function. The

points of partition are located by proceeding along the function from left to right and

observing the types of breakpoints encountered. The function is partitioned between

each pair of breakpoints that differ in direction, i.e., between a convex breakpoint

followed by a concave breakpoint, or vice versa. Some partitions may contain only

one breakpoint, as in the fourth partition of Fig. 30a.

The next step in the procedure is to form the auxiliary impedance functions,

Z (i), Z 2 (i) .. ... Zn(i), in which Zp(i) equals the original function, z(i), over the pth

partition and is linear elsewhere, its linear portions being extrapolations of the first

and last linear segments of the pth partition. The first four Z 's are shown in
p

Fig. 30b-e. Note that all the odd-numbered Z' s are strictly concave and the even ones

strictly convex. (Of course, if the function had started with a convex partition, the

odd-numbered Z' s would have been convex and the even ones concave.) The inverse

of an impedance function, Zp(i), will be denoted by Yp(e).

Next, the Z-functions must be modified as follows:

Zl(i) = Zl(i)

y 2 (e) = Y 2 (e) - (I 2 + G 2 e)

z 3 (i) = Z 3 (i) - (V 3 + R 3 i)

Y4 (e) = Y4 (e) - (14 + G4 e)

z5 (i) = Z5 (i) - (V 5 + R 5 i)
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Fig. 30. An arbitrary function and
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The I' s, V' s, G' s, and R' s are slopes and breakpoint coordinates, as indicated in

Fig. 30a. Note that each concave Zp(i) (except the first) has a linear term subtracted

from it, whose slope is equal to the slope of the first segment of Z p. Thus, the

resultant zp(i) is still nondecreasing and concave, and therefore realizable by the

methods of section 5.2a. Each convex Zp is first inverted to form a concave Yp(e) from

which is subtracted a linear term. Again the slope of the linear term equals the slope

of the first segment of Yp, and therefore the resultant yp(e) is realizable by the methods

of section 5.2a. The first four zp' s for the function of Fig. 30a are plotted in Fig. 30f-i

for comparison with the unmodified Z p' s. It will be observed that the modification per-

forms two functions; first, it reduces the slopes of each segment of the concave impe-

dance or admittance functions until the first segment of each has zero slope; second, it

displaces each function so that the impedance functions (except the first) each have a

region of zero voltage and the admittance functions each have a region of zero current.

These "zero" regions make possible the combination of the z' s to form the over-all

function, z(i).

The complete function is formed in the following manner. First, each of the z ' s
P

is synthesized with the use of any one of the Foster or Cauer forms. Then,

1. Y + Y2 = Y1 2 is formed (Parallel addition)

2. z3 + z12 = z123 is formed (Series addition)

3. Y4 + Y1 2 3 = Y1 2 3 4 is formed (Parallel addition)

4. .

Z n + 12.. .n-1 = 12.. .n = z(i) is formed

This process can be clarified by description and reference to the ladder development

of Fig. 31. To build up the total function from the left, Y1 and Y2 are added, that is,

the'impedances, z1 and z 2, are added "current-wise," so that the networks realizing

them appear in parallel in the over-all network. This is the beginning of the ladder

network of Fig. 31. The first series branch is z and z 2 is the first shunt branch.

Examination of the method by which they were constructed indicates that the expression,

Y1 + Y2 = Y1 2 ' is identical to the desired function, z(i), over the first two partitions

Fig. 31. Ladder development for an arbitrary driving-point function.
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and is a linear extrapolation of the function beyond the first two partitions.

The next step involves adding the network realizing Y12 to the network that realizes

z3, "voltage-wise" (in series), forming the function, z 3 + z12 = z123. Thus, z 3

appears as the next series branch in the ladder. Now, the resultant network, z1 2 3 ,

realizes the desired function over the first three partitions. Next, a parallel addition

is performed and the process is continued until the complete function is realized. Note

that the series branches of the ladder are each strictly concave impedances, while the

shunt branches are strictly convex. If the given function had started with a convex

partition, the ladder would have begun with a shunt rather than a series branch.

This completes the discussion of the driving-point function problem. Regarding

minimization of diodes, at first, one might think that a non-series parallel development

of the function of Fig. 30 would result in a saving of diodes. This is not the case, how-

ever. Since there is no quantitative information available about the actual values of the

slopes and breakpoints of the function (other than the convexity or concavity of the

breakpoints), little progress can be made toward reducing the number of diodes. Such

a reduction always requires a certain amount of information regarding the values of

these quantities.

5.3 TRANSFER FUNCTION SYNTHESIS

a. General Purpose Function Generation

A general purpose analog function generator can be defined roughly as a network

(or system) with some adjustable parameters that can be controlled or "programmed"

to produce one of an infinite variety of functions of its input voltage variables as an

output voltage. Thus, it is a flexible piece of equipment which has an infinite repertoire

of possible output functions that may be called upon by convenient adjustments. A probe

riding on a three-dimensional cam is an example of such a device. In this case, the

adjustable parameter is the shape of the cam, a new cam being inserted in the machine

for each different function. A special-purpose device, on the other hand, is inflexible.

It is designed for the purpose of producing only one type of functional output, and, in

general, has no external adjustments for modifying this function. An example of such a

machine is a sine potentiometer. Its output is fixed by the construction of the potenti-

ometer card and winding.

Tabulation, Tessellation, and Interpolation

In considering general-purpose generation of functions of n variables,

y = f(xl, x2, . .X., n), some restrictions must be made immediately upon the class of

functions to be produced, in order to bring the problem within the range of possible

solution. We have already restricted the class to piecewise-linear (and for practical

reasons, continuous) functions. However, this still leaves too much freedom. Any
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arbitrary function will, in general, be presented in terms of a finite amount of tabulated

data, and, in general, this will be a regular tabulation, i.e., the points of tabulation

will be regularly spaced throughout the n-dimensional independent variable space. The

most reasonable type of grid of tabulation would be the vertices of a set of n-dimensional

hypercubes. (This is not the only possibility, however.) It is, therefore, reasonable

to propose a machine that will produce a piecewise-linear and a continuous function,

taking on a particular arbitrary value at each point of a hypercubical grid of tabulation.

This machine would have a set of adjustment knobs for the operator, one per tabulated

point, for the purpose of programming any particular function. Since nothing has been

said, so far, about the behavior of the function at nontabulated points, it is necessary

to define some sort of interpolation scheme to prescribe the function at these points.

Consideration of this interpolation scheme is the crucial step in solving the synthesis

problem. That "linear" interpolation cannot, in general, be used, will be made clear

by observing the somewhat surprising fact that linear interpolation, when generalized

to functions of several variables, is a nonlinear operation. Let us examine this opera-

tion for functions of 1, 2, and n variables.

A general linear interpolation formula can be defined as a function of n variables that

is linear in each variable, and takes on an arbitrarily assigned value at each of the 2n

vertices of an n-cube in the independent variable space. (It should be noted that the

space referred to here is the independent variable space. If the dependent variable

were included, the space would be of dimension n + 1. For example, a function of two

variables is often represented as a surface in three-space. However, its independent

variable space is only two-dimensional.)

Applying this definition to a function of one variable, y = f(x), tabulated at all inte-

gral multiples of an interval, A, we have

(Yn+I-Yn) (x - nA)
y(x) = y + n+ - x < (n+l)

where yp is the tabulated value of f(x) at x = pA. This is the widely used linear inter-

polation formula and can be expressed more simply as

y = a + alx

Now consider a function, y = f(xl, x2 ), tabulated at all points, (mA, nA), of a uni-

form square grid of side A. For interpolation throughout any one of these squares, the

function can be put in the form,

y = a + alx1 + a2X2 + a12X1X 2

that is known as a "bilinear" or "double interpolation" formula. Figure 32 shows such

a surface, in which the rulings indicate intersections of the interpolation surface with

planes x1 = constant and x2 = constant. This is one of a class of functions known as

doubly ruled surfaces; it is generated by either of two possible straight lines. As in
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(a)
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Fig. 32. Surface of bilinear

interpolation.

( b)

Fig. 33. Two simplicial subdivisions
of the plane.

this case, these surfaces are generally nonplanar or "warped." Clearly, the presence

of the product term in the bilinear formula makes it unacceptable in a system that is

restricted to piecewise-linear functions. Generalization to n variables produces addi-

tional product terms.

Because of the limitation to piecewise-linear elements, none of the aforementioned

interpolation formulas are usable except the formula for functions of a single variable.

The fact that the linear interpolation leads to an acceptable piecewise-linear function in

this special case is doubtless an important reason why much work has been done in con-

structing these functions with the use of diode networks but almost no generalizations

to more variables have been attempted.

Let us then consider a usable type of interpolation function, y = f(xl, x2 .. ''' Xn)'

The restrictions that it must satisfy are:

1. f must be a piecewise-linear and continuous function, defined over the interior

and boundaries of an n-cube;

2. f must assume some arbitrary value at each of the 2n vertices of this n-cube;

3. f must not have any maxima or minima anywhere in the interior of the cube.

(This restriction is meant to rule out any functions which obviously do not perform a

good interpolation, although they still allow freedom of choice of the actual function. )

At this point, it is appropriate to give special attention to functions of a small

number of variables, starting with two, and gradually generalize to the n-variable case.

This is done mainly for the sake of clarity, for the important points are brought out

best by geometrical visualization of particular examples. Visualization in more than

three dimensions is close to impossible. Furthermore, the two-variable case is by far

the most appealing in the practical sense; for this reason, greater emphasis will be
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placed on it in the following sections.

Consideration of the two-variable case

provides a clue to the form that the inter-

polation function must take. The problem

here is to construct a continuous surface

that consists of segments of planes passing

through each point of tabulation with the

correct ordinate. The simlest interoola-

tion function in this case would be a plane,
Fig. 34. Piecewise-linear surface.

and, at first glance, this might look like

the logical extension of the straight-line

interpolation for functions of a single vari-

able. However, the grid of tabulation consists of squares, and it is obviously impos-

sible, in general, to pass a plane through four ordinates corresponding to the four ver-

tices of a square. The most efficient way out of this dilemma is to divide each square

of tabulation into two triangles by drawing one diagonal; then pass a triangular segment

of a plane through the ordinates centered over the vertices of each triangle. This pro-

duces a piecewise-linear, continuous function which takes on the prescribed values at

the tabulated points, and approximates "bilinear" interpolation. Figure 33 shows a

portion of the independent-variable plane that is divided into triangles and uses two

different systems: (a) with all diagonals drawn upward and to the right, using lines of

the form, x1 - x 2 + k = 0; (b) with directions of the diagonals alternated to form a

crisscross pattern, using lines of the form, xl ± x 2 + k = 0. Although these two sys-

tematic methods of subdivision are most convenient as a basis for synthesis, there is

no reason why any other scheme could not have been used, such as drawing either

diagonal of each square at random. Figure 34 shows a portion of a surface that per-

forms piecewise-linear interpolation among several arbitrary points. The function is

specified arbitrarily at the tabulated points and is linear (or planar) over each trian-

gular section of the independent-variable plane; the type (a) subdivision has been used

as a basis for this example. The jagged appearance of the function is due to the fact

that widely different values of neighboring ordinates were used in the example to illus-

trate the piecewise-linear nature of the function. In practice, neighboring points would

be more nearly equal in height.

Before passing from the two-variable case to higher-order functions, it is conven-

ient to pause and review some of the definitions and terminology that are necessary in

dealing with n-dimensional geometrical problems.

1. Linear independence. A set of points in n-space is linearly independent if no

subset of n + 1 of these points lies in a hyperspace of dimension n - 1. For example,

four points in three-dimensional space are linearly independent if they are not all

coplanar.

2. Polytope. The generic term in the series: polygon, polyhedron,.... A polytope
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Fig. 35. Regular simplicial subdivision of the plane.

is an n-dimensional polygon; the set of points in n-space enclosed by a set of inter-

secting n - 1 dimensional hyperplanes.

3. Simplex. An n-simplex can be defined as the least convex set containing n + 1

linearly independent points; or, in other terms, a closed polytope bounded by (n + 1)

n - 1 dimensional hyperplanes. It is, in a sense, the simplest n-dimensional figure.

For n = 0 it is a point; n = 1, a line segment; n = 2, a triangle; n = 3, a tetrahedron,

and so on. Thus, it may be thought of as a generalized tetrahedron.

4. Tessellation. A tessellation of a space is a set of polytopes that "fill up" or

cover the space, without overlapping. A regular tessellation is a tessellation that uses

regular polytopes. An example of the latter is the construction of a floor covering that

has regular, hexagonal tiles.

In postulating a hypercubical grid of tabulation, the independent-variable space is

divided into a regular tessellation of hypercubes. It is interesting to note that for

functions of two variables, three regular tessellations of the plane are possible: tri-

angular, square, and hexagonal. However, it can be shown (2) that the hypercubical

tessellation is the only possible regular one for n greater than 2. Figure 35 shows the

equilateral, triangular tessellation of the plane. To utilize such a subdivision of the

plane as a basis for a piecewise-linear function, the function must, of course, be tab-

ulated at the triangle vertices. Although this form of tabulation is somewhat unusual,

it has the advantage that no further subdivision into simplices is necessary; the function

can be linear over each triangle. In the case of the square tabulations of Fig. 33, a

further simplicial subdivision (partitioning of the squares into triangles) was necessary

to provide for piecewise-linear interpolation.

The role of the n-simplex in this discussion becomes evident when one recalls that

a linear function of n variables is uniquely specified by the values it assumes at n + 1

linearly independent points in the independent-variable space. Since the n-simplex

contains just that many vertices, it is clear that it should form the basis of the con-

struction of a piecewise-linear function of n variables. Thus (considering hypercubical

grids), if each n-cube of tabulation can be divided into simplices, as was done in the

two-variable case, in which all the simplex vertices correspond to n-cflbe vertices, a
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function can be constructed that is linear over each simplex and assumes the prescribed

values at the simplex vertices. This is an acceptable interpolation scheme, since it is

piecewise-linear, continuous, takes on the correct values at the points of tabulation,

and has no maxima or minima within each n-cube (because of the linearity of each seg-

ment, and because there are no extra vertices within the cube). The appearance of

vertices at points other than at the tabulated ones is to be avoided. To illustrate its

consequences, consider the function of two variables tabulated on a square grid.

Suppose both diagonals were drawn for each square instead of just one. This would

produce an extra vertex in the center of the square, and divide the square into four

instead of two simplices. The piecewise-linear function cannot be defined uniquely

over these four triangles because of the freedom left in specifying its value at the

center vertex. Of course, this center point could be specified as, say, the average of

the four surrounding points, but this would just be equivalent to forming a finer grid of

tabulation: one whose interval is 1/ f2 times the original interval, and which is rotated

45 ° . This finer grid could have been established originally, so nothing has been gained

by the addition of the extra vertex.

Now let us proceed to the simplicial subdivision of a three-dimensional, independent-

variable space. Obviously, the method of Fig. 35 cannot be generalized to three vari-

ables, since three-space cannot be tessellated with regular tetrahedra, the logical

generalizations of equilateral triangles. Thus, for higher dimensions, the hypercubical

grid must be used as a basis for tabulation; each hypercube must, therefore, be sim-

plicially subdivided.

It is possible to generalize either of the two types of subdivisions appearing in

Fig. 33 to three-cubes. In order to generalize the method of subdivision pictured in

Fig. 33a, the independent variable space should be subdivided in a manner such that

projections of the space into the x 1 -x 2 plane, x 1-x 3 plane, or x2 -x 3 plane should all

appear as shown in Fig. 33a. This can be arranged by passing planes of the form,

x 1 - x 2 + k = 0, x - x 3 + k = 0, and x 2 - x 3 + k = 0, through each cube. Figure 36

shows this type of subdivision of one cube. It is divided by three planes into six

tetrahedra (three-simplices), which have been slightly separated for illustrated pur-

poses. Similarly, generalization of the type of subdivision pictured in Fig. 33b can be

constructed by passing planes of the form, xl i x 2 + k = 0, xl f x 3 + k = 0, and

X2 x 3 + k = 0. The pattern formed by this type of subdivision is shown in Fig. 37.

Several of the cubes of tabulation are shown; one is drawn in more detail to illustrate

the intersection of three planes that divide it into six tetrahedra. Note that when the

type (a) subdivision is used, each square or cube undergoes the same type of parti-

tioning, but when the type (b) subdivision is used, two types of square partitioning and

four types of cube partitioning occur. This nonuniformity in the internal structure of

the cubes has an important bearing upon the methods that will be employed in

constructing piecewise-linear functions over these spaces.

In generalizing these methods of simplicial subdivision to functions of n variables,
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Fig. 36. Type (a) simplicial subdivision Fig. 37. Type (b) simplicial subdivision
of the cube. of three-space.

it is convenient to use the simplest and most systematic method. Therefore, the type

(b) subdivision will be abandoned for generalization purposes, in favor of the type (a)

method. The progressions, one simplex for n = 1, two simplices for n = 2, six sim-

plices for n = 3, ... , suggests that this method of subdivision, when it is generalized,

would lead to n! simplices for each n-cube. This, indeed, is the case. It might be

further conjectured that n! is the minimum number of simplices that will tessellate an

n-cube. Unfortunately, subdivision of a three-cube into five tetrahedra provides a

counter example for this.

By using the type (a) method of subdivision, each n-cube in the n-dimensional,

independent-variable space is divided into n-simplices by passing all possible n - 1

dimensional hyperplanes of the form

Xi - x + mA = 0 i j

i=1,2,..., n

j = 2,..., n

m = 0, 1, 2,...

with A as the interval of tabulation.

It is proved in Appendix III, that this method of subdivision always results in n!

simplices, which are non-intersecting except for their bounding surfaces, whose

vertices correspond to the points of tabulation. The proof in Appendix III is of

interest because it indicates how each n-cube is actually divided. It happens that this

method of partitioning separates the set of points of the n-cube into subsets that are

based upon the ordering of their coordinates: e.g., all points whose coordinates are

ordered in the form, xl > x2 ... xn , fall within one simplex. There are exactly

nt such orderings, corresponding to the n! simplices.
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It has now been shown that there is a systematic procedure available for subdividing

an independent variable space of any dimension into simplices whose vertices corre-

spond with the vertices of the hypercubes of tabulation. Thus, it is now possible to

define a piecewise-linear function that satisfies the conditions stated for a generator of

arbitrary functions of several variables. The next section indicates alternative methods

of synthesizing such functions.

Unit Functions and Function Generators

Figure 34 reveals that an arbitrary piecewise-linear function of two variables can

become rather complicated; indeed, if it were possible to draw such a function of three

variables, its intricacy would be quite staggering. It is, therefore, desirable to resolve

the function into a summation of simpler functions in order to make it amenable to

synthesis. These simpler functions, which will be called "unit functions", will be dis-

cussed first in relation to general functions of a single variable, and then will be gener-

alized to functions of several variables, as was done in the previous section.

Consider the piecewise-linear function of a single variable that is shown in Fig. 38.

It is tabulated on a regular grid with linear interpolation used between the points.

(a)

( )

Fig. 38. A function of a single variable decomposed into unit functions.
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Fig. 39. General unit functions of one variable.

Figure 38a illustrates one method of decomposing this function into (or conversely,

constructing the function from) a summation of simpler piecewise-linear functions.

Starting from the left, we construct a function which is zero for x < -A, and is linear

for x > -A, with a slope equal to the slope of the complete function in the interval

-A < x - 0. Part of the function is shown in the figure by the dashed line that extends

above the original function. Similarly, a second function is constructed which is zero

for x < 0, and linear thereafter, with a slope equal to the difference in the slopes of

the first and second segments of the original function (indicated by the first dashed line

of negative slope in Fig. 38a). This procedure is continued with the construction of

one of these simpler functions for each breakpoint of the original one (indicated by the

various dashed lines in the figure). These simpler functions will be known as "ramp

functions". When they are constructed as indicated, their sum is the original function;

each ramp accounts for the change in slope through the point at which its breakpoint

occurs.

Figure 39a presents a clearer interpretation of the ramp. A general ramp function

is shown, centered over the k t h point of tabulation (it is convenient to define the center

of the ramp as the first tabulated point after its breakpoint) with a slope, Ak. Its
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algebraic expression, Yk' is given, as is a diode network that realizes the ramp as a

voltage transfer function. An expression for each Ak in terms of the ordinates, a k of

the arbitrary function which constitutes their sum is also given. Note that the network

realization is merely a + network (the bias is unnecessary in this case and has, there-

fore, been omitted). The "unit ramp function" will be defined as a ramp function of unity

positive slope. The general ramp is merely a unit ramp multiplied by an appropriate

positive or negative scale factor.

Figure 38b and c illustrates two other types of unit function that can be used in con-

structing functions of a single variable. In Fig. 38b, a set of "step" functions is used,

in which each step accounts for the change in ordinate of the original function from one

point to the next. Similarly, in Fig. 38c, a set of "triangle" functions is used. In this

case, only the particular triangle function that is centered over a tabulated point con-

tributes to the total function at that point. All the other triangles are zero at this point.

The over-all function can, therefore, be constructed very simply with the use of tri-

angles, merely by adjusting the height of each triangle to the desired height of the

function at that point. The sides of adjacent triangles add to perform linear interpola-

tion between points. Figure 39b and c provides the pertinent information regarding

realization of the general step and triangle functions. Just as in the case of the ramp,

the "unit" step and triangle functions are defined as the functions that have unity

slope over their second linear interval.

These unit functions constitute three possible "building blocks" for piecewise-linear

functions of a single variable. Although they were postulated over a regular grid, they

can, with slight modifications, be applied equally well to functions tabulated over irreg-

ular grids. While we are still considering functions of a single variable, it is instruc-

tive to note some of the ramifications of this method for the construction of a function.

First, it should be noted that decomposition of the desired function into a set of unit

functions is a straightforward procedure, given by the expressions for the A k ' s. Second,

synthesis of any unit function as a voltage transfer function is also quite simple,

involving, first, the symbolic representation of the function and, then, mechanization

of the symbolism by using diode networks. Note that, in the figures, the inputs to the

diode networks are given as linear combinations of the input voltage variables and a

constant. In practice, these linear combinations can be formed in several ways, with

passive summing networks, active components that use high-gain amplifiers, batteries,

and so forth. In the remainder of this section it will be assumed that devices for per-

forming this linear operation are available, but they will be omitted from the discussion

and the diagrams.

The structure of a general-purpose function generator that is based on unit functions

is shown in the form of a block diagram in Fig. 45. The figure is meant to portray a

generator of functions of n variables, but it can be specialized to a single variable by

considering only one input, x, and a bias, and by replacing the word "pyramid" by

"ramp", "step", or "triangle". It will be shown in the following discussion that the pyramid

50



function is the n-dimensional generalization of the triangle. Each of the unit functions
in the diagram is centered over a different point of tabulation, and the potentiometers

and switches provide a means of controlling the scale factor of each function. Thus,

any function can be "programmed" into the machine by adjusting the appropriate poten-

tiometers and switches.

It is interesting to note how the various unit functions compare as a basis for

Yij =Aij {[X-('-), ,Z- ( j-I) A] O} +
a2

Aij ." [ ij i-2, j-2 +i- 2 i-2,j-1 -l, ij-I]
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Fig. 40. General unit functions of two variables.

transfer function synthesis. Reading from top to bottom in Fig. 39, it can be seen that

the functions become more complex and require more diodes for synthesis. However,

it can also be observed that the process of setting up the over-all function becomes

simpler toward the bottom of the list. If we use ramps, adjustment of one ordinate

disturbs all points to the right of that ordinate; if we use triangle functions, each

ordinate of a function can be adjusted independently of the others. This independence

of adjustment considerably simplifies the problem of setting up a function and reduces

the propagation of errors. These advantages of the triangle function become more

pronounced in generalizing to functions of several variables.

As many alternative methods of producing functions of a single variable (many of
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them based upon the ramp function) are in existence at present, the subject will not be

pursued further. The main value of the unit functions of a single variable is that they

provide a basis for generalization to functions of several variables. Figure 40 shows

three unit functions of two variables, which are generalizations of the functions just

described. The projections of the two variable unit functions, the ramp, step, and

pyramid, into either the y-x 1 - or y-x 2 -plane, reduce to single-variable, ramp, step

or triangle functions, respectively. Thus, these are the generalizations of the latter to

functions of two variables. This generalization can be given further justification by

referring to the tessellations of the independent-variable plane, as shown in Fig. 33.

Clearly, any function that is a summation of ramp functions of two variables can only

have breaklines parallel to either axis or along lines of unity slope in the x - x2 plane.

Thus, a function formed by the summation of one ramp that is centered over each tabu-

lated point in a square grid would, in general, appear as shown in Fig. 33a when it is

projected onto the x - x2 plane. Viewed in three dimensions, it would have the appear-

ance of Fig. 34. A summation of step functions must also take this form. Conversely,

an arbitrary function that is tabulated on a square grid can be resolved into a summation

of either ramps or steps that will produce the piecewise-linear interpolation defined by

the tessellation of Fig. 33a. It can be shown that the expressions in Fig. 40a and b give

the required height, Aij, of the ijth unit function in terms of the prescribed ordinates,

a ij' of the desired function.

Now suppose the crisscross type of tessellation, shown in Fig. 33b, is to be used as

a basis for piecewise-linear interpolation. Obviously more than one type of unit func-

tion is necessary, since the pattern of breaklines differs from point to point. A sum-

mation of the pyramidal functions of Fig. 40c is appropriate in this case. To produce

the desired pattern, the type (A) pyramids must be centered over all points that are

intercepted by diagonals, while the type (B) pyramids are centered over the rest of the

points and are alternated with each other. Just as the triangular function was zero at

every tabulated point except at its center, and was nonzero only over the two line seg-

ments adjoining its center, the pyramidal functions are zero at every tabulated point

except at their centers, and are nonzero only over the four triangles adjoining their

center. The resultant interpolation function in any particular triangular region of the

independent-variable plane is composed of the superposition of the three pyramids which

are nonzero in that region; namely, the ones that are centered at the three vertices of

that particular triangle. In the case of the pyramids we again have the opportunity of

adjusting ordinates independently of each other. For example, a machine can be con-

structed which has, say, a 10 X 10 array of knobs that control the scale factors on a

10 X 10 array of unit pyramidal functions, summed to form an arbitrary function of two

variables. The tabulated function is fed into the machine by adjusting each knob to the

correct tabulated value. The function can then be displayed on an oscilloscope and a

visual check can be made while various tabulated points are being changed. This can be

done with the assurance that no tabulated points other than those that are being adjusted
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will change. Figure 40 indicates that the ramp and step functions are both nonzero over

a complete quadrant of the independent-variable plane. Hence, a change in the amplitude
.th

of the ijth ramp or step effects every tabulated ordinate, a pq, p i, q a j. This indi-

cates that any errors in the construction or scale factoring of a ramp or step function

are propagated throughout a considerable portion of the complete function. Such a

phenomenon is undesirable but tolerable in the case of functions of one variable; for

functions of two variables, it presents extreme difficulties in programming the function;

for more than two variables, the effect would undoubtedly be intolerable. It seems,

therefore, that the unit pyramidal functions, and their generalizations to functions of n

variables are the most desirable building blocks for piecewise-linear function genera-

tors, both from the point of view of ease in programming and of reduction of static

errors. The advantages gained appear to be well worth the increase in circuit com-

plexity.

All of the unit functions of two variables that have been discussed thus far have

certain common geometrical characteristics: they are all formed by a convex surface,

which intersects the zero plane in concave intersections. Thus, they can all be synthe-

sized by networks of the same form: a network, followed by a + network which

compares the output of the 4- network with zero. The only difference between the

various circuits is in the number and form of their linear inputs. It can be shown that

this general form is retained when these functions are generalized to n variables.

Before making this generalization, however, it is useful to consider two additional vari-

eties of unit pyramidal functions of two variables. Since the method of tessellation

determines the admissable forms of unit pyramidal functions, a different type of

pyramid must be associated with the equilateral tessellation of Fig. 35. First, it can

be seen from the regularity of the pattern that, in this case, only one type of pyramid

is necessary. Also, from the fact that the pyramid function must be nonzero at one

tabulated point, zero at all the others, and linear over each triangle, it can be seen

that the appropriate function is a regular hexagonal pyramid that covers the six tri-

angular regions adjoining its center (Fig. 41). The equilateral tessellation is of

interest mainly because its result is these regular pyramidal functions. It cannot be

generalized, however.

Another form of pyramidal function, which can be generalized, is shown in Fig. 42

together with a network that realizes it. In this case, six linear inputs, Yl, Y2 ... Y6,

representing the six faces of the pyramid, are necessary. Observe that this pyramid

is defined on the type (a) tessellation of Fig. 33a. Since it can be used over every point

in the plane, no alternation of pyramids as in the case of the type (b) tessellation, is

necessary. Although this function requires two more diodes than the pyramids of

Fig. 40c, it has a decided advantage because of the simplicity of its generalization.

Figure 43 shows the pyramid based upon the three-variable case of the type (a) tessella-

tion. Further generalizations will be confined to this type of tessellation.

Generalization of the type (a)tessellation, as described above, results in n!
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Fig. 43. Pyramidal functions of three variables on type (b) tessellation.

simplices for each n-cube. By referring to the proof of the tessellation theorem in

Appendix III, it can be shown that each generalized n-pyramid function is nonzero over

(n + 1)! simplices that constitute portions of the 2 n n-cubes adjoining the tabulated

point over which the pyramid is centered. As mentioned previously, but not general-

ized, the definition of a pyramidal function, fp, of n variables is:

(a) fp is nonzero at one point in the grid of tabulation and zero at every other tabu-

lated point;

(b) f is linear over each simplex in the variable space, when the simplices have

been defined by one of the aforementioned methods of tessellation.

This definition uniquely specifies f once the system of tessellation has been estab-

lished. The form of the network that realizes this function is illustrated in Fig. 44.

To construct a generator of arbitrary functions of n variables, a set of unit pyramidal

functions is constructed; one is centered over each tabulated point, with their outputs

fed through attenuating potentiometers and reversing switches to two summing and

inverting amplifiers. The block diagram is shown in Fig. 45.

Before concluding this discussion of the theoretical aspects of arbitrary function

generation, the n-variable generalizations of the unit ramp and step functions should be

mentioned. They have not been emphasized for n greater than 2 for two reasons:

1. difficulties in programming the function and controlling errors, as mentioned previ-

ously, and 2. cumbersome relations between the coefficients of the unit functions and
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Fig. 44. Circuit for the general pyramid.

Fig. 45. General-purpose function generator.

X2

Fig. 46. Approximation of the cone.
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the specified ordinates of the tabulated function. (In the two-variable case it was seen

that the coefficient of any step function was a function of the ordinates of four tabulated

points; the ramp was a function of six points. These numbers appear to increase rapidly

as n increases, and their derivation becomes a fairly difficult matter.) The expression

for the unit ramp for n variables is

Fr [(xl - kIA, x2 -k2A, xn kn)4, 0]¢+

For the unit step,

fS= [(X, - k , x - kA, xn- knA - , - ]d +

For large n, these functions may have certain advantages over the pyramids because

they require, at most, n + 1 linear inputs, while the pyramid requires (n + 1)! inputs.

(However, many of these are identical; e.g., in the case n = 3, of the 24 possible inputs,

only 12 are distinct.)

Many of the methods described in this section have been applied successfully to prac-

tical function generators. (See references 12, 23, 15.)

b. Special Purpose Function Generation

In designing a generator of a particular function or class of functions of several

variables, an approach that differs somewhat from the above procedures is desirable.

Clearly, a simpler and more efficient machine can be designed if it is to be used only

for a single function rather than to be adaptable to all types of functions. Usually, any

particular function will have certain geometrical properties that will suggest special

types of piecewise-linear approximations. This is especially true of functions that are

given in analytic form. Discussion of these properties will be confined to functions of

two variables.

The surface, y = f(x, x2 ), can be approximated and realized easily if it is: (a) com-

pletely convex or concave, and/or (b) a ruled surface. Examples of functions of type

(a) are:

Y= xZ2 +2)2 2
y = X1 + X2

y= (x 2 +x 2 + a)1/2y= (XI+x +a )

(half cone)

(paraboloid of revolution)

(half hyperboloid of revolution)

Examples of type (b) functions are:

y= 21 +x2) 
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y = xlx2 (multiplier - doubly ruled)

2 2
Y- 2 2

a +x 2

1 X2y = tan-
X1

Type (a) functions are easily realizable because they can be approximated piecewise-

linearly to any degree of precision by an expression of the form

y = (a1 + blxl + CX 2 , a 2 + bx 1 + c 2 x2X2...

This expression can be realized electrically with a single ci network. Figure 46 shows

the cone approximated in this manner by using 16 planar segments. In the approxima-

tion, intersections with planes parallel to the x1 - x 2 plane are regular polygons instead

of circles. As the number of segments used in the approximation is increased, the

number of sides of the polygons are increased and they tend toward true circles. (The

accuracy of the approximation that is shown is better than 1 per cent.) Figure 47 shows

a circuit realizing the approximation (13). Since the function is even in both variables,

the network was simplified by using two full-wave rectifiers. Note that each linear

function is formed by a passive summing network, and no bias is required because each

plane passes through the origin. An interesting result of this type of approximation is

that the accuracy is maintained as a constant percentage of the output voltage, even in

the vicinity of the origin; this is due to the fact that the breaklines all converge toward

the origin. The extreme simplicity of this function, and its wide application, make it a

powerful example of the advantages to be gained by attacking synthesis problems from

a more general point of view. A more conventional method of forming this function

would involve two square-law devices, an adder, and a square-root device; clearly, an

inferior system.

Now let us consider the realization of type (b) functions, ruled surfaces. Such func-

tions can be approximated to any degree of accuracy by segments of planes that inter-

sect along lines that coincide with the generatrix of the surface. The approximation is

exact along these intersections. In general, additional diagonal intersections must be

added so that the surface is divided into triangular segments of planes. Figure 48

illustrates such an approximation. Once the approximation has been made, the resultant

intersections can be classed as either convex or concave, and the surface can be

resolved into a linear combination of two functions, one containing all the convex inter-

sections, and the other containing all the concave intersections. These functions, being

of type (a), are readily realized.

Realization of a more general type of function, such as might be given graphically by

a family of curves with one independent variable as a parameter, is not so well-defined
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Fig. 47. Network realizing the cone Fig. 48. Approximation of a
approximation. ruled surface.

a problem. In most cases the contours of the function will lend themselves to certain

convenient types of piecewise-linear approximations; however, no general methods

exist for determining an "optimum" surface of approximation. Roughly, the steps in

the approximation and realization of a function given in this graphical form are:

1. approximation of each curve in the family piecewise-linearly, attempting to make

similar types of approximation for neighboring curves, 2. connection of the break-

points of each piecewise-linear approximating function with those of its neighboring one

by straight lines, until a piecewise-linear surface consisting (in general) of triangular

segments of planes has been formed, 3. the obtaining of an algebraic expression for

the surface of approximation by examining the breaklines for convexity or concavity,

and 4. the mechanizing of this expression by using diode networks. This procedure is

more or less of an art, and the ability to obtain the best approximation with the fewest

segments of planes is largely a matter of experience.

As an illustrative example, consider the thermodynamic surface, P = f(V, T), for a

real gas (water). The family of curves in the P-V plane, with temperature as a param-

eter, is shown in Fig. 49a. Figure 49b shows a piecewise-linear approximation. The

isotherms appear as dashed lines; the solid lines joining the breakpoints indicate the

plane intersections. Note that the planar segments near the center of the P-V plane

are mostly triangular, a consequence of the irregularity of the function in that region.

Toward the lower and higher temperatures, however, the isotherms become more nearly

parallel. It is, therefore, possible to find sets of four adjacent coplanar breakpoints

that determine planar segments in the form of quadrilaterals or, in many cases, paral-

lelograms. Such situations are desirable, since they reduce the required number of

planar segments. Often a small perturbation of a breakpoint to a new location can

create such a situation, and thereby simplify the approximation.

The surface of approximation is shown in three dimensions in Fig. 49c. Figure 49d

shows a model of the original surface for the purpose of comparison. To get a true
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picture of the nature of the approximation, it should be observed that the surface of

Fig. 49d extends over a larger area of the V-T plane than the piecewise-linear surface

of Fig. 49c. Most of the breaklines can be classified by inspection of Fig. 49c. For

example, the intersection between planes 2 and 12 is obviously concave, and the com-

posite surface formed by planes 1, 4, and 5 is also concave. Calculation of the con-

vexity or concavity of the doubtful intersections can be accomplished in a straightforward

manner by returning to Fig. 49b. Since the temperature coordinate of each breakpoint

is indicated, the equation for each plane can be derived by solving a set of three linear

equations. Now, suppose the classification of the breakline between planes 8 and 9 is

to be determined. This can be done by substituting the V and T coordinates of some

point in plane 8 (not on the breakline) in the expression for plane 9, this expression

being put in the form,

P 9 = a9 + b9V + c9T

If the value of P given by this substitution is greater than the P coordinate of the point

in plane 8, it means that plane 9 lies above plane 8 when extended into region 8. There-

fore the intersection is convex. In this case, it happens that plane 9 lies below plane 8

when it is extended into that region, so that the intersection is concave. Note that this

procedure is applicable to functions of any number of variables. It is usually convenient

to use the breakpoints as test points for this procedure, since their coordinates can be

read directly from the figure. In the case of this function, all of the breaklines could

be classified without any laborious calculations by observing the locations of the various

breakpoints.

Once the intersections have been classified, the function must be put in symbolic

form. Usually several alternative forms are possible and can be derived without too

much difficulty. Figure 49e gives an algebraic representation of the function under

discussion, where each Pi is a linear function of the form,

P. = a i + b.V + ciT
1 1 1 1

The same figure also shows the diode network that realizes the function. Note that

eighteen diodes were used here, a quantity comparable with the number of diodes used

in constructing a reasonably accurate square-law device. If this function were to be

programmed into a general-purpose function generator in a 10 X 10 tabulation, approxi-

mately 600 diodes would be required (using pyramid functions) or a minimum of 400

(using ramp functions).

If methods similar to the unit function superposition procedures previously described

are used, we can decompose any irregular piecewise-linear function of several vari-

ables into simpler functions. For example, considering an irregular function of a single

variable, we can make a decomposition into irregularly spaced ramps, steps, or tri-

angles; in this case the triangles will no longer be isosceles. For functions of two

variables, a generalization of the pyramidal function is a useful building block. This
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Fig. 49. A thermodynamic surface and steps in its approximation.

generalization can be demonstrated by reference to Fig. 50a. The figure shows the

projection of an arbitrary piecewise-linear function of two variables onto the independent-

variable plane. The linear regions appear as irregular polygons bounded by projections

of the breaklines. Since the projection eliminates any information about the relative

heights of the various breakpoints, it cannot be used to determine the classification of

the breaklines. However, the complete surface can be realized by a superposition proc-

ess without determining these classifications. To accomplish this, the independent-

variable plane must first be simplicially subdivided. Note that the surface of Fig. 50a

contains four-sided and five-sided polygons as well as triangles. The vertices of such

polygons must all be coplanar. Simplicial subdivision of any polygon can always be

accomplished by drawing a sufficient number of chords. This is demonstrated in

Fig. 50b. The pentagon, 17856, is so divided by the dashed lines, 67 and 68; similarly,

the quadrilateral, 7238, is divided into triangles by line 73.

The complete surface can be constructed by superposing a set of irregular pyramids,

one being centered over each breakpoint. For example, a function can be defined that

is equal to the prescribed height of the original function at point 7, is zero at every

other breakpoint, and is linear over each simplex (triangle). (It is assumed that the

ordinate of each breakpoint is positive.) This definition produces an irregular pentag-

onal pyramid whose sides are planes Pa, Pb' Pc' Pd' and Pe' corresponding to the

lettered regions in Fig. 50b. Each plane is represented by a function of the form,

Pn = kno + knlXl + kn2X2
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(a )
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(b)

Fig. 50. Arbitrary piecewise-linear surface.

The algebraic representation of the pyramid, y 7, centered over point 7, is clearly,

Y7 =[(Pa, Pb, Pc, Pd, Pe ) b -, 0] +

The circuit that realizes y 7 is, therefore, of the same form as the general unit-pyramid

circuit.

Now let us proceed, in the same manner, to construct a pyramid that is centered

over point 8. This time, we have an irregular hexagonal pyramid, but unlike the pre-

vious case, its base is not a convex polygon. (The exterior angle at vertex 9 is acute

instead of obtuse.) That all the aforementioned pyramidal functions of several variables

were representable algebraically by a , followed by a + transformation, which cut

off the function at zero, was due solely to the fact that their bases were all convex poly-

topes. The indentation of vertex 9 causes breakline 89 to be concave. The rest of the

breaklines that converge to point 8, are still convex. Then, an algebraic representa-

tion for the pyramid, YS, is

Y8 {[h Pg v PcgPd)P' PPj. Jk.

Its realization is straightforward. The algebraic expression for any such irregular

pyramid can be written by inspection, and, therefore, any irregular function can be

synthesized systematically by this procedure. It should be observed that the dashed

lines are canceled out when overlapping pyramids are superimposed; thus, only the

62

I __ _



original breaklines appear in the resultant surface.

VI. SUGGESTIONS FOR FUTURE WORK

There is still much work to be done in exploring the general properties of nonlinear

resistive networks: further study of the relation between network topology and possible

and impossible performance; effects of oddness or evenness, convexity or concavity,

and so forth, of the element characteristics on the terminal behavior of a network; and

extension of more linear techniques to nonlinear networks.

Concerning synthesis, much more experimental work must be done in order to

determine practical designs of the function generators described in Section V. Also,

further analytical work could be done to determine techniques for making piecewise-

linear approximations to nonlinear functions within a given percentage of error and

utilizing a minimum number of linear segments. Geometrical properties, other than

those discussed here, might be utilized to advantage in constructing special-purpose

function generators. Also, the methods that have been described for functions of two

variables could be extended to more than two variables.

One possibility worth examining is the analysis of systems that contain delay lines.

If the lines are properly terminated, such a network has the advantage of possessing a

"finite memory," i.e., any transient exists for only a finite time. Transients in

lumped-parameter networks usually last for an infinite time. A further advantage of

the piecewise-linear, delay-line network is that such a network will necessarily have a

piecewise-linear response when excited with a piecewise-linear waveform. This is not

the case in a lumped-parameter network. It may also be possible to make analyses of

lumped-parameter networks by approximating them with delay lines.

There is a wide range of fairly unrelated areas to which applications of the inequal-

ity algebra might be interesting and useful. Problems involving solutions of simul-

taneous linear inequalities, i.e., linear programming problems, offer one possibility.

Mechanical systems that change from one linear region to another, when particles come

in contact with each other or separate, offer another possibility.

Although many of these suggestions may turn out to be "blind alleys," the possibili-

ties for exploration are so numerous and varied, and the field so devoid of well-

established techniques, that future applications of algebraic techniques to piecewise-

linear problems appear to hold considerable promise.

APPENDIX I

PROOFS OF THE THEOREMS OF SECTION II

When a theorem can be stated in several alternative cases, proof will be given for

only one case. Proofs for the other cases are of the same form. Only the particular

statement of the theorem that pertains to the case that is being proved is given.
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THEOREM 1. (a) aD = )a

PROOF. Let a = (a1 , a 2 ,., am)

p=(b1 ,b 2... bn)

Then at3P is the set of all scalars, ap + bq, ap in a and bp in ; and Pea is the

set of all scalars, bp + ap, bq in P and ap in a.

Since ap + bq = bq + ap for all p and q, ap = G)a.

(b. 1) aO(POy) = (aGP)y

PROOF. Let a = (al, a 2 , , am)

=(b 1 , b 2 .. , bn)

y=(C 1, C2 , , Cs )

Then P(y is the set of all scalars, bp + cq, bp in P and cq in y; a(+y) is the set

of all scalars, a r + (bp +c q), a in a and (bp + cq) in (P(y); ap is the set of all

scalars, a r + bp, a r in a and bp in P; and (a®3)(gy is the set of all scalars,

(ar + bp) + Cq, (ar + bp) in (a(p) and Cq in y.

But (ar + bp) + cq = a r + (b + cq) for all r, p, and q. Hence, (a®P)Oy = a(p(y)

(b.2) c(da) = (cd)a

PROOF. Let a = (a1 , a 2 ... . an)

Then, da = (da1, da, ... , dan); and c (da) = (cdal, cda 2 ... cdan) = (cd)a.

(c) c(aOp) = ca(cp

PROOF. Let a = (a, a 2 , am)

p = (b1 , b 2 ... , bn)

Then (a(p) is the set of all scalars, ap + bq, a in a, bq in ; c(ap) is the set of

all scalars, c(ap + bq) = (cap + Cbq), (ap + bq) in a; and ca(cp is the set of all

scalars, cap + cbq, ap in a and bq in P.

But these two sets are equal; therefore, c(a(3p) = ca()c¢.

THEOREM 2. c(a +) = (ca)(-, when c < 0.

The elements of a can be treated as constants without any lack of generality, since the

relation must hold at each point in the independent-variable space.

PROOF. Let a = (al a?, a); c 0; and a+ = ap

Then ap 5_ al, . .. an and cap c(a(+ ) cal, ca 2, . can.

But (cal,ca2, . .can) = ca; therefore ca = (ca) = c(a +).

THEOREM 3. If a = (a), then a = a = a.

The proof is trivial, since the greatest or least of a set of one element must be the

element itself.

THEOREM 4. (aC))+ = a4+ + +
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PROOF. Let a =(a 1,a 2 ..... am) ap = a

= (b1 ,b 2 .... bn) b =
Then ap >al, a 2 , . am (set of m inequalities); and bq >bl, b 2 ,. bn (set of n

inequalities). Select any one of the first set of inequalities and add it to any one of the

second set to form

a +b > a. +b.p q 1 j

This can be done in mn possible ways to form a set of mn inequalities with a + b

on the left side of each. The terms on the right side are just the elements of (aqp).

(See definition 3.) Therefore, a + b a + + + = (a)OP)d+ .

THEOREM 5. [(al, . an) (a 1 ,a , an , b] ( al, a2 b

PROOF. Let ap = (a 1 ,a a... an)+

Then ap a1l, a 2 , .. a

First, consider the case ap b. Then [(al, a 2 . a) , b] ., a = (al, a 2 ... an b)p+
Second, consider the case ap <b. Then [(a 1,a 2.. ). , b]+ = b =(a 1 , a 2 , . an, b)+.

THEOREM 6. Let y = F(x) = [fl(x),f 2 (x) .. , fn(x)]+
If each fp(x) is monotonically increasing and continuous, then

x = F (y) = [fI1(y), f1(y) f- (y)]

PROOF. Clearly, if fl' f 2 . fn are monotonically increasing and continuous, then

F(x) also has these properties and therefore has inverse Fl(y), as do each of the f

Consider an interval, a x b, in which F(x) = fp(x). (There must be at least one

f for which such an interval exists.)

On [a, b],

fp(x) - fl(x), f2 (x) ... fn(X) (1)

Assume that c y d on this interval.

Select ayo in the interval [c, d] and let x = F-l(yo)= fpl(yo), where a x b.

We then have yo = fp(xo), Y1 = fl(xo ) ,y 2 = f2 (Xo ) '. y n = fn(Xo), where

Yo > Yl ' YZ' Yn (2)

Inverting the above, we have

f'l(yo)= fll(y ) = f2(y 2 ) = = fnl(yn ) (3)
p ' 1 fl, =

Now each f- is monotonically increasing. (If a function is monotonically increasing
q

and continuous, its inverse also has this property.)

Therefore, from Eqs. 2 and 3, we have
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x =f( f ((Y) f (Yo) fn (Yo)
o p o 1 2 

or

X = [fl(yo)f (yo). fnl(yo -

But this must be true for any x and y on any interval. Hence the theorem is proved.

THEOREM 7. Let F(x, y) = [fl(x,y),f 2 (x,y), .,fn(x, y)]c+ = 0.
If, for each fp(x, y):

1. fp(x, y) is monotonically increasing and continuous in y for any constant x;

2. fp(x, y) is continuous in x for any y;

3. for each xo there is some yo for which fp(Xo , yo ) = 0; then F(x, y) = 0 can be

solved explicitly for y in the form,

Y = [gl1 (x)) , g2(x) ' gn(x)]

where y - gp(x) is the explicit solution of the equation, fp(x, y) = 0.

PROOF. First, from the above postulates, it follows that F(x, y) also possesses

these properties and that each equation, F(x, y) = 0, fl(x, y) = 0, ... , fn(x, y) = 0, has a

unique explicit solution for y (4).

Let y = G(x) represent the explicit solution of F(x, y) = 0. That is, F[x, G(x)] 0.

Then y = G(x), a single-valued function of x, defines some curve in the x-y plane.

Consider a portion, S, of this curve (where a < x < b) on which fp(x, y) = F(x, y) = 0.

(There must be at least one fp for which such a region can be found.) On S,

fp(X, y) >x f(x, y), fn(X y) = g fn(x y)

Select an x in the interval [a, b]. Then on S, y = gp(o).
Consider any other function evaluated at the same point, y = gq(Xo). Then, by defi-

nition,

fp [xo, gp(xo)]= 0 = fq [xo, gq(xo)]

But

f [p x gp(xO)] fq [xo. gp(xo)] a x0 5 b

because of the way in which region S was chosen. Therefore,

fq [xo, gq(xo)] fp [xo. gp(xo)] > fq [xo, gp(xo)]

But fq is monotonically increasing in its second variable. Hence, gp(Xo) - gq(Xo)

for any q, a x b
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or

y = G(x) = gp(X)= (X) x), g2 (x) . ' gn(x)] a x b

This argument can be repeated for each interval of x over which F(x, y) = fj(x, y) = 0,

until the complete x-axis is covered. This proves the theorem.

APPENDIX II

PROOFS OF THE THEOREMS OF SECTION IV

THEOREM 1. A driving-point function that contains 2 n- 1 breakpoints requires at

least n diodes for synthesis.

PROOF. 2n-1 implies 2n linear regions (or states of the network) which must occur

as the driving current or voltage is varied from -oo to +oc. Since 2n is exactly the number

of different states of n diodes, the only thing left to show is that no state can appear more

than once. This has been shown elsewhere (19) and will not be repeated here.

THEOREM 2. One diode per breakpoint is a necessary and sufficient number to

synthesize any strictly concave or convex driving-point function.

PROOF. The sufficiency part of the theorem is proved by a construction procedure

given in Section V. Necessity is proved here.

Consider a strictly concave driving-point impedance that contains n breakpoints,

which is associated with a network containing N diodes. (The proof is of the same form

for convex functions.) The impedance function is to be examined by increasing the

driving-point current monotonically from -oo to +oo. Assume that at some highly nega-

tive current the network is in its first linear state, in which M of the total of N diodes

in the network are closed. (M < N). Since it has been assumed throughout Section IV

that only one diode switches at a time, each time we pass through a breakpoint in

increasing the driving current, one of the M diodes must switch from closed to open.

(An increase in incremental resistance implies an opening of a diode.) Therefore

M > n and hence N > n.

THEOREM 3. One diode per breakpoint is necessary and sufficient to synthesize

any driving-point function in a series-parallel development.

To proceed with the proof of this theorem it is necessary first to define a series-

parallel network or graph. Two equivalent definitions will be given (21):

DEFINITION A. 1. A single branch is a series-parallel graph.

2. A parallel combination of two series-parallel networks is

series -parallel.

3. A series combination of two series-parallel networks is

series -parallel.

This inductive definition is convenient for certain purposes and will be used in the

proof to follow, but it has the disadvantage of failing to indicate a method of determining
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whether or not a given graph is series-parallel. For this purpose a second definition is

more appropriate.

DEFINITION B. Select any two nodes, a and b, in a given graph as driving-point

nodes. Trace all possible paths through the graph from node a to node b, so that in any

one path no node is traversed more than once. Now if all paths that pass through a

given branch of the graph traverse it in the same direction, the graph is series-parallel

As an illustration, definition B can be applied to a simple bridge network. Passing

from the top node to the bottom node of the bridge, the detector arm can be traversed in

either direction; hence the bridge is non-series parallel.

PROOF. The sufficiency part of theorem 3 is proved by a construction procedure

that is given in Section V. In order to prove the necessary part of the theorem, it is

sufficient to show that in a series-parallel network each diode can change state only

once as the driving-point current or voltage is increased monotonically from -oo to +oo.

Then the total number of breakpoints of the function must equal the number of diodes

that have changed state, which is equal to or less than the total number of diodes in the

network.

To prove that any diode can change state only once in a series-parallel network, it

is sufficient to show that the current through it or the voltage across it must be a mono-

tonic function of the driving-point current or voltage. This is shown as follows.

The driving-point impedance or admittance of a diode network is a monotonically

increasing function. Assume that the driving-point current (and voltage) is increased

monotonically from - to +oo. Now, using definition A, we can divide the network into

either: 1. the series combination of two series-parallel networks, or 2. the parallel

combination of two series-parallel networks. In case 1 we observe that the current

through each of the new networks is again monotonically increasing, and in case 2 the

voltage across each new network is monotonically increasing. We now have two new

(and smaller) series-parallel networks, each of which is excited with a monotonically

increasing driving-point current (and voltage). Now the subdivision procedure can be

repeated on each of the new networks, and continued until the original network is

resolved into a number of indivisible series-parallel networks (single branches) each

of which has a monotonically increasing current (and voltage) associated with it. Thus

any diode in the network, being driven by a monotonically increasing voltage or current,

can switch only once.

It should be noted here that the definition of monotonicity used here is one that

includes functions which may be constant over some range of the independent variable;

that is, f(x) is monotonically increasing if f(x 2 ) > f(xl) when x 2 > x1 . The inclusion of

the equality admits constants to the class of monotonic functions.

THEOREM 4. Given a resistive diode network the behavior of which at some arbi-

trary terminal pair is described by e = z(i) or equivalently, i = y(e). If all voltage

sources and all resistances are multiplied by the same positive constant, k, then the

new impedance and admittance functions are,
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e = k [z(i)] and i = y(k)

PROOF. From the analysis procedures given in Section III, it is clear that any

driving-point impedance of a diode network can be written as a set of linear elements

V1 + rli, 2 + r2i * * *Vn + rn

operated on by a succession of + and 4- transformations. Each linear element is of

the form,

P1(R) P2(R) Pt(R) Mi(R) M2(R) Ms(R) iMs+l(R)

V Q1(R) +2 Q2(R) + + Vr Qr(R) +1 N1(R) +2 NZ(R) + + s N(R) +N i(R)

where the V' s represent the voltage sources in the network and the I' s the current

sources. The P' s, Q' s, M' s, and N' s, are polynomials in the R' s (the resistances)

and each term of Px(R) must be of the same degree as each term of Qx(R). However,

all the terms of My(R) must be of the same degree, and one degree higher than those

of Ny(R). This follows from dimensional considerations. Therefore, if each V and R

is multiplied by k, each of the above terms will be multiplied by k. But in Section II it

was shown that if each element in a cascaded set of transformed vectors is multiplied

by a positive constant, this constant can be removed and placed outside the transfor-

mations. Thus, the new impedance function is e = k [z(i)]. Inverting, we obtain

z(i) = k

i y ) j)

THEOREM 5. Since the proof of theorem 5 is of the same form as that for theorem

4, it will be omitted.

APPENDIX III

TESSELLATION THEOREM

In section 5.3 a method of simplicial subdivision of an n-cube is given which results

in n! simplices. Proof of this result and some of its ramifications are given here for

a unit n-cube with one vertex at the origin; all coordinates of each point non-negative.

No lack of generality results from this choice.

THEOREM. Given the n-cube whose vertices are: (0, 0, ... ,0), (0, 0...0, 1),...,

(1, 1, ... , 1). (All coordinates either 0 or 1.) The hyperplanes, x 1 - x 2 = 0, x - x 3 = 0,

2 - x3 =0, . . .Xnl - xn = 0 divide the n-cube into n! n-simplices that are non-

intersecting, except for their bounding surfaces.

PROOF. First, the n-dimensional space corresponding to the variables, x 1lX2,. .,xn,
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will be partitioned into 2
[ n(n 1)]/2 disjoint subspaces in the following manner.

Let h.. represent one of the n(n-1) half spaces defined by

x xj > 0 (ioj)

Now consider the two sequences,

0 - h12' h13' h14' h23' h 24 hn-,n

1 -h h1, h h h h ...I h21'h31'h41' 32' 42'. hn,n-1

(The 0 sequence contains all h' s for which i < j. The 1 sequence is just the 0 sequence

with its subscripts permuted.) A subspace, Sml is defined as follows: let m be written

as an [n(n-1)1/2 digit binary number. Define Sm as the mutual intersection of a sequence

of [n(n-1)]/2 h' s chosen by replacing the pth digit in the binary expression for m by the

pth h in the first sequence if the digit is zero, and by the pth h in the second sequence

if that digit is a one. (Each h sequence is just [n(n-1)]/2 elements long.) There will be

2[n ( n l ) ] / 2 of these subspaces, corresponding to the 2 n(n-1)]/2 binary digits. Now it

will be shown that all but n! of these S m ' s are null, and they are all disjoint.

First, to show that they are all disjoint, note that hij Nhji = 0 (since all points in

hi. satisfy x i - xj > 0; all points in hji satisfy x. - x. > 0, and they cannot be satisfied
1 3 1 j

simultaneously). Now consider any two sets, Sp and Sq, pq. Since p must differ from

q in at least one binary digit, one h, say hij, in the Sp sequence will differ from the cor-

responding h, hji, in the Sq sequence. But hij n hji = 0, and therefore, Sp n Sq = 0.

Next, to investigate the nullity of the S' s, the following lemma will be proved.

LEMMA. The necessary and sufficient condition that Sm be null is that there must

exist some cyclic subsequence of the h' s that define Sm, of the following form (the

order, of course, is immaterial):

hia nhab hbc n... hpq n hqi

PROOF. 1. Sufficiency. Adding all the inequalities,

x. -xa > O0

xa - Xb > 0

x - Xi. > 0q 1

xi - i > 0

we obtain a contradiction. Thus no points satisfy the conditions and the set is null.

2. Necessity. Suppose Sm corresponds to a sequence of h' s which does

not contain any closed cycle as above. The inequalities may be represented graphically

as a directed line graph with the following properties:
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(a) The graph contains n nodes corresponding to the n variables.

(b) Each half space, hij, is represented by a line segment directed from node i to

node j.

(c) The graph contains [n(n-1)]/2 directed paths.

(d) If the arrow directions are ignored, the graphs corresponding to all the S' s

are identical.

(e) Closed loops on graphs correspond to closed cycles of h' s. (Therefore, the

graph of the S m that is under consideration has no closed loops.)

(f) The graph has one and only one source. (Since this is a cascade graph, it must

have at least one source. But (n-l) lines must diverge from this source, one

ending on every other node. Thus, none of the other nodes can be sources.) It

has one and only one sink by the same argument.

A unique ordering of the variables can now be established from the graph. The

source variable will be the greatest and the sink variable, the least. To find the next

greatest and next least, we remove the source and sink and their associated branches.

(This amounts to eliminating from consideration all the h' s that contain the source or

sink variable.) We now have another graph whose properties are the same as those for

the original graph, but it now contains two less nodes. We can again find one source

and one sink that correspond to the next greatest and next least variable, respectively.

This procedure must be repeated until the complete ordering is established. Any point

whose coordinates satisfy the ordering will lie in the set Sm, since it will satisfy the

condition set by each h. Hence S m is non-null, and the lemma is now proved.

To illustrate the graphical procedure just outlined, consider the set (in which n = 5):

Sm = h 2 1 n h31 nh 41 lh 1 h 2 3 n h24 n h2 5 n h4 3 n h3 5 n h4 5

It will be investigated by referring to the flow graph of Fig. 51a. The graph has been

(a)

So Si

(b)

(c)

Fig. 51. Flow-graph analog of a set of inequalities.
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constructed by the aforementioned procedure. It will be observed that node x2 is a

source (So), and node x1 is a sink (Si). The process of decomposition of the graph will

indicate whether or not it contains any closed loops. Clearly, if any such loops exist,

they will still be present after the source and sink and their associated branches are

removed, since a closed path cannot pass through a source or sink. Having determined

that x 2 is to be ordered first, and xl last, our reduced flow graph appears as in Fig. 51b;

X4 is the new source and x5 the new sink. Removal of these nodes yields only x 3

(Fig. 51c) as the intermediate variable. Thus the complete ordering is

x 2 > x4 > x3 > x5 > x

Obviously, no closed loops exist, and any point whose coordinates satisfy the above

ordering lies in Sm; e.g. (-3, 7, 0, 1, -1). Either by renumbering the nodes or by

reversing the directions of some of the branches, new non-null sets corresponding to

different orderings of the coordinates can be constructed. In fact, exactly n! non-null

sets can be constructed, corresponding to the n! possible permutations of n things

taken n at a time.

In order to prove the theorem it remains only to prove that 1. every point in the

unit n-cube lies in one of the S' s, and 2. the intersection of each S with the unit n-cube

is an n-simplex. Condition 1 is only true if the closure of each S (that is, S plus its

limit points) is considered. This merely implies inclusion of the bounding surfaces in

the set S, which can be done by redefining the h' s with a signs rather than with the

strict inequality signs. Therefore the ordering of the coordinates for each S is now

defined with the sign rather than the > sign. Now the S' s are mutually disjoint except

for their bounding surfaces, and every point in the n-cube must fall within one of them.

Note that, once the flow graph of a non-null set has been analyzed, all but a particular

set of n-1 of the branches can be removed from the graph without changing anything.

This is because these n-l branches, which connect each variable to its immediate

neighbors in the ordering relation, correspond to the inequalities that include all of the

other inequalities.

To prove condition 2 above, let us represent the unit n-cube as follows.

Let h be the half space defined by x 0. Similarly, let h be the half space
P P p

defined by xp < 1. Then the n-cube, C, takes the form,

C = h h 2
0 n .. nhN h Nhfl n... nh 1

1 2 n 1 2 n

Now to investigate the intersection of the n-cube with a non-null set, say, C n S m, we

can again represent the bounding inequalities by branches in a flow graph. Figure 52

shows the graph of Fig. 51a with all but the essential n-1 branches removed. Two nodes

that represent zero and one have been added, together with the 2n = 10 branches that

represent the n-cube boundaries. Again many of the added branches are redundant;

these are shown by dashed lines in the figure. The only essential ones are those
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Fig. 52. Flow-graph analog of a set of inequalities.

corresponding to h2 and h 1 . The redundant branches correspond to hyperplanes that

are not needed to define the set and, therefore, are not bounding surfaces of the set.

Thus we see that each non-null set, C n Sm, is bounded by n-l of the subdivision

hyperplanes and by two n-cube faces, a total of n+l bounding surfaces. But according

to the definition, C n Sm must then be an n-simplex. The theorem is now proved.

The ordering relations derived in the proof are of value in determining the struc-

ture and orientation of each n-simplex formed by the subdivision procedure. For illus-

tration, consider an n-space whose coordinates are x1 , x 2 ..., xn. Suppose we wish to

determine the vertices of a particular n-simplex in the unit n-cube, which is defined

by the ordering, xl > x 2 > ... xn . Since the coordinates of each vertex are all

either 0 or 1, the only vertices whose coordinates satisfy the ordering are:

x1 x2 x 3 x4 .. xn

0 0 0 0 ... 0

1 0 0 0 ... 0

1 1 0 0 ... 0

1 1 1 0 ... 0

1 1 1 1 ... 1

As we expected, there are just n+l of these vertices. To find the vertices of any other

simplex, the variables at the head of the columns are merely rearranged. It can be

observed that the vertex containing all zeros is common to every simplex; each vertex

containing one 1 is common to (n-l)! simplices; each vertex containing two 1' s is

common to 2(n-2) ! simplices; and so on. In general, each vertex containing m 1' s

(m < n) is common to [m ! (n-m) ! ] simplices.

It was stated in Section V that each tabulated vertex in a regular n-dimensional tabu-

lation is common to (n+l) ! simplices. (When the simplicial subdivision is as defined
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above.) This fact can be deduced from the classification of vertices just discussed.

First, we observe that each tabulated point is the common vertex of 2n n-cubes. It is

oriented differently with respect to each n-cube; thus its coordinates, with respect to

each adjoining n-cube referred to the origin, run through the complete list of binary

numbers; a different number for each n-cube. Now, it was shown that a vertex repre-

sented by a binary number containing m 1' s is common to m! (n-m) ! simplices. But
n!

in the list of binary numbers n digits long, ! (n) ! of them contain m 1' s. So the
m! (n-m) !

total number of simplices adjoining any tabulated point must be

n n

N= E m!(n-m)! [n! (n-m)!] = n! = (n+l)n! = (n+l) !

m=O m=O
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