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Abstract

A topographic steering river meandering (TSRM) model based on continuity of a simpli-
fied flow field through bends is developed. The equilibrium coupling between helical flow
and sediment transport, as in Ikeda [1989] determines downstream variation of transverse
bed slope. The model tests the hypothesis that meander development patterns can be cap-
tured under the assumptions: (a) bank shear stress arises from forces associated with topo-
graphically induced convective accelerations; (b) turbulent boundary layer dissipation of
these forces at the banks is sufficiently represented by gaussian smoothing at a parameter-
ized scale; and (c) lateral migration of the channel is proportional to bank shear stress. The
resulting TSRM model produces realistic complex meander patterns and scroll bar-like
topography. Model compound bend formation is compared to a field case and found to
arise from the nonlinear interaction of bank roughness and channel hydraulics scales.
When the latter is short relative to the former, maximum bank shear stress occurs early in
the bend and leads to compound bend formation. New statistical stream sinuosity and spa-
tial coordinate variation measures are applied to both natural and model streams and
reveal secondary sinuosities arising from compound bend formation in both cases. Scroll
bar topography and channel bank roughness are studied in the field to compare natural and
model mechanisms.

A channel-hillslope integrated landscape development (CHILD) model incorporates the
TSRM model. The CHILD model represents the landscape as an irregular, Delaunay trian-
gulated mesh of landscape nodes that may be moved, deleted, or added to accommodate
meandering channels that are in general discretized at different spatial resolution than the
surrounding landscape. The interactions among meandering, bank erodibility's bank
height dependence, and uplift rate in a detachment-limited river valley are examined. An
equilibrium landscape adjusts to the onset of meandering and approaches a new dynamic
equilibrium. For the detachment-limited case, the hypothesis that meandering is more
active when uplift is quiescent is rejected. When bank erodibility's bank height depen-
dence is greater, bend scale sinuosity is smaller, but the tendency toward multi-bend loop
formation is reinforced.
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Chapter 1

Introduction

The original objective of this study was to model the transport and deposition of sediments

in river basins in the context of landscape evolution. The new model would employ tech-

niques developed in previous studies where possible, but new process models would be

derived where the techniques of previous models were inadequate: in the treatment of mul-

tiple sediment sizes, lateral fluvial erosion, and floodplain deposition. The model study

would attempt to answer the following question: given an initial distribution of sediments

in space and a climatic forcing in time, what is the structure of deposits after some time

interval?

The initial objective of the present study was to develop a landscape evolution

model (see review in Chapter 2) that would incorporate the new features listed above. The

problem of lateral fluvial erosion, or meandering, would not yield to a solution based on

the traditional rectangular grid. Instead, I sought the simplest possible solution that still

captured most of the physics of river meandering. The results of the present study are new

models of river meandering and landscape evolution. Another member of the research

group took up the problem of multiple grain size sediment transport, and the problem of

floodplain deposition has not been addressed. I review the landscape evolution modeling

literature in Chapter 2.



An understanding of the process of river meandering is basic to an understanding

of river processes in general. That general understanding is important for people whose

work with rivers covers a broad range of spatial and temporal scales-from the erosion of

pasture land from year to year, to the formation of alluvial terraces over millennia, to the

evolution of a river basin over the geologic time. I review the river meandering literature in

Chapter 2.

From the literature and through studies of rivers from maps and aerial photographs

and in the field, I found that important aspects of meandering were not predicted by the

state of the art of river meander modeling, nor has the impact of meandering on the land-

scape received much study. I present a study of natural river meandering in Chapter 3.

Field and experimental studies have shown that channel bed topography has a strong effect

on the patterns of flow and sediment transport through a bend and, thus, on the meander-

ing process. In Chapter 4, I explain a new model of river meandering based on the hypoth-

esis that "topographic steering" [Dietrich and Smith, 1983] is the major physical control

on stream bank erosion. I show the model results and draw comparisons with the findings

in Chapter 3.

In Chapter 5, I return to the problem of landscape evolution modeling. The aim is

to simulate the evolution of valleys and streams as long as several kilometers on the scale

of millennia for alluvial streams or millions of years for bedrock streams. I explain a new

landscape evolution model that incorporates the meandering model on an irregular, flexi-

ble grid and show some synthetic results of the integrated model.



The present work leaves some questions unanswered relative to nature and the two

new models. In Chapter 6, I explore the directions of future work and discuss possible

improvements to the river meandering model. The landscape evolution model is under

active development, and I address the direction of that development and explore some

interesting experiments, especially with regard to meandering, that could be done with the

fully developed model. I also address the subject of model verification through field stud-

ies. Finally, I discuss the implications of the whole study and conclude in Chapter 7.
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Chapter 2

Literature Review

This chapter will review previous work on the subjects of landscape evolution and river

meandering. In my review of the landscape evolution literature, I will address some of the

fundamental processes which remain unaddressed by the models. Specifically, I will

address the treatment of geomorphic processes in the context of the fluvial-dominated

landscape and review the literature on the subject of river meandering.

2.1 Landscape Evolution

The study of landscape evolution has progressed rapidly within the past decade or so.

Landscape evolution models have attained general acceptance only recently and can now

model relatively large landscapes relatively quickly, but the suite of modeled processes has

not changed much since Ahnert [1976], except for a few recent examples which I will

highlight in the following review. In this review of landscape evolution modeling, I focus

on previous models' capabilities to represent various landscape processes and give less

attention to the scientific results of the model studies.

Water, ice, wind, gravity and biogenic activity may all act as agents of, or forces

behind, sediment transport and, thus, landscape evolution. Aside from glacial and related

processes, ice is responsible for diffusional transport by frost heaving and physical weath-

ering by frost shattering. Wind is responsible for abrasion erosion, soil stripping, loess

deposition and diffusional transport on hillslopes by tree throw. The biogenic activity of



burrowing mammals also produces diffusional transport [Black and Montgomery, 1991].

Gravity transport in river basins includes soil creep and mass wasting processes such as

rockfall [Carson and Kirkby, 1972; McKean et al., 1993] and landsliding [Montgomery

and Dietrich, 1994]. Fresh water transport in river basins may take several distinguishable

forms: rainsplash, overland flow, groundwater sapping, and fluvial processes, including

channel flow. Overland flow, sapping, and landsliding may cause erosion and initiate a

channel [Dietrich et al., 1993; Montgomery and Dietrich, 1988, 1989, 1992].

Various studies of sediment transport mirror greatly disparate spatial and temporal

scales of sedimentary processes. On the one hand, the finest spatial and temporal scales (<

1mm, < 1 sec.) are required to study the entrainment and motion of sediments in turbulent

flow (e.g., Tetzlaff and Harbaugh, 1988; Slingerland, et al., 1994). On the other hand, the

evolution of fluvial landscapes and sedimentary basins takes place on domains as large as

thousands of square kilometers and over periods as long as hundreds of millions of years

[Young and McDougall, 1993].

Gilbert [1877] recognized that the simultaneous interaction of many processes

form a landscape in dynamic equilibrium as opposed to Davis's [1909] geographic cycle

of uplift and erosion. Gilbert [1909] saw that the local differences in form are due to dif-

fering process dominance. For example, he recognized that the change from convexity to

concavity in the landscape was due to changes in process dominance from hillslope diffu-

sional to advective fluvial processes. Later, Hack [1960] introduced the concept of

dynamic equilibrium as a steady state in which uplift exactly balances erosion such that

elevations remain constant in time. In this work I use a less restrictive definition of



dynamic equilibrium such that elevations at a site may change, but on the scale of the land-

scape the processes building and eroding the landscape are in equilibrium.

It was not until Smith and Bretherton [1972] that the issue of process dominance

was addressed in a quantitative model. They found that perturbations of an inclined plane

introduced instabilities due to the convergence of flow. This instability allowed advective

transport to outpace diffusive transport and, thus, form a channel network. Their work was

somewhat flawed, however, in that their results implied an infinite dissection of the land-

scape.

Kirkby [1971] and Carson and Kirkby [1972] introduced a simple profile model of

hillslopes in which the sediment flux per unit width is a function of the distance from the

divide and the local slope:

qs o xmSn (2.1)

where x is effectively a surrogate for discharge. Later profile studies have built

upon the above simple model by adding functions for soil production and considering the

effects of spatial and temporal variations in climatic forcing [Kirkby, 1989]. Subsequently,

three-dimensional landscape evolution models have built upon the above equation by

including two basic terms in a sediment flux equation dependent on drainage area (analo-

gous to x above) and local slope, one term for advective transport (m > 0 and n > 0) and

one term for diffusive transport (m = 0 and n = 1).

Vanguard among landscape evolution models are Ahnert [1976] and Cordova, et

al. [1982]. Ahnert [1976] modeled regolith production and diffusional, mass wasting, and



advective transport processes, and Cordova, et al. [1982] modeled explicitly fluvial trans-

port processes, both on a two-dimensional grid. Ahnert [1976] modeled transport from a

point to all downhill points according to the discharges and slopes in each direction, while

Cordova, et al. [1982] collected flow and sediment from all upstream points and sent flow

and sediment to only the downstream point with the steepest slope. After these works,

progress in the modeling of landscape evolution was hindered by the lack of a quantitative,

field-based understanding of the processes shaping the landscape and, on a more practical

note, sufficient computing power to model landscapes on grids larger than several points

per side.

Montgomery and Dietrich [1988] brought the issue of channel initiation into the

general consciousness, and Montgomery and Dietrich [1989] followed up on that earlier

work with a thorough field study of channel initiation processes, including overland flow,

shallow landsliding, and seepage erosion. Montgomery and Dietrich [1989] addressed the

issue of what defines landscape scale and derived an alternative approach to defining

drainage density in terms of channel head source basin length.

Willgoose, et al. [1989, 1991] developed a landscape evolution model, SIBERIA,

in which transport in channels had greater capacity than non-channel transport. Channels

were explicitly defined with an activator function. The channel activator was a separate

governing partial differential equation which extended the channel network via headward

growth according to the value of a threshold criterion dependent on the drainage area and

local slope at a point. The latter slope dependence markedly distinguished the activator

from the headward growth model of Howard [1971]. Montgomery and Dietrich [1992]



used mapped channel head locations to empirically define a topographic threshold similar

in form to the activator function.

Dietrich, et al. [1992] developed a graphical technique to define spatial variation in

process dominance and divided the landscape into areas prone to channel instability due to

runoff and stable areas dominated by diffusion processes. Tarboton, et al. [1991, 1992]

developed a similar technique for differentiating channels and hillslopes in digital eleva-

tion models (DEMs), but the method was not tested against mapped channels. Ijjasz-

Vasquez, et al. [1992] used a saturation from below mechanism for channel initiation in

the SIBERIA model. Dietrich, et al. [1993] addressed the question of whether thresholds

for runoff generation or slope failure better defined the locations of known channel heads.

They found that a threshold based on a critical shear stress due to saturation overland flow

was better than one based on a threshold for landslide initiation at predicting channel head

locations when applied to real landscapes. Montgomery and Dietrich [1994] derived and

tested a model of pore pressure-induced shallow landsliding by combining the infinite

slope stability model for shallow soils with a simple expression for subsurface flow in

steady state. They were successful in predicting the locations of some mapped landslide

scars.

Howard [1994] compared the effects of different hillslope processes, and Tucker

and Bras [1998] recently incorporated many channel initiation and hillslope processes in a

landscape evolution model in order to examine the differences among landscapes pro-

duced by the various processes. Howard [1998] recently modeled a system in which resis-

tant bedrock is mantled by soft regolith which is in turn covered by resistant vegetation



and investigated gullying in response to disturbances in the vegetation layer. Moglen and

Bras [1995] investigated the effect of a spatially heterogeneous erodibility and calibrated

the model to natural landscapes with a simple detachment-limited advection-diffusion

model. They found that heterogeneity led to patterns of drainage aggregation that were

more circuitous and more realistic than the model networks produced in the homogeneous

case. Rosenbloom and Anderson [1994] used a landscape evolution model with diffusion

limited by regolith production on hillslopes and detachment limited erosion in channels to

model the formation of marine terraces and calibrated the model to a site in California.

Tucker and Slingerland [1994, 1996, 1997] developed the Geologic, Orographic Land-

scape Evolution Model (GOLEM) with the above processes and both bedrock and alluvial

channels to model escarpments, fold and thrust mountain belts, and the effects of climate

change on drainage basins.

Several other landscape evolution models are noteworthy here. Chase [1992]

developed a "precipiton" model in which parcels of water are placed in random locations,

routed downstream, and allowed to erode or deposit sediment along the way. This model is

similar to that of Beaumont, et al. [1992]. This model is really only valid if the governing

equations for sediment transport are linear in discharge because flow cannot aggregate,

i.e., only one pixel generates flow during a given iteration. Beaumont, et al. [1992] and

Kooi and Beaumont [1994] also incorporated orogenic influences on rainfall and intro-

duced a reaction length scale such that entrainment and deposition as calculated at a single

point are potentially spread over more than one point along the channel. Braun and Sam-

bridge [1997] developed a model on a triangulated irregular network (TIN). In this model,

points can be added, e.g., to resolve steep slopes, and points can be moved according to



simple rules mimicking tectonic motion. Gasparini, et al. [1997] incorporated sediment

with multiple grain sizes in a landscape evolution model by combining the sand and gravel

transport model of Wilcock and McArdell [ 1993] with Tucker and Slingerland's [1994]

GOLEM. They found that even in dynamic equilibrium drainage basins exhibited down-

stream fining and the changes in texture had a large effect on basin stream profile concav-

ity. This effect was recognized long ago by Hack [1957]. Dunne and Aubrey [1986]

attempted to model the effect of different grain sizes and reported qualitative agreement

between model and experiment, but they abandoned the effort because they were unable to

reproduce the experimental values of sediment transport due to the sensitivity of the

model.

Another group of landscape models takes a more rules-based approach. For exam-

ple, Rodriguez-Iturbe, et al. [1992] evolved topography and stream networks according to

optimality criteria. These optimal channel networks, or OCNs, indicate that minimization

of total network stream power is sufficient to produce networks resembling natural ones.

This approach is essentially statistical mechanics applied to river basins, whereas the

present approach addresses the mechanics of specific landscape processes. Rinaldo, et al.

[1995] used a model with diffusive hillslope transport and detachment-limited advection

according to a critical shear stress threshold to study changes in drainage density with cli-

mate. They found that a lower threshold and constant diffusion strength led to greater

drainage density.

As I will show in later chapters, lateral channel migration is an important factor in

the evolution of the landscape, but no landscape model has incorporated this fundamental



process. In fact, no one has even considered the quantitative effects of lateral migration on

drainage basin form beyond the recognition that it can widen valley floors and produce

characteristic forms such as terraces [Merritts, et al., 1994], bluffs, and slip-off slopes. A

model incorporating lateral channel migration, or meandering, is required to address the

interaction of meandering and other landscape processes and is the major goal of the

present work.

2.2 River Meandering

Schumm, et al. [1987] illuminated some of the conditions necessary for the devel-

opment of stable meanders. They experimented with meandering in an initially curved,

experimental "bedrock" channel. They found that clear water flow incised an inner chan-

nel at the inside of the bend. With the admixture of bedload sediment to the incoming

flow, however, the channel migrated laterally and incision slowed. They observed that the

bedload material formed a transversely sloped point bar which steered the experimental

stream's erosive energy toward the outside bank. They concluded that point bar-forming

bedload is a necessary condition for meandering in a channel with cohesive banks.

Leopold and Wolman [1960] noted that meltwater rivulets on ice develop meanders in the

absence of bedload, but they did not study the mechanism responsible for this develop-

ment.

Another set of experiments by Schumm, et al. [1987] revealed that an initially

straight channel in cohesionless material formed a "meandering thalweg" pattern during a

stage prior to the development of a braided pattern. However, when they mixed cohesive

material with the inflow to the meandering thalweg channel, the deposition of the cohesive



material stabilized the point bars to form a floodplain, and the meandering thalweg

became a stable meandering channel. They concluded that the conditions necessary for the

development of a stable meander pattern, whether bedrock or alluvial, were: a) the pres-

ence of bedload ample enough to develop a point bar and to redirect a significant portion

of the stream's energy toward the outside bank; and b) a mechanism or process providing

bank stability, such as cohesive bank material, bank stabilizing vegetation, or a cohesive

suspended load to deposit on and stabilize point bars. The recent experimental results of

Smith [1998] support these conclusions. When the above conditions are met stable point

bars may form that steer the high velocity flow to the outside bank. In the case of zero

incision, such point bars accrete to form a floodplain which resists the formation of sec-

ondary channels or chutes that, in the extreme case, would lead to braiding.

Dietrich and Smith [ 1983], Dietrich and Whiting [ 1989], and Nelson and Smith

[1989b] showed that the flow and boundary shear stress fields in meander bends are

strongly affected by the presence of point bars, a phenomenon they called topographic

steering. Dietrich and Smith [1983] found that "[florces arising from topographically

induced spatial accelerations are of the same order of magnitude as the downstream

boundary shear stress and water surface slope force components." In fact, some of the

results of Dietrich and Whiting [1989] showed that the forces arising from topographic

steering were of greater magnitude than the water surface slope force component. Nelson

and Smith [1989b] modeled flow and sediment transport in a channel bend with an ini-

tially flat bottom. Their modeling experiment showed, with the growth of the point bar, the

corresponding development of a region of high boundary shear stress near the outside

bank.



Many authors have modeled meandering [Ikeda, et al., 1981; Parker, et al., 1982;

Parker 1983; Parker et al., 1983; Beck, 1983; Blondeaux and Seminara, 1985; Johannes-

son and Parker, 1985, 1989a, b, c; Parker and Andrews, 1986; Parker and Johannesson,

1989; Crosato, 1990; Howard, 1992; Seminara and Tubino, 1992; Garcia, et al., 1994] by

linearizing the equations of flow and sediment transport such that they afford a tractable

solution for the near-bank downstream flow velocity as a function of the downstream

coordinate. Higher velocity near the bank corresponds to larger bank shear stress because

that shear stress is proportional to the lateral gradient of downstream flow velocity near

the bank; higher near-bank velocity means a greater velocity gradient. These models also

assume that bank erosion is a detachment-limited process [Howard, 1994]. Models of river

meandering based on the linearized flow equations (LFE models) produce realistic mean-

der bends [Howard, 1992] and have proven useful in predicting channel migration in some

cases [Johannesson and Parker, 1985] but with mixed results in others [Garcia, et al.,

1994]. The models of Blondeaux and Seminara [1985] and Johannesson and Parker

[1989a] revealed the existence of complex feedbacks between flow and bed topography.

Other authors [Smith and McLean, 1984; Nelson and Smith, 1989a, b] have devel-

oped "two-plus"-dimensional channel flow and sediment transport models using depth-

averaged equations for the bedload transport and an assumed vertical velocity profile for

the suspended load transport. These numerical models are more detailed than LFE models,

and, as mentioned above, they show that topographic steering greatly affects flow and sed-

iment transport in bends. Nelson and Smith [1989b, p. 350] point out that, to deal with

bank erosion and meandering, their model would need to include "both consideration of



the lateral diffusion of momentum [at the bank] by turbulence and the characterization of

bank roughness."

Howard [1992] noted four constraints on the rate of bank erosion:

These constraints are, or may be, sequentially linked, so that
the slowest among them controls the overall rate.

(1) The rate of deposition of the point bar.

(2) The ability of the stream to remove the bedload compo-
nent of the sediment eroded from the bank deposits via a net
transport flux divergence.

(3) The ability of the stream to entrain sediment in situ or
mass-wasted bank deposits.

(4) The rate with which weathering acts to diminish bank
sediment cohesion to the point that particles may be
entrained by the flow or bank slumping may occur.

Howard [1992] developed an erosion law based on near-bank shear stress and con-

cluded that it was most applicable in the detachment-limited erosion of cohesive banks

(constraint 3). Such a law may also be applicable in the case of bedrock, where the global

rate of bank erosion may be limited by the weathering rate (constraint 4) which may, in

turn, be independent of other channel processes, while the bank erosion at a specific point

may be dependent on the relative ability of the near-bank flow to detach bank material.

Howard [1992] used the Johannesson and Parker [1989a] model to simulate the

long-term evolution of meandering channels and floodplain topography. Following the

reasoning of other authors [Beck, 1983; Johannesson and Parker, 1985; Crosato, 1990;

Garcia, et al., 1994], Howard [1992] expressed the near-bank flow velocity and channel

depth in terms of linear perturbations on the mean values; in the model, the rate of bank

erosion is proportional to the velocity perturbation, and the initial floodplain elevation is



found from the depth perturbation. Howard [1992, 1996] developed this model further by

including floodplain deposition as a diffusional process [Pizzuto, 1987] and chute forma-

tion as a stochastic process [Howard, 1996].

The above work has done much to further the understanding of the meandering

process, but a key question is left unanswered; that is, how important is the effect of

strongly nonlinear topographic steering to meander evolution in light of the success of lin-

ear and weakly nonlinear models? The weakly nonlinear approach does address nonlinear

effects but only for small curvature and within a small neighborhood of "resonance", or

the meander wave number at which the linear solution becomes unbounded. Despite much

evidence that topographic effects are strongly nonlinear, almost all models use similar lin-

ear or weakly nonlinear approaches. Two recent exceptions are Droste [1996] and Imran

and Parker [1997], but these models are still too computationally slow to model channel

evolution over geologic time, especially in the context of an entire landscape.

A new approach combining strong nonlinearity and computational efficiency is

called for to address nonlinear effects over long channel courses and times. Strong nonlin-

earity is required in order that the model's application is not limited to bends with small

curvature and, therefore, after short times. Computational efficiency is required to incor-

porate the model in a landscape-scale model. To meet both of these requirements, I must

determine the essential physics required to model meandering. Once the new meandering

model is developed, I must address the proper coupling of the meandering channel and the

landscape where they meet, at the channel bed and banks. For a full coupling, sediment

input to the channel from the surrounding landscape should also be addressed, but a thor-



ough treatment of this issue is beyond the scope of the present work. In order to provide

bases for comparison of both the meandering and coupled models to natural streams and

landscapes, I first investigate the morphology of the latter natural systems.
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Chapter 3

River Meandering in Nature

In this chapter I report results and observations from a study of natural meandering rivers.

This study was motivated in part by the modeling study presented in the following chap-

ters. I needed to ask the question: How do I judge the success or failure of a new river

meandering model and its incorporation in a landscape evolution model; what questions

remain unanswered? what phenomena unexplained? Included in this chapter are a field

study in Maine and the Ozarks of Arkansas and Missouri and remote studies of the Missis-

sippi floodplain, the Schoharie Creek drainage basin in the Catskills of New York, and

Alaskan meandering stream channel planforms.

3.1 Introduction

3.1.1 Meandering and the Landscape

Meandering streams are familiar features of the landscape. Though the valleys of

incising meanders may be quite narrow, meandering streams typically occupy relatively

flat valley floors, as in the case of Schoharie Creek in New York, shown in figure 3.1. Lat-

eral channel migration may flatten the valley bottom by forming a strath surface if the

channel erodes laterally but not vertically. Often meandering streams are characterized by

net deposition and aggradation, and these alluvial deposits may partially fill the valley, and

their surface may form a relatively flat fill surface.



Meandering streams may also degrade and incise the landscape. If the migration

rate is large with respect to the rate of incision, the stream may cut a flat-bottomed swath

through the former fill or strath. Cycles of cutting and filling may create a series of cut and

fill terraces. Cycles of cutting and strath formation may form a series of strath terraces.

Often the two types of terraces are found in the same valley [Meritts, et al., 1994]. If the

migration rate is small relative to the incision rate, then the stream forms incising mean-

ders. As opposed to the point bars and cut banks formed on strath and fill surfaces, incis-

ing meanders have slip-off slopes and bluffs, respectively, as on the Buffalo River in

Arkansas, shown in figure 3.2.
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Figure 3.1: Surface with contours at 50 meter intervals of elevation from the 30 meter-
horizontal-resolution digital elevation model (DEM) of the Hunter, NY, 7.5' quadrangle.
Shown is part of the Schoharie Creek basin along the main channel; view is downstream
and to the west.
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Figure 3.2: Visualization of Ponca, AR, 7.5' DEM. Elevation range of the DEM is 260-

739 meters; horizontal resolution is 30 meters.

Even in the absence of terraces, slip-off slopes, and bluffs, meandering streams can

form complicated floodplain topographies. As channels erode at the outer banks of bends,

they deposit material to form the point bar at the inner banks. Floods deposit not only fine

sediments from suspension on the floodplain but also coarser sediments from bedload,

often in floodplain channels. Such channels are scoured by flood flow. Thus, floodplain

topography is the result of lateral and vertical accretion and scour in floodplain channels.



These floodplain channels may themselves meander. Channels migrate to form meander

loops that eventually cut off to form oxbow lakes. Thus, the hydraulics of channel and

flood flow can create a complex floodplain topography.

Other features of meandering streams are not as well understood as those

described above. Scroll bar topography, or the series of concentric curved ridges and

swales on the floodplain, is as ubiquitous as are meander loops and oxbow lakes, but scroll

bar topography is not explained by the simple set of processes described above. An exam-

ple of scroll bar topography on the Mississippi River floodplain is shown in figure 3.3.

Figure 3.3: Red Leaf, AR, 7.5' quadrangle DEM. Mississippi River (blue) flows toward
observer.

Several authors have noted the existence of compound bends, or bends with parts

that have opposite curvature (see figure 3.4), as opposed to simple bends that have curva-

ture of the same sign throughout. Compound bends also have familiar, characteristic

shapes, such as the bend shown in figure 3.4, and, therefore, are not likely the result of

bank heterogeneity or some other stochastic process.

Another important part of the meandering system is the eroding channel bank. The

mechanisms of bank failure and the forms created by that failure affect the shape and size



of the meander bend by defining both the channel's migration pattern and the smaller fea-

tures of the bank.

Finally, I should reexamine the role of meandering in the landscape. Though the

characteristic forms of flat valley floors and steep valley sides or slip-off slopes and bluffs

are recognized, beyond that qualitative recognition the effect of meandering on the land-

scape is often ignored in the interpretation of the slope-area relationship, i.e., local slope

plotted against contributing area at each point in a discretized drainage basin from a DEM.

Figure 3.4: Photograph from space of a tributary to the Amazon River, flow from top to

bottom, channel highlighted.

Also, the mechanism of downstream valley width variation is not well understood.

Faster channel migration with respect to the incision rate will lead to a wider, flatter valley

bottom. But, what controls these relative rates? Changes in valley width along a stream are

commonly observed to correspond to changes in lithology. Valleys may be wider where

the valley walls are more erodible because greater bank erodibility will lead to faster

migration for the same bank shear stress. It is also possible that changes in lithology may

lead to changes in the magnitude of that shear stress. In Chapter 2, I discussed topographic

steering, or the role of bedload in forming bars that, in turn, steer the flow toward and,

thus, increase the shear stress at the bank. Differences in lithology may correspond to dif-



ferences in bedload, e.g., in the amount or particle size distribution. In turn, different sizes

and types of bedload may lead to different bar forms and, thus, magnitudes of topographic

steering. An increase in the latter magnitude would increase the lateral channel migration

rate and, possibly, the valley width.

In this chapter, I present a study addressing the above issues. The focus is on mor-

phologic, rather than hydraulic, measurements and indicators of meandering process

dynamics. The study includes rivers and streams in Alaska, Arkansas, Maine, Missouri,

and New York, and uses both remote and field data. The objective is to develop both an

understanding of the mechanisms active in meandering streams and a methodology for

measuring the morphologic effects of these mechanisms. In later chapters, I draw on the

results of this chapter in order to assess the results of the new river meandering and land-

scape evolution models.

3.1.2 Compound Bend Formation

As noted parenthetically above, I define compound bends as bends that evolve

from simple bends to develop a curvature reversal in the course of the bend. Brice [1974]

documented the formation of compound bends on the White River, Indiana, though the

above definition is slightly different from Brice's. He defined a simple meander loop as

"[having] one segment of constant curvature whose length exceeds its radius" and a com-

pound loop as "[including] two or more simple loops, whose curvature is commonly

directed toward the same side of the river." Both definitions, his and the present one, usu-

ally agree and do involve some subjective judgment to distinguish between a compound

bend and a series of simple bends. Brice [ 1974] noted that compound loops "demonstrably



evolve from simple loops," and the present definition of compound bends follows from

this observation.

Two mechanisms, cutting off and compound bend formation (see figure 3.5), are

both important for the development of complex meandering stream patterns. Bends are cut

off when the channel bypasses the bend by seeking a shorter path across the floodplain. As

a result of cutoffs, the meander axis shifts to one side or another at different locations, and

the channel course becomes erratic. Cutoffs also produce new smaller bends relative to the

larger loops which remain (see figure 3.5(a)).

(a)
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Figure 3.5: Illustration of two mechanisms which influence meander belt complexity: (a)
cutoffs and (b) compound bend formation.

As a rule, simple bends that become compound first develop a middle section of

low curvature. Such bends might be compound under Brice's [1974] definition, but under

the present definition the curvature must actually reverse, or change sign. Some distur-

bance initiated upstream of the bend, such as that investigated in the following sections,

leads to migration that reverses the curvature where it was small (see figure 3.5(b)) and,

therefore, makes the bend compound. An example of a typical compound bend shape from

the Amazon River basin is shown in figure 3.4. In some cases, the section with reversed

curvature may continue migrating in that reverse direction such that the compound bend



separates into three distinct small bends (see figure 3.5(b)). The result of such separations

is that the size, shape, and orientation of bends becomes more irregular in general, as in

figure 3.5(b). Note that the initial bends in figure 3.5(a) and (b) are differently shaped and

that the different shapes are indicative of their different evolution.

The bend separation that often follows from compound bend formation increases

the time over which prior conditions are reflected in present forms. In the absence of com-

pound bend formation, bends grow until they cut off, either by chute formation or the

breaching of the thin neck connecting the point bar to the rest of floodplain. These mecha-

nisms are known as chute and neck cutoffs, respectively [Howard, 1992]. Cutoffs essen-

tially erase the old bend because the new channel bypasses the old bend completely.

However, as explained above, bends may also become compound and separate

rather than cutting off, and this process may be repeated in the bends resulting from the

initial compound bend formation. In such cases, the shape of the first bend is reflected in

the course of a large, multi-bend loop. This loop will eventually cut off, but the initial form

will persist over the time it takes for each of the bends to grow and divide, much longer

than the time for a single bend to grow and cut off in the absence of compound bend and

multi-bend loop formation. If the channel form persists for a longer time, it stands to rea-

son that parts of the floodplain also remain undisturbed more predictably and for a longer

time than if the first bend had cut off rather than divided.

Howard and Hemberger [1991] found that their model did not simulate "the com-

pound or cumuliform forms noted by Brice [1974] and Hickin [1974]" and reasoned that

these forms might indicate the operation of "two distinct processes...caused by stream cur-



vature. .. [and] the formation of alternate bars." It is also possible that compound bend for-

mation is the result of strongly nonlinear dynamics which are not accounted for in their

linear model formulation. I will address the latter hypothesis in Chapter 4. This chapter

will address the evolution of compound bends from simple bends and the effect of com-

pound bend and multi-bend loop formation on meandering channel planforms over many

bends.

3.1.3 Scroll Bar Topography

Scroll bar, or ridge and swale, topography is a familiar feature of meandering river

floodplains, but the mechanism responsible for this phenomenon has been studied only

rarely, as in McKenney, et al., [1995]. The latter study determined that patterns of vegeta-

tion colonization led to observed ridges and swales on gravel bars in the Ozarks of Mis-

souri and Arkansas. However, these gravel bars are not typical of all scroll bar topography.

Scroll bar topography is such a common feature of meandering streams in a wide variety

of climates that I wish to determine whether it is related to meandering process dynamics

and, if so, how.

Several hypotheses for the mechanism forming scroll bar topography exist in the

literature. Parker [1996] proposes that "highly elongated, partially beached oblique

dunes" form observed scroll bars, and this mechanism is consistent with experimental

observations [P. Whiting, personal communication, 1996]. I have observed in the field that

longitudinal dunes do form ridges on sandy point bars, but the ridges' wavelength is, in

general, smaller than that of scroll bars observed on the floodplain, at least at the field sites

I have visited.



Figure 3.6: Illustration of scroll bar hypothesis. Channel migrates in direction of arrow.

Dark gray area with diagonal lines represents point bar deposits with former channel bed

surfaces. Light gray area represents present channel cross-section; dashed rectangle repre-

sents the rectangular channel cross-section with respect to which the channel bed is

sloped.

Another hypothesis is that scroll bar topography is the result of alternating long

stable (i.e., channel not migrating) periods during which natural levees form relative topo-

graphic maxima and brief unstable (i.e., channel migrating rapidly) periods during which

levees do not have time to form and so result in topographic minima. Such a mechanism

should produce scroll bars without a characteristic wavelength unless the rapid migration

occurs over similar spatial durations from one occurrence to another, though such similar-

ity is not recognized in the literature. A related hypothesis is that episodic bank failure,

i.e., a short period of rapid bank migration, leads to episodic point bar accretion. The large

sediment load resulting from the bank erosion leads to a large amount of deposition during

the point bar accretion such that the elevation of the new accretion is relatively high.

I propose the hypothesis that scroll bar topography is the result of systematic spa-

tiotemporal variations in transverse bed slope, approximately proportional to local channel

curvature [Dietrich and Smith, 1983; Ikeda, 1989]. Downstream variations in transverse

bed slope are responsible for point bar-pool topography of meandering stream beds. This

hypothesis is illustrated in figure 3.6. Leopold and Wolman [1960] observed floodplain

stratigraphy in a trench on Watts Branch, MD, and found that their "observations

[appeared] to confirm the...hypothesis that point-bar building is the primary process of



flood-plain development in flood plains of this type." According to the present hypothesis,

the height of the point bar and, thus, the floodplain surface elevation are determined by the

transverse bed slope. When the latter slope is large (or small), the point bar is high (or

low), and the pool is deep (or shallow). As the channel migrates the channel curvature and,

thus, point bar height may vary. If these variations are oscillatory and periodic or quasi-

periodic, then scroll bar topography may result from the lateral accretion of point bars of

varying height.

Kinoshita [1987] found stratigraphy resembling that idealized in figure 3.6 in a

trench across the Teshio River, Japan, floodplain and perpendicular to the inner bank of

the channel. According to Hasegawa [1989, pp. 220-221],

Kinoshita...deduced that a scroll bar may be formed from
an embryonic sand bar (at the core of each scroll bar). Each
such sand bar is generated by the deposition of suspended
sediment swept inward due to the action of large-scale,
near-bank separation vortices stretching downstream from
the apex of an inner bank.

Unfortunately, the latter study included neither assessments of channel migration rate and

curvature where and when the deposits were made nor explanations of how the deposition

mechanism was deduced.

In this chapter, I report observations and measurements of natural scroll bar topog-

raphy. I found the spectral power density of scroll bar topography to determine whether it

is periodic or merely quasi-periodic. A finding of periodicity would tend to contradict the

hypothesis that scroll bar topography is the result of constant levee deposition and ran-

domly fluctuating migration rates, or vice versa. The scroll bar topography spectra should

also allow quantitative comparison of natural scroll bar topography and model results.



McKenney, et al. [1995] found that deposition and scour during floods increased the relief

on gravel floodplains of Ozark streams. I examined the stratigraphy of floodplain deposits

on a sand-bedded stream to find whether fine flood deposits steepened or smoothened the

relief of the deposits from lateral accretion. I also hoped that the stratigraphy might help to

reveal the mechanism of scroll bar topography formation. Finally, I measured vegetation

stem and trunk diameters to ascertain relative rates of lateral point bar accretion. Detailed

examination of scroll bar topography was limited to relatively low-energy, unconfined,

single-thread meandering streams, but observations at some of the sites studied by McKen-

ney, et al. [1995] were also included to find any similarities or differences between the

scroll bar topography on the floodplains of the different stream types.

3.1.4 Bank Failure and Roughness

The mechanism of bank failure can have a large influence on channel planform

because different mechanisms can lead to different patterns of bank retreat and, thus,

channel migration. Field observations of macro-pores and slump blocks indicate that, in

some cases, seepage erosion is the dominant mechanism of bank erosion. This process

leads to faster bank retreat not where bank shear stress is greater but, rather, where the

groundwater head gradient is greater. Therefore, scour and seepage erosion, respectively,

produce dissimilar channel planforms [Pederson and Cornwall, 1998]. Some models of

meandering (e.g., Crosato, 1990) include a bank height-, or near-bank depth-dependent

term in the equation for lateral channel migration under the hypothesis that the high banks

bordering pools are more subject to seepage-induced failure following decreases in flow

stage. However, most models of river meandering assume that the bank migrates as a

result of scour, i.e., the pattern of bank migration rate mimics the pattern of bank shear



stress or, in most models, the magnitude of the near-bank velocity, and several studies of

bank erosion support this assumption (e.g., Hasegawa, 1989; and Pizzuto and Meckeln-

burg, 1989).

The flow affects the form of the bank through scour, and the form of the bank in

turn affects the flow through bank roughness. Thorne and Furbish [1995] studied the

effect of bank roughness on the flow through a meandering channel bend. They found that,

after removing vegetation and making the outer bank smooth, the high velocity flow core

approached the outside bank more closely and made its closest approach further down-

stream. They found that bank roughness limited the approach of the core by increasing the

width of the rough turbulent flow (RTF) boundary layer. The size of bank roughness ele-

ments determines the width of that boundary layer, the rate of turbulent energy dissipation,

and the length of bank over which that energy is dissipated through bank shear stress and

erosion. In turn, bank erosion and the bank failure mechanism influence bank morphology,

bank roughness element size, and meandering channel planform. Therefore, characteriz-

ing the bank is integral to understanding the meandering process.

I made observations and measurements of bank roughness elements and the for-

ested bank in general on the outside bank of a meander bend to discover the relationships

among bank failure, roughness scale, and their respective mechanisms. For a forested

bank, I expected the trees to play an important role but was unsure of the extent and nature

of that role. I also made observations and measurements to find the controls on and mech-

anisms behind an evolving neck cutoff. Partly, the latter observations address whether

chute and neck cutoffs are fundamentally different or not. Chutes are formed by floodplain



scour. Are neck cutoffs formed by scouring flood or main channel flow, i.e., are they

eroded from the top down or from the sides in? This question leads to another: What con-

trols the lower limit on neck width?

3.1.5 Study Sites

To study compound bend formation, scroll bar topography, and bank roughness

elements as part of meandering I studied the meandering process in isolation from other

processes and landscape-imposed controls. On the other hand, I also wished to study the

interaction of meandering and other landscape processes. For isolation, I studied uncon-

fined, actively meandering streams. These include: the Mississippi River below its conflu-

ence with the Arkansas River; the Ellis River, a tributary to the Androscoggin River in

western Maine (see location maps, figure 3.7); and several streams in Alaska. I conducted

only remote analyses of the Mississippi River and the Alaskan streams and both remote

and field studies of the Ellis River.

The Red Leaf, AR, quadrangle, shown in figure 3.3, is on the Mississippi River (in

blue in figure 3.3) downstream of its confluence with the Arkansas River and covers part

of the point bar surrounded by an oxbow lake formed by a neck cutoff on the Mississippi.

The channel is approximately 1000 meters wide. This area is part of the Mississippi River

delta and has relief of the same order of magnitude as the channel depth, -~ 15 meters. The

floodplain covered by the Red Leaf, AR, quadrangle has scroll bar topography and some

floodplain channels. The part of the floodplain surrounded by the oxbow lake is isolated

from the main river channel by a manmade levee system visible in figure 3.3. The scroll

bar topography has lower relief, -5 meters, than the levees, the main channel, and the

floodplain channels.
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Figure 3.7: Location maps of the Ellis River, ME.

The Ellis River forms both compound bends and multi-bend loops (see figure 3.8).

Its valley has a wide, flat bottom and steep sides. Large parts of the floodplain are covered

with mostly deciduous forest, though some areas are coniferous. The latter trees are gener-

ally on slightly higher ground than the deciduous trees and larger than 20 cm in diameter.

The bed material is mostly sand but has some fine gravel, rarely larger than pea-sized. The

floodplain has hummocky, ridge-and-swale topography and many oxbows, some of which

are connected to the main channel by tie channels. The floodplain surface is composed of

silt and fine sand. Observations at the site are consistent with little or no floodplain scour.

In the historical record and the field, I observed only neck cutoffs and no chute cutoffs.

Bankfull discharge is approximately equal to the discharge with a return period of 1.5 yrs,

according to a 20-year gaging station record. This gaging station is located at the covered

bridge visible in the photo of figure 3.8 (at the only road crossing the river in the photo).

The bankfull hydraulic geometry is shown in table 3.1.



Figure 3.8: 1965 aerial photograph of the Ellis River, Maine.



Table 3.1: Ellis River bankfull hydraulic geometrya

parameter value

discharge 92 m3/s

cross-sectional area 88 m2

top width 26 m

average flow depth 3.4 m

average flow velocity 1.0 m/s

channel slopeb 0.00020 ± 0.00007

valley slope 0.00029 ± 0.00010

a. From USGS discharge measurement of April 4, 1982.
b. Slopes measured from topographic map.

Channel and valley slopes were estimated from a 1:24,000 scale topographic map

with a map wheel, though the main reach of the Ellis crosses only one contour. I estimated

the elevation at two tributary confluences by assuming the tributaries, each crossing two

contours, have constant slope on the valley floor and, thus, calculated two values of chan-

nel slope and, by measuring sinuosity over the reach, also valley slope. The channel and

valley slopes shown in table 3.1 are the means of the two estimates, and the stated uncer-

tainties are the differences between the estimates. These estimated slopes are not used in

the present analysis and are shown only for reference.

The Alaskan streams were digitized from topographic maps. Reaches were

selected that are: (a) single-threaded, i.e., not braided; (b) intensely meandering; and (c)

unconfined by terraces or valley walls. The streams are listed in table 3.2. I measured

channel widths from the maps with the digitizer at many points along each reach and list

the means and standard deviations of these measurements in table 3.2.



Table 3.2: Meandering stream reaches

stream reach

Preacher Creek

Takotna River

N. Fork Kuskokwim River, Mc.

Melozitna River

Teklanika River

Dishna River

Birch Creek

N. Fork Kuskokwim River, Me.

Innoko River

quadrangle map(s)
(all AK)

Ft. Yukon (A-2)

Iditarod (C-2)

Mt. McKinley (D-6)

Melozitna (B-3)

Fairbanks (B-5, B-6)

Ophir (C-3)

Ft. Yukon (A-2)

Medfra (B-2, B-3)

Ophir (C-3)

mean channel
width ±,

meters

31.2 + 7.0

33.9 + 12.0

38.3 ± 7.4

46.2 ± 16.0

48.0 ± 16.6

50.4 ± 13.7

57.7 ± 14.1

95.5 ± 24.1

113. ± 18.

The Current River (and Jack's Fork of the Current River) in Missouri, the Buffalo

River in Arkansas, and Schoharie Creek in New York serve to illustrate meandering in dif-

ferent settings and in interaction with other landscape processes. The first two streams are

located in the Ozarks of Missouri and Arkansas, respectively (see location map,

figure 3.9). The present study of these streams is limited to observations in the field and

from DEMs and measurements from topographic maps. Schoharie Creek is located in the

Catskills of New York. The present study of Schoharie Creek is limited to DEM analysis.

reach
length,
channel
widths

1300

650

460

990

1100

510

1160

380

370



Figure 3.9: Location map of Ozark sites.

The Buffalo River flows west to east in northern Arkansas (see figure 3.9) and is

tributary to the White River. The Current River flows northwest to southeast in southern

Missouri. Jack's Fork flows west to east, tributary to the Current River. The channels are

often confined by bedrock, especially on the Buffalo, but migrate rapidly through alluvial

deposits where unconfined. The incising meanders of the Buffalo are relatively sinuous

(see figure 3.2). New floodplains on these rivers are mainly gravel and have many flood-

plain channels. Some characteristics of Jack's Fork and the Buffalo River are shown in

table 3.3.

Schoharie Creek flows west out of the Catskills of New York, then north to its con-

fluence with the Mohawk River, tributary to the Hudson River. The headwaters have been

captured by the steep gorges of Kaaterskill Creek and other streams flowing east down the

Catskill escarpment to the Hudson River. Several studies have examined digital elevation



models of the Schoharie Creek basin, e.g., Tarboton, et al. [1991], Montgomery and Fou-

foula-Georgiou [1993], and Ijjasz-Vasquez and Bras [1995]

Table 3.3: Characteristics of Jack's Fork at the Burnt Cabin site and the Buffalo
River at the Shine-eye sitea

reach Jack's Fork Buffalo River

contributing area, km2  789 2150

average bankfull channel width, meters 75 100

average bankfull flow depth, meters 1.7 3.0

1.5-year discharge, or bankfull, m3/s 200 8 7 0b

channel slope 0.000667 0.00097

valley slope 0.0015 0.0006

geometric mean grain size of bed, mm 21.0 24.6

a. From McKenney, et al., 1995.
b. Estimated assuming same Manning roughness as Jack's Fork.

3.2 Methods

In this section I describe the methods used to study the phenomena and mechanisms

described in the Introduction. In general, I studied morphology to infer process dynamics.

3.2.1 Compound Bend Formation

To gain insight into the mechanisms which contribute to compound bend forma-

tion, I looked for examples of compound bend formation in the historical migration of the

Ellis River by examining aerial photographs spanning the period between 1943 and 1992.

I digitized the photos with a scanner, extracted the channels, and super-imposed them to

show the time evolution. This exercise revealed two examples of compound bend forma-

tion, and observations on the ground at one of the sites corroborate and complement the

remote observations.



To measure the importance of compound bend formation on channel planforms

over many bends, I analyzed the planforms of the Alaskan streams. The channel center-

lines were digitized by hand, and, to eliminate errors and bias, The digitized planforms

were corrected by visually comparing the digitized and mapped planforms and moving or

deleting points as necessary.

I developed several statistical functions with which to measure the importance and

characteristics of compound bend formation in channel planform features such as active

meander belt width and channel sinuosity. These measures are generally useful for objec-

tive characterization of meandering channel planforms. The statistical functions are based

on: (a) the relative width of the active meander belt expressed as the ratio of cross-valley to

down-valley standard deviations of the channel centerline coordinates; and (b) sinuosity of

the channel centerline. The measurements are made for all possible channel reach lengths

and expressed as functions of reach length.

The variances of the x- (down-valley) and y- (cross-valley) components of stream

point coordinates are measures of how scattered those points are along each of the axes.

The x-axis is parallel to the line fit to the reach's point coordinates by the least-squares

method. The expected variances in x and y, respectively, are

(s') = ( 1 [x(si)- gx(S, S + s')]2) (3.1)
+ N( ss+s)-'1 si E [S,S + s']

(s) = ( sss)- 1 [y(si) - gy(s, s + s')]2) (3.2)
Si E [S,S + S']



where s' is the reach length; gy(s, s+s') and gy(s, s+s') are the expected values of x and y,

respectively, for points on the channel between s and s+s', inclusive; N(s, s+s') is the num-

ber of sampled channel points from s to s+s'; and the angle brackets indicate the expected

value over all values of s. In practice, for the variances and the other measures defined

below, the expected value indicated by the brackets is calculated for a small range of scales

about s'. The relative width of the active meander belt is defined as

W(s') = (3.3)

If the cross-valley extent of the meander belt decreases relative to the down-valley extent

as reach length increases, i.e., the meander belt is longer than it is wide, then the function

W(s') will decrease as s' increases. If the mean downstream direction is independent of the

down-valley direction, such as over smaller reach lengths, W(s') will be near unity. For

longer reach lengths over which the down-valley and mean downstream directions are

similar, W(s') will decay and approach zero as valley length approaches infinity. The above

measure does have the disadvantage that the orientation of the line fit to the digitized chan-

nel points is dependent on the chosen stream reach's length and location.

The above analysis is similar to that of Matsushita and Ouchi [1989] and Ijjasz-

Vasquez, et al. [1993]. These authors used the relative power-law scaling with section

length of the x- and y-variances of detrended sections of contour lines [Matsushita and

Ouchi, 1989], river basin divides, and river courses [Ijjasz-Vasquez, et al., 1993] to deter-

mine fractal self-affinity, or lack of a characteristic scale of fluctuations. The present



method differs from theirs in that the x- and y-axis orientations are fixed in equations (3.1),

(3.2), and (3.3), i.e., the sections are not each detrended.

Sinuosity is a commonly measured characteristic of channel planform and has tra-

ditionally been reported as a single value, but that value is not always reproducible. For the

same stream, two measurements might yield different values depending on where and over

what reach length they were made. Howard and Hemberger [1991] recognized that sinu-

osity could vary according to the reach length and location and divided the total sinuosity

into three factors, the full-meander, half-meander and residual sinuosities.

Measurements developed below characterize the distribution of sinuosity measure-

ments as a function of reach length. For a range of stream lengths, I compute the mean and

variance of sinuosities measured at that length range. Sinuosity is measured between every

pair of points along the reach; the sinuosities for point pairs are binned according to the

streamwise distance between the points; and the mean and variance of the measurements

in each bin are calculated. Thus, the sinuosity mean and variance are defined as functions

of reach length:

Rs(') = ( ))  (3.4)
r(s, s + s')

2(s') = ( + s') - g S (s')) ) (3.5)

where s' is the length of the channel segment; r(s, s+s') is the straight-line distance

between the segment's end points at s and s+s'; and the angle brackets indicate the

expected value for all values of s.



Andrle [1994, 1996] developed the angle measure technique (AMT) to identify

characteristic scales and features of meandering channel planforms. Like the measures

introduced here, the AMT produces a function of reach length or scale rather than a single

number.

s3

r(s-s2 , s+s2 )

2 r(s, s+s2)

r(s, s-s2)

Figure 3.10: Illustration of the angle measure technique of Andrle [1994, 1996].

The AMT is essentially a measure of average curvature at different streamwise

scales. The method is illustrated in figure 3.10, where, at point s, for the three scales, sl,

s2, and s3 , the angles are 01, 02, and 03, respectively. For three points at equal intervals

along the channel, the streamwise length of that interval is the scale, e.g., s2 in figure 3.10,

at which I measure the angle. I draw two straight lines connecting the first and second and

the second and third points, respectively, e.g., r(s, s-s2 ) and r(s, s+s2). The supplement of

the angle between those two lines is the angle measure, e.g., 02. The smaller the angle

between the two lines, the larger the curvature and the angle measure. For example, the

angle between the lines, r(s, s-s2) and r(s, s+s2), is small, and, therefore, the angle mea-

sure, 02, at that scale, s2 , is large at point s. The opposite is true for the scales, s, and s3,



such that the angle measures, 01 and 03, are small at point s. In Andrle's [1994, 1996] orig-

inal method, for each scale he found the angle measures at 500 points, chosen at random,

and averaged those measures to find the mean angle. In a modified version of the AMT, I

measured angles for all possible distances between discretized channel points (see

figure 3.10) and locations along the channel. The angles were binned according to scale

and averaged to find the mean angle as a function of the streamwise scale:

' =(t (r(s, s- s') 2 + r(s, s + s') 2 - r(s- s', S + s')2(

2= acosr(s, s - s')r(s, s + s') (36)

Andrle [1996] found that, for the meandering streams he tested, the mean angle

was peaked at a certain scale. He reasoned that the magnitude of this peak was related to

sinuosity and the scale at which it occurred was related to meander wavelength. He also

found secondary peaks for manifestly underfit streams, i.e., where stream meanders are

smaller than the meander-like valley bends, and inferred that the secondary peaks were

indicative of the larger, valley-scale sinuosity.

The streams I measured are not restricted by the valley walls. Therefore, the new

measures and Andrle's [1996] should indicate the importance of compound bend forma-

tion by revealing the scales of multi-bend loops resulting from compound bend formation.

If compound bend formation is absent or does not lead to multi-bend loop formation, then

the measures will have only the primary channel planform scale indicators corresponding

to the meander bend length and no secondary channel planform scale indicators corre-

sponding to the length of multi-bend loops.



3.2.2 Scroll Bar Topography

At the Buffalo River and the Current River, including Jack's Fork, in the Ozarks of

Arkansas and Missouri, respectively (see figure 3.9), I observed the scroll bar-like topog-

raphy documented by McKenney, et al. [1995]. The result of these observations is essen-

tially a corroboration of their results.

For the Ellis and Mississippi Rivers, I calculated power spectra of floodplain cross-

sections ("transects"). For the Mississippi River floodplain, I used ERMapper (TM) GIS

software to extract several transects of scroll bar topography from the Red Leaf, AR, DEM

(see figure 3.3). On the Ellis River floodplain, I surveyed several transects of scroll bar

topography on the floodplain, detrended each transect by subtracting from the data a linear

least-squares fit to that data, and found the power spectra using the Lomb [1976] method

[Press, et al., 1997] for spectral analysis of unevenly sampled data. The Mississippi

transects are evenly sampled, but the Ellis transects are not, so I chose the Lomb method to

use the same method for all transects. The Lomb method produces a normalized peri-

odogram, or spectral power as a function of wave number, and significance levels of the

spectral power with respect to the null hypothesis that the data are independent, Gaussian-

distributed random values. The significance level of a value is the probability that the

value was produced by the above random process. The spectrum is not smoothed.

To examine the stratigraphy of scroll bars on the floodplain, I sampled soil cores to

a depth of one meter at some points on the Ellis transects. The cores were taken in six sec-

tions. Based on the look and feel of the samples, descriptions of the material in each sec-

tion of each core were recorded. For example, if the soil could be rolled into balls, then it



was clayey. If it was gritty like sandpaper, then it was sandy. If it was powdery, then it was

silty. I assigned each section a grain size class based on the descriptions recorded in the

field and, by this method, determined to a reasonable degree of accuracy the relative tex-

tures of the sampled materials.

Also on the Ellis, I measured shrub stem and tree trunk diameters along several

sections perpendicular to the downstream direction to estimate the relative variation in

space of lateral accretion rate on the point bar. The diameter data defines an upper bound

on the vegetation age and, by proxy, the point bar age at a point. Where the gradient of

diameters is large, the age change per distance is large and indicates a slow migration rate;

the opposite is true where the gradient of diameters is small.

3.2.3 Bank Failure and Roughness

I observed and measured bank features to determine the mechanisms and scales of

bank erosion and roughness. To find the scale of the bank roughness elements, including

slumped blocks and spaces left by slumps and failures, along the outer bank of a bend on

the Ellis River, I measured: (a) the bank roughness elements' dimensions in the cross- and

downstream directions; (b) the diameters of slumped trees; and (c), where the bank was

undercut but had not failed, the depth (cross-stream) of undercutting. Observations

included sketches and written descriptions of the bank roughness elements. For scale con-

text, I measured the dimensions of sand dunes on the bed. I also observed and measured

the dimensions of a relatively new cutoff on the Ellis.

3.2.4 Meandering and the Landscape

To detect the interactions between the landscape and river meandering, I studied

variations in valley width and the relationship between slope and contributing area. I



examined the Schoharie Creek valley as represented by 30-meter horizontal resolution

DEMs of the Hunter and Kaaterskill, NY, 7.5' USGS quadrangles. Tarboton, et al. [1991]

pieced together these DEMs, filled the pits, calculated contributing areas by routing each

pixel's contributing area downstream in the steepest single flow direction. The steepest

downhill slope for each pixel is plotted against contributing area. I also binned points

according to log-area and plotted the average slope of points in each bin against the points'

average contributing area.

On the Buffalo, changes in valley width correspond to changes in lithology. The

valley is narrow where the channel is on massive, Ordovician sandstone and wide where

the channel is on cherty, Mississippian limestone. Conventional wisdom says that, where a

valley is wider, the bedrock is weaker, or more erodible. However, it is possible that, in the

wider valley, the laterally eroding flow is more erosive by way of a mechanism that is

independent of erodibility. Both of these formations can form cliffs, but the Boone lime-

stone has a large chert component which breaks up into relatively fine gravel. The Boone

formation also has a well developed Karst system of caves and conduits.

The main channel of a river, such as the Buffalo, that has been actively incising an

uplifting plateau for sufficient time should be at or approaching dynamic equilibrium. The

fact that the Buffalo River basin has on the order of 300 meters of relief indicates that it

has probably been incising for sufficient time to approach dynamic equilibrium. If the con-

trols on channel incision, e.g., either detachment-limited or transport capacity-limited, and

the discharge are similar through different lithologies, then channels on more erodible or

transportable lithologies will have a lower slope (I address the detachment-limited case in



more detail in Chapter 5). Conversely, less erodible or transportable lithologies will have

higher slopes at dynamic equilibrium.

The controls on incision of the Buffalo are not well established, but if I assume, for

adjacent reaches through valleys of varying width, that: (a) bank erosion is a detachment-

limited process; (b) bank erosion equals lateral channel migration; (c) channel incision is

detachment-limited; (d) uplift and channel incision are, at least approximately, in dynamic

equilibrium; (e) discharge is approximately constant with respect to distance downstream;

and (f) valley width corresponds to rock erodibility; then channel slope should vary with

rock erodibility and, therefore, be greater (or smaller) where the valley is narrower (or

wider).

To test this hypothesis, I measured channel slopes from 1:24,000-scale topographic

maps in the wide valley shown in figure 3.29 and the narrower valleys, i.e., more similar to

the topography shown in figure 3.2, up- and downstream of the wide-valley reach. If the

rock forming the wide valley has greater erodibility, then, under my assumptions above,

the slope through this reach would be lower than in surrounding narrow-valley reaches.

3.3 Results
3.3.1 Compound Bend Formation

Compound bend formation is evident in the historical Ellis River channel plan-

forms, extracted from aerial photographs and overlain in figure 3.11. The 1943 (darkest

gray) channel appears too wide in a loop, later cut off, at bends 1-7 due to the effect of

direct glare in the photograph. Note the existence of multi-bend loops in the vicinity of

bends 8-13. These loops indicate that compound bend formation is an active part of the



Ellis' channel planform evolution. In figure 3.12 two examples of compound bend forma-

tion on the Ellis River are enlarged to show these cases in greater detail.

In figure 3.12(a) the time sequence illustrates compound bend formation following

a cutoff and a subsequent wave of accelerated migration. According to other aerial photos

not shown, bend 2 cut off between 1972 and 1981. Subsequently, the "new" bend 2 devel-

oped and migrated rapidly downstream. This migration perturbed bend 4 such that it is

now compound. Upon inspection of the site, I discovered that the middle, reversed section

of bend 4 has a cut bank at the inside and a small point bar at the outside of the bend, fea-

tures indicating that this part of the bend has started to migrate in the opposite direction

from the migration of the rest of the bend. This reach is unconfined by terraces or bedrock

except for the downstream end of bend 7, which is confined by bedrock. The whole area

shown is forested.

In figure 3.12(b), the rapid migration of the "new" bend 12 follows a cutoff of the

"old" bend 12 before 1943. A wave of channel migration has propagated downstream and

led to a curvature reversal in the upstream part or limb of bend 13. The migration of bend

12 may have been further accelerated following the cutoff at bend 8 and the subsequent

rapid migration of bends 8-11 after 1965. The reach is wholly unconfined. Cut banks in

this reach are generally unforested, though some have a thin line of riparian trees, and

bend 10's outside bank is forested at the downstream end.



Figure 3.11: Ellis River channels extracted from aerial photos and super-imposed.
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(a)

lOO1m
Figure 3.12: Close-ups of Ellis River, ME, channels from figure 3.11. Lighter gray ismore recent. Bends are numbered for reference. Flow is from left to right in both (a) (northto south) and (b) (west to east).

To assess the role of compound bend formation in the Alaskan streams, I applied

the sinuosity and belt width measures and modified AMT to the planforms of the streams

listed in table 3.2. The reaches are shown in figure 3.13. Normalized reach curvature is

plotted against normalized downstream distance in figure 3.14. For normalization, curva-

ture is multiplied by the channel width, and downstream distance is divided by channel

width. The curvature shown is a moving average of local curvature at three points.

Channel curvature in figure 3.14 is indicative of bend shape. If the channels were

sine-generated curves, then the curvature function would be sinusoidal, but, in fact, the

wave forms are quite jagged. Bends commonly have two pronounced curvature maxima at

the beginning and end of the bend, respectively. In between, the curvature often drops to



nearly zero for a short distance and is nearly constant at an intermediate value for the

remainder of the bend's length. In some bends, where the curvature becomes small, it

crosses zero, i.e., it reverses sign. Such bends are compound by the present definition, and

figure 3.14 indicates that these compound bends are an end member of the continuum of

typical bend shapes. As examples, a portion of the curvature plot for Birch Creek is

enlarged and inset in figure 3.14, and the part of the channel covered by the inset is out-

lined in figure 3.13. The seemingly minor details of bend shape described above are appar-

ently indicative of a mechanism that, as shown below, is important on the scale of channel

reaches many times longer than a single bend.

The sinuosity mean and variance, relative belt width, and mean angle are plotted

against reach length normalized, again, by channel width (see table 3.2) in figure 3.15.

The sinuosity means have large breaks in slope that correspond to peaks in the sinuosity

variances, changes in slope of the belt width, and peaks in the mean angle. The mean angle

peaks are consistently at lower values of reach length than the above features in the other

plots. This is explained by referring to figure 3.10, where the large angle 02 corresponds to

streamwise distance, s2, and the large sinuosity between the two points s-s 2 and s+s2 cor-

responds to a streamwise distance of 2s2 . Therefore, features of the sinuosity mean and

variance and the belt width occur at a scale apparently twice the scale of the same features

of the mean angle. There is no real difference in scale; they are simply measured differ-

ently.
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Figure 3.13: Digitized meandering stream reaches from topographic maps. Outlined part
of Birch Creek corresponds to inset in figure 3.14.
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Figure 3.15: Sinuosity mean and variance, relative meander belt width, and mean angle
plotted against normalized reach length (i.e., length divided by channel width) for the
streams listed in table 3.2 and shown in figure 3.13.

The smallest scale at which gs levels off (gS > 1), oT2 peaks, W begins to decay,

and [to peaks (collectively, channel planform scale indicators) is similar to a meander

wavelength, and the level at which gs finally levels off is the mean reach sinuosity. The

first channel planform scale indicators occur at similar scales for all of the streams, in the

range of 20-40 channel widths (20-40 b) for the first three measures. From the curvature



plots of figure 3.14, it is apparent that this scale is actually the length of a single meander

bend, or half the meander wavelength.

For many of the streams, the sinuosity rises and levels in more than one step corre-

sponding to more than one peak in Y 2 and go and convex or straight-line decay of W (e.g.,

Takotna, N.E Kusk. Mc., Melozitna, Innoko, especially). There is even some consistency

in the scales of the second peaks in cTs2 at -100 b. Takotna and Innoko have two large

peaks bracketing the 100 b scale. These secondary channel planform scale indicators cor-

respond to the scales of multi-bend loops, or the length of several bends. Their exact char-

acteristics may change over time and from stream to stream. For example, on the Ellis

River parts of two multi-bend loops cut off between 1965 and 1986, and such changes

would be reflected in the magnitudes and scales of secondary channel planform scale indi-

cators.

Multi-bend loops are different among the Alaska streams. On Birch Creek they

have irregular shapes, but the multi-bend loops of N.F. Kusk. Mc., Melozitna, and Innoko

are more clearly composed of individual, regularly shaped bends. This difference is appar-

ent in the plots of figure 3.15. For the latter group of streams, the secondary channel plan-

form scale indicators are separated from the primary channel planform scale indicators by

a significant difference in scale, and gs for N.F. Kusk. Mc. and Innoko is flat between the

primary and secondary channel planform scale indicators. The separations in scale may

indicate that compound bends on these latter streams are more likely to separate into dis-

tinct bends. That greater likelihood leads to repeated separations and, thus, multi-bend



loops. In comparison, compound bends on Birch Creek may separate into distinct bends

less often.

The measures contain more information than whether compound bend formation is

important or not. They reveal the differences in the planforms, even among those where

compound bend formation leads to multi-bend loops.

Lateral elongation is apparent in the belt width plots. Most of the W's start at their

maximum value, near one, but some rise slightly to a maximum at the first channel plan-

form scale indicator before decaying. This rise indicates lateral elongation at the scale of

the meander bend length. This effect is strongest in the most sinuous streams, Birch Creek

and Innoko River. But, Melozitna is nearly as sinuous as Birch Creek, and the effect is

entirely absent. The effect is apparent in Dishna, Birch, N.F. Kusk. Me., and Innoko.

Mean angle is not an exact measure of sinuosity-magnitudes of gs and go are not

always consistent. The highest P is for Innoko, which also has the greatest CgS, but not at

the same scale. Melozitna's go peak is much greater than N.F. Kusk. Mc.'s, but the latter

has the higher first plateau in gs . Innoko and N.E Kusk. Me. have similar first gs plateau

magnitudes, but Innoko has much greater go . The magnitudes of the secondary S increase

and go peak are also not similar. For example, compared to Innoko, the secondary increase

in LS for N.F. Kusk. Mc. is not large, but the secondary peaks in go for the latter are as

large or larger than the secondary go peaks for Innoko. Peak magnitudes of os2 and g are

not generally similar either, but I might expect the magnitudes of mean and variance to dif-

fer. For go , the first peak is always the largest; not so, as2 .



The mean angle appears closely related to belt width. Magnitude of go corresponds

to non-concavity of W Where the angle is large, W is straight or convex; otherwise, W is

concave. Comparing the plots for N.F. Kusk. Mc. with those of Melozitna, I find that the

shapes of the Is and cYs 2 plots for the two are similar, though o 2 and the maximum p S are

larger for Melozitna. The W and go plots are quite different between the two streams, but,

for each stream, W and go are similar: for N.F. Kusk. Mc., the maxima of both are small

but relatively level through the secondary channel planform scale indicators; for Meloz-

itna, the maxima of both are large and decay to low values through the secondary channel

planform scale indicators. These facts indicate that mean angle is related to both sinuosity

and meander belt width but may be more closely related to the latter. Upon inspection of

the channel planforms, I find that the apices of the longest bends on N.E Kusk. Mc. tend to

point upstream, and this fact explains the low belt width at the bend scale.

A useful observation derived from these plots is that streams may have both pri-

mary and secondary sinuosities corresponding to the single bend and multi-bend loop

scales, respectively. The mean sinuosity plots of figure 3.15 show that streams may differ

in both the primary and secondary sinuosities and that the magnitude of one does not nec-

essarily indicate the relative magnitude of the other. For example, the primary sinuosity of

N.F. Kusk. Mc. is greater than that of Birch Creek, but the secondary sinuosity of the latter

is greater than that of the former. Such inconsistencies suggest that mechanisms limiting

sinuosity on the bend scale do not necessarily limit sinuosity at the multi-bend loop scale.

I will revisit the subject of primary and secondary sinuosities in Chapter 5.



3.3.2 Scroll Bar Topography

The locations of the Mississippi floodplain transects are shown in figure 3.16, and

the transects themselves are shown as plots of elevation vs. distance in figure 3.17. The

power spectra are shown in figure 3.18. These power spectra characterize the transects'

relief in the wave number domain. In some cases, though, the spectra reveal the pitfalls of

applying spectral analysis to a non-stationary signal.

All of the spectra have peaks above the 0.1 significance level, i.e., the chance of

peaks of that magnitude occurring by a Gaussian random process is one in ten, and many

of the spectra have peaks which are significant to a much smaller level. Most of the peaks

found in these spectra are listed in table 3.4 with significance level, wave number, and

wavelength. The total length of each transect is also shown. Some of the transects have

large peaks at wavelengths at the same order of magnitude as the transect length. Such

peaks, while large, should be viewed with suspicion because the transect cannot contain

more than one or two complete waves.

The transects have different lengths, and some of the transects cover substantially

similar parts of other transects, e.g., transects 1, 5, 7, and 8 (see figure 3.16). However, the

corresponding spectra are not necessarily similar because some of these transects are not

stationary. The periodic forms evident in, e.g., the 0.00257 m-1 peak of transect 7 are,

upon inspection of the transects, apparent in transect 8, but the latter also contains non-

scroll bar topography such as levees and channels that have much greater relief and, there-

fore, spectral power than the scroll bars. Therefore, the spectrum of transect 8 is domi-

nated by peaks at the lower wave numbers.
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Figure 3.16: Plan view of Mississippi River floodplain on the Red Leaf DEM with eleva-

tion in grayscale and showing transect locations by number.
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Figure 3.17: Mississippi floodplain transects (see figure 3.16); elevation exaggerated.
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Table 3.4: Spectrum peak wave numbers, k (1/meters), wavelengths, L (meters),
and significance levels, P, for Mississippi transects, total length shown.

transect 1, 4860 m transect 2, 3170 m transect 3, 3680 m transect 4, 2900 m

k L P k L P k L P k L P

3.60e-4 2780 6e-3 7.09e-4 1410 0.76 5.42e-4 1840 0.01 1.12e-3 893 2e-5

6.71e-4 1490 2e-3 2.52e-3 396 0.14 9.52e-4 1050 2e-3 1.64e-3 611 0.71

9.26e-4 1080 0.15 2.92e-3 342 9e-3 1.97e-3 507 0.49 2.50e-3 400 0.03

1.23e-3 810 0.82 3.71e-3 269 7e-3 4.63e-3 216 0.86

4.65e-3 215 0.79

6.17e-3 162 0.68

The scroll bars' signal is especially evident in the spectra of transects 2 and 7.

These transects do not extend beyond the area where the scroll bar topography is domi-

nant. Note that the peak wavelength for transect 7 is greater than either of the peak wave-

lengths of transect 2 because transect 7 is not as nearly perpendicular to the scrolls as is

transect 2. Smaller amplitude peaks at similar wavelengths are evident in other transects,

but some do not register as significant at even the 0.9 significance level.

Table 3.4: (cont'd.) Spectrum peak wave numbers, k (1/meters), wavelengths, L
(meters), and significance levels, P, for Mississippi transects, total length shown.

transect 5,4780 m transect 6, 5100 m transect 7, 2610 m transect 8, 13,500 m

k L P k L P k L P k L P

2.62e-4 3820 0.62 2.00e-4 5010 4e-4 1.24e-3 805 0.65 1.98e-4 5040 2e-13

5.74e-4 1740 0.05 4.90e-4 2040 0.55 1.72e-3 581 0.65 5.18e-4 1930 le-3

1.31e-3 764 0.02 1.67e-3 600 0.08 2.20e-3 455 0.17 8.33e-4 1200 4e-6

2.93e-3 341 0.79 3.04e-3 329 0.27 2.58e-3 387 2e-3 1.15e-3 870 6e-3

3.06e-3 327 0.06 1.57e-3 635 0.37

3.53e-3 283 0.20

4.78e-3 209 0.11
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Figure 3.19: Ellis River survey sites super-imposed on 1992 aerial photograph. Non-
transect sites on bend 6 are projected onto axes showing their relief, and some sites on the
projections are connected by lines to their mapped locations.
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Figure 3.20: Ellis River transects and one-meter soil core samples shown to vertical scale
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Figure 3.21: Power spectra of detrended Ellis River transects. Significance levels are
shown with dashed lines. For bend 4, transect 3, a second spectrum is shown for the por-
tion of the transect between 7 and 41 meters. For bend 6, transect 1, the spectrum is shown
for the portion between 2 and 61 meters.

Spectral analysis of the Mississippi floodplain, even when applied to relatively

short transects with only scroll bar topography, such as 2 and 7, does not show more than

quasi-periodicity. Some transects have peaks that are significant to a small level, but the

peaks among the transects do not line up with one another. Furthermore, even for transects

2 and 7, neither of the spectra contain a single, clearly dominant peak.



The survey sites on the Ellis River floodplain and their east-north axes are overlain

on the 1992 aerial photograph in figure 3.19. The transects are shown with arrows indicat-

ing the (arbitrary) direction of increasing distance in the transect plots of figure 3.20. The

soil core data are also shown in figure 3.20.

The transect spectra are shown in figure 3.21, and the wave numbers, wavelengths,

and significance levels of spectral peaks are listed in table 3.5. Most of the spectra have

peaks with significance levels less than 0.9 at 9-11 meter wavelengths. In general, the

spectral peaks for these transects are not significant to as small a level as the Mississippi

spectra (see figure 3.18) because the latter transects contained many more scroll bars than

the Ellis River transects.

Table 3.5: Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and
significance levels, P, for Ellis River transects, total length given.

bend 4, transect bend 4, transect bend 4, transect
1, 54.2 m 2, 31.5 m 3, 49.9 m

k L P k L P k L P

0.0599 16.7 0.13 0.0952 10.5 0.04 0.0251 39.9 0.48

I attempted a more general mapping of the point bar of bend 6 to resolve features

such as the emergent bar forming a back bar chute shown in figure 3.22 (sites connected

by lines to projection on north-elevation axes in figure 3.19) and the first point bar ridge

adjacent to the channel (sites connected by lines to projection on east-elevation axes in

figure 3.19). It is possible that the morphology shown in figure 3.22 is the pre-cursor to

scroll bar topography. Back bar chutes are a common feature of meander bends. In this

case, it appears that the colonization of the bar by stabilizing vegetation may allow this

morphology to persist and, in time, add another ridge and swale to the point bar. However,



this bar traverses only a minor part of bend 6 at its upstream end, whereas the first point

bar ridge borders the channel for most of the bend. Mid-channel bars and, more generally,

topographic maxima bordering flat areas on point bars are commonly observed at the

upstream ends of meander bends (see, e.g., Dietrich and Smith, 1984).

Table 3.5: (cont'd.) Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and

significance levels, P, for Ellis River transects, total length given.

bend 4, transect bend 4, transect bend 6, transect
3, 27.2 m 4, 32.8 m 1, 58.1 m

k L P k L P k L P

0.0459 21.8 0.28 0.0662 15.1 0.81 0.0344 29.1 4e-4

0.0917 10.9 0.47 0.107 9.37 0.80 0.0952 10.5 0.23

0.412 2.43 0.88

0.467 2.14 0.55

Figure 3.22: View upstream from bend 6, survey site 13, of bar and back bar chute.



The grain size classes for each core section are shown by a number and a shade of

gray according to the key shown in the upper right of figure 3.20. In figure 3.23, I show

sections 2-6, still in the coring tool, of the core marked with a star in figure 3.20.

Figure 3.23: Sections 2-6 of core marked with star in figure 3.20.

With few exceptions, I did not find soil classes 0-6 at the surface very far from the

present channel, usually not beyond the first point bar ridge. On the floodplain, I typically

found classes 7-13 to varying depths above classes 0-6. For bend 4, transects 1 and 3, and

bend 6, transect 1, the layer of classes 7-13 is thicker toward the upstream end of the flood-

plain, and in parts of these transects, classes 7-13 extend to the full sampling depth of one

meter. The layer of finer materials is thicker in the swales than on the ridges.

The coarser classes are more likely laterally accreted point bar deposits, and the

finer classes are more likely vertically accreted overbank deposits. Therefore, the interface

between the coarser and finer classes likely approximates the elevation of the top of the

original point bar. The cores in figure 3.20 show that the elevation of the interface mimics



the topography in that highs and lows along the interface generally correspond to highs

and lows on the surface and indicate that the vertical accretion of fines has lowered the

relief of the original scroll bar topography. This result is consistent with those of Leopold

and Wolman [1960].
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Figure 3.24: Vegetation stem/trunk diameter vs. distance from the top of the first point bar
ridge, increasing away from the water's edge (site locations shown in figure 3.19).

The vegetation diameter data are shown in figure 3.24. Distance on the horizontal

axis of the plot is relative to the location of the top of the first point bar ridge (see

figure 3.19). The vegetation on this ridge is rough and relatively homogeneous in size and

type (see figure 3.25), though several maple saplings were measured. This rough vegeta-

tion is prevalent on the inside banks of bends throughout this reach. The locations of the

measurement sites are indicated in figure 3.19. The data are too few and the apparent

migration rates too similar to differentiate among the measurement sites. In figure 3.12(a)

it appears that the reach bordering these measurements migrated uniformly with respect to

the downstream direction between 1965 and 1992. The vegetation diameter data corrobo-

rate this observation from the aerial photos.



Figure 3.25: Photo looking upstream from site 19 (bend 6) of flat point bar top and rough

vegetation on first point bar ridge. Stadia rod in foreground is marked in tenths of a meter.

The data do indicate differences in migration rate along the distance axis of the

plot in figure 3.24. This spatial variation corresponds to temporal variation in migration

rate because the data were taken along transects perpendicular to the channel, i.e., parallel

to the migration direction. If the data provide adequate resolution, then they indicate that

the first point bar ridge accreted more quickly than the swale behind it (in figure 3.20,

bend 6, transect 1, the first point bar ridge is at -4 meters distance, and the swale is at -10

meters). If these data are typical of scroll bar topography on the floodplain, they indicate

that the lateral accretion rate of floodplain ridges is greater than for swales. This result is



contradictory to the hypothesis that scroll bar topography is due to a constant levee depo-

sition rate and variable lateral migration rate. Rather, the data indicate that levee deposi-

tion is more rapid when migration rate is greater.

ridges/vegetation bands
Figure 3.26: Bands of willows at the Burnt Cabin site on Jack's Fork of the Current River,
Missouri. Flow is from left to right and towards the observer. Vegetation bands are seen
end-on.

Figure 3.27: Band of young willows on a gravel bar on the Current River, Missouri. Flow
is from left to right and away from the observer.



Figure 3.28: Gravel bar at Shine-Eye site on the Buffalo River, Arkansas. Arrow points to

person standing on gravel ridge. Flow is from right to left and toward the observer.

Figure 3.29: Buffalo River at Jamison Creek confluence. Flow is toward the observer.

My observations on the Buffalo and Current Rivers corroborate the conclusions of

McKenney, et al. [1995]. They found that ridges on the point bar correspond to the loca-

tions of bands of same-age vegetation (see figure 3.26). Their conclusion was that the

form of the vegetation was due to events of seed deposition along the water line followed

by periods lacking flows great enough to remove the seeds or the young vegetation, e.g.,

the young band shown in figure 3.27. Once the bands of vegetation take hold, they lead to



zones of increased roughness and, therefore enhanced deposition of gravel along those

bands. Conversely, flow concentrates in the areas between the bands and leads to enhanced

scour there (see figure 3.26). At the Current River sites, these vegetation bands lead to

scroll bars, or something very much like them.

The same phenomenon is active on the Buffalo, but, as found by McKenney, et al.

[1995], the bands tend to be less coherent, bigger, and fewer in number, and the channel is

more constrained from lateral migration. The ridge and swale topography shown in

figure 3.26 has relief of less than a half-meter. Ridges on the Buffalo, however, can exceed

two meters in height (see, e.g., figure 3.28), and multiple bands, such as those in

figure 3.26, are rare. Even where the valley is relatively wide, as in figure 3.29, floodplain

gravel bars on the Buffalo tend to develop a maze of anabranching channels where the

main channel may switch from year to year. An example is shown in figure 3.29 where the

main channel changes frequently. As recently as 1992, I observed that the main channel

course was in the middle of the vegetated gravel bar in figure 3.29. Now, the main channel

is on the right-hand side of the photo. The floodplain channels form the topographic lows,

while the spaces between them are vegetated and, in general, form the topographic highs,

though these areas are often filigreed with smaller floodplain channels and do not form

distinct series of bands similar to those observed on the Current River.

3.3.3 Bank Failure and Roughness

My observations and measurements on the Ellis River indicate that bank failure

occurs when the bank is undermined by scour rather than seepage erosion. The measure-

ment data are shown in table 3.6.



I observed that, at an outer bank location without slump blocks (visible in the

background of figure 3.22), the roots of the bank vegetation formed a thick (-1 meter, see

table 3.6) mat, and these roots were stripped of soil material and scoured such that they

were smooth to the touch. This mat was undercut by more than half a meter on average

(see table 3.6). There were only small (diameter < 10 cm) trees near the bank at this loca-

tion.

Table 3.6: Measurements taken on the outside bank of Ellis River bend 6

standard number of
measurement mean deviation measurements

embedded log diameter 26 cm 4 cm 3

slumped tree diameter 41 cm 9 cm 4

slump block length (s-dir) 2.8 m 0.4 m 2

slump block width (n-dir) 2.4 m 0.9 m 3

slump block area 5.8 m2  2.8 m2  2

scallop length (s-dir) 3.3 m 2.7 m 5

scallop width (n-dir) 1.2 m 1.3 m 5

scallop area 6.4 m 9.5 m 5

depth (n-dir) of undercut 56.7 cm 15.9 cm 7

vegetation mat thickness (z-dir) 90 cm N/A 1

dune wavelengtha 1.4 m N/A 1

dune height 9 cm N/A 1

a. Dunes not measured at bankfull stage.

In general, where there are large trees on the bank they greatly influence bank, bed

and overall channel roughness. Where the root wads of larger trees have been undercut,

the bank has slumped in blocks defined by these root wads. The slumps lead to a scalloped

bank and, thus, a bank roughness defined by their size (see table 3.6). Often, the trees

remain rooted on the slump blocks, even when they have slumped to a horizontal position,

and, by remaining in the channel, contribute to bed and channel roughness. In one such



case, the trunk of the tree spanned the pool, and the top of the tree rested on the point bar

where it formed a small woody debris jam. A drawing of this slumped tree and a bank

scallop is shown in figure 3.30. Trees spanning the pool increase the hydraulic roughness

of the channel there, and debris jams increase bed and channel roughness. Other examples

of woody debris associated with slumped trees are visible along the outside bank of bend 6

in figure 3.31, "top".

On the channel bed, many dead logs lay partially buried or pinned by other logs,

and at least some of them may remain on the bed indefinitely until covered by lateral

floodplain accretion and later unearthed by bank erosion, as evidenced by three logs pro-

truding from the bank in bend 6. One such log, visible on the un-slumped bank in the

background of figure 3.22, was embedded in the root mat and protruded 1.9 m from the

bank. In general, the embedded log diameters were smaller than those of the slumped

trees, but, given the observed variability in both groups and the small number of samples, I

cannot rule out the hypothesis that the embedded logs are from old slumped trees. Another

possible explanation for the embedded logs is that they simply fell in the forest and have

been buried by vertical floodplain accretion, but this explanation appears to be possible for

only one of the three observed logs that was found at an elevation similar to the lower sur-

veyed floodplain elevations. The other two embedded logs were at elevations lower than

any of the surveyed elevations.



Figure 3.30: Drawing of slumped tree at Ellis River bend 6. At top, s-, n-, and z-direc-

tional axes are shown

When slump blocks are removed from the bank a scallop, or an inward undulation,

is formed (e.g., see figure 3.30). The depth of the scallop depends on the size and orienta-

tion of the slump block prior to removal. If the tree has slumped to a nearly horizontal

position, then the scallop depth will be approximately equal to the thickness of the root

wad. On the other hand, if the tree is more nearly vertical, then the scallop depth will be

approximately equal to the width of the tree's root wad. I observed some slump blocks

which were covered only by herbaceous vegetation, and these blocks tend to be smaller

than those associated with trees. The sizes of the slump blocks are less variable than the

sizes of the scallops, some of which are as long (s-direction) as two average sized slump

blocks. Some slumped sites had more than one block. Removal of adjacent blocks is likely

responsible for the larger observed bank scallops.



Figure 3.31: Neck cutoff of Ellis River bend 7. Top: Flow toward observer on right and

away on left. Bend 6 is visible on right. Bottom: Nearly bankfull stage, view from outside

bank of downstream limb of bend 7. Flow through cutoff is toward observer. Flow from

right to left in foreground. Bend 6 is visible in background.

From the data and observations at the Ellis River, it is apparent that: (a) riparian

trees control the bank roughness scale; (b) slumped trees, by spanning the channel and

forming small woody debris jams, strongly influence channel and bed roughness; (c) large

woody debris tend to accumulate on the bed as more recently slumped trees hold previ-

ously deposited trees in place; (d) at least some of the accumulated large woody debris

remains in place indefinitely even as the channel migrates; and (e) large woody debris bur-



ied by lateral floodplain accretion may later be unearthed by bank erosion and again con-

tribute to bank and channel roughness.

The mechanism behind and characteristic sizes of bank scallops are closely related

to the formation of neck cutoffs. An actively evolving cutoff is shown in figure 3.31. The

neck is 7 meters wide at the cutoff. The channel through the cutoff itself is 5 meters wide,

except where the slump block visible on the right of the top photo in figure 3.31 constricts

the upstream opening to 1.3 meters. That slump block is 3.1 meters long in the s-direction

by 2.5 meters wide in the n-direction, and the slumping tree is 38 cm in diameter. At the

flow stage of the top photo, only a small amount of seepage under debris and slump blocks

contributes to flow through the cutoff. The debris and slumped bank material fill the bot-

tom of the cutoff such that it is less than 2 meters deep below the neck surface. In the bot-

tom photo, at near bankfull stage, there is substantial flow through the cutoff channel.

Between July, 1996, and October, 1997, the times of my first and latest visits to the site,

respectively, the cutoff has not changed visibly. This lack of change is likely due to the fact

that there is substantial flow through the cutoff only at relatively high and, therefore, infre-

quent stages.

I observed the clear effects of scouring flood flow on the top of the neck (behind

the observer in the top photo of figure 3.31). This scour produced small channels several

centimeters wide and deep, and intact tree roots spanned these small channels. The scour

channels did not span the entire width of the neck. This neck is the only place I observed

incontrovertible evidence of floodplain scour.



The cutoff channel dimensions are consistent with the hypothesis that (a) the cutoff

was formed by adjacent slumping events, one on each side of the neck, and (b) the size of

slump blocks places a lower limit on the width of necks before they cut off. Furthermore,

the data are consistent with the hypothesis that floodplain scour does not form chutes of

appreciable size even at the lower limit on neck width imposed by the slumping mecha-

nism: (a) the scoured channels visible on the floodplain surface are too small to undermine

trees; (b) the lack of large trees slumped to fall across the cutoff channel indicates that a

scoured channel did not lead to slumping of trees of size sufficient to create the cutoff

channel opening; and (c) the orientation toward the main channel of an actively slumping

large tree with a root wad of size comparable to the cutoff channel dimensions indicates

that bank erosion on the main channel by channel flow undermined the trees which

slumped to form the cutoff. Subsequent to the cutoff formation, the banks of the cutoff

channel have been undermined such that several small trees have slumped toward the cen-

ter of the cutoff channel (see figure 3.31).

3.3.4 Meandering and the Landscape

The Schoharie Creek valley (see figure 3.1) shows signs that lateral channel migra-

tion is or has been active. The valley floor is relatively wide and flat and has visible ter-

races. These features should have a measurable effect on a plot of slope vs. contributing

area.

The slope-area plot for the Schoharie Creek valley is shown in figure 3.32. The

average slopes increase with area at low values of the latter, a pattern which is consistent

with hillslope diffusional processes. At larger areas, the average slope generally decreases

with increasing area, indicative of fluvial processes, but the average slope is level near the



middle range of contributing area. There is a large amount of scatter in the slopes across

the whole range of contributing area, nearly two orders of magnitude at low areas. The

vertical resolution of the DEM is 1 meter such that the smallest non-zero slope possible is

one meter drop per diagonal distance across a pixel, or 0.71 m/30 m. Zero slopes cannot be

plotted on the log-log plot but do contribute to the plotted average. Note the visible dis-

cretization of contributing area at the lower end of the horizontal scale.
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Figure 3.32: Slope vs. contributing area for the part of the Schoharie Creek basin shown
in figure 3.1. The data for each pixel are shown with the gray dots. Average slope vs. aver-
age contributing area is shown with the dark circles.

The trend of the average slope at areas between 10 and 50 pixels is steeper than at

areas larger than 200 pixels. This steepness indicates that the profiles of these smaller

streams have greater concavity than the larger streams. Such concavity could be the result

of the flattening of the valley floor by meandering. The slopes of streams entering the val-

ley may be affected by that flattening. Such flattening would influence the slopes of

streams over a range of contributing areas such that their slopes would be essentially inde-

pendent of contributing area and could therefore be responsible for the nearly constant

average slope at areas between 50 and 200 pixels. The findings of ljjasz-Vasquez and Bras

[1995] are consistent with the hypothesis that meandering leads to the features I have



noted in the slope-area relationship. Ijjasz- Vasquez and Bras [ 1995] observed this effect in

the slope-area plots of many, but not all, river basins, and meandering is a common feature

of many, but not all, rivers. I would expect the prominence of the kink in the slope-area

relationship to vary with the relative importance of meandering in river basins. These

results do not, however, indicate why some rivers meander more, or why some valleys are

wider, than others. The modeling study of Tucker and Bras [1998] indicates that shallow

landsliding may be responsible for the slope-area features described above, but my obser-

vations in the field of the Schoharie Creek basin suggest that shallow landsliding is not the

dominant hillslope process.

Table 3.7: Measured channel slopes of Buffalo River and corresponding strataa

between
elevations

slope (feet) valley stratum

0.00087 740-720 narrow Ordovician

0.00082 720-680 narrow Ordovician

0.0011 680-640 wide Ordovician, some Boone

0.00093 640-600 wide Boone

0.00085 600-560 wide Boone

0.00062 560-540 narrow Ordovician

0.00061 540-520 narrow Ordovician

0.00053 520-500 narrow Ordovician

a. First measurement is just downstream of the confluence with the
Little Buffalo River; last two are downstream of the confluence with
Bear Creek.

In order to test hypotheses concerning the mechanism of valley widening, I mea-

sured Buffalo River channel slopes from topographic maps in the wide valley shown in

figure 3.29 and the narrower valleys up- and downstream, e.g., similar to figure 3.2. The

results are shown in table 3.7 and show that the channel slope in the wider valley is com-



parable to or greater than slopes through the narrower valleys. If my assumptions of the

previous section are valid, then this result contradicts the hypothesis that the valley is

wider because the rock is weaker.

3.4 Discussion
3.4.1 Channel Planform Characteristics and Evolution

I examined two cases of compound bend formation on the Ellis River, and both

arise from the same mechanism. This mechanism is related to characteristics of bend

shape, and the phenomenon is reflected in measurements of channel planform. Plots of

bend curvature show that bends often have curvature magnitude maxima at the beginning

and end of bends and a curvature magnitude minimum in the middle. The minimum not

only approaches zero but also crosses zero, i.e., changes sign, in compound bends. I have

shown with the Ellis River study that low-curvature reaches reverse curvature sign when

migration rate at the beginning of the bend increases due to the propagation of rapid

migration from upstream bends.

I was motivated to find and/or derive measures of channel planform because so few

objective measures exist in the literature. Probably the most often quoted measures of

meandering channel planforms are sinuosity and meander wavelength [Leopold and Wol-

man, 1960; Schumm, 1967]. However, these measures are problematic because they are

generally non-reproducible. Both numbers vary according to location, reach length, and

method of measurement. For example, Brice [1974] showed two sets of measurements of

meander wavelength for three reaches of the White River, Indiana, one calculated in his

study and the other set from a previous study, and the numbers differed by as much as a



factor of two. Brice [1974] also attempted to quantify the meanders of the White River, IN,

in terms of bend size and orientation.

Howard and Hemberger [1991] performed a multivariate statistical analysis dis-

criminating among static stream planform data and two models, the disturbed periodic

model (DPM) [Ferguson, 1976] and the model of Howard and Knutson [1984] (HKM).

The Howard and Hemberger [1991] analysis is objective and quantitative, but this type of

analysis is designed to discriminate among given groups of a given data set, i.e., the exact

form of the discriminant functions is determined by the data. Interpretation of the resulting

functions is not entirely straightforward because so many statistics are combined to pro-

duce them. Howard and Hemberger [1991] did conclude that (1) the HKM streams were

more sinuous than the real ones; (2) the HKM bends were more asymmetric, with the

point of maximum curvature near the bend entrance; and (3) "natural streams have higher

irregularity of planform at large scales and numerous, low-sinuosity short half-meanders,

as well as a wider range of half-meander sizes." Their analysis did not address the issue of

compound bend formation and its effect on the channel planform, but compound bend for-

mation could lead to the many short half-meanders observed by Howard and Hemberger

[1991].

The new measures presented here and Andrle's [1996] show the effect of com-

pound bend formation on the reach scale. A stream with a fully developed but simple

meander pattern, i.e., one with no compound bends and a meander axis closely following

the down-valley direction, will have a steeply increasing gts(s') for s' smaller than the

meander wavelength and a flat gs(s') for s'larger than the meander wavelength.



Compound bend formation leads to the secondary channel planform scale indica-

tors detected in the planform measurements. Repeated compound bend formation forms

multi-bend loops observed in the digitized planforms and aerial photos and detected as

secondary channel planform scale indicators, such as secondary increases in mean sinuos-

ity, peaks in sinuosity variance, convexity of relative belt width, and secondary peaks in

mean angle. Not all of the streams have these secondary features. Specifically, Dishna has

one gs plateau, one as 2 peak, concave decay of W, and only a low-magnitude second g0

peak at 100 b. Andrle [1996] found similar low-magnitude secondary peaks for rivers

without multi-bend loops and concluded that they were simply an artifact. The lack of

prominent secondary channel planform scale indicators indicates the lack of multi-bend

loops. The Dishna has many compound bends, but, apparently, either compound bends do

not initiate the formation of multi-bend loops or there were multi-bend loops that have cut

off. If the former, then the reason some compound bend formation leads to multi-bend

loop formation and other compound bend formation does not is a question I cannot answer

at this stage. The Dishna is laterally unconstrained, as are all of the digitized channels. The

answer must lie elsewhere, with a mechanism not apparent from the topographic maps.

Another question I would like to answer is whether multi-bend loop formation is neces-

sary for the channel planform scale indicators observed for the Alaska streams. I know

compound bend formation is not sufficient and that multi-bend loop formation is, but I am

not certain that a highly sinuous stream with no multi-bend loop formation could not pro-

duce secondary channel planform scale indicators. I address the issue of compound bend

and multi-bend loop formation with the meandering model in Chapter 4.



The measures reveal other differences among the streams, but I do not know what

mechanisms are responsible for the differences. All of the measures give similar values for

normalized meander bend length, but the meanders of the different rivers have different

characteristics. The measures tend to have distinctive features at similar scales, but they

still measure different things. For example, Melozitna has one of the largest pg peaks at a

scale corresponding to large o2 and W but only moderate gs . Large W indicates lateral

elongation; large TS2 indicates great variation of sinuosity; and large go indicates large

curvature of three points along the stream but not necessarily close proximity of the end-

points of the angle-forming segments. Note that large sinuosity of a channel segment

requires the endpoints to be close together. The measures all reflect the presence of sec-

ondary scales and reveal the various characteristics of the corresponding forms; e.g., N.F.

Kusk. Mc. has large secondary g0 peaks which correspond to convexity in W, but the sec-

ondary rise in gs and peak in a2 are not relatively as great. Clearly, different meandering

channels have some similar features which are not, however, universal.

3.4.2 Floodplain Topography

My discussion of floodplain topography addresses the various mechanisms which

build the floodplain, including point bar accretion and overbank deposition, and the result-

ing forms, including scroll bar topography and the floodplain stratigraphy.

I have shown two cases of scroll bar topography, on the Mississippi and Ellis

floodplains. Spectra of transects of the scroll bar topography show that there is only a

small probability that the elevations are the result of a normally distributed random pro-

cess. The probability is as small as 0.002 on the Mississippi and 0.04 on the Ellis for
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wavelengths attributable to scroll bar topography. For the latter, observations on the

ground indicate the scroll bar topography is not a product of floodplain scour. Levee for-

mation is a possible mechanism.

Though the scroll bar topography spectra have significant peaks, these spectra

often have several significant peaks, and their wavelengths and relative power are not the

same among different transects. Some variation of peak wave number among transects is

expected because: (a) the transects are drawn at varying angles, not all perpendicular to

the scrolls; and (b) wavelength may be related to migration rate such that parts of the bend

with different migration rates have scroll bar topography with different wavelengths. The

spectra may lack a clearly dominant peak because: (a) some swales may be widened by

floodplain scour; or (b) as meander bends themselves have a characteristic scale but vary

in length from bend to bend, scroll bar topography also has a characteristic scale, but it is

not precisely periodic.

A review of the data: The Mississippi channel is about 1000 m wide; the Ellis

channel is about 26 m wide. The Mississippi bend length is approximately 19 b, or 19

times the channel width; the length of bend 4 on the Ellis is approximately 12 b. For the

Mississippi, the smallest scroll bar topography wavelength corresponding to a spectral

peak with significance level below 0.1 is 269 m (sig. level of 0.007), or 0.27 b and 0.014 of

the bend length; for the Ellis, the smallest wavelength with significance level less than 0.1

is 10.5 m (sig. level of 0.04), or 0.40 b and 0.034 of the bend length. In summary, the Mis-

sissippi scroll bars tend to have shorter wavelengths as a proportion of both channel width



and bend length than the Ellis scroll bars. As I do not know what the scroll bar topography

mechanism is, it is even more difficult to explain this difference in scroll bar size.

From the soil core observations it is apparent that, past the first point bar ridge, the

major component of floodplain deposition is from fine particles falling out of suspension

as the flood flow crosses the floodplain. Given the decreasing thickness of this fine mate-

rial with distance from the upstream end of the point bar, the fines probably fall out of sus-

pension at a high rate at the upstream end where the shear stress gradient is negative and

large, and that rate decreases downstream as the flow is depleted of fines and the shear

stress gradient is smaller. Given the greater thickness of fines in the swales, the fines prob-

ably fall out of suspension more quickly there because the increasing depth of flood flow

leads to a flow deceleration and, thus, decreasing bottom shear stress from the ridge to the

swale.

Because the sandy materials are usually found at the surface only near the channel,

it is likely that they are carried primarily by the channel flow. The new accretions to the

point bar are colonized by densely stemmed and, therefore, hydraulically rough vegetation

[McKenney, et al., 1995]. This vegetation produces a large increase in hydraulic roughness

and, therefore, a large negative gradient of shear stress from the main channel flow to the

near-bank area such that fine sand is deposited in the area colonized by the vegetation.

This deposition may form the observed ridges.

The above reasoning does not adequately explain all of the soil core observations.

Sandy material is found below fines in the swales on the floodplain as well as on the
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ridges. In all of the transects, the top of the first point bar ridge is the highest level at which

sandy material of that coarseness is found on the transect.

The measurements of stem and trunk diameters on the point bar do not yield an

absolute lateral accretion rate, but, if the rate of diameter increase is constant in time, then

these results do indicate variation of lateral accretion rate over space. Curiously, the trend

of the diameters is flat over the point bar ridge and steep in the swale. If the hypothesis is

that slow migration equals more deposition per distance and, therefore, leads to a ridge;

and fast migration equals less deposition per distance and, therefore, leads to a swale; then

the vegetation diameter data contradict the hypothesis because they indicate that the oppo-

site pattern of migration rate applies-fast where high, slow where low. It is possible that

the fast migration created a disturbed area ideal for the vegetation colonizing the ridge,

and the high roughness of that vegetation led to a high rate of sand deposition. It is also

possible that the mechanism behind the accelerated migration is also associated with

greater sediment flux. Clearly, bank erosion does input sediment to the channel, but I do

not know if sediment from the bank ever enters the system rapidly enough to lead to the

observed patterns of deposition.

The formation of the first point bar ridge may be associated with the compound

bend formation on bend 4. Aerial photographs indicate that bend 4 became compound

between 1981 and 1986 but changed very little between 1986 and 1992 (see

figure 3.12(a)). The rapid migration leading to compound bend formation on bend 4 and

the corresponding point bar accretion may have created the disturbed point bar surface

now colonized by rough, sediment trapping vegetation, and the corresponding rapid bank
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erosion may have caused pulses of sediment to move downstream and deposit on that

newly accreted point bar to form a ridge.

3.4.3 Bank Failure and Roughness

Measurements of bank roughness elements indicate that the sizes of bank scallops,

or inward undulations, covered a wider range than the sizes of slump blocks. Also, the

sizes of bank roughness elements are greater than the dune forms on the bed. Note that the

size of dunes is stage dependent while the size of bank roughness elements is not. The

bank roughness element size is determined by the sizes of trees on the bank and how far

they can be undercut before their weight leads to bank failure. The bank has a typical

roughness scale whose wavelength and amplitude are controlled by the length and width,

respectively, of the slump blocks formed by the trees' root wads (see table 3.6). So, bank

roughness elements have a characteristic scale which is largely independent of the bed

roughness, though the collapsed trees also contribute to bed and general hydraulic rough-

ness. The trees lead to bed roughness over the point bar and general hydraulic roughness

where they span the pool (see figure 3.30).

The slumping mechanism may also control the minimum thickness of meander

necks and, to some degree, where they cut off. The neck shown in figure 3.31 is as wide as

two slightly larger than average slump block widths, and the channel through the cutoff is

as wide as one slightly larger than average slump length. It is apparent, then, that the size

of slump blocks controls how thin a neck can get before it is cut off, and the exact location

of the cutoff is dependent on the locations of slumps on either side of the neck.
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The bank scallops on bend 6 lack vegetation and, therefore, appear to be relatively

new. That observation and the fact that many of the slumped trees are still alive may indi-

cate that these slumps and the new cutoff resulted from the same rapid erosion that led to

compound bend formation on bend 4 and the high first point bar ridges observed on many

point bars, including those of bends 4 and 6.

3.4.4 Landscape-Meandering Interactions

I hypothesize that scatter and deviations from scaling in the slope-area plot for

Schoharie Creek may be due to meandering rather than some stochastic process. The

DEM clearly shows bend-shaped scarps adjacent to a flat valley bottom. Such forms

would surely lead to both steepening and shallowing of slopes relative to the mean behav-

ior. These forms could also be responsible for the observed deviations from mean slope-

area scaling. The flattening at moderate slopes apparent in figure 3.32 is often observed

(e.g., Ijjasz-Vasquez and Bras, 1995; Tucker and Bras, 1998), and Tucker and Bras [ 1998]

found that using pore-pressure-induced shallow landsliding (e.g., Montgomery and

Dietrich, 1989, 1994) in a landscape evolution model produced a similar flattening in the

slope-area relationship. Given the ubiquity of this flattening, however, it may be poly-

genetic, and G.E. Tucker does not believe that shallow landsliding is not the cause (per-

sonal communication, 1998). It may be that valleys with wider bottoms exhibit this slope-

area effect more prominently.

The pertinence to valley width of my measurements of Buffalo River channel

slopes is contingent on several assumptions listed in the Methods section. The controls on

the Buffalo River's incision, whether detachment- or transport capacity-limited, are not

well established. If the assumption of detachment-limited incision does not hold, i.e., if
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incision is transport capacity-limited or controls on incision change downstream, then

channel slope and rock strength might not be simply related. If the channel is uniformly

transport capacity-limited and lithologies with greater transport capacity are also more

erodible, then my reasoning still holds. However, if more erodible lithologies are less

transportable, or the greater lateral erosion that comes with greater erodibility produces a

greater quantity of sediment for the channel to carry, then my reasoning does not hold.

In any case, the mechanism for valley widening is most likely related to what hap-

pens to the rock from the valley walls once it is detached. In general, if it breaks up into

small-gravel bedload and, therefore, increases the topographic steering effect, the presence

of the gravel may tend to make the valley wider by increasing lateral migration. On the

other hand, there are at least two other reasons why the slope of the Buffalo, in particular,

might become steeper through weaker rock. First, the bedload component of the total sed-

iment load may be relatively larger because of the chert gravel such that the reach is trans-

port-limited rather than detachment-limited. The river's slope may have adjusted to carry

the large quantities of gravel bedload, but the valley side walls are not shielded by such

bedload and are, therefore, vulnerable to erosion. Second, the river may lose a significant

amount of flow to Karst conduits through the limestone, and the slope may have adjusted

to compensate for this lost erosive flow.

3.5 Conclusions
Most of my conclusions at this point are really questions. Can I explain compound bend

formation and scroll bar topography? Can a new model of river meandering reproduce or

explain these phenomena? How may I represent bank roughness in a new model? Can a

new model shed light on the interactions between meandering and the landscape? Why
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does compound bend formation lead to multi-bend loops in some cases and not in others?

What mechanisms are responsible for the differences in the channel planform scale indica-

tors of the Alaskan streams?

I have found that compound bend formation is fundamental to meandering. It is

responsible for typical bend shapes and the multi-bend loops observed in the data. Com-

pound bend formation is more active in some streams than others, though the mechanism

for this variation is beyond the scope of this chapter.

My studies have raised some interesting questions regarding scroll bar topography.

Scroll bar topography on gravel bed streams in the Ozarks is thoroughly explained by

McKenney, et al. [1995], who determined that vegetation plays the key role. My observa-

tions and measurements on the Ellis River are less conclusive. They point to a possible

role of vegetation, but an unexplained variation of migration rate may be the missing piece

of the puzzle. The data indicate that the newest ridges on the point bar laterally accreted

rapidly relative to the lower areas behind these ridges. Therefore, it is unlikely that this

topography may be explained by a combination of variable migration and steady deposi-

tion rates. Limited possibilities remain:

1. Migration rates are quasi-periodic in space possibly due to episodic rapid migration
following upstream cutoffs such as the rapid migration following the cutoff of bend 2.
Where the point bar rapidly accretes laterally, rough vegetation colonizes the disturbed
area. That roughness leads to a high vertical accretion rate on the newly accreted portion
of the point bar such that rapid vertical and lateral accretion coincide. Also, the rapid bank
erosion may supply additional sediment to the stream such that the deposition rate on the
point bar increases.

2. The height of laterally accreting point bars is quasi-periodic in space due to system-
atically changing secondary flow hydraulics in migrating channel bends. Vegetation may
also play a role by favorably colonizing the higher and, therefore, drier parts of the point
bar.
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These proposed mechanisms do not explain why the most recent ridge on the Ellis

floodplain is the highest and made entirely of sand or why the Mississippi bend has more

scrolls on its floodplain than the Ellis, i.e., the wavelengths of the scroll bar topography on

the Mississippi are smaller relative to both the channel width and the meander wavelength

than the scroll bar topography on the Ellis. The Mississippi is also not as wide relative to

the bend length. Are these observations generally the case? What characteristic of the

meandering stream determines the scroll bar topography wavelength? The new model

developed in the next chapter can simulate floodplain topography only by variations in

point bar height. The present study of scroll bar topography indicates that modeling its for-

mation may require a detailed treatment of processes beyond the scope of the modeling in

the present work.

I found that the scale of the bank roughness element is independent of the scale of

bed forms, though the elements contributing to bank roughness, namely the trees, also

contribute to bed and overall hydraulic roughness. It is possible that this vegetative rough-

ness is related to the scroll bar topography wavelength. I have found a likely role of rough,

young vegetation in the formation of scroll bar topography, and the scale of this vegetation

may also be related to scroll bar topography wavelength. A model of river meandering will

likely need to model or parameterize bank and bed roughness independently in order to

predict correctly both flow hydraulics and the scale of dissipation of turbulent energy at

the bank.

I have not shown conclusively that meandering affects the slope-area relationship.

The two things, that the slope-area relationship is stepped and meandering has flattened



the valley bottom and steepened some parts of the valley walls, may be unrelated. How-

ever, I believe that they are related, that the flat valley bottom is responsible for the numer-

ous low-slope points at low areas, that the steepened valley wall points are responsible for

some of the large slopes at slightly larger areas, and that the flattening of the valley floor is

responsible for the mean slopes' lack of area-dependence at even larger areas.

I have drawn into question the hypothesis that wider valleys are due to more erod-

ible valley walls, but, again, the evidence is not conclusive. The limestone walls of the

wide valleys of the Buffalo probably are weaker than the sandstone forming the narrow

valley walls. The surrounding area may be eroding more quickly and delivering a greater

load such that the river has steepened to carry the extra load. But the smaller bedload grain

size and larger bedload supply probably do increase the lateral migration rate more than

can be explained by the greater erodibility.

The models presented in the following chapters will address some of the issues of

compound bend formation, scroll bar topography, bank roughness and failure, and mean-

dering-landscape interaction presented in this chapter. The present chapter addresses some

of the morphologic features of meandering streams and their surrounding landscapes. The

model development in the next chapter focuses on the physical mechanisms necessary for

meandering in general and whether they are sufficient to explain some of the above spe-

cific features.
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Chapter 4

The Topographic Steering River
Meandering Model

In this chapter, I present a simple nonlinear model of river meandering. This new model is

based on the phenomenon known as topographic steering introduced in Chapter 2. For

comparison with the natural channels of Chapter 3, I use the planform measurements

developed there on the results of the new model and compare those results to the natural

examples of compound bend formation. I also compare my new model to a meandering

model from the literature. The new model simulates meandering with compound bend for-

mation and predicts that the frequency of compound bend formation is sensitive to model

parameters. For example, decreasing the mean bedload particle size increases compound

bend and multi-bend loop formation frequency.

4.1 Introduction
The review of Chapter 2 suggests that topographic steering plays a key role in bank ero-

sion and meandering. Based on the these results, I reason that a positive feedback, similar

to one described by Dietrich and Smith [1983], exists between point bar formation and

bank erosion: a small point bar develops in a small bend; the small point bar steers the

flow such that the outside bank is eroded; this bank migration makes the channel more

curved; the point bar grows; and so on. The hypothesis is that this topographically induced

lateral transfer of flow momentum provides the major part of the flow momentum lost to

bank shear stress. By modeling topographic steering, I can model meandering.



I develop a simple, nonlinear river meandering model to test the topographic steer-

ing hypothesis [Dietrich and Smith, 1983; Dietrich and Whiting, 1989]. The model is not

based on a perturbation solution, linear or nonlinear, of the flow equations. Rather, in the

topographic steering river meandering (TSRM) model I have sought to simplify the phys-

ics of the problem such that it yields a solution which is both nonlinear and computation-

ally efficient. Efficiency is of interest because of the ultimate goal of integrating the

meandering model with the landscape evolution model presented in Chapter 5.

4.2 Model

I assume, as a first approximation, that the downstream flow velocity field is constant over

a given channel cross-section and given by the Manning equation:

U - R2(4.1)
nm

where U is the downstream flow velocity; R is the hydraulic radius; Sf is the downstream

friction slope measured over a long distance relative to the channel width; and nm is the

Manning roughness coefficient. I assume that equation (4.1) adequately describes the

effects of the total channel roughness and water surface slope on the average flow velocity

over a length of several bends. Given U, I consider secondary flows: curvature-induced

helical flow; and topographically induced lateral and vertical flows; and derive bed topog-

raphy and bank shear stress resulting from these secondary flows, respectively. I assume

that lateral migration rate is proportional to the bank shear stress.

4.2.1 Transverse Channel Bed Slope

Several authors [Odgaard, 1986; Ikeda, 1989] have found the transverse bed slope

necessary to maintain equilibrium between the opposing forces due to gravity and curva-
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ture-induced helical flow. These equilibrium models provide a good approximation of the

bed topography, though others (e.g., Johannesson and Parker, 1989a; Nelson and Smith,

1989a, b; Blondeaux and Seminara, 1985; Seminara and Tubino, 1989, 1992) provide a

more detailed description by coupling the equations of flow and sediment transport to

reveal the feedbacks between flow and bed topography.

(a) . A0 (b) dAcsz s

h = 2HH

(c) qz (d)

dAcsV

Figure 4.1: (a) Maximum pool depth is 2H, and the point bar may not break the water sur-

face. (b) Successive channel cross-sections defining directional axes, s, n, and z; channel

width, b; average flow depth, H; and change in half-section area, dAcs, per change in dis-

tance downstream, ds. (c) Flow momentum differential over a distance, dl, for lateral and

vertical flow velocities, V and W, respectively, and unit discharges qn and qz, respectively,

due to the change in half-section area, dAcs. (d) Rotational flow momentum, qrV, pushes

bed sediment inward while lateral flow momentum, qnV, pushes sediment outward; the

resulting flat-topped point bar is represented by a single transverse bed slope.

The expression presented here is based on Ikeda's [1989] description of bed topog-

raphy as a function of local curvature and depth of flow. I modify his expression to account

for bed form drag from dunes (see Appendix A) and solve for the transverse slope, ST, at

the channel centerline, where I assume that the depth is equal to the average depth, H:

ST = KHC (4.2)

where C is channel centerline curvature; and K is described by

K 0.5701n - 0.361 (4.3)
T cr 50
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where Y' is dimensionless (Shields) skin friction; - is total Shields stress; ycr is critical

Shields stress; and d5 o is median bed sediment grain size (see Appendix A for derivation).

Limits on the bed topography are necessary such that the pool does not become

arbitrarily deep or the point bar arbitrarily high when ST is large. The maximum possible

elevation of the point bar is the water surface elevation (zero depth at the inside bank) and

the maximum pool depth is twice the average depth (depth equals 2H at the outside bank)

(see figure 4.1 (a)).

Table 4.1: Parameter values used in model simulations
Discharge, width, roughness, grain size, valley slope, and dissipation scale are held constant dur-
ing the simulation; depth, channel slope, and radius of curvature are given only for reference.

Site: Muddy Cr., WY

discharge, m3/s 1.6

width, m 5.5

average depth, m 0.5

Manning roughness 0.036

median grain size, mm 0.7

channel slope 0.0014

valley slope 0.0021

radius of curvature, m 8.0

dissipation scale, m 15.

To test the bed topography model, I compare the results of equation (4.2) for the

average curvature of a Muddy Creek bend (see table 4.1) to digitized channel sections

[Dietrich and Smith, 1983; Dietrich and Whiting, 1989] (see figure 4.2). The prediction is

good, and equation (4.3) is an improvement on Ikeda's [1989], which predicts slopes

about twice as large.



0- -section 14
.....--- section 18

- section 19b
-.- section 20

top the predicted channel section is compared to several actual sections such that the cen-22

terlines and water surfaces of the predicted and measured sections coincide. In subsequentlap at the channel centerline. All of the predicted sections shown are identical.effect on the model resection 19

4.2.2 Lateral Flow Acceleration 20

Convetive accelerations due to the presence of the point bar cause a lateral dis-22-3 -2 -1 0 1
n, meters

Figure 4.2: Comparison of actual and predicted bed topographies for Muddy Creek. At
top the predicted channel section is compared to several actual sections such that the cen-

terlines ankd water surfaces of the predicted and thmeasured sections coincide. In subsequent
views, the actual and predicted sections are adjusted such that the bed topographies over-
lap at the channel centerline. All of the predicted sections shown are identical.

There is an apparent "phase lag" [Zhou, et al., 1993] between curvature and bed

slope in Muddy Creek; the maximum curvature in the bend is at section 14, while the max-

imum transverse slope is at section 22. Johannesson and Parker [1989a, 1989c] used an

effective curvature with upstream weighting in their LFE model; however, A.D. Howard

(personal communication, 1996) reports that the correction does not have a significant

effect on the model results.

4.2.2 Lateral Flow Acceleration

Convective accelerations due to the presence of the point bar cause a lateral dis-

placement of flow and a resulting transfer of momentum from the high velocity core to the

outer bank, as described in Chapter 2 and the Introduction. The present approach to esti-

mating the magnitude and spatial pattern of that transfer is based on continuity of mass.

Smith and McLean [ 1984] solved the continuity equation,
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1 a a VhC
-Uh + Vh - V 0 (4.4)

1-nCs n 1 -nC

where U is the depth-averaged downstream velocity; Vis the depth-averaged cross-stream

velocity; h is the depth of flow; and s and n are the downstream and lateral coordinates,

respectively (see figure 4.1(b)); for the lateral unit discharge,

qn = Vh. (4.5)

Their expression is

qn - - -n - Uh dn. (4.6)
" 1 - nCL J as

2

I divide the channel cross-section into two half-sections and assume that the down-

stream flow velocity is uniform with respect to s and n, to solve equation (4.6) for the lat-

eral flow at the channel centerline, n = 0:

BAcs
qn = -U cs (4.7)

where Acs is the cross-sectional area of the inside half channel, between the bank at n=-b/

2 and the centerline at n=O. I calculate Acs from the bed geometry derived in the previous

section; except for very large curvatures (see figure 4.1(a)), aAcs/as is proportional to

ST/s and, therefore, C/as. For the planar bed described by equation (4.2), the verti-

cal unit discharge averaged over the outside half-channel, between n=0O and n=b/2, is

approximately equal in magnitude to the lateral unit discharge at n=O, or

b
qz = W = -qn (4.8)
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where qz is the vertical unit discharge averaged over half the channel width; and W is the

vertical flow velocity, also averaged over half the channel width. Using equations (4.5),

(4.7) and (4.8), I solve for the lateral and vertical flow velocities at the channel centerline,

n=O, and in the outside half-channel, respectively:

USAcs
V = (4.9)

Has

W = UDcs (4.10)
bas

where h in equation (4.5) has been replaced by H, the average depth and, for the simplified

bed topography, the depth at the channel centerline.

At a bend entrance, the increasing channel curvature implies an increase in trans-

verse bed slope. Therefore, the cross-sectional area of the inside half-channel (n<O)

decreases, while the cross-sectional area of the outside half-channel (n>O) increases.

Thus, flow is displaced away from the point bar (across the channel) and down into the

pool. The unit discharges, qn and qz, are the volume discharges per downstream distance;

therefore, the magnitudes of the vertical and lateral discharges are

l Inl = U cs s.(4.11)

I hypothesize that the momentum transferred to the channel bank as shear stress is the dif-

ference between the lateral and downward discharge momenta [Chow, 1959], or the

change in momentum along the path in figure 4.1(c):

dFn = P(I nvl-I QzWl (4.12)
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where p is water density. The lateral discharge momentum is greater than the vertical for

half-width greater than depth (see equations (4.9) and (4.10)). Substituting equations (4.9),

(4.10), and (4.11) in equation (4.12) yields

dFn = pU2 _- 2)Acs ) ds (4.13)

where dFn has units of force. It is the incremental lateral transfer of flow momentum due

to topographic steering and dissipated by bank friction. I refer to dFn as the "lateral

momentum transfer" or "bank shear force increment". Note that this "force" is felt at the

bank as shear stress, not as a normal force.

In the model, the convective acceleration described by equation (4.13) is calcu-

lated only where the point bar is rising, i.e., the inside half-section area (Acs) is decreasing

downstream (Acs/as < 0), and not where the pool is becoming shallower. The lateral

momentum transfer, dFn, is largest at the bend entrance. Because 3Acs/as is proportional

to BC/s (usually; see figure 4.1(a)), dFn Oc (aC/s)2 . Terms with similar dependence

on aC/s may be derived from the scaled, depth-averaged flow momentum equations

under the assumption, based on the results of Dietrich and Whiting [1989], that changes in

the downstream (s) and lateral (n) directions are of similar magnitude and occur over sim-

ilar distances (see Appendix B).

In Appendix C, I show that, for the special case of a sine-generated channel center-

line, dFn and the integrated bottom shear stress are of similar magnitude. For maximum

flow direction angles, with respect to the down-valley direction, greater than 1.0 radian,
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the lateral force is somewhat larger than the bottom shear (see Appendix C). This result is

consistent with the findings of Dietrich and Smith [1983].

I have made several simplifying assumptions that influence the accuracy of

equation (4.13). I assumed uniform downstream velocity with respect to the downstream

and cross-stream directions. Dietrich and Smith [1983] showed that flow over the point bar

decelerates as the high velocity core moves to the outside bank. Therefore, this assumption

may lead to underprediction of lateral discharge. I assumed uniform transverse bed slope:

using different slopes across the channel has an insignificant effect on the magnitude of

the lateral momentum transfer. I decouple the bed topography from the bed shear stresses

associated with topographic steering; i.e., bed topography is determined by helical flow

only (see figure 4.1(d)). My model, therefore, does not represent overdeepening and reso-

nance [Parker and Johannesson, 1989; Blondeaux and Seminara, 1985] and, according to

figure 4.2, may overpredict the transverse bed slope and, therefore, the lateral flow near

the bend entrance. The errors due to flow deceleration and overprediction of transverse

bed slope near the bend entrance will tend to cancel each other. I have neglected in

equation (4.13) the effect of curvature on the vertical discharge. With large curvature, the

outside half-channel has more volume per downstream increment (at the centerline) than

the inside half-channel, and vertical discharge is increased relative to lateral discharge

such that dFn is decreased. In the numerical model, I make a correction that decreases the

effective dFn in sharper bends by selecting the component of dFn perpendicular to the flow

direction at the downstream end of a discrete channel segment (see figure 4.3(a)). An ear-

lier version of the model omitted this correction with little difference in model results.

119



(b)

(c) (d)

Figure 4.3: (a) The lateral momentum transfer, dFn, is adjusted to account for the differ-

ence in downstream direction angle between successive points. (b) Conceptual diagram of

lateral acceleration of the high velocity core and the resulting lateral profiles of near-bank

downstream flow velocity; the profile is steep where the core reaches the bank but

becomes less steep downstream, though the position of the core is nearly constant. (c) The

width, B, used in the lag function, L, is the distance between the inner and outer banks at a

depth of H/2. (d) The valley is conceptually infinite in the + and - y-directions and "falls

off" at set values of x at either end of the valley; channels are cut off when they cross the

end boundaries.

4.2.3 Bank Shear Stress

The bank shear stress associated with the lateral momentum transfer is felt down-

stream, where the high-velocity flow core reaches the bank (see figure 4.3(b)). I derive a

simple expression to describe this downstream "lag".

Neglecting curvature in the continuity equation (4.4), substituting with

equation (4.5), and letting

qs = Uh (4.14)

I get
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aqn _ qs
(4.15)

an as

I simplify equation (4.15) further to derive an estimate of the downstream distance

between the convective acceleration of equation (4.13) over the point bar and shear stress

on the opposite bank. If I ignore changes in depth and integrate, equation (4.15) reduces to

U Bn
s n (4.16)

av

I replace an with B, the effective, "depth-averaged" channel width (see figure 4.3(c)):

B = b(z)dz (4.17)
z(0)

and aV with V and write the downstream lag as

UB
L = UB (4.18)

V

The lag in equation (4.18) is analogous to a translation of a shear force increment from the

point bar to the opposite bank downstream and laterally at the downstream and lateral flow

velocities, respectively. The lag between lateral acceleration at the bend entrance and bank

shear stress clearly exists, otherwise bends would migrate upstream.

One possible improvement over equation (4.18) might be to follow the incremental

progress of the high-velocity core across the channel. Such a calculation could amount to

solving the nonlinear flow equations for the cross-stream variation of downstream flow

velocity and would complicate the model considerably and unnecessarily.



The bank shear stress is proportional to the large lateral gradient of downstream

flow velocity that is created where the high velocity core approaches the outside bank.

That gradient increases as the core approaches the bank and decreases downstream due to

bank friction and the development of a rough turbulent flow boundary layer between the

core and bank (see figure 4.3(b)). I parameterize this downstream boundary layer develop-

ment with a Gaussian bank shear stress function. The bank roughness is parameterized by

a constant dissipation scale. The bank shear stress is the integral over upstream points of

the Gaussian-weighted and lag-offset dF, 's:

_exp[-(s - (s' + 
L ( s ' ) ) ) 2 d F

exp 2X2  dF(s)
Tw(s) = s irho(s) (4.19)

where s' is a dummy variable indicating points upstream of s where the dF 's are gener-

ated; X is the dissipation scale; and ho(s) is the depth at the deepest part of the channel sec-

tion.

In LFE models, dissipation of turbulent energy in the downstream direction is

modeled by an exponential decay term (see Appendix D), and the rate of decay is gov-

erned by the bed friction factor, Cf. Johannesson and Parker [1985] used Cf as the calibra-

tion parameter and found that the calibrated values were larger than the calculated values.

It is likely that the larger calibrated Cf reflects bank friction.

Similarly, the dissipation scale, X, is the calibration parameter for the TSRM

model. The value of X is not well constrained by theory or existing data. This scale is

related to the scale of bank roughness elements, such as fallen trees or herbaceous vegeta-
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tion clumps, but I have not attempted a derivation of the value of X from observations of

bank roughness such as those in Chapter 3. In general, greater relative bank roughness

should result in smaller values of X and, therefore, shorter meander bends.

In equation (4.19) I have parameterized the frictional dissipation of the bank shear

stress at the bank, but, as the flow depths are different over the point bar and in the pool,

the effect of bed friction is also different near the different banks. The effect of bed friction

is likely small where the channel is deep but may be large over the point bar where the

channel is shallow. Therefore, an effective "bank" area parameter lumping the effects of

bed and bank friction would be large not only in the pool, where the actual bank area is

large, but also over the point bar, where the effect of bed friction becomes large though the

actual bank area is small. This parameter would have a minimum at intermediate values of

actual bank height, i.e., where the channel is approximately rectangular. In the present

model, this parameter is ho(s) (see equation (4.19)), the outside bank depth. Using the out-

side bank depth where the channel is actually shallow reflects the larger bed friction there.

4.2.4 Implementation

In the model, bank migration rate, , is proportional to bank shear stress, ,w (posi-

tive on the left bank, negative on the right), and perpendicular to the downstream flow

direction:

= (E - r,)ii (4.20)

where E is the bank erodibility coefficient; and n is the lateral unit vector (see

figure 4.1 (b)).
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The expression for bank shear stress, equation (4.19), does not yield an analytical

solution. Instead I discretize the equations and solve them numerically at points along a

discretized channel. The model results may be sensitive to the scale of that discretization

(as in, e.g., numerical solutions of the diffusion equation) because of the dependence of

dFn on the downstream rate of change of channel curvature and, thus, the inverse of the

downstream distance increment. I assume that cross- and downstream changes occur over

comparable distances and, therefore, use a default channel discretization which yields an

average of As=b; i.e., one channel width. When two adjacent channel points are farther

apart than twice the default As, a new point is added between them.

In the simulations of this chapter, the model's initial condition is a noisy straight

line (see Howard and Knutson, 1984, or Howard, 1992). The model boundary conditions

represent an infinitely wide valley floor with a uniform slope and truncated at both the

upstream and downstream ends (see figure 4.3(d)). Neck cutoffs occur when two channel

segments come close enough to one another that the channel cross-sections would overlap.

I do not model chute cutoffs.

To visualize the model's evolution, the channel is super-imposed on a regular grid

discretized at one-third of the channel width. Before each iteration, grid points at the out-

side bank, channel centerline, and inside bank are set to the bed elevations corresponding

to those locations, respectively. After channel movement, all channel grid point elevations

are reset to the average bed elevation. Pixels that are abandoned by the channel during the

iteration retain their previously set elevations. Finally, I may impose "uplift" or "incision"

by adding elevation to all grid elevations except for channel points. Thus, as a channel



erodes at the outside bank (next to the pool), a floodplain is built by abandonment of

points at the inside bank (next to the point bar). Inside bank pixels are assigned a deposit

thickness, hdp:

hdep = Zpb Zcl (4.21)

where Zpb is the elevation of the point bar at the inside bank; and zc is the elevation of the

bed at the channel centerline, or the average bed elevation for the channel section; and hdep

is restricted to positive or zero values (hdep 2 0). I must emphasize that in these rules "ero-

sion" and "deposition" are only conceptual and are not governed by mass balance calcula-

tion.

4.3 Results

In the following sections, I report the results of two groups of simulations with the Muddy

Creek parameters (see table 4. 1). I simulate streams in spatial domains much longer than

the length of a single bend (Evalley > 100 x Lbend) and streams and topography over a

shorter domain (Lvalley > 10 x Lbend) to visualize the model results in three dimensions.

First, I briefly explain the model parameter set. Next, I break up the results into three sec-

tions focusing on the forms and evolution of meander bends, the floodplain, and the mean-

der belt, respectively. These sections progress from details to the bigger picture to show

how the former is reflected in the latter. Inevitably, there is some overlap of themes among

sections. For comparison with the Topographic Steering River Meandering (TSRM)

model, I draw on both examples from the field (see Chapter 3) and results from a model
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based on Johannesson and Parker's [1989c] LFE model (see Appendix D). Finally, I

investigate the TSRM model's parameter sensitivities.

4.3.1 Parameters

Parameters were obtained from published data, shown in table 4.1 [Dietrich and

Smith, 1983; Dietrich and Whiting, 1989].

The dissipation scale was varied to calibrate the model channel bend size to the

size of the Muddy Creek bend studied by Dietrich and Smith [1983] (the "study bend").

Also, from Dietrich and Smith's [1983] detailed map of the study bend, I measured the

distance from the locus of maximum bank erosion to the ends, both upstream and down-

stream, of the cut bank on that bend. Both cut bank measurements and the calibrated value

of X (see table 4.1) are all approximately equal.

4.3.2 Meander Bends

c

UO 1000 2000 3000
meters distance

Figure 4.4: Meander model evolution over long domain with Muddy Creek parameters.

Display every t = 5000 arbitrary model time units, except magenta, at t = 250 units; cyan is

at t = 5500. units; red is at t = 10,500 units; green is at t = 15,500 units; blue is at t =

20,500 units. The meander belt, or the area swept by the channel in all time slices, includ-

ing many not shown, prior to and including t = 15,500 units is outlined and filled with a

speckled pattern. There is little transgression from this area during the last 5000 units.

Several time slices from the long domain TSRM model simulations are shown in

figure 4.4. The model produces realistic, complicated meander patterns. Individual bend
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forms vary among many "typical" shapes, and the great variety of these shapes gives the

appearance of irregularity. In figure 4.5, I compare a short section of model channel from

the simulation of figure 4.4 to a digitized natural river channel, the Kuskokwim River,

Alaska (see figure 3.13).

(b)

Figure 4.5: Comparison of Kuskokwim River, AK, and a TSRM model channel. (a) Digi-
tized natural channel centerline (see Chapter 3). (b) Model channel segment from the sim-
ulation of figure 4.4.

The channel segments shown in figure 4.5 illustrate some of the similarities and

differences between natural and TSRM model channels. The comparison illustrates that

the model reproduces many of the types of forms found in real channels, such as com-

pound bends, loops that point upstream, relatively straight reaches, and some peculiar yet

characteristic forms which defy nomenclature. Some of the natural shapes are irregular in

comparison with the ideal shapes simulated by the model. In other cases, the natural

shapes are even smoother than the simulated.
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Figure 4.6: Model channels (drawn in solid black) superimposed with the predicted bank
shear stress (drawn in dashed gray at a distance proportional to its magnitude from and
perpendicular to the corresponding channel segment) to show evolution. Flow is from left
to right. Frame numbers are from an animation of the channel evolution where frames are
drawn every t = 10.0 units.

A TSRM model time series from a short domain simulation that illustrates some of

the possible channel forms and how they evolve over time is shown in figure 4.6. Note that

the frames in figure 4.6 are not chosen at equal time intervals but are, rather, chosen to

exhibit the details of the model evolution. An interesting result shown in figure 4.6 is the

model's formation of compound bends. Frame #101 shows the channel prior to an immi-

nent cutoff at x=150m. In frame #123 the cutoff has developed into a new, downstream

migrating bend. In frame #125 the latter bend has "pushed" into the downstream bend and

led to an instability and large shear stress on the inner bank of the bend at x=200m; the lat-

ter bend is now compound, defined as such by the small curvature reversal at x=200m. In

frame #137 the compound bend has separated into three "daughter" bends; the middle of

the three is migrating quickly and eroding into the inner bank of the third; the migration of

the latter, in turn, has led to compound bend formation at x=225m; the bend at x=100m

has recently cut off. In frame #143 the bends at x=200m and 225m have become relatively

stable; the compound bend at x=225m has not separated to form daughter bends; and, the
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new bend at x=100m has initiated another "wave" of rapid channel migration downstream.

In frame #154, as a result of that wave, a bend at x=150m is now compound and the bends

downstream have changed. In frame #163 two more cutoffs, at x= 150m and 225m, have

initiated two waves, respectively, of accelerated channel migration. Finally, in frame #179

the bend at x= 100m has formed a series of bends resembling the "daughter" bends at

x=200m in frame #154, though the two mechanisms are different. These frames show that,

in general, bends first migrate downstream when they are small, grow laterally when they

are of medium length, and finally grow upstream when they are long. This result is consis-

tent with the decreasing "phase shift" with increasing bend length found by Odgaard

[1987] and predicted by Furbish [1991].

The model produces compound bends similar, both in form and evolution, to those

observed in the field. The "dog-leg" bend at the bottom of frame #154, at x=150m is char-

acteristic of a shape often produced by the model and found in nature. I showed an exam-

ple from the Amazon River basin in figure 3.4. In figure 3.12 I showed two examples of

compound bend formation on the Ellis River, ME, which formed by a mechanism similar

to that described above and shown in figure 4.6.

4.3.3 The Floodplain

I emphasize again: in these "floodplain" results I do not calculate the sediment

mass balance. Thus, when, in the context of the model visualization, I use terms such as

deposition, incision, and uplift, I mean them figuratively.

Two time slices of the figure 4.6 simulation with uniform uplift are shown in

figure 4.7, one slice at an early stage of the simulation and the other slice at a time
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(between frames #137 and #143 of figure 4.6) much greater than the time for the channel

to rework most of the meander belt. Both elevation and alluvial thickness shadings are

shown. If there were no uplift in the simulation, the surfaces with non-zero deposit thick-

nesses (alluvial shading other than white) would be floodplain surfaces higher than the

average channel bed elevation.

The time of figure 4.7(c) and (d) is chosen to show the early development of the

compound bend at the center of the domain; this is the same compound bend as that shown

in frame #123 of figure 4.6. The blue shading of the new point bar indicates that the bend

is growing rapidly compared to bends without blue-shaded point bars. As shown above,

waves of accelerated migration, such as often follow cutoffs, lead to a punctuated evolu-

tion of alternating slow and rapid channel migration. This punctuated evolution is evident

from the variations in topographic slope on the modeled point bars (detail shown in

figure 4.7(e) and (f)). The uplift rate is constant; therefore, topography will be steeper

when channel migration is slower. Flatter surfaces indicate locations of more rapid chan-

nel migration.

Sloughs (see Howard, 1992) form on the point bars of bends (marked by arrows in

figure 4.7) which are short enough that the lateral momentum transfer at the bend entrance

leads to shear stress which carries over into the next bend (e.g., see frame #137 in

figure 4.6) and erodes the point bar of that downstream bend. Where the point bar is

eroded, the channel moves away from the pool, rather than from the point bar as is more

usual, and points which were last occupied by the pool form a slough which resembles

those observed in the field and in the modeling of Howard [1992].
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(a) (b) (c)

(e) (d)

(f)

Figure 4.7: Visualizations of "incised" meanders. (a), (b) Time = 300 units. (c), (d), (e),
(f) Time = 12,490 units. (a), (c), and (e) Elevation shading, low to high: blue, tan, brown,
light and dark greens; stretched at low elevations. (b), (d), (f) Alluvial shading, -0-0.5
meters: white; yellow; yellow, green and dark grays; light and dark browns. (e), (f) Detail
of point bar, (e) elevation and (f) alluvial shading.



Figure 4.8: Visualization of model evolution without uplift to show floodplain topogra-
phy. Elevation shading is similar to that of figure 4.7 except that here greater elevations
are stretched to show scroll bar topography. A close-up perspective view of the circled
area is inset. Flow is from left to right, and I have removed the valley's downward eleva-
tion trend.

Deposit thicknesses appear as bands of alternating light and dark in many locations

(some examples are circled in figure 4.7). These bands of contrasting deposit thickness are

similar to scroll bars observed in the field (see figures 3.3 and 3.16) and are not formed by

other models (e.g. Howard, 1992). In the simulation without uplift, shown in figure 4.8,

the scroll bar-like topography is more evident. These model scroll bars are the result of

oscillating channel curvature-which determines point bar height through equations (4.2)

and (4.2 1)-during the evolution of the meandering channel.



To better understand this mechanism and others, it is useful to compare TSRM and

LFE model bends. In figure 4.9, I plot the shape, curvature, and shear stress for bends typ-

ical of each model: small bends and the same bends just prior to cutoff. Note that no LFE

model parameters were calibrated. The plots of curvature and bank shear stress as func-

tions of downstream distance are normalized by the maximum curvatures and shear

stresses and the bend lengths, respectively, for the small bends. These normalization val-

ues are listed in table 4.2, along with the similar quantities from the Muddy Creek study

bend.

Table 4.2: Bend characteristics for both models and Muddy Creek study bend

LFE model TSRM model Muddy Creek

bend length, m 42.1 25.2 25.2

max. curvature, m-1  0.0902 0.136 0.13

From equation (4.20), the bank migration rate, = 40 cm/yr, measured at the

Muddy Creek study bend, and the TSRM model-predicted maximum bank shear stress, u,

= 1.1 N/m2, the bank erodibility predicted by the TSRM model is

E = / w, = 0.36 m 3 /N - yr.

Shear stress distributions in the small bends are fairly similar, but subtle differ-

ences become more pronounced in the long bends. The different mechanisms driving bank

shear stress in the two models are evident in the different bend shapes and shear stress dis-

tributions. The reader should refer to figure 4.9 in the following explanatory paragraphs.
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Figure 4.9: Comparison of the LFE and TSRM models. (a), (b), (c), and (d) plot channel
centerline curvature (solid black) with bank shear (dashed gray); (e), (f), (g), and (h) show
the channel planforms (solid black) with bank shear (dashed gray), where its magnitude is
proportional to the perpendicular distance from the channel. (a) and (e) show small bends
from the LFE model, and (b) and (f) show the same bends near cutoff. Similarly, (c) and
(g) show small bends from the TSRM model, and (d) and (h) show the same bends near
cutoff. The curvature and shear plots, (a), (b), (c), and (d), have normalized axes; the hori-
zontal axes are normalized by the lengths of the small bends (arrows) of each model; the
vertical axes are normalized by the maximum values of curvature and shear in the same
small bends. Both cases use the Muddy Creek parameter set.

In the LFE model, the effective bank shear stress is linearly dependent on a

weighted integral of local and upstream curvature (see equation (D.O.1)). The curvature

function peaks shortly downstream of the crossover between bends and decays through the

bend, and the bank shear stress function has a similar shape peaked downstream of the

curvature. The curvature and shear stress functions and channel planforms are quite regu-

lar from bend to bend, and the curvature changes gradually through the bend. The bends

tend to "lean" upstream but continue to elongate laterally because the loci of maximum

shear stress are at the bend apices.

In the TSRM model, bank shear stress is nonlinearly dependent on the downstream

rate of change of curvature. Curvature peaks twice, at the beginning and end of each bend.
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In between, the curvature is nearly constant for much of the bend and, for a small part near

the end of the long bends, approaches zero. These curvature changes occur over short dis-

tances. The model bend curvature is strikingly similar to some of the natural channels'

curvature plotted in figure 3.14.

The bank shear stress function peaks early in the bend, downstream of the first

peak in the curvature function, and may drop to nearly zero due to the nearly constant or

decreasing curvature through the middle of the bend. Thus, the direction of maximum

channel migration shifts away from the down-valley or lateral directions toward the up-

valley direction. This tendency for long bends to "point" upstream limits the bend's lateral

elongation and is commonly observed in the field (see, e.g., figures 4.5(a) and 3.4). Bank

shear stress due to the second curvature peak carries into the next bend and somewhat

counteracts the shear stress from the opposite lateral momentum transfer at the beginning

of that next bend. Note that I do not explicitly model the flow field; that said, the latter

counteraction effect is similar to what happens to the flow field in the transition between

bends. At a bend entrance, if the high velocity core is accelerating toward the inside bank,

it takes some force to reverse that acceleration and steer it towards the opposite bank, force

which might otherwise be expended as shear stress.

The spatiotemporal coevolution of curvature and bank shear stress forms scroll

bars, as shown in figures 4.7 and 4.8. This phenomenon bears some discussion here. In the

two long bends in figure 4.9(d) and (h), smaller curvature peaks at the crossover and

beginning of the first bend lead to a longer downstream lag than in the second bend, where

the curvature peaks are larger. In the latter bend, bank shear stress is concentrated in a rel-
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atively high curvature reach such that high points are left behind by the migrating channel;

in the former bend, bank shear stress is peaked where curvature is small such that low

points are left behind as the channel migrates. Such differences in the downstream lag

exist among bends and over time in the same bend. As the lag changes over time, the step-

like nature of the curvature function leads to similarly abrupt differences in floodplain ele-

vation. Two other simple mechanisms also come into play: (a) where bank migration is

localized, curvature at that locus increases; and (b), in loci of less bank migration, local

curvature decreases.

I further examine the model scroll bars by repeating the spectral analysis of Chap-

ter 3 for transects extracted by scan line conversion of line segments between specified

endpoints onto the model grid (see figure 4.10). This is the same method used to superim-

pose the TSRM model channel segments onto the grids in figures 4.7 and 4.8. The num-

bered transects from figure 4.10 are shown in figure 4.11.

I employed the same spectral technique used for the natural channels in Chapter 3

to find the power spectra of the transects (see figure 4.12). Many of the transect spectra do

not have peaks with confidence levels smaller than 0.5, and none of the spectral peaks

have confidence levels smaller than 0.1 (see table 4.3). This result indicates that the model

scroll bar topography is only quasi-periodic, though many of the spectra have peaks at

similar wave numbers. The mean peak wavelength, excluding transects 4, 15, and 20, is

9.6 m. The results of the model spectral analysis are not dissimilar to the results of the

Ellis River spectral analysis (see Chapter 3, especially figure 3.21) which also did not have

many peaks at confidence levels smaller than 0.1. Neither the Ellis nor the model transects
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are long enough to contain many oscillations at the peak wavelength because their point

bars contain few scrolls, but even the Mississippi scroll bars analyzed in Chapter 3 were

only quasi-periodic.

Some of the peak wavelengths are close to twice the channel discretization. Ani-

mations of the formation of these scroll features indicate that some of them result from the

channel discretization where the channel runs perpendicular to the ridges. Much of the

model scroll bar topography, however, is indeed produced as the curvature through several

channel points oscillates as the bend migrates. Note that transects 4 and 12 are practically

on top of one another but have different maximal peaks, testimony to the lack of a domi-

nant periodicity in the model topography.
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Figure 4.10: Gray scale image of the model simulation of figure 4.8 with locations of
transects. Numbered transects are drawn with a thicker line than the rest.

137



0.5

0

-0.5

0

-0.5

0.5
0.5 8 ,

0

-0.5
-0.2

o -0.6
0 . 1 I I

12a)a)E

0.5

14

-0.5
1 15

0.5

0
0.5

20

0

-0.5
0 10 20 30 40 50

meters distance

Figure 4.11: Elevation plotted vs. distance for the numbered transects shown in
figure 4.10. Note that the grid point spacing is 1.83 meters in both the x- and y-directions.
Therefore, the minimum possible transect increment is 1.83 m.
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Figure 4.12: Power spectra of the numbered transects shown in figures 4.10 and 4.11. The
plots show power vs. wave number. Only those spectra with maximum power above the
0.50 confidence level are shown. The confidence levels of the maxima are as follows:
0.19, 0.20, 0.40, 0.27, 0.17, 0.30, 0.37, 0.22, 0. 10, and 0.33 for spectra of transects 2, 4, 7,
8, 10, 12, 14, 15, 16, and 20, respectively.
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Table 4.3: Confidence levels of spectral peaksa

transect peak wave number, m-1 peak wavelength, m confidence level

2 0.10 9.6 0.19

4 0.033 30. 0.20

7 0.12 8.5 0.40

8 0.091 11. 0.27

10 0.091 11. 0.17

12 0.12 8.3 0.30

14 0.11 9.1 0.37

15 0.18 5.6 0.22

16 0.11 9.4 0.10

20 0.063 16. 0.33

a. Grid discretization is 1.83 m; channel discretization is variable, on average 5.5 m, or one
channel width.

4.3.4 The Meander Belt

The meander belt according to one definition is drawn in figure 4.4. In figures 4.7

and 4.8, the meander belt consists of points visited at least once by the channel. Areas

completely surrounded by "visited" points could also qualify and are visible in figures 4.7

and 4.8 but are not represented in the following statistics. When past channel location is

not recorded, the meander belt is defined by the present channel.

Cumulative distribution functions (CDFs) of meander belt age and the time devel-

opment of meander belt width are shown in figure 4.13 for the simulation of figure 4.7.

The CDFs show that most of the material in the meander belt is relatively new; i.e., the

channel reworks -70% of the meander belt every -3000 model time units. But the distri-

bution has a tail which grows longer through time and indicates that the probability of

finding older surfaces remains relatively high for times much longer than 3000 units; e.g.,

after 13,100 units, the probability of finding a surface older than 10,000 units is greater
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than 10% (see figure 4.13). The meander belt reaches a stable maximum width

(figure 4.13(b)) after 3000-5000 time units, though the channel often approaches the belt

edges (see figure 4.7). Lathrap [1968] found the oldest of his archaeological sites on the

Rio Ucayali, Peru, on the edge of the meander belt.

-"0 2000 4000 6000 8000 10000 12000 14000
T, model time units

Figure 4.13: Cumulative distributions of floodplain age and maximum meander belt

width. Time (horizontal) axes are of approximately equivalent scale. Results are from the

simulation shown in figure 4.7. (a) Cumulative distributions of ages of meander belt mate-

rial are shown for several times after meander belt widening has nearly ceased; only loca-

tions which have been visited at least once by the channel are included in the distributions.

(b) Maximum meander belt width vs. time. Maximum meander belt width is defined by

the longest row (i.e., cross-valley) of grid points which have been visited by the channel

(see figure 4.7).

Meander belt stability is also illustrated in figure 4.14, where the normalized prob-

ability density and non-normalized frequency distributions of the y-coordinate values of

channel points are shown for the long domain simulation time slices of figure 4.4.

Between the first and second times, the number of points and the meander belt width

increase dramatically; after t = 5500. units, the number of points and the meander belt
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width increase little, but the likelihood of a channel point lying near the edge of the mean-

der belt increases greatly. The last time slice in figure 4.14 shows that the channel pattern

eventually loses its "memory" of the initial channel location and that, in so doing, the y-

coordinate values of disparate parts of the meander belt become uncorrelated. This de-cor-

relation leads to the bimodal distribution of y-coordinate values for the last time slice in

figure 4.14. But, even as different sections of the channel occupy different regions on the

y-axis, the major part of the channel remains within a range whose width is relatively con-

stant throughout the simulated channel's evolution. Note that these plots are not meant to

predict patterns of deposition, which could affect meander belt location, width and stabil-

ity. The finding that meander belt width remains nearly constant after some time contrasts

with Howard's [1996] finding that his meander model produced logarithmic growth of the

meander belt width with time.

(a) (b)0.12- 300
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y, meters
Figure 4.14: Distributions of y-coordinates of simulated channels from figure 4.4. Solidlight gray, t = 250. units; dashed light medium gray, t = 5500. units; dot-dashed dark
medium gray, t = 10,500. units.; dot-dot-dashed dark gray, t = 15,500. units; dotted black,t = 20, 500. units. (a) Normalized sample distributions of probability of finding a channelpoint at a given y-coordinate; (b) non-normalized sample distributions.

In figure 4.15, I show the results of applying the measures (sinuosity mean and

variance, meander belt width, and mean angle) developed in Chapter 3 to the model chan-

nels at several times during the simulation of figure 4.4. First, note that the characteristic
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features change over time. The first slice has a single plateau and single peak in ts and

os2, respectively. W decreases monotonically with a convexo-concave profile; convex at

the peak of ys2 and where ts is increasing, concave where gs is level. gt0 has a single

peak, though a subtle bump is apparent after the peak. In all subsequent time slices, Ys2

has more than one peak corresponding to more than one step in yS and convexity of W.

Correspondence to peaks in [to is also apparent though less consistent. The number of

channel planform scale indicators is not monotonically increasing through time, and the

primary sinuosity remains nearly constant. The secondary sinuosity, however, varies. If

secondary features correspond to large multi-bend loops, then the cutoff of such forms

will eliminate corresponding channel planform scale indicators. Apparently, there was at

least one major cutoff event between times 5450 and 10,450. Similar forms have become

reestablished as of time 15,450. The scale of the primary channel planform scale indica-

tors is nearly constant in time at -20-30 b. Secondary channel planform scale indicators

are also at similar scales over time, at -100 b. These characteristics and scales are similar

to those of the natural channels in Chapter 3.

For comparison, I show several time slices from the LFE model simulation over a

domain the same length as the TSRM model simulation of figure 4.4 in figure 4.16 and the

results of my planform measures in figure 4.17. I have already pointed out some of the dif-

ferences in form in figure 4.9. Note the different model times bearing no correspondence

to times of the TSRM model simulations shown. The LFE model simulation has complex

forms but lacks multi-bend loops and other forms typical of compound bend formation,

such as that in figure 3.4. Computation time for the simulation shown was an order of
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magnitude longer than that of figure 4.4, and the LFE simulation time corresponds to

much less time than in figure 4.4 in terms of the lifetime of a simple bend. This version of

the LFE model needed a much finer discretization than the TSRM model, and the corre-

spondingly greater number of channel points led to much of that longer computation time.

Others, e.g., Howard [1992] use a channel discretization comparable to that used here for

the TSRM model.
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Figure 4.15: Sinuosity mean and variance, relative meander belt width, and mean angle

vs. normalized reach length for the TSRM model simulation of figure 4.4.
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Figure 4.16: Meandering channels simulated with the LFE model and shown at several

times. Magenta, cyan, red, green, and blue are after 20, 40, 60, 80, and 100 time units,

respectively.

There are some interesting differences in the planform measures of the LFE model

simulations. The shapes of the 's 2's are most strikingly different. The integral or mass of

Gs2 for the LFE model simulation is smaller and more closely distributed around the peak

value. There are secondary peaks, but they are limited to spikes, i.e., they are not associ-

ated with much of the cs 2 mass, and they look more like noise. Similarly, tS does not have



distinct secondary steps. Peak values of W are larger than for either natural or TSRM

model streams. Two slices (excluding noise) are not monotonically decreasing and are

peaked at the scale of the peak in oa2 . I observed this peak in W for TSRM model simula-

tions not shown, but it appears to be less common and may vary with parameters. There

are no significant secondary go0 peaks. The scale of channel planform scale indicators is

approximately constant over time at -20-40 b, though there is some increase over time

which may or may not be significant. I observed that LFE model bend growth is bounded

only by spatial limitations, whereas the TSRM model bends tend to become compound.

By the last time slice, the maximum W has decreased to a value similar to that typical of

the TSRM model.

%t = 20 t = 40 t = 60 t = 80 t= 100

100 102 100 "0 100 102 100 12 10 102vs. normalized reach length for the LFE model simulation of figure 4.16. The steep rises in
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Figure 4.17: Sinuosity mean and variance, relative meander belt width, and mean angle

vs. normalized reach length for the LFE model simulation of figure 4.16. The steep rises in

mean angle for scales approaching 1000 channel widths at t = 60 and t = 80 are artifacts of

the measure.

4.3.5 Model Sensitivity to Parameters

I have analyzed the model's sensitivities by running simulations varying each

parameter, and I show some of the more interesting cases in this section. Parameter
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changes can have complicated effects due to the interplay among the various model com-

ponents described in the previous section.

The dissipation scale is the major control on the size of the simulated meander

bends. Smaller (or larger) dissipation scales lead to smaller (or larger) bends. The relation-

ship between dissipation scale and bend length is linear. The dissipation scale was the cal-

ibration parameter because it most directly controls meander bend length.

Parameter changes that increase the difference between the lateral and vertical

momenta in equation (4.12) usually result in increased migration rate. Such changes

include increasing channel width (see figure 4.18) and slope and, counter-intuitively,

decreasing discharge; when channel width is held constant, a decrease in discharge also

decreases the depth such that the width-to-depth ratio and, therefore, the difference

between the lateral and vertical momenta, also increase (see equation (4.13)). However,

discharge and width do not, in general, vary independently in natural channels.

(a) 0

E -100

-200

0 100 200 300 400
meters distance

Figure 4.18: Illustration of the model's sensitivity to channel width. In (a), simulation

with default channel width, b = 5.5 m; in (b), simulation with b = 10. m. Both simulations

are shown after and for equal times. Earliest times shown in bold black; latest times in

bold medium gray; intervening times, from early to late, shown in thin light gray to black.
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Figure 4.19: Illustration of the model's sensitivity to median grain diameter. In (a), simu-
lation with dso = 2 mm; in (b), simulation with d5so = 0.4 mm. Both simulations are shown
after and for equal times. Earliest times shown in bold black; latest times in bold medium
gray; intervening times, from early to late, shown in thin light gray to black.

Changes in grain size affect both the rate and style of channel migration (see

figure 4.19). Decreasing the grain size can have a dramatic effect because of the transverse

bed slope's dependence on grain size (see equation (4.3) and equations (A. 1.4) and

(A.2. 10)). Smaller grain size corresponds to greater transverse bed slope and, thus, larger

aAcs/s. The lateral momentum transfer increases as (iAAcs/Js) 2 (see equation (4.13)),

and the downstream lag decreases as the inverse of DAcs/as (see equation (4.18)). Migra-

tion rate increases with lateral momentum transfer. Shorter downstream lags, relative to

the dissipation scale, promote more compound bend formation, such as in the run of

figure 4.19(b), because the bank shear stress is applied earlier in the course of the bend. I

showed in Chapter 3 that bends of the Ellis River became compound when the channel at

the beginning of the bend migrated rapidly (Aside: note the marked similarity, in both

shape and evolution, between the bend at the bottom of figure 4.19(b), at x = 250 meters,

and the Ellis River bend #13 in figure 3.12(b).). Thus, parts of the channel migrate in the
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same direction as, and elaborate on the patterns of, earlier bends to form sinuous, "puzzle-

piece" patterns. This type of pattern is prevalent, for example, on the Melozitna and

Innoko Rivers, Alaska (see figure 3.13).

4.4 Discussion
The model suggests answers to some of the past riddles concerning the evolution of mean-

dering channels and the effect of that meandering on floodplain and meander belt geomor-

phology.

4.4.1 Conditions for meandering and channel stability

It has been suggested [Schumm, et al., 1987; Howard, 1992] that cohesive bank

material and mobile bedload are necessary for meandering. My model supports the neces-

sity of the latter and, implicitly, the former conditions.

Without stabilization by cohesive materials and vegetation, the floodplain and

channel banks are eroded until the stream is fully braided, as shown in the experiments of

Schumm, et al. [1987] and my own field observations in the Missouri Ozarks (see Chapter

3). The TSRM model assumes that the channel banks and floodplain are stabilized by

some mechanism though I do not model that mechanism explicitly. The bed topography

model assumes that the bed is composed of mobile bedload material. Therefore, mobile

bedload is necessary in the TSRM model, and experimental observations also support the

necessity of bedload for meandering [Schumm, et al., 1987; Smith, 1998].

Bend migration may become small under several conditions, as indicated in the

results. The model predicts a punctuated evolution, fast when bends are small and slow

when bends are either long or "incoherent", i.e., lacking a consistent scale, such as in the
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period just following a cutoff. The latter phenomenon is apparent from the long time

between the first two frames of figure 4.6. Changes in bedload material may also affect

channel stability, as shown in figure 4.19. If the bedload source for a meandering channel

were to coarsen and that coarsening were the only change, then, according to the model,

the channel migration rate would decrease as transverse bed slopes and, thus, lateral

momentum transfers became smaller. Deeper, narrower channels should also migrate less

quickly.

On the other hand, I have shown several situations in which migration rate is par-

ticularly large. Of course, increases in parameters which reflect the available energy, such

as discharge and valley slope, lead to increases in migration rate. This sensitivity to slope

is consistent with Schumm's [1993] observations and Schumm, et al.'s [1987] experimental

results. But, the model also predicts some less obvious sensitivities. In the model, wider

channels with smaller bedload migrate more rapidly, as shown in figures 4.18 and 4.19,

and small bends migrate quickly and lead to rapid migration in bends downstream.

I, and others, have observed that meandering channels occur only in valleys of low

slope. According to equations (4.3) and (4.13), migration should be more rapid when val-

ley slope is larger because larger bottom shear stress due to the slope increase leads to

greater transverse bed slope. However, flow on the floodplain will also be swifter, and

deposition of stabilizing fines and seeding of stabilizing vegetation will be less likely.

Therefore, such streams are more often braided, as per the discussion above.

Dietrich and others (personal communication, 1995), Howard [1992], and Smith

[1998] have observed that some sinuous, low-slope channels do not migrate at all. As
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noted above, my model suggests that migration should decrease with lower channel slope.

If there is a critical shear stress for bank erosion, migration could cease entirely when

channel slope is small enough. I experimented with a critical shear stress for bank erosion

and modeled some cases in which migration stopped after the sinuosity increased, and

thus the channel slope decreased, beyond a threshold value.

4.4.2 Meander bend shape and evolution

The present results indicate that details of meander bend shape may have profound

implications for the meander belt as a whole. Most of the differences in bend shape

between the TSRM and LFE models are due to their dissimilar dependencies on channel

curvature, as explained in the results section.

In the LFE model, the channel migration rate's linear dependence on channel cur-

vature discourages, and may even disallow, compound bend formation. Howard [1992]

noted the absence of compound bends in his LFE model simulations. In the LFE model,

bends remain stable with respect to variations in curvature as long as the curvature does

not change sign, even as these bends become quite long. Such bends never develop more

than one pronounced curvature maximum (see figure 4.9). Howard [1992] conjectured

that un-modeled secondary processes, such as migrating alternate bars, or conditions, such

as heterogeneous bank erodibility, are responsible for compound bend formation.

Seminara and Tubino [1992] reasoned "that strongly nonlinear effects may play a

non-negligible role for fairly small values of channel curvature." The TSRM model is

strongly nonlinear, and this nonlinearity plays an important role in meander evolution. In

the results, I showed how bank shear stress may approach zero (see figure 4.9) in longer

150



bends. In such cases, the model's nonlinearity promotes planform instability due to rela-

tively small variations in curvature. The bank shear stress dissipation scale determines the

length over which such variations are smoothed out and bends remain stable. For bends

longer than that stable length, small increases in curvature promote instability which in

turn promote the formation of compound bends. The lateral momentum transfer's nonlin-

ear dependence on changing curvature is both necessary and sufficient for compound bend

formation.

The sensitivity analysis suggests, and I have observed, that compound bend forma-

tion is more likely when the downstream lag is small relative to the dissipation parameter,

X. The lag is smaller with smaller channel width (see equation (4.18)) and greater lateral

flow velocity relative to the downstream velocity (see equation (4.9)). Greater lateral flow

velocity is generally due to greater transverse bed slope, e.g., for small grain diameter.

Greater downstream slope leads to an increase in transverse bed slope, a decrease in flow

depth, and, therefore, a disproportionate increase in lateral flow velocity relative to down-

stream flow velocity (V - SO.65 , U _ SO. 3 ) because lateral velocity increases with both

transverse bed slope and the inverse of flow depth (see equation (4.9)), the latter decreas-

ing with greater channel slope (see equation (4.1)). Therefore, the lag decreases with

increasing slope (L - S0.35 ), and the lateral momentum transfer increases linearly with

slope (dF n - Sf).

4.4.3 Meander belt and floodplain evolution

It is apparent from the model results that the style or mechanism of bend evolution

has a significant impact on the meander belt as a whole. Compound bend formation pro-



motes planform complexity, which is reflected in stream sinuosity. When bends cut off, a

simpler, less sinuous channel pattern replaces the original. When bends divide, however, a

more complex and sinuous channel pattern replaces the original.

This type of complexity enhances system memory, defined as the time over and

extent to which current form reflects prior conditions, as discussed in Chapter 3. As shown

in the Results, compound bend formation leads to puzzle piece channel planforms. These

puzzle pieces enclose significant areas of the meander belt without encroaching on them.

Such areas may contain remnants of the point bar of the original bend on which the puzzle

piece is an elaboration. In this case, the lifetime of that point bar remnant is extended by

the several bend lifetimes over which the original bend has divided and re-divided. This

lifetime extension is one mechanism by which floodplain surface remnants may persist for

times much greater than the time the channel takes to re-work most of the floodplain, as

evident in the long tails of the CDFs of floodplain age shown in figure 4.13 and by the

unvisited surface remnant visible in figure 4.7(c).

This result is consistent with field observations. T. Abbe [personal communication,

1996] has found trees whose age greatly exceeds the estimated, or expected, period

between channel occupations on alluviated floodplains in the Queets River watershed on

the Olympic Peninsula of Washington.

The relative importance to the planform of compound bend formation is apparent

in the planform measures as secondary channel planform scale indicators. Both the natural

channels from Chapter 3 and the TSRM model channels exhibit these secondary channel

planform scale indicators, but the LFE model, which lacks compound bend formation,

152



also lacks secondary channel planform scale indicators, though the LFE and TSRM model

channels have similar total sinuosity at the last times measured (see figures 4.15 and 4.17).

Thus, not only does the new model reproduce a natural phenomenon not captured by pre-

vious models, but also the new statistical measures of channel planform distinguish

between the presence and absence of that phenomenon in model and natural channels.

The model results have implications with respect to the meander belt width. Model

bends develop such that their apices point more nearly upstream/up-valley as they grow

longer, e.g., in the last frame of figure 4.6. This detail of bend development implies that, in

the absence of net aggradation, which could cause the channel to avulse, the meander belt

width may be self-limiting and, thus, narrower in the TSRM model than in, e.g., the LFE

model, where bends are more laterally elongated. However, one implication of enhanced

system memory from compound bend formation is that channels will continue to migrate

in the direction of a prior bend. Such migration tends to increase the meander belt width

(see figure 4.19). In aggrading systems, channel avulsions may also widen the meander

belt.

The most surprising model result is the formation of scroll bar-like topography.

Traditionally, scroll bars have been thought to result from alternating periods of slow levee

formation and rapid bank erosion. Such a mechanism is consistent with the experimental

observations of C.E. Smith [personal communication, 1998], who developed non-dune,

unvegetated scroll bars under experimental, steady flow conditions. As shown in the

present results, the TSRM model channels do not evolve at a steady rate, and the alternat-

ing periods of slower and faster migration are visible as bands of steeper and more gradual
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slope, respectively, in figure 4.7(a), (c), and (e). Migration rate and deposit depth at a point

are not correlated, but, given that the locus of bank erosion is distal from the point of lat-

eral momentum transfer, this lack of correlation does not necessarily imply independence.

My observations and analyses of natural channels and point bars do not rule out the

hypothesis that scroll bar topography is produced by a mechanism similar to that of the

model scroll bars. Like the natural scroll bar topography, the model scroll bar topography

is only quasi-periodic. Many of the model transects have a maximum peak at a wavelength

that is close to a multiple of the average channel discretization, and I cannot rule out a grid

effect as the mechanism responsible for the model scroll bar topography in some cases.

From the field investigation of scroll bar topography on the Ellis River in Chapter

3, I favor the hypothesis that scroll bar topography is related to episodic rapid channel

migration due to the occurrence of upstream cutoffs. The TSRM model channel migration

is characterized by episodic rapid channel migration. From figure 4.6 and an animation of

the model, it is evident that the episodic migration in the TSRM model is due to the occur-

rence of cutoffs.

4.4.4 Other Model Verification Methods

Some authors (e.g., Johannesson and Parker, 1985; Garcia, et al., 1994; Howard

and Knutson, 1984) have evaluated the capability of models to predict observed channel

evolution. Others (e.g., Johannesson and Parker, 1989a; Nelson and Smith, 1989a, b) have

compared details of the flow and bed topography of models and nature. Howard and Hem-

berger [1991] developed a multivariate statistical channel planform analysis.

154



It is nearly impossible to use the model to predict specific, observed migration

from an observed initial condition because the TSRM model is strongly nonlinear and sen-

sitive to initial conditions. The stability of LFE models may allow them to better predict

short-term channel migration. As noted previously, the TSRM model is not designed to

predict details of flow and bed topography. I have, however, shown striking similarities

between model and natural channel planform and evolution styles.

4.5 Conclusions
The TSRM model simulates meandering channel evolution and produces realistic channel

patterns and floodplain topography, including scroll bars and sloughs. The model's suc-

cessful simulation of meandering supports the topographic steering hypothesis, i.e., that

bank shear stress arises mainly from forces associated with topographically induced con-

vective accelerations. More generally, the bank shear stress' dependence on the down-

stream rate of channel curvature change is probably sufficient to produce meandering. The

nonlinearity of that dependence is certainly sufficient and may be necessary for compound

bend formation.

I have derived an expression for transverse bed slope of sand-bedded channels.

The modification of Ikeda's [1989] formula permits accuracy in sand-bedded channels

because the modified version accounts for the effect of form drag associated with dunes.

Unlike most models of river meandering, the TSRM model is strongly nonlinear,

as noted above. The simplified physics makes such nonlinearity approachable not only

conceptually but also computationally. The model's computational efficiency allows

observation of the long-term, complex, and often surprising model results in great detail

over short valley domains, as in the incising meander simulations, and less detail over long
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domains. The model formulation's conceptual "modularity" allows ready identification of

modeled phenomena and their attribution to specific mechanisms.

The present approach apparently captures physics that other models do not. Unlike

most meander models, the TSRM model forms compound bends and allows prediction of

the sensitivity of compound bend formation frequency to model parameters that affect the

transverse bed slope. Specifically, the model predicts that, all other parameters remaining

constant, a decrease in bed material grain size increases not only the rate of channel

migration but also the prevalence of compound bend formation. With greater migration

rate, the rate at which the meander belt widens is, of course, greater. I have also shown that

a meander belt with more compound bend formation is wider than one with less com-

pound bend formation. Thus, a decrease in grain size has a disproportionate effect on the

rate of valley widening. Another result of more compound bend formation is the increased

likelihood that parts of the valley floor will remain untouched for longer periods of time.

This result may have profound implications for archaeology in alluvial valleys. The

model's sensitivity to grain size also suggests a mechanism for observed downstream

changes in valley width on the Buffalo River. The valley is wider where the river crosses a

cherty limestone unit that produces relatively small gravel bedload; the valley is narrower

where the river crosses a massive sandstone unit that produces cobble-size bedload.

The model predicts a heretofore unrecognized mechanism behind the formation of

scroll bar topography. As the model channel migrates, curvature and, thus, point bar height

change. These changes are sudden and systematic in space and time such that, as a mean-

der bend evolves, the varying point bar heights form ridges and swales, or scroll bars. I
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have not verified this prediction, but neither do my studies of natural channels falsify it.

The model results are consistent with another scroll bar formation theory based on the epi-

sodic nature of channel migration. TSRM model channel migration rate fluctuates, visible

in the "incising" meanders (see figure 4.7) as banded areas of alternating gradual and steep

slope reflecting fast and slow migration, respectively. These bands are consistent with the

Ellis River measurements indicating that alternating periods of fast and slow lateral point

bar accretion correspond to fast and slow vertical point bar accretion, respectively. Also,

given a constant rate of levee deposition, this bandedness would be expressed as ridge and

swale topography.

The new quantitative channel planform analytical methods can detect that the natu-

ral and TSRM model channels form compound bends and the LFE model channels do not.

These measures also detect variations in the prevalence of multi-bend loops in the evolv-

ing planform over time. Such time variations could be responsible for the lack of second-

ary channel planform scale indicators for channels which do have many visible compound

bends.

The TSRM model is incorporated in a new channel-hillslope integrated landscape

development (CHILD) model in Chapter 5. The TSRM model is efficient enough to keep

the larger computational burden of the coupled models well within the range of feasibility.
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Chapter 5

The Channel-Hillslope Integrated
Landscape Development Model

In this chapter, I present the channel-hillslope integrated landscape development (CHILD)

model. The model integrates the TSRM model from Chapter 4 and a landscape evolution

model including hillslope and channel sediment transport. The integrated model is the

result of a team effort including Nicole Gasparini, Gregory Tucker, and Rafael Bras. We

have developed the model so that it may be used for a wide variety of applications, includ-

ing distributed hydrologic and plate tectonic modeling.

5.1 Introduction
The model simulates landscape evolution, but its components are flexible enough to serve

a number of ends. The CHILD model is written in the C++ computer language, and we

have attempted to take advantage of its features, including data hiding, the use of template

and inherited classes, and a fully object-oriented design. We sought a new approach to

enable modeling of the interaction of a variety of processes. In this chapter I show the

development of the model to examine, among other things, the interactions between a lat-

erally migrating channel and the surrounding landscape. The CHILD model was designed,

in a group effort, to address a wider range of issues than I can address in the present work,

and I will describe some of those wider capabilities even though their application is

beyond the present scope.
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5.1.1 Channel-Hillslope Interaction

I reviewed some approaches to modeling the coupled system of channels and hills-

lopes in the landscape in Chapter 2. Such approaches are, however, limited to channels

that do not migrate laterally. In Chapter 3, I showed that lateral channel migration affects

topographic slopes outside of the main channel. Also in Chapter 3, I discussed the ways

that lithologic properties might control lateral channel migration and, in Chapter 4,

showed the effect of different bedload grain sizes and controls on channel width and dis-

cussed the effects of varying slope and other factors. In Chapter 3 I discussed the possible

effects of the interactions between the channel and the surrounding landscape on channel

transport regimes and slope.

The CHILD model was designed to model all of the above effects, but a full treat-

ment of all of them is beyond the scope of this chapter. Here, I have focussed on the inter-

actions among uplift, bank (or bluff) height, and lateral channel migration because even

these relatively simple interactions have not been addressed in previous studies and must

be addressed before more complicated cases. As reviewed in Chapter 2, Howard [1992]

discussed the constraints on bank erodibility and modeled the effect of confining valley

walls by super-imposing the meandering model channel and a grid with two possible val-

ues of bank erodibility, one "floodplain" value for pixels previously visited by the channel

and another, higher "valley wall" value for unvisited pixels. In the long term, however, the

interaction of the migrating stream and the valley walls will depend on both the uplift rate

and the bank erodibility's bank height dependence. The latter, as discussed by Howard

[1992], is a complicated problem in itself, and the present model includes only a simple

parameterization of bank erodibility's bank height dependence. This parameterization
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should be sufficient to test the hypothesis that meandering is more active during periods of

quiescent uplift. More specifically, I will test this hypothesis for the case of meandering

stream incision in a detachment-limited system. In Chapter 4 I showed that the channel

slope and the shear force increment have an approximately linear relationship. This result

indicates that, if larger channel slopes result from greater uplift, then the latter may actu-

ally increase the lateral migration rate if the effect is not cancelled out or reversed by the

effect of uplift on bank height.

Also, the valley form should be affected by compound bend formation. The valleys

simulated by Howard [1992] were, relatively, straight and of constant width. In Chapters 3

and 4 that greater frequency of compound bend and multi-bend loop formation led to

channels with a large secondary sinuosity. In an incising system multi-bend loop forma-

tion might lead to a sinuous valley formation because, as discussed in Chapter 3, multi-

bend loop formation tends to leave some parts of the floodplain for longer times between

visits by the migrating channel. If the stream is incising, then these less frequently visited

points would be uplifted for a longer time between channel visits. If the bank erodibility is

dependent on bank height, then these uplifted areas would tend to resist lateral channel

migration and reinforce the tendency for the channel to form sinuous valleys. Depending

on the exact form those valleys took, the multi-bend loop formation might even cause such

streams to appear to be underfit, i.e., appear to have valley bends that were formed in the

past when flows were greater and the channel was larger. In Chapter 4 I showed that the

channel slope and the downstream lag between shear force increment generation and bank

shear stress are inversely, though weakly, related (L - Sf 0-35 , where L is downstream lag



and Sf is channel slope). That smaller downstream lag leads to greater frequency of com-

pound bend and multi-bend loop formation. The model experiments in this chapter should

allow examination of the role of compound bend and multi-bend loop formation in incis-

ing river valley formation.

5.1.2 Model Requirements

Most previous landscape evolution models have mapped elevations-and other

properties-on a rectangular grid (e.g., Ahnert, 1976; Kirkby, 1986; Willgoose, et al.,

1989; Chase, 1992; Howard, 1994; Tucker and Slingerland, 1994; Moglen and Bras,

1995; Tucker and Bras, 1998). Such a grid is similar to that used in DEMs, sufficient to

represent the modeled processes, and convenient for programming. We were, therefore,

reluctant to abandon this format. However, in order to incorporate the TSRM model, the

new model needed the capability to represent: (a) channel point locations with real-num-

ber coordinates; (b) lateral channel migration; and (c) different landscape processes at

their appropriate, often different scales. Superimposing the meandering model on a rectan-

gular grid, as in Chapter 4, was a possible approach. Howard [1996] used a grid of erod-

ibilities to represent meandering in a confining valley and with resistant clay plugs, and

the latter situation was modeled by Sun, et al. [1996] using a similar but more finely dis-

cretized grid. The latter grid is much too finely discretized to be practical for modeling an

entire landscape and would not be suitable for simultaneously modeling channels of

widely varying size because the necessary discretization is dependent on the size of the

channel. Howard's [1992] coarser grid discretization was also dependent on channel size

and would, therefore, be similarly problematic.
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In order to represent channel point locations, it was necessary to model the land-

scape on an irregular mesh. Braun and Sambridge [1997] developed a landscape evolution

model using a Delaunay triangulated irregular network (TIN) of points. The Delaunay tri-

angulation is the unique set of triangles that connect a given set of points such that a circle

passing through the three points of any triangle contains no other points. Though the

Braun and Sambridge [1997] model has the capability of adding and moving points in the

landscape, their model was not sufficient for the CHILD model. Their model typically

adds points to resolve steep slopes, and their rules for movement of points were designed

to model the tectonic motion of crustal plates, where moving landscape "nodes" will tend

to deflect one another. The CHILD model needed to represent channel migration such that

nodes are deleted from the eroding bank and added to the accreting point bar.

We were also concerned that the model's useful lifetime should not end with the

completion of the current project. Therefore, we designed the model as a set of objects, or

classes-in C++ an object is the set of data and functions which define a particular thing,

e.g., a "window" exists to the computer as a something with properties, like height and

width, and functionality, like opening and closing. Some of the objects written for the

CHILD model are general enough to be used in any application which uses a network of

points in two-dimensional space, e.g., distributed hydrologic or plate tectonic modeling.

This object-oriented approach enables the CHILD model to function as a modeling tool

box in which the individual objects are the tools which may be used as needed by the indi-

vidual user.
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In this chapter I present the CHILD model development and capabilities and the

model objects, or algorithms and data structures, as logical outcomes of the model's con-

ceptual parts. I then describe a set of simulations to address uplift-bank-meandering inter-

actions. These simulations specifically address the landscape-scale importance of bank

erodibility's bank height dependence at the channel scale and compound bend/multi-bend

loop formation at the bend scale. Beyond the visible morphologic features, the relation-

ships between topographic slope and contributing area for the simulated landscapes enable

comparisons to the Schoharie Creek valley studied in Chapter 3.

5.2 Model Conceptualization
The CHILD model design allows simulation of any combination of a large number of geo-

morphic and hydrologic processes, mechanisms, and influences, including:

1. stochastic rainfall;
2. runoff generation;
3. flow routing;
4. fluvial erosion and deposition (vertical);
5. transport and stratigraphic representation of multiple sediment clasts;
6. lateral channel migration, or meandering;
7. floodplain deposition;
8. diffusive and other hillslope transport processes;
9. weathering/soil development;
10. vegetation; and
11. uplift.
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Figure 5.1: Flow chart showing the implementation of the basic processes in the CHILD
model. In the chart, "diffusion" might include other hillslope processes.

Implementation of the more basic processes is shown as a flow chart in figure 5.1; this

chart leaves out some of the processes enumerated above.

5.2.1 The Grid

The grid is the basic infrastructure of the model. In the CHILD model, what I call a

grid is actually a triangulated irregular network (TIN) of points, or nodes, at which model
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processes are calculated. The nodes are connected by edges which define the connectivity

of and distances between points on the grid for finite difference calculations (see

figure 5.2). With a standard rectangular grid, the distances are uniform, and finite differ-

ences are calculated for a standard set of neighbors, e.g., the eight neighbors of a grid cell.

With a TIN, the nodes are, in general, irregularly spaced and located, and the edges are, in

general, unique. The connectivity of the irregular mesh is non-trivial and is only known

after finding the Delaunay triangulation. With a rectangular grid, the area associated with

each node is rectangular, and its determination is, again, trivial. With the TIN, the area

associated with each node is defined by the mesh's Voronoi diagram, the inverse of the

Delaunay triangulation (see figure 5.2). Hereafter, I will often refer to the TIN as the grid.

Points (nodes)

Voronoi Cell

Edge

Figure 5.2: Schematic illustration of model grid components.

A Voronoi diagram defines the Voronoi areas, or nearest neighborhoods, of each

node in the grid. The Voronoi area of a node is the locus of points in two-dimensional

space which are closest to that node. For a set of rain gauges, the Voronoi diagram is the

same as the Thiessen diagram [Bras, 1990]. The Voronoi area of a node is the intersection

of the half-spaces defined by the perpendicular bisectors of the spoke edges. This area is a

polygon whose sides are connected by the vertices at the intersections of those bisectors

or, equivalently, the circumcenters of the triangles defined by the node and its neighbors.

The Voronoi diagram is the inverse of the Delaunay triangulation.
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5.2.2 Hydrology

Hydrology in the model includes storm and runoff generation and flow routing. As

in most landscape evolution models, the CHILD model may use uniform rainfall and run-

off generation. But, unlike most other models (a recent exception is Tucker and Bras,

1998), the CHILD model has the capability of using more complex hydrology.

The model has the capability of generating storms stochastically according to the

Eagleson [1978] model. In this model, rainfall intensity, storm duration, and time between

storms are all exponentially distributed random variables.

For uniform runoff generation, runoff is simply the difference between the rainfall

and infiltration rates. Discharge at a point is calculated by multiplying the point's drainage

area, or the area for which that point is the outlet for flow, by the runoff rate. The model

may also generate saturation overland flow, also known as partial-area runoff to distin-

guish it from uniform runoff (Beven and Kirkby, 1979; O'Loughlin, 1986). In this model,

accumulated flow at a point is compared to the capacity of the soil layer to transmit that

flow. If the accumulated flow exceeds that capacity, then the excess flow contributes to

surface runoff or discharge:

(PA - TbVS, PA > TbVS (5.1)
O PA< TbVS.1)

where P is precipitation rate; A is area contributing to flow; T is transmissivity; and bv is

the length of the Voronoi cell edge associated with the flow edge. This method allows spa-

tio-temporal variations in soil layer material properties and depths to be reflected in runoff

generation through the transmissivity, the product of hydraulic conductivity and depth.
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5.2.3 Vertical Erosion and Deposition

The model is designed for both erosion and deposition of multiple sediment clasts,

although the capability for handling multiple grain sizes is still under development by

another group member at this writing. In general, the time rate of change of elevations is

described by the sum of uplift and the sediment flux divergence:

Z = U + Vq(5.2)

where U is uplift with dimensions of LIT (T is time, L is length); and qs is unit sediment

flux with dimensions of L2/T. The model uses a combination of detachment-limited ero-

sion and capacity-limited transport similar to that of Howard [1994], Tucker and Slinger-

land [1994, 1996, 1997], and Lancaster and Bras [1995]. I prefer the term "capacity-

limited" to the more traditional term "transport-limited" because the former is more pre-

cise in denoting the limitation on the sediment carrying capacity of the transporting

medium.

Many models treat all materials as cohesionless and model erosion and deposition

as the result of capacity-limited sediment transport, often as bedload. Such an approach

has two major problems. First, in general, all materials present some resistance to erosion,

whether due to cementation, cohesion, vegetation, or some other mechanism. Second, the

treatment of all material as bedload ignores that, in many situations, bedload is a minor

component of the total volume excavated by erosion, and suspended load is the major

component. A significant portion of the load may also be material in solution.
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In this study, the model simulates only detachment-limited erosion of a homoge-

neous substrate, i.e., everything that is eroded, or detached, is carried out of the system by

flow with enough capacity to carry anything that is detached. The following equation for

the time rate of elevation change represents these processes:

at S- KBQmSn +KDV 2Z + U, KDV 2Z <O (5.3)

where KB is the erodibility coefficient with dimensions of 7T-1/L3m-1; Q is water volume

discharge with dimensions of L3/T; S is the greatest downward-positive slope of the spoke

edges and is dimensionless; KD is the diffusion constant with dimensions of L2/T; and z is

elevation. The model described by equation (5.3) is essentially identical to that of Moglen

and Bras [1994, 1995] except that the latter had spatially heterogeneous erodibility and

diffusion coefficients. The first term on the right-hand side of equation (5.3) describes ero-

sion by running water both on hillslopes and in channels. The second term describes diffu-

sive hillslope processes such as transport by tree throw, burrowing animals [Black and

Montgomery, 1991], frost heave, and soil creep. This diffusion is detachment-limited in

the sense that, in equation (5.3), it is assumed that any diffusive infilling, e.g., of valleys

and channels, is carried away by advective processes such that positive changes in eleva-

tion by diffusion are disallowed [Moglen and Bras, 1994]. The third term describes the

input of material at a point by uplift, assumed positive and constant. The detachment-lim-

ited model is well suited to modeling stream incision into bedrock in a landscape undergo-

ing active uplift, which enables the stream to reach whatever slope is necessary to erode

the material input by that uplift. Howard [1994] noted that a detachment-limited model is

most appropriate to clayey badlands topography.
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5.2.4 Meandering

The CHILD model uses an irregular, dynamic grid in order to incorporate lateral

channel migration. Otherwise, the model could employ a regular, static grid. To ade-

quately represent meandering, nodes must be removed from the eroding channel bank,

moved with the migrating channel, and added to the accreting point bar.

Moving nodes is complicated because of the complicated connectivity of nodes in

the grid and the nature of the thing being moved. Our model may be a successor to the

Braun and Sambridge [1994, 1997] (BS) model, but the latter dealt only with relatively

simple point movement issues. In the BS model, a moving node represented a part of the

earth's crust in tectonic motion, and, when that node approached another, the two repelled

one another as in a strike-slip fault. In the CHILD model the movement of a node does not

represent movement of the land itself but, rather, the location of the channel moving over

that land, eroding its banks, and leaving behind a point bar. Recording stratigraphy is not

necessary n the detachment-limited version of the CHILD model. More complicated

model cases, however, will require that, when a channel moves, the channel node acquires

the subsurface characteristics of the location to which it is moving and leaves behind

nodes with the subsurface characteristics of the location it is leaving.

Removing nodes where the channel is eroding the bank is complicated by consid-

eration of not only the moving nodes but also the moving channels, i.e., the edges between

channel nodes. A bank node's proximity to moving nodes, as in Braun and Sambridge

[1994], is not a sufficient criterion for removal. Rather, proximity to the channel, i.e., the

channel nodes and the edge between them, is the proper criterion because, otherwise, the
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bank node could slip between migrating channel nodes and escape removal as if a piece of

the bank were to escape erosion as the channel passed. Other issues, such as the preserva-

tion of the channel edge and Delaunay-ness when it is close to a bank node, have also

become apparent in the process of model development, and, in general, the model must be

designed to deal with all potential, even unlikely, scenarios.

The addition of nodes presents its own suite of issues in terms of not only the addi-

tion of a node to the grid but also the characteristics of the added node and the time and

place of addition. The BS model added nodes to increase the resolution of steep slopes, but

adding those nodes was not strictly necessary. The CHILD model, on the other hand, must

add nodes to represent the channel at the fine discretization required by the TSRM model

and not leave gaps in the mesh as the channel migrates.

Only grid nodes with discharge greater than a critical value are subject to the

meandering process. Granted, meandering may be active over a broad range of scales

including some excluded by the discharge threshold criterion. Practically, however, mod-

els cannot resolve every process to the smallest level and must, therefore, employ some

size cutoff criterion.

The TSRM model is described in detail in Chapter 4. Here, I address only the issue

specific to the incorporation of the TSRM model into the CHILD model, the issue of bank

erodibility. As explained in Chapter 4, a TSRM model channel point's migration is pro-

portional to the shear stress on the bank and the bank's erodibility (see equation (4.20)),

but the absence of a surrounding landscape precluded further examination of the role of

bank erodibility because the landscape's characteristics determine the bank's erodibility.
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Bank erodibility is dependent on bank material properties and, possibly, bank height. In

the most simple case, all banks have similar material properties, bank erosion is purely

detachment-limited, and all undermined bank material is also detached by that undermin-

ing (see Howard, 1992, section 2.2, and figure 5.3(a)). In this case, channel migration rate

is simply proportional to bank shear stress because bank erodibility is independent of bank

height.

(a)
hB

(b) hBAn

(C) PHhBAnfl
i°(1-P)h1An

Figure 5.3: Conceptual drawing of spectrum of bank erodibility's dependence on bank
height. (a) Bank erodibility is independent of bank height. (b) Bank erodibility is fully
dependent on bank height. (c) Bank erodibility is partially dependent on bank height.

On the other end of the spectrum, none of the undermined material is detached (see

figure 5.3(b)). The volume rate of material excavated per unit distance downstream is

l = Eo'wH (5.4)

where E0 is the nominal bank material erodibility; , w is the bank shear stress; and H is the

average channel depth. If hB is the height of the bank above water level, then the bank

migration rate is
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H + hB (5.5)H+h

and the bank height-dependent erodibility is

EB = H +h) E , h B > O (5.6)

= E, , h 0O

where enforcing a minimum erodibility of the nominal value ensures that EB does not

become arbitrarily large.

The situation in most natural systems where seepage-induced failure is not an

important mechanism is probably somewhere between these two extremes, as illustrated

in figure 5.3(c) where part of the undermined material is detached. The size of that part is

determined in the model by a parameter, PH, such that the effective bank erodibility is a

weighted average of the two extreme cases:

Eeff = PHEB + (1 - PH)EO, 0 < PH < 1 (5.7)

where PH is the fraction of bank material that does not behave as detachment-limited. Sub-

stituting with equation (5.6), equation (5.7) reduces to

Eeff = E 1 - HhB, hB > O (5.8)

= Eo, hB 0.

Finally, the nominal bank and bed erodibilities may not be the same even for iden-

tical materials. Even in a detachment-limited system, bedload may often shield the bed

from erosion. The bank, on the other hand, is never shielded. Therefore, the bank's effec-
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tive erodibility will be larger. To address this issue I have introduced a parameter, fiat, that

is the ratio of the bank and bed erodibilities. This parameter allows control of the relative

strengths of lateral erosion and vertical incision.

5.3 Model Implementation

In this section I describe the data structures and algorithms used to implement the con-

cepts of the previous section. Except where noted, that implementation is new and origi-

nal.

5.3.1 The Grid Object

The model grid exists as both a conceptual geometric entity and a C++ object. The

object consists of three linked lists of nodes, edges, and triangles, respectively, and a set of

functions used to construct, change, and determine the properties of the grid. The nodes

are the basic landscape units and contain data pertaining to location coordinates, Voronoi

area, geomorphic characteristics, and connectivity. The major issue addressed by the grid's

data structure is the connectivity of its parts.

The first basic issue is the connectivity of a particular node to other nodes on the

grid. This connectivity is stored as a linked list of edges which are dual and directed; i.e.,

for each line segment connecting two nodes there are two edges, one pointing from the

first node to the second, the other pointing from the second to the first (see figure 5.4).

This dual edge data structure is derived from the QuadEdge data structure of Guibas and

Stolfi [1985]. Each node is explicitly associated with a set of edges that originate at that

node and connect it to its neighbors.
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Cell

A.edge = AB B.edge = BA
AB.ccwedge = AC BA.ccwedge = BD
AB.wertex = a BA.wertex = b

Figure 5.4: Illustration of the dual edge data structure, showing triangular lattice (black)

and corresponding Voronoi diagram (gray). (a) Directed edge AB, its right-hand Voronoi

vertex a, next counterclockwise edge AC, and its right-hand Voronoi vertex b. (b) Com-

plementary directed edge BA, its right-hand Voronoi vertex b, next counterclockwise edge

BD, and its right-hand Voronoi vertex a.

In order to accommodate different programming styles, this connectivity is accom-

plished in two ways. First, each node contains as a data member a spoke list, a linked list

of pointers to the edges originating at the node in counter-clockwise order. The spoke list

takes advantage of the generic linked pointer list class' functionality for navigation,

manipulation, and data protection. Second, each node contains the first edge pointer of the

spoke list, and each edge contains a pointer to the next counter-clockwise edge. This struc-

ture uses less memory but does not have the built in functionality of the generic linked

pointer list. A regular grid would not require explicit inclusion of edges in the data struc-

ture because the connectivity is trivial.

As explained in the previous section, the vertices of the Voronoi diagram are

defined by the circumcenters of the triangles. In the data structure, each directed edge

holds the coordinates of the Voronoi vertex on its right-hand side (see figure 5.4). As the

spoke edges around a node are accessed in counter-clockwise order, the Voronoi edge

175



crossing that spoke edge is defined by the right-hand vertex coordinates held by that spoke

and the next. The Voronoi vertices' positions are calculated in the context of the triangles.

For each triangle, the circumcenter is found and assigned to each of the clockwise edges of

the triangle (see figure 5.5). As mentioned in the previous section, these circumcenters are

the vertices of the Voronoi diagram.

PO
T2

el 0 Ti

P eI

TO P2

Figure 5.5: Illustration of triangle data structure, including numbering of nodes, adjacent
triangles, and clockwise edges. Nodes and edges are listed in counter-clockwise order; tri-
angles are listed in clockwise order and correspond to node at opposite vertex.

The triangle data structure is also used to locate on the grid an arbitrary point in

space. In order to add a node at a particular location, an algorithm finds the nodes to which

the new node will be connected. The CHILD model employs a directed search algorithm,

shown in figures 5.6 and 5.7, similar to that of Braun and Sambridge [1997]. For each tri-

angle checked, the algorithm loops through its edges and finds whether the point lies on

the right- or left-hand side of each edge. If the point lies on the left-hand side of the edge,

the algorithm proceeds to check the neighbor triangle on the other side of that edge; e.g.,

in figure 5.5, if the algorithm checks edge eO and finds that the point is on its left side, the

algorithm will next search the neighbor triangle T1.
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POINT COORDINATES
ON RIGHT HAND SIDE
OF TRIANGLE EDGE?

Figure 5.6: Flow chart of the directed search algorithm, which returns either a pointer to a

triangle or a null value. The latter indicates that the point lies outside the grid.

Figure
rithm.

5.7: Illustration of the sequence of triangles checked by the directed search algo-

Whenever a node is moved, added, or removed, the triangulation must be checked

and, if necessary, corrected. The Delaunay triangulation of the mesh is maintained by
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exploiting the fact that, by definition, if each triangle is locally Delaunay, i.e., Delaunay

with respect to its neighbor triangles, then the mesh is globally Delaunay by the definition

stated in the Introduction. A triangle's Delaunay-ness is ensured by checking whether any

of the edges between the triangle and its neighbors need to be flipped to satisfy the

Delaunay condition (see figure 5.8). The criterion for flipping is from Du [1996] and is

illustrated in figure 5.8.

common nodes

opposite nodes

Figure 5.8: Illustration of flip-checking between two triangles. The edge between the
common nodes is flipped to connect the opposite nodes if 02 > 01 [Du, 1996]. This crite-
rion is equivalent to checking whether the node associated with 02 in the left-hand triangle
falls within the circle defined by the nodes of the right-hand triangle.

The flip-checking algorithm is similar to that used by Braun and Sambridge

[1994], but our implementation of the algorithm is new. In this algorithm (see figure 5.9),

triangles to check, e.g., the new triangles created by the addition of a node or triangles

containing moving nodes, are added to a temporary list. Each triangle is removed from the

front of the temporary list and checked for local Delaunay-ness (flip-checked) against

each of its neighbors. If this check results in an edge-flip, the two triangles on either side

of the edge and the edge pair are deleted from the main list, two new triangles and an edge

pair connecting the formerly opposite nodes are added to the main list, and the two new

triangles are added to the end of the temporary list. The procedure repeats until no trian-

gles remain on the temporary list. This procedure guarantees local and, by definition, glo-

178



bal Delaunay-ness, and using a list eliminates the need for recursion or repeated scans of

the triangle list, as in Braun and Sambridge [1994].

Figure 5.9: Flow chart showing the iterative flip-checking algorithm.

Both the directed search and flip-checking algorithms are used when a node is

added to the grid. When adding a node, the triangle in which it falls is located with the
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directed search algorithm. That triangle is deleted, and three new triangles and edge pairs

are added connecting the new node to the three vertices of the old triangle (see

figure 5.10(a)). Then, the new triangles are given to the flip-checking algorithm.

(a) add node (b)
delete node

Sfli d node fh delete node

Figure 5.10: Illustrations of (a) point addition and edge flipping; (b) point deletion; (c)
point movement within local polygon; (d) point movement to neighboring triangle; and (e)
point movement outside of local neighborhood. The small arrows on either side of an edge
indicate the edge is to be flipped in the direction indicated by the arrows.

Node deletion is conceptually simple and uses some of the same basic routines as

node addition. The node to be removed and all of the edges connecting it to its neighbors

are deleted, and the resulting hole in the mesh is filled with new Delaunay triangles (see

figure 5.10(b)) that are, in turn, given to the flip-checking routine. However, implicit in

both addition and deletion of nodes is not only the addition and deletion of edges and tri-

angles but also the adjustment of the various relationships among data members (see fig-

ures 5.4 and 5.5). These relationships are the key to the functionality of the model. When a

node is deleted, edges and triangles must also be deleted in order to extricate the node

from the grid data structure. The procedure is shown as a flow chart in figure 5.11. This

procedure may be entered at any of the "begin" points, and the extrication and deletion
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routines below that point in the flow chart are called from the higher routine to ensure the

integrity of the data structure. Thus, a node cannot be deleted without also deleting the

associated edges, and the edges may not be deleted without also deleting the associated tri-

angles.

Node movement may result in three possible scenarios, shown in figure 5.10(c),

(d), and (e) in order of increasing computational cost. In the first, the node moves within

the polygon defined by the node's neighbors, and the flip-checking algorithm is sufficient

to maintain the mesh. In the second, the node leaves that polygon but falls within one of

the triangles neighboring the polygon, and the side between the polygon and the neighbor-

ing triangle is flipped before the mesh is flip-checked. In the third case, the node leaves the

polygon and does not fall within one of the neighbor triangles, and the node is deleted and

added again in its new location before flip-checking the mesh. Braun and Sambridge

[1994] considered only the first scenario.

Any time the mesh is changed, whether by addition, deletion, or movement, the

basic characteristics of the mesh must be updated (see figure 5.1). This procedure, illus-

trated in figure 5.12, corrects each node's neighborhood properties, i.e., the distance to the

node's neighbors and its Voronoi area.



DELETE NODE
FROM MAIN LIST

DELETE EDGES
FROM MAIN LIST

FIND TRIANGLE
CONTAINING POINTER

TO EDGE COMPLEMENT

FIND
TRIANGLE
CONTAIN-CONTAIN- EXISTS? NO

ING
POINTER
TO EDGE

DELETE TRIANGLE
FROM MAIN LIST

'/ FIND NEIGHBOR'"
I POINTER TO

TRIANGLE AND
SET IT TO ZERO

Figure 5.11: Flow chart illustrating the node deletion procedure.
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SET FIND CALCULATE
CALCULATE COUNTER- RIGHT- VORONOI CALCULATE

BEGIN EDGE CLOCKWISE HAND tEDGE VORONOI END
LENGTHS EDGE VORONOI EDG AREAS

POINTERS VERTICES L

Figure 5.12: Flow chart illustrating the mesh updating procedure.

5.3.2 The Storm and Stream Network Objects

The storm object generates storms as defined by precipitation intensity and dura-

tion and interstorm duration, or the time until the next storm. These quantities can be

either constant or stochastically generated. In the stochastic option, all three quantities are

exponentially distributed [Eagleson, 1978], though the object could be modified to accom-

modate any probability distribution. The storm object could also be modified to read storm

information from data.

The storm information is used to define the stream network properties. The stream

network in the model is an object consisting mainly of functions for runoff generation and

flow routing but also pointers to the grid and storm objects and runoff parameters, such as

the transmissivity for equation (5.1). The functions are generally called together to update

the network after the grid has changed. This updating procedure is shown as a flow chart

in figure 5.13.

FIND ROUTE
FIND CALCULATE STEEPEST FLOW

BEGIN RAINFALL EDGE DESCENT DIRECTIONS
RATE SLOPES FLOW THROUGH

DIRECTIONS LAKES

FOwNg NTIN GENERATE i CALCULATE
CTRI N RUNOFF DISCHARGES
AREAS

Figure 5.13: Flow chart showing the stream network updating procedure.
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The surface discharge at each node is computed as a function of the upstream con-

tributing area and the runoff at each of those contributing nodes. Each node is assigned a

drainage direction along the steepest downhill slope (edge) toward one of its neighboring

nodes. The area contributing flow to a node is the sum of the Voronoi areas of all nodes

whose paths to the outlet pass through that node and the Voronoi area of the node itself.

In some cases a node may form a local depression, with no neighbors lower than

itself. This case can be handled in one of two ways in the model. The simplest method

assumes that all water entering a "sink" evaporates at that point and forms a discontinuity

in the network, i.e., not all nodes contribute flow to an outlet. Alternatively, an outlet can

be found for each sink using the "lake filling" algorithm. The lake filling algorithm starts

by creating a list of contiguous flooded nodes that initially contains just the sink itself. The

perimeter of the flooded region ("lake") is then iteratively searched to identify the lowest

node along the perimeter. If this node can drain downhill to a location other than the lake

itself, it is flagged as the outlet point for all nodes in the list. If not, it is added to the list. If

a node is encountered that is part of a pre-existing lake (one initiated at a different sink), it

is also added to the list. Finally, flow directions are arbitrarily assigned to the lake nodes

such that each node in the grid "drains" to one of its neighbors. Except for this final step,

the lake filling algorithm is essentially identical to that employed in the model of Tucker

and Slingerland [1994]. The algorithm is robust enough to handle any arbitrary initial con-

dition and is useful for modeling a rising base level or the damming of water and sediment

behind an uplifting block.
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For a mesh with numerous sinks, the lake filling algorithm is probably slower than

the "cascade" algorithm of Braun and Sambridge [1997]. However, in the more typical

case of a few isolated sinks, the lake filling algorithm is probably faster than the cascade

algorithm. The number of iterations needed by the lake filling algorithm depends on the

number of flooded points, whereas the cascade algorithm requires a number of iterations

equal to the maximum number of segments along any continuous stream regardless of the

number or depth of sinks. Typically, the lake filling algorithm is employed to route flow

past a low or high point along the main channel, where these anomalies usually arise from

numerical instability.

The simulations shown later in this chapter use only a subset of the model's hydro-

logic capabilities: uniform, steady rainfall; uniform runoff production; and lake filling.

5.3.3 The Sediment Transport and Uplift Objects

These objects together calculate the finite-difference solution to equation (5.3) for

"vertically acting" processes: stream erosion, hillslope diffusion, and uplift. In this study I

use detachment-limited erosion, but the sediment transport object also contains options for

capacity-limited erosion/deposition and the combined detachment- and capacity-limited

transport described in the previous section.

The advective erosion term, the first term on the right-hand side of equation (5.3),

contains a channel slope dependence, but this erosion term applies to the landscape scale,

i.e., over channel reaches long enough that water surface slope is adequately represented

by topographic slope. This approximation is reasonable over a distance of many channel

widths but, of course, breaks down over smaller distances approaching a single channel
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width. But, some channels will be discretized at approximately one channel width to sat-

isfy the TSRM model's requirements. This scale discrepancy is resolved by averaging the

slope for finely discretized channels over a distance of ten channel widths (flow directions

are still determined by slopes to nearest neighbors).

5.3.4 The Stream Meandering Object

Figure 5.14: Flow chart showing the implementation of meandering.

In figure 5.14 shows a flow chart of the CHILD model's implementation of the

TSRM model in the stream meandering object. First, the network is updated (see
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figure 5.13). Then, the meandering nodes are identified. A node is designated as a mean-

dering node if it: (a) has discharge greater than a critical value; (b) is not "flooded", i.e., in

a lake; and (c) is not a boundary node.

5.3.4.1 Meandering Channel Reaches

Meandering nodes are next organized as meandering reaches (see figure 5.15)

because the meandering model requires a list of points along the channel ordered from

upstream to downstream (see section 4.2.4, "Implementation", on page 123). For each

meandering node, if none of the neighbors flowing to it are also meandering nodes, then

the node is a reach "head", i.e., the node is at the upstream-most extent of a meandering

stream reach. For each reach head, if the node downstream is: (a) a meandering node; and

(b) not already a member of a reach; then the downstream node is added to the present

reach and marked as a "reach member", and these criteria are applied iteratively down-

stream until they fail. At the downstream end of each reach, if the downstream nodes are

also meandering nodes, then nodes for a distance of ten of the last reach node's channel

widths are added to the reach as "tail" nodes. Recall from Chapter 4 that the bank shear

stress at a point is generally generated by lateral momentum transfers at points upstream.

Thus, bank shear increments generated at the end of a reach will be applied as bank shear

stress at points in the downstream reach. The distance of ten channel widths is arbitrary.
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PUT NODE IN
REACH LIST OF
CURRENT HEAD

Figure 5.15: Flow chart illustrating meandering reach construction.

Once the reaches have been defined, distances between reach nodes are compared

to a nominal downstream increment on the order of one channel width, the discretization

required by the meandering model. If any distance is greater than twice that nominal incre-

ment, the reach segment is interpolated by adding one node or, if the distance is larger than

three times the nominal increment, two or more nodes at intervals approximately equal to

the nominal increment. In order to avoid exact colinearity, which can cause the triangula-

tion algorithm to fail, a small amount of noise is added to the interpolation. In the case of
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adding more than one node, the nodes are added by generating a random walk with uni-

form spacing along the original channel segment and random steps perpendicular to the

line:

n i = ni 1 + An i  (5.9)

where An i is

An i = Axe-(ni-lx)Aso (5.10)

where x is uniformly distributed from -0.5 to 0.5 (x - U[-0.5,0.5]); A is some small num-

ber; and Aso is the nominal increment for the uniform spacing parallel to the line. The

nominal increment is used to scale the amplitude of the noise to the discretization scale of

particular channel.

The inverse exponential ensures, or at least makes it likely, that the random walk's

deviation from the original line will not become arbitrarily large at any point and, most

importantly, at the last interpolation point. A large deviation at that point could, in effect,

reinforce the original grid spacing by adding a large step and, therefore, high curvature, at

the regular intervals of the original uninterpolated mesh. Note that equation (5.10) does

not result in exponentially distributed random steps but, rather, represents a random walk

through a potential energy well in which steps away from the line become more damped

and steps toward the line more amplified when the step originates at a greater distance

from the line and the step magnitude is greater. Conversely, small steps close to the line

are damped and amplified by only a small amount.
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meandering

Figure 5.16: Illustration of meandering channel interpolation. Note that two tributary
channels take a shorter route to the main channel after interpolation.

As shown in figure 5.15, after the discretization of the initial reaches is checked, if

any interpolated nodes are added, then the procedure iterates: it updates the network (see

figure 5.16), redefines the meandering nodes, constructs new reaches, and again checks

the discretization. The iteration of this loop proceeds until the discretization check results

in no addition of nodes. Several iterations may be required the first time the procedure is

called to add many points to a coarse mesh (see figure 5.16), but subsequent calls should

require interpolation infrequently and, then, only to add one point between two channel

points that have spread apart as the channel has lengthened and become more sinuous, as

in Chapter 4.

When the reaches are complete, the CHILD model, written in C++, must call the

TSRM model, written in Fortran, to calculate the lateral migration of the channel

nodes.The CHILD model calls the TSRM model as a function/subroutine through a

"wrapper" function. The meandering reaches are constructed as a list of lists of pointers to

meandering nodes. As evident from above, nodes in each of the latter pointer lists are

arranged in upstream-to-downstream order. The wrapper function takes each pointer list in

turn and constructs one-dimensional arrays for each node data member required by the
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TSRM model, e.g., arrays for x-coordinates, y-coordinates, discharge, channel slope and

bank erodibilities. The TSRM model passes back arrays of displacements which are sub-

sequently scaled by the time step determined in the wrapper function. This time step is set

such that the greatest displacement does not exceed an arbitrary fraction of the channel

width, typically one-tenth, for stability.

5.3.4.2 Channel Bank Erodibility

To find the bank erodibility at a particular channel node, the bank nodes must be

identified. The identification procedure is illustrated in figure 5.17. With respect to the line

perpendicular to the channel node's flow edge, the line remainder and perpendicular dis-

tance are calculated for each channel node neighbor's position. For example, for a point at

(xo, Yo) and a line defined by ax + by + c = 0, the remainder, Rline, is

Rline = ax0 + by 0 + c (5.11)

and has opposite sign for points on opposite sides of the line. Starting with the channel

node's downstream neighbor, the algorithm proceeds through the neighbors in counter-

clockwise order and finds the two pairs of consecutive neighbors which have remainders

of opposite sign, i.e., the neighbors in a pair are on opposite sides of the line. The first pair

found constitute the left bank and the second pair constitute the right bank. In figure 5.17,

node A's right bank nodes are nodes C and D at distances dI and d2 , respectively, from the

line perpendicular to node A's flow edge, edge AB. The effective erodibility of each node

is found with equation (5.8), and the erodibility of that bank is an average, weighted by

distance, of the two nodes' erodibilities:



Eld 2 + E2 d 1
Ebank = d +d 2  (5.12)

where E1 and E2 are the effective erodibilities of the two neighbor nodes, respectively.

flow direction

C N

Figure 5.17: Illustration of right bank erodibility determination for node A. C and D are
right bank nodes of A at distances dI and d2 from the line perpendicular to A's flow edge,
AB. Delaunay triangulation is in thin lines; Voronoi diagram is in dashed lines; and flow
edges are in heavy black.

As the channel approaches the grid boundary, the bank erodibility is set to zero.

Thus, the boundary presents an inerodible barrier such that a channel node may not

approach to within one-half channel width of a boundary edge.

5.3.4.3 Channel Bank Erosion

Once the new positions of the channel nodes are known, the triangulation must be

prepared for the change by removing nodes from the channel's projected path, i.e., nodes

that have been eroded by the migrating channel. The criteria for removall are illustrated in

figure 5.18.
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Figure 5.18: Illustrations of criteria for removing points from the path of the migrating

channel. Heavy lines are flow edges; heavy black arrows are flow directions; gray ovals

are channel segment neighborhoods; letters a, b, and c are nodes to be deleted.

First, a bank node is deleted if it falls within a channel segment's neighborhood,

defined by an ellipse with foci at the ends of the segment and perpendicular distance from

the segment at the upstream node of one-half the hydraulic width; i.e., for a given node,

the sum of the distances to the segment endpoints, D, must satisfy

D 2 As2 +b2+b 4s2+ b2 (5.13)

where As is the length of the channel segment. In figure 5.18, point a falls within the

neighborhood of a channel segment.

The latter criterion, equation (5.13), should prevent most potential problems. How-

ever, to ensure the robustness of the channel migration under any and all conditions, nodes

are tested to eliminate the possibility of two more scenarios.

First, nodes are deleted if they have been crossed by a channel segment, e.g., if two

channel nodes moved distances greater than one hydraulic width in an iteration, that chan-

nel segment could pass over a point such that its distance from the channel would satisfy
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equation (5.13) both before and after the movement (e.g., node b in figure 5.18) even

though, conceptually, the node should have been eroded by the channel. If, after move-

ment, any triangle's nodes are clockwise and two vertices are connected by a flow edge,

and either a spoke of the third vertex intersects the flow edge or more than one neighbor

triangle has also become clockwise, then the third vertex node is deleted if it is neither: (a)

a meandering node with greater discharge than either of the other two vertex nodes; nor

(b) a boundary node. Failing the latter condition, then either or both of the other two nodes

are returned to their original coordinates, i.e., before movement, if their new coordinates

were outside the mesh. Failing the former condition, then the more upstream of the other

two nodes is deleted instead. In figure 5.18, node b has been crossed by the migrating

channel segment indicated by the gray arrows denoting the approximate direction of

migration in the previous step. The triangle formed by node b and its two meandering

neighbors has become clockwise, and one of node b's spoke edges intersects the flow

edge. Node b is neither a meandering node nor a boundary node and will, therefore, be

deleted.

The final test for node removal ensures that the integrity of the flow edges between

meandering nodes is preserved. That integrity could be compromised if a point were close

enough to the flow edge that, under flip-checking, the flow edge would be flipped. In

figure 5.18, node C would be deleted to preserve the flow edge separating nodes c and d

where, to satisfy Delaunay-ness, the flow edge would be flipped to connect nodes c and d;

deleting the closer node, C, allows the flow edge to remain intact following re-triangula-

tion.



5.3.4.4 Point Bar Accretion

As the channel migrates and nodes are removed from its path to simulate bank ero-

sion, nodes are left in the channel's wake to resolve the point bar, as in the simulations

superimposed on the regular grid in Chapter 4. The algorithm used to "drop" new points is

illustrated in figure 5.19. In summary, this algorithm essentially keeps track of a channel

node's location where it last dropped a node. When the channel node is half of a hydraulic

width away from these old coordinates, the algorithm updates them by finding the exact

position on the bed at the water's edge on that side of the channel, i.e., the point on the bed

at half of a hydraulic width away and on the line perpendicular to the flow edge. Depend-

ing on the desired discretization, the algorithm either immediately places a new point at

the determined coordinates or waits to do so until the channel node has moved some addi-

tional distance. In the latter case, the algorithm checks to make sure the old coordinates

have remained on the same side of the channel and do not fall within any channel seg-

ments as defined by equation (5.13).

In more detail, each meandering node contains a four-member array with coordi-

nates in three dimensions and a flag indicating the side of the channel, right or left, where

those coordinates lie. When a node is recognized as a meandering node, its x and y coordi-

nates are stored in the array as the "old" coordinates; the value of z is left undetermined

and the fourth member of the array is set to zero as a flag to signify that the old coordinates

have not been finally determined.
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Figure 5.19: Schematic diagram illustrating the point-dropping algorithm. The nodes with

dashed gray boundaries presently occupy the "old" coordinates, i.e., the old coordinates

are initialized to the present coordinates.

Before migrating nodes are moved, if the flag is zero, the distance to the old coor-

dinates is measured. If that distance equals or exceeds half the hydraulic width, the algo-

rithm determines the side of the channel where the old x and y coordinates lie and updates

the old coordinates to the position of the bank on that side. The elevation of the bed at that

bank is recorded as the old z coordinate. The channel side determined above is recorded as

plus or minus one for the left or right sides of the channel, respectively.

After node migration, the horizontal distance to the old coordinates is measured

again. If that distance exceeds a set fraction (or multiple) of the hydraulic width and the

old coordinates are (a) not in the channel, and (b) still on the same side of the channel,

then a node is added at the old coordinates. The above fraction of the width must be

greater than or equal to half the hydraulic width; in figure 5.19, the value equals half the

hydraulic width, and nodes are dropped as soon as the final old x, y, and z values are deter-
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mined. In figure 5.19, this final determination is signified by the dashed gray lines drawn

perpendicular to the node's flow direction at the time of the determination. Note that these

coordinates at which the new nodes are dropped do not necessarily lie in the migrating

node's path because they are the coordinates at the bank, whereas the node's coordinates

are on the channel centerline. Implicit in the procedure described above is that the discret-

ization of the point bar is limited by the hydraulic width, i.e., the procedure would not

allow a discretization finer than half the hydraulic width, coarser than the regular grid used

in Chapter 4.

5.4 Simulations
With the CHILD model, I ran simulations of meandering in landscapes with varying

strengths of bank erodibility's bank height dependence and rates of uplift to examine the

effects of these variations both on the meandering and the landscape. The simulations

reported here are relatively simple because, in working with the potentially complicated

CHILD model, it is necessary to understand the simplest case before consideration of

more complex cases. I began with a vertically incising river flowing through a valley. At

one end of the domain is a single inlet, and at the other end the whole side is an open

boundary. I ran the model with detachment limited erosion until the valley was at dynamic

equilibrium and, then, turned on meandering. These simulations show the effects of mean-

dering with the different parameter sets on the same initial valley.

The case of dynamic equilibrium is a particularly useful reference because I know

what the channel slope should be. For 8z/at = 0, discharge proportional to contributing

area, or Q = PA, and where advective channel processes are dominant over diffusive

processes, equation (5.3) reduces to the following expression for channel slope:
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S = ( U A - m / n . (5.14)

After the incising channel reached dynamic equilibrium, meandering started with

fiat = 100 and ran for thirty thousand years. The result is the initial condition for the

remaining simulations. For the latter simulations, I increased the relative strength of mean-

dering by using fiat = 1000. Each simulation ran for ten thousand years and another

100,000 years for examination of the transient and long term responses, respectively, of

the landscape to the meandering. In the long term, the system as a whole may approach

dynamic equilibrium, though the simple idea of no elevations changing at any point cannot

apply because of the laterally migrating channel. The simulations and their parameters are

listed in table 5.1. Note that the times are model years, which are uncalibrated with respect

to real time. Because discharge in the advective erosion term of equation (5.3) is usually

expressed in units of volume per second, the conversion to elevation change per year is

contained in KB (see, e.g., table 5.1).

The first task was to address the issue of bank height and erodibility for an incising

stream. The dependence of bank erodibility on bank height is a first order problem which

is not well understood, in part, because no landscape evolution model has incorporated

meandering. This incorporation is necessary in order to examine the interactions between

the migrating, incising river and the surrounding landscape.

In the simulations listed in table 5.1, the main purpose was to address the

responses to varying both bank erodibility's bank height dependence, PH, and uplift, U,

after the onset of meandering. I also show the short term effect of varying median grain
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diameter, d50 , but this is more of a parameter adjustment than a sensitivity analysis. The

sensitivity of the TSRM model to d50 was addressed in Chapter 4.

Table 5.1: Simulations and variable parameter valuesa

simulation

A

B

C

D

E

F

G

H

I

J
K

L

initial
condition

noise

A

B

B

B

E

B

G

B

I

B

ds5 0
(cm)

NA

0.5
it

1.0

I

to

oI

it
"t

U
(m

0.

0.

/yr) PH

001 NA

" 0.0
It It

" 0.5

f" 1.0

002 0.5

it 1.0

fiat

NA

100

1000

it

it
"

tTotal
(k-yrs)

320 b

30

10

10

10

100

10

100

10

100

10

100

a. Other parameters are constant: Ainlet=108 m2; P=10-6 m/s;
KB=0.0316 m 3/2 s1/2/yr.; mB=0.5; nB= 1.0; KD=0.01 m2/yr
b. Landscape is at dynamic equilibrium.

All simulations employed the lake filling algorithm and used a minimum discharge

for meandering such that only nodes downstream of the inlet, i.e., points along the main

channel, were meandering nodes.

The initial condition for simulation A was a flat plane with minor elevation pertur-

bations. The nodes were arranged in offset rows such that the polygon around each node is

a hexagon, as is the Voronoi area. Nodes on the same row were spaced 100 meters apart.

5.5 Results
The results reveal dramatic differences between the transient and long term responses of
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the model meandering river valley and the landscapes resulting from different strengths of

bank erodibility's bank height dependence as well as subtle but important differences due

to the different uplift rates. These results also reveal the important, varying roles of com-

pound bend and multi-bend loop formation in the model river valley forms.

For each of the simulations listed in table 5.1, figures 5.20-5.31 each show three

perspective views of the simulated landscape. The first view maps color according to ele-

vation and shows the landscape as a surface at a low enough angle to appreciate the shape

of the relief. The second view uses the same elevation color map as the first and shows a

"wire" mesh of the model grid at a large viewing angle in order to show all of the nodes,

edges, and triangles. The third view maps color according to discharge and shows the

landscape as a surface at a large viewing angle in order to best show the model stream net-

work and, especially, the main channel down the center of the valley.

Plots of slope vs. contributing area are shown in figure 5.32. The slopes of the indi-

vidual nodes are plotted vs. area as gray dots. Also on the slope-area plots I have drawn

lines described by equation (5.14); in the simulations with increased uplift, the original

dynamic equilibrium line is solid gray and the new dynamic equilibrium is dashed gray. I

binned slope according to increments of log-area and plotted bin average slope vs. bin

average area. These average slopes are shown with black rectangles. Note that each node

in the mesh has one point in the slope-area plot, but the nodes do not have equal Voronoi

areas. Therefore, nodes with smaller areas are effectively over-weighted in the averages

because the averages are not weighted by Voronoi area.
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Figure 5.20: Perspective views at end of simulation A.

The slope-area plots allow a quantitative assessment of the effect of meandering on

slopes in the landscape. The fact that meandering, by steepening valley walls and flatten-

ing the valley bottom, creates topographic slopes independent of contributing area should

be visible in the plots in figure 5.32.
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Figure 5.21: Simulation B.

Areas of the grid which have been visited by the channel are more finely dis-

cretized than the nominal discretization. This is visible as a dense mesh in the wire plots

and darker reds in the discharge map--only these nodes with small Voronoi areas can have

discharge values low enough to reach into the dark red end of the color map. The migrat-

ing nodes drop new nodes when they are 0.7 b (seven-tenths of a channel width) from the

old coordinates. The channel is 30 meters wide.
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The valley at dynamic equilibrium, or simulation A, is shown in figure 5.20. The

channels, constrained to follow the regular network of edges, have an unrealistic, angular

appearance, an effect common to most landscape evolution models. The points in the

slope-area plot (see figure 5.32) closely follow the power law describing dynamic equilib-

rium (see equation (5.14)).

Simulation A was the initial condition for simulation B. The latter ran with rela-

tively weak meandering, or flat much lower than for the following simulations, until the

initial channel lost its angularity and formed meander loops, and the simulation ended

before any major cutoffs occurred. The resulting landscape is shown in figure 5.21. The

weak meandering produced some scatter in the slope-area plot and added a number of

nodes with contributing area smaller than any of the nodes in simulation A and many more

channel nodes with large contributing area because of the channel interpolation (see

figure 5.32). For the latter channel nodes, slopes are quite scattered. For the meandering

nodes the slopes plotted were averaged over a distance of ten channel widths, and the

points along the channel are spaced at approximately one channel width (in these simula-

tions with constant rainfall, the channel and hydraulic widths are identical). Note that

slopes have been scattered both ways: some slopes are steeper, e.g., nodes along the outer

bank of meander bends, while some slopes are more gradual. Most of the latter have small

contributing areas and, therefore, must lie in the area of the main valley swept by the

migrating channel. Mean slopes at lower contributing areas, below about 5x10 4 m2, reflect

the influence of meandering and are nearly independent of area. The result of simulation B

was the initial condition for simulations C, D, E, G, I, and K, while simulations F, H, J,

and L are continuations of E, G, I, and K, respectively.
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Simulations C and D, shown in figures 5.22 and 5.23, simulate meandering with

PH = 0 and varying d5 o. I did not run long simulations with PH = 0 because it would

not have been very interesting because of the minimal interaction between the migration

of the channel with the surrounding topography, but they are interesting as transients. The

valley width is more variable for the larger grain size, and the total area visited by the

channel is larger for the smaller grain size. Both of these results may be due to the larger

lateral migration rates associated with smaller grain size. The valley for the larger grain

size widened appreciably only at the location of a sharp bend in the initial condition. The

major result of these first runs is that the model grid represents meandering as intended,

i.e., that bank nodes are deleted and point bar nodes added. Note the several isolated nodes

which were not eroded by the main channel.

Not surprisingly, the slope-area plots (see figure 5.32) show that a large number of

nodes, those on the valley floor, have slopes much lower than they would at dynamic equi-

librium and some nodes, those on the valley sides, have steeper slopes. These slope

changes have dramatically changed the mean slope trends. The effect for smaller areas is

similar to, though more pronounced than, the effect noted above for simulation B. For

larger areas, the mean channel concavity is greater, especially for simulation C, because

the slopes of tributaries close to the main channel were determined by the migrating chan-

nel such that the mean slope near 106 m2 is nearly identical to the slope of the main chan-

nel.
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Figure 5.22: Simulation C.
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Figure 5.23: Simulation D.

The remaining simulations form a more controlled and systematic experiment

examining the four possible combinations of two different values for each of two parame-

ters, uplift, U, and the bank erodibility's bank height dependence, PH (see table 5.1).

In figure 5.24 1 show simulation E, the result of setting PH = 0.5 and running for

10,000 model years. The migrating channel swept out a relatively flat valley floor, but, at
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its widest, the valley floor is significantly narrower than the widest parts of the valley floor

in simulations C and D (see figures 5.22 and 5.23) due to the non-zero PH. The slope-area

plot for simulation E is quite similar to that of simulation D (see figure 5.32): the initial

increase in mean slope is due not to the transition from diffusion to advection dominance

but, rather, to the low valley floor slopes at the smallest areas and the steep valley wall

slopes at slightly greater areas. This effect is common to all of the transient cases.

Figure 5.24: Simulation E.
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The results of simulation F, the continuation of simulation E, are shown in

figure 5.25. Roughly half of the model domain was visited by the migrating channel and

is, therefore, finely discretized. The main valley narrowed considerably since the time of

simulation E. Nodes once visited by the channel are now on hillslopes or in small tributar-

ies. The point bars in simulation F have greater slope and relief than in simulation E. This

greater slope indicates that the channel migrated more slowly at the time of simulation F.

Figure 5.25: Simulation F.
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Recall from the "incising" stream simulations with the TSRM model on a rectan-

gular grid in Chapter 4 that a grid cell's topographic slope indicated the migration rate at

the time the channel left that cell (see section 4.3.3, "The Floodplain", on page 129). Slope

is similarly indicative here, though CHILD model nodes, once left by the migrating chan-

nel, are modified by not only uplift but also diffusive and erosive processes.

Figure 5.26: Simulation G.
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Figure 5.27: Simulation H.

The slope-area plot for simulation F confirms that a lower proportion of the nodes

have shallow slopes. The plot more closely resembles what I would expect in the absence

of lateral migration, though the points are still relatively scattered. The number of nodes

with over-steepened slopes is not markedly different than in simulation E. The mean slope

falls below the fluvial equilibrium line for contributing areas less than approximately
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2x10 5 m2 . In simulation A the slopes at only the lowest areas fall just below the line due to

the influence of diffusion at these points. Therefore, discounting the effect of meandering

on slopes in this basin and considering only the processes in equation (5.3) to be impor-

tant, I would overestimate the strength of diffusion.

The results of simulation G, identical to simulation E except that PH = 1.0 in the

former, are shown in figure 5.26. Many of the results of simulation G are similar to those

of simulation E. The valley is, on average, narrower than the valley of simulation E due to

the larger PH in G. As in D and E, the valley width varies greatly and in places is nearly

indistinguishable from the valley without lateral channel migration.

The slope-area plot for simulation G is quite interesting. The initial increasing

mean slope trend, evident in the other transient cases, is particularly steep in simulation G.

And, at areas between 104 and 105 m2 there is essentially no mean slope trend with

increasing area because of the numerous shallow, valley bottom slopes and few steep, val-

ley wall slopes. Meandering, in this transient case, altered slopes such that the mean slope-

area relationship resembles that of Schoharie Creek (see figure 3.32) in that both have a

region of nearly constant mean slope at areas larger than that of the peak mean slope.

Simulation H, in figure 5.27, is the continuation of simulation G. As in the latter,

the greater PH led to less channel migration than in the simulation, F, with lower PH. As in

F, the valley narrowed considerably and migration slowed during the time after G as the

system adjusted to the meandering.
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The slope-area plot is even less scattered than that of F and, thus, reflects the

greater ability of the system to adjust due to the greater coupling between migration and

topography through greater PH. Only a few nodes outside the main channel have slopes

lower than about 0.05. Fewer nodes have over-steep slopes, and those few have lower

slopes than in F. In F, there are many points with slopes greater than 1.0, but, in H, only

two nodes have slopes greater than 1.0. The mean slopes in H fall below the dynamic equi-

librium line only for contributing areas less than 104 m2 , but a kink in the mean slopes is

visible at that area. The higher mean slopes at areas above 104 m2 reflect a greater balance

between the numbers of lowered and steepened slopes, respectively, in simulation H. As

opposed to F, fewer small channels in H follow former main channel courses left by cut-

offs. Partly the lack of cutoffs in H is due to the lower migration rate, but the more funda-

mental mechanism is the difference in forms taken by multi-bend loops in the two cases.

Multi-bend loops in F more closely resemble those in the unconfined meanders of Chapter

4, whereas the multi-bend loops in H are larger and less sinuous at the bend scale.

The results of simulation I, where PH = 0.5, and uplift has doubled, from 0.001 m/

yr at dynamic equilibrium to 0.002 m/yr. (see table 5.1), are shown after 10 ka in

figure 5.28. The valley floor is relatively flat in the sense that points across the valley have

similar elevations, but the valley is steeper in the downstream direction, as shown by the

wider range of colors along the main valley in the views with color mapped to elevation.

This wide valley bottom is similar to, but wider than, that of simulation E (PH = 0.5, U =

0.001 m/yr). The channel of I visited a greater portion of the model domain.
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Figure 5.28: Simulation I.

The slope-area plot is similar to that of E but has greater scatter in the slopes.

Some of that additional scatter is from slopes steepening due to the increase in uplift. This

plot resembles that of Schoharie Creek more closely than does that of G in that both

Schoharie Creek and I have a low-area dip in mean slope before the peak in mean slope at,

in the case of I, 104 m2.
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Figure 5.29: Simulation J.

The results of simulation J, the continuation of simulation I, are shown after 100

ka in figure 5.29. It appears that meandering affected this landscape more than any of the

others. The channel visited most of the right two-thirds of the domain, and the left one-

third was not visited at all. This tendency to migrate in one direction is characteristic of

channels with greater frequencies of compound bend and multi-bend loop formation, as
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shown in Chapter 4. The channel also visited a somewhat greater portion of the model

domain than the channel in simulation F. It appears, then, that some of the effects of

increased uplift nearly cancelled each other, that the increase in bank shear stresses due to

the greater channel slope was partially damped by greater valley wall steepening.

Figure 5.30: Simulation K.
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On the other hand, the increase in compound bend/multi-bend loop formation fre-

quency due to greater channel slope is readily apparent. Parts of the landscape visited by

the channel look fundamentally different than unvisited areas. Examination of the dis-

charge color map reveals clearly the persistence of cut off meander loops now occupied by

tributaries, as in simulation F, but the effect is even more pronounced in J than in F. Note

that none of these tributary channels were meandering at the end of the simulation because

their flow was too low.

In the slope-area plot for J, the points are more scattered than for simulation F

(smaller uplift), and many slopes have increased to fall on the new dynamic equilibrium

power law, where slopes are greater by a factor of two for the same area. As in F, mean

slopes in J tend to fall below the line of dynamic equilibrium.

The results of simulation K, where PH = 1.0 and uplift has been increased as in

simulations I and J, are shown in figure 5.30. Points visited by the channel in simulation

K have greater relief than visited points in any of the other 10 ka simulations. Small parts

of the valley are flat, but the channel evidently became entrenched more quickly than in

the other simulations. Even so, the channel visited a larger part of the domain than the

channel of simulation G. The latter fact and the early entrenchment indicate that migration

at the beginning of the simulation was much faster than in simulation G due to the

increased channel slope from greater uplift but that the same greater uplift led to a faster

adjustment to the migration by the valley system.
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Figure 5.31: Simulation L.

The slope-area plot reflects the channel entrenchment in that the lowest mean

slopes at the smallest areas are greater than for simulation G. In simulations C, D, E, G,

and, to a limited extent, I, there is a visible separation between the cluster of low slope and

area points and point near the line of the power law, but this separation is not apparent in
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the slope-area plot of G. Also unlike the other 10 ka simulations, mean slopes at areas

between 104 and 105 m2 have a clearly decreasing trend.
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Figure 5.32: Slope vs. contributing area for the simulations listed in table 5.1. The gray
lines indicate the fluvial dynamic equilibrium power law, equation (5.14).

Finally, the results of simulation L, the continuation of simulation K for 100 ka,

are shown in figure 5.31. In simulation L, the effect of meandering on the landscape is

clear and dramatic. This simulation is striking for the large multi-bend loop in the center

of the domain and, thus, also shows the clear effect of multi-bend loop formation. The

channel visited a greater part of the domain than the channel of H but, unlike the channel

in H, did not cut off. The channel of simulation L also has greater sinuosity on the bend

scale than H's.
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Figure 5.32: (Continued.) Slope vs. contributing area
table 5.1.

104  105  106  107  108 109

for the simulations listed in

As in simulation H, the slope-area plot is less scattered than at the time of simula-

tion K, and it has a shape similar to the plot for H. As in J, the line has moved up to reflect

the increased uplift. The plot has more scatter than that of H, both above and below the

line, but exhibits similar balance between scatter above and below the dynamic equilib-

rium line.
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Figure 5.32: (Continued.) Slope vs. contributing area for the simulations listed in
table 5.1. The dashed gray line indicates fluvial dynamic equilibrium with the greater
uplift.

5.6 Discussion

The results touch on a number of areas, and I discuss them in turn: (a) the general interac-

tion of meandering and the landscape in the model; (b) the quite different results of the

transient and long term cases; (c) the role of bank erodibility's bank height dependence in

the meandering patterns and landscape forms; and (d) the effect of uplift on the incising

meandering stream.

5.6.1 Meandering and the Landscape

The CHILD model represents the first opportunity to study the interaction of two

systems with complex dynamics. The model results should give some clue as to how to
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interpret landscape forms resulting from incising meandering streams. The slope-area

relationship allows quantitative comparison of the simulated valleys in this chapter and the

natural valley in Chapter 3.

Points scattered toward greater slopes and slightly smaller areas have been eroded

by the migrating channel. As the channel erodes part of a bank node's Voronoi cell, that

node's contributing area decreases slightly by the amount eroded, and the slope to the

channel becomes steeper as the latter approaches the node's coordinates. These nodes on

the valley wall belong to the original, regular grid and are, therefore, still clustered accord-

ing to contributing area at multiples of 104 m2. Similar over-steepened points persist even

at later times as long as some of these original, previously unvisited points remain.

In several of the slope-area plots in figure 5.32, especially those for the transient

cases, many nodes with low contributing areas have been added in the valley, and these

new nodes are responsible for the trend of increasing mean slope at low areas in the slope-

area plot. Previous studies have assumed that similar trends in plots from DEMs are due to

the convexity of the hillslopes (e.g., Tarboton, et al, 1991, 1992), but the results of the

present study call this assumption into question. From visual inspection of the Schoharie

Creek DEM (see figure 3.1), it appears that most of the points with the smallest slopes are

in the flat valley bottom rather than at the tops of hillslopes. In the slope-area plots for the

transient cases in figure 5.32, mean slope increases sharply from the shallow valley bottom

slopes at low contributing areas to the steepened valley wall points, decreases sharply, lev-

els briefly, then continues on the line of dynamic equilibrium. This is a subtle effect, but it

does resemble the slope-area plot for Schoharie Creek in this mean behavior (see
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figure 3.32) and does raise the possibility that meandering is responsible for some of the

observed trends in slope vs. area, though some of the specific features of the Schoharie

Creek slope-area relationship may arise from effects not present in the simulations, such

as the alluviated valley floor and the capture of its headwaters by tributaries to the Hudson

River. The hypothesis that the observed slope-area trends described above are due to

meandering, as illustrated in figure 5.33, is supported by Tucker's [1996] finding that, for a

small watershed in Pennsylvania, the low-area increasing, decreasing, and level trends in

slope vs. area as derived from a high-resolution DEM correspond to contributing areas

smaller than those of the channel heads observed in the field.
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Figure 5.33: Illustration of possible effect of meandering on slope-area relationship.

5.6.2 Time Scales

I did not expect such a dramatic difference between the transient and long-term

responses. At the onset of meandering, or, more precisely, after meandering had been run-

ning for some time but an order of magnitude more slowly (I will not make this lengthy

222



caveat from here on), the channels migrated at a great rate and carved out relatively flat

valleys. But, later on, the valleys became narrow again. It is also interesting that the chan-

nel in many of the 10 ka simulations carved valleys of highly variable width, from rela-

tively wide to gorge-like. If one were to observe this topography in the field, one would

likely suspect that lithologic variations were responsible for the variations in valley width.

But, the model domains are homogeneous.

At the end of simulation B, the spurs and tributaries encounter the main channel at

a relatively low slope such that the banks are relatively low and allow the channel to

migrate rapidly. After some time, the sides of the valley become much steeper and confine

the channel more effectively. This adjustment is apparent from the reverting of points to a

tight cluster in the slope-area plots for the 100 ka simulations. This effect also leads to

variable valley width because the channels preferentially migrate up the tributary mouths

and into the basins draining into the main channel.

In the transient cases, the lower slopes at small contributing areas are comparable

to the slope of the main channel. These points are distinctly grouped apart from the points

lying on or near the line. This cluster also appears to have, on average, decreasing slopes

with increasing area; i.e., the longitudinal profiles of these channels are, on average, con-

cave. Points in this lower cluster are new, valley bottom points. Therefore, they are either

former channel points, i.e., oxbows, or points left in the wake of the channel on the slip-off

slope. The oxbows become tributary channels with low-slope, weakly concave longitudi-

nal profiles. Points on the slip-off slope have low contributing area because they are small

and disconnected from the network, and their slope is controlled more by the lateral
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migration rate, relative to the uplift rate, than by diffusion or fluvial erosion. With time, all

of these points move up to steeper slopes on the slope-area plots and join the main point

cluster as their slopes adjust to their small discharge.

At longer times, the lateral migration rate decreases from its initially large value.

The landscape has adjusted such that migration is smaller relative to uplift/incision and,

thus, the slip-off slopes now fall closer to the line of dynamic equilibrium. The first rapid

stage of lateral migration exploits the tributary confluences because of their low relative

elevation and, therefore, high erodibility. Eventually, as the channel migrates further into

the tributary basins it encounters valley walls of increasing height and, in some cases, the

domain boundary, and the migrations slows or, at the boundary, stops. With slower migra-

tion relative to uplift, steeper slip-off slopes are formed. Thus, the uplifting system adjusts

toward dynamic equilibrium even with lateral channel migration because the bank erod-

ibility is dependent on bank height, which can grow through uplift. The larger tributaries

in the adjusted system typically have narrower valleys and steeper valley walls adjacent to

the main stream than the tributaries in simulation A such that the tributary mouth is nar-

rower and, therefore, affects the erodibility of a smaller part of the bank.

The model simulations represent an idealized case in which there is no alluvium in

the valley. Natural streams are likely to have some alluvial deposits in the valley, and these

deposits have a greater erodibility than the bedrock valley walls

5.6.3 Bank Erodibility's Bank Height Dependence

The different values of PH produce quite different landscapes. The simulations

with PH = 1.0 look more realistic or, at least, more like the Buffalo River DEM (see
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figure 3.2). One question I might ask about the Buffalo is, how long has the incising mean-

dering process combination been active with respect to typical lateral migration rates?

Does the Buffalo more closely resemble simulation B, where meandering has been active

only a short time, or simulations H and L, where meandering has been active much

longer? An interesting result of this modeling is that, given the system's adjustment to

meandering, the only obvious difference between simulations B and, e.g., H is due to the

finer discretization of some areas in simulation H. The slope-area plots are also similar

(see figure 5.32).

The larger tributaries tend to skirt the areas visited by the channel in the long term

simulations with PH = 1, i.e., simulations H and L. The new points tend to slip off toward

the valley walls because that is how the migrating channel has left them. So, especially

where there has been a major cutoff, the middle of the valley has been left at relatively

high elevations such that the tributaries tend to flow between these new topographic highs

and the steep valley walls. These locations also correspond to the position of the channel

before it was cut off.

The long term simulations with PH = 0.5, i.e., simulations F and J, produced land-

scapes that are quite different from those landscapes produced by simulations with PH = 1,

i.e., simulations H and L. In the simulations with PH = 0.5, the system does not adjust as

quickly or, possibly, as well because the migration rate is less dependent on the topogra-

phy and, therefore, less influenced by adjustment through uplift. The channel, therefore,

migrates more quickly, sweeps out a greater area, and cuts off more often. As a result, sev-
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eral cutoffs are left with much less flow than before, and the resulting channels have an

abnormally low slope where they follow the old cutoffs.

One reason for the different appearances of landscapes simulated with different

PH's is the greater primary sinuosity of the streams with low PH and the similarity of the

the bend and drainage spacing scales. Where primary sinuosity is large, meandering is the

dominant influence on hillslope form because the slip-off slopes form in hillslope units too

small to be dissected: their size is similar to the spacing of small tributaries along the main

stream. Where primary sinuosity is small, however, the slip-off slopes form in hillslope

units the size of the multi-loop bends, and these slopes are then large enough to undergo

significant dissection by small tributaries.

5.6.4 Uplift and Meandering

Increasing bank erodibility's bank height dependence, PH, slows lateral migration

because the channel must erode more to move the same distance laterally. Increasing the

uplift rate leads to greater channel and valley slopes, but the effects on the meandering are

less clear. I might expect that greater uplift would lead to greater main channel slope and,

therefore, lateral erosivity (see section 4.4.2, "Meander bend shape and evolution", on

page 150). Conversely, I might also expect that greater uplift would allow the system to

adjust more quickly to the channel migration, i.e., faster uplift leads to faster steepening of

the valley walls. In the simulations, it appears that the total area swept out by the channel

was slightly larger in the cases with greater uplift but much less than the two-fold increase

that would be expected from the increase in lateral erosivity alone. So, greater uplift
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should lead to only slightly greater lateral migration rate of an incising stream because the

greater lateral erosivity is partially balanced by valley wall steepening.

The effect of the slope increase on the frequency of compound bend/multi-bend

loop formation is marked. In the long term simulations with greater uplift, the channels

migrate all the way to the boundary as they form multi-bend loops. Compound bend/

multi-bend loop formation is not inhibited by the steepening banks.

5.7 Conclusions
The CHILD model described in this chapter succeeds in coupling models of channel

meandering and landscape evolution. Because the CHILD model is the first to achieve it,

this coupling represents a major advance in the state of the art of landscape evolution mod-

eling.

This chapter's results may be summarized as follows:

1. Coupling channel migration to the landscape through bank erodibility's bank height
dependence, PH, allows the system to adjust toward a new dynamic equilibrium.

2. Increased uplift leads to steepening channel slope and, therefore, greater bank shear
stresses, but the effect on migration rate is muted because increased uplift also leads to
steeper channel banks.

3. Steepening channel slope also leads to more compound bend/multi-bend loop for-
mation, and this effect is not muted by the steeper banks.

4. Larger PH leads to lower primary sinuosity and slower migration such that the sim-
ulated landscapes with greater PH's are less chaotic in appearance because the hillslope-
scale landscape features are shaped mainly by "vertical" processes.

5. Large uplift and PH combine to increase multi-bend loop formation and decrease
bend-scale sinuosity, respectively, such that the channel course resembles that of an
"underfit" stream.

6. The simulations with PH = 1 have a more realistic appearance than those with PH =
0.5. This result may indicate that PH = 1 is a more realistic value for channels incising into
bedrock, though the similar scales of the bend length and the incisional hollow spacing
may lead to the unrealistic appearance of the simulations with PH = 0.5.
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The modeling experiments in this chapter are the first to address the combined

interactions of channel migration, bank erodibility's bank height dependence, and uplift.

The results of increasing uplift call into question the conventional hypothesis that mean-

dering is more active during periods of quiescent uplift (e.g., from Lobeck [1939, p. 227]:

"Young rivers actively cutting downward do not meander."). The simulations produced the

opposite result: meandering is more active when the uplift rate is greater because greater

uplift leads to greater slopes and, therefore, greater lateral accelerations in channel bends.

Of course, I have not considered other changes possibly resulting from greater uplift. It is

possible that greater uplift could increase the channel slope enough to significantly reduce

the residence time of the point bar-forming bedload required to produce lateral accelera-

tions and migration. In that case, the lateral migration rate might be reduced. Also, I have

not considered the effect of alluvial deposits and the contrasts in bank erodibility such

deposits would cause. The model results are consistent with Schumm's [1993] and

Schumm et al.'s [1987] findings in the field and from experiments, respectively, that

increased valley slope led to increased sinuosity in meandering alluvial channels.

The model results suggest a new hypothesis concerning observed slope-area rela-

tionships from DEMs. It is possible that the prevalence of a flat part in the slope-area rela-

tionship, as discussed above, is due to the prevalence of meandering in natural streams. If

this hypothesis is true, then I would only need to increase the relative strength of diffusive

processes in the model to see the effect more clearly in the simulations' slope-area rela-

tionships. The model results presented here have relatively weak diffusion and could cor-

respond to the upper set of curves in figure 5.33.
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Chapter 6

Future Directions

At the conclusion of this study, many questions remain unanswered, many areas unex-

plored. The TSRM model takes a fundamentally different approach to the meandering

problem and opens up a whole range of new modeling possibilities. Similarly, I have only

begun to explore the CHILD model's capabilities, some of which I introduced in Chapter

5 but did not employ. My investigations of meandering in the field served to narrow the

range of possible answers to some questions, but more thorough studies are needed in

order to satisfactorily answer these questions. Also, there are several loose ends left by the

present work, and I discuss how I might resolve them.

6.1 TSRM Model Extensions
I am aware that the assumptions, approximations, and parameterizations inherent to the

TSRM model are somewhat limiting, and I discuss ways in which the model could be

improved. The TSRM model is different from other models of stream behavior. It is more

rules-based than most LFE models (e.g., Johannesson and Parker, 1989a) and two-dimen-

sional flow models (e.g., Nelson and Smith, 1989a) tend to be, but it is more physically

and mathematically based than some rules-based models, such as the cellular braided

stream model of Murray and Paola [1994]. Many variations on the TSRM model are pos-

sible with my approach. Also, I have not thoroughly examined the model's parameter

space, e.g., with some kind of Monte Carlo scheme.
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It would be interesting to more fully explore the model parameter space and to see

the effect in the measures I introduced in Chapter 3. For example, I saw that compound

bends show up as prominent secondary channel planform scale indicators; if I make grain

size smaller and, thus, increase the frequency of compound bend formation, do the sec-

ondary channel planform scale indicators become more prominent? Can I eliminate the

secondary channel planform scale indicators by increasing the grain size? One problem

with investigating the model's parameter space is that there are so many parameters. Some

parameter combinations are unrealistic and could be excluded, but defining the criteria for

such exclusions is not straightforward. Another problem is that I lack simple measure-

ments with which to characterize the model's performance as a function of some indepen-

dent variable. For example, how do I characterize the prevalence and importance of

compound bend formation? For example, I could design an algorithm to look for second-

ary peaks in oS2 , but it would be difficult to distinguish important, thick peaks from the

noisy, thin peaks I see for the LFE model.

The bank shear stress smoothing is perhaps the most parameterized aspect of the

model, and it would be useful to investigate alternatives. I could try other functions, e.g.,

exponential and gamma functions. I could allow shape to vary with lag, where the front

end of the function is tied to the point of lateral momentum transfer, and spread is still a

constant parameter, i.e., if lag is zero, the function is exponential, longer it is gamma, even

longer gamma approaches a normal distribution.

I should explore the physical basis for the smoothing function. My measurements

of bank roughness elements on the Ellis River are a first step in this direction. Does the
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physics tell me what the smoothing function should be? Can I use my bank measurements

to calculate a bank drag coefficient in a way similar to Hopson and Smith [1997]?

The model behavior becomes problematic with some parameter sets. For example,

if the lag is long relative to the roughness scale, forces in one direction may not be coun-

teracted by the next forcing in the opposite direction. Instead, the first force will be applied

as shear stress downstream of the second forcing and before the shear stress from the latter

forcing. Clearly, this phenomenon is not physical and represents a case where the model's

assumptions and approximations are not valid. Is there a better, still simple way to model

the lag mechanism? What can I get from the flow equations? Alternatively, is there a sim-

ple way to track the position of the flow core such that the above phenomenon cannot

occur?

Some of the details of the lateral momentum transfer formulation bear some scru-

tiny. Can I use special cases of the scaled flow equations (see appendix B) to get a better,

still simple expression? Could the same equations also yield a simple solution, i.e.,

another way to derive a simple, fast, nonlinear model, as was my goal with the TSRM

model?

I would like to investigate further the conditions necessary for compound bend and

multi-bend loop formation. Under what conditions do compound bends become multi-

bend loops, and why?

6.2 CHILD Model Extensions
I have dealt with only a small part of the CHILD model's present and near-future capabili-

ties. Unfortunately, I was unable to address many of the issues of channel-landscape inter-
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action, such as the issue of varying valley width, that I discussed in Chapter 3. Here, I

outline some possible future model experiments.

The first next step is to try out more of the model's existing capabilities, listed in

Chapter 5. The most basic next step is to run the meandering model with capacity-limited

or detachment- and capacity-limited sediment transport. Then, investigate the more

advanced runoff generation mechanisms, e.g., saturation overland flow. Next, investigate

the different erosion limitations with stochastic rainfall and advanced hydrology. These

experiments could be done with the valley scenario presented in Chapter 5, but I should

also look at meandering and the other processes mentioned above in the context of a drain-

age basin. Even for the detachment-limited case with uniform runoff, it would be interest-

ing to examine the effect of meandering on the stream network. Lateral migration could

have something like an optimization effect on the network similar to evolving a network

with the optimal channel network (OCN) model [Rodriguez-Iturbe, et al., 1992], where

the network is optimized by randomly changing the paths of network links and keeping

only the changes which reduce the network's energy dissipation. Over the long term, lat-

eral channel migration could produce a similar result by providing the mechanism by

which network links might change their course. The process dynamics and interactions,

rather than an optimization rule, would create the criteria for "keeping" the changes.

As I showed in Chapter 4, the meandering model is sensitive to bed material grain

size. In the TSRM model sensitivity analysis of Chapter 4and the CHILD model simula-

tions of Chapter 5, grain size is a free parameter. However, to effectively test process inter-

actions in a drainage basin the grain size should be determined by the system dynamics.

The most important incomplete CHILD model component is the capability to erode, trans-
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port, and deposit sediment with multiple grain sizes. I will not deal with all of the issues

here; Gasparini, et al. [1997, 1998] combined a multiple grain size transport model [Wil-

cock and McArdell, 1993] and a sediment layering scheme with GOLEM, the rectangular-

grid landscape evolution model by Tucker [1996] (see also: Tucker and Slingerland, 1994,

1996, 1997; and Tucker and Bras, 1998). In the CHILD model, treatment of multiple grain

sizes must include source materials, transport, and layered deposits in the context of a

moving channel on a dynamic, irregular grid.

In Chapter 3, I raised the question of the effect of different source materials on the

rate of lateral channel migration for the Buffalo River, AR. I proposed the hypothesis that

changes in source material texture, rather than rock strength, could be the mechanism

behind the corresponding valley width and lithology changes. In Chapters 4 and 5 I

showed that modeled rate and style of lateral channel migration is sensitive to bed material

grain size, and the mechanism by which this happens is physically reasonable. The latter

findings tend to support the above hypothesis, but it could be more thoroughly tested with

the CHILD model with meandering and multiple grain sizes.

Gasparini, et al. [1997, 1998] showed that climate change can have a dramatic

effect on channel bed material texture throughout a drainage basin, especially in the short

term. Specifically, they found that, following an increase in rainfall rate, a "wave" of fin-

ing propagated from the source areas through the channel system before the bed material

throughout the basin became generally coarser. I showed in Chapter 5 the dramatic tran-

sient effect of "turning on" meandering in a river valley previously in dynamic equilib-

rium. A similar change might occur given a fining of bed material or an increased rate of
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bar-forming sediment input. I could examine the dynamics of these interactions with the

complete CHILD model.

The CHILD model was designed, in part, to examine hillslope-channel interaction

and possible feedbacks in that interaction. For example, does the channel have a positive

or negative feedback effect on hillslope erosion? If the latter increases, do the actions of

the former act to moderate and dampen or aggravate and force further hillslope erosion?

An argument for a dampening effect is the following: hillslope erosion increases sediment

delivery to the channels which respond with aggradation which increases the base level of

the hillslopes and decreases their slope and, therefore, their erosion rate. An argument for

a forcing effect is: hillslope erosion increases sediment delivery to the channels which

respond by forming point bars and increasing their lateral erosion rate which erodes the

toes of and, therefore, steepens the hillslopes and leads to greater hillslope erosion.

In Chapter 5 I raised the question: Does greater lateral channel migration accom-

pany periods of quiescent or active uplift? Conventional wisdom says the former (e.g.,

Lobeck, 1939), but my results say that increasing the uplift rate also increases the lateral

migration rate. However, I noted that my modeling did not account for the effect of uplift

on bed material. Streams with a higher incision rate are more likely to flow on bedrock,

while slower incision may lead to aggradation, the formation of point bars, and, thus,

increased lateral migration. On the other hand, accelerated incision would likely increase

channel slope, therefore, bedload sediment flux, and, as the nickpoint moves upstream,

hillslope erosion. The resulting increase of bedload sediment could promote the formation
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of point bars even as the increase in channel slope increases its erosive energy, and the two

effects could combine to increase lateral migration rates.

The CHILD model should include a mechanism for overbank deposition. Howard

[1992] modeled overbank deposition rate as a function of elevation and distance from the

channel:

1= ( x- ) v + exp(-_r] (6.1)

where zmax is the upper elevation limit on overbank deposition; v is the position indepen-

dent fine sediment deposition rate; g is the deposition rate of coarser sediment by over-

bank diffusion; r is the shortest distance to the channel; and Xd is the length scale of the

deposition rate decay with distance from the channel [Pizzuto, 1987]. Howard [1996]

pointed out that the choice of zmax was arbitrary and proposed a modified form of the

equation with exponential elevation dependence. He argued that such a form was better for

modeling the cumulative effect of all flood events. In the CHILD model, I may stochasti-

cally generate storms whose magnitude is exponentially distributed. Once I figure out how

to determine maximum flood stage, Zmax, based on discharge magnitude, the cumulative

effect of equation (6.1) with stochastically generated storms may be similar to the modi-

fied expression of Howard [1996].

The recent work of Mertes [1997], my results from the Ellis River, and other field

studies (R. Jacobson, personal communication, 1995) indicate that such a model may be

too simple to produce realistic floodplain deposition. For example, my Ellis River flood-

plain coring shows that the thickness of fine deposits generally increases toward the
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upstream end of individual point bars on the floodplain (see figure 3.20). The Howard

[1992] model may produce similar patterns in some cases, but I must wonder whether it

does so for the right reasons. Nevertheless, a model along the lines of equation (6.1) pro-

vides at least a first approximation of the overbank deposition process.

Finally, I call attention to some of the loose ends in the CHILD modeling study. In

the slope-area plots, I should weight the slopes in the bin averages by the Voronoi areas of

the corresponding points in order to get a more accurate picture of the trends in mean

slope. I should examine the CHILD model channels with the planform measures intro-

duced in Chapter 3 and investigate the sensitivity of the model results to parameter

changes through these measures.

6.3 Studies of Natural Streams
The field studies of Chapter 3 serve to illuminate how many questions are unanswered. In

that chapter, I scratched the surface of what needs to be done in order to begin verifying

the modeling of this work.

I would like to conduct a more thorough study of scroll bar topography in order to

determine its mechanism. Issues include the following:

1. What are the scaling properties of scroll bars in terms of their wavelength, ampli-
tude, curvature, and length relative to channel properties such as width, depth, meander
wavelength, and migration rate?

2. What is the role of vegetation? Are only some scroll bars formed as a result of sys-
tematic variations in vegetation roughness? If so, how do different forms relate to different
mechanisms?

3. Is elevation on the floodplain correlated with migration rate at the time of lateral
accretion? If so, are topographic highs associated with fast or slow migration rates? My
Ellis River study suggests that highs are associated with fast rates; is this a spurious result?

4. Is elevation on the floodplain correlated with channel curvature at the time of accre-
tion as in the TSRM model?
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I would like to study the effects on lateral channel migration of gravel inputs, sud-

den changes in bed texture or grain size, and changes from bedrock to alluvial streams. I

may be able to conduct such a study in the Oregon Coast Range. A large storm event in

1996 initiated a large number of landslides, and, thus, large quantities of sediment were

introduced into the channel network. Much of that sediment has since moved through the

system, but its movement has been slowed at some locations and created gravelly alluvial

reaches. Does this gravel initiate lateral channel migration? On Knowles Creek in the Ore-

gon Coast Range I observed a site where the gravel has formed what appear to be small

point bars, and there is evidence of lateral erosion in the form of undercut banks. These

observations lend support to the topographic steering hypothesis. Further monitoring and

study at this site might reveal whether this lateral migration initiates a positive feedback

effect in which bank failures maintain the gravel supply such that the migration continues;

or whether the gravel eventually gets flushed from the system such that the long term

effect is small.

Can I determine in the field what PH is for a particular site? Is it a function of

material, rate, or both? PH could simply be a function of the fraction of coarse material in

the bank material, where fine materials are detachment-limited and coarse materials must

be re-eroded. Or it could be the other way around. If the migration rate is slow enough that

the input of sediment from bank erosion is small relative to the sediment flux in the chan-

nel, then coarse materials which lack cohesion may behave as detachment-limited because

they crumble when undermined and represent an insignificant addition to the channel's

bedload. Fine, cohesive materials, on the other hand, remain intact as slump blocks when

undermined and must be eroded directly by the channel flow. If the migration rate is fast
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enough that the input of sediment from bank erosion is large relative to the sediment flux

in the channel, then the removal of coarse materials from the bank may be limited by the

transport capacity of the channel flow. Fine materials, if their proportion is small may sim-

ply wash away.

I should be able to quantify bank roughness in terms of dissipation of turbulent

energy through boundary layer development. In the case of the Ellis River, bend 6, I was

able to find the average dimensions of the bank roughness elements. Such information

should enable me to calculate a bank drag coefficient and, thus, turbulent energy dissipa-

tion rate and scale; i.e., calculate the TSRM model bank roughness scale, k.

My work on the Ellis River brought the role of large woody debris (LWD) to my

attention. Does LWD simply enhance channel roughness? Is it more important on the bank

or the bed? Does it behave differently in meandering and non-meandering channels? I

found evidence on the Ellis River that the LWD may stay in place and be covered over by

the accreting point bar. If so, then there would be a limit to how much could accumulate in

the channel. In a non-meandering channel, LWD accumulates and stays in the channel

until it is transported out, whereas LWD in the meandering channel may just get covered

up after a time. How old were the logs I saw in the Ellis River channel? Were they all from

relatively recent bank failure, or were some of them left over from the last time the chan-

nel migrated through that area and uncovered by recent channel migration? If the latter,

then the accumulation of LWD might eventually reach some critical state in which it is

either moved or dams up the reach. Or, the LWD may just eventually rot underground. Or

it may not, in general, get covered over after all but, rather, be transported relatively
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quickly. In the case of streams in the Oregon Coast Range, does the LWD characteristic of

old growth roughen the channel such that the residence time of gravel and, thus, the activ-

ity of lateral erosion is greater? Does the absence of old growth fundamentally change pat-

terns of process dominance and dynamics?

One advantage of the Howard and Hemberger [1991] analysis is the ability to

place many streams, both model and natural, together on a plot. It would be useful if I

could use my own measurements to compare different channel planforms on the same

plot, as in Howard and Hemberger [1991]; e.g., does the first plateau in mean sinuosity

correlate meaningfully with relative meander belt width at the lower length scale of that

plateau? By plotting the streams together, I could see the ranges of characteristics of natu-

ral and model streams and the relative effects of model parameter changes. It is not clear at

this time how I could use the present measurements to create such a plot. Its development

might require the derivation of additional new measures.

Murray and Paola [1996] developed a dynamical systems approach to measuring

the behavior of braided streams. Their method utilized measurements of total channel

width and is, therefore, not directly applicable to the TSRM model, which assumes a con-

stant width. However, I might be able to use another variable, such as flow direction or

curvature, to develop a similar "state-space" plot characterizing meandering streams.

For the measures that already exist, I need to better understand what they reveal

about channel planform. One way to gain such understanding would be to apply the mea-

sures to idealized planforms in order to infer what the measures of natural planforms

mean.
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There are several loose ends remaining with respect to the signature of the mean-

dering process in the slope-area relationship. I should map pixels on the DEM, and even

nodes on the CHILD model mesh, to points on the slope-area plot in order to ascertain the

impact of the various valley features on the plot. How does DEM pit filling affect the

slope-area relationship in the valley? If the artifacts of pit filling are significant, it might be

useful to obtain a high-resolution DEM of a meandering channel valley in order to find the

slope-area relationship more accurately. I should also look at the slope-area relationship

for different meandering streams, such as the Buffalo River, to see how the plots are

affected by valley width and form.

Another issue brought up in my examination of Buffalo River valley width is the

following: How can I tell whether specific reaches are capacity- or detachment-limited?

Does the presence of bedload always imply capacity limitation? I may ultimately find that

these cases are merely end members.
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Chapter 7

Discussion and Conclusion

This chapter summarizes the previous chapters and discusses some implications of the

broader work that were addressed in those chapters. Finally, I draw some specific conclu-

sions.

Chapter 2 introduced the topic of landscape evolution modeling. The main thrust

of the review was to motivate the inclusion of processes usually ignored in these models

and, in particular, lateral channel migration. Chapter 2 also introduced the topic of river

meandering and the importance of topographic steering in that process.

Chapter 3 addressed meandering in natural streams and, specifically, compound

bend formation, scroll bar topography, bank failure and roughness, and meandering-land-

scape interaction. A major finding was that compound bends on the Ellis River, Maine,

develop from simple bends during periods of rapid channel migration initiated by

upstream cutoffs and that compound bends sometimes separate to form multi-bend loops.

I developed several measures of meandering channel planform which can and did detect

the presence and importance of multi-bend loop formation in channel planforms of mean-

dering Alaskan streams.

On the Ellis River, lateral accretion of the point bar was fast where the ridges had

formed and slow in the swales. It follows that the rapid migration following a cutoff led
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not only to the formation of a compound bend but also to the rapid accretion of these new-

est ridges. I concluded that rough vegetation on the point bar probably contributed to the

ridge formation by trapping sediment. In this respect, vegetation plays similar roles on the

Ellis River and on the Current River, Missouri. Spectral analysis showed that the scroll bar

topography on the Ellis and Mississippi River floodplains was not clearly periodic but

only quasi-periodic.

On the Ellis River, I found that banks were undermined by scour and failed in

clumps defined by tree root wads. The typical size of these root wads also places a lower

limit on the width of a meander loop's neck before it cuts off.

I examined the role of meandering in the landscape by looking at the slope-area

relationship for Schoharie Creek, New York, and the relationships among valley width,

lithology, and channel slope on the Buffalo River, Arkansas. For the Schoharie Creek val-

ley, low slopes on flat valley bottoms and high slopes on valley sides are independent of

contributing area and may lead to a commonly observed but previously not understood

feature of natural slope-area relationships. For the Buffalo River, valley width is probably

dependent on the size of bedload particles and their amount as much as or more than the

strength of the rock forming the valley walls. It may be that, in this case, bedrock incision

is transport- rather than detachment-limited.

Chapter 4 introduced the topographic steering river meandering (TSRM) model.

This model takes a different approach to the problem of river meandering. In this

approach, some of the physics may appear relatively crude compared to the mathemati-

cally precise derivations of LFE models but really only represent a different way of
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approximating the behavior of the active physical processes. Within the constraints

imposed by the model assumptions, such approximations may not be any less accurate

than those made in LFE models. In fact, the TSRM model approach captures important

physics and mechanisms, particularly compound bend formation, that other models lack.

The approach was immersion in the literature of field and experimental studies of mean-

dering, breaking the process physics down into simple, easily understood pieces, and put-

ting those pieces back together in a new model. I determined the importance of various

processes and mechanisms based on empirical evidence. The studies at Muddy Creek by

W.E. Dietrich and his co-authors in particular provided much of the information needed to

determine what the pieces were and which to include. Along the separate but complimen-

tary line of investigation taken by J.D. Smith and co-authors, I eventually found that scal-

ing the flow equations according to a slightly different set of assumptions yielded terms

resembling my expression for lateral momentum transfer (see Appendix B).

Perhaps the most important lesson from the TSRM model is the answer to this

question: What must a meandering model include to reasonably, approximately describe

the meandering process? Evidence from the literature indicates the importance of the bed

topography and that a reasonable assumption is that the topography is due solely to the

curvature-induced, helical part of the secondary flow. This assumption is further supported

by the finding that, in the special case of large but gradually changing curvature, the scaled

flow equations reduce to two terms, both in the lateral momentum equation: the lateral

shear stress at the bed and the curvature-induced lateral flow acceleration (see Appendix

B, equation (B.5.4)). So, both empirical and theoretical evidence indicates that the

assumptions concerning bed topography are reasonable.

243



The topographic steering calculation does not describe how and where the shear

stress is applied to the bank. The topographic steering effect is strongest where curvature

is changing most rapidly, at the bend entrance, but meander bends, at least small ones,

migrate downstream. In simplifying the problem, I had not described how a force at the

bend entrance leads to shear stress on the bank downstream. The simplest way to project

the effect of the force downstream worked well-better, in fact, than the more complicated

methods devised later and discarded. Numerical stability and common sense said that this

force would not all be spent at one point, that I needed to describe the turbulent dissipation

of that force along the bank as shear stress. A simple Gaussian smoothing was a sufficient

parameterization of that turbulent dissipation.

Topographic steering is of sufficient magnitude to cause the bank shear stress, and

this expression, in combination with the other parts of the model, produces realistic results

and simulates the previously unexplained phenomenon of compound bend formation. The

magnitude of the predicted topographic steering force is similar to that of the total bed

shear stress, and this result is in line with observations. In the special case of small but

quickly changing curvature in the scaled flow equations, the topographic steering terms

are dominant (see Appendix B, equations (B.5.1), (B.5.2), and (B.5.3)). So, again, both

empirical and theoretical results support the formulation, though I acknowledge that the

derivation of topographic steering is far from perfect and might bear some modification

guided by the scaled flow equations.

The model yielded results pertinent to the findings of Chapter 3. The model pro-

duced compound bends much as they were formed on the Ellis River and multi-bend loops
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that produced both primary and secondary channel planform scale indicators, as found for

the Alaskan streams in Chapter 3. Also, the frequency of compound bend formation was

sensitive to model parameters that affected the location in the bend of maximum bank

shear stress. Parameter changes, such as decreasing median bedload grain diameter or

increasing channel slope, that caused that location to shift toward the beginning of the

bend produced more compound bend and multi-bend loop formation. More multi-bend

loop formation leads to wider valleys and greater variation in valley floor age. The land-

scape is, of course, the source of discharge and bedload and determines channel slope.

Thus, characteristics of the landscape influence compound bend and multi-bend loop for-

mation and, in turn, determine the effect of meandering on that landscape. Also, bank

roughness and compound bend formation are related. The bank roughness parameter is the

major control on bend size, and its size relative to the downstream lag influences bend

shape and compound bend formation. For example, decreasing the bank roughness corre-

sponds to increasing the smoothing scale and the bend size with respect to the downstream

lag; smaller downstream lag with respect to the bend size increases the frequency of com-

pound bend formation; therefore, decreasing bank roughness would lead to a greater fre-

quency of compound bend formation.

The model also formed floodplain topography resembling scroll bar topography

through the spatio-temporal variation of channel curvature, proportional to point bar

height in the model. This model scroll bar topography was, like the Ellis and Mississippi

scroll bar topography, quasi-periodic. The model also formed bands of alternating fast and

slow channel migration related to the occurrence of upstream cutoffs. This mechanism is

more likely related to the mechanism forming scroll bar topography in nature.
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Chapter 5 introduced the channel-hillslope integrated landscape development

(CHILD) model. Building the CHILD model required devising a new way to represent the

migration of a channel in the landscape and a new set of rules to govern and describe that

migration. The CHILD model uses a dynamic, irregular mesh to represent the landscape

and incorporates the TSRM model as a component landscape process. The development of

this model involved some additional conceptual modeling, such as the parameterization of

bank erodibility's bank height dependence, but for the most part presented implementation

problems related to the data structure and the movement of channel nodes in the model

landscape mesh. Specifically, I developed new algorithms and rules to deal with finding

bank nodes, removal of nodes from eroding banks, and addition of nodes to accreting

point bars.

The landscape and channel forms produced by the model were quite sensitive to

the magnitude of bank erodibility's bank height dependence. As expected, the latter affects

the channel's migration rate. Larger bank height dependence leads to greater interaction

between the channel and the landscape and, thus, faster and more thorough adjustment of

the system toward a new dynamic equilibrium through valley wall steepening. Prior to this

adjustment, the initially low banks led to transient states in which the valley floor was flat-

tened by rapid lateral channel migration. Migrating channels for which bank erodibility's

bank height dependence is larger have lower bend-scale sinuosity but still form multi-bend

loops. The slope-area relationships of the transient cases were affected by meandering

such that the plots are similar to the slope-area plot for the Schoharie Creek valley in

Chapter 3 and, thus, support the hypothesis that, in nature, meandering is responsible for

the "step" in the mean slope's trend.
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Increasing the uplift rate led to both greater bank shear stress by increasing chan-

nel slope and lower bank erodibility by increasing bank height such that migration rate

increased by a small amount. Thus, the channel migration rate is only weakly sensitive to

uplift rate. The frequency of compound bend and multi-bend loop formation increased

with greater uplift and, therefore, channel slope. The steepening of the valley sides may

even reinforce the tendency to form multi-bend loops.

The CHILD model will allow investigation of many aspects of river basin evolu-

tion. In the present work, I have focussed on the interaction between a meandering channel

and its valley, but future studies will address the interaction between landsliding and chan-

nel evolution.

In conclusion, the modeling studies benefited greatly from previous field studies

and, in turn, motivated new field studies by making testable predictions. I expect future

work to involve a similar close coupling of modeling and field studies.

I cannot rule out the possibility that scroll bar topography is associated with chang-

ing channel curvature, but the data from the Ellis River suggest that scroll bars are associ-

ated with large variations in channel migration rate.

Compound bend formation is an integral and important part of the meandering

process. It leads to multi-bend loo formation and, thus a secondary sinuosity. The models

reproduce this effect to a degree that is sinsitive to model parameters such as bed material

grain size, channel slope, and bank roughness. Unlike migration rate, this effect is not sup-

pressed byb steeper banks when uplift rate increases.
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Channel banks are an important part of the coupling between channel migration

and the landscape. By their roughness, they influence the size of meander bends and the

frequency of compound bend formation. By their height, they influence bank erodibility

and, thus, the channel migration rate such that the steepening banks associated with more

rapid uplift dampen the effect of increasing bank shear stresses associated with the corre-

sponding increase in channel slope. Variations in bank erodibility's bank height depen-

dence affect the appearance of the landscape when the bend length and channel spacing

are of similar magnitude. Channel bank steepening is the mechanism by which the drain-

age system adjusts to the onset of meandering and approaches a new dynamic equilibrium.
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Appendix A

Derivation of the Transverse Bed Slope

A.1 Neglecting Bedforms

This derivation is similar to that of Ikeda [1989]; the reader is referred to that work for

explanation of some of the assumptions and reasoning implicit in the following derivation.

The lateral force balance for a bed grain particle is

g[(M - m)gcoso - Lf ]VprDr + (M - m)gsin- )g f]pr = (A.1.1)
VP

where M is the particle mass; m is the fluid mass; 0 is the transverse bed slope angle; g is

the dynamic Coulomb friction coefficient; Lf is the lift force; Vp is the particle velocity;

Vpr is the radial component of the particle velocity; and Dr is the radial component of the

drag force:

D D(Ubr - Vpr) (A.1.2)
Ub - VP

where D is the total drag force on the particle; Ub is the fluid velocity at the bed; and Ubr

is the radial component of the fluid velocity at the bed. In this derivation I simplify the

assumptions made by Ikeda [1989] and extrapolate my simplified result to apply under the

more complicated set of assumptions. Specifically, in the following derivation I assume

that, at the equilibrium bed slope, the radial component of the particle velocity is zero

(Vpr = 0). Under this assumption, I get

sin = -(y 2.6 - 2.2) (A.1.3)sinr C
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where T is the dimensionless shear stress, or "Shields stress",

S= T (A.1.4)
p(s - l)gd

Ikeda's formula accounting for the critical shear stress for the initiation of particle motion

is

dh _ r 2 h 'P (0.2278

S - 0.3606 (A.1.5)

which is the solution when the total shear stress, form drag plus skin friction, determines

the transverse bed slope. I have skipped many steps in the derivation of equation (A. 1.3)

because a more complete derivation exists in the literature [Ikeda, 1989] and it is similar

the derivation which follows below.

A.2 Including Bedforms

To find the transverse bed slope caused by skin friction, I need to take the derivation a step

further because the radial component of the near-bed velocity at the sand grains is less

than what I have derived for the total shear. Let Ubr be the radial component of the flow

velocity at the top of the form drag roughness layer and U' be the average velocity within

that roughness layer; i.e., the average velocity in the layer affected by skin friction. I

assume that the wavelength of the bedforms is related to the depth of flow:

Xbf = 27th (A.2.1)

and let the height of the dunes, hd, be related to the bedform wavelength, Xbf, by

1
hd = 10th (A.2.2)

The skin friction drag force (see equation (A.1.1)) is
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D' = pCd d2(Ub - Vp) 2  (A.2.3)

and its radial component is

D'(Ubr'- Vpr) (A.2.4)
r Ub' - V

Assuming a log-profile for flow velocity and the Nikuradse equivalent sand grain

roughness equal to the particle diameter, I solve for the average velocity between the bed

and the dune height, hd, as the velocity at height hde:

U' 1 Jln( Ihd) (A.2.5)

where t' is the skin friction [Ole Madsen, class notes, 1996].

If I assume that the near-bottom boundary-layer radial velocity is related to the

average boundary-layer velocity in a way similar to the relation neglecting the effect of

skin friction (see Ikeda, 1989), then I can solve for the skin friction factor,

K2
C '= 2  (A.2.6)f In 11.0hd(2

and the radial component of the near-bed (elevation above the bed goes to zero) skin fric-

tion roughness layer velocity:

rh -1.00 + 3.001n 11.0-d)
Ubr' = 0 .34 9  r _ '2R2 (A.2.7)

K2R2

The relationship between the near-bed velocity, Ub', and the particle velocity is [Ikeda,

1989]:

251



,2,3 g(s - 1)gdUb' = VP + -2- l)
Substituting3 Cd V, I get

Substituting for D', Ubr', Vp, Ub', and VP, I get

pd 3 (s - 1)g
Dr' = /~x

Fr(hhd)]
4rh - 1 + 31n 11.0d

(1 + a )K 2 R2

(A.2.9)
Fp(s -1)gd
Cd( 1 +c g)

Finally, I define the dimensionless skin friction as

p(s - 1)gd
(A.2.10)

Table A.1: Transverse bedslope dimensionless parameters

parameter

drag coefficient

dynamic Coulomb friction
coefficient

ratio of lift and drag coeffi-
cients

von Karman's constant

particle sphericity

ratio of sediment and water

symbol

Cd

g

K

value
0.4

0.43

0.85

0.4
1.0

2.65
densities

Let 0 be the transverse bed slope angle due to skin friction. I solve the force bal-

ance (equation (A. 1.1) with "primes") for

sin = (r - h -- 0.91n h) 0.83]
K213,1 +(Xt.R ) n r (d9

Or, from table A.1, equation (A.2.6), and equation (A.2.2),

sin = r' 2 hhd 2.6
1? r h

(A.2.11)

(A.2.12)
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which is nearly identical to equation (A.1.3) except for dependence on the skin friction

Shields parameter and friction factor and the ratio of skin friction roughness layer depth to

total depth, which is just

hd  ?'
= (A.2.13)

h T

Assuming that the necessary modification of equation (A.2.12) to account for the thresh-

old of particle motion is similar to the modification of equation (A. 1.3) to get

equation (A.1.5) and using table A.1 and equation (A.2.13), I have

dh (r'2h' ' [0.2278 h1 lh'
dr r R In (11 - 0.3606] (A.2.14)

I define the transverse slope, ST, as equation (A.2.14) evaluated at the channel centerline,

where r=R and h=H. The radius of curvature, R, is just the inverse of the curvature, C. So,

I have

ST = KHC (A.2.15)

K=.O5695 In 11 - 0.3606] (A.2.16)

which is identical to equation (4.3). In the above derivation I assume that all references to

grain diameter, d, refer to the median grain size, d5o. The appropriate quantile of grain size

in equation (A.2.5) is actually d65, but, because this term is inside the logarithm, the use of

d5o does not introduce much error.
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Appendix B

Scaling the Depth-Averaged Flow Equations

B.1 Scaling Parameters for Nondimensionalization
I begin by identifying the spatial scales I am interested in. Other authors (e.g., Johannes-

son and Parker, 1989) have typically used the meander wavelength to scale downstream

distances though they are modeling accelerations over much shorter distances.

Dietrich and Whiting [1989] showed that strong convective accelerations may

occur over downstream distances much shorter than the meander wavelength and even

shorter than the channel width. Therefore, it is appropriate to scale down- and cross-

stream distances with the same value, in this case the channel width. I scale vertical dis-

tances by the average channel depth. Thus I define the non-dimensional coordinates,

s
= - (B.1.1)

b

n
n - (B.1.2)

b

Z (B.1.3)
H

where s, n, and z are the downstream, cross-stream, and vertical directions, respectively; b

is the channel width; and H is the average channel depth. Likewise, I scale curvature, flow

depth, and bed elevation:

= Cb (B.1.4)

h
h (B.1.5)

H

255



1 = - (B.1.6)
H

I have scaled the curvature with the channel width, similar to the inverse of down-

stream and cross-stream coordinates. However, terms proportional to curvature will gener-

ally be smaller than terms proportional to 1/ls and I/n because, while 1/ls and

I/n are usually greater than the channel width, b, curvature, C, is always less than b. In

places where curvature is small, terms proportional to curvature will be much smaller than

terms proportional to 1/ls and I/n as long as the downstream rate of change of curva-

ture, aC/s, is large.

Dietrich and Smith [1983] found that lateral flow velocities may be comparable to

downstream velocity over short distances. Therefore, I scale both downstream and lateral

velocities by the average downstream velocity, Uo:

SU0 (B.1.7)
U0

V
V = (B.1.8)

Though I am not directly concerned with vertical velocity, I will need it to scale

shear stresses:

w = (B.1.9)
W

where W is a typical vertical velocity, where W<< Uo-
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Changes in water surface elevation are generally not comparable to those in water

depth and bed elevation. The average water surface slope is related to the friction factor

and flow velocity:

gHE CU2
b 37 -CfUO

)E-C U2 b
f 0 gH

(B.1.10)

(B. 1.11)

And I define the non-dimensional water surface elevation:

E=E gH
f U b

(B.1.12)

B.2 Downstream Momentum Conservation Equation

I use the depth averaged equations used by Smith and McLean [1984]. In the downstream,

or s, direction, I write:

p- UVh-2 P UVhC =
an 1-nC

pgh aE
1-nCas

1 S l
I- nC ssI

1 ar h
1 -nCas ss

ns l n - ZS q
(B.2.1)

Applying the scaling relations of the previous section and canceling like terms, I

have:

Ha , - 2 H ^^^
+ UVh 1- UVC

b h l-nCb 1 -hC

2 H2

1 -hCb2 ns

1 H 2 _, a ,

1 - hC b
2 -ss

H 2 , a

+b2 ns -
b 2 T I(B.2.2)
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I now assign values of a to small numbers of 0(1/10):

F = { , C} (B.2.3)

Substituting E in equation (B.2.3), dropping terms of O(e), and switching back to dimen-

sional terms, I have:

P a U2h
1 -nCas

+ p-UVh-2 n UVhC = -zsln
an 1-nC (B.2.4)

I do note, however, that the third and sixth terms on the right hand side of equation (B.2.1)

will be large near the banks.

B.3 Cross-Stream Momentum Conservation Equation
I write the depth-averaged conservation of momentum in the cross-stream, or n, direction:

P 1 UVh
I -nCas

+p V2h- P (U 2 -V 2 )hC
n 1-nC = -pgha-

an

1 a
1 - nCas n s

1
1 -nC ss - n n hC+ 1 nCnS

1 - nC nsS

(B.3.1)

Substituting the scaling relations of the first section and canceling like terms, I have:

1 Ha -
- ---UVh +_^b +

1 H 2 a^ ,

1 -h i b2a ns

1 1

1 -hi2

H2 a - ^
b2 a~ nn

2- V2)hC = -Cf .i

1 H 2

1 -h b2 - nn

1 H 2 ^
... + ns

1 - A b2ns
H2

b2 nn(B.3.2)
(B.3.2)
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As in the previous section, I throw out terms of O(F2), though I note again that the third

and sixth terms on the right hand side of equation (B.3.1) will be large near the banks.

Reverting to dimensional coordinates, I have:

P UVh + p V2h - (U 2 - V 2 )hC = - (B.3.3)
1-nCas n 1-nC = n

B.4 Continuity of Mass Equation
I write the depth-averaged equation for continuity of mass:

1 a a VhC
S Uh + Vh - V 0 (B.4.1)

1-nCas 1n -nC

Without carrying through the steps, I note that all terms are of O(E) such that I retain all

terms.

B.5 Special Cases
It is worthwhile at this point to examine some special cases alluded to in the previous sec-

tions.

In the straight section, or cross-over, between meander bends and other transitions

from small to large curvature, curvature is small, but the downstream rate of change of

curvature and, therefore, the lateral flow velocity are large. In such cases, it is appropriate

to drop all terms and parts of terms proportional to curvature. Thus, I have, for down-

stream momentum conservation,

p U2h + p -UVh = - t zs (B.5.1)

for cross-stream momentum conservation,
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p UVhTS
+ p V2h = -znn (B.5.2)

and for continuity,

-Uh + Vh = 0
as an (B.5.3)

In this case, the convective acceleration terms are dominant.

On the other hand, within bends where curvature is large but approximately con-

stant, convective accelerations and terms proportional to lateral flow velocity will be

small, and I am left with only the centrifugal force term in the lateral momentum equation:

(B.5.4)I nCU = Tznl

Therefore, the bed topography depends only on curvature and primary hydraulic proper-

ties of the flow.

Recall the caveat I made about the terms proportional to lateral changes in depth

and bed elevation, that these terms are large near the banks in general and, especially, near

the outside bank (i.e., next to the pool). Adding back these terms, I have, for the down-

stream momentum equation,

P U2h +
1 -nCas

T
ns [an

p aUVh - 2pUVhC= -Tzs (B.5.5)

for the lateral momentum equation,

- (U 2 - V 2 )hC = - I + nn h
1 - nC zn + + Tnnr (B.5.6)

nn 11an

and the continuity equation is unchanged.

260

SaUVh
1 -nCZs

+ p V2h
an

+ ar'nsh +



Using the chain rule, I break down these "bank" terms:

8tnsSns h = h
an n a

ih
+ Ir

nsan
(B.5.7)

at the bank, the second term on the right hand side of equation (B.5.7) is dominant. Thus, I

have

Snsh = ns
Snh +b  bI an) +b

-2 -2

Similarly, from the lateral momentum equation, I have

'n nnh
+b
-2

(B.5.8)

(B.5.9)= _nnn)n+b
-2

I may now re-write the downstream and lateral momentum equations to include the bank

terms:

Pp U2h +
1 - nCas

a
p-UVh-

an
2p UVhC = -tzs I

1 -nC Z

n - UVh +
1-nCas

p a V2 h - P (U 2 V2 )hC = -
an 1-nC zn

h )
+ nn nn a+b

2 -2 (B.5.11)

ah + 1)+ + nsL (B.5.10)+_ Yb +_ Ibns-n an

2 22
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Appendix C

Magnitude of Lateral Momentum Transfer

To assess the magnitude of the lateral momentum transfer, I compare it to the bed shear

stress for the special case of a channel following a sine-generated curve,

4(s) = 0sin (C.0.1)
M

where 4 is the downstream direction angle; o is the maximum angle; and M is the meander

wavelength.

The average bottom stress integrated over the channel width and an incremental

downstream distance is

dF z = pC fU 2 bds (C.0.2)

Then, from equations (C.0.2) and (4.13), the ratio of the cross-stream and bottom "forces"

is

4(1 2  2b3K22 sin 27s
dF H - M

dFn= (C.0.3)
dFz  M4Cf

where the transverse slope parameter, K, is derived from equation (A.1.5) (here I neglect

the effect of form drag; see Ikeda, 1989, and equation (A. 1.5)). I then find the leading term

of the series expansion of this force ratio at the point of maximum lateral momentum

transfer, s=M/4, to get, neglecting higher order terms,

dFn Hb 3'o 2
dF crCM(C.0.4)

dF T C2M4z cr f
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I now assign the value, -, to small numbers of similar magnitude: H/b, b/M, Tcr/-; and E2

to Cf. Then the ratio in equation (C.0.4) is 0(0 2).
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Appendix D

River Meandering Model Based on Linearized Flow
Equations

The linearized flow equation (LFE) model assumes bank shear stress and channel migra-

tion are proportional to the near-bank flow velocity perturbation. The form of the velocity

perturbation in Johannesson and Parker [1989c] is:

C Ub 2  2 -2 Cfs 2 Cf s'

Ibl = X20UbC(s) + H 20 g + 2 - 1 e H C( ds'

bC - 2 CfS 2Cfs'

... + (K + As)e H C(s)e ds'
H

(D.0.1)

X 2 (x 4

As= 181(2H (2
X2 + X + 1 6 = (D.O.2)

s I b 5 1 5 2
12 360 504

1 3 (X3+X2+ 2Xi 2 0.077 0.077 1
I20 = 1 3 2\ 3L ' 1 ,X (D.0.3)

1 5 7 35Cf 3

My version of the LFE uses equation (D.O. 1), where I have made one simplification. To

make the LFE model more directly comparable to the TSRM model, which uses local cur-

vature to determine the bed topography, I substituted local curvature, C, for the effective

curvature integral in Johannesson and Parker [1989c]. A.D. Howard [personal communi-

cation, 1996] reports that the use of this integral has an insignificant effect on model

behavior.
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