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Abstract

As microelectronic devices demand larger diameter wafers and reduced microdefect concentration

and size, one of the most crucial issues in the semiconductor industry becomes the understanding of

defect formation in silicon crystal growth by the Czochralski crystal growth method. Microdefect

patterns in the crystal are known to be associated with the native point defects, namely self-

interstitials and vacancies. The focus of this thesis is the analysis of the Oxidation Induced

Stacking Fault Ring (OSF-Ring) which is known to correspond to a neutral region where the

concentrations of the self-interstitials and vacancies are essentially in balance. The dynamics of the

OSF-Ring with changes in crystal growth operating conditions, crystal growth rate and temperature

field, has been explained quantitatively for crystals containing only self-interstitials and vacancies

(Sinno, 1998). The neutral ring separates a core of vacancy rich crystal from a self-interstitial rich

external ring. Microvoids form in the core by vacancy aggregation. Dislocation loops form in the

self-interstitial rich region.

The presence of dopants in the crystal also affects microdefect distributions by interacting

directly with self-interstitials and vacancies. At low dopant concentrations, the OSF-Ring position

depends exclusively on the operating conditions. Crystal growth experiments by Dornberger et al.

(1997) have shown the influence of high boron doping levels (1x10 15 - 2x1019 cm3 ) on the OSF-

Ring position; high boron concentrations shift the OSF-Ring toward the center of the crystal

without changes in growth conditions. The OSF-Ring diameter shrinks as a result of a shift of the

point defect balance in favor of self-interstitials because of either vacancy depletion or self-

interstitial addition.

The point defect dynamics model described by Sinno (1998) for silicon consists of point

defect transport by Fickian diffusion and bulk crystal motion, and the consumption or generation of

point defects by recombination. The crystal temperature field and crystal shape data was obtained

from the heat transfer simulations of Dornberger et al. (1997b) for Czochralski crystal growth



systems. The intrinsic point defect model of Sinno (1998) was extended in this thesis to include

boron-point defect interactions in the crystal. The following reactions are considered:

I + V *- 0, (1)

B + B <- B2, (2)

B + I + BI, (3)

B2 + I < B21, (4)

B+ V <- BV, (5)

BI + V <- B, (6)

where I, V, 0, and B denote the self-interstitial, vacancy, silicon lattice site and boron, respectively.

The objective of this thesis is to expand the model of Sinno (1998) by accounting explicitly

for the formation of boron complexes by reactions with interstitials and vacancies. Conservation

equations for each boron defect species were developed using thermophysical data obtained from

electronic structure calculations (Rasband and Clancy, 1996; Luo, Rasband and Clancy, 1998).

The model is parametrized using the experimental OSF-Ring data of Dornberger et al. (1997)

which relates the position of the OSF-Ring to the doping concentration of boron in the melt. The

results are used to postulate a mechanism for boron-mediated OSF-Ring dynamics.

OSF-Ring dynamics is set by point defect and impurity dynamics within a narrow region

near the melt-crystal interface. The effects of boron on IV dynamics can be understood

qualitatively from reactions (1)-(6). Near the melt-crystal interface the complexes BI and B21 store

interstitials temporarily and dampen depletion of interstitials caused by IV recombination. Then,

interstitials are released by the dissolution of BI and B2I yielding higher interstitial concentrations.

All of these processes occur in the region where the self-interstitial and vacancy balance is still

evolving. These observations lead to the conclusion that the kick-out reaction is fast enough to

consume interstitials quickly and release them back within a short axial distance to achieve lower

effective interstitial diffusion and to shift the OSF-Ring inward. This phenomenon is known as the

chemical pumping mechanism (Hu, S.M., 1994) and is observed in both interstitial and vacancy

release mechanisms of BI, B2I and BV. These boron complexes can therefore act as traps which

slow intrinsic point defect diffusion. This also means that the kick-out mechanism is assumed to be

dominant and is the cause of on the OSF-Ring shift at high boron concentrations. Our extension of

the microdefect model includes boron point defect chemistry described in Equations (2) to (6). The

extended model is able to predict the experimental observations with only adjustment of binding

entropies.

Thesis Supervisor: Robert A. Brown

Title: Provost of MIT and Warren K. Lewis Professor of Chemical Engineering
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1. Introduction

1.1 Introduction and Background

As silicon-based microelectronic devices become increasingly complex, two main challenges are

encountered within the silicon wafer industry. The first is the production of very large diameter (>

300 mm) wafers to accommodate the increasing size of microelectronic devices. The second is the

reduction of microdefect concentration and size to allow for acceptable device reliability as

linewidths shrink past the 1 gm length scale. The silicon wafer industry today relies on the

Czochralski method for growing the single crystal silicon used to fabricate these devices.

In the Czochralski growth process, a seed crystal with the desired crystallographic

orientation is contacted with silicon melt that is contained in a heated crucible. The Czochralski

growth begins by establishing dislocation free growth within the neck portion of the crystal. The

crystal diameter is then allowed to increase to the desired size by adjusting the heated power within

the Czochralski system. A crucial component of silicon crystal growth is doping, which refers to

the controlled addition of certain impurities to the melt in order to produce crystals with certain

electrical properties; examples of such dopants are Boron, Arsenic, Phosphorus (Fahey, 1989). In

the Czochralski process, the crucible and the crystal are usually counter-rotated to produce uniform

dopant distribution within the crystal. Once the crystal ingot is grown, it is sliced into wafers

which are then chemically and mechanically polished to yield a substrate for microelectronic

device fabrication.

The control of microdefects during crystal growth has been the focus of numerous studies

for many years. It is well known that the primary constituents of these microdefects are intrinsic

point defects, namely self-interstitials and vacancies. The composition and size of the microdefects

are a strong function of the thermal history and operating conditions within the crystal growth

system during growth. These relationships have been probed in detail with numerical simulations

of the heat transfer environment and point defect dynamics (Sinno, 1998).

The presence of dopants and other impurities further complicates the observed microdefect

distribution. It is very likely that these impurities affect microdefect distributions by interacting



directly with self-interstitials and vacancies. The goal of this thesis is to characterize these

interactions using numerical simulation of point defect dynamics during Czochralski silicon crystal

growth.

1.2 The Oxidation-Induced Stacking-Fault Ring

The focus of the simulations is the so-called Oxidation Induced Stacking Fault Ring (OSF-Ring).

The OSF-Ring is a neutral region where the concentrations of self-interstitials and vacancies are

essentially in balance. A large portion of the modeling and simulation of point defect dynamics

have been aimed at predicting the behavior of the OSF-Ring with respect to the crystal growth

operating conditions. These efforts have been motivated by the apparent simplicity of the OSF-

Ring dynamics with changes in pull rate and temperature field.

The OSF-Ring separates regions of vacancy rich and interstitial rich defects and divides the

crystal into a poor gate oxide quality area inside the OSF-Ring from an excellent gate oxide quality

area outside the ring (Sinno, 1998). The OSF-Ring has been studied extensively under different

pulling conditions for low boron dopant concentrations of less than 1017 cm3 . The OSF-Ring

diameter has been determined to be a function of the temperature gradient at the solid melt interface

and the pull rate. The OSF-Ring shifts outward when the pull rate is increased. Conversely, a low

pull rate allows interstitials to diffuse radially inward and the OSF-Ring is shifted inward as a

result. The smaller the axial temperature gradient, the more sensitive the OSF-Ring diameter is to

changes in pull rate.

The dynamics of the OSF-Ring can be explained, both quantitatively and qualitatively, in

terms of the dynamics of native point defects, vacancies and the self-interstitials. In the cold upper

portion of the crystal where point defect concentrations are frozen, it is convenient to define a

quantity A which represents the difference in concentrations between interstitials and vacancies

(Voronkov, 1982),

A(R,Z) - CI(R,Z) - Cv(R,Z). (1.1)

A positive value for delta indicates that self-interstitials are in excess while a negative delta

indicates vacancies are in excess. Inside the OSF-Ring, vacancy related defects such as Flow



Pattern Defects (FPD) and Crystal Originated Particles(COP) are formed, while interstitial related

defects are found outside the ring (Yamagishi et al., 1992). Illustration of the radial point defect

field surround the OSF-Ring is shown in Figure 1-1. Sinno (1998) has proposed a model for

interstitial and vacancy (IV model) dynamics to predict OSF-Ring dynamics without impurities.

The position of the OSF-Ring was predicted by the condition A(ROSF, Z) = 0 at the top of crystal

and was shown to depend on the crystal growth conditions, measured by the pull rate and the

temperature field in the crystal.

Interstitial Rich

Vacancy Rich

ROSF

Figure 1.1

Radial point defect field surrounding the OSF-Ring.

At high pull rates, the OSF-Ring is located at the crystal surface. When the pull rate is

decreased, there is more time for interstitials to diffuse inward, therefore, the OSF-Ring diameter

shrinks until it disappears in the wafer center at a critical pull rate (Vrit), which depends on the

axial temperature gradient. The OSF-Ring position is correlated simply to the ratio of the pull rate

(V) and the axial temperature gradient (G) at the melt-crystal interface at the corresponding OSF-

Ring radius, R=RosF according to the simple empirical relationship (von Ammon et al., 1995),

V  =(ROF) 1 .34x 1 0 -3 cm2 /min K. (1.2)

A detailed asymptotic analysis of the point defect concentration profiles in the region near the melt-

crystal interface has been performed by Sinno (1998), which explains the origin of this correlation.

The analysis is discussed further in Section 3.2 in the context of the evolution of the boron complex

concentration profiles.



1.3 OSF-Ring Dynamics with Boron Doping

The radius of the OSF-Ring has been shown to depend sensitively on the boron concentration

above the threshold value of 3x10 18 cm 3 (Dornberger et. al, 1997). At low dopant levels, the OSF-

Ring position depends exclusively on the operating growth conditions and is independent of boron

concentration. However, growth experiments by Dornberger et al. (1997) have shown that addition

of high boron dopant concentrations (1x10 15 - 2x10 19 cm "3) shifts the OSF-Ring toward the center

of the crystal without changes in the crystal growth conditions. The effect of boron on the OSF-

Ring position concentration is shown in Figure 1-2 for a 150 mm crystal. The accuracy of the

experiments is about ± 5 mm for the ring measurements and 5% in the boron concentration

(Dornberger E., 1998).

1

" 0.8

LL
U 0.6O

~0.4

L 0.2

0 1 2 3 4 5 6 7 8

Boron Concentration (1018 cm-)

Figure 1-2

Observed OSF-Ring dynamics for various boron doping levels

(Dornberger et al., 1997).

These experimental results suggest that boron doping has an effect on intrinsic point defect

concentrations. Furthermore, it is well known that the OSF-Ring position is set in a region close to

the melt-crystal interface where crystal temperature is high (Sinno, 1998). In order for boron to



affect OSF-Ring dynamics, we expect boron-point defect interactions to occur in this region. In

general, a shrinking of the OSF-Ring diameter is the result of a shift of the point defect balance in

favor of self-interstitials, either by vacancy depletion or self-interstitial addition. Interactions of

intrinsic point defects with boron atoms may result in a reduction of vacancies and/or an increase in

interstitial concentration near the melt-crystal interface of the growing crystal. The goal of this

research has been to couple a model for the solid-state chemistry of boron in silicon with the model

for the dynamics of native point defects in order to predict the shift in the OSF-Ring with boron

concentration.

1.4 Objectives

The dynamics of the OSF-Ring have been explained quantitatively for crystals containing only self-

interstitials and vacancies (Sinno, 1998). The model of Sinno (1998) was based on the solution of

two coupled partial differential equations describing the distribution of interstitial and vacancy

within the growing crystal under a specified thermal field. The goal of this thesis is to expand this

model by accounting explicitly for the formation of boron complexes by reactions with interstitials

and vacancies. Conservation equations for each boron defect were developed using thermophysical

data obtained from electronic structure calculations (Rasband and Clancy, 1996; Luo, Rasband and

Clancy, 1998). The model was parametrized using the experimental OSF-Ring data of Dornberger

et al. (1997) which relates the position of the OSF-Ring to the doping concentration of boron in the

crystal. The results are used to postulate a mechanism for boron-mediated OSF-Ring dynamics.



2. Model for Boron Defect Dynamics

2.1 Model for Intrinsic Point Defect Dynamics

The point defect dynamics model described by Sinno (1998) for the Czochralski silicon growth

consists of point defect transport by Fickian diffusion and bulk crystal motion, and the consumption

or generation of point defects by recombination. The above processes are described

mathematically by

V (-D i (T)VCi )+V +Ri =0, (2.1)

where the subscript i=I,V represents the point defect species, Di is the diffusion coefficient, V is the

axial pull rate, Ci is the concentration in atom per unit volume (cm-3), and Ri represents any related

solid state reaction. The diffusion rates and the rates of solid-state species reactions determine the

differences in the self-interstitial and vacancy concentrations at a given temperature and thus set the

value of A(R,Z) in Equation (1.1).

2.2 Boron Transport and Chemistry

2.2.1 Chemistry of Boron in Silicon

Group III elements and group V elements are common dopants in Silicon (Fahey, 1989). When a

dopant is present, the intrinsic defect concentrations in the crystal are either increased or decreased.

Boron is universally used as a p-type dopant in the fabrication of silicon devices but the mechanism

for boron diffusion is not yet completely understood. Many experiments and studies have shown

that boron diffusion in silicon is dominated by an interstitial mechanism. At high boron



concentrations, boron dopant clusters become important, especially in the presence of a large

excess of self-interstitials that lead to a large number of mobile boron atoms (Zhu, 1996).

In this thesis, the previous intrinsic point defect dynamics model of Sinno (1998) is

extended to include boron-point defect interactions in the crystal. The following reactions are

considered:

I + V <- 0, (2.2)

B + B -4 B2, (2.3)

B + I - BI, (2.4)

B2 + I * B21, (2.5)

B + V - BV, (2.6)

BI + V <- B. (2.7)

The Frenkel pair IV generation/recombination reaction (Equation 2.2) is defined as the removal of

an atom from a lattice site, followed by its transfer to an interstitial site, where I, V, 0 denotes the

self-interstitial, vacancy and silicon lattice site respectively. Recombination was included in

Sinno's model of point defect dynamics (1998).

In this work, boron (B) is assumed to reside in the substitutional site in which a boron atom

resides on a silicon lattice site (Zhu, 1996). We consider the formation of B2 clusters (Equation

2.3) only, as larger boron clusters are relatively unstable (Luo, Rasband and Clancy, 1998).

Reactions of boron with intrinsic point defects lead to the formation of boron-interstitial (BI) and

boron-vacancy (BV) pairs, as shown in Equations (2.4) and (2.6), respectively. The B2 clusters are

assumed to interact only with interstitials to form B2I (Equation 2.5) as other species have been

found to be unstable (Luo, Rasband, Clancy , 1998). The dissolution of a BI defect by reaction

with a vacancy (Equation 2.7) is known as the Frank Turnbull reaction (Frank and Turnbull, 1956)

and also has been shown experimentally to be an energetically favorable reaction. Equations (2.3),

(2.6) and (2.7) are mainly responsible for boron diffusion within the silicon lattice and are

discussed in more detail in Section 2.2.2.

A significant limitation to modeling microdefect formation quantitatively is that,

experimentally, it is difficult to measure the exact concentrations of most defect species. In silicon,

point defects are present in very low concentrations and it is still difficult to directly study defect

interactions and obtain accurate microscopic defect parameters such as diffusivities and equilibrium



concentrations. The diffusion coefficients of both intrinsic point defects and boron complexes

together with the mechanism of boron-point defect interactions are still not well understood.

Estimates for equilibrium coefficients of boron complexes used in this thesis were inferred from the

results of Empirical Tight Binding (ETB) atomistic simulation and the Stillinger-Weber interatomic

potential based on recent studies of the interactions between boron and intrinsic point defects in

silicon (Rasband and Clancy, 1996; Luo, Rasband and Clancy, 1998). These thermal equilibrium

concentrations of boron related defects were calculated as functions of binding enthalpies, binding

entropies, and temperatures.

2.2.2 Mechanisms for Boron Diffusion

In silicon, dopants reside almost entirely on substitutional lattice sites. Substitutional dopant atoms

are known to be immobile and atomistic interactions between native point defects and dopants are

crucial for dopant diffusion because the dopant must interact with native point defects (vacancies

and interstitials) to move from a lattice site to another.

An interstitial can displace a substitutional dopant into an interstitial configuration by the

reaction sequence

B + I <-+ BI, (2.8)

B + I <- BI. (2.9).

Equations (2.8) and (2.9) are known as the "kick-out" mechanism. In the first reaction (Equation

2.8) a boron atom in a substitutional site is kicked out by an interstitial to form a boron-interstitial

pair (BI), whereas in the second reaction (Equation 2.9) a boron atom residing on an interstitial

position (BI) is produced instead.

Recently, Zhu (1996) found that there are three possible configurations formed by a boron

atom and a Si interstitial; the boron-interstitial, which is formed by interstitial an interstitial silicon

atom "kicking-out" the substitutional boron atom, a substitutional boron atom with a Si interstitial

close by, and the B-Si interstitialcy (one boron and one Si atom sharing one single site). The

second type was found to possess the lowest energy (Zhu, 1996). The interstitial and interstitialcy

mechanisms may proceed simultaneously; for example, a silicon interstitialcy may kick a



substitutional dopant atom into an interstitial position, or a silicon interstitial may force a

substitutional dopant atom into an interstitialcy configuration (Fahey, 1989).

At this point there is no clear distinction between interstitial boron and a boron-interstitial

pair. Fahey (1989) has stated that it is difficult to distinguish experimentally between the two.

Luckily, the distinction between the dopant interstitial and interstitiacy mechanisms may not be

important from physical considerations and numerical evaluation. Both kick-out mechanisms for

interstitial mediated diffusion give rise to the same diffusion equations and are completely

equivalent (Chao, 1996). In the reverse directions, both reactions involve interstitials and the boron

atom returns to a substitutional site.

Ab initio pseudopotential studies of diffusion and pairing processes in crystalline silicon

have shown that the migration energy of the kick out reaction is about 1.0 eV and the energy barrier

for the reverse kick-out in the absence of vacancies is 0.6 eV, which is much higher than the boron-

interstitial migrational barrier (0.3 eV). This higher reverse kick-out reaction barrier allows the B

interstitial to diffuse some characteristic distance before returning to a substitutional site (Zhu,

1996). Boron diffusion is enhanced through this kick-out mechanism. This also is supported

experimentally because the migration barrier for boron diffusion in silicon is significantly lowered

in the presence of excess interstitials.

In the Frank Turnbull mechanism, the interchange involves a vacancy that recombines with

the boron-interstitial species and yields a boron atom on a substitutional site:

BI + V - B. (2.10)

Here, the boron dopant atom B is in a substitutional site and BV is the boron-vacancy pair. The

Frank Turnbull reaction is known to enhance or retard the dopant diffusion depending on the

vacancy concentration (Frank and Turnbull, 1956).

Dopant atoms diffuse in pairs, either by an interstitial mechanism, a vacancy mechanism, or

both in the forms of a dopant vacancy pair, a dopant interstitial pair or a dopant interstitialcy pair.

Experimental evidence indicates that the interstitial mechanism dominates for p-type dopants, while

the vacancy mechanism dominates for n-type dopants (Fahey, 1989). Some recent experiments

concluded that the presence of excess interstitials greatly reduces the migration energy barrier for

boron and therefore enhances boron diffusion rates; therefore boron diffusion is mediated

predominantly by interstitials. The experimental results of Gossmann et al.(1997) and Tan and

Gosele (1985) have shown that fractional interstitialcy diffusion component of boron is close to



unity. Enhanced boron diffusion also was observed by Fair (1975), Uematsu (1997) and Fahey et

al. (1987).

With the above mechanisms, a substitutional boron atom can move from one lattice site to

another either by the interstitial or vacancy assisted diffusion before it goes back to the

substitutional state. This process is called mechanism of boron diffusion.

2.2.2 Estimates for Boron Diffusivity

Diffusion is one of many processes characterized by an energy barrier between the initial and the

final states and the magnitude of this barrier is called the activation energy of the process (Kingery,

1976). As the temperature is increased, the number of atoms having sufficient energy to surpass

this barrier increases exponentially, so that the temperature dependence of diffusion is represented

as

Di =Do exp k-E (2.11)

in which Di is the diffusion coefficient of species i, Do is the pre-exponential factor and Ea is the

apparent energy barrier for diffusion. Diffusion coefficients are very sensitive to the energy barrier.

Despite a good understanding of dopant diffusion at low concentration, dopant diffusion at

high concentrations is not well understood. Both native point defects and boron complexes exist in

several charge states depending on the dopants considered. Diffusivities of boron clusters are

expected to be much lower than defects involving only one boron atom (Vandenbossche and

Baccus, 1993).

Data from several studies of boron diffusion are shown in Table 2-1 along with the

magnitudes of the diffusivity predicted at the melting temperature. Interstitial and vacancy

diffusivities are taken from Sinno (1998). Several diffusivity estimates for boron and boron

complexes (B, BI and BV) from different literature sources also are tabulated. Average values of

the diffusivities were calculated and used in the model for boron defect dynamics.

The results of Mathiot and Pfister(1984) were obtained by fitting experimental

measurement of boron profiles in an inert ambient in the temperature range 850-1100 'C. The



boron-pair cluster of interest B2 , is assumed to be immobile with zero diffusivity. In addition,

boron clusters are assumed to be immobile as is B2I. The calculated binding energy of BV (0.5 eV)

is smaller than its estimated migration energy (1 eV) so the BV pair is not a stable diffusing species

(Nichols et al, 1989).

Table 2-1

Diffusivity parameters for intrinsic point defects and boron complexes.

DefectDo Ea Di(Tm) Source
of (cm 2/s) (eV) (cm 2/s)Interest

I 0.242 0.937 3.79x10 "4  Sinno, 1998

V 10-T 0.437 4.28x10 5  Sinno, 1998

B 0.76 3.46 3.33x10" Wolf and Tauber, 1986

2.64 3.60 4.41x10 1  Mathiot and Pfister, 1984

1.0 3.5 3.33x10 11  Orr Arienzo et al., 1988

3.17 3.59 3.33x10 1" Fair, 1975

1.89 3.54 4.86x10 -u Average

1.44x10 -2  2.53 3.84x10-10 Vandenbossche and Baccus, 1993

BI 5.2x10-2  2.31 6.32x10 -9  Mathiod and Pfister, 1984

3.32x10-2  2.42 1.90x10-9  Average

BV 4.00x10 6 1.28 5.89x10-10 Mathiot and Pfister, 1984



2.2.3 Equilibrium Property Estimates for Boron Complexes

The point defect reactions are driven by the relative supersaturation of the individual defect species.

The supersaturation of each point defect species is directly related to its local equilibrium

concentration. We estimated equilibrium concentrations by using a combination of atomistic

simulation and fitting to OSF-Ring dynamics data. Equilibrium concentrations of vacancies and

self-interstitials are given by:

1.40+ 3.85x10-3 T 3.46+3.0x10-4 T
C' (T) = 2.971023 exp k14+ 35x T exp 3.46+ T (2.12)

C(T) = 4.97 1022exp - 3.70 + 3.53x10-3 Tep 2.48 + 2.33x10- 4 T 2.13)
Cv (T)= 4.971022 Xp kB kT 2.13)

where CIeq and Cv" represent the thermal equilibrium concentration of interstitials and vacancies

(Sinno, 1998). Equilibrium concentrations for substitutional boron can be related to the solid

solubility limit of boron in silicon in the range of 900-13250 C (Armigliato et al., 1977):

C' = 9.25x10 22 p -0.73 eV cm-3, (2.14)

which is about lxl020atom/cm-3 at 1683 oK.

We assume that the formation of each of these boron complexes involves a substitutional

boron atom rather than an interstitial one. This is a good assumption given that the substitutional

state is much more stable and most of the free boron in a silicon lattice is substitutional (Zhu,

1996).

Equilibrium concentrations for defects involving boron atoms were calculated based on

Empirical Tight Binding simulations (Rasband and Clancy, 1996; Luo, Rasband and Clancy 1998).

These calculations use a system containing 64 atoms (63 for a vacancy, 65 for an interstitial, etc).

Using the perfect silicon lattice as a reference state, the equilibrium constant for the reaction which

forms boron complex X, K"qx, is given by:



K =0x exp } exp - ' (2.15)

where Ox is the orientational degeneracy which is a function of the geometrical configuration of the

boron complex X, Sf and Hf are entropy and enthalpy of formation of X, respectively.

Concentrations in the equilibrium constant shown in equation 2.15, are normalized to the

concentration of lattice sites containing the defect, Cs, (5x1022 cm3 for silicon):

[X]- x  (2.16)
Cs

Estimates for the formation energy of boron complexes were obtained from Empirical Tight

Binding studies using two reference systems: the perfect silicon lattice and a silicon lattice with

only one boron substitutional atom (Luo, Rasband and Clancy, 1998). The binding enthalpy and

entropy of boron-interstitial clusters X are defined as:

E b = -Ef

x pEI -Ex' (2.17)

x S - PSI' (2.18)

where p is the number of interstitials in the cluster, Ebx and Ebx are the binding enthalpy and

entropy, Ef and Sf are the formation enthalpy and entropy. The boron-vacancy cluster binding

parameters are computed in a similar manner. Positive binding enthalpies and entropies are defined

by the energy released and the entropy gained by each reaction. Values obtained using the

Empirical Tight Binding method and static relaxation are calculated to within 0.2 eV uncertainty

(Rasband and Clancy, 1996).

The equilibrium concentration for each defect species is estimated from the calculated

binding energies and Equation (2.15). The equilibrium constant is expressed in terms of the

binding energy as (see Appendix A for example)

Ke = exp X exp x }, (2.19)
Xk B kT



in which the K"eq for a specific defect was derived from the formation reaction.

Based on the studies discussed above, the boron kick-out mechanism is dominant and BI is

believed to be important in our point defect model. Several values of the binding energy of BI

cluster was reported in the literatures: 1.1 eV (Zhu et al., 1996), 0.6 eV (Mathiot and Pfister, 1984),

2.2 eV (Vandenbossche and Baccus, 1993), and 0.8 eV (Uematsu, 1997). The BV cluster is

reported to be a stable species with binding energies estimated at 0.5 eV by Nichols et al. (1989)

and 0.39 eV by Rasband et al. (1996b). Large substitutional boron clusters are unfavorable and the

B2 cluster is important when the boron doping level is above approximately 1018 cm 3 (Rasband and

Clancy, 1996; Luo, Rasband, and Clancy, 1998). Furthermore, Empirical Tight Binding studies

suggested that clusters containing two boron atoms occupying a substitutional site are stable, unlike

other small boron clusters. The B21 cluster is considered to be the most stable species among boron

complexes, however, B2 clusters involving vacancies are not energetically favored (Luo, Rasband

and Clancy, 1998). We included B2, BI, B2I, and BV in their preferred charge states in the model

for boron/point-defect chemistry.

Formation enthalpies and entropies for boron complexes based on Empirical Tight Binding

calculations (Luo, Rasband, and Clancy, 1998) are listed in Table 2-2. The binding energies for

boron complexes computed from Empirical Tight Binding calculations using static relaxation

calculation (Rasband and Clancy, 1996; Luo, Rasband, and Clancy, 1998) and intrinsic point defect

obtained from the parameter fitting of Sinno (1998) are listed in Table 2-3 (see Appendix B for

calculations).

Table 2-2

Formation enthalpies and entropies of boron complexes

(Rasband and Clancy, 1996 and Luo, Rasband and Clancy, 1998).

Boron Complex Hfx (eV) (Sfx/kB) Ox

B2  -0.8 2.75 2

BI 3.1 1.9 4

B2I 2.0 4.3 4

BV 2.3 3.3 4



Table 2-3

Binding energies of boron complexes.

Boron Complex Eb(eV) Sb/kB

B2  0.8 2.75

BI 0.87 -5.98

B2I 1.17 -6.33

BV 0.85 1.06

2.2.4 Models for Boron Reaction Chemistry

Based on the diffusion limited reaction kinetics (Sinno, 1998), the rates of reaction for generation

and consumption of the boron complexes are a function of the local equilibrium concentrations and

reaction rate constant. Consequently, in a single reaction, each of the concentrations is expressed

as a function of the equilibrium constant and other constituent local concentrations at equilibrium.

Equilibrium concentrations of boron complexes were calculated from the results of Empirical Tight

Binding Sand Stillinger Weber atomistic calculations (Rasband and Clancy, 1996; Luo, Rasband,

and Clancy, 1998). The equilibrium constant and equilibrium concentration expression for boron

complexes are listed in Tables 2-4 and 2-5. Based on the calculated binding energies and entropies,

the thermal equilibrium concentration of boron-pair cluster (B2) is about two order-of-magnitude

higher than the solubility limit of boron. Table 2-6 lists the reaction expressions for boron-point

defect interactions.

The rate coefficients for each reaction were estimated from diffusion-limited reaction theory

and includes an activation barrier with both entropic and enthalpic contributions. This model for

reaction kinetics gives temperature dependent rate coefficients for each reaction, as shown in Table

2.7. Here, kiv is the reaction rate constant, ar is the capture radius, n is the atomic volume, cs is the

atomic density of silicon, and AGx is the free energy barrier against reaction. The sensitivity of our

simulation results to this value is discussed in Chapter 3.



Table 2-4

Equilibrium constant and equilibrium concentration expressions

of boron complexes.

Reaction Equilibrium Constant Equilibrium Concentration Expression

a [B ] Ce E b
Formation K [B]2  

C k kT

BI Formation KBI [BI] Ce = C CI exp bpl, exp EI
eq [B][I] BI k, kBaT

B2I Formation KB2 [B2 I ] 2 Xp S1 exp B

eq [B 2][I] 21  CS k kT

BV Formation KV [B] Cv CB Cv OBexp exp
eq [B] [V] Cs kB k T

Frank Turnbull
KBIV [B]

eq [BI][V]



Table 2-5

Reaction expressions of boron-point defect interactions.

Reaction Reaction Expression

Frenkel Pair IV R v = k v(CIC -C)

Recombination

2 CB2 2 1
B 2 Formation RB2 = kB C, -q B =k B K CB2

Cs

BI Formation R =kC=kRI BBI Formation R I = kBI(BI= k C BI  BCI eq BI
BI BI

Cs

Seq CIeq
B2I Formation RBI = kBI B 2 I I = k21 CB2C I  C CB2

B2 B2

Cs

R Bv RV Ceq  C v

BV Formation RBV = k, B C = kBV B V_ eq BV
CBV KBV

Cs

Cn ,r C CReq

BBIV C



Table 2-6

Reaction rate constants of boron-point defect interactions.

Reaction Reaction Rate Constant

Frenkel Pair IV k (T) = 4 ar (D+Dv)exp 0.58 - T (2.29+7.38x10-3)

Recombination Q cs k, T

B2 Formation kB2 (T) = a- (DB + G,
D cs kB T

BI Formation kBI(T)- r (DB+ D)exp AGBI
2 cs k T

B2I Formation kB21 (T) 4n (D 2 + D)exp AG 2
Q c kBT

47c ar AGBvBV Formation kBV (T) = (D+ D)exp
e = B(AGBk T

Frank Turnbull kBIV(T) =a DBI Dv )exp AGBIV

Q I I kBTI



2.3 Simulation of Boron Defect Dynamics

2.3.1 Boundary Conditions

The point defect model in Equation (2-1) is solved with the following boundary conditions.

Equilibrium conditions are imposed at the melt-crystal interface for the native defects (self-

interstitials, vacancies, and for the boron defects, e.g. B and B2 ). Since boron is introduced at high

concentration, a significant amount of substitutional boron forms B2. At the melt-crystal interface,

it is assumed that the local equilibrium described by Equation (2.20) is already satisfied and the

initial boron dopant concentration (CBO) introduced into the system consists of an equilibrium

concentration mixture of B and B2 (CB(Z-=) and CB2(Z-O)) in Equation (2.21) as

KB2 Ceq (z=o)
- 2 (2.20)

C s CB(z=o)

CB CB2(Z=0) + C(Z=0) (2.21)
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Figure 2-1

Boron (B) and boron pair (B2) boundary conditions as a function of boron concentration.



Figure 2-1 shows that as the doping level of boron increases, a larger fraction of the boron is

incorporated as B2.

Boron complex concentrations (BI, B2I, BV) are assumed to be zero at the melt-crystal

interface. At the top of the crystal, zero flux conditions are imposed for all species. Zero flux

conditions are also imposed for all species at the radial edge of the crystal, as described by Sinno

(1998). The zero flux boundary condition represents a thin oxide layer formed by silicon-

monoxide that evaporates from the melt (Dornberger et al., 1997)

2.3.2 Thermal Field and Crystal Geometry

Thermal field and crystal shape data was obtained from the heat transfer simulation of Dornberger

et al. (1997b). We use an axisymmetric, two dimensional representation of the crystal in which the

shape of the melt-crystal interface is fit to experimental measurements. All simulations described

in Chapter 3 were performed using data computed for a 4" crystal grown at 1.7 mm/min. Note that

the experimental OSF-Ring data described in Chapter 1 was not generated with the same conditions

due to the unavailability of consistent data sets.

2.4 Numerical Method

The conservation equation (Equation 2.1) for all species and the boundary conditions represents a

system of coupled, non-linear partial differential equations. This system of equations was

discretized spatially using the Galerkin Finite Element Method (Sinno, 1998). The resulting system

of algebraic system was solved using the Newton method. We employ zero-order continuation

where all reaction rates are gradually increase from about 106 of their actual values. At each step,

the solution from the previous solution is used as the initial guess for the next step. Upper bound

diffusivities of B2 and B21 were assigned to the diffusivity of single boron atoms (B). Since single

boron diffusivity is a few orders-of-magnitude smaller than the diffusivities of interstitial and

vacancy, the effect of this assumption is negligible.



3. Results and Discussion

3.1 Comparison to Experimental Data

In order to allow quantitative evaluation of the models ability to fit the experimental data of

Dornberger et al. (1997), polynomial fitting of the data in Figure 1.1 is performed. We used a

fourth order polynomial fit to this data to give:

R-OSF = 0.41825 + 0.55617 CB - 0.25928 CB2 + 0.047497 Ca3 - 0.0032805 CB4 . (3.1)

The simulation predictions are compared quantitatively to this curve by fitting the

calculations to a nt-order polynomial, where n is the number of simulation data points. The

polynomial functions represented the experimental data and the simulation predictions are

compared based on location, i.e.,

X = - [RosF Bi) -RF CBi)] 2 , (3.2)
n i=1

where X is a quantitative indication of the goodness of fit of the simulation predictions to

experimental data.

3.1.1 Parameter Fitting

The objective function, X in Equation (3.2) is minimized with respect to the thermophysical

properties of the boron complexes. However, due to the large number of parameters, we choose a

small subset for the optimization while keeping the others fixed. Our choice for the variable

parameter subset is justified below, on the basis of sensitivity and uncertainty.

Sensitivity tests demonstrate that the simulation predictions are unresponsive to changes in

the diffusion coefficients for the boron complexes. This is explained by noting that these



diffusivities are generally several order-of-magnitudes smaller than self-interstitial and vacancy

rates. Thus, no diffusivities were used in the fitting. The activation barrier AGBX for all boron

related reactions are arbitrarily assigned a value of 1 eV. This value is sufficiently small to give

very large values for the Damkohler number (Da) for all reactions described by Equations (2.3) to

(2.7), which compares the rate of reaction to the magnitude of the diffusion coefficients. The high

Damkohler number limit established for reactions in (2.3) to (2.7) implies that all these reactions

are transport limited and reach completion immediately for given local conditions. Physically

unreasonable value for AGBx of several electron volts were required to establish Da - 0(1)

conditions. Activation barriers of less than 1 eV did not affect the simulation results in any way as

the high Da limit had already been established for 1 eV. For this reason, AGBx is excluded from the

fitting process and because of unavailability of any data, AGBx is excluded from further

consideration.

The remaining properties are all associated with the equilibrium properties of boron related

defect, i.e. the binding enthalpies and entropies. Simulation results are not very sensitive to either

the pure boron cluster (B and B2) energies or the boron-vacancy complex. The latter is not

sufficiently stable to greatly affect the results and its binding energy and entropy are taken to be

fixed.

Clancy et al. (1998) have computed all enthalpies using Empirical Tight Binding methods

and we assume that those calculation are sufficiently accurate for all species. The entropies,

however, are computed with the Stillinger-Weber potential and are subject to much larger

uncertainty. We therefore use the binding entropies for the formation of BI and B2I to fit our

simulation predictions to the experimental data of Dornberger et. al. (1997) shown in Figure 1-1.

The fitting is performed by selecting a range of values for SBBI and then minimizing the

objective function X, by adjusting SBBI. The combination of binding entropies that gave the lowest

value of X was selected as our 'best' fitting parameter set.

3.2 Results

The values for sets of the various binding enthalpies and entropies are shown below in Table 3-1

and illustrated in Figure 3-1. Fitting the binding entropies of BI and B2I simply means distributing



the interstitial release mechanism between these two boron complexes in order to best reproduce

the experimental data.
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Table 3-1

Parameter sets used as best fit.

SBBZI SBBI X

(kB) (kB)

-6.33 0.55 10.25x10 3

-5.00 0.54 9.73x10 -3

-4.00 0.51 8.13x10 -3

-3.00 0.44 4.76x10 3

-2.00 0.21 5.51x10 3

-1.00 -0.92 23.07x10 -3



By including all boron-point defect interactions, the microdefect model is capable of fitting the

experimental data well. Our best results for this parameter set are shown in Figure 3.2 which

swhos a comparison between the microdefect model prediction and the experimental data of

Dornberger et al. (1997) for OSF-Ring position as a function of boron concentration.

The best microdefect parameters adjusted to reproduce the OSF-Ring curve are:

HbBI = 0.88 eV,

SbBI = -0.44 kB adjusted from SbBIo = -5.98 kB,

HbB2I = 1.18 eV unadjusted,

SbB2I = -3.00 kB adjusted from SbB2IO = -6.33 kB.

The agreement between the simulation results and the data of Dornberger et al. is good across a

wide range of boron doping levels. The following sections provide insight into the mechanism that

leads to the observed effect of boron doping on the dynamics of the OSF-Ring.

1
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Figure 3-2

OSF-Ring radius as a function of boron concentration for experiment and simulation.



3.2 Mechanism for OSF-Ring Dynamics

Evolution of the A(R(Z),Z) = 0 radial position occurs within a short axial distance from the melt-

crystal interface. Initially, in the vacancy rich condition the A(R(Z),Z) = 0 radial position is outside

the perimeter and the farther from the melt-crystal interface, the more interstitials diffuse inward

bringing the A(R(Z),Z) = 0 radial position inward until it reaches a fixed position in the cold upper

portion of the crystal. Figure 3.3 shows the A(R(Z),Z) = 0 radial position along the axial direction

from the previous IV Model (Sinno, 1998) and our extended model. Evolution of the self-

interstitial and vacancy balance matters only for a short axial distance of one radius (Z*/R).

IV Model of Sinno (1998)

A(R(Z),Z)=O

Z*/R

Z/R

O(o)

01 1 1 1 1 ""1

0 0.2 0.4 0.6 0.8 1

R

0
0

Extended Model

ROSF

Z*/R

, , I , , I ,

A(R(Z),Z)=O

S 7 O(c)

0.2 0.4 0.6 0.8 1

Figure 3-3

Evolution of the radial position of A(R(Z),Z) = 0 along the axial direction from native point

defect model of Sinno (1998) and the extended model with 5x1018 cm "3 boron.

Z/R

dP



The axial distance O(o) over which the A(R(Z),Z) = 0 condition continues to evolve has

been determined using an asymptotic analysis of the coupled point defect conservation equations.

Sinno (1998) have shown that o is related to the magnitude of the characteristic activation energies

contained in the diffusion and recombination coefficients. In the limit of high activation energies,

these thermal activated processes decay very rapidly and confine point defect concentration

evolution to a narrow region near the melt-crystal interface. For the operating conditions used to

generate Figure 3-3, this distance is less than 1 radius in the axial direction. This distance is

important when considering the effects of boron chemistry on native point defect concentrations. If

reactions in Equation (2.3) to (2.7) occur slowly over length scales larger than 0(o), it is unlikely

that any effect on the position of the OSF-Ring will be observed.

3.2.1 BI and B21

Counter intuitively, the boron-interstitial reaction increases interstitial concentration. In the

vacancy rich region inside the OSF-Ring, IV recombination reaction leads to large excess of

vacancies and therefore is interstitial limited. Both IV recombination and boron-interstitial

formation compete for interstitial atoms. Under these conditions, IV recombination is restricted

and fewer interstitials are depleted this way, instead some interstitials go to form boron-interstitial

clusters. Once the interstitial concentration is sufficiently depleted, the boron-interstitial formation

reaction proceeds in the reverse direction (dissociation reaction) releasing interstitials and boron

atoms back to substitutional sites and subsequently results in higher interstitial concentration.

Similarly, in the interstitial rich region, more interstitials and fewer vacancies were found compared

to the previous IV model.

Both inside and outside the OSF-Ring, boron-interstitials are produced at an early stage near

the melt solid interface. Starting from the melt-crystal interface, BI concentration rises up

significantly. Still near the melt-crystal interface, boron-interstitials dissociate releasing interstitials

before boron-interstitials gradually are formed again. In conclusion, boron-interstitials store

interstitials temporarily and effectively dampen the depletion of interstitials causing a reduction in

the rate of IV recombination. This behavior is illustrated more clearly in Figure 3-4 and 3-5, where



the IV superscripts denote the concentrations from model of Sinno (1998). At the region near the

melt-crystal interface, boron-interstitials release interstitials giving higher interstitial concentration.

In the boron-point defect interactions, the boron-interstitial acts as temporary storage i.e.

interstitials are stored in the slowly diffusing boron-interstitials. Therefore the diffusion of

interstitials is inhibited by this mechanism which allows interstitial consumption to form boron-

interstitials and then the boron-interstitials release the interstitial back. This interstitial release

mechanism, also known as the chemical pumping of point defects (Hu, 1994).

In contrast to the BI interstitial release mechanism that always releases interstitials, the stability of

B2I determines whether the interstitial release mechanism effectively increases the interstitial

concentration. At one extreme when the stability of B2I is too high, the chemical pumping

mechanism did not occur because interstitials were consumed in large amounts by B2I formation

then released in small amounts. Example of this situation is shown in Figure 3-6 which shows axial

B21 concentration profiles at different entropies values. At SbBI = -3.00 kg the OSF ring position is

inside. Here, increment in B2I entropy value shifts the OSF-Ring inward until a certain point when

it starts to shift the OSF-Ring out of the crystal instantly. At SbB21 = 6.00 kg the OSF-Ring position

is no longer inside the crystal. Interstitials are released near the melt-crystal interface by B21

clusters. However, at high stability of B2I, the amount of interstitials dissociated from both BI and

B2I is inadequate to compensate a great initial consumption of interstitials.

A comparison of axial concentration profiles of BI and B2I shows that BI is more dominant

in the interstitial release mechanism (Figure 3-7). Furthermore, the interstitial release mechanism

of B21 is not completely symmetric with the one of BI. This is due to the fact that boron at high

concentration is forming B2 while the evolution of OSF-Ring is still in progress. This is illustrated

in Figure 3-8. Essentially, in the BI formation boron reactant and the interstitial are consumed by

the IV recombination. Thus, the reaction is driven in the reverse direction to release more

interstitials. Although interstitials are consumed by the IV recombination reaction, the B2 is

consumed faster to form B2I. By LeChatelier's Principle, addition of B2I reactant drives the

reaction in the forward direction, thereby producing more B2I. The reaction mechanisms for BI and

B2I are shown schematically in Figure 3-9.

The core of the kick-out mechanism is that the self-interstitials supplied cannot maintain the

equilibrium concentration value because most of the self-interstitials are consumed to produce
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boron complexes by formation of BI and B2I. Therefore, the reaction proceeds in reverse, returning

the self-interstitials. All of these processes occur in the region where the evolution of the OSF ring

is still dynamically moving and again it is within a radius distance (Z*/R = 1). This is shown in

Figure 3-10 and 3-11. These results lead to a conclusion that the kick-out reaction is fast enough to

consume interstitials quickly and release them back within a radius distance to achieve lower

interstitial diffusion and to shift the OSF-Ring inward.
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Figure 3-8

Axial concentration profiles of B and B2 at R=0.8.
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Concentration profiles of BI and I at R=0.8 and evolution of the OSF-Ring.
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Concentration profiles of BI and I at R=0.8 and evolution of the OSF-Ring

near melt-crystal interface.



3.2.2 BV

The BV concentration follows similar mechanism with BI by acting as a temporary vacancy

storage, i.e. as internal source of vacancies. The vacancy release mechanism is illustrated in Figure

3-12. The peak of the BV concentration profile is on the order of 1x10 13 cm-3 , and the same as

with B2I, while BI is on the order of 1014 cm- 3. A comparison of the order-of-magnitudes of the

concentrations shows that the BI interstitial release mechanism is the dominant one and is the main

reason for the shift in OSF-Ring position.
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Figure 3-12

Axial concentration profile of BV at R=0.8.

3.2.3 Frank Turnbull Reaction

The Frank Turnbull reaction (Equation 2.7) depletes boron-interstitials and vacancies and,

therefore, counters the vacancy release mechanism of BV. At the same time it reduces the effect of



BV formation and the release of interstitials by break up of BI. The Frank Turnbull reaction also

depends on the availability of BI and V.

3.4 Parameter Sensitivity

Parameter sensitivity was used to analyze the binding enthalpies of BI and B2I separately. A 15%

increase of binding enthalpy was introduced in the best case described previously. By adjusting the

binding entropy, the objective function was again minimized by adjusting the entropy to fit the

experimental data. Fitting the results to the experimental data set using the microdefect model

produce the following values shown in Table 3-2, with the binding energy values given at the

melting temperature. With a 15% increase in HbB2I, X was lowered from 4.76x10 -3 to 3.70x10 -3 .

For a 15% increase in HbBI, a higher value of X was computed. The OSF-Ring positions as a

function of boron concentration are shown in Figure 3-13 and 3-14. A change in binding enthalpy

amplifies the change in binding entropy because the binding enthalpy is a more sensitive parameter.

In conclusion, the sensitivity of binding enthalpy shows that an increase in binding enthalpy is

compensated by reducing binding entropy to maintain the quality of the agreement between

experiment and calculation.

Table 3-2

Analysis of binding enthalpy sensitivity of BI and B2I.

HbBI SbBi HB21 SbB2i
Model Description (eV) (kB) (eV) (kB)

Original Parameters 0.88 -5.98 1.18 -6.33

Best Case 0.88 -0.44 1.18 -3.00 4.76x10 -3

15 % increase in HbBI 1.01 -0.72 1.18 -2.00 5.92x10 -3

15 % increase in HbB2I 0.88 -0.44 1.35 -4.15 3.70x10 3



--*-- Experiment
I ---- Simulation

0.8

LL
C) 0.6

0 0.4

E
0 0.2
z

0
0 1 2 3 4 5 6 7

Boron Concentration (1018 cm-3)
Figure 3-13

OSF-Ring position as a function of boron concentration
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4. Conclusions

The formation of microdefects in silicon crystal appears to be controlled by the formation and

dynamics of native point defects, namely self-interstitials and vacancies, which, it allowed to

appear in excess, cluster to form either microvoids (vacancies) or stacking faults (interstitials). The

point defect model of Sinno (1998) captures this dynamics and predicts the location of the OSF-

Ring as the neutral region formed in a Czochralski crystal at the radial transition for a vacancy rich

inner core to an interstitial dominated outer ring. In this thesis, the model of point defect dynamics

has been extended to include the interactions of boron with point defects in order to predict the

variation of the OSF-Ring diameter with boron concentration. The modeling is motivated by

experimental results of Dornberger et al. (1997) that show a decrease in OSF-Ring radius with

increasing boron concentration.

Our model for boron-point defect dynamics is based on Empirical Tight Binding analysis of

the most stable boron/point defect complexes and diffusion limited reaction theory. The model

quantitatively predicts the observed decrease in the OSF-Ring radius with only a modest amount of

parameter fitting. The reactions included in the model are:

I + V <- 0, (4.1)

B + B * B2, (4.2)

B + I " BI, (4.3)

B 2 + I <- B 2I, (4.4)

B + V - BV, (4.5)

BI + V - B. (4.6)

The validity of the chemical pumping mechanism (Hu, S.M., 1994) is supported by the

mechanisms of BI, BV and B2I in this microdefect model. These boron complexes act as traps for a

short amount of time which slow intrinsic point defect diffusion and recombination and then release

the point defect back into crystal. At high temperature range near the melt-crystal interface, the

OSF-Ring is still dynamically moving within a short axial distance. Furthermore, the model for

boron diffusion is governed by the formation of boron complexes (BI, B2I and BV) and by the



Frank Turnbull reaction. This means that the kick-out mechanism, especially involving the BI, is

dominant.

The fitting of the predictions to experimental data is only accomplished for single specific

thermal field and crystal shape is simulated for fit to experimental data. Experimental data from

the widest possible set of conditions should be used to test the microdefect model further and to

obtain more accurate microdefect model. The fitting mainly distributes the release mechanism for

interstitials between the BI and B2I mechanisms. Despite the two different weights for the two

reactions, the model predictions were reasonably well fit to experimental data. Sensitivity analysis

of the binding entropies has shown that the stability of either BI or B2I depends more strongly on

the binding enthapies.

The mechanism of boron diffusion is not completely understood and other defect species

may exist. Further study of the microscopic behavior of boron in silicon is still important to

understand its role in microdefect formation during crystal growth.



Appendices

Appendix A

Derivation of Equilibrium Constant Expression in term of Binding Energy

The derivation presented here is the equilibrium concentration of BI. Other equilibrium

concentrations (B2, B2I, and BV) are derived similarly.

Starting from the equilibrium concentration of boron-interstitial in term of formation energy

Ke =0B, exp exp{ HBI
BI BI kB kT

cBI -=, C e exp BI exIp
BI I B k kBT

Utilizing the binding entropy and binding enthalpy definition,

Eb =E f +Ef -Ef

sb = Sf -_S
f _Sf

RI RI B I'

with EfS and SfS zero (the reference state), and substituting those binding energies in the

equilibrium concentration expression into the equilibrium concentration of the boron-interstitial:

C ] = O, C Bexp I exp expx .

The equilibrium concentration of interstitial is defined as:

C =C ex S E
CI =C, exp exp k

Bk kT



The final equilibrium expression can be expressed in term of binding enthalpy and binding entropy

as follows:

C
eq C eq

C= 10
Cs

Sb E b
expBI exp BI

kB kBT

KB = OBI exp }exp I.



Appendix B

Energetic of Boron Complex Calculations

Binding energy calculations below were calculated at melting temperature.

Hfi(Tm)= 3.97 eV

Hf'(Tm)= 2.87 eV

S'(Tm)= 7.88 kB

Sfv(Tm)= 2.24 kB.

EbB2 = 2 Ef - EfS2 = 0 - (-0.8) = 0.8 eV

SbB2 = S'f 2 - 2 Sf = 2.75 kB- 0 = 2.75 kB

EbBI = E' + E' - E'fI = 0 + 3.97- 3.1 = 0.87 eV

SbBII= Si - SfB - SfI = 1.9 kB - 0 - 7.88 kB = -5.98 kB

Eb B2I = EfB2 + E] - EfB2I= -0.8 + 3.97 - 2.0 = 1.17 eV

SbB 2I = SB 2i - SB 2 - Sf = 4.3 kB - 2.75. ka - 7.88 kB = -6.33 kB

EbBV = E fB + Ef - Efv = 0 + 2.87- 2.3 = 0.85 eV

SbBv = Sv - Sf - Sfv = 3.3 kB- 0 - 2.24 kB = 1.06 ks

Note:

Formation enthalpies of boron complexes were computed based on Empirical Tight Binding

calculations. The Stillinger Weber calculations have uncertainty in vibrational entropy values.
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