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Abstract

A topographic steering river meandering (TSRM) model based on continuity of a simpli-
fied flow field through bends is developed. The equilibrium coupling between helical flow
and sediment transport, as in Ikeda [1989] determines downstream variation of transverse
bed slope. The model tests the hypothesis that meander development patterns can be cap-
tured under the assumptions: (a) bank shear stress arises from forces associated with topo-
graphically induced convective accelerations; (b) turbulent boundary layer dissipation of
these forces at the banks is sufficiently represented by gaussian smoothing at a parameter-
ized scale; and (c) lateral migration of the channel is proportional to bank shear stress. The
resulting TSRM model produces realistic complex meander patterns and scroll bar-like
topography. Model compound bend formation is compared to a field case and found to
arise from the nonlinear interaction of bank roughness and channel hydraulics scales.
When the latter is short relative to the former, maximum bank shear stress occurs early in
the bend and leads to compound bend formation. New statistical stream sinuosity and spa-
tial coordinate variation measures are applied to both natural and model streams and
reveal secondary sinuosities arising from compound bend formation in both cases. Scroll
bar topography and channel bank roughness are studied in the field to compare natural and
model mechanisms.

A channel-hillslope integrated landscape development (CHILD) model incorporates the
TSRM model. The CHILD model represents the landscape as an irregular, Delaunay trian-
gulated mesh of landscape nodes that may be moved, deleted, or added to accommodate
meandering channels that are in general discretized at different spatial resolution than the
surrounding landscape. The interactions among meandering, bank erodibility’s bank
height dependence, and uplift rate in a detachment-limited river valley are examined. An
equilibrium landscape adjusts to the onset of meandering and approaches a new dynamic
equilibrium. For the detachment-limited case, the hypothesis that meandering is more
active when uplift is quiescent is rejected. When bank erodibility’s bank height depen-
dence is greater, bend scale sinuosity is smaller, but the tendency toward multi-bend loop
formation is reinforced.
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