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Abstract

Participants in a conversation can often realize their conversational goals in multiple ways
by employing different discourse strategies. For example, one can usually present requested
information in various ways; different presentation methods are preferred and most effective
in varying contexts. One can also manage conversations, or assume initiative, to varying
degrees by directing questions, issuing commands, restricting potential responses, and con-
trolling discussion topics in different ways.

Agents that converse with users in natural language and possess different discourse
strategies need to choose and realize the optimal strategy from competing strategies. Previ-
ous work in natural language generation has selected discourse strategies by using heuristics
based on discourse focus, medium, style, and the content of previous utterances. Recent
work suggests that an agent can learn which strategies are optimal. This thesis investigates
the issues involved with learning optimal discourse strategies on the basis of experience
gained through conversations between human users and natural language agenjts.

A spoken dialogue agent, ELVIS, is implemented as a testbed for learning optimal
discourse strategies. ELVIS provides telephone-based voice access to a caller's email. Within

ELVIS, various discourse strategies for the distribution of initiative, reading messages, and

summarizing messages are implemented. Actual users interact with discourse strategy-

based variations of ELVIS. Their conversations are used to derive a dialogue performance

function for ELVIS using the PARADISE dialogue evaluation framework. This performance

function is then used with reinforcement learning techniques, such as adaptive dynamic

programming, Q-learning, temporal difference learning, and temporal difference Q-learning,
to determine the optimal discourse strategies for ELVIS to use in different contexts. This

thesis reports and compares learning results and describes how the particular reinforcement

algorithm, local reward functions, and the system state space representation affect the

efficiency and the outcome of the learning results. This thesis concludes by suggesting how

it may be possible to automate online learning in spoken dialogue systems by extending the

presented evaluation and learning techniques.

Thesis Supervisor: Robert C. Berwick
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis presents a spoken dialogue system that can learn optimal discourse strate-

gies through interactions with actual users. This thesis first describes the spoken dia-

logue system, ELVIS, which supports access to email by telephone and then presents

our approach to learning, which consists of three steps. Different discourse strate-

gies are implemented in ELVIS for initiative, reading messages, and summarizing

messages. Users interact with discourse strategy-based variations of ELVIS in an

experimental setting. The experimental results are then used to derive a dialogue

performance function. Finally, the performance function is used as the basis for

global and local reward in reinforcement learning techniques, which are applied to

learn optimal discourse strategies in ELVIS. The results of applying different rein-

forcement learning algorithms are presented and compared. This thesis shows that

the particular reinforcement learning algorithm, the system's state space representa-

tion, and the use of local reinforcement significantly affect the outcomes and efficiency

of learning.

1.1 Overview of the Problem

Participants in a conversation can often realize their conversational goals in multi-

ple ways by employing different discourse strategies. For example, one can usually

present requested information in various ways; different presentation methods are



preferred and most effective in varying contexts. One can also manage conversations,

or assume imitative, to varying degrees by directing questions, issuing commands,

restricting potential responses, and controlling discussion topics in different ways.

Agents that converse with users in natural language and possess different discourse

strategies need to choose and realize the optimal strategy from competing strategies.

Previous work in natural language generation has selected discourse strategies by

using heuristics based on discourse focus, medium, style, and the content of previ-

ous utterances. Recent work suggests that an agent can learn which strategies are

optimal. This thesis investigates the issues involved with learning optimal discourse

strategies on the basis of experience gained through conversations between human

users and natural language agents. Reinforcement learning is particularly suited to

learning optimal discourse strategies in spoken dialogue systems because no examples

of optimal strategies can be provided to these systems initially since they are un-

known. Spoken dialogue systems must learn a predictive model of optimal discourse

strategies by exploring examples (i.e., conversations with actual users) and rewarding

them.

As a testbed for learning optimal discourse strategies, a spoken dialogue agent,

ELVIS, is implemented [Walker et al., 1998a, Walker et al., 1998b, Walker et al.,

1997a]. ELVIS provides telephone-based voice access to a caller's email. Within

ELVIS, various discourse strategies for the distribution of initiative and presentation

of information are implemented. The implemented szitiatzve strategzes are System

Initiative, where ELVIS controls the conversation by explicitly prompting the user

for information, and Mixed Initiative, where ELVIS assumes that the user knows

what to say and, by default, the user must direct the conversation. The information

presentation strategies are for summarizing email messages and for reading messages.

The implemented summarization strategies are Summarize-System, Summarize-

Choice, and Summarize-Both. The implemented read strategies are Read-First,

Read-Summarize-Only, and Read-Choice-Prompt. The different presentation

strategies are detailed in Sections 2.3.2 and 2.3.3. ELVIS and the listed initiative and

presentation strategies are implemented as a testbed for learning; a robust real-world



version of ELVIS would incorporate more diverse, complex strategies.

Actual users interact with discourse strategy-based variations of ELVIS. Their

conversations are used to derive a dialogue performance function for ELVIS using

the PARADISE dialogue evaluation framework [Walker et al., 1997b]. This perfor-

mance function is then used with reinforcement learning techniques, such as adaptive

dynamic programming, Q-learning, temporal difference learning, and temporal dif-

ference Q-learning, to determine the optimal discourse strategies that ELVIS should

use in different contexts. This thesis reports and compares the results of learning

and describes how the particular reinforcement algorithms, the presence of local re-

ward functions, and the system state space representation affect the efficiency and the

outcome of the learning results. Learning optimal discourse strategies in a real-world

spoken dialogue system requires the automated collection of system performance data

during interactions with actual users, and this thesis concludes by describing exten-

sions to the presented evaluation and learning techniques to automate online learning.

1.2 Overview of the Thesis

In Chapter 2, the spoken dialogue agent, ELVIS (EmaiL Voice Interactive System),

is presented. ELVIS supports access to email by telephone and possesses different

discourse strategies for the distribution of initiative, summarizing email folders, and

reading email messages. These implemented strategies are detailed in Chapter 2.

Chapter 3 describes the experimental design, the methods of data collection, the

experimental results, and the derivation of a dialogue performance function from the

experimental data.

Reinforcement learning is introduced in Chapter 4. Chapter 4 specifies and com-

pares several reinforcement learning algorithms, discusses local rewards and state

space representations, and presents the results of applying learning algorithms to the

experimental data described in Chapter 3.

Chapter 5 discusses how the work described in this thesis relates to previous

work in spoken dialogue systems, natural language content planning, adaptive agent



systems, and reinforcement learning.

Conclusions, future work, and methods for automating online learning in ELVIS

can be found in Chapter 6.

Appendix A delineates the state space representation of ELVIS. Appendix B con-

tains the email message folders used in the ELVIS experiments. The different task

scenarios used in the experiments are presented in Appendix C. Appendix D presents

the user survey used in the experiments. The data tables for points graphed in the

thesis are contained in Appendix E.



Chapter 2

ELVIS, a Telephone-Based Email

Agent

This chapter describes the spoken dialogue system, ELVIS (EmaiL Voice Interactive

System), a testbed for learning optimal discourse strategies in spoken dialogue sys-

tems [Walker et al., 1998a, Walker et al., 1998b, Walker et al., 1997a]. The compo-

nents of ELVIS, ELVIS' functionality, the different discourse strategies implemented

in ELVIS, and ELVIS' state space representation are presented.

The sample conversation with ELVIS shown in Figure 2-1 is used throughout this

chapter to illustrate the components of ELVIS' architecture.

2.1 ELVIS Components and Design

ELVIS is implemented as a distributed system using a general-purpose framework

for spoken dialogue agents [Kamm et al., 1997]. This section describes the compo-

nents of that framework and the application-specific components of ELVIS. ELVIS'

architecture is depicted in Figure 2-2.



(1) ELVIS Hi, ELVIS here! Who is that?

(2) User Susan

(3) ELVIS Hi Susan! Please wait, I'll get your mail

(4) ELVIS: You've got 5 new or unread messages and 1 old message Say "Read" or "Summarize," or say "Help" for

more options.

(5) User Summarize

(6) ELVIS: In your top-level Inbox, you are reading both old and new messages. There's 1 message from Michael, 2

messages from Kim, 1 message from Lee, and 2 messages from Dana Say "Read" or

(7) User (znterruptng) Read

(8) ELVIS: Select by sender, subject, or in order of arrival?

(9) User. Sender

(10) ELVIS Which sender?

(11) User- (says nothzng)

(12) ELVIS. The senders are Michael, Kim, Lee, and Dana Which sender?

(13) User Kim

(14) ELVIS- In the messages from Kim, there's 1 message about "Interviewing Antonio" and 1 message about "Meet-

ing Today" The first message is titled "Interviewing Antonio." It says, "I'd like to interview him I could also go

along to lunch Kim."

(15) User: (says nothzng)

(16) ELVIS Say "Repeat" to repeat the last message, or say "Next" to read the next message in this folder Say "I'm

done here" to exit this folder

(17) User. Next.

(18) ELVIS I didn't understand you Which message do you want to read?

(19) User- Next

(20) ELVIS. The next message is from Kim about "Meeting Today." "The meeting this morning is at 10.00 in 2D-516.

See you there, Kim."

(21) User. I'm done here.

(22) ELVIS: You are back to your top-level Inbox Say "Read" or "Summarize" or say "Help" for more options

(23) User Help.

(24) ELVIS- To access your messages, you can say "Read" or "Summarize." To switch the active messages, say "New

Messages" or "All Messages " If you want me to repeat a message or a summary, say "Repeat " You can always say

"Cancel" or "Help " Say "Goodbye ELVIS" to hang up

(25) User New messages.

(26) ELVIS Switching to new messages. Say "Read" or "Summarize" or say "Help" for more options

(27) User- Summarize

(28) ELVIS In your top-level inbox, you are reading new messages There's 1 message from Michael, 1 message from

Lee, and 1 messages from Dana. Say "Read" or "Summarize" or say "Help" for more options.

(29) User Goodbye ELVIS

(30) ELVIS Bye and don't be lonely'

Figure 2-1: A Conversation with ELVIS



Phone1 Phone2 Phone,

Figure 2-2: ELVIS Architecture

2.1.1 General-Purpose Framework

The general-purpose framework includes a speaker-independent automatic speech rec-

ognizer (ASR) that supports barge-in so users can interrupt an agent while it is speak-

ing (as in utterances 6-7 of Figure 2-1). The framework also supplies an audio server

for playing voice recordings and text-to-speech (TTS), a TTS system, an interface

between the computer running an agent and a telephone network, a module for cre-

ating specific applications to run on the platform, a grammar tool, and a module for

managing an application's dialogues.



The dialogue manager is based on a state machine, where a state consists of a

descriptive name, a context-specific grammar with which to interpret a user's ut-

terances, a transition function mapping conditions (such as what the user said or a

particular discourse strategy) to states, an optional associated system function, and

prompt templates. Each time a state is entered, the prompts are instantiated using

the templates in conjunction with context-specific variables. There are four types of

prompts:

* The initial prompt played when the user enters a state (such as utterance 14 in Figure 2-1)

* A help prompt played when the user requests help in that state (such as utterance 24 in Figure 2-1)

* Multiple timeout prompts that are played when the user does not say anything in that state (such as utterance

16 in Figure 2-1)

* Multiple reject prompts that are played when the ASR confidence is too low to continue without additional

user input in that state (such as utterance 18 In Figure 2-1)

ELVIS' state space representation is described in greater detail in Section 2.4.

2.1.2 Application-Specific Component

The application-specific component consists of the ELVIS natural language system

and the ELVIS application interface. The natural language system performs natu-

ral language interpretation and generation. The application interface handles some

system bookkeeping, records prompts, and calls application-specific functions. This

interface interacts with a library of general email functions, which include the pro-

cessing of email folders, the creation of new email folders, the extraction of different

fields from email messages, message searching, and message deletion.

2.2 ELVIS Functionality

This section details the functionality available in ELVIS. ELVIS' functionality was

determined through a Wizard of Oz simulation of ELVIS.



Category Subcategory Occurrences
Clarification Request by Wizard 13
Clarification Request by User 24
Folder Action Activation 7

Update 3
Help 3
Message Action Activate 2

Compose 1
Delete 13
Field Information 5
Length Information 4
Read 67
Repeat Field Information 2
Repeat Read 2
Reply 6
Save 7
Search 1
Skip 23
Summarize 2

Message Reference By Context 70
By Folder 2
By Number 1
By Sender 8
By Time Received 1

Search for Message By Date 1
By Folder 3
By Sender 2
By Subject 2

Summarization By Folder 10
By Person 7
By Subject 2
Order Received 1

System Status 4
User Preferences 5

Table 2.1: Functional Analysis of Wizard of Oz Dialogues



User & Choose
Read, Summarize,
Toggle, or Hangup

Figure 2-3: ELVIS Functionality

2.2.1 Wizard of Oz

For the Wizard of Oz (WOZ) study, six email users called a person acting as the

Wizard whenever they wanted to check their email over a three-hour period. The

15 conversations that transpired during that period were recorded, transcribed, and

analyzed for the sorts of functions the users had asked the Wizard to perform. The

results of this analysis are depicted in Table 2.1.

2.2.2 System Functionality

Based on the WOZ results, we concluded that it was imperative to provide multiple

ways to refer to messages, the ability to read and repeat messages, context-specific

help, folder summarization capabilities, and system feedback.

The functionality provided to a user of ELVIS is depicted in Figure 2-3. The user

calls ELVIS by telephone, whereupon ELVIS authenticates the user (utterances 1-2 in



Figure 2-1). ELVIS then retrieves the user's email (the inbox folder) and informs the

user of the number of new, unread, and old messages the user currently has (utterance

4 in Figure 2-1). In ELVIS' top-level state, the user can request a summary of the

email messages in the inbox, select messages to read by sender, subject, or in order of

arrival, toggle between hearing about all the messages in the current folder or only the

new and unread messages in that folder, or hang up. In Figure 2-1, summarization

occurs in utterances 5-6 and 27-28, message selection for reading occurs in utterances

7-21, toggling occurs in utterances 25-26, and hanging up occurs in utterances 29-30.

When the user requests that ELVIS read a particular set of messages, ELVIS creates a

virtual folder (vfolder) to contain those messages and makes that vfolder the current

folder. The user can choose to hear some subset of that vfolder's messages and can

then reset the current folder to be the top-level inbox (utterances 14-21 in Figure

2-1). After the user hears a summary, reads messages and exits a vfolder, or toggles

between different sets of messages, the user returns to ELVIS' top-level state.

2.3 Different Discourse Strategies

Dialogue agents face the problem of deciding what information to communicate to

a user and how and when to communicate it. There exist many potential strate-

gies for distributing initiative, summarizing messages in an email folder, and reading

messages. This section describes two different initiative strategies and six different

presentation strategies (three different summarization strategies and three different

read strategies) that were implemented in ELVIS. Each discourse strategy variation

is implemented as a combination of the prompts that are played to the user and the

state transitions that ELVIS makes.

All of the claims enumerated in this section are tested and the results are reported

and compared in Chapters 3 and 4.



(D1) ELVIS: You have 5 new or unread messages and 1 old message in your inbox. Say
"Read," or "Summarize," or say "Help" for more options.
User: Read.
ELVIS: Select by Sender, Subject, or in Order of Arrival?
User: Sender.
ELVIS: Which Sender?
User: Kim.

Figure 2-4: Dialogue 1: System-Initiative Initiative Strategy

2.3.1 Initiative Strategies

In a conversation involving two participants, both interlocutors assume varying de-

grees of mttiatzve; that is, they each control the conversation by directing questions,

issuing commands, restricting potential responses, and controlling the discussion topic

in differing proportions. The degree of initiative that the participants assume can

change multiple times over the course of their conversation.

Two initiative strategies were implemented in ELVIS, the System-Initiative

Initiative Strategy and the Mixed-Initiative Initiative Strategy. For illustrative

purposes, we assume that the user's goal is to read his messages from Kim.

System-Initiative Strategy

The System-Initiative (SI) strategy explicitly prompts users at each stage of the

dialogue with directive prompts of what to say [Kamm, 1994]. Using this initiative

strategy, ELVIS acquires information in small increments and constrains the user to

very short utterances. Dialogue 1 (Dl) in Figure 2-4 illustrates the use of the SI

strategy in ELVIS.

Prior work has claimed that the performance of an agent using the SI strategy will

be good because users' utterances are explicitly constrained to short phrases, which

current ASR technology can handle effectively [Marcus et al., 1996, Potjer et al., 1996,

Danieli and Gerbino, 1995].



(D2) ELVIS: I've got your mail.
User: Read me my messages from Kim.

Figure 2-5: Dialogue 2: Mixed-Initiative Initiative Strategy

Mixed-Initiative Strategy

When ELVIS uses the Mixed-Initiative (MI) strategy, ELVIS does not volunteer in-

formation and assumes that users knows what to say. The MI strategy is designed so

that users can choose to communicate a complete ELVIS function and its arguments

in a single utterance. Dialogue 2 (D2) in Figure 2-5 illustrates the use of the MI

strategy in ELVIS. The MI strategy is more flexible than the SI strategy, but users

need more knowledge about what they can say to use it successfully. Prior work has

claimed that MI is the better initiative strategy to use in advice-giving and diagnostic

dialogue domains [Smith and Hipp, 1994, Walker and Whittaker, 1990].

The MI strategy may cause higher ASR error rates than the SI strategy because the

MI strategy requires more complex grammars than the SI strategy does. This can

lead to longer repair subdialogues for the MI strategy than for the SI strategy.

2.3.2 Summarization Strategies

When a user requests a summary of their messages from ELVIS, there are many

ways that ELVIS can present a valid summary. Three of these possibilities are im-

plemented as the Summarize-System Summarization Strategy, the Summarize-

Choice Summarization Strategy, and the Summarize-Both Summarization Strat-

egy.

Summarize-System Strategy

The Summarize-System strategy, illustrated in Dialogue 3 (D3) in Figure 2-6, has

ELVIS summarize by subject or by sender based on context. For instance, when

users are in their inbox folder, ELVIS will summarize by sender, but when a user is



(D3) ELVIS: In your top-level inbox, there's 1 message from Kim, 2 messages from Noah,
1 message from Michael, and 1 message from Owen.

Figure 2-6: Dialogue 3: Summarize-System Summarization Strategy

(D4) ELVIS: Summarize by subject, by sender, or both?
User: Subject.
ELVIS: In your top-level inbox, there's 1 message about "Lunch," 1 message about
"Interviewing Antonio," 1 message about "Call Me Tomorrow," 1 message about
"Evaluation Group Meeting," and 1 message about "Agent Personality."

Figure 2-7: Dialogue 4: Summarize-Choice Summarization Strategy

situated in a folder containing messages from Kim, for example, ELVIS will summarize

by subject, as a summary by sender would provide no new information.

Summarize-Choice Strategy

The Summarize-Choice strategy, illustrated in Dialogue 4 (D4) in Figure 2-7, has

ELVIS ask the user to specify which attributes to summarize by: subject, sender, or

both subject and sender.

Summarize-Both Strategy

When using the Summarize-Both strategy, illustrated in Dialogue 5 (D5) in Figure

2-8, ELVIS uses the sender and subject attributes together in generating a summary.

2.3.3 Read Strategies

When a user requests that ELVIS read a particular set of messages and that set

contains more than one message, ELVIS can validly present the set and read from

it in multiple ways. Three of these possibilities are implemented as the Read-First

Read Strategy, the Read-Summarize-Only Read Strategy, and the Read-Choice-

Prompt Read strategy. For illustrative purposes, we assume that a user has just

requested to read his messages from Kim.



(D5) ELVIS: In your top-level inbox, from Kim, there's 1 message about "Lunch." From
Michael, there's 1 message about "Evaluation Group Meeting." From Noah, there's
1 message about "Call Me Tomorrow" and 1 message about "Interviewing Antonio."
And from Owen, there's 1 message about "Agent Personality."

Figure 2-8: Dialogue 5: Summarize-Both Summarization Strategy

(D6) ELVIS: In the messages from Kim, there's 1 message about "Interviewing Antonio"
and 1 message about "Meeting Today." The first message is titled, "Interviewing
Antonio." It says, "I'd like to interview him. I could also go to lunch. Kim."

Figure 2-9: Dialogue 6: Read-First Read Strategy

Read-First Strategy

When ELVIS chooses the Read-First strategy, as portrayed in Dialogue 6 (D6) in

Figure 2-9, ELVIS summarizes all of the messages from Kim and then takes the

initiative to read the first one.

Read-Summarize-Only Strategy

The Read-Summarize-Only strategy, illustrated in Dialogue 7 (D7) in Figure 2-10,

has ELVIS provide information that allows users to take the initiative to refine their

selection criteria for reading.

Read-Choice-Prompt Strategy

When using the Read-Choice-Prompt strategy, illustrated in Dialogue 8 (D8) in Fig-

ure 2-11, ELVIS explicitly informs users of what to say in order to refine their selection

criteria for reading.

2.4 ELVIS State Space Representation

This section describes the state space representation that ELVIS uses. ELVIS' state

space and state transitions are provided in greater detail in Appendix A. As de-



(D7) ELVIS: In the messages from Kim, there's 1 message about "Interviewing Antonio"
and 1 message about "Meeting Today."

Figure 2-10: Dialogue 7: Read-Summarize-Only Read Strategy

(D8) ELVIS: In the messages from Kim, there's 1 message about "Interviewing Antonio"
and 1 message about "Meeting Today." To hear the messages, say, "Interviewing

Antonio" or "Meeting."

Figure 2-11: Dialogue 8: Read-Choice-Prompt Read Strategy

scribed earlier in Section 2.1.1, a state consists of a descriptive name, a set of dialogue

prompts, a grammar with which to interpret a user's utterance, an optional associated

system function, and a state transition function. After ELVIS speaks in each state,

ELVIS senses the environment (by performing ASR) and invokes the state's associ-

ated system function, if one is specified. The associated system functions perform

system bookkeeping, record prompts for future utterances, and use the email library.

Figure 2-12 shows an annotated version of utterances 14-21 in Figure 2-1, where a

transition path through states is shown.

There is no state differentiation between users first entering a state S2, timing out

in St, receiving help in S2, or having their utterances rejected in S,. ELVIS perceives

each of these encapsulated states only as the single state S2, as utterances 14-18 of

Figure 2-12 illustrate.

Other distinct states are collapsed into single states to achieve efficient system

performance. The state space representation provided by the dialogue manager is

entirely dissociated from task progress representation since a general-purpose, task-

independent platform (which includes the dialogue manager) is used to implement

ELVIS. Multiple task states are collapsed into single dialogue states. For example,

ELVIS can summarize messages, toggle between sets of messages, and ground the

user in the single top-level dialogue state, and ELVIS' utterances 4, 6, 22, 24, 26, and

28 in Figure 2-1 all occur in dialogue state TopLevelUserOptionsSI.

Competing discourse strategies are implemented in ELVIS as distinct state transi-



(ELVIS enters function Build VfolderForSenderSI to build a vfolder for messages from
Kim)
(Since vfolder contains more than one message and the read strategy is Read-First,
ELVIS enters state ReadCurrentVfolderSI-first and utters the entrance prompt)
(14) ELVIS: In the messages from Kim, there's 1 message about "Interviewing Anto-
nio" and 1 message about "Meeting Today." The first message is titled "Interviewing
Antonio." It says, "I'd like to interview him. I could also go along to lunch. Kim."
(15) User: (says nothing)
(ELVIS plays timeout prompt for state ReadCurrentVfolderSI-first because ELVIS
has not heard any user response)
(16) ELVIS: Say "Repeat" to repeat the last message, or say "Next" to read the next
message in this folder. Say "I'm done here" to exit this folder.
(17) User: Next.
(ELVIS plays reject prompt for state ReadCurrentVfolderSI-first because ELVIS
has not been able to interpret the user's response with enough confidence to continue)
(18) ELVIS: I didn't understand you. Which message do you want to read?
(19) User: Next.
(ELVIS understands that the user wants to read the next message and enters func-
tion ReadMessagelnLoopSI to record the next message into a prompt and update the
current message pointer)
(ELVIS enters state ReadCurrentVfolderSI and utters the entrance prompt)
(20) ELVIS: The next message is from Kim about "Meeting Today." "The meeting
this morning is at 10:00 in 2D-516. See you there, Kim."
(21) User: I'm done here.

Figure 2-12: Annotation of Utterances 14-21 in Figure 2-1

tions from their activation points. The state transition paths that competing strate-

gies follow always converge at some later dialogue state.

The nature of the state space representation for ELVIS becomes important in

learning and Section 4.3 returns to this topic. The next chapter discusses the exper-

iments conducted using discourse strategy-based variations of ELVIS.



Chapter 3

Experimenting with ELVIS

This chapter recounts the experiments with the different discourse strategy-based ver-

sions of ELVIS. The data collection methods and the experimental scenarios are de-

tailed, two sets of conducted experiments and the experiments' results are described,

and a performance function is derived for ELVIS from the experimental data.

3.1 Data Collection Methods

Experimental dialogues were collected via two different experiments in which subjects

interacted with ELVIS to complete three typical tasks that required them to access

email messages in three different email inbox folders. The email folders are provided

in Appendix B. In the second experiment, before performing the three tasks, subjects

participated in a tutorial task dialogue to acquaint the subjects with ELVIS by guiding

the subjects step-by-step through a typical task. Subjects were given instructions on

a set of web pages, with one page for each experimental task.

36 subjects, AT&T summer interns, participated in the first experiment, which

varied initiative strategies. 18 subjects used the SI version of ELVIS while the other

18 subjects used the MI version of ELVIS. The first experiment resulted in a corpus

of 108 dialogues testing the initiative strategies.

31 subjects, MIT students, participated in the second experiment, which varied

summarization and read strategies in an SI version of ELVIS. To have adequate data



(Dialogue Quality) Barge-Ins, Helps, Rejects, Timeouts, Mean Recog

(Dialogue Efficiency) Elapsed Time, System Turns, User Turns

(Task Success) Kappa, Completed

(User Satisfaction) TTS Performance, ASR Performance, Task Ease, Interaction
Pace, User Expertise, System Response, Expected Behavior, Future Use

Figure 3-1: Collected Experimental Measures

(Subtask 1.1) You are working at home in the morning and plan to go directly to a
meeting when you go into work. Kim said she would send you a message telling
where and when the meeting is. Find out the Meeting Time and the Meeting
Place.

Figure 3-2: Typical Subtask for the ELVIS Experiments

for learning, ELVIS had to explore the space of strategy combinations and collect

enough samples of each combination. Each subject interacted with 3 different versions

of a parameterized ELVIS for each of the three tasks. This second experiment yielded

a corpus of 124 dialogues testing the summarization and read strategies.

This section describes the task scenarios and the three different methods of data

collected: dialogue recordings, dialogue manager logs, and user survey data. The

objective and subjective measures shown in Figure 3-1 are collected in the ELVIS

experiments and are defined in this section.

3.1.1 Task Scenarios

Each of the subjects performed all of their tasks in sequence, with each task consisting

of two subtasks. In each subtask, ELVIS and the subject exchange information about

criteria for message selection and for information extraction within the message body.

Figure 3-2 displays a typical subtask. This subtask can be represented in terms of the

attribute-value matrix (AVM) in Table 3.1. All attribute-values must be exchanged

to successfully complete a subtask [Walker et al., 1997b]. The AVM representation



Attribute Actual Value
Selection Criteria Kim V Meeting
Meeting Time 10:30
Meeting Place 2D516

Table 3.1: Attribute-Value Matrix Instantiation for Subtask in Figure 3-2

for each subtask is independent of the particular discourse strategies that ELVIS

uses. The complete set of subtasks and their corresponding AVMs can be found in

Appendix C.

3.1.2 Dialogue Recordings

All of the experimental dialogues were recorded. These recordings were used to match

the subject's utterances to ELVIS' perceptions of those utterances (the ASR results),

deriving performance measures for speech recognition. The interaction durations

(Elapsed Time) and how often subjects interrupted, or barged in on, ELVIS' utter-

ances (Barge-Ins) were also calculated from the recordings.

3.1.3 Dialogue Manager Logs

ELVIS logged the state transitions that the subjects' dialogues followed, the discourse

strategies that ELVIS chose, the string perceived by the ASR for each subject utter-

ance (Recognized String), the number of timeout prompts (Timeouts), the num-

ber of ASR rejections (Rejects), and when the subject requested help (Helps). The

number of dialogue turns that the subject takes (User Turns) and that ELVIS takes

(System Turns) can be computed from these logs. Recognized String is used in

conjunction with the dialogue recordings to calculate a concept accuracy score for

each utterance, ranging from 0 (entirely inaccurate) to 1 (entirely accurate).1 Mean

concept accuracy can then be calculated over each dialogue and can be used as a

1For example, the utterance, "Read my messages from Kim" contains two concepts, the read
function and the sender:kzm selection criterion. If the system understood only that the subject said,
"Read," concept accuracy would be .5.



mean recognition score (Mean Recog) for each dialogue.

3.1.4 User Surveys

Subjects filled out web page forms to measure task success and user satisfaction. To

assess task success, subjects indicated whether they believed they had completed the

specified task (Completed) and filled in a task-specific AVM with the information

that they acquired from interacting with ELVIS (such as Meeting Time and Meet-

ing Place in Table 3.1). Task success can be computed from this AVM by using the

Kappa statistic to compare the information in the subject-specified AVM with an

AVM key as in Table 3.1 [Walker et al., 1997b]. Kappa is defined as:

P(A)- P(E)
S= (3.1)1- P(E)

In Equation 3.1, P(A) is the proportion of times that the AVMs for the set of actual

dialogues agrees with the AVMs for the subtask keys and P(E) is the proportion of

times that the AVMs for the dialogues and the keys are expected to agree by chance.

If P(E) is unknown, it can be estimated from the distribution of the values in the

keys as described in [Walker et al., 1997b]. When all task information items are

successfully exchanged, then agreement is perfect and K=1. When agreement is only

at chance, =0O. K accounts for inherent task complexity by correcting for agreement

expected by chance and is superior to other measures of success such as transaction

success [Danieli and Gerbino, 1995] and percent agreement [Gale et al., 1992]. K also

provides a measure for comparing different agents performing different tasks.

User satisfaction is calculated from the subjects' responses to survey questions

about ELVIS' performance [Walker et al., 1998a]. The multiple-choice questions

asked about TTS Performance, ASR Performance, Task Ease, Interaction

Pace, User Expertise, System Response, Expected Behavior, Comparable

Interface, and Future Use. The possible responses to most questions ranged over

{ almost never, rarely, sometzmes, often, almost always} or an equivalent range. These

responses were each mapped to integers between 1 and 5. Responses to {yes, maybe,



no} questions were mapped to integers between 1 and 3 and responses to {yes, no}

questions were mapped to integers in {1,2}. Each question emphasized the subject's

experience with ELVIS in the current conversation, with the hope that satisfaction

measures would indicate perceptions specific to each conversation, rather than re-

flecting an overall evaluation of ELVIS over the series of tasks. For each dialogue,

a cumulative satisfaction score (User Satisfaction) was computed by summing the

scores for each survey question, resulting in a value between 0 and 43. The complete

user survey can be found in Appendix D.

3.2 Experimental Results

This section summarizes the results of the initiative strategy and presentation strate-

gies experiments.

3.2.1 Initiative Strategy Experimental Results

Measure System (SI) Mixed (MI)
Kappa .9 .91
Completed .83 .78
User Turns 25.94 17.59
System Turns 28.18 21.74
Elapsed Time 328.59 s 289.43 s
Mean Recog .88 .72
Timeouts 2.24 4.15
Helps .7 .94
Barge-Ins 5.2 .35
Rejects .98 1.67
User Satisfaction 26.6 23.7

Table 3.2: Performance Measure Means per Dialogue for Initiative Strategies

The initiative strategy experiment shows that subjects could complete the tasks

with both versions of ELVIS. A comparison of the different initiative strategy mea-

sures appears in Table 3.2. More detailed discussion of the results of this experiment



can be found in [Walker et al., 1998a].

3.2.2 Presentation Strategies Experimental Results

Measure Read-First Read-Summarize-Only Read-Choice-Prompt
Summarize-System Summarize-Choice Summarize-Both

Kappa .81 .74 .84
Completed .89 .77 .84
User Turns 18.8 19.51 20.5
System Turns 22.27 22.05 23.64
Elapsed Time 344.53 s 311.9 s 370.03 s
Mean Recog .88 .83 .88
Timeouts 3.47 2.54 3.14
Helps .63 .62 .83
Barge-Ins 2.69 2.69 2.11
Rejects .84 .97 .78
User Satisfaction 28.86 27.31 28.42

Table 3.3: Performance Measure Means
Strategies

per Dialogue for Summarization and Read

Compared with the initiative strategy experiment, , values show that the presen-

tation strategies experiment was more difficult for subjects to complete. A comparison

of the collected measures for the different presentation strategies appears in Table 3.3.

3.3 Deriving a Performance Function

The PARADISE evaluation framework [Walker et al., 1997b] can be used to empiri-

cally identify the important performance factors in a spoken dialogue agent and can

additively and linearly combine those factors to provide a performance function for

the agent. The structure of objectives in Figure 3-3 provides a basis for the factors

measured in estimating a performance function. The complete list of surveyed mea-

sures for ELVIS is found in Figure 3-1. Performance for any dialogue D is defined by

the following equation:



Figure 3-3: PARADISE's Structure of Objectives for Spoken Dialogue Performance

n

Performance = (ce * N(K)) - i w, * Af(c,) (3.2)
Z=1

ac is a weight on r, c, are the cost functions which are weighted by ws, and

.V is a Z score normalization function [Walker et al., 1997b, Cohen, 1995]. The

Z score normalization function ensures that the magnitude of each weight reflects

the magnitude of the contribution of its associated factor to the agent's performance.

The performance function is derived through multivariate linear regression with User

Satisfaction as the dependent variable and all of the other experimental measures

as independent variables [Walker et al., 1997b].

Various performance functions over many different subsets of the experimental



data can be derived. The performance function that is derived from the largest and

most varied subset of experimental data is most desirable because it is the most

general performance function derivable from the experimental data. Therefore, the

performance function is derived from all of the data in both the initiative strategy

and the presentation strategies experiments.

Using all of the data from the first and second experiments, an initial regression

over the measures in Tables 3.2 and 3.3 suggests that Mean Recog, Elapsed Time,

System Turns, Rejects, Barge-Ins, and Completed are all significant contrib-

utors to User Satisfaction. A second regression over these measures, normalized,

results in the following equation:

Performance = .54 * A(MeanRecog) - .34 * A(ElapsedTime) +
.26 * Af(SystemTurns) + .2 * Af(Rejects) -

.1 * Af(Barge - Ins) + .25 * N(Completed) (3.3)

Mean Recog (t=7.22, p=.0001), Elapsed Time (t=-3, p=.003), System Turns

(t=2.04, p=.04), Rejects (t=2.66, p=.008), Barge-Ins (t=-1.69, p=.09), and Com-

pleted (t=4.3, p=.0001) are significant predictors, accounting for 37% of the vari-

ance in R-Squared (F(6,225)=22.32, p<.0001). The magnitude of the coefficients

in Equation 3.3 demonstrates that the performance of the speech recognizer (Mean

Recog) is the most important predictor, followed by efficiency (Elapsed Time), the

number of system turns (System Turns), the subjects' perceptions of task success

(Completed), the number of ASR rejections (Rejects), and the number of times

that the subjects interrupted ELVIS (Barge-Ins).

The performance function includes the nonintuitive coefficients of .26 for System

Turns and .2 for Rejects. One would expect that dialogue efficiency suffers with

increasing numbers of system turns and that dialogue quality decreases with the num-

ber of ASR rejections. There may be several reasons for these coefficients, including

possible tradeoffs with other factors in the model or possibly that rejections function

more like help messages in this particular application. Exploring why these factors



show up as they do is a topic for future work.

The next chapter shows how to use the derived performance function to compute

the utility of the final state of each dialogue and to learn the utilities of competing

discourse strategies.



Chapter 4

Learning Optimal Discourse

Strategies

This chapter introduces reinforcement learning, discusses how to assign local rein-

forcement, emphasizes the importance of the state space representation in learning,

discusses the learned state transition model, and details the results of learning.

4.1 Reinforcement Learning

There are many different forms of machine learning, including inductive learning,

learning in neural networks (such as back-propagation and Bayesian learning), and

reinforcement learning [Russell and Norvig, 1995]. Inductive learning requires "good"

examples to learn successfully, so it is not applicable to learning optimal discourse

strategies; prior to actual interactions with ELVIS, which discourse strategies are

optimal is unknown. ELVIS' representation is not directly suitable to learning in a

neural network. Reinforcement learning is chosen to learn optimal discourse strategies

because a spoken dialogue system can learn a predictive model of its environment by

trying random examples and receiving unsupervised feedback.

In reinforcement learning, an agent obtains percepts in its environment, maps

some subset of them to positive or negative rewards, and then decides which action

to take [Russell and Norvig, 1995]. The agent is never told which actions are the



"right" ones but these rewards can be used to learn a successful polzcy, a complete

mapping from environmental states to actions, for the agent. This section describes

reinforcement learning, some of its algorithms, and how to learn when the environment

is represented as a partially observable Markov decision problem.

4.1.1 Overview

One can derive a plan to choose among different strategies by associating a utility

U with each strategy (action) choice and by adhering to the Maximum Expected

Utility Principle [Russell and Norvig, 1995, Keeney and Raiffa, 1976]:

An optimal action is one that maximizes the expected utility of outcome

states.

To act optimally when in a dialogue state S, an agent chooses the action a E A,

the set of actions available in S2, that maximizes U(S,). Reinforcement learning

provides methods for deriving the utility values U(S) for each S, from the utilities

of S,'s successor states [Barto et al., 1995, Sutton, 1991, Watkins, 1989, Bellman,

1957]. If an agent can determine the utility value for its final state, the utilities of

all of the preceding states can be calculated. Section 3.3 showed how to derive a

performance function for ELVIS and use it to calculate dialogue performance. The

dialogue performance value for a dialogue D is used as the utility value of the final

state of D. The performance function shown in Equation 3.3 that was derived from

the data of both experiments is used.

4.1.2 Algorithms

This section describes four reinforcement learning algorithms: adaptive dynamic

programming, Q-learning, temporal difference learning, and temporal difference Q-

learning [Russell and Norvig, 1995]. These algorithms can calculate optimal discourse

policies for Markov deczsion problems (MDPs), accessible, stochastic environments

with a known transition model. This section concludes with a discussion of which of



the presented algorithms are most appropriate for learning optimal discourse strate-

gies in a spoken dialogue system that converses with actual users.

Adaptive Dynamic Programming

Adaptive dynamic programming (ADP) is a learning algorithm that solves for a state

space's utility values with a dynamic programming algorithm. The utilities can be

computed by solving the constraint equation

U(S,) = R(Si) + max Ma U(Sj) (4.1)

R(S,) is a reward associated with being in state S, a is an action from a finite set

A that is available in state S,, and Mj is the probability of immediately progressing

to state Sy if action a is chosen in state S,. Ma, can be approximated by calculating

probabilities from observed state transitions and is discussed in more detail in Section

4.4. The utility values can be estimated to within a desired threshold through value

iteration, which updates U(S) from the values of its successor states, and Equation

4.1 becomes:

Un+ (Sz) = R(S2 ) + max M , (Sj) (4.2)

Q-Learning

Q-learning is a variation of ADP where utilities are learned for state-action pairs

instead of learning utilities solely for states. The constraint equation for Q-learning

is

U(a, S) = R(S2) + M, max U(a', S,) (4.3)

Again, the utility values can be estimated to within a chosen threshold through

value iteration, yielding the following equation from Equation 4.3:



U,+ (a, S) = R(Sz) + M max U,(a', S3) (4.4)

Q-learning seems especially suited for learning the most successful actions in a

particular state for a system and the goal of this thesis is to learn the optimal discourse

strategies in ELVIS dialogue states where there is choice among differing strategies.

Temporal Difference Learning

It is possible to approximate the utility constraint equations without the use of a

transition model and without solving the equations for all possible states by using

observed transitions to adjust the utilities of the observed states so that they agree

with the constraint equations. This method is called temporal difference learning (TD

learning) and uses the following updating rule whenever a transition from state S, to

state S, is observed:

U(SI) = U(S) + ac(R(S,) + U(S3) - U(S)) (4.5)

a is the learning rate parameter and if a is a function that decreases as the number

of times a state has been visited increases, U(S) is guaranteed convergence to the

correct value [Dayan, 1992].

Temporal Difference Q-Learning

Through minor variations to Equation 4.5, analogous to the transformation of ADP

to Q-learning, temporal difference can be used to learn the utilities of state-action

pairs. Whenever a transition from state S, to state S, via action a is observed, the

following update equation can be used:

U(a, S,) = U(a, S,) + a(R(S,) + max U(a', S,) - U(a, S,)) (4.6)

This thesis learns optimal discourse strategies using data from human interactions,

unlike previous work which has used simulations [Levin and Pieraccini, 1997]. The



model-based reinforcement learning algorithms of ADP and Q-learning propagate

utility values throughout the state space at each learning iteration. The observance-

based reinforcement learning algorithms of TD learning and TD Q-learning only up-

date utility values for state transitions as they are observed; there is no propagation

throughout the state space at each update.

Since the observance-based learning algorithms update state utilities much less

often than the model-based learning algorithms, the observance-based learning algo-

rithms need more data than the model-based learning algorithms to converge. The

convergence speed differences are especially important when learning over human

data instead of over simulations, since it is not straightforward to collect thousands

of human-agent conversations. Because of the convergence speed differences and the

limited amount of collected human data, this thesis uses the model-based learning

algorithms to learn optimal discourse strategies.

4.1.3 Partially Observable Markov Decision Problems

Partially observable Markov decision problems (POMDPs) occur when an environ-

ment is inaccessible [Russell and Norvig, 1995], meaning that the perceptions of an

agent do not provide accurate information or enough information to determine the

state or the associated transition probabilities. ELVIS is inherently a POMDP be-

cause its percepts are not entirely reliable, as ELVIS can and does sometimes mishear

utterances. Some nonessential state space characteristics that make ELVIS a POMDP

are detailed in Section 4.3 and eliminated.

Methods used for MDPs are not directly applicable to POMDPs, so the learning

algorithms presented in Section 4.1.2 do not seem to be useful for learning optimal

discourse strategies in ELVIS. Probability distributions over the possible states given

all previous percepts are calculated for POMDPs and are used for policy decisions.

The standard method for solving a POMDP is to construct a new MDP in which the

probability distributions play the role of state variables. This new state space has

real-valued probabilities, rendering it infinite. Most practical solutions to POMDPs

tend to be approximate [Russell and Norvig, 1995].



The partially observable nature of ELVIS is incorporated into the standard learn-

ing algorithms for MDPs by deriving a performance function that, among other things,

accounts for ELVIS' degree of success in accurately perceiving the environment. The

performance function is a linear composition of the measures that affect user sat-

isfaction, including ELVIS' ASR performance (Mean Recog) and the number of

user utterances that are rejected (Rejects). By assimilating this information into

learning, the standard MDP reinforcement learning algorithms can be used to learn

optimal discourse strategies in ELVIS. The incorporation of the accuracy of the sys-

tem's perceptions into learning also minimizes the differences between ELVIS' internal

representations and the real world. This inclusion avoids the confounding of learning

results that arises from the difference between the actual state of the real world and

a system's internal representation of the world [Whitehead and Ballard, 1991].

4.2 Local Reinforcement

Agents can learn more accurately and with less experience with local reinforcement

signals [Kaelbling et al., 1996, Mataric, 1994]. Local rewards cause learning results

to be more accurate by reflecting local performance maxima and minima that affect

overall dialogue performance. Using a local reward function accelerates the learning

process because utility values converge more quickly by rewarding agents for taking

steps toward the goal instead of just rewarding agents for achieving the final goal.

This section describes different approaches to allocating rewards at the granularity of

the dialogue state.

4.2.1 Qualitative Approach

A local reward function can be qualitatively defined by assigning numerical values to

different features deemed important to the performance of an agent. For example, in

ELVIS, completing a set of desired tasks is integral to user satisfaction and, therefore,

to the performance of ELVIS. ELVIS could be assigned increasing positive degrees

of reward for having no subtasks completed, having a single subtask completed, and



having both subtasks completed. In another example, states where a user's utterances

are rejected by ELVIS can receive smaller rewards than states where user's utterances

are not rejected.

4.2.2 Using the Performance Function

According to discourse theory, dialogue has structure above the level of the turn and

below the level of the entire dialogue [Mann and Thompson, 1987, Grosz and Sidner,

1986, Power, 1979, Power, 1974]. In a task-oriented dialogue, there is structure at

the level of the subtasks [Isard and Carletta, 1995]. This provides a basis for using

the dialogue performance function below the level of the whole dialogue in order to

assign different local rewards to each dialogue state.

The performance function in Equation 3.3 can be used at the state level to assign

a reward to each state S2, which can then be used as the value of R(S,) in computing

Equations 4.1, 4.3, 4.5, and 4.6 for the learning algorithms discussed in Section 4.1.2.

To easily compute R(S,) for each S2, a different model is fit to the experimental

data that utilizes metrics which are easily extracted from the state-by-state informa-

tion in the system logs. For example, it is not possible to non-manually calculate

Elapsed Time for each state occurrence in the distributed system that comprises

ELVIS. All of the dialogue quality measures found in Figure 3-1, the efficiency mea-

sures of System Turns and User Turns, and the task success measure for the

degree of task completion can be measured on a state-by-state basis. An initial re-

gression over these state performance measures reveals that Mean Recog, System

Turns, Rejects, and Completed are significant. A second regression results in the

following equation:

Performance(S) = .55 * A(MeanRecog,) - .09 * Af(SystemTurns,) +

.23 * Af(Rejects ,) + .25 * MA(Completed,) (4.7)

Mean Recog (t=7.32, p=.0001), System Turns (t=-1.52, p=.l), Rejects (t=3.03,

p=.003), and Completed (t=4.24, p=.0001) are significant predictors, accounting



for 35% of the variance in R-Squared (F(4,227)=30.11, p<.0001). MeanRecog, is

the recognition score for the occurrence of state S,. SystemTurns, is the number

of system turns taken in S,, including helps, rejections, and timeouts, and Rejects,

is the number of rejections that occur in S,. Completed, is 1 if no subtasks have

been completed, 5 if 1 subtask has been completed, and 1 if both subtasks have been

completed by the occurrence of S,.

Performance(S,) is computed for each occurrence of each S, using Equation 4.7

and R(S,) is then calculated with the following equation that takes the mean over all

the values of performance for occurrences of S,:

R(S,) = Per formance(S,) (4.8)

4.3 State Space Representation

The state space representation used in reinforcement learning affects the outcomes of

the learning [Koenig and Simmons, 1996, Lin, 1992, Whitehead and Ballard, 1991].

[Lin, 1992] points out that reinforcement learning is representation-dependent and

history-insensitive. Each bit of history relevant to learning must be represented as

a state variable. [Koenig and Simmons, 1996] report that the complexity of running

learning algorithms depends on the representation chosen. By representation, they

refer only to the initial utility values and the local reward function. This section

addresses other aspects of the state space representation that affect learning results.

For accurate learning, ELVIS' state space representation as described in Section 2.4

needs to be transformed to avoid losing relevant information and to reflect the tasks

performed by ELVIS and its users. This section describes how to convert the ELVIS

state space to learn reliably.

4.3.1 Separating States by Prompt Type

As described in Section 2.4, there is no system distinction by prompt type: initially

entering a state S,, requesting help in S,, timing out in S,, and facing an ASR rejection



Figure 4-1: A Graph with a Reentrant Node

in S, each count as an instance of S,. For example, ReadCurrentVfolderSI-first is

the state in which utterances 14, 16, and 18 in Figure 2-12 all occur even though utter-

ance 14 is the initial utterance, utterance 16 is a timeout utterance, and utterance 18

is a rejection utterance. These circumstances are very different and to make the state

space more Markovian, the state space is transformed to differentiate between the four

situations by using a state variable in each S, to represent the prompt type. The state

associated with utterance 14 remains ReadCurrentVfolderSI-first, the state asso-

ciated with utterance 16 becomes ReadCurrentVfolderSI-first-timeoutl, and the

state associated with utterance 18 becomes ReadCurrentVfolderSI-first-rejectl.

4.3.2 Strategy Branching

ELVIS' state space can be viewed as a graph, where nodes are states and arcs are

state transitions. A graph that contains reentrant nodes, as depicted in Figure 4-1,

is not ideal for reinforcement learning using the model-based algorithms presented in

Section 4.1.2. Such representations lose information at the reentrant nodes (and their

predecessor nodes). In Figure 4-1, information loss occurs at reentrant node d and

predecessor nodes a, b, and c. Suppose node e has a utility of .9, node f has a utility

of -.3, and d progresses to e 1 of the time and to f the other 1 of the time. Using

Equation 4.2 for learning, d is assigned a utility of .3. Both b and c then inherit a

utility of .3 from d. Any way in which b differs from c is lost.

Information loss occurs because the learning algorithms only use a state's imme-
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Figure 4-2: Figure 4-1 Transformed to Remove Reentrancy

diate successor states in computing utilities. The presented learning algorithms can

be adjusted to use multiple successor states in computing utilities, as described in

[Jaakkola et al., 1994, Singh et al., 1994], but this does not solve the information loss

for variable-length paths prior to reentrance.

The ELVIS state space as described in Section 2.4 and detailed in Appendix A

has reentrant nodes where the different initiative, read, and summarization strategies

eventually converge. Any information learned about differences between the MI and

SI strategies, between the Read-Choice-Prompt, Read-First, and Read-Summarize-

Only strategies, and between the Summarize-Both, Summarize-Choice, and Summarize-

System strategies is lost, which runs counter to the goal of learning the comparative

utilities of the implemented discourse strategies.

The state space can be transformed to remove the reentrant nodes where compet-

ing discourse strategy transition paths converge and recover the information lost by

the presence of these reentrant nodes through strategy branching. The transformed

state space branches for each strategy when the strategy is first used for the dura-

tion of an interaction with ELVIS. The state space depicted in Figure 4-1 becomes

the state space in Figure 4-2; the choice of b or c is remembered as a state vari-

able associated with all states that follow the choice (here, states d, e, f, g, and h).

The strategy branching transformation associates strategy variables with each ELVIS

state, effectively remembering which initiative, read, and summarization strategies
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Figure 4-3: Simplified Representation of Successfully Completed ELVIS Interaction

al bl cl a2  b2  C2  a3  b3  C3  d

Figure 4-4: Figure 4-3 Transformed to Show Task Progress

are in use.

4.3.3 Representing Task Progress

ELVIS' state space, even with strategy branching in place, does not reflect task

progress, as described in Section 2.4. In the experimental scenarios, there are three

levels of task progress, from least to most: no subtasks have been completed (1),

just one of the two subtasks has been completed (2), and both subtasks have been

completed (3). Representing task progress is important because different discourse

strategies may be most appropriate and effective at different stages of task comple-

tion. For example, summarizing messages before any subtasks have been completed

is essentially a different state than summarizing messages after both subtasks have

been completed, so discourse generation may have to be handled differently at each

of these stages. The state space can be transformed to reflect this by adding a state

variable that marks how much of the task has been completed.

Figure 4-3 is a greatly simplified representation of a successfully completed ELVIS

interaction, a represents the top-level state, b represents email folder summarization,



c represents reading messages, and d represents hanging up. The arcs represent state

transitions. The effects of the transformation that represents task progress is shown

in Figure 4-4, where the subscripts show the highest level of task progress that has

been attained.

4.4 The State Transition Model

The first thing that the agent learns from interactions with users is the state transition

model M3. M., must be estimated from the conversations between ELVIS and actual

users because what users choose to say to ELVIS and how they say it affects state

transition probabilities and is nondeterministic. For example, an experienced user of

the system may interrupt ELVIS' top-level utterance and say, "Summarize," causing

ELVIS to progress to ELVIS' summarization state, while an inexperienced user might

say, "Uh, I'd like, um, to get a summary of my messages," which is likely to lead to the

top-level rejection state. ELVIS' utterances can guide users in utterance generation

by telling them what they can say or can confuse them by offering inaccurate, vague,

or no information about what can be said. At each iteration of learning, Mi is

recalculated from the cumulative conversational data. This section reports some

qualitative results of the learned state transition model.

When users converse with ELVIS, they must adjust to more constrained conver-

sations than most human-human dialogues because ELVIS only understands a small

subset of the utterances that most humans can process. Users who know what they

can say to ELVIS tend to avoid system timeouts, helps, and ASR rejections.

In the initiative strategies experiment, subjects accidentally requested to hang up

1.2 times more when using the SI version of ELVIS than when using the MI version

of ELVIS. Subjects were often confused because they could say, "I'm done here" in

one state to exit a virtual folder and return to their top-level inbox. In a different

state, saying, "I'm done here" would cause ELVIS to ask the user, "Do you want to

hang up now?"

In the presentation strategies experiment, when situated in a vfolder that con-



tained more than one message, subjects' utterances were rejected three times more

often when using the Read-Choice-Prompt and Read-First strategies than when us-

ing the Read-Summarize-Only strategy. Additionally, timeouts occurred 2.25 times

as often when subjects used the Read-First strategy than when they used the Read-

Summarize-Only strategy and eight times more often when subjects used the Read-

Summarize-Only strategy than when they used the Read-Choice-Prompt strategy.

It is not evident why the rejections would occur disproportionately while using the

read strategies but the distribution of timeouts among the read strategies is appar-

ent. In the Read-Choice-Prompt strategy, ELVIS tells the user what to say to read

particular messages, while the Read-First strategy, after reading the first message,

and the Read-Summarize-Only strategy do not offer any information about how to

select messages. When subjects did not know what to say, they would often timeout,

waiting for ELVIS to provide more helpful information.

4.5 Learning Results

This section presents the results of running ADP and Q-learning on both sets of exper-

imental data. This section describes results where local reward is the quantitatively-

based function in Equation 4.8 and where local reward is set to zero. The iteration

difference threshold for ADP and Q-learning is set to be 5% of the dialogue perfor-

mance range, which is .1. The data tables that form the bases for the graphs in this

section are provided in Appendix E. The absolute values of the presented utilities do

not have any meaning; in choosing between possible states, only the relative utility

values of those states matter.

4.5.1 Initiative Strategies

The utility of the SI initiative strategy (U(SI)) learned through ADP without local

reward is .247, while the utility of the MI initiative strategy (U(MI)) learned through

ADP without local reward is -.252. The learning trials for ADP without local reward

are presented in Figure 4-5. For ADP with local reinforcement, U(SI)=-1.291 and
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Figure 4-5: Results of ADP and Q-Learning without Local Reward for Initiative
Strategies

U(MI)=-2.338. The learning trials for ADP with local reinforcement are presented

in Figure 4-6.

Q-learning without the use of local rewards produces virtually identical results to

ADP learning without the use of local rewards (Figure 4-5). Q-learning with the use

of local rewards yields a final utility of -1.291 for SI and -2.325 for MI, as shown in

Figure 4-7.

The utility values for the different algorithms can be normalized to compare the

results of the different algorithms using a Z score normalization function [Cohen,

1995].

The results of utility normalization for SI are shown in Figure 4-8 and the results

of utility normalization for MI are shown in Figure 4-9. In these figures, ADP and Q-

learning are represented by an almost identical line because, when normalized, both

algorithms achieve nearly identical results. The graphs support the convergence of the

utility values for both SI and MI when learned with or without local reinforcement.

The convergence of the learning results for the initiative strategies is strength-

ened further by the ratio test for convergence [Edwards and Penney, 1990]. The ratio
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Figure 4-6: Results of ADP Learning with Local Reward for Initiative Strategies

test examines the ratio of difference between utility values in consecutive learning

iterations. If the ratio converges to less than 1, learning can be be deemed to have

converged on the correct utility values. If the ratio converges to any other value,

learning has not yet converged on accurate utility values. Since learning occurs over

real-world data, it is unlikely that the series of the differences between utility val-

ues of consecutive iterations will increase or decrease purely monotonically; instead,

convergence is granted when at least 50% of the last third of the learning iterations

pass the ratio test. The utility values for SI and MI learned with and without local

reinforcement have converged according to the ratio test.

The results of learning for the initiative strategies confirm the hypothesis that in

ELVIS, SI is a better strategy than MI seemingly because of the better ASR per-

formance rates and user inexperience. Given more technologically advanced spoken

dialogue agents or more experienced users, users may be more satisfied with MI than

SI because the users have more dialogue control with MI.
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Figure 4-10: Results of ADP and Q-Learning without Local Reward for Summariza-
tion Strategies at Task Progress Level 1

4.5.2 Summarization Strategies

Unlike the initiative strategies, which are invoked once toward the start of a conver-

sation with ELVIS (even if they are used throughout an interaction with ELVIS), the

summarization strategies can be invoked multiple times in a conversation with ELVIS.

The summarization strategy learning results are presented at the three different task

progress levels that are described in Section 4.3.3.

The results of ADP are virtually identical to the results of Q-learning and they

are presented in Tables 4.1 and 4.2. The learning process is shown in Figures 4-10 -

4-15.

The utility values for the different algorithms and use of local reinforcement can

be normalized to compare the results of the different algorithms using a Z score nor-

malization function. These comparisons are shown in Figures 4-16 - 4-24. ADP and

Q-learning with the same type of local reinforcement are represented almost identi-

cally because both algorithms achieve nearly identical results. The graphs support

the convergence of all the summarization strategy utility values learned with local re-
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Figure 4-11: Results of ADP and Q-Learning without Local Reward for Summariza-
tion Strategies at Task Progress Level 2

inforcement, while only the utility values for Summarize-System at all task progress

levels appear to have converged when learned without local reinforcement.

The ratio test shows that all of the summarization strategy learning results that

use local reinforcement excluding the utility value for Summarize-Choice at task

progress level 2 have converged. Without local reinforcement, the ratio test demon-

strates that only the utility values for Summarize-System at all task progress levels

and Summarize-Choice at task progress levels 1 and 3 have converged. More human

data would be necessary for the convergence of the summarization strategies' utility

values that have not yet converged. Though some conflicting results for the compar-

ative utilities of the three implemented summarization strategies have been obtained,

the ratio test judges the results learned through local reinforcement to be more accu-

rate than those learned without reinforcement. Local reinforcement is necessary for

incorporating knowledge of local performance minima and maxima into the reinforce-

ment learning process and the results of ADP and Q-Iearning with local reward are

deemed the most reliable.
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Figure 4-13: Results of ADP and Q-Learning with Local Reward for Summarization
Strategies at Task Progress Level 1
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Figure 4-14: Results of ADP and Q-Learning with Local Reward for Summarization
Strategies at Task Progress Level 2
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Figure 4-15: Results of ADP and Q-Learning with Local Reward for Summarization
Strategies at Task Progress Level 3



Local Reward? Task Progress Level Summarize-System Summarize-Choice Summarize-Both

No 1 .115 .01 .101
No 2 .225 .088 .088

No 3 .256 .178 .032

Yes 1 1.542 .321 1.709

Yes 2 3.497 2.751 3.547

Yes 3 2.205 2.08 2.491

Table 4.1: Final Utilities from ADP and Q-Learning for Summarization Strategies

Table 4.2:
Learning

Summarization Strategy Preferences Learned through ADP and Q-
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Figure 4-16: Comparison of Learning Algorithms and Local Reinforcement Use for

Summarize-Both at Task Progress Level 1

Local Reward? Task Progress Level Summarization Strategies
No I Summarize-System > Summarize-Both > Summarize-Choice

No 2 Summarize-System > Summarize-Both = Summarize-Choice

No 3 Summarize-System > Summarize-Choice > Summarize-Both

Yes 1 Summarize-Both > Summarize-System > Summarize-Choice

Yes 2 Summarize-Both > Summarize-System > Summarize-Choice

Yes 3 Summarize-Both > Summarize-System > Summarize-Choice

ward

d
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Figure 4-18: Comparison of Learning Algorithms and Local Reinforcement Use for
Summarize-Both at Task Progress Level 3
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Figure 4-19: Comparison of Learning Algorithms and Local Reinforcement Use for
Summarize-Choice at Task Progress Level 1
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Figure 4-20: Comparison of Learning Algorithms
Summarize-Choice at Task Progress Level 2

and Local Reinforcement Use for
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Figure 4-21: Comparison of Learning Algorithms
Summarize-Choice at Task Progress Level 3
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Figure 4-22: Comparison of Learning Algorithms and Local Reinforcement Use for
Summarize-System at Task Progress Level 1



Figure 4-23: Comparison of Learning Algorithms and Local
Summarize-System at Task Progress Level 2
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Figure 4-24: Comparison of Learning Algorithms and Local Reinforcement Use for
Summarize-System at Task Progress Level 3
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Figure 4-25: Results of ADP and Q-Learning without Local Reward for Read Strate-
gies at Task Progress Level I

4.5.3 Read Strategies

Like the summarization strategies implemented in ELVIS, the read strategies can

be invoked multiple times in a conversation with ELVIS. The read strategy learning

results are presented at the three different task progress levels as described in Section

4.3.3.

The results of ADP are virtually identical to the results of Q-learning and they

are presented in Tables 4.3 and 4.4. The learning process is shown in Figures 4-25 -

4-30.

The utility values for the different algorithms and use of local reinforcement can

be normalized to compare the results of the different algorithms using a Z score nor-

malization function. These comparisons are shown in Figures 4-31 - 4-39. ADP and

Q-learning with the same type of local reinforcement are represented almost identi-

cally because both algorithms achieve nearly identical results. The graphs indicate

that all of the read strategy utility values learned with local reinforcement have con-

verged, while only the utility values for Read-First at task progress levels 1 and
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Figure 4-26: Results of ADP and Q-Learning without Local Reward for Read Strate-
gies at Task Progress Level 2

Local Reward? Task Progress Level Read-First Read-Summarize-Only Read-Choice-Prompt

No I .184 .239 .073
No 2 .209 .224 .04
No 3 .217 .22 .037
Yes 1 2.767 2.478 1.919
Yes 2 2.2 1.851 2.394
Yes 3 2.759 3.383 4.285

Table 4.3: Final Utilities from ADP and Q-Learning for Read Strategies

Read-Summarize-Only at task progress levels 2 and 3 appear to have converged when

learned without local reinforcement.

The ratio test shows that all of the read strategy learning results that use local

reinforcement have converged. Without local reinforcement, the ratio test demon-

strates that only the utility values for Read-Summarize-Only at task progress levels

1 and 2 have converged. More human data would be necessary for the convergence of

the read strategies' utility values that have not yet converged. Though some conflict-

ing results for the comparative utilities of the three implemented read strategies have
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Figure 4-27: Results of ADP and Q-Learning without Local Reward for Read Strate-
gies at Task Progress Level 3

been obtained, the ratio test judges the results learned through local reinforcement

to be more accurate than those learned without reinforcement. Local reinforcement

is necessary for incorporating knowledge of local performance minima and maxima

into the reinforcement learning process and the results of ADP and Q-learning with

local reward are deemed the most reliable.

The next chapter describes work related to ELVIS, the spoken dialogue agent and the

learner of discourse strategies.



Figure 4-28: Results of ADP
at Task Progress Level 1
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Figure 4-29: Results of ADP and Q-Learning with Local Reward for Read Strategies
at Task Progress Level 2



Figure 4-30: Results of ADP
at Task Progress Level 3
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and Q-Learning with Local Reward for Read Strategies

Local Reward? Task Progress Level Read Strategies
No 1 Read-Summarize-Only > Read-First > Read-Choice-Prompt
No 2 Read-Summarize-Only > Read-First > Read-Choice-Prompt
No 3 Read-Summarize-Only > Read-First > Read-Choice-Prompt
Yes 1 Read-First > Read-Choice-Prompt > Read-Summarize-Only
Yes 2 Read-Choice-Prompt > Read-First > Read-Summarize-Only
Yes 3 Read-Choice-Prompt > Read-Summarize-Only > Read-First

Table 4.4: Read Strategy Preferences Learned through ADP and Q-Learning
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Figure 4-32: Comparison of Learning Algorithms and Local Reinforcement Use for
Read-Choice-Prompt at Task Progress Level 2
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Figure 4-33: Comparison of Learning Algorithms and Local Reinforcement Use for
Read-Choice-Prompt at Task Progress Level 3
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Figure 4-34: Comparison of Learning Algorithms and Local Reinforcement Use for
Read-First at Task Progress Level 1
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Chapter 5

Related Work

This chapter describes work related to ELVIS and learning optimal discourse strate-

gies in a spoken dialogue system. This chapter reports on spoken dialogue systems,

natural language content planning, adaptive agents, the effect of representation on

learning, and some related learning applications and discusses how the work reported

in this thesis relates to previous research.

Natural language systems are computational systems that provide components for the

comprehension and generation of natural language. Usually, such components include

syntactic analyzers, semantic interpreters, discourse understanders, and pragmatic

handlers. (For an overview of natural language systems, see [Allen, 1995, Grosz et al.,

1986].) The focus of this thesis is on the discourse-related issues in dialogue systems.

(More information on computational discourse issues can be found in [Cohen et al.,

1990, Grosz and Sidner, 1986, Brady and Berwick, 1982].)

5.1 Spoken Dialogue Systems

This section describes other spoken dialogue systems related to email access and

claims about initiative distribution within spoken dialogue systems.



5.1.1 Previous Systems for Accessing Email

[Crabbe et al., 1995, Martin and Kehler, 1994, Yankelovich, 1994] describe SpeechActs,

a telephone-based spoken dialogue system framework. Spoken dialogue systems have

been created using SpeechActs to support access to voice mail and email. MailCall

is another telephone-based messaging system, where incoming voice mail and email

messages are categorized and prioritized based on the user's current interests as in-

ferred from the user's calendar [Marx, 1995]. MailCall supports inferential learning

rather than the reinforcement learning that ELVIS handles.

5.1.2 Initiative

In a spoken dialogue system, users generally interact with the system through speech

input (ASR systems) and output (TTS systems). High recognition accuracy is not

easily achievable for large, low-context directories given the current state of ASR tech-

nology [Kamm et al., 1995]. For example, [Kamm et al., 1995] report that the recogni-

tion accuracy rate for automating telephone directory assistance calls decreases from

82.5% for a 200-name directory to 16.5% for a 1.5 million name directory. [Kamm,

1994] recommends that designers of spoken dialogue systems consider the system's

task requirements, the capabilities and limitations of the system's technology, and

the characteristics of the user population. Given the constraints of current ASR

technology, [Kamm, 1994] advises that a system's grammars be kept small.

[Kamm, 1994] additionally advises that a spoken dialogue system's prompts be

directive, allowing for as little vocabulary variability and user initiative as possi-

ble. On the other end of the initiative spectrum, [Walker and Whittaker, 1990] ex-

plore mixed initiative dialogue and hypothesize that users feel in control in a mixed-

initiative dialogue system but need to accrue experience with the system to learn

what to say. This thesis tested the claims of [Kamm et al., 1995, Kamm, 1994,

Walker and Whittaker, 1990] in the initiative strategies experiment and the results

are reported in Chapters 3 and 4.



5.2 Natural Language Content Planning

In [McKeown, 1985], a natural language generation system accomplishes communica-

tive goals by producing natural language. The system decides what content to gener-

ate and organizes this content so a user can easily understand the generated natural

language. Traditional natural language generation systems contain a strategic compo-

nent to determine what to say and the ordering of what will be said and a tactical com-

ponent which determines how to say the content that has been selected [Robin, 1995,

Zukerman and McConachy, 1995, Moore and Paris, 1993, Hovy, 1993].

This thesis is concerned with the strategic component of generation. Domain-

independent language planning rules that rely on rhetorical strategies [Mann and

Thompson, 1987] and heuristics are frequently provided for use within the strategic

component [Harvey and Carberry, 1998, Callaway and Lester, 1997, Appelt, 1985]. In

this thesis, strategic templates are provided to ELVIS instead of planning rules; these

templates are instantiated whenever an implemented discourse strategy is invoked.

These templates are for distribution of initiative, summarizing email folders, and read-

ing messages. Instead of using planning rules, ELVIS learns planning rules (discourse

strategy policies) through interactions with actual users followed by evaluation using

the PARADISE framework and reinforcement learning.

5.3 Adaptive Agents

An agent is a system that perceives and acts [Russell and Norvig, 1995]; artificial

intelligence can be viewed as the enterprise of understanding and building rational

agents. ELVIS is an agent that interacts with users using natural language, providing

them with remote access to their email. ELVIS learns optimal discourse strategies

through interactions with actual users and can be seen as an adaptive interface agent.

In prior work on architectures for adaptable agents, [Morignot and Hayes-Roth,

1995, Hayes-Roth et al., 1993] present an architecture for adaptable motivational pro-

files for autonomous agents. This architecture is psychologically inspired and allows



motivations to be configured so an agent can adapt in different environments. This

agent architecture type is a generalized form of a natural language agent architecture

that provides language planning rules, as described in Section 5.2. ELVIS differs from

the motivated agent because different behaviors (strategies) are specified without any

explicit motivation configuration and motivation can effectively be learned through

ELVIS' real-world experiences.

5.4 Reinforcement Learning

Reinforcement learning, as detailed in Chapter 4, is the learning of utilities for dif-

ferent percepts and actions in the environment. (For an overview of reinforcement

learning, see [Kaelbling, 1996, Kaelbling et al., 1996, Sutton, 1992, Watkins, 1989,

Keeney and Raiffa, 1976, Bellman, 1957].)

[Sutton, 1991, Sutton, 1990] describe integrated architectures for learning, plan-

ning, and reacting using dynamic programming algorithms for reinforcement learning.

They describe the Dyna architecture, which integrates reinforcement learning with

execution-time planning in a single process. Currently, ELVIS acts and later learns

off-line; Section 6.2.1 describes how to integrate acting and learning.

The following sections describe work related to the effects of state space repre-

sentation on reinforcement learning results and some applications of reinforcement

learning.

5.4.1 State Space Representation

Reinforcement learning has some limitations related to the state space representa-

tion of a system: learning is representation-dependent and is history-insensitive [Lin,

1992]. In ELVIS, these problems are avoided by tailoring ELVIS' representation to

the tasks performed in ELVIS and by remembering relevant history information as

state variables, as described in Section 4.3.

[Whitehead and Ballard, 1991] discuss the differences between the internal state

representation that an agent has and the world's representation. A problem with



active perception is that the agent's internal representation confounds external world

states. Perceptual aliasing is the overlap between the world and the agent's internal

representation. Most of the information that distinguishes states internally is irrele-

vant to the immediate task faced by the agent and interferes with decision making due

to irrelevant details. [Agre and Chapman, 1987] have recognized this problem and

suggest using deictic representations, which register information only about objects

that are relevant to the task at hand. It is not straightforward to integrate deictic

representations and reinforcement learning because in order for an agent to learn to

solve a task, it must accurately represent the world with respect to that task, but in

order to learn an accurate representation, the agent must know how to solve the task.

When perceptual aliasing occurs, according to [Whitehead and Ballard, 1991],

learning cannot work properly because the system confounds world states that it

must be able to distinguish in order to solve its task. This makes the state space non-

Markovian because an action's effects are not independent of the past but depend on

hidden, unperceived states of the actual, underlying state space. When one internal

state refers to many world states, that state takes on a utility somewhere between the

values for the world states it represents and aberrational maxima occur. The optimal

policy for this system is unstable and the system will oscillate among policies. An

aberrational maximum attracts nearby states and causes them to change their policies

from optimal. These maxima prevent the learning of optimal policies by causing the

system to average different values from different world states. An internal state should

have the same utility as its corresponding world state and should have one internal

action when executed that maps to the optimal action in the world. This thesis

partially addresses the differences between the real world and a system's internal

model of the world because ELVIS learns from interactions in the real world and

any inaccuracies in its sensing capabilities are reflected in the final reward and local

reinforcements that ELVIS receives in learning.

[Koenig and Simmons, 1996] discuss how the complexity of running learning al-

gorithms depends on the representation chosen. By representation, they refer to the

initial utility values and the local reward function. There is a great deal more to



state space representation than the initial utility values and local reward function

and Section 4.3 describes the representation issues that are relevant to reinforcement

learning in ELVIS.

5.4.2 Different Applications

This section discusses some of the applications that use reinforcement learning.

[Tesauro, 1992] describes the training of connectionist networks to play backgam-

mon using a TD reinforcement learning algorithm. Other reinforcement learning ap-

plications include the optimal allocation of market assets [Neuneier, 1995], graphical

user interface adaptation [Lenzmann, 1996], and network traffic control adaptation

[Choi and Yeung, 1995].

ELVIS is unlike a game since optimally, it has no losers: ELVIS and the ELVIS

user cooperate in information exchange, where the goal is to maximize user satisfac-

tion. More similar to the cooperative nature of ELVIS is work where mobile robots

engage in a cooperative task and must learn to communicate [Yanco and Stein, 1993].

In this work, vocabulary elements are learned with different meanings in different ex-

perimental simulations. In contrast, this thesis uses real interactions with real users

as data for learning.

Instead of using real conversations with actual users, dialogue interactions can

be stochastically generated and reinforcement learning can be administered to these

sets of dialogues [Levin and Pieraccini, 1997]. This approach takes much longer than

ELVIS to learn optimal discourse strategies because it is stochastic and does not use

what tend to be typical interactions with real users. This approach, unlike ELVIS,

does not use TTS and ASR systems in the learning process and cannot account for

these performance-related issues in learning. ELVIS measures performance in terms of

user satisfaction, an external validation criterion, which is impossible with stochastic

dialogue generation.

The next chapter concludes this thesis by reviewing the results, listing some future

work, and discussing how to extend the presented methodology to automate the online



learning of optimal discourse strategies in spoken dialogue systems.



Chapter 6

Conclusions and Future Work

This chapter reviews the results of this thesis, lists some future work, and discusses

how to extend the methodology presented in this thesis to automate the online learn-

ing of optimal discourse strategies in spoken dialogue systems.

6.1 Results

This thesis presented a spoken dialogue system that can learn optimal discourse

strategies through interactions with users. This thesis described the spoken dialogue

system, ELVIS, which supports access to email by telephone. Several discourse strate-

gies for initiative distribution, summarizing email folders, and reading messages were

implemented. Users interacted with discourse strategy-based variations of ELVIS

in an experimental setting. These experimental results were presented and used to

derive a general dialogue performance function.

The performance function was used in conjunction with reinforcement learning

techniques to learn optimal discourse strategies in ELVIS. Optimal discourse strate-

gies are learned using reinforcement learning techniques instead of other machine

learning techniques because learning must be unsupervised; there are no "right" ex-

amples to provide as training data but reinforcement can be assigned to conversations

and conversation states. ELVIS learned using the model-based learning algorithms

of ADP and Q-learning because those learning algorithms converge faster than the



observance-based learning algorithms of TD learning and TD Q-learning; conver-

gence speed is important when using human data instead of simulations because of

the bounded amount of available data.

This thesis shows how ELVIS' state space representation affects the outcome of

learning and can be transformed to yield a more appropriate state representation

for learning optimal discourse strategies. The results of applying different reinforce-

ment learning algorithms to the ELVIS data are presented and compared, showing

that learning with the use of local reinforcement provides results that converge more

quickly than learning without it.

6.2 Future Work

This section discusses some extensions to the system component and the learning

component of ELVIS and then describes how to automate online learning of discourse

strategies in a spoken dialogue system.

There are many ways to improve ELVIS as a spoken language-based email agent.

Natural language is currently generated through the use of templates. ELVIS' utter-

ances could be generated more flexibly by using a general-purpose natural language

generation system, such as FUF [Elhadad, 1992]. The set of email functionality pro-

vided in ELVIS could be extended to allow, among other things, the deletion and

composition of email messages.

The learning component of ELVIS can be enhanced and extended. More data

could be collected to explore the effectiveness of the observance-based learning of

the TD algorithms in comparison with the model-based reinforcement learning algo-

rithms. Currently, ELVIS only learns for the general user in the context of different

task progress levels; ELVIS can be extended to learn over various user models (such

as novice versus expert) and different contexts (such as large email folders versus

small email folders). Additionally, ELVIS could learn across applications if ELVIS

were coupled with other agents.

The work described in this thesis can be broadened by automating online learning



in ELVIS in an act-learn cycle.

6.2.1 Automating Online Learning of Optimal Discourse Strate-

gies

As currently implemented, ELVIS learns by interacting with users, deriving a perfor-

mance function, applying the performance function to each of ELVIS' dialogues for

final state utilities, applying the performance function to each of ELVIS' states for

local reward assignments, and running the reinforcement learning algorithms. Cur-

rently, ELVIS cannot learn online as users interact with ELVIS.

To extend ELVIS to learn online, the performance function must consist of factors

that can be measured automatically by ELVIS. An alternative performance function

can be derived by substituting highly correlated and automatically measurable fac-

tors for those measures that cannot be automatically measured and then performing

multivariate linear regression within the PARADISE framework on the new set of

measures. For example, the recognition confidence score assigned by the ASR system

to a recognized string correlates strongly with Mean Recog, so the confidence score

can be substituted for Mean Recog.

A new local reward function with factors that could be measured directly by

ELVIS at the dialogue state level could be derived. A state's local reward function

could be updated each time that state is entered by storing state frequency statistics

along with the state transition model and current local reward values.

The necessary transformations to ELVIS' state space for learning can automati-

cally be produced. States could automatically be separated by prompt type. Strategy

branching can be accomplished by inserting a new marked branch each time that a dis-

course strategy is first used. The representation of task progress can only be achieved

through an estimation of task progress, as tasks will differ from user to user and from

session to session. Every time a user reads a message, ELVIS can assume that one

of the user's subtasks was completed, either because the user wanted to hear that

message and retrieved useful information or because the user eliminated irrelevant



information from further attention.

In this way, ELVIS could be extended to learn optimal discourse strategies online

while interacting with actual users in an act-learn cycle.



Appendix A

ELVIS States and State Transitions

States are represented as:

State Name: Optional System Function

Conditioni: Go to Stater

Condition2: Go to State2

Condition,: Go to Staten

ELVIS has an associated set of allowable conditions for state transitions (such

as success, yes, no, and cancel). Other named conditions for state transitions can

also be used; some are domain-specific (such as no-messages and messages), while

some are related to strategy parameters (such as read-first, read-summarize-only, and

read-choice-prompt).

AnnounceElvis: SetUser

success: AnnounceWillGetMail

cancel: AnnounceElvisAgain

AnnounceElvisAgain: SetUser

success: AnnounceWillGetMail

cancel: AnnounceElvisAgain

AnnounceWillGetMail: GetMail



no-messages: AnnounceNoMsgs

messages: TopLevelUserOptions

AnnounceNoMessages: No Function

success: GoodBye

TopLevelUserOptions: No Function

chooseSI: TopLevelUserOptionsSI

chooseMI: TopLevelUserOptionsMI

TopLevelUserOptionsSI: TakeTopLevelActionSI

summarize-sender: SummCurrVfolderSenderSI

summarize-choice: GetWhichSummarySI

summarize-both: SummCurrVfolderSenderSubjectSI

read: ReadMessageSI

done: HangUpQuery

repeat-or-toggle: TopLevelUserOptionsSI

cancel: AnnounceElvisAgain

TopLevelUserOptionsMI: TakeTopLevelActionMI

read-one-message: ReadCurrentVfolderMI

pop: PopVfolderMI

readthem: TopLevelUserOptionsMI

summarize-choice: GetWhichSummaryMI

summarize-else: TopLevelUserOptionsMI

read-first: ReadCurrentVfolderMI-first

read-summarize-only: ReadCurrentVfolderMI-SO

read-choice-prompt: ReadCurrentVfolderMI-CP

toggle: TopLevelUserOptionsMI

cancel: AnnounceElvisAgain

GetWhichSummarySI: DetermineSummaryTypeAndSummarizeSI

sender: TopLevelUserOptionsSI

subject: TopLevelUserOptionsSI

both: TopLevelUserOptionsSI

cancel: TopLevelUserOptionsSI

GetWhichSummaryMI: DetermineSummaryTypeAndSummarizeMI

success: TopLevelUserOptionsMI



cancel: TopLevelUserOptionsMI

ReadMessageSI: TakeRefActionSI

sender: TakeSenderRefActionSI

subject: TakeSubjectRefActionSI

position: GetWhichRelativeSI

cancel: TopLevelUserOptionsSI

TakeSenderRefActionSI: BuildVfolderForSenderSI

no-messages: TopLevelUserOptionsSI

one-message: ReadCurrentVfolderSI

success-first: ReadCurrentVfolderSI-first

success-summarize-only: ReadCurrentVfolderSI-SO

success-choice-prompt: ReadCurrentVfolderSI-CP

cancel: ReadMessageSI

TakeSubjectRefActionSI: BuildVfolderForSubjectSI

no-messages: TopLevelUserOptionsSI

one-message: ReadCurrentVfolderSI

success-first: ReadCurrentVfolderSI-first

success-summarize-only: ReadCurrentVfolderSI-SO

success-choice-prompt: ReadCurrentVfolderSI-CP

cancel: ReadMessageSI

ReadCurrentVfolderSI: ReadMessageInLoopSI

success: ReadCurrentVfolderSI

cancel: PopVfolderSI

ReadCurrentVfolderSI-first: ReadMessageInLoopSI

success: ReadCurrentVfolderSI

cancel: PopVfolderSI

ReadCurrentVfolderSI-CP: ReadMessageInLoopSI

success: ReadCurrentVfolderSI

cancel: PopVfolderSI

ReadCurrentVfolderSI-SO: ReadMessageInLoopSI

success: ReadCurrentVfolderSI

cancel: PopVfolderSI



ReadCurrentVfolderMI: ReadMessagelnLoopMI

success: ReadCurrentVfolderMI

cancel: PopVfolderMI

ReadCurrentVfolderMI-first: ReadMessageInLoopMI

success: ReadCurrentVfolderMI

cancel: PopVfolderMI

ReadCurrentVfolderMI-CP: ReadMessageInLoopMI

success: ReadCurrentVfolderMI

cancel: PopVfolderMI

ReadCurrentVfolderMI-SO: ReadMessagelnLoopMI

success: ReadCurrentVfolderMI

cancel: PopVfolderMI

GetWhichRelativeSI: TakeRelativeActionSI

success: GetWhichRelativeSI

pop: TopLevelUserOptionsSI

cancel: ReadMessageSI

PopVfolderSI: No Function

top-level: HangUpQuery

non-top-level: TopLevelUserOptionsSI

PopVfolderMI: No Function

top-level: HangUpQuery

non-top-level: TopLevelUserOptionsMI

HangUpQuery: No Function

cancel: TopLevelUserOptions

yes: GoodBye

no: TopLevelUserOptions



Appendix B

Experimental Inbox Folders

B.1 Inbox Folder for Tutorial

From dana@research.att.com Mon Mar 17 17:23:37 1998

Return-Path: <michael@research.att.com>

Date: Mon, 17 Mar 1998 17:23:35 -0500 (EST)

Message-Id: <tuti>

From: Dana <dana@research.att.com>

To: Michael@research.att.com

Subject: technical memo

Status: 0

Hi Michael,

Jay has requested some changes to your technical memo before it can

be released. Come by and I'll explain what has to be done.

Thanks,

Dana

From kim@research.att.com Tue Mar 18 09:43:34 1998



Return-Path: <kim@research.att.com>

Sender: kim@research.att.com

Message-Id: <tut2>

Date: Tue, 18 Mar 1998 09:43:31 -0500

From: Kim <kim@research.att.com>

Organization: AT&T Labs

To: Michael <Michael@research.att.com>

Subject: discourse book

Status: 0

The book you were looking for is called "Discourse Processing" and

the author is Mary Jones.

Kim

From kim@walrus.com Wed Mar 12 15:53:25 1998

Return-Path: <kim@walrus.com>

Date: Wed, 12 Mar 1998 15:51:49 -0500 (EST)

From: Kim <kim@walrus.com>

To: Michael@research.att.com

Subject: call me tomorrow

Message-Id: <tut3>

Status: 0

I will be working at home tomorrow. Give me a call when you get a

chance. The number is 201-555-8956.

Kim

From noah@research.att.com Mon Apr 7 07:05:18 1998



Return-Path: <noah@research.att.com>

Date: Mon, 7 Apr 1998 07:05:15 -0400 (EDT)

Message-Id: <tut4>

From: Noah <noah@research.att.com>

To: "Michael" <Michael@research.att.com>

Subject: interviewing

Status: 0

Hi Mike, sorry I won't be around to talk to the interview

candidate. I'm going to be at a conference all week.

Noah

From dana@research.att.com Mon Mar 17 17:59:54 1998

Return-Path: <dana@research.att.com>

From: Dana <dana@research.att.com>

Message-Id: <tut5>

Date: Mon, 17 Mar 1998 17:57:37 -0500

To: "Michael" <Michael@research.att.com>

Subject: fax

Status: OR

Michael, I got a fax for you from President Clinton and dropped it off

at your office.

Dana

B.2 Inbox Folder for Task 1

From michael@research.att.com Mon Mar 17 17:23:37 1998



Return-Path: <michael@research.att.com>

Date: Mon, 17 Mar 1998 17:23:35 -0500 (EST)

Message-Id: <tl-l>

From: Michael <michael@research.att.com>

To: Susan@research.att.com

Subject: evaluation technical memo

Status: 0

Hi Susan, can you look over the Evaluation TM today? I think it is

just about ready to release.

Thanks,

Michael

From kim@research.att.com Tue Mar 18 09:43:34 1998

Return-Path: <kim@research.att.com>

Sender: kim@research.att.com

Message-Id: <tl-2>

Date: Tue, 18 Mar 1998 09:43:31 -0500

From: Kim <kim@research.att.com>

To: Susan <Susan@research.att.com>

Subject: interviewing antonio

Status: 0

I'd like to interview him. I could also go along to lunch.

Kim

From kim@walrus.com Wed Mar 12 15:53:25 1998



Return-Path: <kim@walrus.com>

Date: Wed, 12 Mar 1998 15:51:49 -0500 (EST)

From: Kim <kim@walrus.com>

To: Susan@research.att.com

Subject: meeting today

Message-Id: <tl-3>

Status: 0

The meeting this morning is at 10:00 in 2D516.

See you there,

Kim

From lee@research.att.com Mon Apr 7 07:05:18 1998

Return-Path: <1lee@research.att.com>

Date: Mon, 7 Apr 1998 07:05:15 -0400 (EDT)

Message-Id: <tl-4>

From: Lee <lee@research.att.com>

To: "Susan" <Susan@research.att.com>

Subject: where i'll be

Status: 0

Hi,

In case you need to reach me I'm going to be working at home today.

The number there is 201-555-8888.

Lee

From dana@research.att.com Mon Mar 17 17:59:54 1998



Return-Path: <dana@research.att.com>

From: Dana <dana@research.att.com>

Message-Id: <tl-5>

Date: Mon, 17 Mar 1998 17:57:37 -0500

To: "Susan" <Susan@research.att.com>

Subject: fax

Status: OR

Susan, there's a fax for you from Jay.

Dana

From dana@research.att.com Mon Mar 17 17:59:54 1998

Return-Path: <dana@research.att.com>

From: Dana <dana@research.att.com>

Date: Mon, 17 Mar 1998 17:57:37 -0500

To: "Susan" <Susan@research.att.com>

Message-Id: <tl-6>

Subject: meeting today

Status: 0

Jay asked me to let everyone know that he won't be able to make the

meeting today.

Dana

B.3 Inbox Folder for Task 2

From kim@walrus.com Wed Mar 12 15:53:25 1998

Return-Path: <kim@walrus.com>



Date: Wed, 12 Mar 1998 15:51:49 -0500 (EST)

From: Kim <kim@walrus.com>

To: jeannie@research.att.com

Subject: lunch

Message-Id: <t2-1>

Status: 0

Hi Jeannie, do you want to have lunch today? I could go at about

12:30.

Kim

From noah@research.att.com Tue Mar 18 08:25:29 1998

Return-Path: <noah@research.att.com>

Date: Tue, 18 Mar 1998 08:25:27 -0500 (EST)

Message-Id: <t2-2>

From: Noah <noah@research.att.com>

To: jeannie@research.att.com

Subject: interviewing antonio

Status: 0

I would be interested in interviewing him.

I'm fairly free that day. I think anytime between 10 AM and 4:30 PM

would be okay. I could do lunch but not dinner.

Noah

From noah@research.att.com Tue Mar 18 08:41:51 1998

Return-Path: <noah@research.att.com>



From: Noah <noah@research.att.com>

Message-Id: <t2-3>

Subject: call tomorrow.

To: jeannie@research.att.com (Jeannie)

Date: Tue, 18 Mar 1998 08:41:35 -0500 (EST)

Status: 0

Hi,

When you get in tomorrow, would you give me a call? I'll be working

at extension 6752.

Noah

From michael@research.att.com Mon Mar 17 17:23:37 1998

Return-Path: <michael@research.att.com>

Date: Mon, 17 Mar 1998 17:23:35 -0500 (EST)

Message-Id: <t2-4>

From: Michael <michael@research.att.com>

To: jeannie@research.att.com

Subject: evaluation group meeting

Status: 0

Hi - I have scheduled a room so that people interested in

evaluation can get together and discuss work in progress. We'll get

together on Friday, at 3:00, in 2B432.

Michael

From owen@research.att.com Mon Mar 17 17:22:26 1998

Return-Path: <owen@research.att.com>



From: Owen <owen@research.att.com>

Message-Id: <t2-5>

Date: Mon, 17 Mar 1998 17:21:20 -0500

To: "Jeannie" <jeannie@research.att.com>

Subject: agent personality

Status: OR

Can you let me know how to get a copy of your paper on agent

personality?

Owen

From owen@research.att.com Mon Mar 17 17:23:37 1998

Return-Path: <michael@research.att.com>

Date: Mon, 17 Mar 1998 17:23:35 -0500 (EST)

Message-Id: <t2-6>

From: Owen <owen@research.att.com>

To: jeannie@research.att.com

Subject: call tomorrow

Status: 0

Hi Jeannie! I want to remind you that I will be setting up a

conference call tomorrow morning between Candy, Jay, and myself

around 10. Do you want me to relay anything to them from you?

Owen

B.4 Inbox Folder for Task 3

From lee@research.att.com Mon Apr 7 07:05:18 1998



Return-Path: <lee@research.att.com>

Date: Mon, 7 Apr 1998 07:05:15 -0400 (EDT)

Message-Id: <t3-1>

From: Lee <lee@research.att.com>

To: "Lawrence" <Lawrence@research.att.com>

Subject: I fixed the bug.

Status: OR

Hi Lawrence,

Thought you would be interested in knowing that I finally figured

out what was causing the problem with sending arguments to the

remote shell. Come by and I'll show you how I fixed it.

Lee

From noah@research.att.com Tue Mar 18 08:41:51 1998

Return-Path: <noah@research.att.com>

From: Noah <noah@research.att.com>

Message-Id: <t3-2>

Subject: I've got your book.

To: Lawrence@research.att.com ( Lawrence)

Date: Tue, 18 Mar 1998 08:41:35 -0500 (EST)

Status: 0

Hi, I borrowed your nonparametric statistics book this morning.

I'll bring it back later. Let me know if you need it.

Noah



From owen@research.att.com Mon Mar 17 17:22:26 1998

Return-Path: <owen@research.att.com>

From: Owen <owen@research.att.com>

Message-Id: <t3-3>

Date: Mon, 17 Mar 1998 17:21:20 -0500

To: "Lawrence" <Lawrence@research.att.com>

Subject: Discourse Discussion Group

Status: 0

I won't be able to make it all morning. How about meeting at 4 in my

office?

Owen

From dana@research.att.com Mon Mar 17 18:20:39 1998

Return-Path: <dana@research.att.com>

From: Dana <dana@research.att.com>

Date: Mon, 17 Mar 1998 18:20:37 -0500 (EST)

Message-Id: <t3-4>

To: Lawrence@research.att.com

Subject: your performance objectives

Status: 0

Hi,

Remember that your performance objectives are due to me today. You

can get the form from me if you've misplaced it.

Dana
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From dana@research.att.com Mon Mar 17 17:59:54 1998

Return-Path: <dana@research.att.com>

From: Dana <dana@research.att.com>

Message-Id: <t3-5>

Date: Mon, 17 Mar 1998 17:57:37 -0500

To: "Lawrence" <Lawrence@research.att.com>

Subject: message

Status: 0

Hi,

You got a message while you were offsite earlier. Caroline wants

you to call her at 614-653-7900.

Dana

From noah@research.att.com Tue Mar 18 08:41:51 1998

Return-Path: <noah@research.att.com>

From: Noah <noah@research.att.com>

Message-Id: <t3-6>

Subject: message

To: Lawrence@research.att.com (Lawrence)

Date: Tue, 18 Mar 1998 08:41:35 -0500 (EST)

Status: 0

Can you leave me a message about whether you are coming to the

department picnic?

Noah
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Appendix C

Experimental Task Scenarios

C.1 Task Scenario for Tutorial

In the current task, we ask you to pretend that you are a user named Michael, and

that you are accessing your email inbox by phone.

The scenario for the Tutorial has two subtasks that you must do in the same

conversation with Elvis. You should do both tasks together. Do not hang up the

phone between tasks.

(Subtask 0.1) Find out the telephone number in the message about call me to-

morrow.

(Subtask 0.2) You have received a fax. Find out who the fax is from.

C.2 Task Scenario for Task 1

In the current task, we ask you to pretend that you are a user named Susan, and that

you are accessing your email inbox by phone.

The scenario for Task 1 has two subtasks that you must do in the same conver-

sation with Elvis. You should do both tasks together. Do not hang up the phone

between tasks.
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Attribute Actual Value
Selection Criteria Call me tomorrow
Telephone Number 201-555-8956

Table C.1: Attribute-Value Matrix Key for Subtask 0.1

Attribute Actual Value
Selection Criteria Fax
Fax Sender President Clinton

Table C.2: Attribute-Value Matrix Key for Subtask 0.2

(Subtask 1.1) You are working at home in the morning and plan to go directly to

a meeting when you go into work. Kim said she would send you a message

telling you where and when the meeting is. Find out the Meeting Time and

the Meeting Place.

(Subtask 1.2) The second task involves finding information in a different message.

Yesterday evening, you had told Lee you might want to call him this morning.

Lee said he would send you a message telling you where to reach him. Find out

Lee's Phone Number.

C.3 Task Scenario for Task 2

In the current task, we ask you to pretend that you are a user named Jeannie, and

that you are accessing your email inbox by phone.

The scenario for Task 2 has two subtasks that you must do in the same conver-

sation with Elvis. You should do both tasks together. Do not hang up the phone

between tasks.

(Subtask 2.1) When you got into work, you went directly to a meeting. Since some

people were late, you've decided to call Elvis to check your mail to see what
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Attribute Actual Value
Selection Criteria Kim V Meeting
Meeting Time 10:30
Meeting Place 2D516

Table C.3: Attribute-Value Matrix Key for Subtask 1.1

Attribute Actual Value
Selection Criteria Lee
Lee's Telephone Number 201-555-8888

Table C.4: Attribute-Value Matrix Key for Subtask 1.2

other meetings may have been scheduled. Find out the day, place, and time

of any scheduled meetings.

(Subtask 2.2) The second task involves finding information in a different message.

Find out if you need to call anyone. If so, find out the number to call.

C.4 Task Scenario for Task 3

In the current task, we ask you to pretend that you are a user named Lawrence, and

that you are accessing your email inbox by phone.

The scenario for Task 3 has two subtasks that you must do in the same conver-

sation with Elvis. You should do both tasks together. Do not hang up the phone

between tasks.

(Subtask 3.1) You are expecting a message telling you when the Discourse Discus-

sion Group can meet. Find out the place and time of the meeting.

(Subtask 3.2) The second task involves finding information in a different message.

Your secretary has taken a phone call for you and left you a message. Find out

who called and the phone number where you can reach them.
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Table C.5: Attribute-Value Matrix Key for Subtask 2.1

Attribute Actual Value
Selection Criteria Call
Telephone Number x6752

Table C.6: Attribute-Value Matrix Key for Subtask 2.2

Attribute Actual Value
Selection Criteria Discourse Discussion Group
Meeting Place Owen's office
Meeting Time 4:00

Table C.7: Attribute-Value Matrix Key for Subtask 3.1

Attribute Actual Value
Selection Criteria Message
Who Called Caroline
Telephone Number 614-653-7900

Table C.8: Attribute-Value Matrix Key for Subtask 3.2
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Attribute Actual Value
Selection Criteria Meeting
Meeting Day Friday
Meeting Time 3:00
Meeting Place 2B432



Appendix D

Experimental User Survey

1. Login Name (e.g. fromer):

2. Did you complete the task and get the information you needed?

(a) Yes

(b) No

3. Was Elvis easy to understand in this conversation?

(a) Very Easy

(b) Somewhat Easy

(c) Neither Easy nor Difficult

(d) Somewhat Difficult

(e) Very Difficult

4. In this conversation, did Elvis understand what you said?

(a) Almost Never

(b) Rarely

(c) Sometimes

(d) Often
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(e) Almost Always

5. Was it easy to find the message you wanted in this conversation?

(a) Very Easy

(b) Somewhat Easy

(c) Neither Easy nor Difficult

(d) Somewhat Difficult

(e) Very Difficult

6. Was the pace of interaction with Elvis appropriate in this conversation?

(a) No, the pace was almost always too fast for me

(b) No, sometimes the pace was too fast for me

(c) The pace was just right

(d) No, sometimes the pace was too slow

(e) No, the pace was almost always too slow

7. In this conversation, did you know what you could say at each point of the

dialogue?

(a) Almost Never

(b) Rarely

(c) Sometimes

(d) Often

(e) Almost Always

8. How often was Elvis sluggish and slow to reply to you in this conversation?

(a) Almost Never

(b) Rarely
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(c) Sometimes

(d) Often

(e) Almost Always

9. In this conversation, did Elvis work the way you expected him to?

(a) Yes

(b) No

10. In this conversation, how did Elvis's voice interface compare to touch-tone in-

terfaces to voice mail?

(a) Much Better

(b) Better

(c) The Same

(d) Worse

(e) Much Worse

11. From your current experience with using Elvis to get your email, do you think

you use Elvis regularly to access your mail when you are away from your desk?

(a) Yes

(b) Maybe

(c) No

12. Please provide any additional comments you have about Elvis:
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Appendix E

Data Tables

Trial System-Initiative Mixed-Initiative System-Initiative Mixed-Initiative
No Local Reward No Local Reward With Local Reward With Local Reward

0 0 0 0 0
5 .365 -.006 -1.202 -2.974
10 .383 -.043 -1.301 -4.378
15 .301 -.094 -.939 -3.106
20 .259 -.078 -.789 -2.603
25 .259 -.044 -1.144 -2.221
30 .278 -.039 -1.143 -2.069
35 .3 -.112 -1.294 -2.034
40 .31 -.163 -1.482 -2.037
45 .301 -.209 -1.6 -1.902
50 .299 -.235 -1.83 -2.06
55 .294 -.226 -1.84 -2.072
60 .29 -.238 -1.759 -2.232
65 .284 -.261 -1.595 -2.402
70 .281 -.271 -1.478 -2.442
75 .277 -.276 -1.242 -2.43
80 .272 -.272 -1.189 -2.389
85 .268 -.261 -1.123 -2.355
90 .263 -.253 -1.14 -2.353
95 .255 -.248 -1.223 -2.325
100 .25 -.247 -1.262 -2.293
105 .246 -.249 -1.288 -2.312
108 .247 -.252 -1.291 -2.338

Table E.1: Utilities for Initiative Strategies Learned via ADP
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Table E.2: Utilities for Initiative Strategies Learned via Q-Learning

110

Trial System-Initiative Mixed-Initiative System-Initiative Mixed-Initiative
No Local Reward No Local Reward With Local Reward With Local Reward

0 0 0 0 0
5 .359 0 -1.193 -2.863
10 .384 -.043 -1.279 -3.108
15 .304 -.091 -.964 -2.607
20 .26 -.081 -.783 -2.227
25 .26 -.046 -1.136 -2.059
30 .274 -.038 -1.145 -2.059
35 .3 -.107 -1.281 -2.042
40 .308 -.159 -1.49 -2.036
45 .303 -.205 -1.606 -2.088
50 .3 -.235 -1.83 -2.061
55 .295 -.226 -1.852 -2.063
60 .291 -.237 -1.767 -2.222
65 .284 -.26 -1.604 -2.398
70 .28 -.271 -1.501 -2.44
75 .281 -.276 -1.24 -2.43
80 .272 -.273 -1.189 -2.388
85 .267 -.26 -1.13 -2.339
90 .263 -.253 -1.13 -2.344
95 .256 -.248 -1.206 -2.32
100 .25 -.247 -1.262 -2.29
105 .246 -.248 -1.285 -2.301
108 .247 -.251 -1.291 -2.325



Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0
0.256
0.067
0.1
0.131
0.164
0.245
0.258
0.245
0.229
0.221
0.213
0.212
0.212
0.211
0.21
0.2
0.194
0.183
0.16
0.146
0.126
0.109
0.101

0
0
0
0
0
0.141
0.189
0.222
0.263
0.252
0.218
0.211
0.203
0.211
0.211
0.209
0.199
0.19
0.177
0.165
0.156
0.127
0.107
0.086
0.07
0.088

0
0
0
0
0.165
0.278
0.288
0.298
0.284
0.264
0.259
0.241
0.249
0.239
0.216
0.198
0.191
0.179
0.167
0.16
0.128
0.09
0.064
0.042
0.033
0.032

0
0
0.726
0.405
0.701
1.357
1.429
1.739
1.913
1.768
1.412
1.191
1.133
1.215
1.297
1.352
1.406
1.415
1.489
1.558
1.668
1.738
1.702
1.697
1.712
1.709

0
0
0
0
0
2.391
2.484
2.942
3.103
2.976
2.774
2.74
2.792
3.132
3.157
3.176
3.211
3.229
3.322
3.489
3.594
3.589
3.544
3.565
3.545
3.547

0
0
0
0
2.58
2.351
2.268
2.353
2.415
2.27
2.199
2.171
2.297
2.322
2.253
2.319
2.33
2.352
2.624
2.659
2.57
2.55
2.505
2.485
2.503
2.491

Table E.3: Utilities for Summarize-Both Summarize Strategy Learned via ADP
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
-0.397
-0.719
-0.402
-0.153
-0.225
-0.245
-0.154
-0.086
-0.037
-0.022
0.04
0.05
0.056
0.068
0.074
0.074
0.089
0.103
0.115
0.127
0.133
0.1
0.024
0.01

0
0
0.562
0.58
0.567
0.142
0.101
0.155
0.237
0.228
0.247
0.272
0.263
0.234
0.226
0.212
0.217
0.223
0.229
0.236
0.234
0.209
0.15
0.103
0.091
0.088

0
0
0
0
0
0.482
0.527
0.524
0.414
0.446
0.451
0.45
0.39
0.33
0.347
0.348
0.348
0.343
0.352
0.34
0.307
0.204
0.184
0.172
0.177
0.178

0
0
-2.103
-2.994
-1.925
-1.737
-1.284
-0.405
-0.338
-0.099
0.183
0.162
0.202
-0.073
-0.015
0.064
0.135
0.154
0.249
0.282
0.352
0.442
0.529
0.39
0.324
0.321

0
0
2.76
2.76
2.465
2.174
3.852
3.048
2.833
3.076
3.091
3.025
2.779
2.75
2.762
2.719
2.824
2.819
2.822
2.77
2.864
2.946
2.883
2.795
2.755
2.751

0
0
0
0
0
2.154
2.661
2.217
2.448
2.525
2.412
2.278
2.24
2.201
2.153
2.212
2.206
2.204
2.231
2.293
2.363
2.291
2.221
2.154
2.093
2.08

Table E.4: Utilities for Summarize-Choice Summarize Strategy Learned via ADP
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
0.019
0.455
0.344
0.328
0.276
0.253
0.241
0.243
0.238
0.225
0.191
0.172
0.158
0.157
0.158
0.162
0.167
0.185
0.201
0.212
0.222
0.219
0.222
0.225
0.225

0
0.302
0.377
0.34
0.299
0.264
0.242
0.248
0.237
0.22
0.219
0.212
0.199
0.196
0.195
0.211
0.229
0.24
0.252
0.259
0.258
0.248
0.255
0.255
0.256
0.256

0
2.283
2.034
1.236
1.516
1.614
1.493
1.551
1.53
1.497
1.668
1.685
1.43
1.447
1.438
1.476
1.652
1.666
1.623
1.574
1.613
1.635
1.559
1.543
1.532
1.542

0
3.598
3.674
3.489
3.515
3.696
3.65
3.63
3.56
3.546
3.804
3.554
3.596
3.562
3.621
3.743
3.668
3.666
3.612
3.567
3.496
3.42
3.411
3.43
3.472
3.497

0
2.313
2.295
2.198
2.373
2.353
2.205
2.117
2.021
2.263
2.355
2.359
2.302
2.383
2.465
2.333
2.316
2.303
2.188
2.121
2.065
2.044
2.083
2.107
2.193
2.205

Utilities for Summarize-System Summarize Strategy Learned via ADP
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0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0.407
0.029
0.094
0.096
0.088
0.081
0.074
0.091
0.097
0.093
0.078
0.058
0.053
0.057
0.059
0.065
0.072
0.085
0.099
0.127
0.115
0.11
0.115
0.115

Table E.5:



Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0
0.256
0.067
0.1
0.131
0.164
0.245
0.258
0.245
0.229
0.221
0.213
0.212
0.212
0.211
0.21
0.2
0.194
0.183
0.16
0.146
0.126
0.109
0.101

0
0
0
0
0
0.141
0.189
0.222
0.263
0.252
0.218
0.211
0.203
0.211
0.211
0.209
0.199
0.19
0.177
0.165
0.156
0.127
0.107
0.086
0.07
0.088

0
0
0
0
0.165
0.278
0.288
0.298
0.284
0.264
0.259
0.241
0.249
0.239
0.216
0.198
0.191
0.179
0.167
0.16
0.128
0.09
0.064
0.042
0.033
0.032

0
0
0.726
0.405
0.701
1.357
1.429
1.739
1.913
1.768
1.412
1.191
1.133
1.215
1.297
1.352
1.406
1.415
1.489
1.558
1.668
1.738
1.702
1.697
1.712
1.709

0
0
0
0
2.391
2.484
2.942
3.103
2.976
2.774
2.74
2.792
3.132
3.157
3.176
3.211
3.229
3.322
3.489
3.594
3.589
3.544
3.565
3.545
3.547

0
0
0
2.58
2.351
2.268
2.353
2.415
2.27
2.199
2.171
2.297
2.322
2.253
2.319
2.33
2.352
2.624
2.659
2.57
2.55
2.505
2.485
2.503
2.491

Table E.6: Utilities for Summarize-Both Summarize Strategy Learned via Q-Learning
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
-0.397
-0.719
-0.402
-0.153
-0.225
-0.245
-0.154
-0.086
-0.037
-0.022
0.04
0.05
0.056
0.068
0.074
0.074
0.089
0.103
0.115
0.127
0.133
0.1
0.024
0.01

0
0
0.562
0.58
0.567
0.142
0.101
0.155
0.237
0.228
0.247
0.272
0.263
0.234
0.226
0.212
0.217
0.223
0.229
0.236
0.234
0.209
0.15
0.103
0.091
0.088

0
0
0
0
0
0.482
0.527
0.524
0.414
0.446
0.451
0.45
0.39
0.33
0.347
0.348
0.348
0.343
0.352
0.34
0.307
0.204
0.184
0.172
0.177
0.178

0
0
-2.103
-2.994
-1.925
-1.737
-1.284
-0.405
-0.338
-0.099
0.183
0.162
0.202
-0.073
-0.015
0.064
0.135
0.154
0.249
0.282
0.352
0.442
0.529
0.39
0.324
0.321

0
0
2.76
2.76
2.465
2.174
3.852
3.048
2.833
3.076
3.091
3.025
2.779
2.75
2.762
2.719
2.824
2.819
2.822
2.77
2.864
2.946
2.883
2.795
2.755
2.751

0
0
0
0
0
2.154
2.661
2.217
2.448
2.525
2.412
2.278
2.24
2.201
2.153
2.212
2.206
2.204
2.231
2.293
2.363
2.291
2.221
2.154
2.093
2.08

Table E.7: Utilities for Summarize-Choice Summarize Strategy Learned via Q-
Learning
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=l Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0.407
0.029
0.094
0.096
0.088
0.081
0.074
0.091
0.097
0.093
0.078
0.058
0.053
0.057
0.059
0.065
0.072
0.085
0.099
0.127
0.115
0.11
0.115
0.115

0
0.019
0.455
0.344
0.328
0.276
0.253
0.241
0.243
0.238
0.225
0.191
0.172
0.158
0.157
0.158
0.162
0.167
0.185
0.201
0.212
0.222
0.219
0.222
0.225
0.225

0
0.302
0.377
0.34
0.299
0.264
0.242
0.248
0.237
0.22
0.219
0.212
0.199
0.196
0.195
0.211
0.229
0.24
0.252
0.259
0.258
0.248
0.255
0.255
0.256
0.256

0
2.283
2.034
1.236
1.516
1.614
1.493
1.551
1.53
1.497
1.668
1.685
1.43
1.447
1.438
1.476
1.652
1.666
1.623
1.574
1.613
1.635
1.559
1.543
1.532
1.542

0
3.598
3.674
3.489
3.515
3.696
3.65
3.63
3.56
3.546
3.804
3.554
3.596
3.562
3.621
3.743
3.668
3.666
3.612
3.567
3.496
3.42
3.411
3.43
3.472
3.497

0
2.313
2.295
2.198
2.373
2.353
2.205
2.117
2.021
2.263
2.355
2.359
2.302
2.383
2.465
2.333
2.316
2.303
2.188
2.121
2.065
2.044
2.083
2.107
2.193
2.205

Table E.8: Utilities for Summarize-System Summarize Strategy Learned via Q-
Learning
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0
0
0.232
0.21
0.192
0.224
0.28
0.273
0.231
0.21
0.209
0.208
0.215
0.215
0.219
0.212
0.208
0.199
0.188
0.171
0.153
0.116
0.085
0.073

0
0
0.22
0.281
0.211
0.214
0.251
0.274
0.257
0.239
0.228
0.236
0.238
0.239
0.237
0.234
0.225
0.206
0.194
0.186
0.169
0.103
0.074
0.052
0.043
0.04

0
0
0
0
0.118
0.188
0.231
0.269
0.265
0.244
0.233
0.237
0.24
0.243
0.241
0.238
0.23
0.213
0.194
0.185
0.165
0.09
0.061
0.043
0.038
0.037

0
0
0
0
1.982
2.593
1.573
1.914
1.851
1.766
1.549
1.53
1.53
1.533
1.586
1.647
1.722
1.67
1.766
1.894
2.049
2.036
1.993
1.925
1.91
1.919

0
0
0.635
0.704
2.933
2.804
2.324
2.346
2.275
2.25
2.211
2.12
2.154
2.243
2.248
2.303
2.252
2.247
2.538
2.582
2.545
2.411
2.362
2.362
2.39
2.394

0
0
0
0
5.888
5.769
5.238
5.307
5.248
5.222
5.207
5.127
5.137
5.184
5.187
5.236
5.208
5.199
4.516
4.541
4.46
4.327
4.285
4.255
4.283
4.285

Table E.9: Utilities for Read-Choice-Prompt Read Strategy Learned via ADP
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=l Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
0.004
0.432
0.369
0.316
0.304
0.283
0.24
0.219
0.22
0.22
0.167
0.134
0.096
0.082
0.074
0.074
0.085
0.108
0.132
0.153
0.177
0.179
0.178
0.182
0.184

0
0
0.432
0.315
0.304
0.254
0.236
0.223
0.224
0.219
0.143
0.091
0.077
0.074
0.077
0.088
0.115
0.147
0.162
0.179
0.192
0.183
0.187
0.192
0.204
0.209

0
0
0
0
0.243
0.256
0.235
0.223
0.224
0.221
0.141
0.097
0.086
0.083
0.087
0.099
0.128
0.161
0.175
0.188
0.202
0.192
0.196
0.201
0.213
0.217

0
3.395
3.356
3.163
3.425
3.176
3.109
3.182
3.176
3.151
3.164
3.069
2.972
2.819
2.794
2.922
2.974
2.891
2.893
2.891
2.817
2.749
2.736
2.718
2.753
2.767

0
0
2.616
2.463
2.635
2.358
2.368
2.268
2.266
2.364
2.368
2.237
2.189
2.168
2.334
2.333
2.295
2.274
2.23
2.177
2.112
2.082
2.117
2.137
2.197
2.2

0
0
0
0
3.684
3.494
3.324
3.246
3.242
3.324
3.237
3.2
3.174
2.738
2.871
2.849
2.822
2.815
2.773
2.735
2.674
2.644
2.68
2.715
2.756
2.759

Table E.10: Utilities for Read-First Read Strategy Learned via ADP
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0.56
0.376
0.161
0.242
0.244
0.271
0.336
0.338
0.322
0.349
0.355
0.342
0.331
0.31
0.302
0.302
0.297
0.3
0.305
0.307
0.29
0.26
0.244
0.239

0
0
0
0
0
0
0
0.341
0.332
0.338
0.358
0.348
0.324
0.302
0.295
0.301
0.303
0.302
0.311
0.311
0.312
0.243
0.234
0.228
0.222
0.224

0
0
0
0
0
0
0
0
0.246
0.329
0.356
0.363
0.329
0.307
0.294
0.299
0.305
0.302
0.31
0.311
0.314
0.243
0.233
0.228
0.221
0.22

0
0
2.135
1.137
1.105
1.153
2.198
2.195
2.116
2.308
2.323
2.335
2.311
2.21
2.252
2.246
2.305
2.36
2.292
2.34
2.494
2.552
2.544
2.504
2.513
2.478

0
0
0
0
0
0
0
1.545
1.764
1.896
1.836
1.813
1.704
1.791
1.76
1.842
1.853
1.823
1.828
1.864
2.012
1.936
1.921
1.871
1.852
1.851

0
0
0
0
0
0
0
0
3.308
3.531
3.48
3.449
3.351
3.044
3.012
3.07
3.095
3.063
3.087
3.122
3.259
3.179
3.164
3.107
3.336
3.383

Table E.11: Utilities for Read-Summarize-Only Read Strategy Learned via ADP
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Trial Task Progress=l Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0
0
0.204
0.212
0.195
0.226
0.28
0.275
0.231
0.21
0.209
0.207
0.214
0.218
0.219
0.211
0.209
0.199
0.189
0.173
0.156
0.119
0.088
0.073

0
0
0.22
0.282
0.213
0.214
0.249
0.276
0.26
0.24
0.228
0.235
0.236
0.24
0.237
0.235
0.225
0.207
0.194
0.186
0.172
0.108
0.078
0.053
0.044
0.04

0
0
0
0
0.091
0.181
0.236
0.273
0.267
0.246
0.233
0.237
0.239
0.244
0.241
0.239
0.23
0.215
0.195
0.185
0.169
0.095
0.064
0.045
0.039
0.037

0
0
0
0
1.945
2.605
1.614
1.911
1.862
1.8
1.549
1.534
1.531
1.527
1.576
1.669
1.726
1.667
1.756
1.893
2.049
2.033
1.988
1.922
1.907
1.918

0
0
0.635
0.704
2.913
2.815
2.31
2.344
2.28
2.257
2.224
2.123
2.144
2.242
2.248
2.302
2.248
2.245
2.532
2.582
2.545
2.41
2.36
2.358
2.389
2.394

0
0
0
0
5.874
5.773
5.232
5.309
5.254
5.222
5.219
5.13
5.133
5.184
5.187
5.233
5.205
5.196
4.515
4.541
4.46
4.326
4.283
4.251
4.282
4.285

Table E.12: Utilities for Read-Choice-Prompt Read Strategy Learned via Q-Learning
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1 Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
0.001
0.432
0.365
0.315
0.305
0.289
0.242
0.22
0.22
0.22
0.168
0.135
0.097
0.082
0.074
0.073
0.086
0.108
0.132
0.152
0.176
0.179
0.178
0.182
0.184

0
0
0.432
0.315
0.306
0.258
0.239
0.223
0.224
0.224
0.143
0.092
0.078
0.073
0.077
0.086
0.115
0.147
0.161
0.176
0.193
0.184
0.187
0.192
0.203
0.209

0
0
0
0
0.214
0.26
0.24
0.223
0.224
0.221
0.141
0.1
0.086
0.083
0.086
0.097
0.128
0.16
0.174
0.187
0.204
0.192
0.195
0.201
0.212
0.217

0
3.408
3.354
3.167
3.428
3.183
3.099
3.183
3.176
3.152
3.163
3.082
2.979
2.823
2.792
2.915
2.975
2.886
2.894
2.891
2.817
2.747
2.735
2.718
2.75
2.767

0
0
2.614
2.464
2.641
2.359
2.367
2.269
2.266
2.36
2.372
2.251
2.197
2.174
2.326
2.334
2.291
2.276
2.232
2.177
2.112
2.082
2.113
2.136
2.196
2.2

0
0
0
0
3.656
3.495
3.325
3.246
3.242
3.323
3.245
3.198
3.183
2.77
2.864
2.851
2.818
2.818
2.775
2.735
2.674
2.644
2.675
2.713
2.755
2.759

Table E.13: Utilities for Read-First Read Strategy Learned via Q-Learning
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Trial Task Progress=1 Task Progress=2 Task Progress=3 Task Progress=1-i Task Progress=2 Task Progress=3

No Local Reward No Local Reward No Local Reward With Local Reward With Local Reward With Local Reward

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
124

0
0
0.56
0.377
0.159
0.239
0.242
0.271
0.336
0.34
0.319
0.348
0.355
0.344
0.333
0.314
0.302
0.302
0.3
0.299
0.305
0.308
0.294
0.263
0.245
0.239

0
0
0
0
0
0
0
0.341
0.335
0.334
0.358
0.357
0.327
0.308
0.295
0.299
0.303
0.302
0.31
0.311
0.268
0.247
0.233
0.229
0.222
0.224

0
0
0
0
0
0
0
0
0.253
0.322
0.355
0.363
0.334
0.318
0.289
0.297
0.305
0.302
0.309
0.31
0.314
0.247
0.228
0.229
0.222
0.22

0
0
2.135
1.145
1.105
1.115
2.193
2.196
2.114
2.308
2.317
2.337
2.316
2.207
2.25
2.245
2.312
2.362
2.289
2.34
2.494
2.551
2.543
2.506
2.511
2.478

0
0
0
0
0
0
0
1.548
1.744
1.896
1.84
1.813
1.708
1.791
1.763
1.834
1.855
1.823
1.821
1.864
2.012
1.935
1.922
1.857
1.856
1.851

0
0
0
0
0
0
0
0
3.267
3.531
3.488
3.45
3.353
3.046
3.012
3.066
3.097
3.063
3.078
3.122
3.259
3.178
3.166
3.109
3.339
3.383

Table E.14:
Learning

Utilities for Read-Summarize-Only Read Strategy Learned via Q-

122



Bibliography

[Agre and Chapman, 1987] P.E. Agre and D. Chapman. Pengi: an implementation

of a theory of activity. In Proceedings of the Sixth National Conference on Artificial

Intelligence, pages 268-272, Los Altos, CA, 1987. Morgan Kaufmann.

[Allen, 1995] James F. Allen. Natural language understanding. Benjamin/Cummings,

Redwood City, California, 1995.

[Appelt, 1985] Douglas E. Appelt. Planning English referring expressions. Artificial

Intelligence, 26(1):1-33, 1985.

[Barto et al., 1995] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using

real-time dynamic programming. Artificial Intelligence, 72(1-2):81-138, 1995.

[Bellman, 1957] Richard E. Bellman. Dynamic programming. Princeton University

Press, Princeton, NJ, 1957.

[Brady and Berwick, 1982] M. Brady and R.C. Berwick. Computational models of

dzscourse. MIT Press, Cambridge, MA, 1982.

[Callaway and Lester, 1997] Charles B. Callaway and James C. Lester. Dynamically

improving explanations: a revision-based approach to explanation generation. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence,

Nagoya, Japan, August 1997.

[Choi and Yeung, 1995] Samuel P.M. Choi and Dit-Yan Yeung. Predictive Q-routing:

a memory-based reinforcement learning approach to adaptive traffic control. In

Advances in Neural Information Processing Systems 7, 1995.

123



[Cohen et al., 1990] P. Cohen, J. Morgan, and M. Pollack. Intentions in communi-

cation. MIT Press, Cambridge, MA, 1990.

[Cohen, 1995] Paul R. Cohen. Empirncal methods for artificial intellzgence. MIT

Press, Cambridge, MA, 1995.

[Crabbe et al., 1995] Fredrick Crabbe, Paul Martin, Stuart Adams, Eric Baatz, and

Nicole Yankelovich. SpeechActs: a spoken language framework. IEEE Computer

Special Issue on Natural Language Processing, 1995.

[Danieli and Gerbino, 1995] M. Danieli and E. Gerbino. Metrics for evaluating di-

alogue strategies in a spoken language system. In Marilyn Walker and Johanna

Moore, editors, Proceedings of the 1995 AAAI Spring Symposium on Empirical

Methods in Discourse Interpretation and Generation, pages 34-39, 1995.

[Dayan, 1992] Peter Dayan. The convergence of TDA for general A. Machine Learn-

ing, 8(3-4):341-362, 1992.

[Edwards and Penney, 1990] C.H. Edwards, Jr. and David E. Penney. Calculus and

analytic geometry. Prentice Hall, Englewood Cliffs, NJ, 1990.

[Elhadad, 1992] Michael Elhadad. Using agumentatzon to control lexical chozce: a

functional unificaton-based approach. PhD thesis, Columbia University, 1992.

[Gale et al., 1992] William Gale, Ken W. Church, and David Yarowsky. Estimating

upper and lower bounds on the performance of word-sense disambiguation pro-

grams. In Proceedings of the 30th Annual Meetzng of the Association for Compu-

tational Linguistics, pages 249-256, Newark, Delaware, 1992.

[Grosz and Sidner, 1986] Barbara J. Grosz and Candace L. Sidner. Attentions, in-

tentions, and the structure of discourse. Computational Linguistics, 12:175-204,

1986.

[Grosz et al., 1986] Barbara J. Grosz, Karen Sparck Jones, and Bonnie L. Webber.

Readings in natural language processing. Morgan Kaufmann, San Mateo, California,

1986.

124



[Harvey and Carberry, 1998] Terrence Harvey and Sandra Carberry. Integrating text

plans for conciseness and coherence. In Proceedings of COLING-A CL '98, 1998.

[Hayes-Roth et al., 1993] Barbara Hayes-Roth, Karl Pfelger, Philippe Morignot, and

Philippe Lalanda. Plans and behavior in intelligent agents. Technical Report KSL-

93-43, Stanford University Knowledge Systems Laboratory, 1993.

[Hovy, 1993] Eduard H. Hovy. Automated discourse generation using discourse struc-

ture relations. Artificial Intelligence, 63:341-385, 1993.

[Isard and Carletta, 1995] Amy Isard and Jean C. Carletta. Replicability of transac-

tion and action coding in the map task corpus. In Marilyn Walker and Johanna

Moore, editors, Proceedings of the 1995 AAAI Spring Symposium on Empirical

Methods in Discourse Interpretation and Generation, pages 60-67, 1995.

[Jaakkola et al., 1994] Thommi Jaakkola, Satinder P. Singh, and Michael I. Jordan.

Reinforcement learning algorithm for partially observable Markov decision prob-

lems. In Advances in Neural Information Processing Systems 7, 1994.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.

Moore. Reinforcement learning: a survey. Journal of Artificial Intelligence Re-

search, 4:237-285, 1996.

[Kaelbling, 1996] Leslie Pack Kaelbling, editor. Recent advances in reinforcement

learning. Kluwer Academic Publishers, Boston, 1996.

[Kamm et al., 1995] Candace A. Kamm, C.R. Shamieh, and S. Singhal. Speech recog-

nition issues for directory assistance applications. Speech Communication, 17:303-

311, 1995.

[Kamm et al., 1997] Candace Kamm, Shrikanth Narayanan, Dawn Dutton, and Rus-

sell Ritenour. Evaluating spoken dialog systems for telecommunication services. In

Proceedings of the European Conference on Speech Communication and Techonol-

ogy, EUROSPEECH97, 1997.

125



[Kamm, 1994] Candace Kamm. User interfaces for voice applications. In David Roe

and Jay Wilpon, editors, Voice communication between humans and machines.

National Academy of Sciences Press, Washington, D.C., 1994.

[Keeney and Raiffa, 1976] Ralph Keeney and Howard Raiffa. Decisions with multiple

objectives: preferences and value tradeoffs. John Wiley and Sons, 1976.

[Koenig and Simmons, 1996] Sven Koenig and Reid G. Simmons. The effect of repre-

sentation and knowledge on goal-directed exploration with reinforcement-learning

algorithms. Machine Learning, 22:227-250, 1996.

[Lenzmann, 1996] Britta Lenzmann. Interface agents for interfacing with virtual en-

vironments. In CHI '96 Doctorial Consortium, 1996.

[Levin and Pieraccini, 1997] Esther Levin and Roberto Pieraccini. A stochastic

model for learning dialogue strategies. In Proceedings of the European Conference

on Speech Communication and Techonology, EUROSPEECH97, 1997.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents based on reinforcement learn-

ing, planning and teaching. Machine Learning, 8:293-321, 1992.

[Mann and Thompson, 1987] W.C. Mann and S.A. Thompson. Rhetorical structure

theory: description and construction of text structures. In Gerard Kempen, editor,

Natural Language Generation, pages 83-96. Martinus Nijhoff, 1987.

[Marcus et al., 1996] S.M. Marcus, D.W. Brown, R.G. Goldberg, M.S. Schoeffler,

W.R. Wetzel, and R.R. Rosinski. Prompt constrained natural language - evolv-

ing the next generation of telephony services. In Proceedings of the Internatonal

Conference on Spoken Language Processing ICSLP, pages 857-860, 1996.

[Martin and Kehler, 1994] Paul Martin and Andrew Kehler. SpeechActs: a testbed

for continuous speech applications. In AAAI '94 Workshop on the Integration of

Natural Language and Speech Processing, Seattle, 1994.

126



[Marx, 1995] M. Marx. Toward effective conversational messaging. Master's thesis,

MIT Media Laboratory, 1995.

[Mataric, 1994] Maja J. Mataric. Reward functions for accelerated learning. In W. W.

Cohen and H. Hirsh, editors, Proceedings of the Eleventh International Conference

on Machine Learning. Morgan Kaufmann, 1994.

[McKeown, 1985] Kathleen R. McKeown. Discourse strategies for generating natural-

language text. Artificial Intelligence, 27(1):1-42, 1985.

[Moore and Paris, 1993] Johanna Moore and Cecile Paris. Planning text for advi-

sory dialogues: capturing intentional and rhetorical information. Computational

Linguistics, 19(4):651-695, 1993.

[Morignot and Hayes-Roth, 1995] Philippe Morignot and Barbara Hayes-Roth.

Adaptable motivational profiles for autonomous agents. Report KSL-95-01, Stan-

ford University Department of Computer Science Knowledge Systems Lab, 1995.

[Neuneier, 1995] Ralph Neuneier. Optimal asset allocation using adaptive dynamic

programming. In Advances in Neural Information Processing Systems 7, 1995.

[Potjer et al., 1996] J. Potjer, A. Russel, L. Boves, and E. den Os. Subjective and

objective evaluation of two types of dialogues in a call assistance service. In 1996

IEEE 3rd Workshop: Interactive Voice Technology for Telecommunications Appli-

cations, IVTTA, pages 89-92. IEEE, 1996.

[Power, 1974] Richard Power. A computer model of conversation. PhD thesis, Uni-

versity of Edinburgh, 1974.

[Power, 1979] Richard Power. The organisation of purposeful dialogues. Linguistics,

17:107-152, 1979.

[Robin, 1995] Jacques Robin. Revision-based generation of natural language sum-

maries providing hzstorical background: corpus-based analysis, design, implemen-

tation, and evaluation. PhD thesis, Columbia University, 1995.

127



[Russell and Norvig, 1995] Stuart Russell and Peter Norvig. Artificial intelligence: a

modern approach. Prentice Hall, Englewood Cliffs, NJ, 1995.

[Singh et al., 1994] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan.

Learning without state-estimation in partially observable Markovian decision pro-

cesses. In Proceedings of the 11th International Conference on Machine Learning,

pages 284-292, 1994.

[Smith and Hipp, 1994] R.W. Smith and D.R. Hipp. Spoken natural language dialog

systems: a practical approach. Oxford University Press, 1994.

[Sutton, 1990] Richard S. Sutton. Integrated architectures for learning, planning, and

reacting based on approximating dynamic programming. In Proceedings of the 7th

Internatzonal Conference on Machine Learning, pages 216-224. Morgan Kaufmann,

1990.

[Sutton, 1991] Richard S. Sutton. Planning by incremental dynamic programming.

In Proceedings of the 9th Conference on Machine Learnng, pages 353-357. Morgan

Kaufmann, 1991.

[Sutton, 1992] Richard S. Sutton, editor. Reinforcement learning. Kluwer Academic

Publishers, Boston, 1992.

[Tesauro, 1992] Gerald Tesauro. Practical issues in temporal difference learning. Ma-

chine Learnzng, 8:257-277, 1992.

[Walker and Whittaker, 1990] Marilyn Walker and S. Whittaker. Mixed initiative

in dialogue: an investigation into discourse segmentation. In Proceedings of the

28th Annual Meetzng of the Assoczation of Computational Linguistics, pages 70-

79, 1990.

[Walker et al., 1997a] Marilyn Walker, Don Hindle, Jeanne Fromer, Giuseppe Di Fab-

brizio, and Craig Mestel. Evaluating competing agent strategies for a voice email

agent. In Proceedings of the European Conference on Speech Communication and

Techonology, EUROSPEECH97, September 1997.

128



[Walker et al., 1997b] Marilyn Walker, Diane Litman, Candace Kamm, and Alicia

Abella. PARADISE: a framework for evaluating spoken dialogue systems. In

Proceedings of the 35th Annual Meeting of the Association of Computational Lin-

guistics, ACL/EACL 97, Madrid, Spain, July 1997. MIT Press.

[Walker et al., 1998a] Marilyn Walker, Jeanne Fromer, Giuseppe Di Fabrizzio, Craig

Mestel, and Don Hindle. What can I say?: evaluating a spoken language interface

to email. In Proceedings of CHI '98, April 1998.

[Walker et al., 1998b] Marilyn Walker, Jeanne Fromer, and Shrikanth Narayanan.

Learning optimal dialogue strategies: a case study of a spoken dialogue agent for

email. In Proceedings of COLING-ACL '98, August 1998.

[Watkins, 1989] Christopher J. Watkins. Models of delayed reinforcement. PhD the-

sis, Cambridge University, 1989.

[Whitehead and Ballard, 1991] Steven D. Whitehead and Dana H. Ballard. Learning

to perceive and act by trial and error. Machine Learning, 7:45-83, 1991.

[Yanco and Stein, 1993] Holly Yanco and Lynn Andrea Stein. An adaptive commu-

nication protocol for cooperating mobile robots. In J.A. Meyer, H.L. Roitblat, and

S.W. Wilson, editors, From Animals to Animats: Proceedings of the 2nd Interna-

tional Conference on the Simulation of Adaptive Behavior, pages 478-485. MIT

Press/Bradford Books, 1993.

[Yankelovich, 1994] Nicole Yankelovich. Talking vs. taking: speech access to remote

computers. In CHI '94 Conference Companion, ACM Conference on Human Fac-

tors in Computing Systems, pages 275-276, Boston, 1994.

[Zukerman and McConachy, 1995] Ingrid Zukerman and Richard McConachy. Gen-

erating discourse across several user models: maximizing belief while avoiding bore-

dom and overload. In Proceedings of the International Joint Conference on Artificzal

Intelligence, pages 1251-1257, 1995.

129


