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Abstract

An n-dimensional lattice is the set of all integral linear combinations of n linearly
independent vectors in ' tm. One of the most studied algorithmic problems on lat-
tices is the shortest vector problem (SVP): given a lattice, find the shortest non-zero
vector in it. We prove that the shortest vector problem is NP-hard (for randomized
reductions) to approximate within some constant factor greater than 1 in any 1, norm
(p 1). In particular, we prove the NP-hardness of approximating SVP in the Eu-
clidean norm 12 within any factor less than 4v. The same NP-hardness results hold
for deterministic non-uniform reductions. A deterministic uniform reduction is also
given under a reasonable number theoretic conjecture concerning the distribution of
smooth numbers.

In proving the NP-hardness of SVP we develop a number of technical tools that
might be of independent interest. In particular, a lattice packing is constructed
with the property that the number of unit spheres contained in an n-dimensional
ball of radius greater than 1 + x/2 grows exponentially in n, and a new constructive
version of Sauer's lemma (a combinatorial result somehow related to the notion of VC-
dimension) is presented, considerably simplifying all previously known constructions.
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Chapter 1

Introduction

An n-dimensional lattice in Tm is the set A = { xibi : xi E Z} of all integral linear

combinations of n linearly independent vectors in lZm. There are many interesting

algorithmic questions concerning lattices. One of the most studied of these problems

is the shortest vector problem (SVP): given a lattice A, find the shortest non-zero

vector in A. I study the computational complexity of this problem.

1.1 Motivation

Lattices, and the shortest vector problem in particular, have attracted the attention

of mathematicians in the last two centuries for their connections with number theory

and Diophantine approximation problems. Among others, lattices have been studied

(in the language of quadratic forms) by Gauss, Dirichlet and Hermite. Proving the

existence of short vectors in lattices was a central problem in Geometry of Numbers, a

field founded by Minkowski as a bridge between the study of quadratic forms and the

theory of Diophantine approximation. The connections between lattice theory and

other branches of mathematics is well illustrated by the use of lattices to give elegant

geometric proofs of classic results is number theory like showing every number is the

sum of four squares. The relation between lattices and other important mathematical

problems, such as Diophantine approximation, has also motivated the study of lattices

from a more algorithmic point of view. The first algorithm to solve the shortest vector



problem (in dimension 2) dates back to Gauss [27], and efforts to algorithmically solve

this problem continued till now [67, 21, 47, 22, 72, 81, 45]. At the beginning of the 80's,

a major breakthrough in algorithmic geometry of numbers, the development of the

LLL lattice reduction algorithm [58], had a deep impact in many areas of computer

science, ranging from integer programming, to cryptography. Using the LLL reduction

algorithm it was possible to solve integer programming in a fixed number of variables

[59, 58, 43], factor polynomials over the rationals [58, 56, 71], finite fields [55] and

algebraic number fields [57], disprove century old conjectures in mathematics [64],

break the Merkle-Hellman crypto-system [74, 2, 11, 49, 50, 62], check the solvability

by radicals [54], solve low density subset-sum problems [53, 24, 20], heuristically factor

integers [69, 18] and solve many other Diophantine and cryptanalysis problems (e.g.,

[51, 19, 34, 25, 10]).

The first and preeminent reason to study the computational complexity of lat-

tice problems is therefore the wide applicability of lattice based techniques to solve a

variety of combinatorial and optimization problems. In the last few years one more

reason emerged to study lattices specifically from the computational complexity point

of view: the design of provably secure crypto-systems (see [4, 6, 31, 63, 32]). The

security of cryptographic protocols depends on the intractability of certain computa-

tional problems. The theory of NP-completeness offers a framework to give evidence

that a problem is hard. Notice however that while NP-hardness results refer to the

worst case complexity of a problem, what is needed for security in cryptographic

applications is a problem hard to solve on the average.

In [4] Ajtai established a connection between the worst case and average case

complexity of certain lattice problems, and in [6] is presented a crypto-system with

worst-case/average-case equivalence.

What Ajtai showed is that if there is a probabilistic polynomial-time algorithm

to find the shortest vector in a lattice uniformly chosen in a certain class of lattices,

then there is a probabilistic polynomial-time algorithm to find a "good basis" and

in particular a vector of length within a fixed polynomial factor nC from the shortest

(the exponent c equals 8 in [4] and was improved to 3.5 in [14]).



The importance of studying the hardness of approximating SVP is now clear: if

approximating the shortest vector in a lattice within a factor nC were NP-hard, then

we could base cryptography on the P versus NP question [30]. The results in [52]

and [29] point out some difficulties in bridging the gap between the approximation

factors for which we can hope to prove the NP-hardness of SVP, and those required

by current lattice based crypto-systems. Still, the possibility that progress in both

the study of the complexity of lattice problems and the design of lattice based crypto-

systems might lead to the ultimate goal of a crypto-system based on the assumption

P $ NP, is an extremely attractive perspective.

1.2 Historical Background

The shortest vector problem (or the equivalent problem of minimization of quadratic

forms) has a long history. An algorithm to solve the shortest vector problem in 2-

dimensional lattices was already given by Gauss ([27], 1801). The general problem

in arbitrary dimension was formulated by Dirichlet in 1842, and studied by Hermite

([36], 1845), and Korkine and Zolotareff ([48], 1873). The subject of Geometry of

Numbers, founded by Minkowski ([61], 1910), was mainly concerned with the study

of the existence of short non-zero vectors in lattices. Minkowski's "Convex Body

Theorem" directly implies the existence of short vectors in any lattice. Algorithms

to find short vectors in lattices were given by Rosser [67], Coveyou and MacPherson

[21], Knuth [47], and Dieter [22]. Unfortunately none of these algorithms run in

polynomial time, even if the dimension is fixed to 2. The development of the LLL

basis reduction algorithm [58] was a major breakthrough in the field. Using this

algorithm it was possible to solve (in polynomial-time) the shortest vector problem

in any fixed dimension and many other algorithmic problems (see section 1.1).

Despite all these successful results, SVP resisted any attempt to devise polynomial-

time algorithms for arbitrary dimension. In 1981 van Emde Boas proved that SVP is

NP-hard in the loo norm, giving evidence that the problem is inherently intractable,

and conjectured that the same problem is NP-hard in any to other 1P norm (p > 1).



The NP-hardness of SVP in the 1, (p < oo) norm (most notably the Euclidean norm

12), was a long standing open question, finally settled in [5] where Ajtai proved that

the shortest vector problem (in 12) is NP-hard for randomized reductions. The re-

sult in [5] also shows that SVP is hard to approximate within some factor rapidly

approaching 1 as the dimension of the lattice grows. However, cryptographic appli-

cations requires the hardness of approximating SVP within some large polynomial

factor. The main goal of this thesis is to make a first step in this direction, proving

the non-approximability of SVP within some factor bounded away from 1.

1.3 Results

I prove that the shortest vector problem is NP-hard to approximate within some

constant factor greater than one. The result holds for all Euclidean norms ip (p > 1).

More precisely I prove that for any 1, norm and any constant c < 21/', finding the

approximate length of the shortest non-zero vector in a lattice within a factor c, is

NP-hard for randomized reductions1 . In particular the shortest vector problem in the

Euclidean norm 12 is NP-hard to approximate within any factor less than V2.

The proof, by reduction from a variant of the approximate closest vector problem

(CVP), is surprisingly simple, given a technical lemma regarding the existence of cer-

tain combinatorial objects. The closest vector problem is the inhomogeneous version

of the shortest vector problem: given a lattice and a target vector (usually not in

the lattice), find the lattice point closest to the target vector. The reduction from

CVP to SVP can be regarded as a homogenization technique: given a inhomogeneous

problem transform it into an equivalent homogeneous one. The reduction actually

uses very little specific to lattices and can potentially be used to prove the hardness

(resp. easiness) of any other inhomogeneous (resp. homogeneous) problem for which

an equivalent technical lemma holds true.

The technical lemma essentially asserts the existence of an instance of the inho-

1Randomness can be eliminated using either non-uniformity or a reasonable number theoretic
conjecture.



mogeneous problem with some special properties. The proof of the technical lemma

involves the solution of problems in two related areas of computer science.

The first is a sphere packing problem: I want to pack as many unit sphere as pos-

sible in a ball of radius slightly bigger than 1+ V/2. Connections between lattices and

sphere packing problems have long been known (see [17] for an excellent exposition of

the subject) and lattices have been used to efficiently pack spheres for centuries. Here

I look at sphere packing problems and lattices from a new and interesting perspective:

I use sphere packings to prove that lattice problems are computationally hard. In

proving an NP-hardness result for approximate SVP, I give an explicit construction

to pack exponentially many unit spheres is a ball of radius roughly 1 + 4V. The

construction is based on a generalization of a lattice originally used by Schnorr [69]

and Adleman [3] to establish a connection between SVP and factoring (a problem

apparently unrelated to sphere packing). The connection I make between this lattice

and sphere packing problems is an interesting result in its own.

The second problem I address is the proof of a combinatorial result on hyper-

graphs somehow related to the concept of VC-dimension. The problem is to algo-

rithmically find an integer linear transformation that (with very high probability)

surjectively maps every sufficiently large bounded degree hyper-graph onto the set of

all 0-1 sequences of some shorter length. A first solution to this problem was first

given by Ajtai. I present an alternative and simpler construction achieving a similar

(possibly stronger) result with a considerably simpler analysis. I believe that the

simplicity of my construction and analysis improves the understanding of the above

combinatorial problem, and might be useful for subsequent generalizations or new

applications of it.

1.4 Outline

The rest of this thesis is organized as follows. In Chapter 2, I present some basic

material about lattices and review what is known about the computational complexity

of the shortest vector problem and other related computational problems on lattices.



In Chapter 3, I present the main result of this thesis: I prove that the shortest vector

problem is NP-hard to approximate (for randomized reductions) within some constant

factor. The proof uses a technical lemma which will be proved in Chapter 6, after

I develop the necessary combinatorial tools in Chapters 4 and 5. In particular, in

Chapter 4, I study the sphere packing problem and in Chapter 5 the hyper-graph

construction mentioned in the previous section. Both results are instrumental to the

proof of the technical lemma, but also interesting in their own and are presented

in a self contained manner largely independent from the rest of this thesis to allow

separate reading.



Chapter 2

Preliminaries

Let R, Q and Z be the sets of the reals, rationals and integers respectively. The

n-dimensional Euclidean space is denoted R . Unless otherwise specified, I'll use

boldface lowercase letters (e.g., x, y, b,...) for vectors, uppercase Roman letters (e.g.,

A, B, C,...) for matrices, lowercase Greek or Roman letters (e.g. a, 1,..., a, b,...) for

numbers and uppercase Greek letters (e.g., A, F,...) for lattices. A lattice in 7 m is

the set of all integral combinations A = {,=1 xibi: xi E Z} of n linearly independent

vectors bl,...,b in R"m (m > n). The set of vectors bl,...,b, is said to form a

basis of the lattice. The dimension of the lattice is the number n of basis vectors, and

when n = m the lattice is said full dimensional. A basis can be compactly represented

by the matrix B = [b1 ... Ibn] E R m x n having the basis vectors as columns. The

lattice generated by B is denoted L(B). Notice that £(B) = {Bx: x E Z}, where

Bx is the usual matrix-vector multiplication. Observe that the unit vectors ej =
i-1 n-i

(07,...,7, 1,,., 0) are a basis of the integer lattice Z" = £(ej,..., e,) = £(I),

where I is the identity matrix. When discussing computational issues related to

lattices, we always assume that lattices are represented by a basis matrix B and that

B has integral or rational entries.

Graphically, a lattice is the set of vertices of an n-dimensional grid. For example,

the lattice generated by the basis bi = (1, 2), b2 = (1, -1) is shown in figure 2-1. A

lattice may have different basis. For example the lattice shown in figure 2-1 is also
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Figure 2-1: A lattice in R2

generated by the vectors b + b2 = (2, 1) and 2b + b2 = (3,3) (see figure 2-2).

Notice that any set of n linearly independent lattice vectors in a full dimensional

lattice A C Rn (in particular, any basis for A) is a basis for JZ as a vector space, but

it is not necessarily a lattice basis. For example, the lattice vectors b +b 2 and b, -b

are not a basis of L(bl, b2) because they don't generate the whole lattice over the

integers (see figure 2-3). In general, n linear independent lattice vector b,... , b E

A c R1 are a basis if the fundamental parallelepiped { xbibi:: 00 < x < 1} they

span does not contain any lattice vector other than the origin (see figures 2-1,2-2 for

lattice basis and 2-3 for a non basis).

In matrix notation, two basis B E mxn and B' E Rmxn' generate the same lattice

L(B) = L(B') if and only if n = n' and there exists a unimodular matrix U E ZnX

(i.e., an integral matrix with determinant +1) such that B' = RU. Therefore the

dimension of a lattice does not depend on the choice of the basis.

The determinant of a lattice, denoted det(A) is the n-dimensional volume of the

fundamental parallelepiped er xtibi: 0 < xi < 1} spanned by the basis vectors and

equals the product of the length of the vectors b*,...,b* obtained by the Gram-
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Schmidt orthogonalization process

bf = bi - E Pijb
j<i

(b ,b*)
/-ij = ,bj'

where (x, y) = __ xjiy is the inner product in R m . Notice that if the bi are rational

vectors, then also the b are rationals. If lattice A = L(B) is full dimensional (i.e.

m = n), than B is a non-singular square matrix and det(A) equals the absolute value

of the determinant of the matrix B. In general det(A) equals the square root of the

absolute value of the determinant of the Gram matrix BTB, i.e., the n x n matrix

whose (i, j)th entry is the inner product (b,, bj).

The determinant is also a lattice invariant (i.e., does not depend on the particular

basis used to compute it) and equals the inverse of the density of lattice points in the

n-dimensional vector space spanned by the basis vectors.

Lattices can also be characterized without reference to any basis. A lattice can be

defined as a non-empty subset A of Rm which is closed under subtraction (if x E A

and y E A, then also x - y E A) and discrete (there exists a positive real A > 0 such

that the distance between any two lattice vectors is at least A). Notice that A always

contains 0 = x - x, and is closed under complement (if x E A then -x = 0 - x E A),

and addition (if x, y E A then x + y E A). Therefore, A is an additive subgroup

of 7Em. In fact, an alternative formulation of the definition of lattice is a discrete

additive subgroup of R"

Fundamental constants associated to an n-dimensional lattice A are its successive

minima A1,... , An. The ith minimum Ai(A) is the radius of the smallest sphere

centered in the origin containing i linearly independent lattice vectors. In particular,

A1 (A) is the length of the shortest non-zero lattice vector and equals the minimum

distance between lattice points:

A1(A) = min jx - yll = min Iixl.
xfyEA xEA\{0}



The following computational problems on lattices are solvable in polynomial time:

1. Membership: Given a basis B and a vector x, decide whether x belongs to the

lattice C(B).

2. Kernel: Given an integral matrix A E Znxm, find a basis of the lattice {x E

Z m : Ax = 0}.

3. Basis: Given a set of possibly dependent vectors bl,..., b, find a basis of the

lattice they generate.

Problem 1 is clearly equivalent to deciding the feasibility of a system of linear

Diophantine equations and is easily solved performing a polynomial number of arith-

metic operations. The difficulty in devising a polynomial time algorithm is to prove

that the size of the number involved also stays polynomially bounded. This was first

accomplished in [79].

Problem 2 is the same as finding the general solution to a system of homogeneous

linear Diophantine equations. Notice that this set of solutions is a lattice because is

closed under subtraction and discrete. For polynomial time algorithms to solve this

problem see [26, 46, 37, 38].

Problem 3 can be easily solved using techniques from any of the other problems

mentioned here. For algorithms to solve these and related problems see [46, 16, 39].

2.1 Two Computational Problems on Lattices

Two problems on lattices for which no polynomial time algorithm is known are the

following:

* Shortest Vector Problem (SVP): Given a lattice A, find the shortest non-zero

vector in A

* Closest Vector Problem (CVP): Given a lattice A and a point y, find the lattice

vector closest to y.



These problems can be defined with respect to any norm. For any p 2 1, the

4, norm of a vector x E n" is JIjxlp = ( 1l xi)1 / P. Special cases are the Ii-norm

lixilI = ,!L1  Ix i, the Euclidean norm li|x 12  = (x, = ~ x and the m ax-

norm lxloo = limp , ijxl p = max,=1 lxi . All norms satisfy the following properties:

ixlj > 0 and lixil = 0 iff x = 0 (definiteness), iiaxii = ial - ixii (homogeneity) and

i x + y x Iix + Ii y (triangular inequality). From the triangular inequality it easily

follows that Ix - yll _ i|xl - Ilyll. Notice that when p < 1, the application l1xlp, is

not a norm because it does not satisfy the triangular inequality. Of special interest is

the Euclidean norm 12, and it is assumed this is the norm being used unless otherwise

specified.

The lack of polynomial time algorithms to solve the above problems has led re-

searchers to look for approximation algorithms. An algorithm solves SVP approxi-

mately within a factor c (possibly dependent on the dimension of the lattice) if on

input a lattice A it finds a vector x E A \ {0} of length at most c times the shortest

non-zero vector in A. Analogously, an algorithm solves CVP approximately within a

factor c if on input a lattice A and a target vector y it finds a lattice vector x E A

such that I(x - y| is at most c times the distance of y from A.

A polynomial time algorithm to solve SVP in dimension 2 was already implicit

in work by Gauss [27]. This algorithm is essentially a generalization to dimension 2

of the Euclidean algorithm to compute the greatest common divisor of two integers

and has been extensively analyzed and improved to achieve asymptotically low bit

complexity [76, 77, 72, 81, 40, 41]. Minkowski's "Convex Body Theorem" directly

implies that any lattice A has a short non-zero vector of length at most xAdet(A) 1/ n .

However, the proof is non-constructive and does not give an effective procedure to

find such short vectors. We remark that although a lattice A might contain vectors

considerably shorter than V/idet(A) 1/ , it has been proved that approximating the

shorter lattice vector within a polynomial (in n) factor can be reduced to finding a

lattice vector of length within a polynomial factor from det(A)1/n . Algorithms to

find the shortest vector in a lattice in arbitrary dimension were proposed by Rosser

[67], Coveyou [21], Knuth [47] and Dieter [22], but none of these algorithms can be



proved to run in polynomial time, even if the dimension of the lattice is fixed to 2.

With the development of the LLL basis reduction algorithm [59, 58] it was possible

to approximate SVP in polynomial time within a factor 2n/2. The approximation

factor was improved to 21" by Schnorr [68] using a modification of the LLL basis

reduction algorithm. The LLL algorithm, and its variants, can also be used to find

in polynomial time exact solutions to SVP for any fixed number of dimensions. The

dependency of the running time on the dimension is 2n . Better algorithms to solve

SVP exactly were given by Kannan in [45] where the dependency of the running time

on the dimension is 2' in

Although in practice the LLL algorithm and its variants perform much better

than the theoretical worst case lower bound, to date no polynomial time algorithm is

known to approximate SVP within a factor polynomial in the dimension of the lattice.

Evidence of the intractability of the shortest vector problem was first given by van

Emde Boas [78] who proved that SVP is NP-hard in the l, norm and conjectured the

NP-hardness in the Euclidean norm. Recently, Ajtai proved that SVP is NP-hard for

randomized reductions, and approximating SVP within a factor 1 + 2- "n is also NP-

hard. The non-approximability factor was improved to 1 + n - I by Cai and Nerurkar

[13], but still a factor that rapidly approaches one as the dimension of the lattice

grows. The main goal of this thesis is to prove that SVP is NP-hard to approximate

within a factor bounded away from one.

Verifying solutions to SVP has also been investigated. The decisional version of

SVP is clearly in NP: any lattice vector is a proof that the shortest vector is at least

that short. Proving that the shortest vector is long is a bit harder. Lagarias, Lenstra

and Schnorr [52] proved that approximating SVP within a factor n is in coNP, that

is, there exist short polynomial time verifiable proofs that the shortest vector in a

lattice is at least AI/n (for an alternative proof see [12]). Goldreich and Goldwasser

[29] proved that approximating SVP within a factor v/n is in coAM, that is, there

is a constant round interactive proof system to show that the shortest vector in a

lattice has length at least A1/ ,i. A similar result was proved by Cai in [12] for

the n /4-unique shortest vector problem (a variant of the shortest vector problem in



which all vectors shorter than n1/4 1 are parallel). These coNP and coAM results are

usually regarded as evidence that approximating SVP within certain factors is not

NP-hard. In particular [52] shows that approximating SVP within a factor n is not

NP-hard unless P = NP, while [29] shows that approximating SVP within a factor

/# is not NP-hard' unless the polynomial time hierarchy collapses.

The closest vector problem had a similar history, except that polynomial time (ap-

proximation) algorithms were harder to find and stronger hardness results were more

easily established. Babai [8] modified the LLL reduction algorithm to approximate

in polynomial time CVP within a factor 2n . The approximation factor was improved

to 2, n in [68, 44, 70]. Kannan [45] gave a polynomial time algorithm to solve CVP

exactly in any fixed number of dimensions. The dependency of the running time on

the dimension is again 2 n inn. Finding a polynomial time algorithm to approximate

CVP within a polynomial factor is a major open problem in the area.

Regarding the hardness of the closest vector problem, van Emde Boas [78] proved

that CVP is NP-hard for any 1, norm (p > 1). In [7], Arora et al. used the machinery

from Probabilistically Checkable Proofs to show that approximating CVP within any

constant factor is NP-hard, and approximating it within 2'g1- ' " is almost NP-hard.

Recently, Dinur, Kindler and Safra [23] proved that approximating CVP within that

same factor is NP-hard.

The decisional version of CVP is clearly in NP: any lattice vector close to y

gives an upper bound on the distance of y from the lattice. Lagarias, Lenstra and

Schnorr [52] proved that approximating CVP within n 1 5 is in coNP. Hastad [33] and

Banaszczyk [9] improved the approximation factor to n. Goldreich and Goldwasser

[29] showed that approximating CVP within a factor vFn is in coAM. Again, these

verifiability results are usually regarded as evidence that approximating CVP within

certain factors is not NP-hard, unless P = NP or the polynomial time hierarchy

collapses.

1Technically, one should require NP-hardness via "smart" reductions. The reader is referred to
[29] for more details.



The relation between SVP and CVP has also been considered. SVP and CVP

are usually referred to as the homogeneous and inhomogeneous problem, in analogy

with homogeneous and inhomogeneous Diophantine equations. Analogy with other

Diophantine problems together with the faster progress in proving the hardness of CVP

and the major ease in approximating SVP suggest that SVP may be easier than CVP.

Although the NP-completeness of CVP implies that the decisional version of SVP

can be reduced in polynomial time to CVP, there is not an obvious direct reduction

between the two problems, and finding the relationship between the approximation

versions of the two problems has been an open problem for a while. Notice that

a SVP instance A is not equivalent to the CVP instance (A, 0) because the lattice

vector closest to the origin is the origin itself (in CVP the solution is not required to

be a non-zero vector). Recently Henk [35] gave direct proof that SVP is polynomial

time Turing reducible to CVP, and similar techniques have been used by Seifert

[73] to show that approximating SVP within a factor c (possibly dependent on the

dimension n) is polynomial time Turing reducible to approximating CVP within the

same approximation factor.

In the other direction, Kannan showed that approximating CVP within a factor

Vt /i is polynomial-time Turing-reducible to solving SVP exactly [45], and approximat-

ing SVP within a factor n3/2 f (n)2 is polynomial-time Turing-reducible to approximat-

ing SVP within a factor f (n) for any non-decreasing function f (n) [44]. More will be

said about reducing CVP to SVP in the next chapter, where we prove that SVP is

NP-hard to approximate by reduction from a modification of CVP. As an aside, [45]

shows also that the search and decisional versions of SVP are polynomial time Turing

equivalent.



2.2 Promise Problems and Hardness of Approxi-

mation

Both for CVP and SVP one can ask for different algorithmic tasks. These are (in

decreasing order of difficulty):

* (Search) Find the (non-zero) lattice vector x E A such that I|x - yll (resp. JIxI)

is minimized.

* (Optimization) Find the minimum of lix - yl (resp. lixII) over x E A (resp.

x EA\{O}).

* (Decision) Given a real r > 0, decide whether there is a (non-zero) lattice vector

x such that IIx - y < r (resp. Iixil < r).

We remark that to date all known (approximation) algorithms for SVP and CVP

actually solve the search problem (and therefore also the associated optimization and

decision problems), while all known hardness results hold for the decision problem

(and therefore imply the hardness of the optimization and search problems as well).

This suggests that the hardness of solving SVP and CVP is already captured by the

decisional task of determining whether or not there exists a solution below some given

threshold value.

The same computational tasks can be defined also for the approximation versions

of SVP and CVP. We follow [29] and formalize the decisional task associated to

approximate SVP and CVP in terms of the promise problems GapSVP and GapCVP to

be defined.

Promise problems are a generalization of decision problems well suited to study

the hardness of approximation. A promise problem is a pair (HYES, HNO) of disjoint

languages, i.e., HYES, HNO C {0, 1}* and IYES rl 1 NO = 0. An algorithm solves the

promise problem (HYES, INO) if on input an instance I E HYES U 1HNO it correctly

decides whether I E HYEs or I E HNO. The behavior of the algorithm when I V
HYES U HNO (I does not satisfy the promise) is not specified.



A special case are decision problems, where IINo = {0, 1}*\IIyES and the promise

I IIYES U IINO is vacuously true. We now define the promise problem associated

to the approximate SVP and CVP.

Definition 1 (Approximate SVP) The promise problem GapSVP,, where g (the

gap function) is a function of the dimension, is defined as follows:

* YES instances are pairs (B, t) where B e Zkxn is a lattice basis and t E Q a

threshold such that jjBz| 5 t for some z E Zn \ {0}.

* NO instances are pairs (B, t) where B e Zkxn is a lattice basis and t e Q is a

threshold such that IIBzjj > gt for all z E Z" \ {0}.

Definition 2 (Approximate CVP) The promise problem GapCVPg, where g (the

gap function) is a function of the dimension, is defined as follows:

* YES instances are triples (B,y, t) where B e Z kxn is a lattice basis, y E Zk is

a vector and t e Q is a threshold such that IIBz - yll < t for some z e Z".

* NO instances are triples (B, y, t) where V E Zkx" is a lattice, y E Zk is a vector

and t E Q is a threshold such that JJBz - yJl > gt for all z e Z".

Notice that when the approximation factor c = 1, the promise problems GapSVPc

and GapCVPc reduce to the decision problems associated to exact SVP and CVP.

Promise problems GapSVPc and GapCVPc capture the computational task of approxi-

mating SVP and CVP within a factor c in the following sense. Assume algorithm A

solves approximately SVP within a factor c, i.e., on input a lattice A, it finds a vector

x e A such that Ijxll < cA (A). Then A can be used to solve GapSVPc as follows. On

input (L, t), run algorithm A on L to obtain an estimate t' = ||XII E [AX, cA1] of the

shortest vector length. If t' > ct then A1 > t and (L, t) is a NO instance. Conversely,

if t' < ct then A1 < ct and from the promise (L, t) E IIYES U IINO one deduces that

(L, t) is a YES instance. A similar arguments holds for the closest vector problem.

Reductions between promise problems are defined in the obvious way. A function

f: {0, 1}* --+ {0, 1}* is a reduction from (IIYES, INO) to (EYES, NO) if it maps YES



instances to YES instances and NO instances to NO instances, i.e., f(IIYES) C EYES

and f(IINo) 9C NO. Clearly any algorithm A to solve (EYES, ENO) can be used to

solve (IIYES, INO) as follows: on input I E IIYES U IINO, run A on f(I) and output

the result. Notice that f(I) always satisfy the promise f(I) E EYES U ENo, and f(I)

is a YES instance iff I is a YES instance.

We now define one more promise problem that will be useful in the sequel. The

problem is a modification of GapCVP in which YES instances are required to have a

boolean solution, and in the NO instances the target vector can be multiplied by any

non-zero integer.

Definition 3 (Modified CVP) The promise problem GapCVP', where g (the gap

function) is a function of the dimension, is defined as follows:

* YES instances are triples (L,y, t) where L E Z kx n is a lattice, y E Zk a vector

and t E Q a threshold such that IILz - yll < t for some z E {0, 1}n .

* NO instances are triples (L, y, t) where L E Zkx n is a lattice, y E Zk a vector

and t E Q a threshold such that IILz - wyll > gt for all z E Z n and all

wEZ \ {0).

In [7] it is proved that GapCVP, and its variant GapCVP' are NP-hard for any

constant c.

Theorem 1 For any constant c > 1 there exists a polynomial time computable re-

duction from SAT to GapCVP'.

Reductions between promise problems can be composed in the obvious way. There-

fore to prove that a promise problem is NP-hard it suffices to give for some c > 1 a

polynomial time computable reduction from GapCVP' to it.



Chapter 3

Reducing CVP to SVP

In this chapter we present the main result of this thesis: we prove that the shortest

vector problem is NP-hard to approximate for randomized reduction within some

constant factor. In particular we prove that for any 1, norm (p > 1), the promise

problem GapSVP, is NP-complete (for randomized reductions) for all c < 21/P.

The proof is by reduction from another promise problem associated to the closest

vector problem (the inhomogeneous version of the shortest vector problem). There-

fore, the technique we use to reduce CVP to SVP can be considered as a "homoge-

nization" process. This is not new in the study of the computational complexity of

lattice problems (see [8, 45, 44]). However all homogenization techniques developed in

the past involve some sort of recursion on the number of dimensions of the lattice and

consequently introduce error factors of nl /P or greater. For example, [45] shows that

approximating CVP within a factor Vr is polynomial-time Turing-reducible to solv-

ing SVP exactly, while [44] shows that approximating SVP within a factor n3/2f(n)2

is polynomial-time Turing-reducible to approximating SVP within a factor f(n) for

any non-decreasing function f(n). Therefore, since there is some evidence that CVP

is not NP-hard to approximate within factors greater than V/ [29], these reductions

are unluckily to be useful in proving that SVP is NP-hard. In this chapter we intro-

duce a novel homogenization technique that can be applied to approximation versions

of CVP which are known to be NP-hard.

The idea behind our homogenization technique is the following. Assume one wants



Figure 3-1: The shortest vector 2bl + b2 - y in the lattice generated by bl, b2 , y
correspond to the shortest vector in A = £(bl, b 2 ) closest to y.

to find the point in a lattice A = £(B) (approximately) closest to some vector y. We

look for the shortest vector in the lattice generated by [Bly], i.e., the original lattice

A together with the target vector y. If the shortest vector in this lattice is of the

form Bx - y then Bx is the lattice vector in A closest to y (see figure 3-1 for an

illustrative example). The problem is that lattice A might contain vectors shorter

than the distance of y from A. If this is the case, by solving the shortest vector

problem in the lattice generated by [Bly] one simply finds the shortest vector in

A (see figure 3-2). Another problem is that the shortest vector in £([Bjy]) might

correspond to a vector in A close to a multiple of y (see figure 3-3). These problems

are dealt with by homogenization techniques by embedding the lattice [Bly] in some

higher dimensional lattice, i.e., introducing some new coordinates and extending the

basis vectors in B and y with the appropriate values in these coordinates. A similar

idea is already present in [45] where the lattice [ is defined (the value
0 0.51A1 (B)

A1 (B) is computed calling an SVP oracle). Notice that the additional row forces the

last basis vector to be used at most once. However, there is still the more serious

problem that the last column might not be used at all, which is solved by a recursive

method that introduce a Nrn error factor.

We now sketch our homogenization technique. Given a lattice basis B and a target
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Figure 3-2: The shortest vector bl - 2b 2 in the lattice generated by [bl, b 2, y] belongs
to the lattice A = £(bl, b2)

3y.,0--

- 1  ....... 2bl + b2

* bz * *

0
2bi + b 2) - 3y . 0 S

Figure 3-3: The shortest vector 2bl + b 2 - 3y in the lattice generated by [bl, b 2, y]
correspond to the vector in A = £(bl, b2) closest to 3y.



vector y, we first randomize B by multiplying it by an integer matrix C to get a set

of vectors B -C. The column of B -C are no longer linearly independent and have the

property that lattice vectors have many possible representations as a sum of them.

Then we embed the vectors in B - C and y in a higher dimensional space as follows.

Let L and s be a lattice and a vector such that there are many lattice vectors whose

distance from s is appreciably less than the length of the shortest vector in L. we

define r to be the lattice generated by an appropriately scaled version of the matrix

B.C y . Any shortest vector in r must use the last column, because otherwise
L s

a high penalty will be incurred in the additional coordinates. Moreover, if there is

a vector Bx close to y, a short vector in r can be found (with high probability) by

looking for a vector Lz close to s such that Cz = x.

The rest of the chapter is organized as follows. In section 3.1 we formally define

the property of the "homogenizing gadget" (L, s, C) and assert that matrices with

this property can be efficiently constructed. In section 3.2 we use the homogenizing

gadget to prove that SVP is NP-hard to approximate by reduction from CVP.

3.1 The Homogenizing Gadget

The core of our reduction is the following lemma regarding the existence of matrices

L, s and C needed in our homogenization process.

Lemma 1 (Technical Lemma) For any ,l norm (p > 1) and constant c < 21/p ,

there exists a (probabilistic) polynomial time algorithm that on input 1k outputs a

lattice L E Zmxm, a vector s E Zm' , a matrix C E ZkXm and a rational r such that

* for all z E Z m, IILzjjp > cr.

* for all boolean vectors x E {0, 1}k there exists an integer vector z E Zm such

that Cz = x and IILz - sll < r.

The lemma is illustrated in figure 3-4: it is possible to find a lattice L with

minimum distance A1 > cr and a sphere centered in s with radius r such that all
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Figure 3-4: The technical lemma: lattice L has minimum distance c times the radius

of sphere s and all boolean vectors of length k can be expressed as Cz for some lattice

vector Lz inside the sphere.

boolean vectors of length k can be expressed as Cz for some lattice vector Lz in the

sphere. Notice that this implies that the sphere contains at least 2 k lattice points.

Proving the technical lemma will be the subject of the next chapters: in particular

in Chapter 4 we build a lattice such that there exists a small sphere containing

exponentially many lattice points, and in Chapter 5 we define (probabilistically) an

integer linear transformation C such that all boolean vectors {O, 1}k are in its image.

The actual proof of the technical lemma is given in Chapter 6 where we combine

the constructions of Chapters 4 and 5. In Chapter 4 we will also prove that for the

Euclidean norm it is not possible to pack exponentially many points in a sphere at

minimum distance c times the radius. This implies that the lemma is essentially

optimal and the condition c < tr is necessary and sufficient for L, s and C to exists

(in the Euclidean norm). The condition c < 21/P will also be the limiting factor in

the proof of NP-hardness of GapSVP,.



3.2 The Reduction

We use the homogenizing gadget defined in the previous section to prove our main

theorem.

Theorem 2 For any 1, norm (p > 1) and any c < 21/P, the promise problem GapSVPc

is NP-hard for randomized reductions.

Proof: Fix an lp norm and a constant c < 21/p. Let 6 be a rational between c and

21/p and let g be an integer greater than (c-P - 6-P)-/P. We prove that GapSVPc

is NP-hard by reduction from the promise problem GapCVP' which is known to be

NP-hard from Theorem 1. Let (B, y, d) be an instance of GapCVP, and let k be the

dimension of lattice £(B). Run the (randomized) algorithm from Lemma 1 to obtain

(with high probability) a lattice L E Z m x m , a vector s E Zm', a matrix C E Zkxm

and a rational r such that

* for all z E Z m, IILllII > ar

* for all vectors x E {0, 1}k there exists a z E Zm such that Cz = x and IILz -

sl|p < r.

Define the lattice

V = aB -C ay
3L 3s

where a and P are two integer scaling factors such that 2 = ~. Let also t = ~ = - d

We want to prove that if (B, y, d) is a YES instance of GapCVP' then (V, t) is a YES

instance of GapSVP', and if (B, y, d) is a NO instance of GapCVP' then (V, t) is a No

instance of GapSVP'.

First assume that (B, y, d) is a YES instance, i.e. there exists a boolean vector

x E {0, 1}k such that VlBx - ylI < d. By construction, there exists a vector z E Z m

such that Cz = x and IILz - sil < r. Define w = and compute the norm of
-1



the corresponding lattice vector:

IIVwll = atllBx - yjj + #PLz - sllP

(ad)P + (Or)

(c t )P (c t

< t' (cP(cp - P) + c

= tP.

proving that (V, t) is a YES instance of GapSVP,.

Now assume (B, y, d) is a NO instance and let w = be a non-zero integral

vector. We want to prove that jIVwllP > (ct)P. Notice that

IlVwIIP = 'aPIBx + wyjj P + 6PjjLz + wslIP.

We prove that either a INx + wyll > ct or #IILz + wsII > ct. We distinguish the two

cases:

* If w = 0 then z A 0 and by Lemma 1 one has JIILz + wsI = IILzII > /3r = ct.

* If w Z 0, then by definition of GapCVP' one has alIBx + wyll > agd = ct where

X = Cz.

Notice that the randomness in the proof of Theorem 2 comes exclusively from

Lemma 1. Two simple observations then follow. First of all, notice that the random-

ness depends only on the size of the instance of the CVP problem we are reducing

from, and not from the particular instance. So, the shortest vector problem is also

NP-hard to approximate via deterministic non-uniform reductions.

Corollary 1 For any 1, norm (p > 1) and any c < 21/ P, the promise problem GapSVPc

is NP-hard for deterministic non-uniform reductions.



Moreover, if one could prove Lemma 1 via a deterministic algorithm, then the NP-

hardness result for SVP would become deterministic. We don't know if there is any

deterministic algorithm satisfying Lemma 1. However, the construction in the proof

of Lemma 1 can be easily made deterministic using a reasonable number theoretic

conjecture. The conjecture is the following:

Conjecture 1 For any e > 0 there exists a d > 0 such that for all b large enough the

interval [b, b + b] contains a square-free (In b)d-smooth number.

The conjecture is reasonable because relatively simple number theoretic analysis

shows that the average number of square-free (In b)d-smooth numbers in [b, b + b']

exceeds b'-. Therefore, if d = 2/c one expects to find b square-free smooth numbers

in [b, b + b"]. If square-free smooth numbers are distributed uniformly enough then

one can reasonably assume that [b, b + b ] contains at least one such number for all

sufficiently large b. In Chapter 6 we prove the following deterministic version of

Lemma 1.

Lemma 2 If Conjecture 1 holds true, then for any 1, norm (p 1) and any c < 21/ p ,

there exists a deterministic polynomial time algorithm that on input 1 k outputs a

lattice L E Zm'xm, a vector s E Zm', a matrix C E Zkxm and a rational r such that

* for all z E Z m , IILzp > cr.

* for all boolean vectors x E {0, 1}k there exists an integer vector z E Zm such

that Cz = x and |ILz - sllp < r.

From the proof of Theorem 2 and the above lemma one immediately gets the

following corollary.

Corollary 2 If Conjecture 1 holds true, then for any I, norm (p > 1) and any c <

21/p , the promise problem GapSVP, is NP-hard for deterministic many-one reductions.



Chapter 4

Packing Lattice Points in a Sphere

In this chapter we study the following packing problem. How many lattice points

can be packed in an n-dimensional sphere of radius p, while keeping the length of

the shortest vector in the lattice at least A? Clearly the answer depends on the ratio

A/p only. If we drop the requirement that the points must belong to a lattice, and

normalize the minimum distance between points to A = 2 we get the following sphere

packing problem (see figure 4-1): how many unit balls can be packed inside an n-

dimensional sphere of radius R = 1 + p? We want to determine for which values

of A/p we can pack exponentially (in n) many points. Notice the following (trivial)

facts:

* If A/p dicreases with n, say A/p = 2n - 1/ 2, than one can pack exponentially many

spheres. Consider for example the cubic lattice 22  with minimum distance

A = 2. The sphere centered in s = [1, ... , 1] of radius p = V contains all 2"

vertices of the hypercube [2 ± 2,..., 2 ± 2] (see figure 4-2).

* If A/p is sufficiently large, than only a constant number of points can be packed,

independently of the dimension. For example, if A > 2p then only one point

can be packed, while if A = 2p one can pack at most 2 points.

* One can keep A/p bounded and still pack arbitrarily many points in high di-

mension. For example, consider the even lattice generated by the vectors el +ei

(i = 1,..., n) with minimum distance A = 2. The sphere centered in el of radius



Figure 4-1: Packing spheres in a bigger sphere

p = vf2 contains the 2n lattice points el ± ei (i = 1,..., n). This correspond to

packing 2n unit spheres in a ball of radius VF2 as shown in figure 4-3.

We are interested in lattices such that A/p > 1. A few natural questions arise.

Can we do any better when A/p = v2? What happen when A/p > vf2? Can we pack

exponentially many points when A/p E [1, v2)? In the course of this chapter we will

answer the previous questions and prove the following facts:

1. If A/p > /2, then one can pack only constantly many points (independently of

the dimension).

2. If A/p = v2, then the maximum number of points is precisely 2n.

3. For any p > V2, one can pack exponentially many points.

Upper bounds 1 and 2 actually hold even if we drop the requirements for the

points to belong to a lattice, and were first proved in [66] for spherical codes (i.e., a

sphere packing problem with the additional constraint that all points must be at the

same distance from the origin).



Figure 4-2: The cubic packing

Figure 4-3: The octahedral packing



If we don't ask for the points to belong to a lattice with minimum distance A, an

exponential lower bounds for any A/p < V2' is already implicit in Gilbert bound [28]

for binary codes. Non-constructive proofs for spherical codes were given by Shannon

[75] and Wyner [80]. However, the points generated by these constructions do not

form a lattice. We give a proof of lower bound 3 in which the points are vertices of

the fundamental parallelepiped of a lattice with minimum distance A. The proof is

constructive, meaning that a basis for the lattice and the center of the sphere can be

efficiently computed.

We remark that the lower bounds in [75, 80] show that it is possible to pack 2" n

points, where a is a constant that depends only on p > V2, while our construction

succeeds in packing only 2n points. We don't know if our construction is asympthot-

ically optimal for lattice packings.

The rest of this chapter is organized as follows. In section 4.1 we present the simple

proofs of the upper bounds for the cases A/p > v. These are not immediately

relevant to the construction of the homogenizing gadget of Lemma 1, but explain

why V2 is a limiting factor in that lemma. In Section 4.2 we show how to pack

exponentially many points when A/p < /2. The lattice defined in Section 4.2 is a

real lattice. In Section 4.3 we show that the lattice described in Section 4.2 can be

efficiently approximated by a rational one. In the last section we present a few more

results about our lattice packing. These results are not directly useful to the rest of

this thesis, but add some insight to the construction of section 4.2.

4.1 Packing Points in Small Spheres

In this section we study the cases when A/p _ v/2 and prove upper bounds on

the number of points that can be packed in a sphere of radius p while keeping the

minimum distance between points at least A. Without loss of generality we assume

A = 2 and bound the maximum number of points that can be placed in a sphere of

radius p < vf2 while keeping the points at distance at least 2 of each other. Let's

start with the simple case p < 0v.



Proposition 1 For any p < vf2, the maximum number of points with minimum

distance 2 that can be packed in a sphere of radius p is .

Proof: Let xi,...,XN be a set of vectors such that x11x11 p < /2 and Ixi -xjlJ > 2

for all i : j. Notice that

NN

N(N-1)4 < E IIXi-xjW2

i= j=1

NN
= E E(I]xI 2 + XjlI 2 - 2(xi, xj))

i=1 j=1
N N 2

= 2NZ IxiI,2 -2 x,
i=1 1i=1

< 2N2p2

and therefore 2(N - 1) 5 Np 2 . Solving the linear inequality for N one gets N < 2-2

and since N is an integer N < [-2. O

Notice that the above bound is sharp: for all p < vf2, one can put n = 2

unit balls on the vertices of an (n - 1)-dimensional simplex, and inscribe the simplex

inside a sphere of radius 2(1 - +) p (see figure 4-4). This example also shows

that when p = F2 for every n > 1 one can pack n + 1 spheres in the n-dimensional

ball of radius 1 + p. In fact it is possible to do better than that. For example one can

place 2n spheres centered in ±i/2ei (see figure 4-3). We now show that this packing

is optimal.

Proposition 2 The maximum number of points at distance at least 2 of each other

that can be placed in a sphere of radius xv2 is 2n.

Proof: By induction on n. If n = 1, the statement is true. Now assume the statement

holds for some value n, and let's prove it for n + 1. Let x 1,... , XN vectors in Rn+1

such that JJXi 112 < 2 and |Ixi - Xjj 2 > 4. Notice that for all i # j one has

(xi, x() = 2(xi12 + 11j2 lx,- xjll2)

< -(2+2-4)=0
2



Figure 4-4: The tetrahedral packing

i.e., the angles between any pair of vectors are at least 7r/2. We first explain the

geometric idea behind the proof. Assume without loss of generality that xN $ 0.

Think of XN as the north pole. We map all point to the poles and the equator in

such a way that all angles between any pair of points remain at least 7r/2. Then, we

apply induction to the set of points on the equator.

We now give the formal proof. Define the set of vectors

, (XN, XN)Xi - (Xi, XN)XN if (XN, XN)Xi # (Xi, XN)XN

xi otherwise

and let x' = v/2x/llx II. Notice that for all i, jjIx~' 2 = 2 (i.e., x' is on the surface) and

either x' = +x" (i.e., xi' is a "pole") or (x ', x'N) = 0 (i.e., x' is on the "equator").

We now prove that jjx~ - x11j2 > 4 for all i # j. If x' = x' or x, = ±x'" it is

obvious. So, assume x$ x' and x$! +:x. Notice that

Ilx - xi'll = IIxIll2 + Ilx~ill - 2(x", x)

= 2+2- 2 (X, Xj)(XN,XN) 2 - (Xi,xN) (Xj,N)(XN, xN)
1x11 . 11xill

>4

because (xi, Xj), (xi, XN), (Xj, XN) < 0 and (XN, XN) > 0. Therefore all points, except

at most two of them, belong to the n-dimensional subspace orthogonal to xN. By



induction hypothesis there are at most 2n such points and N < 2(n + 1). O

4.2 The Exponential Sphere Packing

In this section we study the case A/p < V2. For any p and A satisfying A < V2p, we

prove that there exist a real lattice A with minimum distance A and a sphere B(s, p)

containing 2n6 lattice points (for some constant 6 > 0 depending on c = A/p). The

proof is constructive and has the additional property that the centers of the spheres

are vertices of the fundamental parallelepiped of a lattice basis. The statement holds

(with the appropriate changes) for any ,l norm. We first define a lattice and prove a

lower bound on the length A1 of its shortest vector. Then we look for a sphere with

radius AX/c containing many lattice points.

4.2.1 The lattice

We begin by defining a lattice A and bounding the length of its shortest vector.

For notational convenience we define A as an m-dimensional lattice in Rm+1. A full

dimensional lattice with the same properties can be easily found by simple linear

algebra. The definition of A is parametric with respect to a real a > 0, a sequence of

positive integers a = al,..., a, and an 1, norm (p > 1), and we write AP [a] when we

want to make this parameters explicit. We use the logarithms of the integers al to

am as entries in the basis vectors, and define a basis vector for each ai. The idea is

to match the additive structure of the lattice with the multiplicative structure of the

integers. The definition follows.

Definition 4 For any a > 0, integers a = al,..., a, and p > 1, let AP [a] be the m

dimensional lattice in Rm+1 generated by the columns of the matrix

(In al)'1/  0 0

0 0'. O

0 0 (In am) 1/p

aln al ... aln am.



Variants of this lattice have appeared before in the computer science literature.

This lattice (with p = 1) was first used by Schnorr [69] to heuristically factor integers

by reduction to SVP. Adleman [3] also used the same lattice (with p = 2) to reduce

factoring to SVP under some number theoretic assumptions. A modified version of

Adleman's lattice was used by Ajtai to prove the NP-hardness of SVP [5]. As far as

we know, our is the first explicit use of this lattice to build dense sphere packings.

We now bound the minimum distance between points in A. The bound holds for

any 1, norm (p 2 1). Clearly, for any lattice, one can make the minimum distance

between lattice points arbitrarily large just multiplying all entries in the basis vectors

by the appropriate value. The peculiarity of lattice AP.[a] is that one can bound

the length of the shortest vector from below by a growing function of a, a constant

multiplying only the last coordinate of the basis vectors. We prove the following

bound.

Lemma 3 If al,... , a, are relatively prime, then the shortest non-zero vector in

AP[a] (in the 1, norm) has length at least (21na - 1)l/P.

Proof: Let L be the matrix defined in Definition 4. We want to prove that for

all non-zero integer vectors z E Zm, IILz IP > 2 21na - 1. We first introduce some

notation. Let R E Rm be the row vector

R = [n al , Ina 2,., In am]

and D E Rmxm be the diagonal matrix

(In al)l /P 0 ... 0

0 (In a 2)
1/ p ... 0

0 ... 0 (In am) /p



Fix a non-zero integer vector z E Z m and define the integers

=aII a
i:zi>O

9= lla z
i:zi<O

m

9 = g=ll Zi
i=l

Notice that

L =
aR

and

IILzll' = IlDzIl' + aP (Rz)P.

We bound the two terms separately. The first term is at least

IjDzjll = jzlq I lna
i

> Izillnai
i

= In g

because p > 1 and the z's are integers. Bounding the second term is slightly more

complex:

IRzI = zi lna

= In -l-In |

= In 1 +m -}).
min(, g

Now notice that since z is non-zero, the integers A and - are distinct and therefore

19 - 41 1. Moreover, min{4, 4} < v = V, and by monotonicity and concavity

of function In(1 + x),

In (1 + 1 § > In 1+ > .



Combining the two bounds one gets

(a In 2)IjLzjI = IIDzjjP + oa (Rz) > In g + n 2)P
gp/ 2

which is a continuous function of g with derivative g-(l+p/2)(gp/2  (p/2 )(aln 2)P).

The function is minimized when g = (a In 2) 2 (p/2)2 /p with minimum

2 In a + 2 In In 2 + (2/p) Iln(p/2) + (2/p) > 2 In a - 1.

Notice that for the special case p = 2, 2 In In 2+(2/p) In(p/2)+(2/p) = 2 In In 2+1 > 0

and the nicer bound IILz llIP > 2 In a holds true. O

4.2.2 The sphere

In this section we look for a sphere (with radius smaller than the minimum distance

in the lattice) containing many lattice points. Obviously the center of such a sphere

cannot be a point in the lattice if one wants the sphere to contain more than a single

lattice point. We look at spheres with center

0

so [b] =
0

a ln b

where b is a positive integer, and show that there is a close relationship between

finding lattice vectors close to s and approximating the integer b as a product of the

ai's.

In the next lemma we show that if b can be approximated by the product of a

subset of the a~s, then there are lattice points close to s. A converse of this lemma is

presented in Section 4.4.

Lemma 4 For all reals a > 0,p > 1, positive integers a = al,..., am and boolean



vector z e {O, 1}m, if g = 1 az" e [b, b +b/a] then

jIL.[a]z - sG[b]jjp 5 (Inb+ 2)' /P .

Proof: Let D and R be defined as in the proof of Lemma 3. Notice that since z is a

0-1 vector,

||Dz| P = Rz = Ing

and therefore

Lz-sl' = IIDzIIll + Rz - Inb

= In g + aY(ln g - In b)

= lnb+ln+ aln .

From the assumption g E [b, b + b/a] and using the inequality ln(1 + x) < x one gets

g1) 1In In 1 +1) < -
b- a a!

which, substituted in the expression above gives

1
|ILz - s|P < lnb+ - + 1 < Inb + 2.

Let now e be a small positive real constant and set a = b(l-'). From Lemma 3,

the minimum distance between lattice points is at least A = (2(1 - e) In b - 1)l /P, and

there are many lattice points within distance (In b + 2) 1/P ; A2- from s, provided

that the interval [b, b + b] contains many numbers expressible as the product of a

subset of the ai's. If al,..., am is the set of all prime numbers less than some integer

N, this is the same as saying that [b, b + b"] contains many square-free N-smooth

numbers. In the next subsection we show how to find a b such that this is true.



4.2.3 Choosing the center

We defined a family (indexed by an integer b) of lattices A and points s such that

there is a lattice vector within distance Ai(A)/c from s for every square-free smooth

number in the interval [b, b + b']. We now show that by an accurate choice of the

parameters we can always make sure that [b, b + b'] contains many square free smooth

numbers. Let m and n be any two integers with n < m. Let pl,...,pm be the set

of the first m (odd) prime numbers and let S be the set of all products of n distinct

primes less than or equal to Pm. By the Prime Number Theorem, pm = O(m ln m)

and S C [1, M] for some M = O(mlnm)". Notice that ISI = (:) > (,)n. Divide

the positive real semi-axis into intervals of the form [b, b + b'] with b' < b. For

example, for all integers i, divide [2i, 2i+1] into 2(1- ' )i intervals of size 2' i . Notice that

the segment [1, M] is divided into

lg2 MJ 2 (1->) g 2 M] - 1
S2(-21-6 - 1

i=O

2M(1- ') - 1

21-1 - 1
= O(M(1-1))

intervals. Therefore, by an averaging argument, there exists an interval [b, b + b']

containing at least (ni- me) n square-free pm-smooth numbers. If we choose n = m6

for some 6 < E, then the number of lattice points close to s is at least 2 n = 2m

This proves that there always exists a b such that [b, b + b'] contains exponentially

many square-free pm-smooth numbers, but still leaves the problem of algorithmically

find such a b open. If square-free smooth numbers are distributed uniformly enough,

any choice of b is good. Unfortunately, we don't know enough about the distribution

of smooth numbers to make such a statement about small intervals [b, b + b'] (it can

be easily proved that for all b the interval [b, 2b] contains square-free smooth numbers,

but not much is known about interval of sub-linear size).

Therefore one needs either to conjecture that smooth numbers are distributed

uniformly enough or exploit the smooth number distribution (whatever it is) to bias



the choice of the interval in favor of the intervals containing many smooth numbers.

This can be easily accomplished as follows. Select a random subset (of size n) of

the primes pl,..., p, and select the interval containing their product. It is a simple

observation that each interval is picked up with a probability proportional to the

number of square-free p,-smooth numbers contained in it. So, for example, intervals

that contains no smooth numbers are never selected. The probability of choosing an

interval containing few points is bounded in the next lemma.

Lemma 5 Let B1,..., Bk be k (disjoint) intervals containing an average of A points

each. If B is chosen by selecting a point at random and letting B be the interval

containing that point then for any 6 > 0,

Pr{#B < 6A} < 6

where #B denotes the number of points in interval B.

Proof: Let N be the total number of points. Observe that A = N/k and Pr{Bi} =

#Bi/N. Therefore,

Pr{#B < A} = Pr{Pr{B}N < 6A}

= Pr{B}
Pr{Bi)}N<6A

k6A
< -- =6.

N

We can now prove our sphere packing theorem.

Theorem 3 For any 1, norm (p 1) and positive constants c < 21/ P, e < 2P

there exists a probabilistic polynomial time algorithm that on input 1" and 1m outputs

a lattice L E Rml m , a vector s E R m' and a real r such that for all m and n

sufficiently large with probability exponentially close to 1

. the shortest vector in L has length at least cr



* there are at least m( ) vectors z e {, 1}m with exactly n ones such that Lz

is within distance r from s.

Proof: Let pl,..., pm be the first m (odd) primes and let S be the set of all products

of n distinct primes less than or equal to Pm. Notice that IS| = (') and from the

prime number theorem S C [1, M] where M = O(m In m) n . Select d E S at random

and let
b =21g2sJ + 2 El1g 2 sJ L d - 2L12g2 s

S2E 2Lg 2  J

This is equivalent to partitioning [1, M] into O(m In m)(1-' )n intervals and select one

as described in Lemma 5. It follows that

Pr {I[b, b + bE]nSi< m " O(mlnm)(l-)
(M)

=0 (mn(mlnm)1-) n

= (n m) '"

Define L, s and r as follows:

L = Lp_,.[pl,...,pm]

s = Sbl-,[b]

r = (Inb+2)'/ P .

From Lemma 3 the shortest vector in L has length at least (2(1 -) In b- 1)1 /p > cr

for all sufficiently large n (notice that In b > n). Finally, applying Lemma 4 to all z

such that -p"' E [b, bE] we get that with probability exponentially close to one there

are at least ( m )n vectors z E {0, 1}m with exactly n ones such that Lz is within

distance r from s. O



4.3 Working with Finite Precision

In the previous section we proved our packing theorem assuming a model of compu-

tation in which one can store and operate on arbitrarily real numbers using constant

space and time. We now show how to achieve the same result using finite precision

arithmetic. In particular we define integer lattice L and sphere B(s, r) satisfying the

conditions in Theorem 3.

In the next two lemmas we bound the error incurred by truncating the entries in

in L and s to some rational approximation. More precisely we multiply L, s and r by

a relatively small value and truncate all entries to the closest integer.

Lemma 6 For all 6 > 0 and all integer vectors z E Zm

IIL'zI > (6-1 - 1)mlLz

where L' = [(m/6)L] is the matrix obtained multiplying L = LP[a] by m/6 and

truncating each entries to the closest integer.

Proof: By triangular inequality

ljL'zjj = Ij(m/6)Lz + (L' - (m/6)L)z

> II(m/6)LzI - II(L' - (m/6)L)zjj

= 6-'mlLzj - II(L' - (m/6)L)zll.

It remains to prove that |I(L' - (m/6)L)zjl < mllLzl . Notice that all entries in

(L' - (m/6)L) are less than 1/2 in absolute value. Therefore

II(L'- (m/)L)zII < (IzIp + ( z)
1

< (1111" + m"111")'"

< llll.



Furthermore,

IILzIjj = IIDzllj + a P IRz P

> IDzI P

> IIzIIP

because D is diagonal with all entries greater than 1. This proves that II(L' -

(m/J)L)zII 5 mllLzjj and therefore IIL'zII (>-1- 1)mllLzjII. O

Lemma 7 For all 5 > 0 and all integer vectors z E Zm

jjL'z - s'll (5- 1 + 1)mlLz - sli

where L' = [(m/6)L] and s' = [(m/6)s] are the matrices obtained multiplying L =

LP,[a] and s = s,[b] by m/6 and truncating each entry to the closest integer.

Proof: By triangular inequality

IIL'z - s'll = II((m/6)Lz - (m/)s) + (L' - (m/)L)z - (s' - (m/6)s)ll

I((ml/)Lz - (m/5)s)ll + II(L' - (ml/)L)z - (s' - (m/6)s)j

= 6-mIILz - (m/6)sll + II(L' - (m /)L)z - (s' - (m/S)s) l.

Notice that all entries in (L'- (m/J)L) and (s'- (m/l)s) are less than 1/2 in absolute

value. Therefore

II(L' - (m/l)L)z - (s' - (m/6)s)IIP < (1/2)P(11zll + (E Izil + 1)p ) < mllIzII .

Furthermore,

ILz - si[ 2 IIDzI > lizil

because D is diagonal with all entries greater than 1. This proves that

II(L' - (m/6)L)z - (s' - (m/S)s)11 < mIlLz - sil



and therefore

IIL'z - s'l ((6-' + 1)I L'z - s' I.

Using Lemmas 6 and 7 in the proof of Theorem 3 one easily gets the following

corollary.

Corollary 3 For any i, norm (p > 1) and positive constants c < 21/ p , E < 2c

there exists a probabilistic polynomial time algorithm that on input 1 and 1m outputs

a lattice L E Zm'xm, a vector s e Zm' and an integer r such that for all m and n

sufficiently large with probability exponentially close to 1

* the shortest vector in L has length at least cr

* there are at least (nm) vectors z E {0, 1}m with exactly n ones such that Lz

is within distance r from s.

4.4 On the Optimality of Some Choices

In this last section we prove a few more facts about our lattice packing. These results

are not directly useful to the rest of this thesis, but might be useful in subsequent

developments of this work.

We first give a closed expression for the determinant of lattice A[a,... , am].

Then we prove a converse of Lemma 4 for the 11 norm. Namely, we show that any

lattice point sufficiently close to s corresponds to a Diophantine approximation of the

integer b.

Proposition 3 For any choice of the integers al,..., am, the determinant of lattice

A [a,,. .. am] is
m

(1 + a2 Ii)I In a.
i=1

Proof: Compute the Gram matrix BT - B and evaluate its determinant by induction

on m. O



The determinant of a lattice equals the inverse of the density of lattice points in

space. Notice that lattice A'[a] is not particularly dense. In fact, the expected number

of lattice points in a random sphere of radius p is much less than what predicted by

Theorem 3. This is not surprising, because our lattice packing has a very special

geometric structure.

Finally, we present a converse of lemma 4 for the special case of p = 1 (similar

results might hold in any l, norm, but assuming p = 1 makes the calculations much

simpler). A slightly weaker result was first used in [69] to heuristically reduce factoring

integers to solving the closest vector problem. In Lemma 4 we showed that if b can

be approximated as a product of a subset of the ai's then there exists a lattice point

close to s. We now show that if there are lattice points close to s (in the 11 norm)

then b can be approximated as a product of the ai's.

Proposition 4 For any integer vector z such that IILz - sil < In b, g = 1 afi is a

Diophantine b/a-approximation of b, i.e., if 4 = n,,>o af' and = ,,<o ar' , then

|I - bJ < b/a.

Proof: Let g, , 4 be defined as in the lemma. We want to find the maximum of the

function ^| - §bI subject to the constraint IILz - sill < In b. Notice that

IILz - sill = In + In + al In g - In b

and 19 - 4b| are symmetric with respect to 4 and §b, i.e., if one replaces 4 by §b and

4 by 4/b the value of the functions is unchanged. Assume without loss of generality

that > b. The problem become to maximize ^ - §b subject to the constraint

(1 + a) In+ (1 - a) Ing < (1 + a) Inb.

For every fixed value 4, the function 9-§b is maximized subject to the above constraint

...... when = bi+. So, let's compute the (unconstrained) maximum of the function

a--1
b§-'4- - §b



This is a continuous function of 9 with derivative

b( )r - b.

The maximum is achieved when - ( +1)/2 and equals

2 2b ba-)

a+1 a+1 a

for all a > 3. EO

In particular, if a = b1-  then for every lattice vector within distance In b from s,

the integer g associated to the vector is a Diophantine b'-approximation of b.
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Chapter 5

A Combinatorial Theorem on

Low-degree Hyper-graphs

In this chapter we study the following combinatorial problem. Let Z C_ {0, 1}m be

a set of m-dimensional boolean vectors. We want to find an integer linear trans-

formation C E Zkxm (with k as large as possible) such that every boolean vector

x E {0, 1}k can be expressed as Cz for some z E Z.

In the rest of this chapter U will be some fixed set of size m, and the boolean

vectors in Z are identified with the subsets of U in the obvious way. In other words,

(U, Z) is regarded as a hyper-graph with nodes U and hyper-edges Z. Notice that for

any two vectors x, y E {0, 1 }m, the scalar product x -y = > "~= xyi equals the size

of the intersection of the corresponding sets. We restrict our attention to matrices C

with boolean entries, so that the rows of C can also be identified with subsets of U,

and the above problem can be reformulated as follows. We want to find a sequence

of sets C,..., Ck with the property that for every bit string ... x Xk there exists a

set A E Z such that IC, n AI = xi for all i = 1,..., k.

It can be proved that if IZI > mk, there exists a solution consisting of singleton

sets Ci = {cj}. This is essentially a combinatorial result proved, independently, by

Sauer (1972), Perles and Shelah, and, in a slightly weaker form, by Vapnik and Cher-

vonenkis, which we refer to as Sauer's Lemma. The proof of this result is relatively

simple, but not constructive: it only asserts that C exists, but it does not give any



effective (even probabilistic) way to find it.

A probabilistic variant of Sauer's combinatorial lemma was first found by Ajtai.

In [5], Ajtai shows that if Z is regular (all elements of Z have exactly size n) and

IZ| is sufficiently big (IZI > n "c for some constant c), then by choosing C at random

according to a given (easily sample-able) probability distribution, then with high

probability all x E {0, 1}k belongs to CZ = {Cz: z E Z}, where k, m and n are

polynomially related. The exact relationship among the parameters k, m, n and c can

in principle be deduced from the proof in [5], but the technicality of the proof makes

it hard to extract and it is currently not known.

We present an alternative construction with a much simpler analysis. We prove

that if Z is n-regular, IZI > n!mw(V k), and C E {0, 1}kxm is chosen by selecting

each entry independently at random with probability p = o(-), then {0, 1}k C CZ

with probability 1 - o(1). We first prove a weaker result: we show that every vector

x E {0, 1}k belongs to CZ with very high probability. The difference between the

weak and strong version of the theorem is in the order of quantification. While the

theorem in its strong form asserts that with high probability C is good for all target

vectors x, the weak version only says that for any fixed target vector x, matrix C

is good with high probability. The weak version of the theorem can be proved by a

relatively simple argument based on Chebychev inequality. We then show that the

strong version of the theorem easily follows from the weak one.

The rest of the chapter is organized as follows. In Section 5.1 Sauer's combinatorial

result is presented and it is explained why it fails to be constructive. Then our

probabilistic construction is presented in Section 5.2 where the weak version of our

theorem is proved. The strong version of our theorem is proved in the last section

using the weak theorem and the ideas from the proof of Sauer's lemma.

5.1 Sauer's Lemma

In this section we present a proof of Sauer's Lemma. This combinatorial result is

usually stated in terms of the Vapnik-Chervonenkis dimension (VC-dimension) of a



range space. In order to avoid the introduction of new concepts, we reformulate

Sauer's Lemma in terms of the sets C1,..., Ck and Z. Sauer's result is essentially

a solution to our combinatorial problem with the restriction that the Ci must be

singleton sets, i.e., sets containing exactly one element.

When the rows of C are singleton sets, the linear operation associated to C is

more easily described by the projection onto some set G C U as follows. For any

hyper-graph (U, Z) and for any subset of nodes G C U, define the restriction of Z to

G by

ZIG = {A nG : A E Z}.

Notice that for every set G C U, the following two condition are equivalent:

* ZIG = 2

* {0, 1}G C CZ where C E {0, 1}GxU is the matrix defined by Cg,, = 1 iff g = u.

Lemma 8 (Sauer's Lemma) Let U be a set of size m and Z be a collection of

subsets of U. Let

[M, k] = )
i=O

be the number of subsets of U of size at most k. For all k, if IZI 2 [m, k] then there

exists a set G of size k such that ZIG = 2G

Proof: The proof is by induction on m + k. If m = k = 0 the assertion is trivially

true. Notice that [m, k] = [m - 1, k] + [m - 1, k - 1]. Assume that the lemma holds for

m - 1, k and m - 1, k - 1, and let's prove it for m, k. Let IUI = m and IZI 2 [m, k].

Pick an element a from U and define U' = U \ {a} and the following two collections

of subsets of U':

Zo = A C U': A E Z

Zi= {AC U':AU{a} E Z}.

Notice that IU'I = m - 1 and

Iz u zl + Iz n z Izo1 + 1zl



> [m,k]

= [m-1,k]+[m- 1,k-1].

Therefore, either IZo U ZI| 2 [m - 1, k] or |Zo n Z11 > [m - 1, k - 1]. We deal with

the two cases separately:

* if IZo U Z I > [m - 1, k], then by inductive hypothesis there exist a set G C U' C

U of size IGI = k such that (Zo U ZO)IG = 2G. Since a V G, ZIG = (Zo U Z1) IG

20.

* if IZonZ l [m-1, k- 1], by inductive hypothesis, there exists a set G' C U' c

U such that (ZofnZ)IcG = 2
' . Let G = G'U {a}. We now show that ZIc = 20

The inclusion ZIG C 2G is obvious. So, let's prove 2G C ZIG. Let A E 2 .

Notice that A \ {a} belongs to both Z IG' and Z1 IG'. Therefore A \ {a} E ZG

and A U {a} E ZG. Since A equals either A \ {a} or A U {a}, A E ZG.

Since [m, k] < mk, one immediately gets the following corollary.

Corollary 4 Let Z C {0, 1}m be a collection of boolean vectors. If IZI > mk then

there exists a matrix C E {0, 1}kxm such that {0, 1}k C CZ.

Observe that the bound in Sauer's Lemma is tight: if Z is the set of all subsets of

U of size k or less, IZI = [m, k] and any set G satisfying the assertion in the lemma

has size at most k. The proof of the lemma suggests a possible way to find the set G:

select the elements of U one at a time. For each a E U, if there are a lot of subsets

A such that both A \ {a} and A U {a} belong to Z, then include a in G, otherwise

discard it, project Z onto U \ {a} and go on to the next element. The problem is

that the step of deciding whether a given a E U is good or bad may not be effective.

Notice that a single element a might belong to all sets in Z (or none of them), and

still IZI be quite large, and selecting such an element a would be disastrous. We show



in a later section that when Z is very large (IZI ; 2 m), then G can be chosen at

random and a probabilistic analogue of Sauer's Lemma holds. But first one has to

get rid of the bad elements. This is accomplished in the proof of the weak version of

the theorem.

5.2 Weak Probabilistic Construction

We now present the weak version of our randomized construction. The idea underlying

this construction is that if the sets in Z are small, then there cannot be too many

elements in U that belong to many A E Z. If the probability that any fixed a E U

belongs to some C is sufficiently small, then with high probability none of these bad

elements will be selected. So, we assume that the sets in Z have bounded size. In

particular we assume the hyper-graph (U, Z) is regular, i.e., all hyper-edges in Z have

size n for some n. This is not great loss in generality because if all hyper-edges in Z

have size at most n, then Z must contain a regular hyper-graph of size at least IZI/n.

We now state our theorem in its weak form.

-V'iik

Theorem 4 Let (U, Z) be an n-regular hyper-graph with IUI = m and IZI > n!m .

Define matrix C E {0, 1}kxm at random by setting each entry to 1 independently with

probability p = J. Then, for every x E {0, 1}k,

Pr{Bz E Z.Cz = x} > 1 - 4e.

The proof of the theorem will take the rest of this section. We outline it here.

Consider the target vector x as fixed. For each hyper-edge A E Z, let XA be the

event CA = x (or more precisely, Cz = x where z E {0, 1}m is the vector associated

to A). We want to bound the probability that XA is false for all A E Z. Since the

set Z is very big, the expected number of A E Z such that XA is true is also very

high. Unfortunately, this is not sufficient to conclude that with high probability there

exists an A E Z such that XA is true, because the random variables {XA}AEZ might

be strongly correlated. Notice that if A and B are disjoint (i.e., A n B = 0), then



the corresponding events are independent. However, if IZI is big many pairs in Z

will intersect because there cannot be more than m/n mutually disjoint hyper-edges.

However, one can still hope that for most of the pairs A, B E Z, the intersection

A n B is empty or very small. The proof of the theorem is divided in three major

steps:

* We first show that the probability Pr{-J3A E Z.XA} can be bounded by the

expectation E[eR - 1], where -y is a small positive real, and the random variable

R is the size of the intersection of two randomly chosen elements of Z.

* Then, we show that Z "contains" a hyper-graph such that the intersection of

two randomly selected hyper-edges is very small with high probability.

* Finally we prove the theorem applying the bound E[eR - 1] to this hyper-graph

contained in Z.

Each of the above steps is described in the following subsections.

5.2.1 The exponential bound

We start by computing the probability that XA is true. In the next lemma we prove

a more general statement concerning the probability that two events XA and XB are

simultaneously satisfied and relate it to the size of the intersection R = JA n BI of

the two corresponding sets.

Lemma 9 Let A,B C U be two sets of size n and let C E {0, 1}kxm be chosen

at random by setting each entry to 1 independently with probability p. Then, the

probability Pr{XA A XB} equals

Q(R) (1 - p)(2nR)k + (P( - R) 2

where R = IA n BI and Ixlh is the Hamming weight of x, i.e., the number of ones in

vector x.



Proof: Since the rows of matrix C are chosen independently,

Pr{XA A XB} = Hi l Pr{iCi n A I = ICi n B I = zi}.

We prove that for all i = 1,..., k,

Pr{IC n Al = ICi n B I = x} = (1 _p)(2n-R)

First consider the case xi = 0:

pR
1-p

1p(n - R)2-X
1-p ) i

Pr{IA n il = IB n Ci = 0} = Pr{(AUB) nCi = 0}

= (1 - p) AuBI

= (lp)2n-R.

Now consider the case xi = 1:

Pr{IA n CiI = IB n CiI = 1}

= IAn BI . p(1 - p)lAUBI-1 + IA \BI IB \ Al. (1 _ p)lAUBI-2

S2 P( p)AUBI-2 (1 - p)R

= (1 - p)(2n-R)
pR+
1-p 1 - p

By choosing A = B in the previous lemma one gets the following corollary.

Corollary 5 Let A C U be a set of size n, and C E {0, 1}kxm be chosen at random

by setting each entry to 1 independently with probability p. Then,

p)l-pn )IxIhPr{XA} = I(n) =

+(n R)2)



Notice that when AnB = 0,

Pr{XA, XB} = 4D(O) = ((n) 2 = Pr{XA} Pr{XB},

i.e., the events XA and XB are independent. We can now prove the the following

proposition.

Proposition 5 Let C E {0, 1 }kxm be chosen at random by setting each entry to 1

independently with probability p. Let Z be a collection of subsets of U containing

exactly n ones each. Then, for each x E {0, 1}k the probability that Cz $ x for all

z E Z is at most E[eR] -1, where y = + A and R is the size of the intersection

of two randomly chosen elements of Z.

Proof: Fix some vector x E {0, 1}k and choose C at random as specified in the

theorem. For all A E Z, let IA be the indicator random variable

1 if XA is true
I 0 otherwise

Define the random variable X = EAEZ IA. Notice that

E[X]= E Pr{XA}= IZJl(n)
AEZ

and

E[X2 ] = E[(E IA)2] = E Pr{XA, XB} = IZI2EA,B[G(IA n BI)]
AEZ A,BEZ

where the last expectation is over the choice of A, B E Z. Let R = IA n BI. XA is

false for all A E Z iff X = 0. Therefore,

Pr{VA E Z.-XA} = Pr{X = 0}

< Pr{IX - E[X]I E[X]}



which, by Chebychev's inequality, is at most

Var[X] E[X2 ] - E[X]2

E[X]2  E[X]2

E[4(R)]

D(n)2
E[D(R)]

Finally, notice that

(R)= (1 - p)kR (1 -p)R + R 2- Xh

4)() pn2 n

)kR kR
< el--P ep-

- e7
R

and therefore Pr(X = 0} < E[eR] - 1. O

5.2.2 Well spread hyper-graphs

In the previous section we showed that the probability that XA is false for all A E

Z can be bounded by E[eR] - 1. Obviously, the bound is interesting only when

E[eR] < 2. Notice that this can be true only if Pr{R = r} < e- 'r for all but a single

value of r. Therefore the probability Pr{R = r} must decrease exponentially fast

in r. This is not necessarily true for any low degree regular hyper-graph Z. In this

section we show that if Z is sufficiently large, than Z must "contain" a hyper-graph

such that Pr{R = r} 1/r!.

More precisely we show that Z contains a hyper-graph satisfying the following

property:

Definition 5 Let (U, Z) an n-regular hyper-graph. Z is well spread if for all D C U,

IZI (n- IDI)!
A E Z: D C A < 1)...(-D 1)

n(n - 1) ... (n - IDI + 1) n!



Well spread hyper-graphs have the important property that the size of the inter-

section of two randomly selected hyper-edges is small with very high probability, as

shown in the next lemma.

Lemma 10 Let (U, Z) an n-regular well spread hyper-graph. Choose A, B E Z inde-

pendently and uniformly at random and let R = IA n BI. For all r > 0,

1
Pr{R 2 r} < -.

Proof: We prove that for any fixed set A of size n, the probability that IA N BI > r

when B is chosen at random from Z is at most . If IA BI > r then B contains a

subset of A of size r. Therefore, by union bound,

Pr {AnBj > r} < E Pr {C C B}= I{B Z: C B}
BEZCE (ABEZ A)

Since Z is well spread, I{B E Z : C C B}I < IZI, which substituted in the

previous expression, gives

Pr {AnB>r}< (n) (n-r)! 1
BEZ - - r n! r!

We now show how to find well spread hyper-graphs "inside" any sufficiently big

regular hyper-graph. For any subset D C U, define the induced hyper-graph

ZD= AC U\ D:AUDE Z}.

In other words, ZD is the set of hyper-edges containing D, with the nodes in D

removed. Hyper-graph Z is well spread if for every set D, IZD < (nDI)lZI. Notice

the following basic facts:

* ZD is d-regular with d = n - IDI.



* If D = 0 then ZD = Z.

* If |DI = n, then ZD = {D} if D E Z and ZD = 0 otherwise.

* If IDI > n then ZD = 0.

In the following lemma we prove that for any regular hyper-graph Z, there exists

a small set D such that ZD is well spread.

Lemma 11 Let Z C (U) an n-regular hyper-graph. If IZI > n!lUI6 then there exists

a set D C U of size IDI < n - 6 such that ZD is a well spread regular hyper-graph of

degree d > 6.

Proof: If Z is well spread, let D = 0 and the statement is obviously true. Otherwise,

there exists some set D such that IZDI > (DIZ Let D be a maximal (with

respect to the set inclusion ordering relation) set with this property. Notice that

Z' = ZD is d-regular, with d = n - |DI. We prove that Z' is well spread. Let A be

any subset of U. There are three cases:

* if AnD # 0 then IZ | = 0 < IZ',

* if A = 0, then IZ'A = iZ'|- d= iZ' .

* finally assume A 5 0 and A n D = 0. By the maximality of D one gets

IZ'j = IZAUD
(n - |AU DI)

n!
(d - IAI)! (n - IDI)!

d! n!
(d - IAI)!

d!

It remains to prove the lower bound on d. From Z' C (U) and jZ'j > > L

one gets

n! < IZ'I < < Ul d.

If IZl > n!|UI5 then d > 6 and IDI = n - d < n - 6. O



Combining the two lemma above, one immediately obtains the following proposi-

tion.

Proposition 6 Let Z C () be a regular hyper-graph with ZI > n!|U16 . Then there

exists a set D such that

* The size IDI < n - 6.

* ZD is d-regular of degree d > 6.

* If A, B are chosen independently at random from ZD,

Pr{IA n BI > r} < -

5.2.3 Proof of the theorem

We now combine the tools developed in the previous sections to prove Theorem 4.

Let (U,Z) be an n-regular hyper-graph with jUI = m and IZ I > n!mb for some

6 > e-1 x /k. From Proposition 6, there exists a subset D C S of size ]DI < n - 6

such that Pr{IA n B I _ r} < 1 (probability computed over the random choice of

A, B E ZD).

Choose C E {0, 1}k xm at random by setting each entry to one independently

with probability p = !. Let F be the event that all entries in C that belongs to

the columns corresponding to elements in D are 0. Notice that Pr{--F} IDlIk p <

nkp = e. Notice also that

Pr{Vz E Z.Cz $ xIF} < Pr{Vz E ZD.CZ = X}.

Let d = n - ID | > 6 be the degree of ZD. Applying Proposition 5 to d-regular

hyper-graph ZD, the last expression can be bounded by E[eyR] - 1 where

kp k
Y +

1 - p pd2

S k2n
< - 62

n e62



< -+€
n

and R is the size of the intersection of two random elements in ZD.

To bound the expectation E[eR] we use the following lemma.

Lemma 12 Let w be a positive real and R be a random variable over the naturals

such that Pr{R > r} : -. Then E[wR] 5 1 + (1 - 1/w)(ew - 1).

Proof: For any integral random variable R

E[wR] = wr Pr{ R = r}
r>O

= wr(Pr R r}- PrR r + 1})
r>O

= + (1-1/w) Ewr Pr{R r}.
r>1

Using the upper bound Pr{R > r} 1 and the power series expansion e' = Zr -- o

one gets

SWr
r>1

Pr{R > r}
W

r

r!r>l1

= e" - 1.

Since Pr{R > r} < 1, we can apply the lemma with w = e7 and obtain

E[eR] - 1 < (1 - e-')(ee - 1).

Now notice that e- f > 1 - 7 for all y, and ee" - 1 < e for all y < 1/4. Therefore

Pr{Vz E Z.Cz : xIF} < el < e(1 + 1/n)E

and for all sufficiently large n

5 Pr {-F} + Pr{Vz E Z.Cz = xIF}Pr{Vz E Z.Cz = x}



< 4e.

5.3 Strong Probabilistic Construction

We proved that for every target vector x, if C is chosen as described in Theorem 4,

then with high probability there exists a z E Z such that Cz = x. It follows by an

averaging argument that with high probability the size of CZ n {0, 1}m (the set of all

boolean vectors that can be represented as Cz for some z E Z) is almost equal to the

size of the whole {0, 1 }m. We now prove a probabilistic analogue of Sauer's Lemma

that can be applied when IZI 2m .

Lemma 13 Let Z be a subset of {0, 1}m. Let G be a random subset of {1,..., m}.

Then

Pr{ZIG = {0, 1} [

Proof: By induction on m. If m = 0, then G = 0, and Z|G = Z = {0, 1}G

iff IZI = 1 = I{0, 1}ml (observe that {0,1}G = {0, 1} = {e}). Now assume the

statement holds for all Z C {0, 1}m and let's prove it for Z C {0, 1}m±1. Choose G at

random and let G' = G \ {m + 1}. Notice that G' is a random subset of {1,..., m}.

Define the following sets:

* Zo = {x : O E Z}

* Z = {x:xl1 Z}

Notice that IZI = Zol0 + |Z1 | = |Zo U Z11 + Zo n Zi. Moreover, ZIG = {0, 1 }G iff

* (m + 1) ' G and (Zo U Z)IG = 2G', or

* (m + 1) EG and(Zo n Z1)G ,=2G'



Using the inductive hypothesis

Pr{ZIG = {0, 1}G} Pr{(m + 1) E G} Pr{(Zo U Zi)Ic, = 2G'}

+ Pr{(m + 1) V G} Pr{(Zo n Z1)iG' = 2G'}

1 (|Zo U ZI) 1 (|Zo n ZI1

IZo u Zi + Zo n zoz
1z uz r+lz nz

2m+1

IZl
2m+1'

The strong version of the theorem easily follows from Lemma 13 and Theorem 4.

Theorem 5 Let (U, Z) be an n-regular hyper-graph with jUl = m and |ZI > n!m C .

Define matrix C E {0, 1}kxm at random by setting each entry to 1 independently with

probability p = k. Then,

Pr{Vx E {0, 1}k.3z E Z.Cz = x} > 1 - 5c.

Proof: Define a matrix C' E {0, 1 }4kxm at random by setting each entry to 1 in-

dependently with probability p = , and choose a random subset G C 1, ... ,4k of

its rows. Notice that E[#G] = 2k and Var[#G] = k and therefore by Chebychev's

inequality

Pr{#G < k} <

K

Pr{l#G - E[#G]l < k}
Var[#G]

k2

1

k

for all sufficiently large k. Therefore, one can assume that C' has at least k rows and

contains C as a sub-matrix. We now prove that with probability at least 1 - 4e, one

has {0, 1}G C C'ZIG. From Theorem 4, for every x E {0, 1}k, Pr{x E C'Z} > 1 - 4E.



Using Lemma 13 and the independence of G and C', one gets

Pr{0O, 1}G C CZIG} = Ec, [Pr{{O, 1}G C'ZIG}]

= E, [IC'Z n { 0, 1}4k

= E0 
1

= Ec[ 24k E I{XEC'Z}
x

24 k  Ec'[I{xECZ}]
XE{O,1} 4 k

> min Pr{x E C'Z}
xE {0,1}

4
k C'

> 1-4e.
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Chapter 6

Technical Lemma: The Proof

In this chapter we prove Lemma 1 and its deterministic variant Lemma 2 using

the tools developed in the previous chapters. The proof of the probabilistic lemma

follows almost immediately from the theorems we proved in Chapters 4 and 5 and

is presented first. The proof of the deterministic lemma only uses Lemmas 3, 4 and

their approximate versions Lemmas 6, 7 from Chapter 4, but requires slightly more

work and is presented next.

6.1 Probabilistic Version

Fix a norm 1" l i, and a constant c < 21/p and let Ik the input to the algorithm. We

want to compute a lattice L E Zm'xm, a vector s E Zm', a matrix C E Zkxm and an

integer r such that

1. for all z E Zm , IiLzIIp > cr.

2. for all boolean vectors x E {0, 1}k there exists an integer vector z E Zm such

that Cz = x and IILz - siip < r.

Let 6 a small positive real. We show how to find L, s, C and r such that the above

conditions are satisfied with probability at least 1 - 66. Let m = k 4/e +1 and n =

m . Define L E Zm'xm, s E Zm' and r as described in Corollary 3 and let Z be

the set of all vectors z e {0, 1}m containing exactly n ones such that IILz - sfl < r.



The shortest vector in L(L) has length at least cr proving property 1. Moreover, with

probability arbitrarily close to 1, the size of Z is at least

> > n In m

> n!m 4klnm

Let U = {1,..., m}. Notice that

6J V/"6 me/4

4k In m 4el/4k In5/4m
6ke/4

4e1/4((4/e + 1) In k)5/4
>1

for all sufficiently large k. Therefore, (U, Z) is an regular hyper-graph with IZI >

n!lUIJ . By Theorem 5, {0, 1}k C CZ with probability at least 1 - 56, proving

property 2.

6.2 Deterministic Version

In this section we prove the deterministic version of the technical lemma under Con-

jecture 1. We remark that although the conjecture is a plausible one, proving it is

probably beyond the the possibilities of current mathematical knowledge.

Let c be any real constant less than 21/1 and fix two constants E < 2 and

6 < (2(41-)-c. From Conjecture 1, there exists an integer d such that for all q large

enough there is a (logd q)-smooth square-free integer in the interval [q, q + qE/2].

On input 1k we want to find (in deterministic polynomial time) a lattice L E

Zm'xm, a vector s E Zm', a matrix C E Zkxm and an integer r such that

* for all z E Z m , IILzll p > cr.

* for all boolean vectors x E {0, 1}k there exists an integer vector z E Zm such



that Cz = x and IILz - sl|p < r.

Let b = 2 , a = bl-e, m

k and Pk+l1, -,Pm the first m -

and C E {0, 1}kxm as follows:

[m(ln ,)
1/ 1 1

0
L=

0

C = [I10] =

=k

-k

0

0

0

0

+ logd b, Pi,... Pk distinct prime numbers of size

prime numbers. Define L E Z(m+1)xm, s E Z m+ 1

0

0

mailnPm 1

0. 1 .. .. . 0

0 1 0 ... 0

0

0
L- 1

and let

r= (6- + 1)m (In b + 2)1/1].

From Lemma 3 and Lemma 6, the shortest non-zero vector in L(L) has length at

least

(6-1 - 1)m (2(1- E) Inb - 1)1/' > cr

for all sufficiently large k. We now show that for all x E {0, 1}k there exists a z E Zm

such that Cz = x and IILz - sl < r. Fix some x E {0, 1}k and let gz = Ilp : iP

Define q = b/gx. Notice that gx < 2k2 = be/ 2 and therefore q > bl-'/2 > b1/2 > 2k

From Conjecture 1, for all sufficiently large k the interval [q,q + qE/ 2] contains a

square-free pm-smooth integer, i.e., there exists a vector y E {0, 1}m -k such that

gy = fli= Ykj+i = q + 6 for some 6 < qE/ 2 < be/2. Define the vector z = . Let
Y

g = lipi = gxgy. Notice that

g - b = gxgy - gxq



Therefore from Lemma 4 and Lemma 7

IILz - sl < m (in b

- bE

+ 2) / t' < r

x ((q + 6) -q)

gx 6

< b E/2b/2



Chapter 7

Discussion and Open Problems

We proved that the shortest vector problem in any 1, norm is NP-hard to approximate

within some constant factor. In particular approximating the shortest vector in 12

within any factor less than v/ is NP-hard. The result holds for both randomized and

non-uniform deterministic reductions. We also proved that under a reasonable num-

ber theoretic conjecture concerning the distribution of smooth numbers, the shortest

vector problem is NP-hard for (deterministic) many-one reductions.

The proof is by reduction from a variant of the approximate closest vector prob-

lem (the inhomogeneous version of SVP), and can be regarded as a general method

to transform a inhomogeneous problem into an equivalent homogeneous one. The

main technical contribution of this thesis is the construction of a gadget used in this

homogenization process, that essentially correspond to an instance of CVP satisfying

some special properties. Our gadget construction implies the existence of a lattice A

and a vector s such that there are (exponentially) many vectors in A whose distance

from s is less than the length from the shortest vector in A by some constant factor

c. Using the homogenizing gadget, we proved that SVP is NP-hard to approximate

within this same factor c. We gave an efficient probabilistic construction to build a

lattice A and a vector s for any c < -vF (in the 12 norm). We also proved that factors

greater than or equal to v2 are not achievable. Therefore V52 is a natural limit of our

proof technique to show that SVP is hard to approximate. Proving the NP-hardness

of approximating SVP within any constant factor is left as an open problem.



Open Problem 1 Is the shortest vector problem NP-hard to approximate within any

constant factor?

Our reduction from CVP to SVP transform instances of CVP in a certain dimen-

sion n into instances of SVP in a polynomially related dimension m = nc, where the

degree of the polynomial satisfies c > 4. Therefore, in order to assert that an instance

of SVP is hard to solve in practice, m must be rather large. Finding more efficient

reduction where m = O(n) is an open problem.

Open Problem 2 Is there a reduction from CVP to SVP that maps instances of

CVP in dimension n to instances of SVP in dimension O(n)?

The homogenizing gadget was constructed using two other results that might be

of independent interest. The first is a solution to a sphere packing problem: find

a lattice packing of unit spheres such that some bigger n-dimensional ball of radius

r > 1 + V contains 2nC spheres (for some constant c < 1 depending only on r). If the

lattice requirement is dropped, than it is know that 2c" spheres can be packed. An

interesting open problem is if our construction is asymptotically optimal for lattice

packings, and if not, find better efficiently computable lattice packings.

Open Problem 3 For which values of A and p there exists an n-dimensional lattice

A with minimum distance A and a sphere B(s, p) containing 2n (n) lattice points?

The second problem we addressed in order to construct the homogenizing gadget

is a combinatorial result on hyper-graphs related to the notion of VC-dimension. We

gave a new proof of a result originally due to Ajtai, that considerably simplifies the

original proof and allows an explicit estimate of the parameters (in Ajtai's result, the

parameters are only known to be polynomially related). The value of the parameters

in our theorem might already represent an improvement on Ajtai's. We leave it as an

open problem if these parameters can be further improved, and if the theorem can

be generalized in some interesting way.

Open Problem 4 Can the parameters in Theorem 5 be improved?



A last open problem is proving (or disproving) an analogous of our technical lemma

for other optimization problems, e.g., the closest codeword problem.

Open Problem 5 For some c > 1, is there a polynomial time algorithm that on

input 1k computes a boolean matrix L E {0, 1}m' xm, boolean vector s E {0, 1}m',

integer r and boolean matrix C E {0, 1}kxm such that

* For all z e {O, 1}m, IILzl1 _ cr (Lz computed modulo 2).

* For any x E {0, 1}k there exists a z E {0, 1}m such that Cz = x and IILzesjjl <

r (Cz and Lz computed modulo 2).

If such a lemma could be proved, than our same reduction could be used to prove

the NP-hardness of the lightest codeword problem, a important open problem in

algorithmic coding theory.
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