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ABSTRACT

The first part of this thesis details the use of self-assembled monolayers (SAMs) derived from the
adsorption of n-alkanethiols [CH 3(CH2).-ISH] onto copper to protect the underlying metal from
corrosion. Due to their dense packing and crystalline structure, these films provide a barrier that
impedes the transport of oxygen and water to the copper surface. As measured by electrochemical
impedance spectroscopy, the resistance provided by these films increases by 4.2 MQ*cm 2 for each
methylene unit in the adsorbate that forms the SAM for chain lengths n 16. Efforts to form
thicker, more protective SAMs on copper utilized the assembly of long-chain )o-alkoxy-n-
alkanethiols [CH 3(CH2)p- 10(CH2)mSH; m = 11, 19, 22; p = 18, 22] that contain an internal ethereal
unit. The barrier properties of these ether-containing SAMs depend on the chain length of the
adsorbate and the position of the ethereal unit along the hydrocarbon chain. For all SAMs studied,
the crystalline, densely packed structure of the film dramatically affects its resistance against the
transport of corrosive agents. The eventual loss in protection of these films is attributed to
oxidation and subsequent roughening of the underlying copper surface which perturbs the
crystalline hydrocarbon lattice of the SAM. Upon prolonged exposure to 1 atm of 02 at 100%
relative humidity (RH), the SAMs that exhibited the most stable crystalline structures were more
effective in maintaining their barrier properties at superior levels. The results indicate that the
design of barrier coatings requires a selection of adsorbates that can achieve dense packing and
high crystallinity and are able to maintain their structural properties.

The second part of this thesis discusses the use of underpotential deposition (upd) of silver
and copper on gold to affect the structure and stability of an adsorbed n-alkanethiolate SAM.
Thiols adsorb onto gold surfaces modified by submonolayer quantities of silver or copper and
form SAMs with macroscopic properties similar to those of SAMs on gold, as evidenced by
wetting and ellipsometric thickness measurements. Nevertheless, the molecular-level features of
these films are distinct from those of SAMs on the native metals (gold, silver, or copper). First,
the presence of the upd metal alters the binding and molecular structure of the adsorbed thiol,
resulting in a more dense packing and a different orientation for the terminal methyl (-CH 3) group
than on gold. In addition, the presence of a silver upd adlayer improves the thermal stability of the
adsorbed monolayer while the presence of either a silver or copper upd layer improves the stability
of the SAM against exchange with competing adsorbates at room temperature. The improved
stability of the SAMs on upd-modified gold is attributed to a stronger ligation between the
adsorbed sulfur and the upd metal. These results demonstrate that a single atomic layer of silver or
copper is sufficient to achieve the adhesion of evaporated films of silver or copper films while
alleviating the problems associated with oxidation of these substrates.

Thesis Supervisor: Paul E. Laibinis
Title: Doherty Assistant Professor of Chemical Engineering
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Chapter 1. Introduction to Self-Assembled Monolayers

1.1. Chemical Modification of Surface Properties of Materials

Interfacial properties such as wetting, adhesion, and lubrication are often determined by the

outermost few angstroms of material at an interface. The control of these and other properties

requires an ability to manipulate the molecular-level structure and composition at the surface of a

material. One of the most flexible systems for modifying the surface properties of an inorganic

material is that of self-assembled monolayers (SAMs).' SAMs are formed by the spontaneous

chemisorption of tailored adsorbates onto reactive metal or metal oxide surfaces (Figure 1.1). The

formation of the SAM is driven by a chemical reaction between the adsorbate and the metal surface

and produces a robust surface coating that can be stable in vacuum, air, or liquid environments.

SAMs have been prepared on various substrates: alkanethiols on gold,2,3 silver,4 copper, 4

mercury,5 iron,6 GaAs, 7 and YBa 2CuOx;8 alcohols and amines on platinum;9 trichlorosilanes on

silica; 10 carboxylic acids on oxides of aluminum; lI phosphonic acids on oxides of zirconium,

titanium, and aluminum; 12 hydroxamic acids on copper, silver, titanium, aluminum, zirconium and

iron. 13 The chemical constituency of the monolayer can be tailored by chemical synthesis to

expose a high density of specified functional groups at the monolayer/air(or solution) interface. 3

These functional groups may be selected to provide the requisite surface properties for a given

application. The use of SAMs can impact many areas including corrosion prevention, 14 sensor

design,15 microelectronics, 16 biocompatibility, 17 separations, 18 and waste remediation. 19

Figure 1.1. Schematic illustration of SAM formation from solution.



1.2. History of Self-Assembled Monolayers

The development of self-assembled monolayers (SAMs) can be traced to the seminal papers of

Zisman et al. almost fifty years ago.20-22 By exposing glass surfaces to dilute solutions of long-

chained alcohols in hexadecane as the solvent, these researchers formed oriented monolayer films

that were not wet by the solvent medium and exhibited wetting properties similar to those of

oriented Langmuir-Blodgett monolayers. Zisman and coworkers extended this system to include a

range of metal and metal oxide surfaces and various surfactant-like molecules including long-

chained amines, carboxylic acids, and primary amides. The driving force for the assembly was the

large interfacial free energy present between the metal (oxide) surface and the hydrocarbon solvent

phase that was reduced upon directed adsorption of the amphiphilic species. In these cases, the

polar species adsorbed to the solid support and the nonpolar alkyl tails oriented away from the

substrate to expose a low energy surface of CH3 groups 20 (and later CF 3 groups for

perfluoroalkane-based amphiphiles 21).

Shafrin and Zisman provided demonstration that ligating chemical interactions between the

head group of a molecule and a metal surface could drive the formation of an oriented monolayer

film by adsorbing alkyl amines onto platinum from water.22 The resulting SAMs were

hydrophobic and exhibited wetting properties that were the same as those for films formed from

hexadecane (an inert solvent). The formation of this coating in water by a self assembly process is

notable as it showed a preference toward adsorption of one chemical group over another (a

preference of > 106 by the amine group for platinum vs. the hydroxyl groups of water22) and

demonstrated the ability to produce oriented films from polar solvents. The systems developed by

Zisman had low energies of adsorption (5 - 15 kcal/mol), 23 exhibited only modest stabilities, and

were limited in that they only generated low-energy surfaces.

Nuzzo and Allara and coworkers extended the Zisman approach in a dramatic way by

relying on the strong and specific interactions between gold and sulfur to form oriented organic

films that exposed both high- and low-energy surfaces, depending on the tail group present in

adsorbing organic disulfides, 24 and later for sulfides9and thiols. 2,25 The general inertness of gold

toward many chemical species allowed the adsorption of organosulfur compounds to occur

exclusively through the sulfur atom(s) and without concurrent adsorption of any non-sulfur-based

moieties. The specificity of the interaction between gold and sulfur-a "soft-soft" chemical acid-

base ligation between the soft ligand (sulfur) and a soft late transition element (gold)26 -

accommodates the presence of many "hard" polar groups that are typically encountered in organic

and biological systems. This tolerance allowed formation of organized two-dimensional

assemblies expressing these types of functionalities for the first time by a single adsorption step.



The adsorption of thiols to form densely packed, oriented monolayer films is not limited to

gold surfaces but also occurs on silver,4,27 copper,4 mercury, 5 and GaAs7 surfaces. Although

the tolerance of these substrates for polar tail groups has only been demonstrated for silver and

copper, it is likely that the assemblies that are the result of soft-soft chemical ligation would have

similar abilities to accommodate hard polar tail groups and produce both high- and low-energy

organic surfaces on other soft metal substrates. While the high flexibility of the self-assembly

method is expected for these other substrates using thiols, the packing density, structure, and

stability of the monolayers may be different from those formed on gold due to the specific

geometric and electronic aspects of these other metal surfaces.

1.3. Motivation

While scientists have primarily studied SAMs as model systems, their use in applied research has

been limited, due in part to their untested stabilities under industrially relevant conditions. The

typical mode of use by researchers has been to prepare the monolayer immediately before use and

discard it soon afterwards. Investigation of the long-term stability of the film has been a neglected

area of research. Are SAMs destined to become restricted for use solely as model systems? Are

there practical issues regarding the stability of SAMs that may better enable their use in applied

research?

This thesis addresses pertinent engineering issues of SAM stability and technological

application. The first part of the thesis investigates the use of SAMs on copper to provide a

protective barrier against the diffusion of corrosive species (Chapters 2 - 7).28,29 Part II focuses

on a novel method for promoting metal-organic adhesion using the electrochemical method of

underpotential deposition to provide an atomic-level, metal adhesive that enhances the stability of

the SAM (Chapters 8 -12).30,31
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Part I. Protection of Copper Surfaces with Self-
Assembled Monolayers of n-Alkanethiols

Chapter 2. Introduction

2.1. Uses of Copper and Factors that Limit its Application

Copper has become the material of choice for forming highly conductive interconnects within

integrated circuits because of its low electrical resistivity and superior electromigration resistance.1

A primary obstacle associated with the conversion to copper for this application includes the

susceptibility of copper to corrosion. While copper-wired computer chips are typically not

subjected to extremely corrosive conditions, the margin of error for chip corrosion is extremely

small due to the sub-micron linewidths and even smaller thicknesses of the copper wires. 2 The

development of methods to protect the surface of copper during the processing of the chip and the

lifetime of the device could be extremely important in advancing its use for these applications.

Copper is also a commonly used material in heat exchanging applications 3 due to its high

thermal conductivity and malleability. An important limitation for copper is that it readily corrodes

in aqueous, oxygenated environments that are characteristic of heat exchanger operations.4 Efforts

to minimize the corrosion of copper in such applications have ranged from the use of deoxygenated

water streams in specialized applications 5 to the addition of corrosion inhibiting agents to the

process streams. 6-9 In this latter case, molecules such as benzotriazole, mercaptobenzimidazole,

and thiourea are continuously added to circulating water streams during process operation to inhibit

copper corrosion. These molecules-frequently being low-molecular-weight aromatic compounds

that contain polar moieties for ligation to the surface and improved water solubility-bind to the

metal surface in mono- or multilayer quantities. The packing of these rigid molecules on the

surface is often poor, and the resulting layers provide only modest transport resistance for

molecules such as 02 and H20 to the metal surface. In most cases, the coordination of the inhibitor

molecules to the surface is weak, and their presence in the water streams is required to maintain the

desired concentration of these agents at the metal surface. 6-9 As some inhibitor molecules also

serve as reducing agents for the copper oxidation products, they must be continuously added to

maintain the reducing potential of the water stream. The generation (and ultimately the disposal) of

the contaminated waste water streams from these methods is an item of increasing environmental

concern.



2.2 Self-Assembled Monolayers on Copper

A primary goal in this thesis is to develop robust coatings on copper that provide the requisite

corrosion resistance for these applications, minimally impact the heat transfer characteristics of the

metal, and remove the necessity for the continuous addition of inhibition agents to the contacting

aqueous streams. In particular, this work focuses on systems that adsorb onto metal surfaces

through strong chemical interactions and provide diffusional restrictions for small molecules (such

as 02 and H20) by nature of their densely packed, crystalline structure. Self-assembled

monolayers (SAMs) offer many of the attributes needed for this application: (1) the film forms

through a simple chemisorption process, enabling strong adhesion to the metal surface; (2) film

formation is conformal allowing objects of any shape to be coated; (3) the thickness of the film can

be controlled at the angstrom-level by selection of adsorbate; (4) the films are densely packed and

crystalline; (5) the chemical composition of the film can be tailored by design and synthesis of

adsorbates; (6) the molecular thickness of the films allows the use of x-ray photoelectron

spectroscopy (XPS) and other surface analytical techniques to determine the chemical state and

composition of species at the metal surface.

Due to the many attractive features of SAMs as coatings, our group' 0l o,11 and others 12-16

have explored their application as films for inhibiting the corrosion on copper. Alkanethiols

chemisorb to copper and form a densely packed monolayer of adsorbed thiolates where the

hydrocarbon chains are oriented almost normal to the surface with an average tilt (or cant angle) of

120 or less. 17 The resulting SAMs can inhibit the oxidation of copper with thicker SAMs

providing greater protection.l 0 In specific, the oxidation rate of the copper substrate in air

decreases by 50% for every four carbons in the adsorbate comprising the SAM. 10 These and other

results14 suggest that the cathodic process of corrosion is inhibited by the presence of the

monolayer. In a study of the effects of humidity on the corrosion of copper, samples protected by

a monolayer of C22SH oxidized at a rate that was independent of the water content in the contacting

environment (see Chapter 3).11 These results suggested that the SAM also acts as an effective

barrier against the transport of water to the underlying copper surface for adsorbates of suitable

chain length.

Aramaki and co-workers have modified hydroxyl-terminated SAMs on copper with

alkyltrichlorosilanes to create films that contain an internal, cross-linked siloxane network (see

Section 3.3). The resulting coatings exhibit protection efficiencies that are greater than for

monolayer films formed from C18SH as evidenced by polarization measurements. 12,18,19 They

have also extended this work to form a two-dimensional polymeric structure on copper by

modification of a hydroxyl-terminated SAM with 1,2-bis(trichlorosilyl)ethane and subsequent

treatment with an alkyltrichlorosilane to obtain further improvements in protection.13 Feng et al. 15



have combined electrochemical impedance spectroscopy (EIS), polarization, and XPS to determine

that a thin SAM of C12SH is more protective than coatings formed from benzotriazole, a commonly

used corrosion inhibitor for copper.

While the collective work from these groups demonstrates that SAMs can effectively inhibit

the corrosion of copper, little is known about the stability of these films, the structural issues that

govern the level of protection provided, or the mechanism of their eventual failure. The five other

chapters that comprise this part of the thesis examine various engineering aspects concerning the

use of SAMs to provide protection against the corrosion of copper. While SAMs offer many

attributes needed for the requisite protection of copper, their efficacy on copper during extended

exposure to water and oxidizing conditions had not been demonstrated prior to the work discussed

in Chapter 3. Chapter 4 details the effect of film thickness on the protection provided by the SAM

and the mechanism of the eventual breakdown in protection by combining electrochemical

impedance spectroscopy and infrared spectroscopy. Chapters 5 and 6 report the formation,

molecular structure, and barrier properties of a new class of SAMs formed from long-chain oo-

alkoxy-n-alkanethiols. These systems represent the thickest and most protective SAMs yet formed

from molecular adsorbates. Finally, the importance of dense packing and crystallinity on the

protection provided by the SAM is discussed in Chapter 7.
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Chapter 3. Self-Assembled Monolayers of Alkanethiols on
Copper Provide Corrosion Resistance in Aqueous Environments

3.1. Background

Laibinis and Whitesides have demonstrated the ability of self-assembled monolayer films derived

from n-alkanethiols to inhibit oxidation of an underlying copper substrate under ambient conditions

(air at room temperature and low humidity).1 In this work, they observed that the films exhibited

dramatic improvements in their ability to inhibit corrosion with only modest increases in the

thickness of the self-assembled film: a 50% decrease in oxidation rate for every increase of 5 A in
film thickness. This improvement was attributed to the ability of the self-assembly method to form

crystalline layers on the copper surface. In this chapter, the effectiveness of these adsorbed layers

as barrier films against corrosion in the presence of water-both in the liquid and vapor phase-is

presented. As the corrosion rate of untreated copper (and other metals) is known to be dramatically

faster in the presence of an aqueous phase,2 water could seriously affect the corrosion-resistant

abilities of these layers. To address this issue, SAM-treated copper samples that were exposed to 1

atm of 02 at 10 and 100% relative humidity levels and to oxygen-saturated water for periods up to

two weeks were characterized.

Figure 3.1 displays a schematic illustration of the experimental approach. Self-assembled

monolayers (SAMs) on copper were prepared by exposing freshly evaporated copper films

supported on silicon wafers to deoxygenated solutions of alkanethiols. The evaporated copper

samples were handled under nitrogen and anaerobically transferred to the adsorbate solution.

These conditions produce well-defined monolayer films on the copper surface.3,4 (When less

stringent conditions are used, multilayer films can be produced on the copper surface.5) After

exposure of the samples to the above oxidizing conditions for various periods of time, the samples

were characterized by wetting measurements and x-ray photoelectron spectroscopy. These

measurements provide information regarding the structural integrity of the barrier film and the

extent of oxidation for the underlying copper substrate; the effectiveness of these layers as

corrosion inhibitors were determined from these data. As an extension of these studies, the use of

multilayer strategies were also explored to generate thicker layers on the copper surface to improve

the barrier properties of self-assembled films on copper.
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Figure 3.1. Schematic illustration of the formation of a self-assembled monolayer (SAM) oncopper and the resulting species produced after exposure to oxidizing conditions. The assembly ofthe thiols (first step) was conducted under anaerobic conditions.



3.2. Results and Discussion

Figure 3.2 displays the results from x-ray photoelectron spectroscopy (XPS) for various bare and

derivatized copper samples. XPS is well suited for these studies as it is highly surface sensitive

and allows the detection of Cu(II) oxidation products at the sub-angstrom-level. In the Cu(2p 3/2)

spectral region, Cu(O) and Cu(I) species exhibit a single peak at a binding energy of 932.6 eV. In

comparison, Cu(II) species exhibit a peak that is shifted positively to a position of -934.7 eV and

also display the presence of less intense shake-up satellite peaks at 941.5 and 943.8 eV that are

readily distinguished and well-separated from the primary Cu(2p3/2) peaks. Changes in the relative

intensities of these peaks can provide a quantitative monitor of an oxidation process (vide infra).

In these experiments, evaporated, polycrystalline copper films supported on silicon

substrates were used. Immediately after evaporation, the chamber was backfilled with N2 and the

samples were transferred anaerobically to a solution of the adsorbate. XPS spectra for these

samples exhibit no peaks in the Cu(2p3/2) region due to Cu(II) species (Figure 3.2a) and provide a

starting point for these corrosion studies. Upon exposure to oxidizing conditions, the XPS spectra

exhibit peaks due to Cu(II) species that increase in intensity with continued exposure (Figure

3.2b). A comparison of the level of oxidation for different samples provides information about the

resistance of the system toward corrosion. For example, the XPS data in Figure 3.2 illustrate that

a bare copper sample exposed to 1 atm of 02 at 100% relative humidity (Figure 3.2d) oxidizes

more rapidly than a bare copper sample exposed to 1 atm of 02 at 10% relative humidity (Figure

3.2c). The presence of an adsorbed monolayer of hexadecanethiol on the copper sample (Figure

3.2b) is effective in decreasing the rate of oxidation of the copper substrate, even when the sample

is exposed to oxidizing conditions of high humidity.

The relative intensities of the peaks in the Cu(2p3/2) spectral region can be related to

thicknesses through eq 3.1,1

dcu(Ii) = - X cos 0 In [1 - fcun)] (3.1)

where dcudl) is the thickness of the layer that contains Cu(II) species, X is the inelastic mean free

path of Cu(2p 3/2) photoelectrons through the CuO layer (= 10.7 A),6 0 is the angle at which the

detector is positioned relative to the surface normal (so-called "take-off angle" = 550), and fcl,]) is

the fraction of the integrated peak area of the Cu(2p3/2) spectral envelope that is due to Cu(II)

species (both the primary and shake-up peaks). This analysis assumes that the Cu(II) species in

the copper substrate are present in a uniform layer nearest the sample/air interface.1 The use of eq

3.1, although not rigorous, is quite flexible for these investigations as it does not depend on the

thickness or composition of any layers that separate the copper sample from the air (or vacuum)

interface. The use of thickness measurements derived from eq 3.1 for the Cu(II) species allows
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direct quantitative comparison of the spectral results for different samples and oxidizing conditions.

For example, application of eq 3.1 to the spectra in Figure 3.2 yields thickness for the Cu(II)

species of 2.1 A, 2.5 A, and 9.3 A for panels (b), (c), and (d), respectively.

Figure 3.3 summarizes the XPS results from experiments comparing the effectiveness of

two adsorbates--C 16H35SH and C22 H45SH-to impede corrosion of a copper substrate under

common oxidizing conditions of 1 atm of 02 at 100% relative humidity. The bare copper sample

exhibits rapid oxidation under these conditions; the plateau in Figure 3.3 may be the result of

transport limitations due to the formation of a 10-A thick film of copper(II) oxide on the copper

surface. For both adsorbates, the alkanethiolate monolayers are effective in inhibiting the

corrosion process, with the longer-chained adsorbate (C22H4 5SH) providing the superior

protection. The observation that longer-chained alkanethiols provide greater corrosion resistance

under these humid conditions is similar to previous observations from related experiments

conducted under ambient conditions. In Figure 3.3, the difference in the thickness of the two

organic layers is only six methylene units (or -7 A in film thickness) and is sufficient to produce

observable differences in the rate of oxidation to the underlying copper substrate. Laibinis and

Whitesides previously asserted that the crystalline structure of the polymethylene chains in these

adsorbed layers is responsible for the observations that changes in film thickness at the angstrom-

scale can affect the diffusional rate of molecules (such as 02 and H20) to the underlying substrate.1

Since copper oxidizes more rapidly in the presence of water,2 the relative effectiveness of a

SAM derived from C22H45SH to inhibit corrosion under conditions where different concentrations

of water are present were examined (Figure 3.4). In general, no differences were observed in the

level of corrosion to the copper substrate when it was exposed to oxidizing conditions at different

relative humidity levels or when the copper sample was placed in direct contact with oxygen-

saturated water. Under these experimental conditions, underivatized copper samples exhibit

significant differences in the formation of copper(II) oxides (see Figure 3.2c and d). The similarity

of the data sets in Figure 3.4 illustrates the ability of these layers to limit the transport of water to

the underlying copper substrate and suggests that these films remain structurally intact under these

conditions. The use of hydrocarbon-based adsorbates provides suitable water repellency4,7 (and in

the case of samples immersed in water, poor water solubility) for the resulting layers to provide

effective corrosion inhibition under these diverse conditions.

The stuctural integrity of the layers was examined during the corrosion process using

wetting measurements. Laibinis et al. found that the wetting properties of the alkanethiolate SAM

provided a highly sensitive probe of the changes occurring to the film during the oxidation process

and that these measurements mirrored trends observed by XPS. 1 The wetting properties of

hexadecane are a particularly sensitive indicator of structure as a densely packed surface expressing
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relative humidity.
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methyl groups exhibits an advancing contact angle (0a) of -45' whereas a surface exposing

methylene units is wet by hexadecane (i.e., ea(HD) = 0o).8

Figure 3.5 displays the wetting properties by hexadecane for C22H45SH-derived SAMs on

copper after exposure to various oxidizing conditions. The wetting properties of the layers

decrease from their initial value and subsequently achieve a relatively constant value. This latter

state is one largely exposing methyl groups at the surface, but is not as ordered as the initially

formed SAM. The decreased contact angle reflects the availability of methylene units at the

SAM/liquid interface for contact with the hexadecane and may be a result of surface reconstruction

that occurs during the onset of oxidation. This drop in wettability occurs during a time period

where no (or very little) formation of copper (II) species is observed by XPS (see Figure 3.4).

The important feature of Figure 3.5 is that the wetting results for the samples are similar despite the

differences in water concentration. This similarity suggests that the corrosion process using these

SAMs as inhibitors is insensitive to the presence of water. For C22H45SH-derived samples

immersed in oxygen-saturated water, the similarity of their wetting values to those under less harsh

conditions provides evidence that the adsorbates (or their oxidized products) remain largely

attached to the copper surface during extended exposure to an oxidizing aqueous environment.

When shorter-chained adsorbates are used, a more rapid decrease in the wetting properties

of the film is observed (Figure 3.6). Shorter-chained adsorbates are less effective at maintaining

their structure under oxidizing conditions than are longer-chained adsorbates and may also exhibit

some sensitivity to the presence of water. This sensitivity may reflect the lesser degree of

organization within these SAMs and the possible dissolution of these shorter-chained adsorbates

into the contacting water. Over a two-week period of exposure, SAMs derived from adsorbates of

chain lengths of hexadecanethiol or less were wet by hexadecane suggesting the presence of a

highly disordered adlayer or its complete removal. From Figures 3.5 and 3.6, longer-chained

adsorbates (>C16) provide the greatest ability to maintain the film properties needed to impede

corrosion processes. This observation may be the result of the high degree of crystallinity in these

layers, the low solubility of these adsorbates in water, and the formation of a suitably thick layer of

hydrocarbon that obstructs an interaction between the copper and water-containing phases.

The results in Figures 3.3 and 3.6 suggest that thicker films provide improved performance

in inhibiting corrosion. Longer-chained adsorbates may be envisioned for further improving the

properties of the layers; however, the use of these adsorbates becomes limited practically by

difficulties in their synthesis and their poor solubilities in many solvents (see Chapter 5). To

produce thicker, crystalline, hydrocarbon-based films on the copper surface for corrosion

inhibition, self-assembling strategies for constructing multilayer assemblies on gold 9 were applied

to these copper substrates. Figure 3.7 schematically illustrates the process for forming a bilayer
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Figure 3.5. The advancing hexadecane contact angle on C22H45SH-protected copper samples as
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film on the copper surface using a mercapto-alcohol-HS(CH 2) 1lOH or HS(CH2)220H-for the

first layer and an alkyltrichlorosilane- CH 3(CH2)17SiCl3-for the second layer. By using

trichlorosilanes that terminate in vinyl or ester groups, other researchers have prepared multilayers

on various substrates by this strategy (primarily for proposed non-linear optical applications). 0, '11

Figure 3.8 displays a comparison of the wetting properties for SAMs formed from

C22 H45SH and for bilayer samples formed from the sequential adsorption of HS(CH2)220H and

CH3 (CH2) 17SiC13 that have been similarly exposed to 1 atm of 02 at 100% relative humidity. In

these samples, the thicknesses of the SAMs and bilayers are approximately 3 and 5 nm,

respectively. For the initially formed layers, the wetting properties of the SAM by hexadecane are

superior to those of the bilayer and may reflect a more well-defined structure for the SAM. (The

differences may also be a reflection of the orientational differences that exist between the

hydrocarbon chains in these systems.) Upon exposure to the oxidizing conditions, the quality of

the C22 SAM, as reflected in its wetting properties by hexadecane, decreases to expose a greater

number of methylene groups at the SAM/air(hexadecane) interface. This change indicates some

level of film or surface reconstruction that occurs during the initial stages of oxidation. In contrast,

the wetting properties of the bilayer remain unchanged over the entire week of exposure to these

conditions. The presence of a cross-linked siloxane backbone within the bilayer may prevent any

reconstruction within the film and yield an assembly that is more robust for these conditions. The

development of crystalline hydrocarbon layers that contain stabilizing cross-links may prove to be a

beneficial strategy for preparing robust, thin barrier films for corrosion inhibition.

The ability of the bilayer to inhibit corrosion of the underlying copper substrate was

examined by exposing the assembly to 1 atm of 02 at 100% relative humidity (Figure 3.9). XPS

results showed that the bilayer, despite its improved stability (Figure 3.8) and greater thickness,

was inferior in performance to that of a SAM derived from C22H45SH. The primary difference

between these two samples was the presence of Cu(II) peaks in the XPS spectra for the initially

formed bilayer sample. XPS spectra for a SAM on copper formed from HS(CH 2) 1O0H or

HS(CH 2)220H displayed no Cu(II) signals; however, Cu(II) signals were clearly evidenced in

these samples after exposure to the trichlorosilane. For the samples derived from HS(CH2)1 O1 H,

XPS results showed the incorporation of chlorine into the resulting bilayer assemblies. Visible

pitting of the copper substrate was also observed from some preparations. The amount of chlorine

could be lessened by forming the bilayer in solutions containing scavengers (KOH and Na2CO3)

for the HCl produced during the reaction between the trichlorosilane and the terminal hydroxyl

groups; however, the films exhibited poor barrier properties toward oxidation of the copper

substrate. The use of the longer-chained HS(CH2)220H for the initial layer dramatically reduced

the amount of chlorine on the copper substrate to the level that samples (such as those used in
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Figure 3.9) could be prepared that exhibited no chlorine signals by XPS; the lack of chlorine signal

may also reflect the greater level of attenuation of photoelectrons by the thicker bilayer assembly.

In all cases of forming bilayers on copper using trichlorosilanes, the samples exhibited a greater

degree of oxidation by XPS than for samples derivatized using simple n-alkanethiols. The inferior

performance of the bilayer systems stems from the use of chlorine-containing agents in the

preparation of the second layer. The use of non-chlorine agents for forming bi- and multilayer

assemblies on copper may circumvent this problem.

The use of SAMs and bilayers on copper for corrosion resistance have also been

investigated by Aramaki et al. 12-15 In a series of papers, they have examined methods for

generating bilayer assemblies on copper using the sequential adsorption of HS(CH 2)IOH and an

alkyltrichlorosilane. Using polarization measurements in aerated 0.5 M Na2SO4(aq), they

concluded that the bilayers could provide significantly greater protection abilities to the copper

substrate than an octadecanethiolate monolayer. 13 This increased protection is probably a result of

the enhanced stability of the siloxane-linked bilayer under the conditions of measurement. The

results of Figure 3.8 also indicate improved stability for the bilayer; however, the abilities of the

bilayer to impede corrosion was less than that for thinner films formed using simple n-alkanethiols

(Figure 3.9). Aramaki et al. have recently used XPS to compare the effectiveness of bilayers on

copper based on HS(CH2)A OH for inhibiting substrate oxidation in air with SAMs formed from

just HS(CH 2)110H. 14 From their experiments, they concluded that the addition of the second layer

improved the corrosion resistance of the coating compared to that for the relatively short film

prepared from just the mercapto-alcohol. Their results are compatible with those presented here

that thicker layers generally provide greater corrosion resistance (Figures 3.3 and 3.6) and the

bilayers prepared to date on copper are less effective in inhibiting corrosion on copper than are

monolayer films of similar thicknesses prepared from n-alkanethiols. For example, Aramaki et al.

have observed that the XPS spectra of copper that had been protected with a bilayer formed from

the sequential adsorption of HS(CH2)A OH and C8H17SiCI, exhibited mostly Cu(II) species in the

Cu(2p3/2) spectral envelope after a 231-hr exposure to air. 14 In contrast, for a longer exposure

(384 hr) to harsher conditions (1 atm of 02 at 100% relative humidity), the XPS spectra for a

thinner C16H33SH-protected copper (Figure 3.2b) showed only minor contributions from Cu(II)

species. Of these two systems, films formed from long-chained n-alkanethiols presently provide

the greater level of protection for corrosion inhibition to copper. Bilayer and multilayer strategies

may provide a means for improving the effectiveness of these self-assembling strategies for

corrosion inhibition; however, work remains to establish the proper synthetic methods for

generating high quality, crystalline multilayers on copper for this application.



3.3. Conclusions

Self-assembled monolayers adsorb onto copper and inhibit oxidation of the underlying substrate in

dry, humid, and wet oxidizing conditions. The performance of the SAMs under these conditions

was insensitive to the concentration of water, suggesting that the layers are effective in screening

the interaction between water and the metal substrate. This result is important for the potential

application of these systems as barrier layers that contact aqueous streams. Longer-chained

n-alkanethiols yielded thicker SAMs on the copper substrate that exhibited superior abilities to

impede corrosion than did shorter-chained adsorbates. The use of longer-chained adsorbates is

preferred for maximizing the effectiveness and lifetimes of the adsorbed coatings under these

conditions. Efforts using existing multilayer strategies are effective for producing thicker, more

robust films on the copper surface; however, bilayer films derived from the adsorption of

alkyltrichlorosilanes onto hydroxyl-terminated SAMs were not effective in improving the corrosion

resistance abilities of the assembled coating beyond those of related SAMs derived from

n-alkanethiols. The development of multilayer strategies that are compatible with the chemical

reactivity of copper should allow formation of corrosion-resistant coatings on copper that remain

stable under a wide variety of oxidizing conditions and require one-time chemical application for

their generation and effective operation.

3.4. Experimental

3.4.1. Materials

Copper (99.99+%) and chromium (99.99+%) were obtained from Aldrich and R.D. Mathis,

respectively. Octyl, dodecyl, and octadecyl thiols (Aldrich) were purified by vacuum distillation

before use. Hexadecyl and docosyl thiols were prepared from the corresponding alkyl bromides

(Aldrich) by nucleophilic displacement with thioacetate and subsequent solvolysis in

HCl/MeOH. 16 11-Hydroxy-undecanethiol was prepared via a literature procedure, 16 and 22-

hydroxy-docosanethiol was available from previous studies. 4 Octadecyltrichlorosilane (United

Chemical Technologies) was purified by vacuum distillation prior to use. Prepurified N2 and 02

were obtained from Middlesex. Isooctane (Mallinckrodt) and ethanol (Pharmco, 90%) were

purged with N2 for 5 min prior to use as solvents for the alkyl thiols. Silicon (100) wafers (75

mm diameter) (Silicon Sense) were rinsed with ethanol and dried with N2 prior to use in the

evaporator. Anhydrous hexadecane (Aldrich) and deionized H20 (pH = 5.5) (Millipore) were

used as liquids for contact angle measurements.

40



3.4.2. Sample Preparation

Cr (150 A) and Cu (1000 A) were sequentially evaporated from resistively heated tungsten

filaments at 1.5 A/s and 10 A s, respectively, onto Si wafers (75 mm diameter) in a diffusion-

pumped evaporation chamber with a base pressure of 8 x 10-7 Torr and an operating pressure of 2

x 10-6 Torr. Immediately following evaporation of copper, the chamber was backfilled with N2,

and the freshly evaporated samples were transferred under a positive flow of N2 to 1 mM

deoxygenated isooctane solutions of the n-alkanethiols that were brought inside the evaporator.

Polyethylene strips were placed around the circumference of the evaporator to reduce the effective

exposed area of the open chamber for air diffusion during the transfer. After remaining in solution

for 40 min, the samples were removed, rinsed with ethanol, and blown dry in a stream of N2.
XPS analysis of the Cu(2p 32) region for these functionalized samples exhibited a peak at 932.6 eV

corresponding to Cu(0) and/or Cu(I) species and no peak at 934.7 eV for Cu(II) species. The

wetting properties of the freshly prepared samples by water and hexadecane were comparable to

those of n-alkanethiols on gold.3

Bilayer films were prepared on copper via a two-step process. The copper samples were

anaerobically transferred from the evaporator (as described above) to -1 mM ethanol solutions of

HS(CH2),OH or HS(CH2)220H. After 40 minutes of exposure to the adsorbate solutions, the

samples were removed from solution, rinsed with ethanol, and blown dry in a stream of N2. The

samples exhibited advancing contact angles of water of 15-20' and 25-35' for copper functionalized

with HS(CH 2)11 0H and HS(CH2)220H, respectively. The hydroxyl-terminated monolayers were

treated with a mixture of 0.5 mM isooctane solution of octadecyltrichlorosilane (C18H37SiC13) and

solid Na 2CO3 in dry air for 5 min; longer exposure times resulted in films of lower quality as

evidence by their wetting properties and physical appearance (pitting). The samples were rinsed

with isooctane and blown dry. All manipulations involving the silane were performed in a glove

box using dry air.

3.4.3. Oxidation Studies

Immediately after assembly of the monolayers, the silicon wafers were cut into 1 x 3 cm 2 samples

using a diamond-tipped scribe, and the samples were placed into either a "dry" (10% R.H.) or a

"humid" (100% R.H.) chamber. Humidity levels were determined using a digital hygrometer

(Fisher). The chambers were subsequently evacuated and then backfilled with 02 to atmospheric

pressure. A steady stream of 02 flowed through each chamber at 10 cm 3/min during the

experiments. Within the "humid" chamber, a subset of samples was immersed in vials that

contained deionized water. The chambers were stored at room temperature (20 oC) and kept in the



dark to minimize any possible effects due to light. After various periods of exposure, samples

were removed from the chambers, rinsed with ethanol, dried in a stream of N2 , and characterized

by either wetting or XPS. After characterization by either method, the samples were discarded.

Data in the figures represent measurements on individual slides that had been continuously exposed

to the listed oxidation conditions and had undergone no previous analysis. In most cases, the data

represent at least two independent preparations and oxidations of the SAMs.

3.4.4. Wetting Measurements

Advancing contact angles were measured on both sides of a static drop using a Ram6-Hart manual

goniometer. The drop was advanced prior to measurement by a Matrix Technologies electro-

pipette (1 gL/s). The pipette tip remained in the drop during measurement. The data represent the

average of at least three measurements, with the reproducibility across a sample being ± 3' .

3.4.5. X-ray Photoelectron Spectroscopy (XPS)

XPS spectra were obtained with a Surface Science X-100 spectrometer using a monochromatized

Al Kac X-ray source (spot size = 600 gm) and a concentric hemispherical analyzer (pass energy =

50 eV). The detector angle with respect to the surface parallel was 350. Copper spectra were

accumulated over 5 scans (-10 min) with a 25-eV window. The spectra were fitted using 70%

Gaussian/30% Lorentzian profiles and a Shirley background. Reduction of copper oxides did not

occur on the time-scale of spectral accumulation due to the use of a monochromatized X-ray beam

which does not contain the Bremsstrahlung.1
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Chapter 4. Electrochemical Impedance Study on the Effect of
Chain Length on the Protection of Copper by n-Alkanethiols

4.1. Background

The results in Chapter 3 demonstrated that self-assembled monolayers (SAMs) based on the

adsorption of alkanethiols onto copper can provide protection against oxidation of the underlying

metal that is independent of the moisture level in the environment. Nevertheless, little is known

about the stability of these films and the mechanism of their eventual loss of performance. In this

chapter, the barrier properties of various n-alkanethiols [CH 3(CH 2)n-ISH; n = 8, 12, 16, 18, 20,

22, 29] on copper are examined as they are affected by exposure to oxidizing conditions. By

varying the chain length of the adsorbate, the effect of angstrom-level changes in film thickness

from 10 to 40 A on the barrier properties and structural stability of the SAMs have been

investigated. Results from electrochemical impedance spectroscopy (EIS) and infrared (IR)

spectroscopy have been coupled to correlate the structure of the film with its ability to provide

protection against corrosion of the underlying substrate.

Finklea has reviewed the use of EIS in the characterization of self-assembled monolayers.1

Much of the prior work has focused on electron transfer from solution-phase redox probes through

monomolecular 2 or polymer-modified SAMs3 on a gold electrode. In the use of EIS with SAMs

on copper substrates, Aramaki et al.4 have studied capacitance and conductance properties of self-

assembled bilayer films while Feng et al. have investigated the charge transfer resistance provided

by a SAM of C12SH.5 In constructing an equivalent circuit for these films, the SAM has often

been modeled as an incomplete film in which charge transfer occurs at random pinholes that

approximate a microelectrode array. While this analysis may be accurate for some systems, such

as SAMs on gold in the presence of bulky redox moieties, SAMs can instead be modeled as

complete films in which through-film processes govern the electrochemical response. In a detailed

investigation of SAMs derived from CH 3(CH 2)n-ISH on copper, Aramaki et al.6 have shown that

for n 2 10, the SAM can be modeled as a uniform, closely packed film through which oxygen

permeates and participates in the cathodic corrosion reaction at the surface.

The equivalent circuit that best models the EIS data in this thesis is that of a solution

resistance in series with a parallel network of a coating capacitance (Ce) and resistance (Re) (Figure

4. la). In this model, the coating capacitance and resistance should be functions of SAM thickness,

and the coating resistance is that provided by the SAM against the transport of ionic species to the

metal surface. Modeling EIS data with this equivalent circuit representation allows determination

of the capacitance and resistance provided by the SAM during its lifetime and enables quantitative
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comparison between the performances of SAMs of different thickness and composition. The

model circuit in Figure 4.1 a is based on the assumption that the SAM is complete and

homogeneous and that the metal is well separated from the contacting aqueous phase. The validity

of this assumption is attributed to the nature of long hydrocarbon chains within the SAM to heal

defects, such as adsorbate vacancies. This equivalent circuit representation is similar to that

presented by Nahir and Bowden 8 for electron tunneling through a defect-free system on gold and

is a reduced version of the generally accepted model for the corrosion of a polymer-coated metal in

the absence of coating delamination (Figure 4. lb).7 The model circuit of Figure 4. la is valid as a

simplified form of that in Figure 4. lb when the resistance for the coating (Re) is much larger than

the charge transfer resistance at the interface (R,,) (Figure 4.1 b). For SAM-coated copper

substrates examined between 0.01 and 20,000 Hz, neither a second time constant nor any Warburg

behavior indicative of corrosion at the metal/organic interface was observed over the timescales

reported in this chapter.

4.2. Results

4.2.1. Properties of n-Alkanethiols on Copper

Ellipsometry has been a convenient technique for determining the thickness of SAMs on various

substrates. 9 This method requires characterization of the substrate before and after formation of

the SAM. The tendency of bare copper to oxidize rapidly when exposed to air complicates these

measurements; furthermore, the necessity to minimize contact of the copper substrates with oxygen

before SAM formation is inconsistent with the requirements for ellipsometric characterization. In

contrast with ellipsometry, the use of XPS to determine thickness only requires analysis of the

sample after SAM formation and thus, provides a method of characterizing the films that is

compatible with the requisite experimental efforts to minimize oxidation of the uncoated copper

substrate. XPS provides a convenient method for examining differences in relative thickness for

n-alkanethiolate films by measuring their attenuation of photoelectrons from the underlying

substrate. 10 Figure 4.2 shows the attenuation of the Cu(2p3/2) signal in XPS by SAMs of various

chain lengths from n = 8 to 29. The intensity of the underlying copper decreases exponentially as

the chain length is increased, indicating a consistent and regular increase in the thickness of the

SAM. The slope of the best-fit line through the data is -0.095/CH 2 and is equal to -(dcH2 / X sin

0),10 where dcH2 is the incremental thickness of each methylene group in the monolayer (dCH2 =

1.27 cos 0 = 1.24 A, where 1.27 is the incremental distance per CH 2 group in a trans-extended

hydrocarbon chain l l and 0 is the average cant (120) for the adsorbates within the SAM10), k is the

attenuation length of photoelectrons from the underlying metal through the hydrocarbon, and 0 is
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is a least-squares fit to the data and corresponds to an attenuation length of 23 A for Cu(2p3/2)
photoelectrons through the hydrocarbon layer.



the angle of the photoelectron detector with respect to the surface parallel. From the data in Figure

4.2, the attenuation length of Cu(2p3/2) photoelectrons through the n-alkanethiolate SAM is 23 A,

which agrees well with the value of 22 A determined in a previous study. 12 These results suggest

that the thickness of the hydrocarbon within these films can be varied from 10 to 36 A by using

adsorbates with chain lengths between 8 and 29 and demonstrate that the coating thickness on

copper can be tuned at the angstrom-level by appropriate selection of adsorbate. This high level of

control over film thickness is pertinent in investigating the effects of film thickness on barrier

properties. It is important to note that the degree of oxidation of the copper surface must be

minimized in order to form high-quality SAMs. XPS spectra taken immediately after SAM

formation by the methodology used here indicate the absence of Cu(II) species. 13

Since the capacitance of a film serves as an additional probe of its thickness, the chain

length of the adsorbate should govern the capacitance of the resulting SAM.14 The capacitance of

SAMs formed from a series of n-alkanethiols were measured by electrochemical impedance

spectroscopy, assuming the equivalent circuit shown in Figure 4.1 a. Through a Helmholtz model

of the interface, the capacitance of the film is related to its thickness by the following equation:

1 ds, ,  dcu2n d,,S- SAM n + (4.1)
C EsE CH2 o E so

where d(s) is the effective thickness of the ligating sulfur layer, dsA, is the thickness of the

monolayer (dsA = dcH2 n + d(s)), ESAM is the permittivity of the total film, ECH2 and E(S) are the

permittivities of the hydrocarbon and sulfur portions of the film, respectively, and to is the

permittivity of vacuum. The inverse capacitance increases linearly with increasing chain length of

the adsorbate (Figure 4.3), suggesting that the Helmholtz model is valid. The slope of the best-fit

line through the data in Figure 4.3 corresponds to a dielectric constant of 2.16 for the hydrocarbon

portion of the monolayers. This value is similar to the value of 2.10 measured in situ with surface

plasmon resonance for n-alkanethiols (n= 16, 18) on gold 15 and compares well to the value of 2.30

for polyethylene.16 The strong dependence of capacitance on chain length is consistent with the

results from XPS attenuation (Figure 4.2) and demonstrates the high level of control over film

thickness that is available with SAMs. In addition, these data support the equivalent circuit model

presented in Figure 4.1 a and discussed in Section 4.1.

Figure 4.4 shows reflection-infrared spectra of the C-H stretching region for SAMs derived

from CnSH on copper. For n > 12, the peak positions of the various modes-va(CH3) = 2965

cm-', Va(CH 2) = 2918 cm-', v,(CH 3) = 2879 cm-', and vs(CH 2) = 2851 cm-'-are the same as those

observed for n-alkanethiols on gold and indicate that the hydrocarbon chains predominately adopt a

trans-zig-zag extended conformation. For n = 12, the peak positions indicate a less crystalline

SAM with a greater density of gauche conformers that result from a less efficient packing of the
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Figure 4.3. Inverse capacitance of SAMs of CnSH on copper in oxygenated 50 mM
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circuit shown in Figure 4. la. The line is a least-squares fit to the data and has a slope that
corresponds to a dielectric permittivity of 2.16. The dashed portion of the line represents an
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head group and is similar to that observed by Porter et al. for thiols on gold. 14
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shorter chains. For the series of n-alkanethiols, the intensities of the methylene stretching

vibrations exhibit a linear dependence with chain length (not shown), as observed previously.' 0

The intensities of the methylene stretching vibrations indicate that the hydrocarbon chains of the

adsorbates tilt - 12' from the surface normal on the substrate; this nearly perpendicular orientation

indicates the formation of a more densely packed system than is formed for thiols on gold where

the chains tilt -30 0 from the surface normal. The dense packing of these adsorbates on copper

enables the formation of SAMs that can provide effective barriers against the diffusion of small

molecules such as 026,17 and H2018 to the underlying copper surface.

Figure 4.5 shows electrochemical impedance spectra in the form of Bode magnitude

(Figure 4.5a) and phase angle (Figure 4.5b) plots for copper, both bare and protected by SAMs

derived from CnSH. At high frequencies, the resistance of the solution dominates the impedance

and thus, the Bode magnitude data exhibit a slope of zero while the phase angle is near 0O. In the

intermediate frequency regime for coated samples, the capacitance of the films provides a

significant impedance, and log IZI increases linearly with a slope of 1 with decreasing log

frequency (Figure 4.5a) while the phase angle is approximately 900 (Figure 4.5b). The smaller

capacitance and greater impedance provided by the thicker films is evident in Figure 4.5a by

comparing the various spectra in the intermediate frequency regime. At low frequencies, the

plateaus in IZI for C8 and C12 films are consistent with the onset of ionic penetration into the SAM

and correspond to the resistances (Re) that the SAMs provide against the diffusion of these ions. 7

For copper protected by thicker films (n 2 16), the coating resistance is sufficiently large that it is

not directly observable on the magnitude plot; however, the slight decrease in phase angle (Figure

4.5b) at low frequencies suggests the onset of ionic penetration into these films. The coating

resistances for these films are 30, 55, and 77 MQ*cm 2 for C16, C22, and C29 films, respectively,

and were determined by fitting Nyquist plots of the data (not shown) with the equivalent circuit

model shown in Figure 4. la. The greater protection provided by the longer-chained thiols is

probably a result of the more effective packing, superior crystallinity, and greater thickness of

these films. For all coatings, the impedance provided is orders of magnitude greater than that for

unprotected copper (Figure 4.5a). The observed impedance of the bare metal at low frequencies in

Figure 4.5 may be the result of a Warburg process indicating active corrosion at the surface during

impedance characterization. A Warburg impedance corresponds to a phase angle of 450, and the

data in Figure 4.5b for bare copper approach this value. The results in Figure 4.5a show that a

monolayer film can produce large (three to four orders of magnitude) enhancements of impedance

and therefore provide significant protection against corrosion. Figure 4.6 shows the chain-length

dependence of the coating resistance (Re) for n-alkanethiols on copper; the values of Rc were

obtained by fitting EIS data to the equivalent circuit shown in Figure 4.1 a. The coating resistance

is linearly related to chain length for n 2 16, suggesting that each additional methylene group
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within the SAM behaves as a resistance in series. The slope of a least-squares fit to the data for n

2 16 corresponds to an increase in Rc of 4.2 M*cm2/CH 2. This large incremental increase in Rc
with each methylene is probably due to the close packing of the chains and their tendency to

minimize free volume, as suggested by the IR results in Figure 4.4. The calculated value of

conductivity for these films (n 2 16)-5.8±1.0 x 107'5 O-'cm'-is nearly constant with chain

length and indicates that the defect-free nature of these films prevents tunneling. 19 This value of

conductivity agrees well with that of 4.6±3.0 x 10-'5 g'cm-1 obtained for SAMs of

alkyltrichlorosilanes on silicon20 and is only roughly an order of magnitude greater than that of 2 x

10-16 1'-cm-
1 for bulk polyethylene. 20 For n = 8 and 12, the coating resistances were 0.14 and

0.81 M2*cm2, respectively. The departure from the linear behavior in R, for these thinner SAMs

is attributed to the less ordered environment of their chains. That the line in Figure 4.6 intercepts

the x-axis at n -10 may approximate the minimum chain length necessary to form a SAM on

copper that contains segments of hydrocarbon that are sufficiently crystalline to resist the

penetration of ions. This value agrees well with results from Aramaki and co-workers who

concluded that n-alkanethiolate SAMs with n 2 10 are more resistant to 02 diffusion due to better

packing of the hydrocarbon chains. 6 Computer simulations suggest that the crystalline portion of

the SAM is likely to be along the middle of the polymethylene chain as gauche conformers

concentrate at the chain ends.21 Infrared data on SAMs show a predominately crystalline structure

for chain lengths of n 2 16, with those of n = 12-15 having intermediate crystallinity based on the

line shape and peak position of the asymmetric methylene [va(CH 2)] absorption band. 14 Combined

with the resistance data, the structure of the SAMs may be considered to contain roughly n - 10

methylenes in a crystalline state that are encapsulated by less ordered hydrocarbon units at the

Cu/SAM and SAM/air interfaces. The crystallinity determined from IR data would reflect a

composite of the phase states within the SAM.

4.2.2. Properties of SAMs upon exposure to 1 atm of 02 at 100% RH

After exposing SAM-coated copper to an environment of 1 atm of oxygen and 100% RH at room

temperature for various periods of time, the barrier properties of the films deteriorated. Figures

4.7a and b show plots of the Bode magnitude and phase angle, respectively, for C16, C22, and C29

films on copper after exposure to the humid, oxygen-rich conditions for 40 h. For the C16 film,

the resistive plateau decreased by two orders of magnitude after the 40-h exposure and the phase

angle is 0O at the lowest frequencies. For thicker films of C22 and C29, the decrease in Rc over the

exposure was less pronounced. The data in Figure 4.7 suggest that chain length is an important

parameter governing the effectiveness of the films to maintain their barrier properties upon
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exposure to a corrosive environment. This trend is illustrated in greater detail in Figure 4.8a where

the coating resistance is plotted as a function of exposure time to 1 atm of 02 at 100% RH. The

data in Figure 4.8a illustrate that Rc decreases exponentially with time and that the thicker films are

better able to maintain their protective properties over extended periods of exposure to the given

conditions. This ability is likely a result of the increased number of van der Waals interactions for

the thicker films (vide infra). In Figure 4.8b, the rate of falloff in Rc is plotted as a function of the

chain length of the adsorbate. The slope of the line in Figure 4.8b indicates that the rate of Rc
falloff decreases by 50% for every five carbons in the adsorbates forming the SAM. This result is

comparable to that of Laibinis and Whitesides who observed that the rate of oxidation of the

underlying copper decreases by 50% for every four carbons in the n-alkanethiol adsorbates.' 7 The

similarities in these results suggest that the phenomena affecting the loss in performance are related

(vide infra).

The decrease in RC with time may be the result of a structural change within the films. The

structural properties of these films were monitored with IR spectroscopy as a function of exposure

time to the oxidizing conditions (1 atm 02 at 100% RH). Figure 4.9 displays the C-H stretching

region of IR spectra for copper protected by C16, C22, and C29 films as initially prepared and after

exposure to the corrosive conditions. After exposure for 22 h, the spectrum for the C,6 film

exhibits broadening of the peaks and an increased intensity in the methylene peaks, suggesting a

less densely packed film in which the average orientation of the chain axis is more canted from the

surface normal. This structural evolution is accompanied by a shift in peak position to higher

wavenumbers for the CH 2 modes [i.e. Va(CH 2) = 2926 cm'] that indicates a loss of crystallinity in

the hydrocarbon film. Although broadened, the integrated intensity for the methyl peaks remains

constant over the 22-h exposure. For the C16 film at longer times (not shown), the appearence of

new peaks in the IR spectra at 3360, 1490, and 1405 cm-' suggests the formation of Cu(OH)2 and

CuCO 3 species underneath the SAM. At these longer times, the peaks within the C-H stretching

region continue to broaden, and Va(CH 2) shifts to 2930 cm-'. For C22 and C29 films after 22 h of

exposure, a related, albeit smaller, increase in integrated methylene peak intensities is observed due

to a broadening of the bands; however, in contrast to the C,6 film, the C22 and C29 films exhibit

only a slight loss of crystallinity [va(CH 2) = 2919 cm-'] during this time period.22 Nevertheless,
the coating resistance for the C22 and C29 SAMs decrease by factors of 5 and 2, respectively, after

the 22-h exposure as shown in Figure 4.8a. That this large reduction in coating resistance occurs

with a slight change in the structure of the film reveals the sensitivity of molecular structure on the

barrier properties of a protective coating. At longer times, the spectra for the C22 (400 h) and C29

(640 h) films show a continued increase in the intensity of the methylene modes, suggesting

greater tilt of the hydrocarbon chains within the film. A loss of intensity in the vs(CH3) mode and a

corresponding increase in intensity in the Va(CH 3) mode (both with considerable peak broadening)
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also suggest greater average cant of the molecular adsorbates but indicate that there is no loss of

hydrocarbon adsorbates within the film during this structural evolution. The positions of the

methylene modes at these longer times for the C29 film [Va(CH 2) = 2919 cm-; v 2(CH2) = 2851

cm -'] and the C22 film [va(CH 2) = 2920 cm'; v2(CH2) = 2851 cm-'] indicate only a slight loss in

crystallinity throughout the exposure, and there was no appearance of peaks corresponding to

Cu(OH)2 or CuCO3 in the spectra of either film. These spectra suggest that the adsorbates within

the C22 and C29 SAMs also become more canted upon exposure to corrosive conditions, but in

contrast to the C 6, film, these adsorbates remain relatively crystalline for much longer periods of

time.

As discussed above, the increase in the intensities of the methylene stretching modes

suggests that the adsorbates within the SAM become more tilted and less densely packed with time.

This structural transformation of the SAM can also be probed electrochemically since the coating

capacitance should increase as the films become less densely packed and more permeable to ionic

species. Figure 4.10 shows the effect of exposure to 1 atm of 02 at 100% RH on both the sum of

the integrated intensities for the asymmetric and symmetric methylene stretching modes (Figure

10a) and the coating capacitance (Figure 4.10b) for SAMs formed from C,6SH, C22SH, and

C29SH on copper. The methylene intensities have been normalized to the value for a freshly

prepared SAM from the respective adsorbate. For a C16 SAM, the methylene intensity increases

rapidly upon exposure to the corrosive conditions, indicating major structural changes for the

hydrocarbon chains within the coating (Figure 4. 10a). The capacitance of Cl 6 films also increases

sharply with exposure time (Figure 4. 10b), indicating that structural changes within the

hydrocarbon chains result in a film that is more permeable to ionic species. This increased

capacitance could result from the SAM becoming effectively thinner and/or having an increased

dielectric permittivity. For a C22 SAM with greater van der Waals interactions, the methylene

intensities increase slightly for the first 70 h while the capacitance remains constant. On a similar

timescale, the coating resistance for the C22 SAM decreases sharply (Figure 4.8a) suggesting that

the subtle change in molecular structure affects the coating resistance of the film more strongly than

the capacitance. After -~ 100 h, both the methylene intensities and the capacitance increase sharply

indicating a transformation to a less densely packed film with a smaller effective thickness. The

SAM derived from C29SH exhibits a slight increase in both methylene intensity and capacitance,

but the rates of increase are far smaller than those for the thinner C16 and C22 films. These results

demonstrate that structural changes within a coating can be correlated to its capacitance and that

thicker SAMs with greater intermolecular interactions can better maintain a densely packed

hydrocarbon lattice that is less permeable to ionic species.
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4.3. Discussion

4.3.1. Chain-length Effects on the Protection of Copper by n-Alkanethiols

The barrier properties of initially formed SAMs on copper depend on the chain length of the

adsorbates that form the film (Figures 4.5 and 4.6). SAMs formed from CaSH with n < 12

provide coating resistances that are at least 30 times smaller than SAMs from n 2 16. The poor

barrier properties are likely a result of the inferior packing and crystallinity of the shorter-chained

adsorbates as initially formed; the peak positions of va(CH 2) for C8 and C,2 films on copper are

2924 and 2922 cm -', respectively, indicating films with predominately liquid-like characteristics.

The initial impedance spectra for thicker films (n 2 16) are primarily controlled by their capacitance

(Figure 4.5), indicating that these films provide a greater physical barrier to the diffusion of ionic

species present in the contacting aqueous phase. The superior barrier properties of these thicker

films are attributed to the densely packed, crystalline hydrocarbon layer that separates the

underlying copper from the external environment. Coating resistances for these SAMs increase

linear with film thickness for n 2 16 (as shown in Figure 4.6), suggesting that the CH 2 groups

within the hydrocarbon chains behave as a series of resistors to the permeation of ionic species.

Upon exposure to 1 atm of 02 at 100% RH, the thickest films exhibit the slowest transition

to a less densely packed structure (Figure 4.10) and the slowest loss of coating resistance (Figure

4.8). Time-dependent infrared spectra demonstrate that the films formed from longer-chained

adsorbates are more effective at maintaining their crystalline structure under oxidizing conditions

than films formed from shorter-chained analogues. These IR data are consistent with results from

Chapter 3 in which thicker SAMs were observed to be more effective in maintaining a low-energy

methyl surface that was not wet by hexadecane. 18 The superior performance provided by SAMs

with greater thickness is likely a result of their enhanced structural stability due to the greater

number of intermolecular interactions within the hydrocarbon chains for these films; by analogy,

the stability of structurally similar films (such as these) might be expected to scale with the melting

points of the adsorbates. To test this hypothesis, the rate of falloff for the coating resistance of

films derived from three linear alkanethiols were compared: C22SH, C29SH, and C18OCISH

(Figure 4.11). While the chain length of the ether-linked thiol is similar to that of the C29SH (both

have 29 carbons) and it produces a film of similar thickness, the melting point of C,8OCI1 SH

(m.p. - 46 °C) is approximately the same as for C22SH (m.p. - 47 OC ). Initial IR spectra of the C-

H stretching region for SAMs formed from C, 8OCi SH on copper reveal a crystalline, densely

packed monolayer, similar to those from C29SH. In Figure 4.11, the rate of coating-resistance

falloff for the ether-substituted SAM is greater than that for the C29 SAM of similar thickness but

nearly identical to that for the C22 SAM. This result suggests that the intermolecular interactions
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that govern melting phenomena are also prominent factors that determine the structural stability of

these thin films when exposed to oxidizing conditions.

4.3.2. Proposed Mechanism for Deterioration of SAM Barrier Properties

Comparison of data obtained from infrared and impedance spectra enables elucidation of the

structural state of a SAM and its effect on barrier properties. Over the first 70 h of exposure to 1

atm of 02 at 100% RH for C22 and C29 SAMs on copper, moderate changes in the structure of the

films, as measured by the normalized intensity of methylene peaks in IR (Figure 4.10a), have no

effect on their coating capacitance (Figure 4.10b) but can result in an exponential loss of their

coating resistance (Figure 4.8a). Although the effective thickness of these SAMs as probed by

capacitance remains essentially constant over the first 70 h, increased heterogeneity within the local

environment of the hydrocarbon results in a SAM with a greater free volume that is less resistant to

the transport of ions. These results demonstrate the sensitivity of ionic transport on subtle issues

related to the densely packed structure of the hydrocarbon chains within the SAM. After 100 h of

exposure to the oxidizing environment for a C22 SAM on copper, major changes in the structure of

the film as indicated by an increase in the methylene intensity (Figure 4. 10a) occur concurrent with

an increase in the capacitance of the film (Figure 4.10b), indicating an effectively thinner SAM

and/or an increased dielectric permittivity due to water and ionic uptake. These results are in

contrast to the behavior of 1.2-gm-thick coatings of polyimide on aluminum where an increase in

capacitance upon exposure to NaCl(aq) preceded breakdown of the barrier properties of the

coating.23 The different behavior for SAMs is attributed to their thinness in comparison to the

much thicker polymeric coatings.

The time-dependent data presented in this paper provide insight into the mechanism of the

corrosion process occurring on SAM-coated copper. The impedance data in Figures 4.7 and 4.8

illustrate that thicker films are more effective in protecting the copper surface from corrosion and

that the performance of these thicker films deteriorates more slowly than that of thinner films upon

exposure to 02 (1 atm) at 100% RH. The infrared spectra (Figure 4.9) indicate that the SAMs

become more heterogeneous and less densely packed upon prolonged exposure to the oxidizing

conditions but that the thicker films are more effective in maintaining their levels of crystallinity and

packing. Furthermore, the IR data suggest that there is no loss of the molecular adsorbates from

the film during the corrosion process. The deterioration in the barrier properties for these films

probably corresponds to an altered structure in which the hydrocarbon chains within the film

become more canted and less densely packed. An increased free volume within polymer films has

been shown to result in greater permeability to water. 24 That the transformation to a less densely

packed SAM occurs without loss of molecular adsorbates suggests an increase in the surface area



of the underlying copper, most likely through roughening by oxidation. An increase in surface

roughness is consistent with an increased hysteresis in the time-dependent wetting data for these

films on copper. 17 This nanoscale roughness could affect the local environment of the

hydrocarbon chains, rendering them less resistant to the transport of aqueous species.

These results are consistent with a mechanism in which 02 and H20 diffuse through the

film and react at the surface during exposure to 02(1 atm) at 100% RH. Because the SAM acts as a

barrier to the transport of 026,17 and H20,18 oxidation (and surface roughening) will occur more

rapidly through thinner films. In addition, oxidation of thiolates to less-adherent sulfonates occurs

more rapidly with thinner films. 17 The atomic-level roughening of the underlying copper may

distort the hydrocarbon lattice of the SAM and increase its permeability to the diffusion of aqueous

ions (such as in the EIS measurement), resulting in films with inferior barrier properties. SAMs

formed from longer-chain adsorbates provide a thicker barrier against the diffusion of small

molecules and a more structurally stable hydrocarbon lattice that can better accommodate surface

roughening.

Further experimental support of this mechanism can be illustrated by monitoring the

structural properties for n-alkanethiols on gold and silver substrates. SAMs of CnSH (15 < n

22) on gold and silver exhibited no major structural changes and no loss of crystallinity after

exposure to air for 43 days. The enhanced structural stability of these SAMs is likely a function of

the greater resistance of these metals against oxidation, and thus surface roughening, in

comparison to copper.

A less likely mechanism for the deterioration of the barrier properties within the films

involves the oxidation of thiolates to sulfonates and the subsequent desorption of these loosely

bound sulfonates into water, during either a rinsing step or the EIS measurement. The thiolate

moieties of a SAM on copper can be converted to less adherent sulfonates upon extended exposure

to oxygen. 17 Such a loss of adsorbate material from the film would result in a coating with a

significant density of pinholes and defects and a corresponding decrease in the barrier properties.

While the falloff in barrier properties could be rationalized by this mechanism, the structural

properties of these films as probed by IR are not consistent with this hypothesis because they are

independent of contact to water for the timescales investigated. For example, IR spectra

accumulated before and after rinsing with water or characterization by EIS were identical,

indicating no loss of material in the film upon contact to an aqueous phase. In addition, repetitive

EIS measurements on the same sample were identical. These results and the consistency of the

integrated methyl intensities in the time-dependent IR spectra reveal that the adsorbates remain

bound to the underlying copper during exposure to the corrosive conditions and during

characterization by EIS and suggest that the structural changes within the film are the result of

oxidation of the underlying copper surface.



4.4. Conclusions

Self-assembled monolayers (SAMs) derived from unsubstituted n-alkanethiols [CH3(CH2)nISH]

on copper provide protection against corrosion of the underlying metal that scales with the chain

length of the adsorbate. SAMs formed from longer-chained adsorbates (n 2 16) are highly

crystalline and provide substantially greater initial coating resistances than thinner SAMs. Upon

exposure to 1 atm of 02 at 100% RH, thicker SAMs maintain their structural and barrier properties

at a level superior to thinner SAMs. For these unsubstituted n-alkanethiolate SAMs, the thicker

films have greater van der Waals interactions which contribute to the superior maintenance of their

barrier properties. Addition of an ethereal oxygen in the self-assembling adsorbate (C, 8OC,,SH

vs. C29SH) can result in films with similar thickness but reduced intermolecular interactions (as

estimated from melting points) and less effective maintenance of barrier properties. IR results

show that the adsorbates within the SAM become less densely packed upon exposure to 1 atm of

02 and 100% RH but that the adsorbates remain at the metal surface. These results are consistent

with a mechanism in which oxidation of the underlying copper roughens the surface and perturbs

the hydrocarbon lattice of the SAM into a less crystalline state, producing coatings that are more

permeable to ionic species as measured with EIS.

4.5. Experimental

4.5.1. Materials and Synthesis.

Isooctane (J.T. Baker), anhydrous tetrahydrofuran (Aldrich), and hexadecane (Aldrich) were used

as received. Octyl, dodecyl, and octadecyl thiols were purchased from Aldrich and were purified

by distillation or recrystallization before use. Docosyl and hexadecyl thiols were available from a
previous study, 18 and eicosyl thiol and 11-bromo-undecyl-t-butyldimethylsilyl ether were

synthesized via a literature procedure. 25 The synthesis of 11-octadecyloxy-1-undecanethiol is

noted in Chapter 5. Dilithium tetrachlorocuprate, octadecylmagnesium chloride,

tetrabutylammonium fluoride, diisopropyl azodicarboxylate, and triphenylphosphine were

purchased from Aldrich and used as received. All intermediates were characterized by 'H NMR

(400 MHz). NMR spectra were obtained in CDC13 and referenced to residual chloroform at 7.24

ppm.
Nonacosyl-t-butyldimethylsilyl ether. A solution of Li2CuC14 in THF (5.2 mL, 0.1

M) was added to a solution of 11-bromo-undecyl-t-butyldimethylsilyl ether25 (8.54 g, 20.7 mmol)

in 100 mL of anhydrous THF at 0 0C. A solution of octadecyl magnesium chloride in anhydrous

THF (45 mL, 0.5 M) was then added dropwise to the reaction mixture. After the reaction warmed



to room temperature overnight, it was quenched by dropwise addition to a saturated aqueous

solution of NH4CI(aq). The layers were separated and the aqueous fraction was extracted thrice

with hexanes. The organic extracts were combined and concentrated to yield a yellow-brown oil.

The title compound was obtained by chromatography (hexanes followed by 2% ethyl

acetate/hexanes) over silica gel as a yellow oil (7.22 g, 13.4 mmol, 65%). 'H NMR, 8 3.57 (t, 2

H), 1.53 (quint, 2 H), 1.2-1.4 (m, 52 H), 0.87 (m, 9 H), 0.85 (t, 3 H), 0.03 (m, 6 H).

Nonacosanol. A solution of tetrabutylammonium fluoride in THF (30 mL, 1.0 M) was

added to nonacosyl-t-butyldimethylsilyl ether (7.23 g, 13.4 mmol) in 100 mL of THF. The

reaction was stirred for 2.5 h and concentrated under reduced pressure. Column chromatography

(2% methanol/chloroform) over silica gel yielded the title compound as a white solid (5.36 g, 12.6

mmol, 94% yield). 1H NMR, 8 3.62 (t, 2 H), 1.55 (m, 2 H), 1.2-1.4 (m, 52 H), 0.86 (t, 3 H).

Nonacosyl thioacetate. Diisopropyl azodicarboxylate (1.52 g, 7.32 mmol) was added

to a solution of triphenylphosphine (1.91 g, 7.32 mmol) in 200 mL of anhydrous THF at 0 OC. 26

A solution of nonacosanol (1.55 g, 3.67 mmol) and thiolacetic acid (0.556 g, 7.32 mmol) in 60

mL of anhydrous THF was added dropwise to the reaction mixture and stirred at 0 OC for 1 h. The

reaction was stirred for an additional 2 h as it warmed to room temperature. The mixture was

concentrated under reduced pressure, and the title compound was obtained by column

chromatography (1% ethyl acetate/ hexanes) as a white solid (1.02 g, 2.1 mmol, 58% yield). 'H

NMR, 6 2.85 (t, 2 H), 2.30 (m, 3 H), 1.53 (quint, 2 H), 1.2-1.4 (m, 52 H), 0.86 (t, 3 H).

Nonacosyl thiol. Concentrated hydrochloric acid (0.77 g, 21 mmol) was added to a

refluxing mixture of nonocosyl thioacetate (1.02 g, 2.1 mmol) in 25 mL of deoxygenated ethanol,

and the reaction proceeded overnight. The mixture was concentrated under reduced pressure.

Column chromatography (5:2 chloroform/hexanes) yielded the title compound as a white powder

(0.324 g, 0.67 mmol, 32% yield). 'H NMR, 8 2.52 (quart, 2 H), 1.58 (m, 2 H), 1.2-1.4 (m, 52

H), 0.86 (t, 3 H).

4.5.2. Oxidation Studies

Immediately after assembly of the monolayers, the Cu-coated Si wafers were cut into 1.5 x 3 cm 2

samples that were either characterized or placed into a chamber at 100% relative humidity (RH).

Humidity levels were determined by a digital hygrometer (Fisher). The chamber was evacuated

and then backfilled with 02 to atmospheric pressure. A steady stream of 02 flowed through the

chamber at 10 cm 3/min during the experiment. The chamber was kept at room temperature and

stored in the dark to minimize any possible effects due to the influence of light. After various

periods of exposure, samples were removed from the chamber, rinsed with water, dried in a

stream of N2, and characterized by either IR, EIS, or XPS. After characterization by EIS or XPS,



the samples were discarded. Samples initially characterized by IR were often subsequently

characterized by one of the other methods.

4.5.3. Electrochemical Impedance Spectroscopy (EIS).

Electrochemical impedance spectroscopy of SAM-coated copper samples was performed with an

EG&G 1025 frequency response detector connected to an EG&G 263A potentiostat, both

interfaced to a personal computer. A glass cell equipped with a platinum mesh counter electrode

and a Ag/AgCl/sat'd KCl reference electrode contained an oxygenated solution of 0.050 M Na2 SO 4

as electrolyte. The electrolyte contacted only the center of the SAM-coated copper sample at an

area of 1 cm 2 confined by an o-ring. The measurements were made at the corrosion potential with

a 5 mV ac perturbation that was controlled between 10 mHz and 20 kHz. Film resistance and

capacitance values were determined by fitting the EIS data with an appropriate equivalent circuit

using software-Equivcrt.pas written by Bernard Boukamp-provided by EG&G.

4.5.4. Reflection-Absorption Infrared Spectroscopy (RAIRS).

IR spectra were obtained in single reflection mode with a Bio-Rad FTS 175 infrared spectrometer

and Universal Reflectance Attachment. The p-polarized light was incident at 800 from the surface

normal, and the reflected light was detected with a narrow-band MCT detector. Spectral resolution

was 2 cm-' after triangular apodization. Spectra were referenced to those of SAMs prepared from

octadecanethiol-d37 on copper with 1024 scans being acquired for both the sample and reference.

Integrated peak intensities were determined by fitting the spectra with Gaussian profiles.
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Chapter 5. Formation and Structure of Oriented Monolayers on
Gold and Copper from Long-Chain o-Alkoxy-n-Alkanethiols

5.1. Background

Although much effort has been devoted to controlling surface properties with SAMs in two

dimensions,1 a fine-tuned control over the third dimension (thickness) has only been demonstrated

for film thicknesses less than 30 A.2 The ability to form SAMs from longer-chain adsorbates

provides the opportunity to produce thicker films that may provide enhanced barriers against

electron transfer or corrosive agents. In Chapter 4, the relationship between the structure and

barrier properties of n-alkanethiolate [CH3(CH2),n-SH] SAMs on copper with chain length as great

as n = 29 was reported. The results obtained demonstrate that SAMs formed from adsorbates with

longer chain lengths provide greater resistances against the diffusion of aqueous ions and are more

effective in maintaining a high level of protection to the underlying substrate during prolonged

exposure to a corrosive environment. Efforts to form thicker, more protective SAMs with

unsubstituted n-alkanethiols having n > 29 are complicated by lengthy syntheses and poor

solubility of the long-chained intermediates in many commonly used solvents. Grainger and co-

workers have adsorbed disulfide-containing polymers on gold that include various side-chain

compositions. 3,4 While the thermal stability of these films is superior to monolayer films due to

their multipoint ligation, the films ranged in thickness from 10 - 40 A and exhibited barrier

properties that were inferior to those of monolayers films of similar thickness. 4

In order to form SAMs with greater thickness, the synthesis of a series of long-chain o-

alkoxy-n-alkanethiol adsorbates [CH 3(CH 2), O(CH 2)mSH] was accomplished where an ethereal

unit provides coupling between two n-alkyl chains. For this targeted goal, the Williamson ether

synthesis provides a flexible synthetic methodology that enables the formation of these long-chain

adsorbates with relatively few synthetic steps. The presence of the ethereal oxygen increases the

polarity of the thiols and their synthetic intermediates and improves their solubility for assembly

and purification. Substitution of an ether moiety within the hydrocarbon of the adsorbate does not

dramatically affect the crystallinity of the resulting SAM due to the similarity of the ether in size and

structure to a methylene group; while the presence of the ether oxygen causes a local disordering

within the SAM, the gross structure of the SAM is largely insensitive to its presence when the ether

unit is placed at least two methylene units away from the chain terminus. 5 Miller et al. 6 have used

reflection-absorption infrared spectroscopy and electrochemical measurements to study the

structural properties for SAMs on gold derived from o-hydroxy-alkanethiols that contain an



internal ethereal oxygen. They correlated shifts in the potential of zero charge to the structural

orientation of the ethereal oxygen unit in the crystalline monolayer.

In this chapter, the kinetics of formation and the structural properties of SAMs derived

from o-alkoxy-n-alkanethiols [CH 3(CH2)p-O(CH2)mSH] on gold and copper are reported; for

simplicity, the compounds are abbreviated as CPOCmSH. As summarized in Figure 5.1, the

following adsorbates have been synthesized: C 8OCIISH, C22OC 1SH, C18OC,SH, C22OCl9SH,

and C22OC 22SH. SAMs derived from these adsorbates have been characterized by ellipsometry

and x-ray photoelectron spectroscopy (XPS) to determine thickness of the adsorbed film, infrared

spectroscopy to determine the structural phase state of the hydrocarbon chains within the SAM,

and electrochemical impedance spectroscopy to quantify the resistance provided by SAMs on

copper against the diffusion of aqueous ions. In particular, the longest-chained adsorbates in this

study have been used to produce the thickest SAMs formed to date from non-polymeric

adsorbates.

The kinetics of formation for these long-chained adsorbates will be compared to those for

shorter-chained n-alkanethiols (CnSH) to assess the effect of chain length on the rates of assembly.

The kinetics of assembly for alkanethiolate monolayers on gold from solution have been monitored

previously in situ by surface plasmon resonance (SPR),7 scanning probe microscopies (SPM),8

and quartz crystal microbalance (QCM) 9 and ex situ by ellipsometry. 2 Peterlinz and Georgiadis7

have used SPR to study the formation of n-alkanethiolate monolayers (n = 8, 12, 16, 18) on gold

from ethanol and heptane as solvents. They found that the kinetics of assembly in a strong

alkanethiol solvent (heptane) were rapid and consistent with a first-order, diffusion-limited

Langmuir isotherm while the kinetics in a weaker alkanethiol solvent (ethanol) were slower and

involved three kinetic steps. The first and final steps were consistent with a first-order, diffusion-

limited Langmuir isotherm while the second step was zeroth order. They concluded that a

physisorbed layer of alkanethiols is present on top of the partial chemisorbed film in ethanol and

that the transport of thiol molecules from this layer limits the formation of the SAM. Karpovich

and Blanchard have used in situ QCM to show that an equilibrium exists between free gold sites

and alkanethiolate moieties and that the kinetics of formation for these films are consistent with a

Langmuir isotherm over a limited range of concentrations. 9 Bain et al. have monitored the

ellipsometric thickness of SAMs on gold from ethanol ex situ and observed an initial kinetic regime

of rapid growth of the SAM followed by a slower ordering step in which the final 10% of the

thickness is achieved after hours of adsorption.2 Ex situ measurements typically reveal more rapid

kinetics than in situ techniques; the effect of solvent during in situ formation may influence the

properties of the SAMs, 10 as may the process of removing a partial SAM from solution for ex situ

measurements.
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Va(ROR). The intensities of the infrared bands for these dipole moments depend on their projection
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In collaboration with Prof. Gang-yu Liu and co-workers at Wayne State University, the

kinetics of formation for SAMs of C,8OC, 9SH on Au( 11) from 2-butanol were studied in situ

using atomic force microscopy (AFM). 8 Images obtained with AFM at dilute concentrations (2

gM, butanol) showed that the hydrocarbon chains lie flat on the gold surface at early times, adopt

various structures on the gold surface at intermediate times-including adsorbates that are oriented,
kinked at the ether bond, or lying flat-and become oriented and densely packed with continued

exposure to the thiol solution. As observed by AFM, the kinetics of formation for C18OC 19SH in

2-butanol were more rapid than for shorter, unsubstituted thiols such as C18SH. In this chapter,

the kinetics of formation for C18OC 19SH, as measured ex situ by ellipsometry, are correlated with

the structural properties of the forming monolayers, as characterized ex situ by IR spectroscopy.

In addition, the general structural aspects of c-alkoxy-n-alkanethiols on copper and gold are

examined.

5.2. Results and Discussion

5.2.1. Formation of Monolayers
The o-alkoxy-n-alkanethiols were synthesized by a multistep process (eq 5.1):

1. CH3 (CH2)p-lONaTHF

H2 C=CH(CH2 )m-2Br C HS(CH 2 )mO(CH 2)p.-CH3  (5.1)
2. CH3COSH/hv

3. H+/CH 3CH2OH

Self-assembled monolayers from these (o-alkoxy-n-alkanethiols were formed by immersion of

freshly evaporated copper or gold substrates into 0.5 mM isooctane or 2-butanol solutions of the

adsorbates at either 22 or 55 'C from 2 s to over 100 h. Since adsorbates with chain lengths p + m
2 37 were poorly soluble in the solvents at room temperature, the solutions were heated to

solubilize the adsorbate before cooling to the adsorption temperature.

5.2.2. SAMs Derived from C 8OC19SH on Au

The formation of a densely packed SAM from alkanethiols requires that the adsorbates expel

solvent molecules from near the metal surface and within a partially formed SAM. The effects of

solvent on the formation of SAMs from C18OC 19SH on gold were investigated by comparing the

kinetics of assembly in a stronger alkanethiol solvent (isooctane) and a weaker one (2-butanol).

Based on ex situ ellipsometric measurements (Figure 5.2), the formation processes for the SAMs

in these solvents are different. The thicknesses of the SAMs formed from C, 8OC 9,SH on gold in

either solvent (0.5 mM) increase with time, from 0.033 min (2 s) to 6000 min (100 h). The trend

in film growth is similar to that shown by Bain et al. 2 who observed a rapid initial growth of

octadecanethiolate SAMs onto gold over a few seconds. After only 2 s of exposure to
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Figure 5.2. Time-dependence on the ellipsometric thickness of SAMs formed by immersion of
gold substrates into solutions of C 8OC19SH (0.5 mM, isooctane or 2-butanol) or C22SH (0.5 mM,
isooctane) at room temperature. The curves represent kinetic models that approximate the behavior
of the data for t > 0.033 min (2 s). For the C 8OC 9,SH data sets, the curves are diffusion-limited,
second-order Langmuir isotherms with kinetic rate constants (k2d) of 0.08 and 0.05 s-1/2 for
assembly in 2-butanol and isooctane, respectively. The curve that best describes the C22SH data
set is a second-order Langmuir isotherm with a rate constant (k2) of 0.04 s-'.



C 80OC9,SH-containing solutions, the thicknesses of the films formed from isooctane and 2-butanol

were 23 A and 34 A, respectively. Upon continued exposure, the adsorption kinetics in 2-butanol

were sharper and the film thickness achieved a greater asymptotic value on a more rapid timescale.

The thicknesses of the SAMs after 100 h of adsorption in isooctane and 2-butanol were 47 and 50

A, respectively, and did not change after 200 h of additional exposure to the thiol solution. These

results indicate that the SAMs form more rapidly in the weaker 2-butanol solvent. This result

contrasts that for short-chained, unsubstituted n-alkanethiols that form SAMs more rapidly in

stronger solvents.7 The more rapid initial film growth in 2-butanol is likely due to the tendency of

long hydrophobic chains to dispel the moderately polar 2-butanol solvent by crystallizing out on

the gold substrate. In isooctane, favorable interactions between the solvent and adsorbate (and also

between the SAM and solvent) may contribute to the slower growth of the SAM. Bensebaa et al. 10

have reported that SAMs formed from C22SH in ethanol (5 tM) are significantly more crystalline

than SAMs formed from hexanes for short (-2 min) adsorption times.

The curves in Figure 5.2 represent kinetic fits to the adsorption data. The earliest data in

Figure 5.2 could not be modeled by any common Langmuir adsorption equations. In general, ex

situ studies of SAM formation show more rapid growth than in situ studies at early times. This

difference may be a result of the experimental process as the substrate is exposed to the solution-air

interface and often retains a thinning film of the solution on its surface before being rinsed, dried,

and subsequently characterized. Nevertheless, from 2 s to 100 h, the thickness data in Figure 5.2

for C18OC1 9SH in both solvents are consistent with a diffusion-limited, second-order Langmuir

adsorption model (eq 5.2):

d(t) = d[1 - 1 / 2  (5.2)
1+ k2 dt

where d(t) and d' are the thicknesses of the SAM at any time (t _ 2s) and after 100 h of adsorption,

and k2d is the second-order, diffuison-limited rate constant. This model (eq 5.2) provides a

superior fit to the data in Figure 5.2 in comparison to other models7-a diffusion-limited, first-

order Langmuir model and a non-diffusion-limited, second-order Langmuir model- used by

Peterlinz and Georgiadis to describe the assembly of shorter-chained n-alkanethiols. In the present

case, the compatibility of the data with a second-order, diffusion-limited mechanism may reflect

both the presence of a partial SAM that limits transport of adsorbates to reactive sites on the

substrate and the presence of long, liquid-like chains of the adsorbed thiol that may interfere with

further adsorption at adjacent sites. This impedance of further adsorption suggests that the

adsorption rate will not be proportional to simply the number of unoccupied sites (first-order

Langmuir) and may explain the consistency of the data with a higher-order Langmuir model. Rate



constants determined from fitting the experimental data in Figure 5.2 with these models are given

in Table 5.1. After the initial 2 s of formation, the rate of formation in 2-butanol is 60% faster than

in isooctane.

Table 5.1. Effect of solvent on the formation of CsO C 19SH onto gold at 22 'C.

Solvent k2d (s - 1/2 )

2-butanol 0.08 ±0.005

isooctane 0.05 ± 0.005

Figure 5.2 also allows comparison between the kinetics of formation of SAMs from

C18OC19SH with those for a shorter-chained C22SH in isooctane. The thickness of the C22SH film

reaches a pseudo-asymptotic value within 20 min of adsorption, significantly less than the -100 h

required to achieve a constant film thickness for a SAM of C18OC, 9SH. The kinetics of assembly

for C2 2SH on gold were fit with a non-diffusion-limited, second-order Langmuir isotherm, similar

to that used to describe the kinetics of formation for shorter-chained n-alkanethiols. 7 The greater

adsorption time required for the long-chained adsorbate is probably a function of the slow ordering

of the longer hydrocarbon chains and their ability to limit the transport of further adsorbates to the

gold surface. Peterlinz and Georgiadis 7 observed that SAMs formed from longer-chained n-

alkanethiols formed at slower rates than shorter-chained thiols in the first kinetic regime.

During the formation of SAMs, their average structural properties change continuously

until either an equilibrium state or a "complete" monolayer film is achieved. The structural

properties of films formed from C18OC,9SH were characterized at various times during film

formation by reflectance infrared spectroscopy (ex situ). Figure 5.1 schematically illustrates the

orientation of the dynamic dipole moments for a trans-zig-zag extended adsorbate that is tilted from

the surface normal by an angle of ax and twisted around its molecular axis by an angle of P. The

strengths of the bands corresponding to these dipoles are influenced by their orientation relative to

the surface normal. Assuming that all chains are identical (single-chain model), Sinniah et al.6

developed equations to relate the average cant (a) and twist (0) of ether-containing adsorbates

within a SAM to its infrared intensities:

IMI Pv -1/2

tana= 1 Iva(CH2) Va(ROR) (5.3)
sin Iv,,(ROR) va(CH2 )



Iso 1/2
vcot (CH2 ) Va (CH 2 )(5.4)

v,(CH2) vs(CH2)

where ISAM and Iiso refer to the infrared intensities of the stretching modes for the SAM and for an

isotropic sample of the adsorbate diluted with potassium bromide. While this single-chain model

may not capture the structural complexities of the hydrocarbon chains in these SAMs, it still serves

as a convenient guide to assess the relative packing densities of the adsorbates during formation.

Based on the orientation of the dipoles, as the adsorbates within the film tilt less from the surface

normal, the v(CH2) modes should decrease in intensity while the v(ROR) mode should increase.

A decreased tilt signifies the presence of more molecules on the surface and a more densely packed

film. Figure 5.3 shows IR spectra of the C-H and R-O-R stretching regions for gold substrates

after various exposures to 0.5 mM C 8,OC 19SH in 2-butanol. As adsorption time increases, the

asymmetric methylene intensity decreases while the ether stretching intensity increases (Figure

5.3). These changes are consistent with the formation of a more densely packed film with smaller

cant as the adsorption proceeds. Over the 100 h adsorption, the peak position for Va(CH 2)

decreases from 2921 (at 2 s) to 2918 cm ' while that for Va(ROR) increases from 1124 (at 2 s) to

1131 cm -l . Both these shifts are consistent with a transition from a liquid-like to a crystalline state

as the SAM becomes more densely packed. 6,11

Figures 5.4a, b, and c display the temporal evolution in intensity for va(CH2), v2(ROR),

and cant, respectively, for SAMs derived from C 8OC, 9SH (0.5 mM in isooctane or 2-butanol) on

gold. At early times (< 1 min), the intensities of the Va(CH 2) modes(Figure 5.4a) for SAMs of

C,8OC19SH adsorbed from 2-butanol are smaller than those at identical times for SAMs formed in

isooctane while v,(ROR) intensities (Figure 5.4b) are larger than those for SAMs in isooctane.

These intensities can be used to estimate the average cant of the adsorbates (eq 5.3) after various

exposures to the thiol solutions (Figure 5.4c); in 2-butanol, the average cant is 8 -12' lower than

that formed in isooctane during the first minute. These results are qualitatively consistent with the

ellipsometric data (Figure 5.2) and indicate that a more densely packed film is formed from 2-

butanol than from isooctane during the first few seconds. As the adsorption proceeds, the infrared

intensities for the SAM formed from isooctane approach those from 2-butanol but do not achieve a

state consistent with as densely packed a film on the timescale of 100 h. Upon 100 h of

adsorption, the average cants are 310 and 350 as formed in 2-butanol and isooctane, respectively.

While these values appear relatively similar, it is important to note that the film formed in 2-butanol

has a thickness that is measurably (-3 A) greater after the 100-h adsorption. A striking feature of

Figure 5.4c is that significantly longer times-at least a factor of 30---are required to achieve the

same cant (and therefore packing density) in isooctane as produced from 2-butanol.
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Figure 5.3. Grazing incidence polarized infrared spectra of the C-H and R-O-R stretching
regions for SAMs formed on gold by immersion into 0.5 mM C, 8OC, 9SH in 2-butanol for various
times. The horizontal lines to the right of the methylene and ether peaks denote the peak intensities
for a film exposed to solution for 6,000 min (100 h). The vertical dashed lines represent the
positions of the primary methylene and ether stretching modes for a trans-extended monolayer with
no gauche defects: Va(CH 2) = 2918 cm-', vs(CH 2) = 2851 cm-', and Va(ROR) = 1132 cm'. The
spectra have been offset vertically for clarity.
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The time-dependent variation in Va(CH 2) exhibited during the assembly of C 18OC, 9SH in

isooctane is similar to that observed for C22SH (Figures 5.4a). The more gradual decrease in

Va(CH 2) exhibited by the C22SH SAM may reflect the initial formation of a more complete film that

required less structural change to produce the complete SAM. From the ellipsometric data in

Figure 5.2, 70% of the C22SH-SAM is formed in the first 2 s of adsorption while only 50% of the

C18OC19SH-SAM is formed during the same time period.

5.2.3. SAMs Derived from C180C 19 SH on Copper

The conditions required for formation of SAMs from long-chained adsorbates such as the co-

alkoxy-n-alkanethiols have not been studied in great detail. Traditionally, SAMs have been formed

at or near room temperature, but the formation of a densely packed SAM from these long-chained

adsorbates may not be possible at such low temperatures. Hautman and Klein note that the

rotational and conformational freedom of the chains increases at higher temperatures.12 Therefore,

formation of SAMs at higher temperatures may provide increased chain mobility needed to

accommodate additional adsorbates within the SAM. To address these issues, RAIRS was used to

characterize the structure of films formed at room temperature and at elevated temperatures. Figure

5.5 shows the C-H stretching region for films formed on gold and copper after 1-h immersion in 1

mM C 8OC19SH in isooctane at both 22 and 55 'C. The asymmetric and symmetric methylene

peaks of each spectra are centered at 2918 and 2851 cm', respectively, indicating a crystalline

packing of the hydrocarbon chains. While the spectra for SAMs on gold are nearly identical at the

different temperatures, those on copper suggest major structural differences between the two

hydrocarbon films. The spectrum for the film formed at 55 "C on copper has reduced methylene

intensities and an increased ether intensity compared to the spectrum for the film formed at 22 "C.

Differences in these intensities correspond to different canted structures for the adsorbates within

the SAM and indicate that the SAM formed at 55 "C is more densely packed and the adsorbates are

less canted than for the SAMs formed at the lower temperature. Based on a single-chain model (eq

5.3), the average cant achieved at 55 "C is 170 while that at 22 oC is 32". These cants suggest that

the film formed on copper at higher temperature has 12% greater adsorbate density. This

difference is likely a result of the increased conformational freedom of the long chains at the higher

temperature; chains with increased energy can more effectively accommodate additional adsorbates

into the partial film, thus forming a more complete, densely packed assembly. For shorter-chained

adsorbates on copper (p + m < 33), the structures of the resulting films were observed to be less

dependent on adsorption temperature, and these SAMs were formed at room temperature. The

insensitivity to temperature exhibited by the assembly of C 18OCI9SH on gold could be a result of
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Figure 5.5. Grazing incidence polarized infrared spectra of the C-H and R-O-R stretching
regions for SAMs formed from 0.5 mM C18OC,,SH in isooctane on (a) gold or (b) copper after 1-
h adsorptions at either 22 or 55 oC. The dashed lines represent the positions of the primary
methylene and ether stretching modes for a trans-extended monolayer with no gauche defects:
Va(CH 2) = 2918 cm-', vs(CH 2) = 2851 cm -', and Va(ROR) = 1132 cm'. The spectra have been
offset vertically for clarity.
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the tendency for thiols to form less densely packed films on gold than copper, perhaps due to the

presence of fewer energetically favorable surface sites on gold.13

For SAMs formed from C18OC19SH at 55 'C, the formation of a complete film is

significantly faster on copper than on gold. IR spectra of SAMs from Cs8OC,9SH on copper

reveal no change in cant or twist for films adsorbed from 2 min to 4 h. In contrast, spectra for

C18OC19SH on gold at 55 'C show constant changes in both Va(CH 2) and v,(ROR) intensities with

time, similar to the spectra formed at 22 'C (Figure 5.3). Longer adsorption times (> 4 h) on

copper resulted in films with dramatically increased Va(CH 2) and v,(ROR) intensities that indicate

multilayer formation. 14

The ability to tailor the packing density of co-alkoxy-n-alkanethiolates on copper by

adjusting the temperature of adsorption provides a convenient means of investigating the effect of

adsorbate packing density on the barrier properties of the resulting SAM. Figure 5.6 shows

electrochemical impedance spectra in the form of Nyquist plots-a relationship between the

imaginary and real impedance-for SAMs formed from C18OC,9SH (0.5 mM, isooctane) on

copper at 22 and 55 "C. These data take the form of partial semi-circles and can be modeled as a

parallel combination of coating capacitance and resistance in series with a solution resistance, as

shown in Figure 4.1. For this equivalent circuit, the diameter of the (partial) semi-circle

corresponds to the resistance provided by the coating. The coating resistances are 2.1 x 107 and

2.4 x 108 Q*cm 2 for films formed at 22 and 55 "C, respectively. The capacitance of the film

formed at 55 "C is 18% lower than that formed at 22 "C, further indicating that an effectively

thicker film is formed on copper at the higher temperature. Together with the IR spectra, these

results (Figures 5.5 and 5.6) reveal that adsorption of long-chain thiols onto copper at 55 "C

enables formation of a more densely packed film that provides a greater barrier against the

diffusion of aqueous ions than is possible from adsorption at 22 OC.

5.2.4. Effect of Chain Length on the Properties of o-Alkoxy-n-Alkanethiolates
on Gold and Copper

Using the synthetic strategy of Williamson, a series of o-alkoxy-n-alkanethiol adsorbates-

C18OCI1 SH, C220C ISH, C 18OCl9SH, C220C 19SH, and C220C 22SH-were synthesized to

investigate the effect of adsorbate chain length on the structural and barrier properties of the

resulting SAMs. Evaluation of film thickness with this series of adsorbates allows determination

of the completeness of the films as the chain length is incrementally increased. Ellipsometry offers

a simple, nondestructive method to determine film thickness and requires characterization of the

substrate before and after film formation. Figure 5.7 shows the ellipsometric thickness for SAMs

of CnSH (0.5 mM, isooctane) and CPOCmSH (0.5 mM, 2-butanol or isooctane) on gold. For
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co-alkoxy-n-alkanethiols on gold formed from isooctane, the thickness data deviate from linearity

for chain lengths (m+p) 2 37. This deviation reflects the difficulty in forming complete

monolayers from the longest-chained adsorbates in isooctane due to the reduced ability to

accommodate additional adsorbates into the partial film. When the o-alkoxy-n-alkanethiolates are

formed from 2-butanol, the film thicknesses are enhanced and increase linearly with chain length.

These results are consistent with the kinetics data in Figure 5.2 and indicate that SAMs formed

from o-alkoxy-n-alkanethiols in 2-butanol are more complete than those formed in isooctane.

While ellipsometry is convenient for quantifying film thickness on substrates such as gold

that do not change rapidly upon exposure to ambient conditions, it is less useful in characterizing

SAM thickness on copper due to the tendency of bare copper to oxidize when exposed to air.

Unlike ellipsometry, characterization by XPS is only required after SAM formation and thus,

provides a more suitable method for estimating SAM thickness on copper. XPS allows qualitative

assessment of SAM thickness (dsAm) by measuring the attenuation of photoelectrons from an

underlying substrate according to the following equation:

-dA
I = Io exp Asin ) (5.5)

where I is the measured photoelectron intensity of the underlying metal substrate, Io is the intensity

of an infinitely thick substrate with no attenuating overlayer, X is the attenuation length for

substrate photoelectrons through the SAM, and 0 is the angle of the detector with respect to the

surface parallel. Figure 5.8 shows the attenuation of the Cu(2p3 2) and Au(4f7/2) signal in XPS for

SAMs formed from CSH and CpOCmSH on copper and gold. SAMs on gold were formed from

2-butanol (0.5 mM) while those on copper were formed from isooctane (0.5 mM) at 22 (p + m <

33) or at 55 'C (p + m 2 33). As the chain length of the adsorbate is increased, thicker SAMs are

formed that attenuate the underlying metal substrate more. The slopes of the least-squares fits

correspond to attenuation lengths (X) of 23 and 45 A for Cu(2p 3/2) and Au(4f 7/2) photoelectrons,
respectively, for incident Al Kc x-rays at 1486 eV. These values are similar to attenuation lengths

determined using a series of unsubstituted n-alkanethiols on gold and copper 15 and suggest that the

SAMs formed from these long-chain o)-alkoxy-n-alkanethiols are of the expected thickness for a

trans-extended configuration of the molecule on either substrate.

Figure 5.9 shows IR spectra of the C-H and R-O-R stretching regions for the SAMs

formed from o-alkoxy-n-alkanethiols on gold and copper by the conditions noted above. In

comparison with the )-alkoxy-n-alkanethiolates on copper, the SAMs on gold exhibit more intense

methylene stretching peaks and less intense ether stretching peaks. These features of the spectra

indicate that the hydrocarbon chains within the SAMs on gold have a greater average cant than
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Figure 5.9. (a) Grazing incidence polarized infrared spectra of the C-H and R-O-R stretching
regions for SAMs formed from COCmSH on gold. The dashed lines represent the positions of the
primary methylene and ether stretching modes for a trans-extended monolayer with no gauche
defects: va(CH 2) = 2918 cm-', v,(CH2) = 2851 cm-', and Va(ROR) = 1132 cm-'. The spectra have
been offset vertically for clarity. The positions of the primary modes and the average cants and
twists of the adsorbates are summarized in Table 5.2.
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Figure 5.9. (b) Grazing incidence polarized infrared spectra of the C-H and R-O-R stretching
regions for SAMs formed from CpOCmSH on copper. The dashed lines represent the positions of
the primary methylene and ether stretching modes for a trans-extended monolayer with no gauche
defects: Va(CH 2) = 2918 cm-', v,(CH 2) = 2851 cm', and va(ROR) = 1132 cm 1 . The spectra have
been offset vertically for clarity. The positions of the primary modes and the average cants and
twists of the adsorbates are summarized in Table 5.2.



those on copper. The peak positions of the v(CH2), v(CH 3), and v(ROR) modes and the average

cant and twist angles (calculated from eqs. 5.3 and 5.4, respectively) for these SAMs on gold and

copper are shown in Table 5.2. On copper, the average calculated cants of the adsorbates are -16'

for all the SAMs, suggesting that the density of adsorbates within these different films is constant.

This agrees well with values of - 130 reported for shorter-chained, unsubstituted n-alkanethiols on

copper.16 The average cants for the SAMs on gold show more variability, but they are all

approximately -30', which again compares well with the value of -27' reported for unsubstituted

n-alkanethiols on gold. 16 These results are compatible with the thickness and XPS attenuation data

in Figures 5.7 and 5.8, respectively, that suggest a linear relationship between the chain length of

the adsorbate and film thickness for SAMs on both copper and gold. For o)-alkoxy-n-

alkanethiolates on gold formed in 0.5 mM isooctane, increasing the chain length of the adsorbate

resulted in decreasing ether intensities (not shown), suggesting that the adsorbates with longer

chains yielded incomplete films with less dense packing.

Table 5.2. Positions of the primary modes in IR spectra of Figure 5.9 and the average cant (a)

and twist (P) of the adsorbates.

Peak Positions (cmn')
Adsorbate/substrate Va(CH 2) vs(CH 2) Va(ROR) Va(CH 3) vs(CH 3) a

C18OCllS/Au 2919 2852 1132 2965 2878 33 51
C220CHS/Au 2918 2851 1133 2965 2878 28 52
C18OC,,S/Au 2918 2851 1132 2965 2878 32 53
C220C 19S/Au 2918 2851 1131 2965 2878 27 51
C22OC 22S/Au 2919 2851 1130 2966 2879 31 53
C18OC 1IS/Cu 2919 2851 1133 2965 2878 16 46
C220CIIS/Cu 2919 2851 1132 2965 2878 16 50
C18OC,9S/Cu 2919 2851 1132 2966 2879 17 51
C22OC 19S/Cu 2919 2851 1131 2966 2879 17 47
C22OC 22S/Cu 2919 2851 1131 2966 2879 16 51

5.3. Conclusions

Self-assembled monolayers (SAMs) derived from wo-alkoxy-n-alkanethiols form oriented,

crystalline films on gold and copper with thicknesses ranging from -40 - 60 A. On gold, the

formation of these SAMs can be described by second-order, diffusion-limited Langmuir adsorption

kinetics that are dependent on the solvent. These SAMs form more rapidly in a weaker

hydrocarbon solvent (2-butanol) than in a stronger one (isooctane) due to the greater ease of the

hydrocarbon chains to dispel the poorer solvent during film formation. The hydrocarbon chains in

the SAM on gold are tilted at an average of -30' from the surface normal while those on copper are

canted -16'. On copper, adsorption of these SAMs at higher temperatures (-55 'C) enables the



formation of a more densely packed hydrocarbon film that provides greater resistance against the

permeation of aqueous electrolyte than is possible by adsorption at room temperature. The greater

adsorption temperature likely provides increased mobility to the long chains of the adsorbed thiols,

enabling the accommodation of additional adsorbates.

5.4. Experimental

5.4.1. Materials and Synthesis

Copper (99.99+ %) and gold (99.99+ %) shot and chromium-plated tungsten rods were obtained

from Aldrich, Americana Precious Metals, and R.D. Mathis, respectively. Silicon (100) wafers

(Silicon Sense) were rinsed with ethanol (Pharmco) and dried in a stream of N2 (BOC) prior to use

in the evaporator. The solvents, isooctane (J.T. Baker), 2-butanol (Aldrich), anhydrous

tetrahydrofuran (Aldrich), hexanes (EM Science), ethyl acetate (EM Science), chloroform

(Mallinckrodt), methanol (Mallinckrodt), and hexadecane (Aldrich) were used as received. Octyl,

dodecyl, and octadecyl thiols were obtained from Aldrich and purified by distillation before use.

The syntheses of docosyl and hexadecyl thiols were reported in Chapter 3.17 19-Bromo-1-

nonadecene 8 and 19-octadecyloxy-1-nonadecanethiol 8 were available from previous studies, and

eicosyl thiol 2 and 21-docosen-1-o118 were synthesized via literature procedures. NaH,

octadecanol, 1-bromodocosane, docosanol, and thiolacetic acid were obtained from Aldrich and

used as received. Undecylenic bromide and AIBN were obtained from Pfaltz and Bauer and were

used as received. Na2SO 4 and concentrated hydrochloric acid were obtained from Mallinckrodt

and were used as received. Column chromatography was performed over silica gel (230-400 mesh

ASTM, EM Science) using either an eluant of constant composition or a gradient of increasing

polarity.

Synthesis of 11-octadecyloxy- -undecanethiol [CH 3(CH 2) 170(CH2), SH]
1 l-Octadecyloxy-1-undecene. NaH (0.373 g, 15.6 mmol) was washed with 20 mL of

hexanes and added to a solution containing octadecanol (4.0 g, 14.8 mmol) in anhydrous THF

(150 mL). After addition of undecylenic bromide (3.80 g, 16.3 mmol), the reaction mixture was

stirred for 50 h at 40 oC. After addition of water and hexanes to form a two-phase mixture, the

layers were separated, and the aqueous fraction was extracted thrice with hexanes. The organic

extracts were concentrated under reduced pressure. Column chromatography (hexanes to 2% ethyl

acetate/hexanes) yielded the title compound (1.048 g, 2.48 mmol, 17% yield). 'H NMR, 8 5.80

(m, 1 H), 4.96 (d, 1 H), 4.91 (m, 1 H), 3.37 (t, 4 H), 2.02 (quart, 2 H), 1.45 - 1.65 (m, 4 H),

1.2 - 1.4 (m, 42 H), 0.86 (t, 3 H).



11-Octadecyloxy-1 -undecanethioacetate. A mixture of 11-octadecyloxy-1 -undecene

(1.048 g, 2.48 mmol), thiolacetic acid (0.754 g, 9.92 mmol), and AIBN (10 mg) in THF were

photolyzed for 2 h with a medium-pressure Hg lamp. After addition of saturated NaCl(aq) and

hexanes to form a two-phase mixture, the layers were separated, and the aqueous fraction was

extracted thrice with hexanes. The organic fractions were combined and concentrated under

reduced pressure. Column chromatography (1% to 4% ethyl acetate/hexanes) yielded the title

compound (1.178 g, 2.37 mmol, 95% yield). 'H NMR, 8 3.37 (t, 4 H), 2.85 (quart, 2 H), 2.30

(m, 3 H), 1.45 - 1.65 (m, 6 H), 1.2 - 1.4 (m, 44 H), 0.86 (t, 3 H).

11-Octadecyloxy-l-undecanethiol. Concentrated hydrochloric acid (0.863 g, 23.7 mmol)

was added to a refluxing mixture of 11-octadecyloxy-1-undecanethioacetate (1.178 g, 2.37 mmol)

in deoxygenated ethanol (25 mL), and the reaction proceeded overnight. After addition of water

and hexanes to form a two phase mixture, the layers were separated. The aqueous fraction was

extracted twice with hexanes, and the organic portions were combined and concentrated under

reduced pressure. Column chromatography (1% ethyl acetate/hexanes) yielded the title compound

(0.261 g, 0.572 mmol, 24.1% yield). 'H NMR, 8 3.37 (t, 4 H), 2.54 (quart, 2 H), 1.45 - 1.65

(m, 7 H), 1.2 - 1.4 (m, 44 H), 0.86 (t, 3 H).

Synthesis of 11-docosyloxy- 1 -undecanethiol [CH 3(CH2)210(CH2),,SH]
11-Docosyloxy-l -undecene. NaH (0.75 g, 31.2 mmol) was washed with 20 mL of

hexanes and added to a solution of 10-undecene-1-ol (3.00 g, 17.6 mmol) in anhydrous THF (80

mL). After addition of 1-bromodocosane (7.00 g, 18.0 mmol), the mixture was stirred at 40 OC

for 72 h. After addition of water and hexanes to form a two-phase mixture, the layers were

separated, and the aqueous fraction was extracted twice with hexanes. The organic extracts were

collected and concentrated under reduced pressure. Column chromatography (hexanes to 7% ethyl

acetate/hexanes) yielded the title compound (1.953 g, 4.086 mmol, 23% yield). 'H NMR, 8 5.80

(m, 1 H), 4.96 (d, 1 H), 4.91 (m, 1 H), 3.37 (t, 4 H), 2.02 (quart, 2 H), 1.45 - 1.65 (m, 4 H),

1.2 - 1.4 (m, 50 H), 0.86 (t, 3 H).

11-Docosyloxy- 1-undecanethioacetate. Thiolacetic acid (1.180 g, 15.5 mmol) was added

to a solution of 11-docosyloxy-1-undecene (1.953 g, 4.086 mmol) and AIBN (70 mg) in toluene

(50 mL), and the resulting mixture was refluxed for 16 h. After addition of water to form a two-

phase mixture, the layers were separated. The aqueous fraction was extracted twice with hexanes,

and the organic extracts were combined and concentrated under reduced pressure. Column

chromatography (hexanes to 2% ethyl acetate/hexanes) yielded the title compound (1.422 g, 2.567

mmol, 63% yield). 'H NMR, 8 3.37 (t, 4 H), 2.85 (quart, 2 H), 2.30 (m, 3 H), 1.45 - 1.65 (m,

6 H), 1.2 - 1.4 (m, 52 H), 0.86 (t, 3 H).



11-Docosyloxy-1-undecanethiol. Concentrated hydrochloric acid (0.843 g, 23.1 mmol)

was added to a solution of 11-docosyloxy-1-undecanethioacetate (1.422 g, 2.567 mmol) in

deoxygenated ethanol, and the mixture was refluxed for 17 h. After the addition of water and

hexanes to form a two-phase mixture, the layers were separated. The aqueous fraction was

extracted twice with hexanes, and the organic extracts were combined and concentrated under

reduced pressure. Column chromatography (hexanes to 2% ethyl acetate/hexanes) yielded the title

compound (0.740 g, 1.445 mmol, 56% yield). 'H NMR, 8 3.37 (t, 4 H), 2.54 (quart, 2 H), 1.45

- 1.65 (m, 7 H), 1.2 - 1.4 (m, 52 H), 0.86 (t, 3 H).

Synthesis of 19-docosyloxy-l-nonadecanethiol [CH 3(CH2)210(CH2)19SH]
19-Docosyloxy-1-nonadecene. NaH (0.202 g, 8.4 mmol) was washed with hexanes and

added to a solution containing docosanol (2.055 g, 6.3 mmol) in anhydrous THF (50 mL). 19-

Bromo-1-nonadecene (1.45 g, 4.2 mmol) was then added, and the resulting mixture was heated to

40 'C for 72 h. After addition of water and hexanes to form a two-phase mixture, the layers were

separated, and the aqueous fraction was extracted thrice with hexanes. The organic layers were

collected and concentrated under reduced pressure. Column chromatography (hexanes followed

by 5% ethyl acetate/hexanes) yielded the title compound (0.498 g, 0.844 mmol, 20% yield). 'H
NMR, 6 5.80 (m, 1 H), 4.96 (d, 1 H), 4.91 (m, 1 H), 3.37 (t, 4 H), 2.02 (quart, 2 H), 1.45 -

1.65 (m, 4 H), 1.2 - 1.4 (m, 66 H), 0.86 (t, 3 H).

19-Docosyloxy- 1 -nonadecanethioacetate. A solution of 19-docosyloxy- 1 -nonadecene

(0.498 g, 0.84 mmol), thiolacetic acid (0.257 g, 3.3 mmol), AIBN (-50 mg), and toluene (20 mL)

was photolyzed for 2 h. After addition of water to form a two-phase mixture, the layers were

separated, and the aqueous fraction was extracted thrice with hexanes. The organic portions were

collected and concentrated under reduced pressure. Column chromatography (hexanes to 2% ethyl
acetate/hexanes) yielded the title compound (0.262 g, 0.39 mmol, 47% yield). 'H NMR, 6 3.37

(t, 4 H), 2.85 (quart, 2 H), 2.30 (m, 3 H), 1.45 - 1.65 (m, 6 H), 1.2 - 1.4 (m, 68 H), 0.86 (t, 3

H).

19-Docosyloxy-l-nonadecanethiol. Hydrochloric acid (37%, 0.144 g, 3.9 mmol) was

added to a solution of 19-docosyloxy-1-nonadecanethioacetate (0.262 g, 0.39 mmol) in absolute

ethanol (15 mL), and the resulting solution was refluxed for 22 h. After addition of water and

hexanes to form a two-phase system, the layers were separated, and the aqueous fraction was

extracted with hexanes. The organic layers were collected and concentrated under reduced

pressure. Column chromatography (hexanes to 3% ethyl acetate/hexanes) was used to purify the

title compound (0.147 g, 0.236 mmol, 60% yield). 'H NMR, 8 3.37 (t, 4 H), 2.53 (quart, 2 H),

1.45 - 1.65 (m, 7 H), 1.2 - 1.4 (m, 68 H), 0.86 (t, 3 H).



Synthesis of 22-docosyloxy- 1-docosanethiol [CH 3(CH2)210(CH2)22SH]
22-Docosyloxy-1-docosene. NaH (0.481 g, 20.1 mmol) was washed with 20 mL of

hexanes, dissolved in 20 mL of anhydrous THF, and added to a solution of 21-docosen-1-ol (3.25

g, 10.0 mmol) in anhydrous THF (40 mL). A solution of 1-bromodocosane (4.292 g, 11.0

mmol) in anhydrous THF (40 mL) was added, and the resulting reaction mixture was heated at 40

'C for 45 h. After addition of saturated NH4Cl (aq) and hexanes to form a two-phase mixture, the

layers were separated. The aqueous fraction was extracted thrice with hexanes, and the organic

extracts were combined and concentrated under reduced pressure. Column chromatography

(hexanes to 1% ethyl acetate/hexanes) yielded the title compound (1.120 g, 1.77 mmol, 18%

yield). 'H NMR, 8 5.80 (m, 1 H), 4.96 (d, 1 H), 4.91 (m, 1 H), 3.37 (t, 4 H), 2.02 (quart, 2 H),

1.45 - 1.65 (m, 4 H), 1.2 - 1.4 (m, 72 H), 0.86 (t, 3 H).

22-Docosyloxy-l-docosanethioacetate. Thiolacetic acid (0.539 g, 7.1 mmol) was added to

a solution of 22-docosyloxy- l-docosene (1.120 g, 1.77 mmol) and AIBN (10 mg) in THF (50

mL), and the reaction mixture was photolyzed for 3.5 h. After addition of saturated NaCl (aq) and

hexanes to form a two-phase mixture, the layers were separated. The aqueous fraction was

extracted thrice with hexanes, and the organic extracts were combined and concentrated under

reduced pressure. Column chromatography (chloroform to 2% methanol/chloroform) yielded the

title compound (0.374 g, 0.528 mmol, 30% yield). 'H NMR, 8 3.37 (t, 4 H), 2.85 (quart, 2 H),

2.30 (m, 3 H), 1.45 - 1.65 (m, 6 H), 1.2 - 1.4 (m, 74 H), 0.86 (t, 3 H).

22-Docosyloxy- 1-docosanethiol. Concentrated hydrochloric acid (0.193 g, 5.28 mmol)

was added to a solution of 22-docosyloxy-1-docosanethioacetate (0.374 g, 0.528 mmol) in ethanol

(20 mL), and the resulting mixture was refluxed for 15 h. After addition of saturated NaCl(aq) and

chloroform to form a two-phase mixture, the layers were separated, and the aqueous fraction was

extracted thrice with chloroform. The organic extracts were combined and concentrated under

reduced pressure. Column chromatography (50% chloroform/hexanes) yielded the title compound
(0.153 g, 0.230 mmol, 44% yield). 'H NMR, 8 3.37 (t, 4 H), 2.54 (quart, 2 H), 1.45 - 1.65 (m,

7 H), 1.2 - 1.4 (m, 74 H), 0.87 (t, 3 H).

5.4.2. Preparation of Assemblies

Gold samples were prepared by evaporation of Cr and Au at 1 and 3 A/s, respectively, onto Si

wafers in a diffusion-pumped chamber with a base pressure of 2 x 10.6 Torr. To minimize the

effects of adventitious carbon contamination on the kinetics of SAM formation, gold samples were

used for adsorption studies within 10 min of removal from the evaporator. Copper samples were

prepared by sequentially evaporating Cr and Cu at 1 and 12 ks, respectively, onto Si wafers.

Immediately following the evaporation of copper, the chamber was backfilled with N2 and the



freshly evaporated samples were transferred under a positive flow of N2 to 1 mM solutions of n-

alkanethiols that were taken inside the evaporator. Polyethylene strips were placed around the

circumference of the bell jar to reduce the effective area for air to enter the open chamber during the

transfer. Samples were transferred to adsorbate-containing solutions within 2 min after completion

of the evaporation.

Freshly evaporated gold and copper substrates were immersed in 0.5 mM solutions of an

alkanethiol in isooctane (copper and gold) or 2-butanol (gold) for various times. Adsorption

temperatures were either 22 or 55 'C. Upon removal, the samples were rinsed with isooctane,

ethanol, and water, and dried in a stream of N2. The samples were characterized by RAIRS (see

Chapter 4 for experimental details), ellipsometry, XPS (see Chapter 3), or EIS (see Chapter 4).

Samples characterized by RAIRS or ellipsometry were often characterized by other techniques,

whereas those characterized by XPS or EIS were discarded immediately after use.

5.4.3. Ellipsometry

The thicknesses of the SAMs on gold were determined using a Gaertner L1 16A automatic

ellipsometer equipped with a He-Ne laser (X = 6328 A) at an incident angle of 700 and a refractive

index for the organic film of 1.46. Samples were rinsed with ethanol and blown dry with N2

before measurements were taken. Baseline values for upd assemblies were measured on

unfunctionalized upd substrates within 2 min after emersion from the electrochemical cell. The

reported thicknesses are the average of at least three independent experiments where each sample

was characterized by ellipsometry at three different locations on its surface.
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Chapter 6. Structural Effects on the Protective Properties of
Self-Assembled Monolayers Formed from Long-Chain )o-

Alkoxy-n-Alkanethiols on Copper

6.1. Background

In Chapter 4, electrochemical impedance spectroscopy (EIS) was used to determine that the coating

resistances provided by n-alkanethiolate SAMs with chain lengths of 16 to 29 carbon atoms

increase by 4.2 M2*cm2 for each methylene (-CH2-) in the adsorbate. 1 These dramatic chain-

length effects on the barrier properties of the SAMs were related to the high level of dense packing

and crystallinity within the hydrocarbon layer. The ability to form SAMs from longer-chain

adsorbates would enable the opportunity to produce thicker films that should provide enhanced

barriers to the transport of corrosive agents. In practice, efforts to synthesize n-alkanethiols with n

> 29 are complicated by lengthy syntheses that are challenged by the poor solubility of the long-

chained adsorbates in many common solvents. Chapter 5 described the synthesis and

characterization of SAMs formed from long-chain oo-alkoxy-n-alkanethiols

[CH 3(CH 2)p-IO(CH 2)mSH; m = 11, p = 18, 22; m = 19, p = 18, 22; m = 22, p = 22] on gold and

copper. The ethereal oxygen in the adsorbate increases the polarity of the adsorbates and improves

their solubility without dramatically affecting the crystallinity of the resulting SAM. Results from

Chapter 5 indicate that SAMs as thick as 60 A can be formed onto copper from these o-alkoxy-n-

alkanethiols and that the SAMs are densely packed and contain a crystalline hydrocarbon backbone

that is canted at an average of -16' from the surface normal. The formation of these SAMs at

higher temperature (-55 'C) from a hydrocarbon solvent resulted in more densely packed films that

provided superior barriers against the penetration of aqueous ions than were possible from

adsorptions at room temperature.

In this chapter, chain-length effects on the inhibition of corrosion by SAMs formed from

the adsorption of co-alkoxy-n-alkanethiols onto copper are examined. EIS was used to determine

the coating capacitances and resistances for these SAMs as a function of their exposure to I atm of

02 at 100% RH. The results from EIS are coupled with those from grazing angle IR spectroscopy
to correlate the structure of the SAMs to their barrier properties as a function of exposure time to

the corrosive conditions. By comparing SAMs formed from these long-chained ether-containing

adsorbates with those from shorter-chained, unsubstituted n-alkanethiols, the effect of the ethereal

oxygen on the structure and barrier properties of these monolayer films is discussed. Particularly,

while the ethereal unit might be a convenient synthetic linker for the synthesis of longer-chained



adsorbates, its inclusion may diminish the ability of the film to achieve dense packing and useful

barrier properties.

6.2. Results

6.2.1. Properties of o)-Alkoxy-n-Alkanethiols on Copper

Freshly evaporated, polycrystalline copper substrates were transferred under anaerobic conditions

to N2-purged solutions of the co-alkoxy-n-alkanethiols (0.5 mM) in isooctane. The assembly was

performed at 22 or 55 'C depending on the chain length of the adsorbate (22 'C for p + m < 37 and

55 'C for p + m 2 37). Higher temperatures were required to provide sufficient thermal motion for

the longer chains in the partial films to allow additional thiol adsorbates access to the underlying

copper substrate, and thus, increase the packing density of these thicker SAMs, as detailed in

Section 5.2. After adsorption for 1 h, the samples were removed, rinsed with isooctane and

ethanol, and dried in a steam of N2. Upon removal from solution, the samples exhibited no XPS

signals for Cu(II) species. Furthermore, infrared peak positions of the Va(CH 2), vs(CH 2), and

Va(ROR) modes appeared at -2919, -2851, and -1131 cm-', respectively, and indicated that the

films were crystalline, consisting primarily of trans-extended alkyl chains with few gauche

conformers.

Electrochemical impedance spectroscopy (EIS) provides a method to assess the protective

properties of SAMs by measuring their resistance against the diffusion of aqueous ions to the

underlying metal surface. EIS has often been used to study the protection provided by polymeric

coatings on metals 2,3 and to investigate the barrier properties of SAMs.4 Figures 6.1 a and b show

Bode magnitude and phase angle plots, respectively, for SAMs formed from C18OC,,SH,

C220C11SH, and C220C 19SH on copper. In Figure 6. l1a for frequencies less than 103 Hz, the log

of the impedance magnitude increases linearly (slope of 1) with decreasing log frequency. This

behavior indicates that the films behave primarily as a low dielectric layer that separates the

corrosive solution from the underlying copper. The impedances provided by these SAMs and

other unsubstituted n-alkanethiolate SAMs1 on copper are significantly larger than those observed

for thiols on gold 5 and may reflect the higher levels of interchain packing6 in the former system.

At the lowest frequencies in Figure 6.1, the impedance of the coating capacitance becomes

sufficiently large that the resistance of the coating begins to control the response. This transition is

illustrated best in Figure 6. lb in which the phase angle decreases from 90'-a value characteristic

of capacitive behavior-at the lowest frequencies. The decrease in phase angle is most pronounced

for the C18OClS-SAM and least for the C220Cl9S-SAM, suggesting that the thicker SAM

provides a less permeable barrier to the diffusion of ions.
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Figure 6.1. (a) Bode magnitude and (b) phase plots for copper protected with SAMs of
C18OCHSH, C220C11SH, and C220C 19SH in oxygenated 50 mM Na2SO 4 (aq).
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Modeling the impedance data for these SAM on copper with an appropriate equivalent

circuit model, that shown earlier in Figure 4.1 a and discussed in Section 4.1, enables an estimation

of the capacitance and resistance of the SAM. Since the SAM can be described as a low dielectric

medium separating two parallel conductors (the metal and the solution), its capacitance should

decrease as its thickness is increased. Figure 6.2 shows that the inverse capacitance is linearly

related to the chain length (# carbons + # oxygens) for coatings derived from both unsubstituted n-

alkanethiols and a>-alkoxy-n-alkanethiols adsorbed on copper. That these data sets lie

approximately on the same line suggests that SAMs formed from the ether-linked thiols are similar

in dielectric properties to those from the n-alkanethiols and that the effective thickness of the SAM

can be increased incrementally by increasing the adsorbate chain length from 8 to 45. The

thickness trends inferred from these capacitance data are consistent with results in Figure 5.8

where the Cu(2p3/2) intensity in XPS decreased exponentially with increased chain length for both

adsorbed n-alkanethiols and o-alkoxy-n-alkanethiols. The dielectric permittivity (e) of the coatings

can be estimated from the slope of the line as described in Section 4.2; such an analysis gives

values of E of 2.16 for the purely hydrocarbon SAMs and 2.35 for the ether-substituted SAMs.

These permittivities agree well with values of 2.3 determined for polyethylene 7 and 2.1 measured

for CnSH (n = 16, 18) on gold with surface plasmon resonance. 8

Coating resistances for SAMs on copper derived from both unsubstituted n-alkanethiols

and o-alkoxy-n-alkanethiols are shown in Figure 6.3 as a function of the chain length of the

adsorbate. As discussed in Section 4.2, the coating resistances for SAMs of CnSH on copper

increase linearly with chain length for n 2 16 with a slope of 4.2 MQ*cm 2 for each incremental

methylene. That the best-fit line through the alkanethiol data intersects the x-axis at n = 10 may

reflect the minimum chain length required to achieve a region within the SAM that is sufficiently

crystalline to impede the transport of corrosive species to the underlying copper surface.' For

SAMs formed from o-alkoxy-n-alkanethiols on copper, the coating resistance also increases with

chain length, but these data are not a simple extension of the linear behavior of the CnSH-systems

as was the case for the capacitance data (Figure 6.2). In fact, the coating resistances for SAMs

formed from C 8OCISH (chain length = 30) and C220CSH (chain length = 34) are significantly

smaller than expected based on a linear extrapolation of the data for CnS-films while resistances for

SAMs formed from CpOCmSH (m + p 2 37) agree with those expected for a CS-SAM of similar

chain length. The best-fit line through the data intersects the x-axis at a chain length of 24,

considerably higher than that (n = 10) for SAMs formed from CSH. This observation suggests

that a greater number of methylene units are required in these ether-linked thiols to form SAMs that

are sufficiently crystalline to resist the penetration of corrosive agents. The disparity between the

resistance and capacitance data is attributed to the greater sensitivity of resistance measurements on

the structure of the SAM.
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6.2.2. Properties of SAMs Upon Exposure to 1 atm of 02 at 100% RH

After exposing SAMs formed from co-alkoxy-n-alkanethiols on copper to I atm of 02 and 100%

RH at room temperature, the protective properties of the films degraded; Figure 6.4a shows the

coating resistance (Re) for SAMs of C 8,OCI 1SH, C220C 1ISH, and C220C 22SH on copper as a

function of exposure time to these oxidizing conditions. While the coating resistance for each

SAM decreases exponentially with increased exposure, the thinnest SAM (C18OC SH) exhibits

the most rapid loss of coating resistance. Increasing the outer chain length by four methylene units

(C2 2 0C 1,SH) and then the inner chain length by eight methylene units (C2 20C 19SH) both result in

films that exhibit slower losses in their coating resistance. From data such as those in Figure 6.4a,
the rate of coating resistance falloff for SAMs formed from the various o-alkoxy-n-alkanethiols

was determined and compared to data from Figure 4.8b for unsubstituted n-alkanethiol systems

(Figure 6.4b). The data for the co-alkoxy-n-alkanethiols are similar to those for n-alkanethiolate

SAMs in that thicker films are more effective in maintaining their barrier properties upon exposure

to 1 atm of 02 at 100% RH. Nevertheless, the slopes of the data sets in Figure 6.4b are distinctly

different and indicate that each additional methylene unit added to an unsubstituted n-alkanethiol

results in a greater reduction in the rate of Rc falloff for the SAM than one added to an co-alkoxy-n-

alkanethiol. Specifically, a decrease in the rate of Rc falloff by 50% requires the addition of only

five methylene units to the unsubstituted thiol and thirteen methylene units to the ether-substituted

thiol that forms the SAM.

Figure 6.5 shows capacitances for SAMs of CH8OCHSH, C2 20CIISH, and C220C 19SH on

copper upon exposure to 1 atm of 02 at 100% RH. Increases in capacitance can correspond to the

uptake of water or ions in the coating and/or the SAM becoming effectively thinner (vide infra).

For these SAMs in Figure 6.5, Cc values change very little (if any) over the first -70 h of

exposure; however, R, (Figure 6.4a) for all these SAMs decreases by nearly an order of magnitude

over a similar time of exposure. The decrease in RC is probably a result of slight structural

perturbations in the film caused by oxidation of the underlying copper and subsequent roughening

of the surface. After 70 h, the Cc values of the C 80OC ,S- and C2 20C,,S-SAMs increase more

dramatically, suggesting the formation of larger defects within the coating that may serve as ion-

conducting paths. The more subtle change in Cc for the C220C 9 5S-SAM over the entire exposure

may reflect the greater structural integrity of this thicker film.

In Chapter 4, grazing angle IR spectroscopy was used to monitor the structural properties

for SAMs derived from CaSH (n = 16, 22, and 29) on copper upon exposure to 1 atm of 02 at

100% RH. The results from this chapter suggested that the SAMs become less densely packed and

less crystalline upon exposure to the corrosive environment but that the thicker SAMs (n = 29)

exhibited a slower transition to the less crystalline state. Figure 6.6 shows grazing angle IR
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spectra of the C-H and R-O-R stretching regions for SAMs formed from C220CISH (Figure 6.6a)

and C220C 19SH (Figure 6.6b) on copper after various exposures to 1 atm of 02 at 100% RH. The

spectral changes observed for the C220CllS-SAM are similar to those observed for the C 8OCIS-
SAM while changes for the C220C 19S-SAM are typical of those exhibited by coatings of the

longer-chained adsorbates (C18OCI9SH and C220C 22SH). For the shorter-chained C220C 1,S-SAM

(Figure 6.6a), large increases in the intensities of the v(CH2) modes and a reduced intensity of the

Va(ROR) mode upon increased exposure suggests that the adsorbates within the SAM become more

canted and less densely packed, consistent with the increase in capacitance for this film (Figure

6.5). The peak positions for the v(CH2) modes remain at or near their initial values- Va(CH 2) at

-2919 cm' and vs(CH 2) at -2851 cm'-during the 400-h exposure suggesting that the

hydrocarbon maintains its primarily crystalline structure; however, va(ROR) becomes broadened

and shifts from 1132 to 1127 cm-' indicating a less crystalline local environment near the ether

substitution after 400 h of exposure.9 While the methyl stretching modes provide no information

about the cant of the adsorbates, they are useful for assessing the structural heterogeneity at the

outermost region of the SAM. During the exposure, both the Va(CH 3) and vs,(CH 3) modes become

broadened with the Va(CH 3) increasing in intensity and the v,(CH3) decreasing in intensity. These

changes are consistent with an increased average tilt of the adsorbates within the SAM and the

development of a more heterogeneous methyl environment at the surface. Clearly, exposure to the

oxidizing conditions causes major structural changes in the C220C1 S-SAM.

In contrast to the C220C ,S-SAM on copper, the C220C,9S-SAM exhibits less dramatic

structural changes during exposure to 1 atm of 02 at 100% RH for 400 h (Figure 6.6b). The

relatively constant intensities of the Va(CH 2), vs(CH 2), and Va(ROR) modes indicate that the

adsorbates within the SAM remain densely packed during the 400-h exposure, but the broadening

of the methylene modes suggest some loss in crystallinity. In comparing Figures 6.6a and 6.6b at

400-h exposure, it is evident that the addition of eight methylene units to the bottom portion of the

SAM significantly enhances its ability to maintain its structure. Similar to the C220C ,S-SAM, the

peak positions of the Va(CH 2) and v,(CH 2) modes for the C220C 19S-SAM remain essentially

constant during the exposure while that for the Va(ROR) decreases from 1131 to 1128 cm -',

indicating a local loss of crystallinity near the ether substitution. The outer surface of the SAM

becomes more heterogeneous during the exposure, as evidenced by broadening of both the

Va(CH 3) and vs(CH 3) modes.
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Figure 6.6. (a) Grazing incidence polarized infrared spectra of the C-H stretching region for
SAMs of C22OCISH on copper before and after exposure to 1 atm of 02 at 100% RH for various
times. The dashed lines represent the positions of the primary modes for a trans-extended
monolayer with no gauche defects: Va(CH 2)= 2918 cm', v,(CH 2) = 2851 cm', and V,(ROR) =
1132 cm'1. The spectra have been offset vertically for clarity.
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Figure 6.6. (b) Grazing incidence polarized infrared spectra of the C-H stretching region for
SAMs of C220C 19SH on copper before and after exposure to 1 atm of 02 at 100% RH for various
times. The dashed lines represent the positions of the primary modes for a trans-extended
monolayer with no gauche defects: va(CH 2) = 2918 cm', v,(CH2) = 2851 cm-', and va(ROR) =
1132 cm'. The spectra have been offset vertically for clarity.
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6.3. Discussion

6.3.1. Effect of Ether Substitution on the Barrier Properties of SAMs

The results of Figures 6.1 - 6.6 consistently demonstrate that the chain length of the adsorbates

forming the SAM significantly impacts the properties of the resulting films. The capacitance

results in Figure 6.2 illustrate that effectively thicker SAMs can be formed on copper by use of

long-chain o-alkoxy-n-alkanethiols and that their thickness scales with the chain length of the

adsorbates. While capacitance provides a measure of the bulk permeability of the SAMs toward

simple ionic species, resistance measurements are more sensitive to the fine structural details of the

film. In contrast to the capacitance data, coating resistances for the long-chain co-alkoxy-n-

alkanethiols are not linear extensions of the unsubstituted n-alkanethiol data (Figure 6.3). Coating

resistances for SAMs of co-alkoxy-undecanethiols (C,8OC1 ,SH and C220C11SH) are significantly

less than that expected for n-alkanethiols of similar chain length while resistances for the longer-

chained ether-containing thiols (C18OC,9SH, C22OC19SH, and C220C 22SH) are much closer to a

linear extrapolation of the CSH data. These data may be rationalized by considering the likely

locations of gauche conformations within the hydrocarbon SAM. Hautman and Klein used

molecular dynamics simulations to study the structure of SAMs of C,,SH on gold and determined

that gauche defects are concentrated near the chain termini.l0 In addition, Laibinis et al. used IR

spectroscopy of SAMs on gold and silver and concluded that the presence of an ethereal oxygen

along the hydrocarbon chain of a SAM causes a local disordering and increases the population of

gauche conformations. 11 Their results also indicated that SAMs formed from CH30O(CH 2)mSH on

silver were significantly less crystalline for m = 8 and 11 than for m = 16. Thus, an accurate
structural representation for these co-alkoxy-n-alkanethiolate SAMs may include regions of reduced

crystallinity near the metal surface, near the ether substitution, and near the outer portion of the
SAM at the air interface. For SAMs in the present study formed from co-alkoxy-undecanethiols,

the close proximity of the lower and middle regions of higher gauche density may result in a less

ordered layer of hydrocarbon between the ether linkage and the metal surface. For SAMs where

the ether substitution is significantly further away from the surface, a higher degree of structural

order is expected for the contiguous hydrocarbon portion between the ether linkage and the metal

surface.

In Chapter 4, the eventual oxidation of copper upon exposure to 1 atm of 02 at 100% RH

was hypothesized to result in a nano-scale surface roughening that promotes a transition within the

SAM to a less organized structure and negatively impacts its barrier properties.' Figure 6.4b

indicates that the rate of coating resistance falloff for an co-alkoxy-n-alkanethiolate SAM is greater
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than that for an unsubstituted n-alkanethiolate SAM of similar chain length. Furthermore, the

addition of incremental methylenes to the ether-linked adsorbates results in a smaller reduction in

the Rc falloff than similar addition to unsubstituted n-alkanethiols. In other words, the rate of Rc

falloff is not solely dependent on film thickness. If the structural stability of the monolayer affects

its barrier properties, then the rate of Rc falloff should depend on the intermolecular interactions

within the film. To test this hypothesis, the rate of R, falloff was plotted as a function of the

melting-point temperature of the parent compound for SAMs of CaSH and CPOCmSH. The melting

temperature (Tmt,,) is a highly sensitive, albeit qualitative, probe of the extent of intermolecular

interactions within the SAM and provides a convenient comparison. For a constant chain length,

ether-substituted thiols have lower melting points than unsubstituted n-alkanethiols due to the

perturbation of interchain packing imposed by the ethereal substitution.ll Figure 6.7 shows that
the rate of R, falloff decreases exponentially as the T,,, increases for both n-alkanethiols and co-

alkoxy-n-alkanethiols and that the data for the two systems exhibit a similar relationship with Tm,,.
This result indicates that the effectiveness of a SAM to maintain its barrier properties (Re) depends

on the intermolecular interactions within the monolayer and its ability to form a crystalline

structure, rather than simply the thickness of the SAM. SAMs with a greater level of

intermolecular interaction are superior in maintaining their structural integrity upon exposure to

oxidizing conditions.

6.3.2. Mechanism for Breakdown in SAM Protection

Upon exposure of SAM-coated copper to 1 atm of 02 at 100% RH, the adsorbates within the SAM

undergo modest (C220C,9SH) or extensive (C220C,,SH) structural transformations (Figure 6.6),

and the capacitance of the SAM increases (Figure 6.5) while its resistance decreases (Figure 6.4).

Increases in the capacitance of the SAM can be related to a decrease in its thickness or an increase

in its dielectric permittivity due to the uptake of aqueous species within the film or at defect sites.

If the increases in capacitance are solely due to a reduction in the thickness of the SAM, these

changes should occur with a concurrent increase in the average cant of the adsorbates on the

surface. Thus, an estimation of the SAM thickness based on capacitance measurements should be
similar to that estimated from the v(CH2) intensities in the IR spectra. For a C220C,S-SAM

exposed to 1 atm of 02 at 100% RH for 350 h (Figure 6.5), the increase in capacitance would

correspond to a 40% decrease in thickness from the initially prepared SAM. The increased

intensity of the v(CH 2) modes (Figure 6.6a) over the 400-h exposure suggests that the average cant

of the film has increased from 170 to 390, corresponding to a decrease in thickness of only -20%.

Since capacitance measurements suggest a greater reduction in film thickness than IR spectra the

increase in capacitance is at least partially due to an increase in the dielectric permittivity (EsA) of
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squares fit to the data.
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the coating. Whether the increase in ESAM is due to uptake of aqueous species throughout the SAM

or their accumulation at specific defect sites within the SAM cannot be unequivocally determined

from these results. Such a large increase in film capacitance (- 40%) is not expected to result

solely from the equilibrium uptake of electrolyte throughout the film as the solubility of water in

these films is extremely low. Therefore, defects that form within the SAM upon exposure to 1 atm

of 02 at 100% RH likely become filled with electrolyte during the EIS measurement, increasing the

capacitance of the films. Nevertheless, none of the experimental evidence suggests the existence of

true pinholes defined as bare areas of the metal surface that are in direct contact with the electrolyte.

For example, a Warburg impedance that is characteristic of solution-metal contact at pores in the

film is not observed for these SAMs, even after prolonged exposure to 1 atm of 02 at 100% RH.

The presumed absence of pinholes is attributed to the tendency of long, flexible hydrocarbon

adsorbates to form van der Waals interactions with neighboring molecules and reduce the size of

any defects that may form.

The results in Figure 6.7 provide support for the proposed mechanism of film deterioration

discussed in Chapter 4. After formation of the SAM and subsequent exposure to 1 atm of 02 at

100% RH, oxygen diffuses through the film and reacts to convert copper to Cu(I) (and eventually

Cu(II) oxide) and thiolates to sulfonates. 6,12 The oxidation of copper proceeds with roughening of

the underlying substrate which effectively melts the crystalline lattice of the film and increases its

density of defects. These structural changes within the SAMs have been revealed by IR

spectroscopy and wetting measurements. Upon exposure to 1 atm of 02 at 100% RH, IR spectra

for these SAMs (Figure 6.6) indicate a broadening of the v(CH2) and v(CH3) absorptions, an

increase in the intensity of the v(CH2) modes (for most SAMs), and a slight shift in the peak

position of the v(CH2) modes to higher wavenumber. These changes are indicative of the

transition from a purely crystalline film to a more heterogeneous one with a reduced packing

density. In a similar manner, the contact angle of hexadecane decreases 13 and the contact angle

hysteresis of water increases 6 upon exposure of these SAMs to oxidizing conditions, indicating the

formation of a more chemically heterogeneous and roughened surface. When the SAM-coated

samples are removed from the oxidizing conditions and exposed to an aqueous solution (during

EIS measurement), penetration of water and electrolyte into the defects of the SAMs causes a

reduction in the resistance and an increase in the capacitance of the SAM. The chain length trends

described in this chapter demonstrate that SAMs containing adsorbates capable of greater

intermolecular interaction (Figure 6.7) possess enhanced stability against the structural

perturbations induced by oxidation of the copper substrate and thus, produce and maintain films

with a lower density of defects. In support of these results, Zamborini and Crooks14 and

others15,16 have demonstrated the importance of intermolecular interactions on film stability by
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reporting that SAMs derived from thiols with H-bonding capabilities on gold are more stable to

repeated oxidative electrochemical cycling and exposure to elevated temperatures.

6.4. Conclusions

The protection of copper by thiol-based self-assembled monolayers (SAMs) is sensitive to the

chemical composition and molecular structure of the barrier film. The use of long-chain co-alkoxy-

n-alkanethiols provides a convenient strategy to prepare SAMs on copper with thicknesses of 40 -

60 A that are thicker than those formed using presently available unsubstituted n-alkanethiols. The

performances of these ether-containing films as barrier layers depends on the chain length of the

adsorbate and the position of the ethereal unit along the hydrocarbon chain. For SAMs prepared

from co-alkoxy-undecanethiols (C220C1,SH and C18OCIISH), the measured coating resistances are

significantly lower than expected for unsubstituted n-alkanethiols of similar chain length,

consistent with a structure containing a less crystalline region near the base of the SAM. In

contrast to these SAMs, those prepared from o-alkoxy-nonadecanethiols and o-alkoxy-

docosanethiols exhibit greater initial resistances (up to 150 MQocm 2) and are superior in

maintaining their structural properties during exposure to oxidizing conditions. The ability of a

SAM to maintain its barrier properties during prolonged exposure to these conditions is related to

the collective intermolecular interactions within the SAM rather than simply its thickness. The data

suggest that the design of barrier coatings requires a selection of adsorbates that can achieve dense

packing and high crystallinity and are able to maintain these structural properties. The melting

points of the parent compounds can provide a useful comparative meter for the likely performance

of these SAMs as barrier films after exposure to oxidizing conditions.
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Chapter 7. Effect of Film Crystallinity on the Protective
Properties of Self-Assembled Monolayers of Alkanethiols on
Copper

7.1. Background

The molecular-level structure and composition of materials can dramatically affect their bulk and

interfacial properties. In the design of coatings for corrosion inhibition, the molecular structure of

the substituents controls the free volume within the coating and can often govern the provided level

of protection. For example, polymeric coatings with high levels of crystallinity and dense packing

are more effective in reducing the diffusion of water than similar polymers with greater free

volume. 1 Crystallinity and dense packing are especially important in extremely thin coatings that

are required to protect small device features or in situations where heat transfer from the underlying

metal is important. For polymeric systems of these dimensions, controlling the molecular-level

structure within the coatings can be challenging. 2

This chapter provides a molecular-level examination of the effect of crystallinity on the

protection of copper and demonstrates that molecular films can offer performance advantages over

thicker polymeric coatings. In this chapter, two comparisons are made. In the first, the protection

provided by SAMs of similar thickness but different levels of crystallinity is compared. To

perform this comparison, a mixed SAM-a monolayer that consists of more than one adsorbate-

was formed on copper containing equimolar amounts of C12SH and C22SH, and its coating

resistance was measured against that of a SAM of similar thickness formed from C17SH. In the

second, the barrier properties of a 30 A SAM formed from C22SH on copper are compared with

those of a 200 ± 10 A film of polystyrene (PS). Polymeric coatings such as polyimides3 and

polystyrene 4 have been used to protect metals against corrosion. The polymeric layer functions as

a thick, hydrophobic barrier that impedes the transport of water and other corrosive agents.

SAMs, although thinner, could provide some advantages over polymers in that they are chemically

bound to the underlying metal and can be applied to a wide range of substrates of various

geometry.

7.2. Results and Discussion

7.2.1. Comparison of SAMs with Similar Thickness but Different Crystallinity

To compare the protection provided by thin films of similar thickness but different levels of

crystallinity, a mixed SAM was formed on copper from C12SH and C22SH containing equal
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Figure 7.1. Schematic illustration of a mixed SAM containing both C12SH and C22SH ( 12 =
X22 = 0.5) and a SAM of C17SH on copper. The SAMs have similar thickness but different
crystallinity.
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surface mole fractions of the two components (Figure 7.1). The mixed SAM was designed to have
the same effective thickness as the C 17SAM, but to be less crystalline, especially at the outermost
few angstroms of the film. Previous results from IR spectroscopy for mixed SAMs formed from
C12SH and C22SH on gold have demonstrated that the shorter thiol exists in a crystalline state with
a low density of gauche conformers while the longer thiol contains both crystalline and liquid-like
segments. 5 Specifically, the section of the longer adsorbate closer to the metal is crystalline while
the terminal portion extending beyond the shorter alkanethiolate is disordered. Based on both
wetting and IR data, the adsorbates within the SAM are well-mixed.

Grazing angle infrared spectroscopy allows determination of the structure and phase state
of the hydrocarbon chains in the SAM. Figure 7.2 shows IR spectra for a SAM formed from
C17SH and a mixed SAM composed of C12SH and C22SH (X12 = 0.5) on copper. For the C,7
SAM, the Va(CH 2) and v,(CH 2) peaks are centered at 2918 and 2851 cmn ', respectively, indicating
primarily trans-extended hydrocarbon chains in a crystalline state. The Va(CH 3) and v,(CH3) peaks
are sharp and suggest a homogeneous arrangement of the methyl groups at the outer interface. For
the mixed SAM, the methylene bands are more intense, broadened, and are shifted to higher
wavenumber [Va(CH 2) at 2928 cm-' and v,(CH 2) at 2855 cm-'] while the methyl bands are poorly
formed and broadened in comparison to those for the C 7 SAM. These differences in the spectra
are consistent with a heterogeneous film for the mixed SAM in which the longer C22-chains are
well-mixed on the surface and islanding is minimized,6 as discussed previously. 5 The portion of
these longer chains that extends above the shorter C12-component is highly canted on average with
the terminal methyl groups in a heterogeneous environment (Figure 7.1 a).

Electrochemical impedance spectroscopy (EIS) enables determination of the resistance that
SAMs provide against the transport of aqueous ions. Figure 7.3 displays EIS spectra in the form
of Bode plots for SAMs formed from C 2SH, C,7SH, and C22SH and a mixed SAM composed of
C,2SH and C22SH (x12 = 0.5). At high frequencies, the solution resistance dominates the
impedance and the impedance magnitude exhibits a slope of zero. In the intermediate frequency
regime, the capacitance of the films governs the response, and log IZI increases linearly (slope of 1)
as log frequency is decreased for all SAMs. At low frequencies, the plateaus in IZI for both the C12
film and the mixed SAM are consistent with the onset of ionic penetration into the monolayer and
correspond to the resistances (Re) that the SAMs provide against the diffusion of these ions. For
copper protected by C17SH and C22SH, the time constant for ionic penetration into the coating is
sufficiently large that no resistive plateau is observed.

The spectra in Figure 7.3 can be fit with an equivalent circuit model that consists of a
solution resistance in series with a parallel combination of coating resistance and coating
capacitance (Figure 4. la); Table 7.1 shows the values of these components for various SAMs in
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Figure 7.2. Grazing angle polarized infrared spectra of the C-H stretching region for a SAM
formed from C17SH and a mixed SAM containing C12SH and C22SH (X2 22 = 0.5) on copper.
The dashed lines indicate the peak positions of the primary modes for a trans-extended monolayer
with no gauche defects: Va(CH 3) = 2965 cm', Va(CH 2) = 2918 cm-', vs(CH 3) = 2879 cm - , and
V,(CH 2) = 2851 cm -'.
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Figure 7.3. Bode magnitude plots for copper protected with SAMs of CnSH (n = 12, 17, 22)
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Figure 7.3. As previously demonstrated in Figures 4.3 and 4.5 for a series of n-alkanethiolate

SAMs on copper, the coating capacitances decrease while coating resistances increase as the chain

length of the adsorbate is increased. The capacitances of the mixed SAM and the C17 SAM are

approximately the same, indicating similar effective thicknesses; nevertheless, the coating

resistance of the liquid-like mixed SAM is -80 times smaller than for the crystalline C1, SAM. In

comparison to the C12 SAM, the mixed SAM provides only modest improvement in coating

resistance while the C1, SAM offers a -250-fold enhancement. These results indicate that the

degree of film crystallinity, which has been varied by the use of mixed SAMs, is an important

factor in limiting the transport of corrosive species through SAMs.

Table 7.1. Coating capacitances (Ce) and resistances (Re) determined from Figure 7.3 for SAMs
on copper in oxygenated, 0.050 M Na2SO 4(aq).

Adsorbate(s) C, (F/cm 2) R (Mo.cm2)

C 2SH 1.0 0.11

C, 2SH + C22SH (1:1) 0.77 0.38

C17SH 0.78 29

C,7SH 0.52 48
a Values reported are ±5% for capacitances and ±10% for resistances.

7.2.2. Comparison of SAMs with a Thicker Polymeric Coating

In the second study to assess the importance of crystallinity on the protective properties of

coatings, the barrier properties of a 30-A SAM formed from C22SH on copper were compared with

those of a 200 ± 10 A polystyrene (PS) film, as shown schematically in Figure 7.4. Despite its

molecular dimension, the densely packed nature of the SAM could provide performance

advantages over thicker polymeric coatings. For this study, PS was chosen because it resists the

transport of water, it can be easily spin-coated (unlike polyethylene), 7 and it does not pack as

densely as a SAM. Here, the PS samples were prepared by spin-coating onto C8SH-coated

copper; the purpose of the SAM-primer was to improve adhesion between PS and copper and

protect copper from oxidation while handling in air. Coating resistances for PS deposited directly

onto copper were two orders of magnitude lower than those deposited onto the C,-SAM. AFM

images of the PS films revealed a complete film with no evidence of defects.

Figure 7.5 shows EIS spectra for SAMs on copper formed from CsSH-both with and

without a 200 A over-layer of PS-and C22SH. At intermediate frequencies, the greater IZI

exhibited by the PS + C8 film is a result of its lower capacitance and increased thickness. At low
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Figure 7.4. Schematic illustration of a SAM formed from C22SH on copper and a 200-A PS
film deposited onto a C8SH-SAM.
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Figure 7.5. Bode magnitude plots for copper protected with SAMs of CSH-both with and
without a 200 A overlayer of PS-and C22SH in oxygenated 0.050 M Na 2SO 4.
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frequencies, the PS + C8 film exhibits a resistive plateau that is an order of magnitude greater than

that for the C8 SAM alone. Nevertheless, the 200 A PS + C, coating is still far less protective than

a 30 A SAM formed from C22SH that shows no indication of ionic penetration at frequencies down

to 0.01 Hz. Resistances for coatings derived from C8SH, PS + C8SH, and C22SH are 0.12, 1.1,

and 48 M2*cm2, respectively. For each angstrom of coating thickness, the C22 SAM provides 1.6

MQ*cm 2 of coating resistance while PS provides only 5 x 10 3 Mf2cm2 . These results illustrate

the importance of achieving a densely packed, crystalline coating to provide a greater barrier

against the transport of corrosive species. In comparison to polymeric films, SAMs provide a

more flexible system with a greater ease of processing for forming crystalline barrier films on

copper as their formation is the result of a simple chemisorption process. The self-assembly

strategy offers a promising method for producing thin, adherent organic coatings with improved

intrinsic barrier properties over polymer films.

7.3. Experimental

The experimental details of preparing SAMs on n-alkanethiols on copper (Chapter 3) and

the characterization of these films with XPS (Chapter 3), IR spectroscopy (Chapter 4), and EIS

(Chapter 4) have been discussed in previous chapters. Mixed SAMs of C2SH and C22SH (1 rf

= 0.5) were prepared by immersing freshly evaporated copper into an isooctane solution containing

C12SH (12sl = 0.45) and C22SH (Il In = 0.55) for 1 h. The samples were removed from

solution, rinsed with isooctane and ethanol, and dried in a stream of nitrogen. The surface mole

fraction of the C12-component in the mixed SAM (Xs"f )was determined by measuring the intensity

of Cu(2p 3/2) photoelectrons from the underlying metal (IUed) with x-ray photoelectron

spectroscopy and applying the following equation:

surf= In Il -In(
X12 In 112 - In122

where I2 and I22 are the intensities of Cu(2p3/2) photoelectrons for copper coated with SAMs of

C12SH and C22SH, respectively. Ied was compared with the Cu(2p 3/2) intensity for a SAM of

C17SH on copper to make certain that the thickness of the mixed SAM was not less than that for the

C7 SAM.

Polystyrene films were prepared by spin coating from a 0.4 wt% solution of polystyrene in

THF onto Cu/SC 8 at 7000 rpm for 60 s. As noted by Stange et al., 7 the concentration of PS used

here is sufficient to achieve a complete film. AFM images of the PS surfaces indicated complete

films on the various copper substrates. Some PS samples were heated at 50 oC for 30 min to
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remove residual solvent and then cured at 100 oC for 60 min. Curing did not significantly change

the impedance properties of the PS films.

The thicknesses of the PS films supported on C8S/Cu were determined using a Gaertner

L116A automatic ellipsometer equipped with a He-Ne laser (, = 6328 A) at an incident angle of

700. The refractive index for the PS film was assumed to be 1.46. Baseline values for these films

were measured on copper that was modified by a SAM of C8SH. The reported thicknesses are the

average of at least three samples where each sample was characterized by ellipsometry at three

different locations on its surface.
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Part II. Self-Assembled Monolayers of Alkanethiols on Gold
Modified by Underpotential Deposition of Silver or Copper

Chapter 8. Introduction and General Properties

8.1. Background

Advances in materials chemistry rely on the ability to tailor the structure and composition within the

bulk and at interfaces at the nanoscopic level.' Indeed, the ability to generate systems with higher

levels of organization and structural complexity is a focus of many areas of current research.

Supramolecular assemblies,2 self-assembled structures,3 heteroelement composites,4 and bimetallic

catalysts5 are examples where molecular (or atomic-scale) engineering has produced species with

novel architectures, synthetic flexibility, and tailored properties.

At metal surfaces, two strategies-the formation of self-assembled monolayers (SAMs) 6 and

the process of underpotential deposition (upd)7-have provided useful means for functionalizing

the surface and tailoring its properties. These methods functionalize the surface with a highly

organized single layer of material, where the composition of the layer is readily controlled. The

difference between these methods is that the self-assembly method produces a thin organic layer on

the metal surface and the upd procedure coats the metal surface with a one-atom-thick layer of a

dissimilar metal.

Self-assembled monolayers (SAMs) form by the spontaneous adsorption of organic molecules

onto a metal or metal oxide surface.6 Various systems are presently available, with the assembly of

n-alkanethiols onto copper, 8'9 silver,8 '2 and (particularly) gold6 8 ' 3 being the most investigated.

On these metals, the thiols form a densely packed, oriented monolayer and the hydrocarbon chains

pack in a trans-zig-zag-extended structure.8" The assemblies are the product of strong metal-

sulfur interactions that are also responsible for the robust nature of the SAM in liquid and vacuum

environments. A notable feature of these assemblies is their ability to accommodate a wide range

of polar and nonpolar functionalities in the tail group of the adsorbate.9,13 This flexibility in their

synthesis has allowed the formation of tailored organic surfaces for studies of wetting, 9'12 ,14

adhesion,'" biocompatibility,' 6 friction, 7 and interfacial electron transfer.'8

The SAMs on copper, silver, and gold surfaces differ in structure: on gold, the axis of the

hydrocarbon chain tilts -30' from the surface normal (-5.0-A spacing),6 '8 whereas it tilts 13o from

the surface normal on silver and copper (-4.7-A spacing). 6'8 1 ' 1 These differences in adsorbate

packing density are a result of the bonding characteristics between the metal surface and the ligating
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sulfur atoms, particularly their tendency to occupy specific sites on the metal surface.6 Efforts for

controlling the molecular packing density within SAMs have relied on the use of adsorbates that

contain bulky substituents,19 rigid architectures,20 or multiple ligating functionalities21 and often

require lengthy syntheses. The development of methods that can manipulate the surface chemistry

of the substrate-particularly at the sub-monolayer level--may offer a more flexible, synthetically

simpler strategy for controlling the packing density, structure, and properties of these adsorbed

films.

Underpotential deposition is an electrochemical process whereby a single metal adlayer is

electroplated onto a dissimilar metal.7' 23-26 The process is driven by the formation of substrate-

adatom interactions that are stronger than the adatom-adatom interactions that form during bulk

electrodeposition. This difference in interaction allows easy preparation of adlayers with coverages

no greater than a monolayer. Many substrate/adlayer combinations are known, and they have been

characterized by a wide range of techniques, including surface scattering and diffraction methods

(LEED, SEXAFS, etc.), 23,24 Auger and x-ray photoelectron spectroscopies, 23 and more recently by

various scanning probe microscopies. 7' 25 In many cases, the upd layer forms a highly ordered,

epitaxial layer on the underlying substrate and the coverage of the upd layer and its structure are

dictated by factors that limit access of the predeposited adlayer metal ions to the electrode surface.27

The flexibility and control afforded by the upd technique allows access to a broad hierarchy of

well-defined surface architectures. Of the various substrates that can be used for underpotential

deposition, gold has been the most popular due to its general inertness, its resistance towards

chemical oxidation, and the large number of elements that can form a upd layer on it. 28

Self-assembled monolayers and underpotentally deposited layers share the common feature

that they can form highly organized adlayers on the surface of an underlying material. To date,

these highly structured monolayer-based systems, despite their functional similarities and analytical

reliance on a common set of surface techniques (XPS, Auger, LEED, STM, AFM, etc), have

remained separate areas of research. This work aims to determine whether the synthetic flexibility

afforded by these two methods could be used together to generate a new class of self-assembled

structures. In this chapter, polycrystalline gold films have been used as these substrates since they

are widely used in the SAMs area and have direct analogs in device fabrication." Copper and

silver were selected for the upd layers as these systems have been widely investigated on both

crystalline 7'25 and polycrystalline7,26 gold substrates, and a wide variety of alkanethiols are known

to form SAMs on surfaces of these bulk metals. 9 The result of this work is that underpotentially

deposited films of copper and silver on polycrystalline gold substrates provide a new type of

substrate for the self-assembly of adsorbed alkanethiolate monolayers. These substrates offer the

high degree of synthetic flexibility associated with the assembly of thiols onto gold surfaces while

providing a higher level of structural hierarchy to the assemblage and the ability to produce
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supported SAMs with properties that are superior to those formed on gold." The strategies

employed in this chapter should be generalizable for many of the metals that can be

underpotentially deposited on gold7,28 and other substrates.7

8.2. General Properties of SAMs on Upd-Modified Gold

8.2.1. Au/upd/SAM Formation

In a two-step procedure, a polycrystalline gold substrate was functionalized first with a

submonolayer amount of copper or silver (upd) and then a self-assembled organic monolayer to

form the structures schematically illustrated in Figure 8.1 ;29,30 all manipulations of the gold substrate

were conducted in the laboratory ambient. Evaporated films of gold supported on silicon supports

were functionalized with a layer of copper or silver atoms in a sulfuric acid solution (aq) of copper

or silver sulfate, respectively; cyclic voltammograms for the underpotential deposition of silver and

copper onto gold are shown in Figure 8.2. The gold substrates were first electrochemically cycled

in these solutions as both a cleaning procedure and a means to provide information about the upd

process on the substrate. During the second cathodic scan of this cycle, the potential was held just

negative of the upd peak. The resulting derivatized gold substrates were emersed from the

electrochemical cell under potential control, rinsed with ethanol, blown dry in a stream of nitrogen,

and transferred through air to a 1 mM solution of the alkanethiol. Upon removal from the adsorbate

solution, the slides were rinsed with fresh solvent and blown dry in a stream of nitrogen prior to

characterization. Adsorption times between 5 min and 1 day in the thiol-containing solutions

produced SAMs with similar properties; an adsorption time of 40 min was typically used for the

systems reported in this chapter.

8.2.2. Characterization by X-ray Photoelectron Spectroscopy (XPS)

Table 8.1 displays the results from x-ray photoelectron spectroscopy (XPS) for the upd layers of

silver and copper deposited onto the polycrystalline gold films and after their exposure to

octadecanethiol. The untreated upd adlayers exhibit binding energies that are lower than those for

the corresponding bulk metals due to their electronic equilibration with the underlying gold

substrate. 31 The coverages of the copper and silver adlayers on the gold surface were sub-

monolayer, based on coulometric 32 and XPS results, and exhibited good reproducibility across

independent preparations. Upon assembly of the alkanethiol, XPS revealed that the copper and
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Figure 8.1. Schematic illustration of a gold/silver or copper (upd)/SAM assembly.
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Figure 8.2. Cyclic voltammograms for supported polycrystalline gold films in 0.1 M H2 SO 4:
0.6 mM Ag2SO 4 (upper panel) and 1 mM CuSO 4 (lower panel). For comparison, the upper panel
also contains a cyclic voltammogram for the bare gold substrate in just 0.1 M H2SO 4 (aq).
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silver upd layers survive the assembly of the organic layer. The coverages of the upd layers

exhibited little (or no) change upon adsorption of the thiol (Table 8.1), and only slight decreases in

coverage (<10%) were observed during continued exposure to the thiol solution (5 days). These

observations are in contrast with reports that the assembly of alkanethiols onto gold occurs with

etching of the metal substrate. 33 The lack of change in the coverage of the upd layer (as derived

from the relative XPS intensities of gold and copper or silver-see eq 8.1 in Section 8.3.5) during

the assembly of the SAM suggests that the upd layers are not readily displaced by the thiol

treatment, they remain at the gold/sulfur interface, and the upd metals do not diffuse into the gold

substrate under these experimental conditions.

Upon adsorption of the thiol onto the upd substrates, the primary peaks of the adlayer

elements shift to higher binding energies, and the S(2p3/2) peak occurs at 162 eV indicating the

presence of an adsorbed thiolate;6' 8 the binding energy data suggest that the adsorption of the thiol

involves an oxidative-addition process at the upd metal surface. Such mechanisms have been

suggested for the assembly of thiols onto copper, silver, and gold surfaces;6 however, the presence

of the oxidized metal species produced by this process could not be verified for these systems as its

signals could not be distinguished from those due to the bulk metal.

Figures 8.3a and b show XPS survey spectra for Au/Ag(upd) and Au/Cu(upd) substrates,
respectively, that were derivatized for 40 min with C8SH (1 mM, ethanol). In both spectra, peaks

indicative of gold, silver or copper, carbon, and sulfur species reveal that the expected elements are

present. The XPS spectra for the Au/Ag(upd)/SC8 sample exhibited no signals due to oxygen

(Figure 8.3a). As the unfunctionalized Au/Ag(upd) substrate was exposed to air prior to

adsorption of the thiol, the absence of oxygen signals suggests that the Au/Ag(upd) substrate is not

prone to oxidation in air-the redox potential of the Ag(upd) layer is -520 mV positive of Ag/

or that the thiol reduces any oxidized species that do form. On the Au/Cu(upd) substrate, signals

due to oxygen were regularly detected by XPS (Figure 8.3b) as well as trace signals in the Cu(2p)

spectral region due to Cu(II) species. 8 ,9 The Au/Cu(upd) substrate is more prone to oxidation than

the Au/Ag(upd) substrate; however, the properties of the resulting Au/Cu(upd)/SAMs were only

moderately affected by the oxidation (noted by slightly larger hystereses in wetting, vide infra).

The quality of the SAMs formed on the Au/Cu(upd) substrate formed in air were almost as good as

those for SAMs formed on evaporated films of copper that were handled under anaerobic

conditions8 and superior to those for copper films handled in air.34 In this latter case, the assembly

produces poorly organized multilayers or low quality thin films. 34 Although the redox potential of

the Au/Cu(upd) substrate is only -100 mV positive of Cu2 °/O, the superior properties of this

substrate in air to those of bulk copper probably reflect that oxidation on this substrate is limited to

a maximum of one layer of copper.
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Table 8.1. XPS Binding Energies and Coverages for Ag and Cu Adlayers on Au

Ag Cu

Binding Binding
Sample Energy (eV)a Coveragee Ener (eVy)a Coverage

bulk metal 368.0 - 932.0
Au/upd metal 367.4 b  0.64 931.3 b  0.56

Au/upd metal + C18H 37SH 367.8b 0.59 9 31.8b 0.54

a Binding energies of Ag (3d 5/2) and Cu(2p 3/2) peaks. bBinding energies referenced

to Au(4f 7/2) at 84.0 eV. c Coverages are ± 10%.
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Figure 8.3. X-ray photoelectron spectra for Au/Ag(upd) and Au/Cu(upd) after derivatization
with n-C8HISH in ethanol for 1 h. Surface coverages for the upd adlayers in related systems are
given in Table 8.1.
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8.2.3. Characterization by Ellipsometry and Wetting

The organic films formed from the assembly of alkanethiols onto copper and silver upd substrates

exhibited properties similar to those produced on gold. For example, films formed on the copper

and silver upd substrates and on gold using C18H37SH had similar ellipsometric thicknesses (23 +

3 A, 23 + 2 A, and 21 ± 3 A, respectively) and wettabilities (Table 8.2). The thickness of the

SAM on the upd substrates could be varied by choice of adsorbate (Figure 8.4). The slope of the

line in Figure 8.4 for silver upd samples is 1.4 A/CH 2 and is comparable to the value for

alkanethiols assembled onto bulk films of gold 13 and silver.10a Data with similar levels of

reproducibility were obtained using copper upd substrates that also gave a slope of 1.4 A/CH2 (not

shown). The ellipsometric data confirm that the alkanethiols form monolayer films on the silver

and copper upd substrates.

Table 8.2 displays the wetting properties of SAMs prepared from alkanethiols that

terminate in either polar or non-polar tail groups. The SAMs on the upd substrates exhibited

wettabilities by water and hexadecane that were similar to those for SAMs formed from the same

adsorbate on gold surfaces. This similarity indicated that the tail groups of the adsorbates were

localized at the SAM/air(liquid) interface in a densely packed state. The wetting results indicate that

the assembly on the silver and copper upd substrates can accommodate both polar and non-polar

tail groups in the adsorbate and suggest that this system may have the synthetic flexibility

associated with the thiols on gold system. Contact angle hystereses were comparable on the silver

upd substrates and gold and slightly greater for SAMs on the copper upd substrates. The greater

levels of hystereses on the copper upd substrates might reflect a greater sensitivity of the bare

copper upd substrates to oxidation in air as less hysteresis was observed when the transfer time

between the electrochemical cell and the adsorption solution was minimized. The level of

hysteresis on the copper upd substrate is much lower than for assembly of these adsorbates onto

freshly evaporated copper films that had been similarly exposed to air prior to monolayer

assembly. 34

The ability to form high and low energy organic surfaces on these substrates by selection of

the tail group allows the generation of organic surfaces that span the range of wettability. Using 1

mM mixtures of HS(CH 2) lOH and HS(CH2)1 lCH3, mixed SAMs were prepared on Au/Ag(upd)

substrates that varied in surface composition between those for the pure SAMs. Figure 8.5

displays the wetting properties of the mixed SAMs and demonstrates the ability to tailor their

composition and properties. The surface compositions of the mixed SAMs were determined from

XPS by comparing the intensity of the O(1s) peak for the hydroxyl group to its intensity in a SAM
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Table 8.2. Static wetting properties of water and hexadecane on films formed on
gold and upd substrates.

Contact Angles (advancing, receding: in degrees) a

Au Au/Ag(upd) Au/Cu(upd)

Adsorbate H2O HD H20 HD H20 HD

HS(CH2)11OCH2CF 2CF 3 109, 102 69,63 111, 104 71, 66 110, 103 73,66

HS(CH2) 17CH 3  111,102 46,41 113,103 48,42 112,98 45,35

HS(CH 2)11OCH 3  81, 70 30, 20 80, 70 28, 18 81,71 33, 22

HS(CH 2)11OH 15, - <5, - 17, - <5, - 20, - <5, -

HS(CH2) 10 COOH <10, - <5, - <10,- <5, - <10, - <5, -

aHD=hexadecane. A dash (-) indicates a receding angle for a contacting liquid that

could not be removed from the surface. For these systems, Or 00.
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Figure 8.4. Ellipsometric thickness for SAMs of n-alkanethiols (CH 3(CH 2)-.1SH) adsorbed
onto evaporated gold films containing an underpotentially deposited layer of silver. The line is a
least-squares fit to the data and has a slope of 1.4 A/CH 2. Thicknesses were calculated using a
refractive index of 1.46.
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Figure 8.5. Advancing contact angles of water on mixed monolayers prepared from binary
mixtures of CH3(CH2), SH and HO(CH 2),,SH (1 mM total concentration in ethanol). The x-axis
represents the mole fraction of the polar component on the surface, as determined by XPS.
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derived from HS(CH 2) lOH. In Figure 8.5, the relationship between wettability and surface

composition on the upd substrates is the same as that observed using mixed SAMs of these

adsorbates on evaporated films of copper, silver, and gold.9

8.2.4. Characterization by Reflectance Infrared Spectroscopy

Figure 8.6 displays reflectance infrared spectra for SAMs derived from octadecanethiol on Au, Ag,

Au/Ag(upd), and Au/Cu(upd) substrates. In the upper three spectra of Figure 8.6, the asymmetric

methylene peaks appeared at -2918 cm-1, indicative of a primarily trans-zig-zag extended

hydrocarbon chain containing few gauche conformers. 35 The spectra demonstrate the ability to

form highly crystalline monolayers by the assembly of alkanethiols onto these three substrates.

For the various substrates, the intensities of the methylene peaks are greatest for SAMs on gold,

the least intense for SAMs on silver, and intermediate for the upd substrates. The differences in

intensity reflect different canted orientations for the polymethylene chains on these surfaces, with

the tilts of the chains on upd substrates of silver and copper being intermediate (-20 from the

surface normal) between those found for alkanethiolate SAMs on gold (-30'), silver (-13o), and

copper (-13).6,8,10,11 The tilt of the hydrocarbon chain in SAMs is a result of the packing

arrangement of the adsorbates on the metal surface, and the presence of the upd layer must alter the

structural arrangement of the adsorbate on the upd surface from those on the parent metal surfaces

(see Chapter 11).

On Au/Ag(upd), Va(CH 2) appears at 2918 cm-', suggesting that the hydrocarbon chains in

the SAM are primarily trans-zig-zag extended and contain few gauche conformers. The structure

of the adsorbed layer on the Au/Ag(upd) sample is distinct from those formed on the

corresponding bulk metals as evidenced by the lower dichroic ratio [va(CH 2)/Vs(CH 2)] and less

intense symmetric methyl peaks in its spectrum. These two features in the spectrum provide

evidence that the SAM on the Au/Ag(upd) substrate has a structure that is not a composite of the

structures that form on gold and silver.3 6

The SAMs formed on Au/Cu(upd) were less well defined, with va(CH 2) appearing at 2921

cm -'. This position suggests that the SAMs produced under these assembly conditions are

structurally better ordered than SAMs formed on air-exposed copper, but include a higher degree

of gauche defects within the SAM than on the Au/Ag(upd) substrate. As with the SAM on

Au/Ag(upd), the Va(CH 2) peak had intermediate intensity to those for the octadecanethiolate SAMs

on gold and copper. The greatest difference between the spectrum for the Au/Cu(upd) substrate

and the other metals was that the dichroic ratio for the methylene absorption modes

[Va(CH 2)/Vs(CH 2)] was -1 [vs. 1.5 on Au/Ag(upd) and 2 to 2.5 on copper, silver and gold].

These results are indicative of a different structure that forms on the Au/Cu(upd) surface.
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Figure 8.6. Grazing incidence polarized infrared spectra for SAMs of octadecanethiol adsorbed
onto evaporated gold and silver surfaces and onto evaporated gold films that contain an
underpotentially deposited layer of silver or copper. The approximate positions of the methylene
modes are 2918 (asym) and 2850 (sym) cm , and those for the methyl modes are 2964 (asym),
2935 (sym, Fermi resonance) and 2879 (sym) cm . The spectra have been offset vertically for
clarity.
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In general, the use of upd layers may provide a means for controlling and manipulating the

structure of SAMs. The relationships between the monolayer structure---crystallinity, canted

orientation, chain twist, and packing density-and the composition and coverage of the upd layer

in these two systems is reported in Chapter 11.

8.2.5. Electroactive SAMs

As the redox potential for the Au/Ag(upd) substrate is -520 mV positive of Ag / o, this substrate

offers useful applications as a substrate for the formation of electroactive SAMs. Figure 8.7

displays cyclic voltammograms for SAMs prepared by chemisorption of FcCO(CH 2)10SH (Fc =

ferrocenyl) onto Au and Au/Ag(upd) substrates. The curves display the expected peaks

corresponding to the oxidation of ferrocene and the reduction of ferrocenium, with the broadness

of the peaks being comparable to that observed by others for SAMs of FcCO2(CH 2), SH and

related adsorbates on gold.37,38 The durability of the substrates modified with FcCO(CH 2)IoSH is

sufficiently great that routine electrochemical characterization is possible. The coverages obtained

by coulometry for the ferrocenyl species were 4.3 and 4.5 x 10-10 (± 10 %) mol/cm 2 on

Au/Ag(upd) and gold, respectively, and are comparable to those of prior studies for similar

ferrocenyl-based adsorbates. 37,38 It is important to note that voltammetry for this monolayer

cannot be performed on a bulk silver electrode at room temperature as the ferrocene ' redox

potential for this adsorbate is -400 mV positive of that for silver oxidation and electrochemical

cycling results in the anodization of silver and loss of the SAM.3 9 XPS spectra for the SAM on the

Au/Ag(upd) substrate both before and after electrochemical cycling displayed signals for silver and

demonstrated that the Ag upd layer survives the assembly of the monolayer and the redox cycling

of the surface-attached ferrocene couple. By depositing the silver layer on gold underpotentially,

the Ag'/O redox potential on this modified electrode is increased by -520 mV over that for a bulk

silver electrode, thus, enabling the observation of ferrocene redox behavior.

In Figure 8.7, the potential was ramped to 650 mV positive of the Ag' 0o redox potential for

silver upd on gold. Nevertheless, silver oxidation was not observed in the cyclic voltammogram,

and XPS results indicated that the silver coverage on the SAM-coated electrode did not change after

being cycled to 650 mV. This added stability of the upd layer has been attributed to the presence of

the SAM. Chidsey et al. have shown that an adsorbed organic monolayer can reduce electron

transfer rates and thus lead to the requirement of more positive potentials to drive an oxidation

process." The cyclic voltammograms of a nonelectroactive monolayer (not shown) prepared from

C16H33SH on Au/Ag(upd) showed no evidence of silver oxidation until the potential reached

-+800 mV.
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Figure 8.7. Cyclic voltammograms in 0.1 M HCIO4 of monolayers prepared from
FcCO(CH 2),,SH (1 mM, ethanol) on gold and Au/Ag(upd). Scan rate = 100 mV/s.
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8.3. Experimental

8.3.1. Materials

Gold shot (99.99%) and chromium-coated tungsten filaments were obtained from Americana

Precious Metals Co. (East Rutherford, NJ) and R.D. Mathis (Long, Beach, CA), respectively.

Silicon (100) wafers (Silicon Sense, Nashua, NH) were rinsed with ethanol and dried with

nitrogen prior to use in the evaporator. Octyl, dodecyl, and octadecyl thiols (Aldrich) were

distilled under vacuum prior to use. All other n-alkanethiols were prepared from the corresponding

alkyl bromides (Aldrich) by nucleophilic displacement with thioacetate followed by solvolysis in

HCl/MeOH. 11-Hydroxy-undecanethiol, 13 mercaptoundecanoic acid,41 11-(2,2,3,3,3-

pentafluoropropoxy)-undecanethiol, 9 and octadecanethiol-d 37
1 were prepared according to

literature procedures. 11-Ferrocenyl-undecanethiol and 11-ferrocenoyl-undecanethiol were

available from previous studies.38 Ethanol (95%, Pharmco), isooctane (EM Science), and

hexadecane (Aldrich) were used as received. Deionized water was purified with a Millipore-Q

system.

8.3.2. Preparation of Assemblies

Chromium (100 A) and gold (1000 A) were evaporated in sequence at 1.5 and 4 A/s, respectively,
onto 100-mm silicon wafers in a diffusion-pumped chamber with a base pressure of 8 x 10-' Torr

and an operating pressure of 2 x 10.6 Torr. The gold-coated wafers were cut into 1 cm x 3 cm

samples and were used for underpotential deposition and/or SAM formation within 3 days of

evaporation. Copper and silver were underpotentially deposited onto evaporated gold surfaces in a

glass cell using a supported gold film as counter electrode, a copper or silver wire as a reference

electrode, and a computer-controlled PAR Model 263A potentiostat. The exposed area of the

working electrode was either -0.8 cm 2 for samples characterized by XPS, ellipsometry, and

wetting or -5 cm 2 for samples characterized by IR. Before deposition, the gold film was

electrochemically cycled at 20 mV/s in a 0.1 M H2SO 4(aq) solution of 0.6 mM Ag2SO 4 or 1.0 mM

CuSO4*5 H20 between 200 and 650 mV vs. reference for silver or between 50 and 550 mV vs.

reference for copper. On the cathodic scan, the potential was held at a value just negative of the

upd peak (460 mV for silver and 80 mV for copper). The electrode was emersed under potential

control, rinsed with ethanol,42 blown dry in a stream of N2, and transferred rapidly through air to 1

mM isooctane or ethanol solutions of the alkyl thiols for 40 min. The resulting SAMs were rinsed

with ethanol and blown dry with N2 prior to characterization.
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Mixed monolayers expressing methyl and hydroxyl termini were formed by immersing

silver upd substrates into ethanolic solutions containing mixtures of dodecanethiol and 11-

hydroxy-undecanethiol for 40 min. The mole fractions of the two thiols were varied while the total

concentration of thiol in solution was held constant at 1 mM. The mole fraction of the hydroxyl-

terminated component in the SAM was determined by normalizing the intensity of the O (Is) peak

in the XPS spectrum to the peak obtained for a SAM composed solely of the hydroxyl-terminated

species.9

8.3.3. Ellipsometry

The thicknesses of the SAMs were determined using a Gaertner LI 16A automatic ellipsometer

equipped with a He-Ne laser (X = 6328 A) at an incident angle of 700 and a refractive index for the

organic film of 1.46. Samples were rinsed with ethanol and blown dry with N2 before

measurements were taken. Baseline values for upd assemblies were measured on unfunctionalized

upd substrates within 2 min after emersion from the electrochemical cell. The reported thicknesses

are the average of at least five independent experiments where each sample was characterized by

ellipsometry at three different locations on its surface; the averages of three measurements made at

each location on the sample were used to calculate thicknesses.

8.3.4. Wetting Measurements

Advancing contact angles were measured on static drops of water or hexadecane with a Ram6-Hart

manual goniometer equipped with video camera and computer monitor for viewing the drops.

Contacting liquids were advanced or retreated (1 gUL/s) prior to measurement with a Micro-

Electrapette syringe (Matrix Technologies, Lowell, MA). The pipette tip remained in the drop

during measurement. Both sides of -5 gL drops were measured at three different locations on a

sample, with the reproducibility across a sample being ± 2'.

8.3.5. X-ray Photoelectron Spectroscopy (XPS)

XPS spectra were obtained with a Surface Science Instruments Model X-100 spectrometer using a

monochromatized Al Ka x-ray source (elliptical spot of 1.0 mm x 1.7 mm) and a concentric

hemispherical analyzer (pass energy = 150 eV). The detector angle with respect to the surface

parallel was 350. Peak positions were referenced to Au(4f 72) = 84.00 eV, and peaks were fit with

80% Gaussian/20% Lorentzian profiles and a Shirley background. Coverages of the upd adlayer
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component (Oupd) were calculated from measured intensities of the adlayer (Ip) and substrate (IAu)
peaks using eq 8.1 (see appendix for derivation):43

IAu upd CS 1- expj - aupd + p - aupd (8.1)
Iupd Iu, p 1Ud(KEupd)COS Aupd(KEAu) COS E

where a pis the diameter of the adatom (2.56 and 2.89 A for copper and silver, respectively);
A upd(KE/) is the inelastic mean free path through the upd adlayer for electrons of kinetic energy

(KE) from the upd layer or the gold substrate [XCu for Au(4f72) and Cu(2p32) photoelectrons are
21 A and 11 A, respectively; XAg for Au(4f 7 2) and Ag(3d 52) photoelectrons are 18 A and 15 A,
respectively],"44  is the angle of the detector to the surface normal, and IOupd and I are

sensitivity factors for the adlayer atoms and substrate atoms, respectively. Eq 8.2 gives CSAM, the
attenuation of the adlayer and substrate electrons by the SAM or adventitious carbonaceous material

- dSAM

CSAM - ep/A SAM(KEupd) COSOCSM =(8.2)
- dSAM

(SAM(KEAu) COSE

where ;SAM(KEi) is the attenuation length through the SAM for electrons of kinetic energy (KE)
from the upd layer or the gold substrate [XSA for Au(4f7 2), Ag(3d 5 2), and Cu(2p32)
photoelectrons are 40 A, 34 A, and 21 A, respectively],45 and dsAM is the thickness of the

hydrocarbon layer for the SAM [dA M = n d cos a where n is the number of methylene groups in
the adsorbate, d is the incremental contribution of a methylene group to the length of an n-alkyl
chain (d = 1.27 A)46 and a is the angle the hydrocarbon chain is canted relative to the surface
normal as determined by IR (on copper and silver, a _ 12'; on gold, a = 300, on the upd systems,
a = 200)]. For unfunctionalized upd samples, the thickness of adventitious carbonaceous material
on its surface was quantified by comparing the intensity of the Au(4f72) peaks for these samples
with those of substrates coated with octylthiolate SAMs. The effective chain length of the

carbonaceous material was determined by the slopes of a semi-logarithmic plot of substrate

intensity versus SAM chain length. This treatment assumes that the inelastic mean free path

through this carbonaceous material is similar to that of hydrocarbon.
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8.3.6. Reflectance Infrared Spectroscopy

IR spectra were obtained in a single reflection mode using a Bio-Rad FTS 175 infrared

spectrometer and Universal Reflectance Attachment. The p-polarized light was incident at 800 from

the surface normal. The reflected light was detected with a narrow-band MCT detector cooled with

liquid nitrogen. Spectral resolution was 2 cnf' after triangular apodization. Spectra were

referenced to those of SAMs prepared on the corresponding substrates from octadecanethiol-d 7,
and 1024 scans of both the sample and the reference were collected to obtain good signal-to-noise

ratios. Samples were rinsed with ethanol and blown dry with N2 prior to characterization.

8.3.7. Electrochemistry

Cyclic voltammetry of ferrocene-terminated SAMs was performed in a glass cell using a supported

gold film as the counter electrode, a silver wire as the reference electrode, and a PAR Model 263A

potentiostat. A solution of 0.1 M HCIO4, prepared immediately before use with purified water

(Millipore), served as the electrolyte. The exposed area of the working electrode was -0.4 cm 2.

The potential was cycled between 200 and 650 mV at a scan rate of 100 mV/s. The amount of

charge passed between the electrode and the monolayer was determined by averaging the faradaic

contributions to the anodic and cathodic peaks.
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Chapter 9. Underpotentially Deposited Metal Layers Provide
Enhanced Thermal Stability to Self-Assembled Alkanethiol
Monolayers on Gold

9.1. Background

Self-assembled monolayers (SAMs) derived from the spontaneous adsorption of alkanethiols onto

gold surfaces are one of the most convenient and flexible systems for generating tailored organic

interfaces and examining the structure/property relationships of organic surfaces.' The assembly

produces chemisorbed monolayer films that can express a wide range of polar and nonpolar

functionalities at the SAM/air(liquid) interface.2 3 The robust behavior of these films in liquid and

vacuum environments, coupled with the ease and flexibility in their synthesis, has been a primary

factor in their increasing use in laboratory experiments. While this system exhibits useful

stabilities at room temperature, the molecular components of the SAM are removed from the

surface when the SAM is contacted with a thiol solution45 or is exposed to elevated temperatures

(-70 aC). 2 In general, the lack of stability of these films during long-term exposure to the

atmosphere or to higher temperatures provide some restrictions to their application. Methods to

improve the stability of these layers have focused on the design and multi-step synthesis of

adsorbates that can achieve multiple gold/sulfur interactions, 6 or that incorporate polymerizable

groups,' hydrogen bonding functionalities,5 or aromatic moieties.8 This chapter describes a

straightforward method to increase the level of interaction at the gold/sulfur interface using an

electrodeposited monolayer of silver as a one-atom-thick interlayer between the gold surface and

the adsorbed SAM. This study focuses on polycrystalline gold films prepared by evaporation as

these substrates are commonly used in studies and applications of alkanethiol-based SAMs and

they have direct analogs in device fabrication. 9

Underpotential deposition (upd) is an electrochemical method of depositing up to one

monolayer of metal onto a more noble metal surface at potentials positive of bulk electrodeposition

(see Section 8.1 for more details).'o The upd process is the result of strong adatom-substrate

interactions that are energetically more favorable than the adatom-adatom interactions formed

during bulk electrodeposition.'0 Upd shares the common features with SAMs that the process

yields robust layers of no greater than monolayer coverage, the system has a high degree of

flexibility in the composition and coverage of the adlayer, and gold is a commonly used substrate.

In Chapter 8," the characterization of SAMs on upd substrates of copper and silver on gold were

reported. The SAMs on the upd substrates are similar to those formed on gold in that the assembly

can be performed in air and it accommodates both polar, nonpolar, and electroactive functionalities

in the tail group of the adsorbate." In these SAMs, the upd layer is present as an interlayer
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between the gold surface and the adsorbed thiolate (refer to Figure 8.1), and it is not etched away

during SAM formation nor does it alloy with the underlying gold." The hydrocarbon chains in the

SAM are primarily trans-zig-zag extended and cant -20' from the surface normal" (vs. -30o from

the surface normal on gold, and -10' from the surface normal on silver12).

9.2. Results and Discussion

The Au/Ag(upd) substrates were prepared by electrochemically cycling gold-coated silicon wafers

in a 0.1 M H2SO 4/0.6 mM Ag2SO 4 aqueous solution and removing the substrates at potentials 50

mV cathodic of the upd peaks (460 mV vs. Ag'; refer to Figure 8.2 for the cyclic voltammogram

for Ag upd onto Au); the substrates were transferred rapidly through air to 1 mM solutions of the

alkanethiol in isooctane or ethanol for 40 min. Under these conditions, the coverage of silver on
the gold surface (OAg) before and after adsorption of the SAM was 0.6.14 Longer adsorption times

for the thiol (up to 24 h) did not dramatically change the coverage of the upd layer or the properties

of the SAM.

As the thiol-gold bond is not a fully covalent one, thiols desorb from the surface when

contacted with solvents at temperatures above 70 aC.2 The thrust of this chapter examines the

effect of the substrate composition on the desorption rates of alkanethiolate SAMs when contacted

with a heated solvent. The thermal stability experiments were conducted in heated solutions of a
high boiling branched hydrocarbon solvent [decahydronaphthalene (DHN)]; this solvent was

chosen to minimize possible solvent intercalation into the partial SAMs. Individual samples were

each periodically removed from the DHN, rinsed with ethanol, blown dry in a stream of N2, and
characterized by ex situ by ellipsometry or x-ray photoelectron spectroscopy (XPS) to determine

the remaining coverage of the SAM;'5 samples were discarded after analysis.

Figure 9.1 a compares the desorption behaviors of n-docosanethiolate SAMs on gold and upd-
modified gold surfaces at 103 oC in DHN; fractional coverages were determined ex situ by optical
ellipsometry. After -60 min at 103 oC, little adsorbate remained on the gold surface while most of

the SAM remained on the upd-modified substrate. Similar improvements in thermal stability were

also observed at lower temperatures (Figure 9.1 b), with the rates of desorption (assuming first-

order behavior) being 4 to 10 times slower for substrates that were modified by the upd process.'6

Least-squares fits to the data in Figure 9. lb yielded activation energies of 31 and 38 kcal/mol (±

10%) toward desorption of the SAM from the bare Au and Au/Ag(upd) substrates, respectively.

The enhanced stability was also reflected by the wetting properties of the assemblies during these

experiments. For example, after just 10 min of exposure to DHN at 103 oC, the n-docosanethiolate

SAMs on gold were wet by ethanol (Oa 00); however, these SAMs on the upd-modified system

remained autophobic to ethanol (Or > 00) through 90 min of exposure. Wetting is a sensitive probe
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Figure 9.1. Desorption of n-docosanethiolate (C22H45S-) SAMs from Au and Au/Ag(upd)
(OAg= 0.6) substrates into decahydronaphthalene (DHN), as followed ex situ by ellipsometric
measurements. (a) Fractional coverage of the docosanethiolate SAM remaining on the Au and
Au/Ag(upd) substrates as a function of exposure time to DHN at 103 oC. (b) Arrhenius plot of the
first-order rate constants for SAM desorption into DHN for the Au and Au/Ag(upd) (Ag= 0.6)
substrates. In all figures where error bars are not shown, they are approximated by the size of the
symbol.
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of film structure"1' 7 and provides further indication that the upd layer can maintain the structure and

integrity of the SAM under conditions where a native thiols-on-gold SAM is not stable.

The n-alkanethiolate SAMs on Au and Au/Ag(upd) substrates have a different canted

structure, with the n-alkanethiolates being oriented more vertically on the Au/Ag(upd) substrate

than on gold." Considering this difference in structure, the increased van der Waals interactions

associated with the Au/Ag(upd)/SAM structure could be responsible for the enhanced thermal

stability of this system. To test this hypothesis, the desorption behaviors for a n-

hexadecanethiolate monolayer on Au/Ag(upd) and a n-docosanethiolate monolayer on bare Au into

DHN at 84 'C were compared (Figure 9.2). The adsorbates were selected so that the SAM on

Au/Ag(upd) would be thinner (and contain fewer van der Waals interactions) than the longer-

chained SAM on Au. In Figure 9.2, the SAM on the upd-modified substrate displayed better

stability toward desorption than the thicker SAM on gold. These data demonstrate that the upd

layer of silver is responsible for the improvements observed in the thermal stability of the SAMs.

Similar experiments were conducted using x-ray photoelectron spectroscopy (XPS) and

SAMs derived from a fluorine-tagged thiol [HS(CH 2)1lOCH 2CF 2CF 3, 3 1]; XPS has the

advantages over ellipsometry as it can monitor the direct loss of material (from the intensity of the

F(ls) peak") and its measurement can distinguish between the tagged thiolate and adventitious

materials that might adsorb onto the metal surface. In addition, XPS allowed complementary

experiments to be conducted on bulk silver substrates as the XPS measurements were not sensitive

to problems of substrate oxidation that could complicate ellipsometric determination of monolayer

thickness on this substrate. Figure 9.3 shows the desorption behaviors for SAMs derived from 1
in DHN at temperatures between 70 and 100 oC.18 The SAMs on the Au/Ag(upd) (%Ag = 0.6)
substrate exhibited greater levels of thermal stability over this temperature range than did the

corresponding SAMs on gold (by a factor of 3 to 5 in the rates of desorption). The results in

Figures 2 - 4 demonstrate that the presence of a single layer of silver at the gold/SAM interface can
impart improved stability to the alkanethiolate monolayers. XPS analysis of Au/Ag(upd)

substrates after complete desorption of the SAM revealed some decrease in the coverage of the Ag

adlayer (5-25%), suggesting that failure in the Au/Ag(upd)/SAM system is primarily at the

metal/thiolate interface rather than at the Ag/Au interface.

The role of silver in the stabilization of the upd SAMs was investigated by using substrates

with different coverages of silver. Assemblies from a bulk silver substrate were prepared, along

with those from upd substrates that were emersed from the electrochemical cell at more reducing

potentials, producing gold surfaces with intermediate submonolayer coverages of silver. Emersion

at 250 mV and 100 mV vs Ag/o yielded substrates with silver coverages of 0.75 and 0.85,

respectively. Figure 9.4a shows that SAMs prepared from 1 on Au/Ag(upd) substrates where OAg
= 0.85 exhibited significantly greater stabilities than those where OAg = 0.6. In addition, the
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Figure 9.2. Comparison of the desorptive behaviors of n-docosanethiolate SAMs (C22H45S-)
on Au and n-hexadecanethiolate SAMs (C,6H33S-) on Au/Ag(upd) (OAg = 0.6) substrates into
DHN at 84 oC, as followed ex situ by ellipsometric measurements. The chain lengths of the
adsorbates were selected to produce a thicker SAM on the gold substrate.
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desorption behavior of the SAM on Au/Ag(upd) (%Ag = 0.85) more closely approached that on bulk

silver with -~ 70 % of the SAM remaining on the surface of both substrates after 400 min of

exposure to DHN at 90 'C. In Figure 9.4b, the first-order rate constants for desorption of SAMs

derived from 1 into 900 C DHN are shown as a function of the fractional coverage of silver at the

SAM/metal interface.' 9 As PAg is increased, the stability of the SAMs toward desorption is

enhanced as the SAM forms a greater number of thiolate-silver interactions and fewer of the

weaker thiolate-gold interactions. At intermediate coverages of the Ag upd layer (OAg = 0.6), the

interaction of the thiolate is probably largely due to interactions with the Ag upd layer and to a

lesser degree, the underlying gold. The data in Figure 9.4b provide evidence that SAMs on silver

are more thermally stable than those on gold and that a layer of silver (on the order of a monolayer)

is sufficient to achieve the greater level of stability associated with a bulk silver substrate. From an

experimental standpoint, the Au/Ag(upd) substrate provides the advantage over the use of bulk

silver substrates as the underpotentially deposited silver is less prone to oxidation.20

9.3. Conclusions

Submonolayer amounts of underpotentially deposited silver provide enhanced stability to SAMs on

polycrystalline gold substrates. The principal gain in adhesion results from an increase in the

interaction between the sulfur headgroup and the upd-modified substrate. A single layer of metal

on the surface of an electrode is sufficient to provide the adhesional properties of the bulk metal

substrate. The advantage of the upd coating is that it offers these properties on a less air-sensitive,

more noble version of the bulk substrate. As the assembly of thiols containing both polar and non-

polar tail groups is compatible with the presence of the upd layer," the strategy presented here for

enhancing thermal stability should be directly applicable to the broad class of molecules that have

been adsorbed onto gold.2' The remaining chapters will explore the use of upd metal layers on

gold to affect the room-temperature stability (Chapter 10) and structure (Chapter 11) of adsorbed

organic monolayer films.
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Figure 9.4. Effect of silver coverage on SAM stability. (a) Fractional coverage of the SAMs
derived from CF 3CF 2CH20(CH2)llSH (1) on Au, Ag, and Au/Ag(upd) (OAg = 0.6 and 0.85)
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Chapter 10. Exchange of Self-Assembled n-Alkanethiolate
Monolayers on Gold Surfaces Modified by Underpotential
Deposition of Silver or Copper

10.1. Background

While much work on self-assembled monolayers (SAMs) has focused on the development of

systems of greater complexity through synthesis, little has been reported about the factors that

affect their stability. Since the attachment of the thiols to the gold surface is not covalent, the

components of alkanethiolate SAMs are known to desorb from gold surfaces into solvent to some

degree at room temperaturel and to a greater extent at elevated temperatures (> 70 oC). 2,3 The

SAMs are also susceptible to exchange processes, where the components of an initially formed

monolayer will be replaced on the surface with different adsorbed species when contacted with

solutions of competing thiol adsorbates.,4-6 These exchange processes can affect the quality and

composition of surfaces formed from solutions containing more than one thiol-so-called "mixed

monolayers"-such as those used in the fabrication of chemically modified electrodes 4,5,7 or

patterned interfaces. 8 Electrodes modified with these mixed SAMs exhibit superior electrochemical

properties when the electroactive adsorbates are dispersed among electroinactive components,
thereby enabling the active components to function as isolated redox sites on the electrode surface.

However, exchange processes between surface-bound and solution-phase molecules can alter the

composition of the electroactive groups on the surface. Another area in which exchange processes

can impact the processing of SAMs-based systems is in microcontact printing. Whitesides and co-

workers 8 have developed microcontact printing to create well-defined regions of chemical

functionality by patterning one type of SAM on a metal surface and exposing the resulting

patterned substrate to a solution of a second thiol adsorbate. The first patterned region is often

formed by stamping the thiol onto selected regions of a gold surface with a polydimethylsiloxane

stamp that is inked with a thiol solution. Upon exposure of the substrate to a solution containing a

second thiol to derivatize the non-patterned, unfunctionalized areas, exchange processes can

compromise the homogeneity of the preformed regions as the solution-phase thiols can exchange

with the patterned thiols adsorbed in the first step.

Previous studies concerning the exchange kinetics of thiol adsorbates on gold have focused

on the replacement of electroactive adsorbates by electroinactive ones4,7 or of radio-labeled

adsorbates by non-labeled molecules in solution. 1 These investigations consistently revealed an

initial period of rapid exchange between surface-bound thiolates and thiols in solution followed by

a slow ordering step in which the composition of the monolayer changed slowly over time. These

distinct regimes in the exchange process suggest that some thiols are more easily removed from the
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surface than others, perhaps resulting from different levels of interaction with the underlying gold

substrate. Collard and Fox provided strong evidence to support this hypothesis by studying a two-

step exchange of a surface-attached ferrocenyl alkanethiol by sequential exposure to 1) a

ferrocenylcarbonyloxy-alkanethiol and 2) an unsubstituted alkanethiol from solution.5 They

concluded that the same molecules which replaced surface-bound species in the first step were, in

turn, preferentially exchanged in the second step. While this observation suggests that distinct

populations of thiols are present on the surface and interact at different levels with the substrate,

some disagreement exists as to the nature of the fast-exchanging population. Chidsey et al. studied

the exchange of electroactive ferrocenyl alkanethiols with inactive n-alkanethiols and hypothesized

that thiols at domain boundaries exchanged more rapidly than thiols at the interiors of domains;4

however, others have provided evidence suggesting that thiols bound at defect sites are more stable

against exchangel and to electrochemical desorption 9 than thiols bound at terrace sites. Across

these studies, there is agreement that the rate-determining step for desorption and exchange appears

to be cleavage of the adsorbate-substrate bond (i.e. S-Au.). Thus, methods to increase the strength

of adsorbate-substrate interactions could improve the stability of SAMs.

While these various studies have focused on understanding the mechanisms of exchange,
there has been no report of a method that improves the stability of a SAM against exchange. In this

chapter, underpotentially deposited metal adlayers of silver and copper are used to stabilize SAMs

against exchange processes. In Chapter 8, alkanethiols were reported to adsorb on gold surfaces

modified by upd of silver or copper and form densely packed, oriented monolayers with properties

similar to those of SAMs on gold. A demonstrated advantage of these systems is that an upd

adlayer of silver can act as an adhesive interlayer between gold and the thiol head group and

increase the overall thermal stability of the SAM against desorption, as discussed in Chapter 9.

The ability to improve the room temperature stability of SAMs is also an important

underlying need in this area of research, as these systems have been suggested to find use in

devices that would require extended operation under ambient conditions. While monolayers of

thiols on gold are stable for months in air, 10 they show significantly less stability toward

desorption when contacted with a liquid phase.1 Exchange experiments represent a useful means

of studying the loss of a SAM in a liquid phase at room temperature. In this chapter, the kinetics

of exchange are reported for various alkanethiol-based SAMs on substrates of gold, Au/Ag(upd),

Au/Cu(upd), silver, and copper. The thiols that are exchanged from these substrates contained a

variety of tail groups- -CH3, -OH, -CO2H, -OCH 2CF 2CF 3, and -COFc (Fc = ferrocenyl)-that

differed in their specific size and polarity. These tail groups allowed the exchange process to be

monitored by various techniques, including x-ray photoelectron spectroscopy (XPS), reflectance-

infrared spectroscopy (RAIRS), electrochemistry, and wetting measurements. In addition, the use

of terminal groups of varying size offers a method to tune the packing of the hydrocarbon tether
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within the SAM. Investigation of the displacement of these different SAMs by competing

adsorbates provides insight into the effects of monolayer packing and substrate composition on

exchange rates.

10.2. Results

Polycrystalline gold substrates were functionalized with submonolayer amounts of silver or copper

by underpotential deposition, as described in Chapter 8. Upd-modified gold, along with

evaporated films of copper, silver, and bare gold, served as substrates for self-assembly and

subsequent exchange studies. Upd-modified gold substrates were transferred from the

electrochemical cell through air to thiol-containing solutions to form SAMs [Au/Ag(upd)/SR or

Au/Cu(upd)/SR]. 11 In all cases, the formed SAMs were exposed to air for less than five minutes

before being placed in the exchanging solution to minimize oxidation of thiolates to sulfonates;

SAMs that undergo this oxidation exhibit much faster rates of exchange. 6 As mentioned in

Chapter 8, upd substrates that were derivatized with thiols exhibited no peaks for oxygen by XPS.

In contrast, thiol-derivatized copper or silver films (-1000 A) that were exposed to air for shorter

times did exhibit peaks for oxygen by XPS. The greater resistance of the upd-modified substrates

against oxidation in comparison to the bulk metals is a result of their more noble redox potential.

The submonolayer coverage ( i) of the upd component in these systems was 0.55 ± 0.05 and 0.75

± 0.06 for Au/Cu(upd) and Au/Ag(upd), respectively, based on calculations from XPS data (eq

8.1).

10.2.1. Exchange of M/S(CH 2) 1OCH2CF2CF3 by CH3(CH2) 15SH.

SAMs derived from CF3CF 2CH20(CHz)1,SH on gold, Au/Ag(upd), Au/Cu(upd), silver, and

copper were exposed to solutions of n-C 6,SH (1 mM, ethanol), and the exchange rate of the

fluorinated adsorbate was monitored ex situ by XPS from the intensity of the F(1 s) peak (Figures

10. la and b). In these semi-logarithmic plots, the lack of linearity in a data set illustrates a

deviation from a first-order exchange process. The data for the gold substrate exhibited the

strongest deviation from a simple first-order process, suggesting a more complex mechanism for

exchange than for the other substrates (vide infra). The exchange on gold proceeded more rapidly

than on silver or Au/Ag(upd). Over 80% of the SAM on gold was observed to exchange within 20

h of exposure to n-C 6SH, while the remaining 20% was displaced at a much slower rate. In

contrast, 80% of the original SAM on silver remained on the surface during exposures to the n-

C16SH solution for up to 120 h. When the gold substrate was modified by upd of silver [silver

coverage (OAg) = 0.75], the exchange rate was intermediate between that of silver and gold.

161



1.0
0.7 %

0.41P

O

E
o

c
CL

0.03

1.0
0.7

0.4

0.1

0.03

O O

V
*V V

* *

0

V Ag
Au/Ag(upd)
Au

50 I I I 50 100 150
Time (h)

200

0 50 100 150 200
Time (h)

250

250
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Improvements in the thermal stability were also observed for SAMs derived from

CF3CF 2CH20(CH 2),lSH on Au/Ag(upd) substrates, as discussed in Chapter 9.

In Figure 10. 1b, the exchange of CF 3CF2CH20(CH2),1S- from either copper or gold

occurs on a comparable timescale that is much shorter than that for exchange of this SAM on

Au/Cu(upd) (4 = 0.55). In fact, the exchange on Au/Cu(upd) is slower than on Au/Ag(upd)

(Figure 10. la). This difference contrasts the thermal stability of these monolayers on the upd

substrates as the SAMs desorb from Au/Cu(upd) more rapidly than from Au/Ag(upd) (Chapter 9).

A possible explanation for this difference in stability might be that the Au/Cu(upd) substrate is

more susceptible to oxidation at the higher temperatures (70 - 100 oC) associated with the thermal

stability studies. For the exchange studies performed at room temperature, the tendency for

oxidation of the Au/Cu(upd) substrate is minimal.

10.2.2. Exchange of M/S(CH 2) 17CH 3 by CD 3(CD 2) 17SH

While Figure 10.1 shows the displacement with an unsubstituted n-alkanethiol of an w-

functionalized alkanethiol containing a tail group that is likely to affect interchain packing, Figure

10.2 displays data for the exchange of adsorbates with similar structure. For these experiments,

reflectance-absorption infrared spectroscopy (RAIRS) was used to monitor the exchange of

adsorbed n-CI8H37S- by n-C,1 D37SH (1 mM, ethanol) (Figure 10.2). Since the deuterated and

protonated adsorbates would likely adopt identical structures on the substrate, this process

resembles that of self-exchange. As the deuterated molecules displace the protonated adsorbates,

diminution of the methylene stretching peaks in the RAIR spectra is observed. The coverage of the

protonated adsorbates was estimated by normalizing the intensities of the Va(CH 2) and v,(CH 2)
peaks (2919 and 2851 cm-', respectively) for a partially exchanged sample to their respective

integrated intensities for a complete C8,H37S- SAM on a particular substrate and averaging the

resulting two values. The reduction in peak intensity is assumed to correlate linearly with -CH2-
coverage as the canted structures on the substrates are expected to remain unchanged as the

composition of the protonated and deuterated species varies. Consistent with the results in Figure

10.1, the SAM on gold was replaced more rapidly than the SAMs on Au/Ag(upd) or Au/Cu(upd)

(Figure 10.2); however, the displacement of the n-alkanethiolate SAM on gold (Figure 10.2)

proceeded at a considerably slower rate than that of the F-tagged SAM (Figure 10.1). In

comparison to the CF3CF2CH20- terminated SAM, the n-alkanethiolate SAM has a longer

polymethylene chain and a smaller tail group (-CH 3), both of which may promote a higher degree

of packing within the hydrocarbon portion of the SAM and thereby slow the exchange rates by

limiting transport of competing adsorbates to the substrate.
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10.2.3. Exchange of M/S(CH 2) lOH and M/S(CH 2)1 0CO2H by CH 3(CH 2)llSH

Monolayers derived from HO(CH 2)1ISH and HO2C(CH2)IoSH expose surface groups that are

slightly different in size and provide systems for studying the effect of SAM packing on exchange

rates. The exchange of HO(CH2)11S- SAMs with CH3(CH 2) ISH has been previously monitored

by the advancing contact angle of water. 12 As the relatively polar HO-terminated adsorbates are

replaced by nonpolar CH3-terminated adsorbates, the water contact angle on these surfaces

increases, indicative of the formation of a lower energy surface. The measured contact angle on

the exchanged surface (0.) can be correlated with the composition of the binary surface through

the Cassie equation:

cos 0meas = Xp COS Op + Xnp COS Onp (10.1)

where 0, and ,np are the advancing contact angles for water on the polar-terminated surface and the

CH3-terminated surface, respectively, and XP and Xn, are the surface area fractions of the polar and

nonpolar components on the surface, respectively. Equation 10.1 has been shown to accurately

predict the surface concentration of these binary systems on copper, silver, and gold substrates. 13

Figures 10.3a and b show the surface coverage of the HO- and HO2C-terminated SAMs,

respectively, upon exposure to C12SH (1 mM, ethanol). The results of these exchange studies on

the various substrates indicate more rapid replacement of the SAM on gold than on upd-modified

gold or on silver. In addition, although the data in Figures 10.3a and b suggest that the rates are

similar, the exchange of the HO-terminated SAM is slightly slower than that of the HO2C-
terminated monolayer on all substrates studied. While HO(CH 2),,SH forms a more crystalline

SAM, 14 the HO2C-terminated monolayer may form a hydrogen-bonded network 15 that could

provide additional stability for the SAM. The similar exchange rates on the various substrates

suggest that the stability of the SAMs are not dramatically affected by small differences in head

group size.

10.2.4. Exchange of M/S(CH 2) 10COFc with CH3(CH2,),SH

If monolayer packing does indeed influence exchange, then replacement of an adsorbate with a

bulkier tail group should proceed more rapidly than for a SAM with a smaller tail group. In this

section, the exchange of SAMs formed from FcCO(CH 2)IoSH (Fc = ferrocene) with 1 mM C12SH

in ethanol is discussed. The cross-sectional area of ferrocene is 36 A2 and is greater than the

packing density of unsubstituted alkanethiols on silver and gold. The exchange of these
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electroactive SAMs was studied by determining the coverage of the ferrocene groups

electrochemically after exposure to n-alkanethiol solutions. Reversible voltammetry has been

reported for monolayers derived from FcCO(CH2)1 0SH on gold, 16 Au/Ag(upd) (Chapter 8),11 and

Au/Cu(upd) 17 substrates. Voltammetry of these SAMs on copper and silver is not possible as the

redox potential of the ferrocenoyl SAM is positive of Ag'o and Cu2~0. The exchange data for

SAMs derived from FcCO(CH2)10SH on gold exposed to 1-mM n-C12SH (ethanol) show that 70%

of the bulky adsorbates exchanged from gold within 6 h of exposure while few (< 20%) of the

adsorbates were displaced from Au/Ag(upd) or Au/Cu(upd) over 22 h (Figure 10.4).

The exchange process for FcCO(CH 2)10S- monolayers on Au and Ag(upd) was examined

by reflectance IR (Figure 10.5) to determine if the improved stability of the electroactive SAM

afforded by the upd layers could be due to a difference in structure as unsubstituted n-alkanethiols

form more densely packed films on the upd-modified substrates than on gold." As the ferrocene-

terminated SAM is initially formed on either substrate, the IR spectra contain methylene stretching

peaks at 2925 [va(CH 2)] and 2853 cm-~ [v,(CH2)] for the polymethylene tether and an aromatic

stretching peak at 3105 cm ' for the terminal ferrocenyl moieties. The similar intensities and

positions of these peaks on the different substrates suggest that the structure and organization of

the Fc-terminated SAM are independent of substrate. This observation is not surprising since the

bulky ferrocene group should govern the packing densities of the adsorbates on the substrates. 18

After exposure of the Fc-terminated SAM on gold to 1 mM n-C12SH for 22 h (Figure

10.5), the IR spectrum revealed increased intensities of the methylene stretching peaks, the

appearance of methyl stretching peaks, and a diminution of the aromatic peak. The position of the

asymmetric methylene stretching peak [va(CH 2)] shifted from 2925 cm-' to 2921 cm-' after this

exposure and indicated a more crystalline conformation of the alkyl chains within the SAM. These

observations are consistent with the replacement of Fc-terminated thiolates with n-alkanethiols that

can pack more densely. The spectrum for FcCO(CH 2)10S/Ag(upd)/Au after the same 22-h

exposure to n-C1 2SH (1 mM, ethanol) indicated no major changes in the peak intensities or

positions. The intensity of the aromatic C-H stretching peak at 3105 cm-' is approximately 90% of

that found in the spectrum for the original SAM. The appearance of a weak peak in this spectrum

at 2880 cm-' corresponding to [Va(CH 3)] suggests that only slight levels of exchange and/or

incorporation have occurred with the methyl-terminated adsorbate. These results confirm those

obtained by coulometry (Figure 10.4) and provide structural information about the exchange

process.
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10.3. Discussion

The results shown in Figures 10.1 - 10.5 are consistent in that thiols exchange more rapidly from

gold than from Au/Ag(upd) and Au/Cu(upd) and that adsorbates with bulkier tail groups are

replaced from gold at a greater rate than adsorbates with smaller terminal groups. In order to

compare the exchange rates for the different substrates and tail groups, the exchange was assumed

to be a first-order process. This assumption appears to be valid for SAMs on the upd-modified

gold and evaporated silver substrates as the data in Figures 10.1 - 10.4 exhibit a high degree of

linearity which would suggest a first-order process. The data on gold and copper do not show the

same linear behavior, suggesting a more complex process, but can be approximated as a first-order

process in the following manner:

In [0(t) - 0q] = -kt (10.2)

where k is a pseudo-first-order rate constant that accounts for the relatively constant solution-phase

thiol concentration, 0(t) is the surface coverage of the original SAM, and 0q is a pseudo-

equilibrium coverage in which the SAM concentration changes slowly with time. Table 10.1 lists

the first-order rate constants for the data in Figures 10.1 - 10.4.

Table 10.1. Effect of tail group and substrate on exchange rates (k).

k (h' x 10)
Adsorbate Au Ag(upd) Ag Cu(upd) Cu
HSC1oCOFc 200 8 9
HSC1 IOCH 2CF 2CF 3 120 6 2 3 100
HSC 0COH 90 20 20
HSCHOI 40 14 12 12
HSC17CH3 4 1 1

10.3.1. Exchange of SAMs on Gold

In these experiments, the size of the terminal group of the adsorbates was varied to generate SAMs

with differing levels of packing. SAMs formed from adsorbates with bulky terminal groups-

especially those with cross-sectional areas greater than the projected area of - 19.4 A2/ CH2 for the

polymethylene chain-are expected to pack less densely and contain more defects than those

formed from adsorbates with smaller terminal groups. Exchange rates for these SAMs should

depend on the degree of packing if the exchange mechanism is indeed mediated by defects within
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the SAM. As summarized in Table 10.1, the exchange of SAMs on gold depends on the terminal

group of the adsorbates comprising the SAM. For example, the rate of exchange of a SAM

terminating in a bulkier -COFc group on gold is five times greater than for a SAM with a -CH2OH

terminus. This result cannot be explained by solubility differences because the alcohol adsorbate is

more soluble in ethanol than the Fc adsorbate. The exchange rates for SAMs derived from

CF3CF2CH20(CH 2)11SH on gold are also considerably greater than for adsorbates with smaller

terminal groups. This rapid exchange is attributed to the poor packing of the hydrocarbon within

the SAM that results from the -OCH2CF2CF3 tail groups. The ethereal and fluorinated units are

likely to introduce gauche conformers in the tail group and cause the hydrocarbon chains of the

SAM to pack less densely than for unsubstituted n-alkanethiolate SAMs. A comparison of IR

spectra for CF 3CF 2CH20(CH 2) 1 S- and CH3(CH 2)1,S- SAMs on gold confirmed this difference as

the methylene peaks revealed a less crystalline structure for the fluorinated SAM [Va(CH 2) = 2921

cm ~, v,(CH 2) = 2852 cm '] than for the dodecanethiolate SAM [va(CH 2) = 2918 cm , v,(CH 2) =
2851 cm']. Hickman et al. have also shown that the exchange of SAMs derived from different Fc-

terminated adsorbates depends on the packing of the tether.16

Since exchange rates for SAMs on gold depend on the level of packing within the SAM,

the mechanism for exchange is likely defect-mediated, as proposed by Collard and Fox. While

they5 and others1 have concluded that dissociation of the adsorbed molecule from the substrate is

rate-limiting, the results presented in this chapter indicate that the competing adsorbate is an active

participant in the displacement. For example, less than 5% of adsorbed CF 3CF 2CH20(CH 2)lS-
desorbs from gold after 100 h exposure to blank ethanol, whereas 70% of the SAM was

exchanged by C16H33SH (1 mM, ethanol) within 5 h. Clearly, the competing adsorbate must be

present to promote dissociation. In addition, faster exchange rates have been observed when

shorter-chained competing adsorbates are used,5 even though longer-chained adsorbates are more

favored on the substrate. Since shorter-chained thiols can more easily diffuse through defects

within the SAM, this result further indicates that the exchange process on gold is mediated by

defects within the SAM through which competing adsorbates can diffuse and promote dissociation.

10.3.2. Effect of Substrate

As shown in Figures 10.1 - 10.4 and summarized in Table 10.1, SAMs on Au/Ag(upd) and

Au/Cu(upd) are more stable to exchange than SAMs on gold. Schlenoff et al. have proposed that a

defect-rich surface stabilizes SAMs against desorption. 1 Nevertheless, none of our

characterization methods suggests that the upd process roughens the surface or creates defects on

the underlying gold. Roughness measurements performed on both gold and Au/Ag(upd) from

AFM images revealed similar surface roughnesses for the two substrates (Rm = 4 - 2 A). The
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presence of any atomic-scale defects promoted by the upd process would likely affect the quality of

the resulting SAMs. However, IR spectra for n-alkanethiols on Au/Ag(upd) indicate the formation

of organized structures [as inferred from the position of va(CH 2)] that are as good or better than

those observed for similar adsorbates on gold (Chapter 8).

A more likely explanation for the improved stability on upd-modified gold is that the thiol

headgroup interacts more strongly with the silver(upd) and copper(upd) substrates than with gold.

If dissociation from the surface controls the rate of exchange, a stronger substrate-adsorbate

interaction would certainly slow the exchange process. Providing evidence for this hypothesis, the

rate of exchange of CF 3CF 2CH20(CH 2),,S- with C,,H 33SH is orders of magnitude greater on gold

than on bulk silver (Figure 10.1), and the results of Chapter 9 indicated that alkanethiolate SAMs

on silver and Au/Ag(upd) are more thermally stable than those on gold. These results suggest that

thiols bind more strongly to silver than to gold. This improved stability for SAMs on silver may

be the result of a S-Ag bond with more ionic character than a S-Au bond, as determined from

Raman experiments. 19 Nevertheless, it is important to note that a surface of silver (or copper) upd

on gold is chemically distinct from the outermost layer of a bulk silver (or copper) substrate, as

evidenced by its more noble electrochemical characteristics and its enhanced resistance to

oxidation. Thus, one can only hypothesize that the strength of a S-Ag(upd) interaction is similar to

that of a S-Ag bond.

As shown in Figure 10.1, thiols on Au/Cu(upd) are more stable to exchange than either

thiols on copper or gold. The rapid exchange of thiols on copper suggests that a thiol-copper

interaction is no stronger than a thiol-gold interaction. However, results from temperature

programmed desorption experiments indicate that SAMs of n-C 12SH have considerably higher

desorption energies on copper (32 kcal/mol) than on gold (26 kcal/mol). 20 The observed poor

stability of SAMs on copper toward exchange is probably a function of the experimental

conditions. For example, SAMs formed on copper from adsorptions of > 3 h duration are less

ordered and exhibit greater contact angle hysteresis than those adsorbed for less than 1 h.21 This

disorder is likely the result of thiols corroding the underlying copper surface, and these additional

pathways may contribute to the nature of the observed rapid exchange for thiol-based SAMs on

copper. The self-assembly of thiols on Au/Cu(upd) appears to not be plagued by these corrosion

problems (or to a dramatically reduced level) as the copper is only present in a single atomic layer

and thus, exhibits enhanced stability to exchange.

10.3.3. Tail Group Effects on the Exchange Process

In contrast to SAMs on gold, the exchange of SAMs on upd-modified gold exhibits no clear

dependence on tail group size (Table 10.1). This lack of dependence on monolayer packing could
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be a function of the structure of the adsorbates within the SAM. For example, results from

Chapter 8 suggested that SAMs composed of adsorbates with terminal groups that are smaller than

the cross-section of the alkyl chain are more densely packed on silver, Au/Ag(upd), and

Au/Cu(upd) than on gold. However, for adsorbates in which the level of packing depends on the

packing of the tail groups rather than the alkyl chains [i.e. FcCO(CH 2)10SH and possibly

CF3CF2CH20(CH2)1lSH], the exchange rates on upd-modified gold are much lower than those on

gold and are similar to those for adsorbates with small tail groups. This observation suggests that,

although the density of defects for these bulkier SAMs on upd-modified gold and gold are

comparable, the presence of these defects on upd-modified gold does not affect exchange to the

same extent. In other words, the exchange process on upd-modified gold is less defect-mediated

than on gold.

A mechanism consistent with these observations is one in which dissociation of the thiol

from the upd-modified substrate strongly limits the exchange process. As the thiol-upd bond is

perhaps stronger than the thiol-gold interaction, the dissociation energy for thiol adsorbates on

upd-modified gold may be greater than that for thiols on gold. Whereas competing adsorbates may

assist the dissociation of thiols from gold, their role in promoting dissociation from a upd substrate

is hindered by the greater level of interaction between the adsorbate and substrate. This type of

mechanism is consistent with the data on upd-modified gold (Figures 10.1 - 10.4). The higher

degree of linearity for these data sets is expected if a first-order process is rate limiting. In

contrast, the data sets for thiols on gold are more consistent with a mechanism in which

dissociation is assisted by a displacement process caused by competing adsorbates that concentrate

at defects and packing imperfections within the monolayer.

10.4. Conclusions

Modification of gold by an underpotentially deposited submonolayer of silver or copper before

self-assembly results in systems that are more stable against exchange than SAMs on unmodified

gold. The enhanced stability to exchange is consistent with the formation of a stronger metal-

sulfur bond on upd-modified gold. On gold, adsorbates with terminal groups larger than the

cross-section of the alkyl chain exchanged -50 times more rapidly than those with methyl

terminations. For upd-modified gold, the rates of exchange were relatively independent of the size

of the terminal group. These results suggest that replacement of thiolates on gold is mediated by

defects that allow competing adsorbates diffusional access to the underlying substrate while

exchange on upd-modified gold is limited by dissociation of a stronger adsorbate-substrate bond

between sulfur and copper or silver that is stronger than with gold.
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10.5. Experimental

The preparation of upd-modified gold substrates is discussed in Chapter 8. The characterization of

SAMs with wetting measurements, RAIRS, XPS, and electrochemistry is discussed in Chapter 8.

Exchange of F-tagged SAMs with C,1 SH. Gold, silver, copper, Au/Ag(upd), and

Au/Cu(upd) substrates were derivatized with CF3CF2CH20(CH2),,SH (1 mM, ethanol) for 12 h.

Upon removal from solution, the samples were rinsed with ethanol, dried with N2, and placed in 1

mM solutions of n-C6H33SH in ethanol. After allotted times, samples were removed from the

exchanging solution, rinsed with isooctane and ethanol, dried with N2, and characterized by XPS.

The remaining coverage of the F-tagged SAM was determined by ratioing the F(ls) intensity for a

partially exchanged SAM with that for a freshly prepared SAM on that substrate.

Exchange of HOC- and HO-terminated SAMs with C 2,SH. Gold, Au/Ag(upd), and

Au/Cu(upd) substrates were derivatized with HO2C(CH2)10SH or HO(CH2)I SH (1 mM, ethanol)

for 12 h. Upon removal from solution, the samples were rinsed with ethanol, dried with N2, and

placed in 1 mM solutions of n-C 12H25SH in ethanol. After removal from the exchanging solution,

the samples were rinsed with isooctane and ethanol, dried in a stream of N2, and characterized by

wetting. The coverage of the polar component was determined by Cassie's equation (eq 10.1).

Exchange of Fc-terminated SAMs with C, 2SH. Gold and Au/Ag(upd) samples were

functionalized with FcCO(CH 2)10 SH (1 mM, ethanol) for 12 h. After removal from solution, the

samples were rinsed with ethanol and dried in a stream of N2. The resulting assemblies were

exposed to 1 mM solutions of n-C12H25SH in ethanol for various periods of time. The samples

were removed from solution, rinsed with isooctane and ethanol, dried in a stream of N2, and

characterized by cyclic voltammetry. The coverage of the ferrocene-terminated SAM was

determined by ratioing the average integrated charge of the partially exchanged SAM to that of a

freshly prepared FcCO(CH 2)10S- SAM on the respective substrate.

Exchange of C1 gH3,S- SAM with C, a7SH. Gold, Au/Ag(upd), and Au/Cu(upd)

substrates were placed in 1 mM ethanolic solutions of octadecanethiol for 12 h. The exchange of

the resulting octadecanethiolate SAM with octadecanethiol-d37 was monitored by IR. After

exposure of Au/, Au/Ag(upd)/, and Au/Cu(upd)/SC 8sH37 samples to 1 mM ethanolic solutions of

C18D37SH for various periods of time, the samples were removed from solution, rinsed with

isooctane and ethanol, dried in N2, and characterized by IR. The integrated peak intensities of the

asymmetric [Va(CH 2)] and symmetric [v,(CH2)] methylene stretching vibrations for an exchanged

sample were ratioed to those for an initially prepared sample to obtain coverage estimates of the

remaining adsorbed non-deuterated thiol. The reported coverages were averages of the estimates

obtained from ratios of both the Va(CH 2) and v,(CH2) peaks.

174



10.5. References and Footnotes

1) Schlenoff, J. B.; Li, M.; Ly, H. J. Am. Chem. Soc. 1995, 117, 12528-12536.

2) Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G.

J. Am. Chem. Soc. 1989, 111, 321-335.

3) Jennings, G. K.; Laibinis, P. E. Langmuir 1996, 12, 6173-6175.

4) Chidsey, C. E. D.; Bertozzi, C. R.; Putsvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc.

1990, 112, 4301-4306.

5) Collard, D. M.; Fox, M. A. Langmuir 1991, 7, 1192-1197.

6) Scott, J. R.; Baker, L. S.; Everett, W. R.; Wilkins, C. L.; Fritsch, I. Anal. Chem. 1997,

69, 2636-2639.

7) Rowe, G. K.; Creager, S. E. Langmuir 1994, 10, 1186-1192.

8) Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498-1511.

9) Walczak, M. M.; Alves, C. A.; Lamp, B. D.; Porter, M. D. J. Electroanal. Chem. 1995,

396, 103-114.

10) Infrared spectra for SAMs on Au and Ag substrates that were exposed to air for 43 days

exhibited methylene stretching positions and intensities that were almost identical to those

for the initially prepared samples.

11) Jennings, G. K.; Laibinis, P. E. J. Am. Chem. Soc. 1997, 118, 5208-5214.

12) Laibinis, P. E.; Fox, M. A.; Folkers, J. P.; Whitesides, G. M. Langmuir 1991, 7,
3167-3173.

13) Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 1990-1995.

14) The positions for the Va(CH 2) peaks in IR spectra of HOC,,S- and HO2CC 10S-SAMs on

gold are 2919 cm -' and 2921 cm-', respectively.

15) Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc. 1990, 112, 558-569.

16) Hickman, J. J.; Ofer, D.; Zou, C.; Wrighton, M. S.; Laibinis, P. E.; Whitesides, G. M. J.

Am. Chem. Soc. 1991, 113, 1128-1132.

17) Jennings, G. K. Electrochem. Soc. Interface 1998, 7, 59.

18) Chang, S.-C.; Chao, I.; Tao, Y.-T. J. Am. Chem. Soc. 1994, 116, 6792-6805.

19) Bryant, M. A.; Pemberton, J. E. J. Am. Chem. Soc. 1991, 113, 8284-8293.

20) Jennings, G. K. unpublished results 1998.

21) Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N.; Nuzzo, R.

G. J. Am. Chem. Soc. 1991, 113, 7152-7167.

175



Chapter 11. Structural Characterization of Self-Assembled n-
Alkanethiolate Monolayers on Underpotentially Deposited
Adlayers of Copper and Silver on Gold

11.1. Background

As mentioned in Chapter 1, self-assembled monolayers (SAMs) derived from n-alkanethiols

provide perhaps the most flexible system for modifying the surface properties of many metals,

including gold, 1,2 silver,2,3 copper, 2 mercury, 4 and iron,5 and other materials such as GaAs 6 and

YBa 2CuO,. 7 In the formation of n-alkanethiolate SAMs on these various substrates, energetic and

geometric factors related to the metal-sulfur bonding control the resulting structure of the adsorbed

organic assembly. 2 As each metal surface has distinct atomic-level features and provides differing

levels of interaction with the adsorbing thiols, the structure of SAMs on these metals (and on

different crystal faces of the same metal) can vary widely. For example, n-alkanethiols on

mercury4 orient almost normal to the surface while those on GaAs6 tilt - 570 from the surface

normal. These various structural conformations reflect the different densities of reactive sites on

the metal surfaces and result from an interplay between the dominant metal-sulfur interaction and

the less important energetics contributed by interchain interactions.

Alkanethiols on gold are the most widely studied class of SAMs due to the electrochemical

inertness of gold and the flexibility offered by thiols in its surface modification. 8 The molecular

details of the structure of these SAMs on gold have been probed with electron, 9 x-ray, 10 and He

diffraction,11 scanning probe microscopies, 12,13 and Raman 14 and IR spectroscopies. 2 Results

from electron diffraction 9 and atomic force microscopy' 3 suggest that the sulfur atoms bind in the

three-fold-hollow sites on a Au(111) surface and form a (13 x /3) R300 overlayer with an

interchain spacing of 4.99 A. Of these techniques, IR spectroscopy offers the most convenient

method for assessing the phase state and conformation of the polymethylene chain of the SAM. In

general, characterization by IR has focused on SAMs adsorbed onto polycrystalline gold, with the

results from these studies often being confirmed later by diffraction studies of these assemblies on

Au( 11). Using the C-H stretching peaks in IR spectra, Porter et al. determined that the

hydrocarbon chains of alkanethiolate SAMs on gold tilt -30' on average from the surface normal

and exist primarily in a crystalline state with a few gauche conformers present at the chain ends. 15

Efforts to control the molecular packing density within SAMs on gold have often involved the

lengthy syntheses of adsorbates with bulky substituents, 16 rigid architectures, 17,18 or multiple

ligating functionalities. 19 Although the lattice spacing on Au(l 11) (2.89 A) is similar to that on

Ag(l 11) (2.88 A), SAMs on silver differ from those on gold in that the average cant of the

adsorbates is only -1202,3 or less.20 This denser packing of the hydrocarbons on Ag(l 11) may
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result from the lack of a clear site preference in which the binding of thiols to either on-top or three-

fold-hollow sites is energetically feasible. 21 In short, the surface of Ag( 111) provides a greater

density of energetically favorable reactive sites than on Au(l 11).22 These results suggest that the

chemical modification of the outer atomic layer of gold to increase the number of reactive sites

might offer a simple method to alter the packing density of SAMs on gold.

In this chapter, the atomic-level modification of gold by the underpotential deposition of

copper and silver is demonstrated to affect the structure of an adsorbed SAM. As discussed in

Chapter 8, n-alkanethiols chemisorb onto gold surfaces modified by the upd of silver or copper

and produce oriented SAMs. 23 While these SAMs have similar wettabilities and thicknesses as

those on gold, their molecular-level properties that are related to the nature of the metal-sulfur

bonding are distinct. Specifically, SAMs formed on Au/Ag(upd) have greater thermal stabilities24

than SAMs on gold (Chapter 9) while those on both Au/Ag(upd) 23 and Au/Cu(upd) 25 exhibit

enhanced stability to exchange by competing adsorbates (Chapter 10). These enhanced stabilities

are ascribed to a stronger sulfur-metal bond that is achieved by modification of the gold surface

with upd. Besides the work reported here with SAMs on upd-modified gold, Burgess and

Hawkridge have used the upd of silver on gold to reproducibly control the coverages of

submonolayers of octadecanethiol. 26 Nishizawa et al. have studied the reversible deposition and

stripping of copper upd layers through a SAM of propanethiol. 27 Zamborini et al. have recently

reported that SAMs of hexadecanethiol on Au/Cu(upd) substrates effectively passivate the copper

layer and that the combination of the SAM and upd layer significantly enhances the nobility of the

underlying gold.28 In Chapter 8, a upd adlayer of silver or copper was suggested to increase the

packing density of an adsorbed octadecanethiolate SAM. 23 In this chapter, that finding is

discussed in more detail by investigating the effect of upd adlayers of silver and copper on the

structural properties of a series of n-alkanethiols (CnSH; n = 15-20, 22). By using both odd- and

even-chained thiols in this study, subtle variations in structure and bonding for the SAMs on these

substrates were examined by using the methyl group as a spectoscopic tag. In addition, these

studies provide a clear demonstration of the relationship between the microscopic, angstrom-level

structure of a surface and its macroscopic properties as revealed by its wettability.

11.2. Results and Discussion

11.2.1. Infrared Spectra of SAMs on Native Metals and upd-Modified Gold

Evaporated gold films on silicon were derivatized with submonolayer amounts of silver or copper

by underpotential deposition in a sulfate electrolyte and then functionalized by immersion in a 1

mM solution of an n-alkanethiol (CnSH; n = 15-20, 22) for 16 h. Self-assembled monolayers
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were prepared on gold, silver, and Au/Ag(upd) from isooctane while those on Au/Cu(upd) were

prepared from ethanol. The SAMs formed by this procedure exhibited ellipsometric thicknesses

and contact angles that were similar to those formed on native gold (Chapter 8). The coverages of

silver and copper on the gold electrode after upd and subsequent thiol assembly were 0.60 ± 0.04

and 0.55 ± 0.05, respectively.

Figures 11.1 a, b, c, and d shows grazing reflectance IR spectra of the C-H stretching

region for SAMs formed from C.SH (n = 15-20, 22) on substrates of gold, Au/Cu(upd),

Au/Ag(upd), and silver, respectively. Spectra of these thiols on copper are similar to those on

silver, as noted previously, 2 and are not shown here. The primary modes of the spectra are the

asymmetric (ra) and symmetric methyl modes-the latter split by Fermi resonance into rf and

r (FRC) modes-and the asymmetric (d) and symmetric (d') methylene modes. The positions of

these peaks-especially for the methylene modes-provide an indication of the phase state of the

hydrocarbon chains. In these spectra, the positions of the asymmetric and symmetric methylene

modes are 2918 - 2919 cm-1 and 2850-2851 cm-', respectively, both indicating formation of

monolayers with crystalline hydrocarbon chains on these substrates. The spectra for SAMs on

Au/Cu(upd) are superior to those reported previously by us 23 and reflect that higher quality SAMs

can be formed on this substrate from ethanol (than from isooctane) with longer adsorption times,

as shown by Zamborini et al. 28 For the other substrates, the IR spectra were observed to exhibit

no solvent dependence. As discussed in Chapter 8, the greater susceptibility of Au/Cu(upd) to

oxidation may affect the quality of the SAMs that can be formed on this substrate. 23

The dipole moments of the methylene modes (d- and d') are perpendicular to the axis of the

hydrocarbon chain, and their intensities in a reflection infrared spectrum depend on the orientation

of the adsorbates on the metal surface. Figure 11.2 shows the intensities of the asymmetric

methylene (d) vibrational mode for SAMs of CnSH on gold, silver, Au/Ag(upd), and Au/Cu(upd).

As the chain length of the adsorbate increases from n = 15 to 22, the d- intensity increases linearly

for all systems, suggesting a common structure for the SAMs formed on a particular substrate for

the different adsorbates. On all substrates, the lines exhibit a negative y-intercept reflecting the

coupled nature of the polymethylene absorption, as noted previously.2 For a common adsorbate,

the d- intensity was greatest on gold, of intermediate intensity on the upd-modified gold substrates,

and smallest on silver (and copper). Combined with the symmetric methylene (d ) intensities (not

shown), these results suggest that the SAMs on upd-modified gold substrates are tilted less than

those on gold and more than those on silver (vide infra). The data also suggest that the atomic-

level modification of gold with upd of silver or copper before self-assembly can increase the

packing density of SAMs on a gold suface. In addition, the dichroic ratios (d-/d ) for the spectra of
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Figure 11.1. (a) Grazing reflectance IR spectra of monolayers derived from exposure of gold
to n-alkanethiols (C.SH; n = 15-20, 22).
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Figure 11.1. (b) Grazing reflectance IR spectra of monolayers derived from exposure of
Au/Cu(upd) to n-alkanethiols (C.SH; n = 15-20, 22).

180

2800



(c) Au/Ag(upd)

)(UO
C

L_

O
I)
.0

3000

r; d- r+ d*

2900 2800
Wavenumber (cm- 1)

Figure 11.1. (c) Grazing reflectance IR spectra of monolayers derived from exposure of
Au/Ag(upd) to n-alkanethiols (CnSH; n = 15-20, 22).
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Figure 11.1. (d) Grazing reflectance IR spectra of monolayers derived from exposure of silver
to n-alkanethiols (CnSH; n = 15-20, 22).
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Figure 11.2. Intensities of the asymmetric methylene stretching mode (d) for n-alkanethiols
(CnSH) adsorbed on gold, Au/Ag(upd), Au/Cu(upd), and silver surfaces. Intensities of d- for
n-alkanethiols adsorbed on copper are similar to those on silver. The lines are least-squares fits to
the data.
the data.
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SAMs on Au/Ag(upd) and Au/Cu(upd) are significantly lower than those for SAMs on gold or

silver, suggesting a smaller twist of the adsorbates around the axis of the chain.

In the series of spectra for CASH on gold (Figure 11.1 a), the asymmetric (ra) and

symmetric (r ) methyl modes at -2964 and -2879 cm-1 , respectively, exhibit similar intensities for

adsorbates with an even chain length but significantly different intensities for adsorbates with an

odd chain length. Since these modes are orthogonal to each other, changes in intensity for one

requires an opposite change in the other when comparing different spectra. This odd-even effect

has been shown in SAMs by others2,3,16 and indicates that the surface projection of the methyl

group alternates between two different average orientations as the chain length is incrementally

increased in these trans-extended molecular films. A remarkable feature of the spectra in Figure

11.1 is that the odd-even effect exhibited by n-alkanethiols on gold is opposite that (offset by one

carbon) on Au/Cu(upd) and Au/Ag(upd). Figure 11.3 provides a simple illustration of this odd-

even progression by showing the methyl mode intensities (ra and r ) as a function of the adsorbate

chain length. The symmetric methyl intensity (r ) is greater for even-chained adsorbates on gold

and odd-chained adsorbates on upd-modified gold and to a much lesser degree on silver. In

general, a greater symmetric methyl intensity indicates that the surface projection of the methyl

group (i.e. the terminal C-C bond) is more normal to the surface. This result offers further

evidence that subtle details of the molecular structure for SAMs on gold can be modified by

pretreatment with a upd adlayer that alters its outermost atomic layer.

11.2.2. Calculation of Average Molecular Orientation for SAMs on Upd-
Modified Gold

The intensities of the C-H absorptions in the IR spectra directly reflect the average orientation of

the adsorbates on metal surfaces. Spectral simulations have been used to estimate the average

structural orientation for SAMs on gold, 15 silver, 2 and copper. 2 The theoretical basis for these

simulations-in addition to their application to other types of thin films-has been discussed in

detail by Parikh and Allara29 and will not be repeated here. In summary, the model uses an

isotropic transmission spectrum of the bulk molecular species as input and scales this spectrum to

that expected for an oriented film of molecular thickness using the projections of the transmission

dipoles relative to the surface normal. The principal assumptions of the model for n-alkyl-based

adsorbates are that the hydrocarbon chain is completely trans-extended and is oriented such that the

structural conformation can be described by a cant (a) and twist (13) angle, as shown in Figure

11.4. Tilts or cants in the same direction as the S-C bond are positive while counterclockwise

twists are positive. 30 For example, the spectrum for a SAM with a = 0 would contain only methyl

absorptions as the dynamic dipoles for the methylene modes would be perpendicular to the plane of
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Figure 11.3. Intensities of the (a) asymmetric (ra, CH 3a) and (b) symmetric (r+, CH3s) methyl
modes for n-alkanethiols (CASH) adsorbed on gold, AulAg(upd), AulCu(upd), and silver surfaces.
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Figure 11.4. Schematic illustration of an all-trans chain in an n-alkanethiolate monolayer on a
surface. The cant angle a and the chain twist 3 are shown along with their relationship to the
surface coordinates.
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the C-C backbone and would not interact with the electric field created by the reflected infrared

beam. In general, as the chains tilt from the surface normal, the methylene modes increase in

intensity due to a greater interaction of their dipoles with the electric field resulting in greater IR

absorption. The remainder of this section focuses on the results of simulations of experimental

infrared spectra for SAMs derived from C 8SH on the native metals (gold and silver) and upd-

modified gold. This adsorbate was studied because it is intermediate in chain length of those

studied, it provides a simple comparison to the other adsorbates in the series, and SAMs derived

from this n-alkanethiol have been the subject of greatest investigation.

11.2.2.1. C18SH on the Native Metals

The simulated spectra of SAMs formed from C18SH on gold and silver (and copper) have been

discussed in great detail previously 2 and will be merely summarized here. In brief, Laibinis et al.

reported that the IR spectra for SAMs on gold were consistent with a two-chain model (two

different chain orientations within the SAM) consisting of chains canted at -260 and twisted at

either -480 or +500.2 In addition, to provide quality fits to the experimental spectra, the assumption

of an all-trans chain was relaxed to allow gauche conformations at the terminal CH2 groups of the

chains, as consistent with molecular dynamics simulations. 31 For C18SH on silver, the

experimental spectra were well described by a single-chain model consisting of chains canted at

-13o and twisted at 420. An interesting difference between SAMs on silver and gold is that both

odd- and even-chained adsorbates were fit with a constant cant angle on gold to account for the

alternating intensities of the methyl modes while the simulated cants on silver required variation

between positive values for odd-chained adsorbates and negative values for even-chained

adsorbates to allow for the lack of an odd-even progression in the experimental data. IR spectra on

copper were sufficiently similar to those on silver to suggest that thiols formed a similar structure

on the two metal surfaces.

The experimental spectra discussed here for C18SH on evaporated gold, silver, and copper

films are similar to those obtained previously. 2 For C18SH on gold, simulated spectra with cants

of 28' and twists of 48' provided excellent fits to the methylene modes. Nevertheless, an all-trans

model was not sufficient to accurately fit the methyl modes due to the presence of gauche

conformers in the terminal methylene units. As discussed above, a model that allows for gauche

defects in these spectra can more effectively fit the methyl modes. Similar to previous results, a

positive cant angle provided excellent fits to experimental spectra for SAMs containing either even-

or odd-chained adsorbates. For C,8SH on silver, simulated spectra for a = -12' and 3 = 460

provided the best fits to the experimental spectra, agreeing with previous studies. On silver, a
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single-chain, all-trans model provided good fits to the data. For odd-chained adsorbates, a cant of

+120 was required to account for the lack of an odd-even progression in methyl intensity.

11.2.2.2. SAMs on Au/Ag(upd) and Au/Cu(upd)

IR spectra for C18SH on both Cu- and Ag-upd modified gold are similar in that the methylene

intensities are intermediate between those for SAMs on the native metals (Au and Ag or Cu) and

that the odd-even progression in methyl intensity is opposite that exhibited on gold (Figures 11.1

and 11.3). These features of the spectra suggest that the cants for SAMs on both upd substrates

are intermediate between those of the native metals and that the sign of the cant must be opposite

that on gold. Figures 11.5a and b show both experimental and simulated IR spectra for C18SH on

Au/Ag(upd) and Au/Cu(upd), respectively. The simulations are for SAMs with an all-trans chain

and a = -18o and -16 and 0 = 450 and 430 on Au/Ag(upd) and Au/Cu(upd), respectively. Varying

a and p by more than 1o from these values resulted in simulated spectra that provided clearly

inferior fits to the experimental data. While the methylene modes are fit well in Figure 11.5, the

methyl modes for the simulated spectra are less intense and slightly broader than those in the

experimental spectra. These differences may reflect the different local environments for the methyl

group in the SAM and the polycrystalline sample in KBr used as a basis for the simulated spectra.

Nevertheless, the integrated intensities of the methyl modes are similar (±10%) for the

experimental and simulated spectra. As for thiols on silver (and copper), 2 the spectra on the upd-

modified gold are described well by a single-chain model. The negative cant exhibited for C1sSH

on upd-modified gold describes the structural orientation of odd-chained adsorbates, as well.

The intermediate cant for SAMs on upd-modified gold in comparison to those on the native

metals might cause one to naively suggest that the structure of the SAM is an average of those on

silver and gold. This suggestion would imply an underlying gold surface with regional areas of

deposited silver and the presence of individual islands of SAMs on gold and silver. A close

examination of the spectra in Figure 11.1 for C18SH on the various substrates suggests that the

spectra of C18S/Ag(upd)/Au cannot result from a weighted averaging of the two spectra for C18SH

on gold and silver. Specifically, the asymmetric methyl mode for C,8SH on the Ag upd substrate

is significantly greater than on either of the native metals. A similar analysis of the

C1,S/Cu(upd)/Au spectrum in comparison with those for C18SH on gold and copper leads to the

same conclusion.
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Figure 11.5. Experimental (solid) and calculated (dashed) IR spectra of SAMs derived from
octadecanethiol on (a) Au/Ag(upd) and (b) Au/Cu(upd). The calculated spectra have cant angles,
a, of (a) -18' and (b) -16' and twist angles, 1, of (a) 450 and (b) 430. The spectra have been offset
vertically for clarity.
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Figure 11.6. Schematic illustration of the canted structures that form upon adsorption of n-
alkanethiols (C,SH) on gold, Au/Ag(upd), and Au/Cu(upd). The cant of -17O for SAMs on upd-
modified gold is an average of the cants determined for Au/Ag(upd) (-18O) and Au/Cu(upd) (-16').
The structures formed on gold exhibit an odd-even modulation in the intensity of the methyl modes
that is opposite that formed on upd-modified gold. This observation is consistent with the
formation of a structure in which the cant angle (a) is positive for SAMs on gold and negative for
SAMs on upd-modified gold.
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11.2.3. Comparison of Binding and Structure for SAMs on upd and Native
Metals

Figure 11.6 schematically illustrates the average orientations for SAMs of n-alkanethiols on the

upd substrates and native metals prepared in our laboratory, as determined from IR spectra and

spectral simulations. The smaller cants indicate that SAMs on upd metals are more densely packed

than those on gold. This observation is the first report of a method to increase the packing density

of SAMs on gold that does not involve chemical synthesis. Based on the structural orientation of

the hydrocarbon chain in the SAMs on both upd metals, additional information can be inferred

regarding the possible nature of the metal-sulfur binding and the overlayer structure of the SAMs

enabling comparisons with the binding characteristics and structure for thiols on the native metals.

For Au( 11) substrates without upd modification, the sulfur head groups occupy three-fold hollow

sites on the surface and form a (43 x 4~3)R30' structure with an interchain distance of 4.99 A.1
The suggested sp 3 hybridization21 of the sulfur on this surface results in a bond angle of 104' (or

76' from the surface normal) that is consistent with the odd-even progression in methyl intensity.

On Ag( 111), the thiols are suggested to form either an incommensurate overlayer by x-ray and

helium diffraction 20 or a distorted ( 7 x 17)22 overlayer by STM with S adsorption favoring an sp

hybridization. The reported interchain spacings for these SAMs vary from 4.61 A (STM) to 4.67

A (He diffraction) and 4.77 A (x-ray diffraction).

For upd-modified gold substrates, the coverage and overlayer structure of the upd metal

will likely affect the number of reactive sites for thiol adsorption. Gewirth's group has shown that

the upd of silver onto Au( 111) in sulfate electrolyte results in a 3 x 3 structure with a silver

coverage of 0.44 by in situ AFM but a 5 x 5 structure with a silver coverage of 0.56 by LEED or

Auger electron spectroscopy (AES). 32 The difference in these values may reflect the different

modes of measurement or a change in structure upon removal from the electrochemical cell and
subsequent analysis by vacuum techniques such as LEED or AES. The coverage of silver on our

polycrystalline gold surface with a predominate Au( 11) texture33 is 0.60 by XPS and agrees well

with the value of 0.56 obtained by Gewirth's group and attributed to a 5 x 5 adlayer structure of
silver on Au( 11). Based on these similarities, subsequent discussions assume that silver is

present on these gold substrates in a 5 x 5 lattice with a corresponding interatomic spacing of 3.60

A. Since the coverage of copper on these polycrystalline gold substrates is 0.55, copper may also

form a 5 x 5 structure on gold. This structure has been identified for intermediate coverages of

copper upd adlayers on Au(1 11) by in situ x-ray absorption spectroscopy. 34 Therefore,

considering the similar cants for SAMs on either upd substrate, thiols on Au/Cu(upd) are assumed

to adopt the same structure as that detailed for Au/Ag(upd) below.
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Based on an average cant of 180, the area occupied by each chain on Ag(upd)/Au is -19.7

A2 and corresponds to an interchain spacing of 4.77 A.35 This area is greater than that occupied by

each Ag adatom (11.2 A2) suggesting that binding in the three-fold hollow sites of the silver

adlayer would produce too sparse a thiol adlayer. A possible structure for thiols on a 5 x 5 lattice

of silver on gold is in every other three-fold hollow site of the silver adatoms, forming a ('7 x

7)R10.90 structure with an interchain spacing of 4.77 A (Figure 11.7a). Interestingly, H2S
adsorbs onto Ag(l 11) in a similar ('7 x '7)R10.90 structure, 36 but alkanethiols cannot adopt this

structure on the Ag( 111) lattice due to steric limitations of the polymethylene chains. The greater

spacing of silver adatoms on the Au/Ag(upd) surface may enable this arrangement of the thiols.

Another possible structure for the thiols is a 4 x 4 overlayer with every fourth thiol constrained to a

three-fold hollow site between silver adatoms (Figure 11.7b). The S-S nearest neighbor distance

in this structure is 4.80 A and would be consistent with the IR spectra. That the alternating, odd-

even methyl orientation for SAMs on upd substrates is opposite that on gold (Figure 11.3)

indicates that the sulfur-carbon bond is oriented more normal to the surface on the upd substrate.

As the sulfurs are likely bound between the silver adatoms in two- or three-fold sites in either

structure, steric limitations might force the C-S bond more normal to the surface; thereby, an sp 3

hybridization for the sulfur atom might result in SAMs with similar structural properties as those

with sp hybridization for the adsorbed sulfur. Whether the hybridization of the sulfur is sp or sp3

depends on the interaction between the sulfur and silver at the metal surface.

11.2.4. Effect on Wetting

The odd-even methyl orientation for SAMs on upd-modified gold can be probed by wetting

measurements provided that the probe liquid is sensitive to the outer surface. As hexadecane (HD)

is a liquid that interacts with solid surfaces solely through dispersive forces, the contact angle of

HD (OHD) is extremely sensitive to the characteristics of the outermost 3 A of a surface. 37,38

Figure 11.8 shows the wetting characteristics of the SAMs by HD as a function of the chain length

of CnSH adsorbed on gold, Au/Ag(upd), and Au/Cu(upd). On gold, the odd-even alternation in

0 HD is similar to that observed by others with even-chained SAMs being less wet by HD (greater
8 HD). The remarkable feature of Figure 11.8 is that the odd-even wetting trend for SAMs on gold

is opposite that (offset by one carbon) for SAMs on either Au/Ag(upd) or Au/Cu(upd). A

comparison of these data with the symmetric methyl intensities obtained from IR spectra (Figure

11.3) reveals that higher contact angles of HD are observed for SAMs that exhibit a stronger

symmetric methyl intensity and a weaker asymmetric intensity in their IR spectrum. In other

words, HD wets the surface less when the projection of the methyl group is more normal to the

surface. Because HD completely wets methylene (-CH2) surfaces, 39 the smaller values of HD
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Figure 11.7. Possible structure and binding sites for n-alkanethiols on a Au/Ag(upd) substrate
where the silver adlayer forms a 5 x 5 structure on the Au( 111) surface with a coverage of 0.56:
(a) a ('17 x 7)R10.90 structure for the thiol on the Ag adlayer with an interchain spacing of 4.77 A
and (b) a 4 x 4 structure for the thiol on the Ag adlayer with an interchain spacing of 4.80 A.
Based on the experimental and calculated IR spectra, the thiol is canted -180 from the surface
normal and exhibits an estimated interchain spacing is 4.77 ± 0.05 A, which is consistent with the
structures in both (a) and (b).
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Figure 11.8. Wetting properties of SAMs formed from the adsorption of C.SH (n = 15 - 20;
22) on gold, Au/Ag(upd), and Au/Cu(upd) as measured by the advancing contact angle of
hexadecane [Oa(HD)](right axis) or cos Oa(HD) (left axis). The measured contact angles are
accurate to within +t2 based on the average of measurements made on samples from independent
preparations. The lines serve as guides to the eye. Wetting data for silver are not shown and
exhibit no odd-even trend in the advancing hexadecane contact angle.
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suggest a possible interaction between HD and the outermost -CH2- units when the methyl groups

orient away from the surface normal. In Figure 11.8, the odd-even wetting trend is most

pronounced for thiols on gold and least prominent for thiols on Au/Cu(upd); the wetting results for

SAMs on evaporated silver films (not shown) revealed no odd-even variation in 0 HD. These

wetting results mirror the variations in the methyl mode intensities in Figure 11.3 as a more

prominent odd-even progression is observed for thiols on gold, a more subtle effect is shown for

thiols on Au/Cu(upd), and a significantly reduced effect (if any) is observed for thiols on silver.

By pretreating the gold with upd layers of copper or silver before self-assembly, the S-metal

binding and geometry are affected, thereby altering the orientation of the methyl group at the

surface. That this effect is observable by wetting provides an notable example of how a molecular-

level effect-such as the angstrom-level variation in the orientation of a methyl group--can

influence a macroscopic surface property such as the wetting by a contacting liquid.

11.3. Conclusions

The underpotential deposition of silver or copper on polycrystalline gold modifies the outermost

surface of the metal and alters the density of reactive sites for an adsorbing alkanethiol. SAMs

formed by adsorption of n-alkanethiols on Au/Ag(upd) and Au/Cu(upd) exhibit different structures

than on the native metals. In particular, SAMs on upd-modified gold are canted -- 17o from the

surface normal and are more densely packed than those on gold which are canted -28' from the

surface normal. This cant is consistent with the thiols binding in primarily 3-fold and 2-fold sites

on the silver or copper adlayer to form either a ('7 x 7)RO1.90 or 4 x 4 structure. SAMs on upd-

modified gold display an odd-even variation in the intensities of the methyl vibrational modes that

is offset by one methylene unit from the odd-even modulation exhibited by SAMs on gold,

suggesting that the upd alters the metal-S-C bonding geometry. These angstrom-level variations in

the alternate orientations of the methyl groups can be detected macroscopically by measuring the

contact angle of hexadecane. In particular, the methyl surface is wet less by hexadecane when the

methyl units are oriented more normal to the surface, reflecting greater screening of the interaction

between the liquid and the methylene groups nearest the surface.

11.4. Experimental

The preparation of gold/upd/SAM assemblies and their characterization by reflectance infrared

spectroscopy and wetting were detailed in Chapter 8 and will not be repeated here. The odd-even

wetting variations noted in Figure 11.8 were confirmed by double-blind experiments. Spectral

simulations were performed using a computer program developed and provided by Atul Parikh
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(LANL) and David L. Allara (Penn State). 29 The isotropic reference data required for the

simulations of C18SH spectra were obtained from a file prepared by A. Parikh using (CS)2 in a

KBr matrix.
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Appendix

Relationship between Adlayer Coverage and Relative XPS Intensities for
the Adlayer and Underlying Substrate (Derivation of Eq 8.1)

The Au/upd layer/SAM system is modeled in Scheme Al as a bulk substrate overlaid by two

layers: the upd layer and the self- assembled monolayer (SAM). The XPS intensities for the

Scheme Al. Gold/upd Layer/SAM Assembly

upd layer

Iupd =Iupd [1 - exd exp - dSAM )(Al)
I -ex upd(KE ) COSO SAM(KEup ) COS

- dupd exp dSAM (A2)
(IAu = I ex Aupd(KEAu) COS (,SAM(KEAu) COSE)

where IAu and upd are the attenuated photoelectron intensities, I pd and IAu are the unattenuated

intensities for bulk samples, dupd and dsA are the thicknesses of the overlayers, pd(,,,) is the

inelastic mean free path through the upd adlayer for electrons of kinetic energy (KE) from the upd
layer or the gold substrate, ASAK,0) is the inelastic mean free path through the SAM for electrons

of kinetic energy (KE) from the upd layer or the gold substrate, and E is the angle of the detector

to the surface normal. Eqs Al and A2 apply for systems of homogeneous layers with uniform

thickness.' As the upd layers have sub-monolayer coverages and should not be considered

uniform, dupd is replaced in these equations by the atomic thickness of the upd layer (aupd) and the

surface coverage of the upd layer (Oupd). This replacement yields eq A3 and A4
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-upd -dSAM
Iupd = Iupd upd - exp ad exp - dSAM (A3)

Iupd upd(KEup) COSO SAM(KEupd) COSO)

IA u - upd)+ exp - aupd x - dSAM (A4)
ILru = IZ.u 0 p)+ ( Aupd(KEAu)COS,) ex(ASAM(KEAu) COSO (

where aupd is the diameter of the adatom and upd is the fractional coverage of a monolayer for the

upd layer."12 Division of eq A3 by eq A4 yields eq A5 that relates the relative XPS intensities for

the upd layer and underlying bulk substrate to the coverage of the upd layer, where CSAM contains

the effects of attenuation by the SAM on the upd and bulk signals (eq A6).

S e- aupd

Iupd Iupd [ upd(KEu) COS S (5)
=- CSAM (A5)

upd) + upd(KEAu) cos)

exp - dSAM

CSAM = (Ed) cos ) (A6)

ex - dSAM

SSAM(KEAu) COSE

Rearrangement of eq A5 yields the coverage of the upd layer as an explicit function (eq A7) of the

measured relative intensities for the two XPS signals.

upd =  IAu Iupd )CSAM 1 - exp -aupd 1 -exp - aupd (A7)
Iupd IAu J A Aupd(KEup COS ) upd(KEAu)COS -
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Footnotes and References

(1) Seah, M.P. In Practical Surface Analysis: Volume 1. Auger and X-ray Photoelectron

Spectroscopy; Briggs, D., Seah, M.P., Eds.; Wiley: Chichester, 1990; p. 245.

(2) Eqs A3 and A4 are similar to those presented in ref 1 for thin or monoatomic overlayers.

The equations developed here include additional attenuation factors due to the presence of the SAM

or adventitious carbon.
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