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Preface

This report is an attempt to give a heuristic exposition of

measure theory and of the theory of integration that derives from

it. Its purpose is to acquaint communication engineers with a

language that has been found most useful in probability theory,

statistics, ergodic theory, the theory of linear operators in

function spaces - in fact, the language in which much of the mathe-

matical foundation of communication theory is most frequently and

most naturally expressed. Hopefully, this descriptive introduction

will serve as a source of motivated and meaningful definitions of

the principal terms and concepts, and perhaps as an aid in inter-

preting the rather concise rigorous expositions of the theory.

The author wishes to thank Professor Y. W. Lee for his friendly

support and encouragement during this work and to acknowledge

gratefully the benefits derived from many stimulating discussions

with K. H. Powers, J. Y. Hayase, and A. H. Nuttall, and their

help in checking and proofreading the manuscript.
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1. INTRODUCTION: THE RIEMANN INTEGRAL

In this section we shall establish the basic motivation for the results to be described

in the report. We start with a review of the Riemann definition of the integral and a

derivation of some of the basic properties of the integral implied by this definition. We

then show, by means of an example, that there are definite limitations to the class of

functions to which Riemann's definition of integration is applicable. It is natural to

attempt to isolate that feature of Riemann's definition which is responsible for its limi-

tations, and in so doing we shall find that an apparently simple change of point of view

leads us to an approach in which these limitations are irrelevant. The new point of view

leads to what is, in effect, a rudimentary

form of Lebesgue's definition of the

f(x) CURVE I integral. We shall use this imprecise

- /form to determine the new concepts that

must be studied in order to make possible
a rigorous new definition of integration.

The Riemann integral, which is the

_I _ _ _____ordinary integral discussed in elementary

x, X i X ni calculus, can be defined by proceeding as

follows. [For a more complete exposition,
Fig. 1.1. Pertinent to the definition of see, for example, Whittaker and Watson

the Riemann integral.
(6), p. 61 et seq., or Rudin (4), p. 87

et seq.] We consider a bounded function

f(x) defined on the interval (a, b), as in Fig. 1. 1. We subdivide the interval into n parts

at the points

ao = X 1 X2 . IXn-l Xn = b

and for each subinterval (xi_ 1, xi) we define

Ui = upper bound of f(x) in (xi_1, Xi)

L i = lower bound of f(x) in (xi_ 1, x)

and we form the sums

Sn = Ul(X1 a) + U 2 (X2 -Xl) + ... + Un(b - Xn 1 )

sn = L(X - a)+ L2 (X2 -xl) + ... + Ln(b - x n 1)

We shall call Sn the upper sum; s n , the lower sum. Since Sn is the area under stepped

curve 1, and sn is the area under curve 2, it is clear from Fig. 1. 1 (and can easily be

proved analytically) that

S >sn n

1
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As the number n of subdivisions is increased, Sn can only decrease in value, since

curve 1 approaches f(x) more closely. For the analogous reason, as n increases, sn

can only increase in value. Now we consider all possible ways of subdividing (a, b),

and let n approach infinity in such a way that the length of the longest subdivision tends

to zero. For each way of subdividing (a, b) we obtain a different set of values for Sn

and sn. Let S be the smallest value taken by Sn, and let s be the largest value taken

by s n. It is still true that

If it should happen that S s the common value is called the Riemann integral ofs

If it should happen that S = s, the common value is called the Riemann integral of

f(x) between the limits a and b, and is denoted by

b
f f(x) dx

As a result of this definition, the Riemann integral exists (or, f(x) is integrable in the

sense of Riemann) if and only if Sn and s n have a common limit as n approaches infinity

in such a way that the longest interval tends to zero, the limit being independent of the

mode of subdivision of (a, b). Therefore, if f(x) is Riemann-integrable, given any

e > 0 however small, there must exist a 6 > 0 which is such that, if the length of the

longest subinterval is less than 6, then

S -s <en n

We have all of the tools that are necessary to prove that all continuous bounded

functions are Riemann-integrable (on a finite interval). For, by definition, f(x) is

continuous if, given any E > 0, we can find a 6 > 0 such that

If(x) - f(x') I < E whenever Ix - x' < 6

If we pick a 6 small enough so that

If(x) - f(x') < (b a) whenever Ix - x' < 6

and if we subdivide (a, b) in such a way that all intervals are shorter than 6, then the

upper and lower bounds of f(x) in any subinterval (xi , xi+ 1) must differ by less than

E/(b-a). That is, we have

U.- L. < E
1 1 b-a

Therefore

2
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Sn-Sn= i(xi - xi 1 ) - Li(xi -xi)= (U i- Li) (xi -Xi 1)
i i i

b-a (Xi xi-l b-a (Xi Xi-1) = c
i i

That is, we have

S -s <En n

Thus we have proved that Sn and sn approach a common limit, and therefore any con-

tinuous bounded function is Riemann-integrable.

It is just as easy to prove that if a bounded function has a finite number of (finite)

discontinuities, and is continuous elsewhere on (a, b), it is still integrable. In fact, it

is integrable even if it has a countable number of finite discontinuities. [For a defini-

tion of "countable," see Appendix I, p. 67.] Heuristically, we can see this simply by

thinking of the original interval (a, b) as split up into smaller intervals (a i , b i ) in such

a way that f(x) is continuous within each (a i , bi), so that all discontinuities occur at the

boundaries between contiguous intervals. Then we simply integrate f(x) in each (a i , b i )

and add up the results to obtain the integral of f(x) over (a, b).

We can prove just as easily that not all bounded functions are integrable. Consider,

for example, the function f(x) defined on (a, b) by

f(x) = 1 if x is irrational and a x b

= 0 if x is rational and a <x < b

Then f(x) is bounded, and discontinuous at every point of (a, b). Following the procedure

of page 1, we subdivide (a, b) into n parts. No matter how this is done, within each

subinterval (xi_1, x i ) there are both rational and irrational numbers, so that the upper

value of f(x) is 1, and the lower value is zero. Therefore, for all n,

Sn = Ui(x i - x i l ) = 1 (b-a) = b-a
i

s n Li(xi - x i _ l ) = 0 (b-a) = 0
i

The upper sum never approaches the lower sum, and therefore the Riemann integral

of f(x) does not exist; that is, it simply is not defined.

The example has shown that there are bounded functions that are not Riemann-

integrable. In particular, it would seem that in order to be integrable, a function must

not be "too" discontinuous. Let us see why this is so.

To simplify the argument, we shall consider a slightly different definition of the

3
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integral, one which may be more familiar than the one given above. Let f(x) be a func-
tion defined on (a, b) and divide (a, b) in the same way as above (see Fig. 1. 1). Then we
define the Riemann integral as the limit of the sum

n

n = f( i ) (xi - xi-) with Xi-l < i < x i

i=l

as n approaches infinity in such a way that the longest subdivision tends to zero. The
present definition is derivable from the previous one. To see this, note that i is an
arbitrary point in the subinterval (xi, 11 xi), which implies that, for all i,

L. < f(gi) < U.

since L. and Ui are the extreme values of the function in the subinterval. Therefore
it must be true that

Sn -< n < Sn

for all values of n. But if sn and Sn tend to a common limit, then an, being squeezed
in between sn and Sn, must tend to the same limit. So we have that, independently of
the mode of subdivision or the choice of points i, it must be true that

b

f(9i) (x i - xi-l) - f(x) dx (1.1)

if f(x) is Riemann-integrable on (a, b). This result is an immediate consequence of the
definition of Riemann integrability. In fact, it is precisely the way in which Riemann
originally defined the integral.

Clearly it is very important, if "integral" is to be a useful concept, that the value
of the limit shall be independent of the detailed way in which the sum on the left-hand
side of Eq. 1. 1 was formed. In constructing the sum, we must be able to choose any
gi in the interval (xi_l, xi), and changing our choice must not produce any sensible
changes in the value of the limit of the sum. Now, under what conditions can it be true

that the limit in Eq. 1. 1 will be independ-

ent of the choice of the i ?
v . -- 

rollowing lNatanson z), we see that

the limit (Eq. 1. 1) can be independent of

the choice of i only if changing i within

the interval (Xil, xi) changes the value

x of f(i ) only imperceptibly. But since
--- ,- -t '~ I- . . % . -_
fUly pUJlIL u1 kX xi xi) may e cnosen as

Fig. 1. 2. Pertinent to the existence ,i' we might ask, What property is
of Riemann integrals. common to all points of the subinterval?

4
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The answer is simple: They are close together, since as n is increased, the length

of the subinterval tends to zero. Therefore, as shown in Fig. 1. 2, our requirements

will be satisfied if we stipulate that small intervals along the x-axis correspond to

small intervals along the y-axis. If this condition obtains, then it does not matter

very much how we pick i, since any one particular choice may be thought of as yielding

a value f(i.) which will be representative of all of the values of the function within

the subinterval.

The condition that small x-intervals correspond to small y-intervals is satisfied

by continuous functions and is obviously not satisfied by discontinuous functions. And

yet, as we have seen, this condition is fundamental in making possible the existence

of Riemann integrals. Thus we see why there is an intimate connection between

Riemann integrability and continuity, and why there are functions for which the Riemann

definition of integration is meaningless.

We wish to generalize our concept of

LI~Yr ___U_____________y_____________ "integral" so that it will be meaningful

Yn"l] < I _ f(x) for a class of functions larger than the

Y4[ ' / X e / - class of continuous or piecewise con-
Y3
Y2 AiI N, - tinuous functions. As before, we want

L= yo l , Y , : I the net area that is included between a

a b X curve and the abscissa, but this time,

instead of subdividing the x-axis we
Fig. 1.3. Pertinent to the Lebesgue

Fig. 1. 3. Pertinition of the Lebintegral. shall subdivide the y-axis. As a resultdefinition of the integral.
of following up this apparently simple

change in point of view, we shall end up

with a new and very general definition of integration, the Lebesgue integral.

Consider a bounded function f(x) defined on the interval (a, b). Let U be the upper

bound of f(x) and L be its lower bound. As in Fig. 1. 3, we divide the y-interval (L, U)

into n parts:

L = yo Y1 <Y2 '' Yn-1 "<Yn = U

Now let Ek be the set of values of x for which

Yk "< f(x) -< Yk+l

One such Ek, for example E2 , is the set formed by all points marked in black along

the x-axis of Fig. 1.3. Let (Ek) stand for the total length of the set Ek (that is, the

sum of the lengths of the x-intervals for which Yk < f(x) < Yk+l). Then, if we form

the sum

n

Z k (Ek) where k < lk k+ (1. 2)
k=l

5
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we again have a quantity which approximates the area under f(x). Thus, if an appro-

priate limit process is performed, the sum (Eq. 1. 2) may serve to define the integral

of f(x) between a and b.

It is instructive to compare the sum of Eq. 1. 2 to that of Eq. 1. 1. In fact, the

comparison is more striking if we rewrite Eq. 1. 1 slightly: Let the set of points con-

tained in the interval (Xil, xi) be denoted by E i , and write (x i - xi_1 ) as (Ei). This

notation is then the same as that used in Eq. 1. 2. With the new notation, the sum in

Eq. 1. I1 becomes

n

f(i) (Ei) (1.3)
i=l

where i is a point contained in the set E i . Now we see that Eq. 1.2 and Eq. 1. 3 have

exactly the same form. But there is one important difference: in forming Eq. 1. 3, the

points of E i were chosen by the rather arbitrary criterion that they shall be close

together. We then found that we had to place severe restrictions on f(x) to make sure

that the various possible f(fi) would also be close together. But in forming Eq. 1. 2,

the points of Ek were chosen, not because the points themselves happened to be close

to each other, but because the values of the function on those points are close to each

other. Thus we have no difficulty in picking a representative value of the function on

Ek, and we can do this without saying anything at all about the continuity properties of

f(x)! And so our, or rather, Lebesgue's, simple change of approach has pointed out a

way of defining integration that will be meaningful for a class of functions far larger

than the class to which Riemann's definition is appropriate.

Of course, the new point of view is only simple on the surface; before we can use

it, we must find a precise concept which will correspond to our vague idea of "length

of a set." This problem forms the subject matter of the theory of measure. In the

next three sections, we shall discuss the parts of measure theory that are relevant to

the theory of integration. Then, having acquired the necessary tools, we shall give a

precise definition of Lebesgue integration, and devote the rest of the paper to a study

of some of its properties.

6



2. SIMPLE FUNCTIONS

Measure theory can be, and usually is, developed as an abstract, independent dis-

cipline completely divorced from such applications as integration theory. While this

approach lends great unity and elegance to the theory, it makes it almost impossible

to provide motivation and intuition for the numerous seemingly arbitrary definitions

and theorems that arise in the development of the theory. Such an approach is too

formal for our present purposes. We are interested in integration, and we shall study

measure theory only to obtain answers to questions that arise as we develop the theory

of integration.

Before starting the discussion of this section we need to enlarge our catalogue of

symbols.

If E is a set (of numbers or objects) we write

xEE

to indicate that the number (or object) x belongs to E or is a member of E. For

example, if E is the set of points of the real line between zero and one, and we wish

to talk about those values of x which satisfy the inequality 0 < x < 1, we simply say

x E E. If x does not belong to E, we write x/ E.

The set of all elements x which have a given property P will be denoted by

{x: P}

For example, the symbol {x: 0 < x < 1} stands for the unit interval; and the symbol

{x : f(x) < a} stands for the set of values of x for which some given function f(x) has

a value less than some given a. The symbol {x : f(x) < a} may be read: "the set of

all values of x for which f(x) < a."

By function we mean any rule for associating a number f(x) with each element x of

a given set E. That is, we say "a function f is defined on E" if, with every x E E,

there is associated a number f(x). E is called the domain of definition of f; the numbers

f(x) are called the values of f. The set of values of f is called the range of f. If the

set E is an interval of the real line, this definition reduces to the elementary concept

of function.

We shall call E a subset of F if every element of E is also an element of F, and

we shall write

ECF

which may be read: "E is contained (or is included) in F." For example, if F is the

set of all positive integers and E is the set of all positive even numbers, then E F.

It is true for any set E that E c E. If E C F, and at the same time F c E, then we

write E = F. That is, two sets are equal if all the elements of one are contained in

the other, and vice-versa. Notice the difference between the meanings of symbols E

and c: c denotes a relation between two things of the same kind (like two sets);

7
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e denotes a relation between an element of one kind and an element of the next higher

kind (like a relation between a point and a set of points).

We shall use the notation {Xn} to denote the sequence x1 , , X3 . For example,

the sequence of numbers

111 1
2' 3' 4 'n'

is represented by the symbol n ,.

We are now ready to turn to the main topic of this section, and we begin, typically

enough, with a definition. Let s be a function defined on a set X. If s has only a

finite number of different values, then s is called a simple function. For example,

if X is the real line, then the function shown in Fig. 2. 2 is a simple function, since it

takes on only five different values: 0, al, a2 , a 3, a 4 . A particularly useful simple func-

tion is the characteristic function, KE, defined for any set E C X by

KE(x) = 1 if x E E

= 0 ifx/E

For example, if X is the real line, and E is the unit interval, E = {x : 0 < x < 1}, then

KE(x) is the unit pulse shown in Fig. 2. 1.

s(x)

KE(X) IL
u3

a2

aI

I I I = - x

I - U XX 2 X3 X4 X5 X6 X7 x8

Fig. 2. 1. The characteristic function Fig. 2.2. A simple function.
of the unit interval.

Any simple function can be expressed as a finite linear combination of character-

istic functions. For example, if s takes on the values cl, c2 . . .n on the sets

E 1 , E2 , ... En, respectively, we can write

n

s(x) = ci KE (x)

i=l

To verify this, let us evaluate the sum at some particular point x. If x is in Ej, then

KE = 1 and KE. = 0, for all i j, so that the sum reduces to the single term cj, which
E. 1

8
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is precisely the value of s(x) on E..
J

It is easy to see how we should go about defining the integral of a simple function.

Consider, for example, the simple function shown in Fig. 2. 2. As usual, the Riemann

integral of s(x) is given by

x 8 s(x) dx = al(x2 - x 1) + a 3 (x3 - x2 ) + a 4 (x4 - x3 ) + ... + a 1 (x 8 - x 7 )

1

However, an equally natural way of determining the integral would be to add the total

length of the abscissa on which s(x) = al, the total length on which s(x) = a, and so on,

then multiply the lengths by the corresponding heights and add. Suppose s(x) = a i over

a set Ei of length (Ei). Then

s(x) dx = a l [(x 2 - x 1) + (x 8 - x 7 )] + a2 [(x 5 - x4 )] + .

1

(2. 1)
4

= E ai f(E i )

i=l

Evidently, both methods of integration yield the same answer, since both yield the

area between s(x) and the abscissa. But it is worth noting that the result in Eq. 2. 1

has the same form as the sum in Eq. 1. 2, and that the way of arriving at Eq. 2. 1 begins

to give expression to our thoughts of Section 1. By analogy with Eq. 2. 1, we formulate

the following provisional definition of the integral of a simple function: If s is a simple

function defined on X and given by

n

s(x) = Ci KE (x)

i=l i

then its integral over the whole space X is defined as

n

s(x) dx = ci 2(E i ) (2.2)

i=l

This definition is provisional because, among other things, we still do not have a

clear meaning for the symbol (E). If in the preceding examples its meaning appeared

evident, that is only because the examples were so chosen that all sets E turned out

to be intervals, so that we had a natural feeling for what their length should be. How-

ever, it is very easy to find an example in which our intuition becomes helpless. We

need only consider again the function

9
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f(x) = 1 if x is irrational and a < x < b

= 0 if x is rational and a x b

In our present terminology, f is nothing more than the characteristic function of the

set of irrationals of the interval (a, b). That is, if I is the set of irrationals of (a, b)

and R is the set of rationals of the same interval, then f is just the simple function

f = 1 KKI+ KR = KI

Therefore, by Eq. 2. 2, the integral of f over (a, b) is

f f dx = 1 · (I) = (I)

But now, what is the "length" of the set of irrationals?

The question will be taken up in Section 4. Meanwhile, let us continue our informal

discussion and see how the definition of Eq. 2. 2 might be extended from simple functions

to more arbitrary functions. To achieve

this extension, we shall use an important

f (x) s(x property of simple functions - that any

other function can be expressed as the

limit of a sequence of simple functions.

__ That is, simple functions can be used to

"tI approximate, as closely as desired, the
x

behavior of any given function.

Fig. 2. 3. Approximation of f(x) Suppose that we have an arbitrary

by simple functions. function f defined on X. For the moment,

we assume that f is nonnegative and

bounded (these restrictions will be removed presently). We divide each unit interval

of the axis of ordinates into n parts, as is done in Fig. 2. 3, where X is taken to be

the real line. Let us call the total number of divisions N. Then, over each subset

Enk of X such that

k - I f(x) <k (k = 1, 2, ... ,N)
Zn 2n

we define

s (X) = k - 1

the lower value of f on that subset. In other words, we define

Enk {x:n f( < n

10



and

N

sn(x) = Z )KE (2.3)
k=l 1 nk

These expressions have a complicated appearance, but their content is simple: they are

nothing but an analytical way of representing stepped curves like s n(x) of Fig. 2. 3.

From the way sn(x) was defined (and as can be seen from Fig. 2. 3), it is always

true that sn(x) -< f(x), that sn+l(X) > sn(x), and that as the number of subdivisions

increases (n - oc), sn(x) - f(x). In fact, since for bounded functions it is true by defini-

tion that

If(x) - Sn(X)| In for all x

the sequence {sn(x)} converges to f(x) uniformly as n approaches o. (The inequality

follows, as is seen in Fig. 2. 3, from the fact that f(x) and sn(x) never are farther apart

then the width of one subdivision, which is 1 / 2 n.)

We shall now remove the restrictions that f(x) be positive and bounded. If f(x) is

positive but not bounded, we modify the definition of Eq. 2. 3 as follows. For each n,

let Fn be the set of values of x on which f(x) > n, that is,

Fn ={x : f(x) >n}

Then, on those points for which f(x) < n, we form the sum (Eq. 2. 3) as before, and for
2n

x E F n we simply set s (x) = n. Since there are 2 divisions in each unit of the ordinate

axis, in n units there will be n n divisions, and Eq. 2. 3 becomes

nZ n

n(X) = (n) KEnk + nKFn (2.4)
k=l

As n approaches infinity the sequence {sn(x)} defined in Eq. 2.4 still converges to f(x),

although now the convergence is no longer uniform.

If f(x) assumes both positive and negative values, then we form the positive and

negative parts of f(x), defined as

+ Sf(x) when f(x) a_ 
f (x) =

0 when f(x) < O
(2.5)

r-f(x) when f(x) 0
fW(x) =

O when f(x)> 

Then f = f+ - f, where both f+ and f- are always positive, and we can apply the con-

struction (Eq. 2. 4) to f+ and f separately.

11
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So we have the result that any function can be represented as the limit of a sequence

of simple functions. We shall use this property later in arriving at a precise definition

of integration, but we use it now in continuing our informal discussion of how we should

go about defining integration.

We have already seen (in Eq. 2. 2) how we can define the integral of a simple func-

tion. We have also seen that we can use simple functions to approximate any other

function as closely as we wish. It seems natural, then, to define the integral of an

arbitrary function f in terms of the integrals of a sequence of simple functions tending

to f. And so we formulate the following (provisional) definition:

If f is a function defined on X, and if {sn} is a sequence of simple functions defined

on X and such that

lim sn(x) = f(x)
n-oo

then the integral of f over the whole space X is defined to be

ff(x) dx lim sn(x) dx (2.6)

Note that we already know the meaning of the symbol on the right-hand side of Eq. 2. 6;

it is merely the integral of a simple function. We have succeeded in expressing the

integral of an arbitrary function in terms of integrals of simple functions.

It is instructive to write Eq. 2. 6 in greater detail. If f is any function defined on

X, then, according to the procedure of Eq. 2. 5 for approximating it with simple func-

tions, we define

Enk ={x: k 1 f(x) < }
nk Zn

and

N

n() = (k ) KEnk
k=l

The quantity (k-1)/2n is just the lower value of f(x) on the set Enk. Let us abbreviate

it by writing

/k- 1\
1 nk = (kn )

Then we have, as in Eq. 2. 2,

N

sn(x) dx = Z 'ink (Ek)
k=1l

12
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and so the defining Eq. 2.6 becomes

N

f(x) dx = lim E nk 2 (Enk) (2. 7)
n-oo k=l

In the latter part of Section 1 we discussed how an integral should be defined so

that it would be more generally useful than the Riemann integral. Equation 1. 2 was

our first tentative formulation of the results of that discussion. Now if we compare

Eqs. 2. 7 and 1. 2, we find that they are identical in form and content. Thus we find

that our work in this section has resulted in an analytical embodiment of our ideas of

Section 1.

In Section 5 we shall give the precise form of definition 2. 7. Meanwhile, now that

we know how to proceed in order to arrive at a definition of the integral, it is time that

we go back and give consideration to some fundamental problems which form the essen-

tial basis of our new point of view. More specifically, definition 2. 7 makes it quite

clear that the success of the method depends almost exclusively on our being able to

assign some definite meaning to the symbol (E), the "length" of a set. This is the

measure-theoretic problem, which we treat in Sections 3 and 4.

In our discussion of measure theory we shall need some of the elements of set

algebra; they are summarized in Appendix I.
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3. MEASURE THEORY

We begin this section with a discussion of terminology. In what follows, the words

"class," "collection, " and "aggregate," which are all synonymous with "set," will be

used interchangeably to denote a set of objects. For example, we shall speak of a

"class ' of sets E"; this means "a set ' each element of which is itself a set E." A

set of sets will be denoted by a script capital letter (such as ), and we shall continue

to use Roman capitals for sets of points and Roman lower-case letters for points. The

only object in using synonyms for the word set is to avoid or mitigate such syntactical

obstacle courses as "the set of all sets which are subsets of a set E." In particular,

we shall always call a set of sets a class.

To be consistent with the definitions given in the last section, the inclusion rela-

tions E and C must be used as follows: A point may belong to a set (x E E), a set

may be contained in another set (E C F) or it may belong to a class of sets (E E ');

or a class of sets may be contained in another class of sets ( C S). However, the

symbols x c E or E C are meaningless.

The empty set (or vacuous set) is the set that contains no element. It will be

denoted by 0. If a set has at least one element, it is called nonempty (or nonvacuous).

In this section we are interested in finding a meaning for the symbol (E) or, more

generally, in finding a way of associating a number with each set of a given collection.

Therefore, the first new idea we shall need is that of a set function. Suppose that we

have a collection ' of sets E. We say that is a set function defined on 4' if 

assigns to each E E a real number (E). While an ordinary function (a point function)

has a set of points as its domain of definition, the domain of a set function is a collec-

tion of sets. To emphasize the difference between point functions and set functions,

we shall denote point functions by lower case Roman letters (f, g, etc.), and shall

denote set functions by lower case Greek letters (, v, etc.).

A large part of measure theory consists of answering or elaborating two questions:

I. With what properties should we endow a set function so that it corresponds to

a useful (E) function?

II. Over what domain can or should such a function be defined?

The first question can be answered rather simply. We want a set function +(E)

which is as unrestricted as possible and yet one which, for the special case in which

the sets E are subsets of the real line, can have the ordinary properties that we asso-

ciate with length. An obvious requirement is that (E) > 0, since lengths are always

nonnegative. Another requirement is that the length of "nothing" shall be zero; i. e.,

that for the empty set 0, N((0) = 0. A third requirement is that the length of the "sum"

of two line segments shall equal the sum of their individual lengths. This last state-

ment is formalized by saying that if is defined on the class ', if A and B are any

two sets in g' (A, B E ), if A and B do not overlap (A n B = 0) and if the "sum" or

union of A and B is also contained in ((A U B) E ), then

14

i



4(A U B) = (A) + 4(B)
As will be shown later, any set function that satisfies this equation also satisfies

a similar equation in which sets A and B are replaced by any finite number of sets.

Such set functions are said to be finitely additive. Our ordinary conception of the

length of intervals of the real line is a finitely additive set function; in fact, it is more

than that, because length is additive even when the number of sets is countably infinite,

as can be seen from the following example.

Let {En} be the sequence of disjoint intervals of the real line defined by

En = : - x < n} (n = 1, 2, 3,...)

The union of all the E forms the unit interval. That isn

00

U_ En ={x: 0 .<x < 1}
n=l

and the length of the unit interval is one. On the other hand, the length of each interval
1 1 1

En is n-1 -n - - n , and therefore the total length of all the En is

1 =1

n
n=l

Therefore, for this example we have shown that

Length of U En = [length of En] = 1

n=l n=l

Since, as we said before, we want our (E) functions to have the ordinary properties

of length for the special case in which E is a subset of the real line, we must require

that (E) have the property illustrated in the example. Stated formally, to make a

suitable "length" function we require that, if is a set function defined on a class ',

and if {En} is any sequence of pairwise disjoint sets belonging to ' and is such that

U En) e
n=l

then

(U En) = ~(En )
n= ) n=l

15
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A set function that satisfies this last requirement is said to be countably additive (or

completely additive).

Thus far we have been considering some of the properties that a set function must

have in order to be useful as an (E) function. The conclusion of this discussion will

be an exact definition of the concept of measure, but first we must consider in a little

more detail the classes of sets that are the domains of our set functions.

In defining finite and countable additivity, we made statements of the form "... if

A, B E 9 and if (A U B) E , then ... ." The reason for specifying that (A U B) E I

is simple: The set function is defined only for sets belonging to class . There-

fore, we can talk about (A U B) only if we know that (A U B) E A. Otherwise, the

symbol (A U B) is meaningless. We had to stipulate explicitly that (A U B) E because

it is not obvious that the statement "A and B belong to " necessarily implies "A U B

also belongs to ." In fact, the following example shows that this is not true in general.

EXAMPLE 3. 1. Let be the class of intervals of the real line of the form a • x b.

Let

A ={x: O x 1}, B = {x: 9 x < 1O0}

Then A E A, B E , but

AU B ={x: 0< x < 1 or 9 x 10}

is not an interval (since it cannot be expressed in the form a < x < b) and so A U B

does not belong to class .

Since most of our interest in set functions is centered on "length" functions,

for which combinations of sets like

N

AU B, A-B, U En, etc.

n=l

are important, let us restrict ourselves to classes of sets for which such combina-

tions automatically belong to the class. It is convenient to give such classes definite

names, and we proceed to do this in the following definitions.

A class R of sets is called a ring if A E R and B E implies (A U B) E e and

(A- B) E M. From the definition, we can immediately derive some simple prop-

erties of rings.

1. The empty set 0 belongs to every ring. Proof: Let R be a ring of sets

and A be a set belonging to R. Then A - A = 0 also belongs to M.

2. The intersection of two sets of a ring belongs to the ring. Proof: if is

a ring and A E R, B E R, then (A- B) E and from the identity A n B =

A - (A - B) it follows that (A n B) E R. (See Appendix I for proof of the

identity. )

3. If E, E 2, ... , EN are any N sets belonging to a ring R, then their union

16
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N

U En
n=l

also belongs to R. Proof: we simply apply the definition of ring to two sets

at a time:

since E 1 E and E E , it follows that E 1 U E e

since E 1 U E 2 E and E 3 E , it follows that E 1 U E U E 3 E 

and so on up to En .

The two following examples of classes that are rings may help to clarify the defini-

tions.

EXAMPLE 3. 2. Let us call a set finite if the set is empty or contains a finite number

of points. Then, given any set X, the class - of all finite subsets of X is a ring.

PROOF. If A and B are any two sets of the class f, A and B are finite by

definition, and their union and difference are certainly finite also. Therefore, A U B

and A - B belong to , which proves that Y- is a ring.

EXAMPLE 3. 3. We have already seen from Example 3. 1 that the class of intervals of

the real line of the form a x b is not a ring, since the union of two sets does not

necessarily belong to the class. The present example will show how a ring may be

built up out of intervals of the real line. First, let us change our definition of

interval to mean a set of the form

I = {x : a < x < b}

where a and b are any two numbers and where either one or both of the < signs

may be replaced with signs. [In particular, a and b may be the same number,

in which case I = {x : a < x < a} = empty set = {x : a x < a} = {x : a < x < a}; and

{x : a x a} is the one-point set containing just the point a.] Now let be the

class of all sets which are finite unions of intervals; that is, f is the class of all

sets E which can be expressed in the form,

N

E U In

n=l

Then 4 is a ring.

PROOF.

1. The union of two sets of ' belongs to ': Let A and B be two sets belonging

to . Then, by definition of the class , A and B can be written

A= UiI i B= UIj

17
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Therefore A U B can be written as a finite union of intervals, whence A U B E .

2. The difference of two sets of belongs to 4A: Let A and B be defined as above.

Then (A-B) can have three possible forms; if A and B have no points in common,

A - B = A, which belongs to A; if A is contained in B, A - B = 0, which belongs to ;

if A and B overlap partially, then A - B is a finite union of sets of the form Ii - Ij, and

this difference yields either one or two intervals. Therefore A - B is still a finite union

of intervals and thus belongs to '.

Since unions and differences of sets of belong to , we have proved that is

a ring.

The reader will have noticed that nothing was said about countable unions in our

discussion of rings. We talked only about finite unions. If E l , EZ, E3, . is a countable

sequence of sets in the ring A, it is not true in general that

00

U En
n=l

is also in A, as the following example shows.

EXAMPLE 3. 4. We can see very easily that the ring - defined in Example 3. 2 does

not, in general, contain infinite unions. Suppose that the set X consists of an

infinite number of points. Then, if we pick E1, E,...., to be one-point sets all

different from each other, the set defined by

oo

U En
n=l

contains an infinite number of points and so does not belong to -.

We can demonstrate the same thing for the ring ' defined in Example 3. 3.

There, we can pick the one-point sets

E= x {- <x } (n= 1, 2, ... )n n 

Each En belongs to , and the set E defined by

o00

E= U En

n=l

consists of the points 1, 1/2, 1/3, ... But it is impossible to construct a finite

union of intervals which will equal E. Therefore E does not belong to the ring.

We now define a special type of ring for which it will be true that a countable union

of sets of the class will also belong to the class. A class S of sets is called a -ring

if S is a ring and if for any infinite sequence E 1 , E, ... of sets of S it is true that

18
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00

U En
n=l

also belongs to S. The a-rings are important because, as we shall see, they are the

natural domains for our "length" functions.

A simple example of a a-ring is the class of all sets which are subsets of some given

set A. To prove that such a class is a a-ring, we need only note that 1) any union

(finite or countable) of subsets of A will still be a subset of A and hence will belong to

the class, and 2) the difference of any two subsets of A is still a subset of A and thus

belongs to the class. Since the class contains countable unions and differences of its

members, it is a a--ring, as was asserted.

As a second illustration, we shall show how the class - defined in Example 3. 2

can be made into a a-ring. Using the same notation as in that example, we see that if

the set X is itself a finite set, then - is a cr-ring. Proof: We have already seen that

Y is a ring, no matter how many points X has. Therefore, we need only show that

when X is finite, any countable union of sets of is finite. But this follows imme-

diately from the fact that such a union will be a subset of X and the greatest number of

different points that any subset of X can have is finite. Therefore every such union

belongs to , whence - is a r-ring.

In Section 4 we shall discuss a-rings further and become more familiar with them.

For the present, we shall list two important properties of a-rings:

1. It follows from the definition that every -ring is a ring and therefore has all

the properties of a ring. But Example 3.4 shows that the converse is not true:

a ring need not be a a-ring.

2. If S is a a--ring, and E1 , E 2,... is a countable sequence of sets belonging to S,

then

oo

n En
n=l

also belongs to S. To prove this, we need the identity

00 00

n En =E 1 - U (E1 - En)
n=l n=l

which is proved in Appendix I. Since E 1 E S and En E S for all n, E 1 - E En S,
therefore the union belongs to S, therefore E1 minus the union belongs to S,

therefore the countable intersection belongs to S.

We can now return to our discussion of "length" functions. In the first few pages

of this section we arrived at some properties that a set function must have if it is to

be useful as a "length" function. The properties listed there turn out to be sufficient,
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and we can proceed immediately to the definition of the rigorous counterpart of our

P(E) functions.

A measure is an extended real-valued, nonnegative and countably additive set func-

tion , defined on a ring A, and such that L(0O) = 0.

The following are some examples of measure functions:

EXAMPLE 3.5.

a) On the ring S defined in Example 3. 2, let (E) be the number of points con-

tained in the set E. That is, if E E Y' and there are n points in E, we define

i(E) = n.

b) On the ring ' defined in Example 3. 3, let (I) be defined as follows: if

I = {x : a < x < b}, where, as before, either one or both of the end points of the

interval may be missing, let ~p(I) = (b-a). Then, by definition of the class A, any

set E E may be written

N

E =U In

n=l

where the In are chosen to be pairwise disjoint. To define the measure of E, we

set

N N

4p(E) = (In)= Z (bn - an)

n=l n=l

The set function defined in this example is the most important practical example

of a measure. It is called the Lebesgue measure on the real line, and corresponds

exactly to the ordinary idea of length. If we define a ring analogous to ' for two-

dimensional intervals, or three-dimensional intervals, we can, in an entirely simi-

lar way, define the Lebesgue measure in two dimensions, corresponding to area,

in three dimensions, corresponding to volume, and so on.

c) Suppose f is any continuous, monotonically nondecreasing function defined

on the real line. For any interval I of the real line, instead of writing 4p(I) = b - a

as in b), we can define

FLf(I) = f(b) - f(a)

and similarly, for any set E belonging to the class used in b), we can define

N N

ff(E) =Z f (In) = Z [f(bn) -f(an)]
n=l n=l

The set function defined in this example is the most natural generalization of the

Lebesgue measure. It is called the Lebesgue-Stieltjes measure induced by f.
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Considering the wide range of possible choices of f, this measure provides great

flexibility in adapting measure theory to a physical problem. For example, suppose

that we have a nonuniform mass distribution along the real line. Let f(x) be the

total mass on the line between -oo and x. Then the Lebesgue-Stieltjes measure

induced by f "weights" the measure of an interval I in accordance with how much

mass lies on I, since if I = {x : a < x < b}, then }Lf(I) = f(b) - f(a) = mass between a

and b. In particular, if f increases linearly with x (the mass is distributed uni-

formly along the real line), then Ff reduces to the ordinary Lebesgue measure of

the line.

d) A particularly interesting weighting of the measure of sets is the one which

assigns to every set E of some suitable ring A, the probability that a given physi-

cal experiment results in a number x belonging to E. Here every set E E F repre-

sents an event (the points of E representing the various possible ways in which the

event may occur) and we choose )(E) so that it equals our physical idea of the proba-

bility of occurrence of the event represented by E. In effect, the probability meas-

ure is a special case of the Lebesgue-Stieltjes measure in which the inducing

function f (see part c of this example) is the probability distribution of the process.

[For a simple and complete description of the generation of probability measure,

see Kolmogoroff (7), Chap. I, or Halmos (1), Chap. IX.]

The reader will perhaps have seen from these examples how general and flexible

is the concept of measure. We conclude this section by deriving some simple and use-

ful properties common to all measure functions.

1. By definition, all measures are countably additive set functions. This implies

immediately that all measures are also finitely additive. As a result, if is

a ring, p a measure defined on A, A and B two sets belonging to A, and if

A n B = 0, then

j(A U B) = (A) + p(B)

2. A measure is monotone. That is, if a set A is contained in a set B, the meas-

ure of A is less than or equal to the measure of B. Stated formally, if is

a ring, p a measure on R, A and B two sets belonging to A, and if A C B,

then

p(A) < p(B)

Proof: Since A E and B E , B - A E . Also, since A C B, B = A U (B-A).

This last identity expresses B as the union of two disjoint sets belonging to .

Therefore, by property 1,

[p(B) = >.(A) + pL(B-A) (3. 1)

But since all measures are nonnegative by definition, L(B-A) > 0. Therefore

0(B) > ,(A), as was asserted.
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3. We notice from Eq. 3. 1 that if [[(A) is finite, it may be subtracted from both

sides of the equation, thus proving that if R is a ring, [ a measure on A, A E ,

B E aR, A C B and [(A) is finite, then

p(B-A) = (B) - (A)

This last property is described by saying that a measure is subtractive. (We

had to stipulate that [[(A) be finite because otherwise our proof might have

involved a symbol of the form oo - oo, which is meaningless.)

4. If . is a ring, p a measure on A, and A and B are two sets of A, then

>(A U B) = p(A) + 9 (B)- (A n B)

(In the special case when A and B are disjoint, so that A n B = 0, this relation

reduces to property 1, since [p(0) = 0, be definition.) Proof: We can write A U B

as a union of disjoint sets belonging to S?.

A U B =(A-B) U B

By using property 1 we obtain

p.(A U B) = p(A-B) + (B) (3.2)

Now we can write A - B = A - (A n B), and we note that A n B E and that

(A n B) C A. Therefore, since by property 3 measures are subtractive

[provided (A n B) < oc],

[(A-B) = rp(A) - HL(A n B)

Substituting this result in Eq. 3. 2 yields

p(A U B) = p(A) + (B) - pL(A n B) (3.3)

as asserted. The truth of the identities used in the proof is made evident by

the use of the circle diagram described in Appendix I. In fact, from Fig. 3. 1

it is clear that if we write (A U B) = p(A) + p.(B), then we have counted twice

the points which are common to A and B. Therefore, to get the right answer

we have to subtract once the measure of the points common to A and B, that

is, [[(A n B). This is just what is stated in Eq. 3. 3.

This concludes our discussion of the

concept of measure per se. In the next

section we shall consider the domains on

which measures are defined and the rela-

tion of these ideas to our original prob-

lem, which, as the reader may remember,

was integration.

Fig. 3. 1. Pertinent to deriving the
measure of the union of
two sets.
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4. MORE MEASURE THEORY

We started Section 3 by asking two questions:

I - What properties should a set function have in order to be a suitable measure

function ?

II - On what domain should a measure be defined?

Question I was answered in the last section; we now proceed to answer question II.

Despite appearances, the reason for considering this question is not idle mathematical

pedantry. As will be shown presently, the domain of a measure is the most important

single factor that determines the range of applicability of the new integral that we wish

to define.

In the definition of measure given in Section 3, the domain of the measure was

specified to be a ring. Let us forget this requirement for the moment, and just think

of a measure as being defined on some undescribed class S of sets. We shall let the

present discussion discover for us what sort of a class S should be. As a matter of

terminology, a set E will be said to be measurable if it belongs to the domain of defini-

tion of a measure. In other words, E is measurable if and only if E E S. Our question

is, What is a useful class of measurable sets ?

Whether or not a given domain will be useful depends on what measures will be used

for. This brings us back to our discussion of integration, since integration provided

the original motive for our interest in measure theory. In Section 2 it was shown that

any function f can be approximated by a convergent sequence {sn(x)} of simple functions,

where

N

s xX) k ) nk (4. 1)
k=l

and

Enk = x n } (4.2)

Tentatively, the integral of f was defined in Eq. 2. 7 to be

N

f dx = lim j sn dx = lim ) (k ) (Enk) (4.3)
n-o n-°°ok=l 

but we left suspended the question of whether or not a meaning can be given to I±(Enk) .

In the language of the present section, the question can be restated: For what functions

f are the sets Enk included in the domain of the measure pL? The importance of this

question is clearly visible in Eq. 4. 3: if the sets Enk corresponding to some given

function f are not within the domain of pt, then the symbol ML(Enk) is meaningless, and
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the whole definition (Eq. 4. 3) becomes meaningless. For such functions, the integral

(as we define it above) does not exist. Thus the usefulness of the definition of integra-

tion given in Eq. 4. 3 depends on our being able to so choose the domain of ± that a large

class of functions f will have their sets Enk in the domain of ,p. Since the measurability

of the sets Enk is the only factor that determines whether or not the integral will have a

definite meaning, we see why the choice of a domain for pL is such an important step.

The problem motivates an important new definition: A function f is said to be a

measurable function if the set

{x : f(x) < a} (4.4)

is measurable for every real a. The reader is reminded that a set is measurable if

and only if it belongs to the domain of a measure. It can be shown (see, e.g., Rudin (4),

p. 200) that measurable functions can also be defined by using any one of the sets

{x: f(x) a}, {x: f(x)> a}, {x: f(x) < a} (4.5)

instead of the set of Eq. 4. 4, without changing the meaning of the definition in any way.

We can determine immediately the relationship between the measurability of f and

the measurability of the sets Enk of Eq. 4. 3. Suppose that we have a measure defined

on a class S of sets. While we have thus far placed no restrictions on the nature of

S, let us now require that the intersection of any two sets of S be a set of S. That is,

we stipulate that if A E 8, and B E S, then

(A n B) E S (4.6)

Then we can show that if f is a measurable function, the set

E = k - < f < klx:k-l <fknk Z n 2n

is a measurable set. In fact, this follows from the simple identity

k -_< < k- I k(4.7)Enk n ={x : kf< } = {x:{x f< (4.7)

By definition of measurability of f, both sets in this intersection are measurable, whence,

from Eq. 4. 6, their intersection is measurable, as was asserted.

To summarize: Equation 4. 3 shows that the existence of the integral** of f depends

It should be emphasized that measurability of a set (or of a function) has nothing
whatever to do with the functional nature of the measure being used in a particular
problem. Measurability merely describes whether or not the set in question belongs
to the domain of the measure being used. It has nothing to do with the measure itself.

**
The definition of integration (Eq. 4.3) is not the final, rigorous one; it will be

given in Section 5. However, Eq. 4.3 has all of the essential features of the final defini-
tion, and, while it needs some qualification (which will be added in Sec. 5), it is
sufficiently good for our present purposes.
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only on the measurability of the sets Enk; Eq. 4. 7 shows that the sets Enk are meas-

urable if f is a measurable function. In effect, therefore, f is integrable if f is a

measurable function.

Our argument has demonstrated two things: 1) That the idea of measurable func-

tion is a central concept in the theory of integration, and 2) that in order to make a

large class of functions integrable, we must make a large class of functions measurable.

Thus our criterion in choosing an appropriate domain for measure functions must be

that a large class of functions shall be measurable with respect to the chosen domain.

03

a
(X) 02

0'

3E

a b El E2

Fig. 4. 1. The points belonging to the Fig. 4. 2. Illustration of the test of
set {x : f(x) < a are shown measurability of a simple
in black. function.

To gain some intuitive feeling for what is involved in measurability, consider

Fig. 4. 1. As is shown there, the set {x : f(x) < a}, which tests the measurability of f,

will, in general, consist of a conglomeration of subsets. It follows that the more types

of conglomerations that can be included in the domain of ,, the more varied will be the

class of -measurable functions. In other words, there is an intimate connection

between the richness of variety of the types of sets included in the domain of a measure,

and the variety of functions f which are measurable with respect to that domain.

There is no unique procedure for deciding what to use as a domain of ,. We shall

arrive at our answer by considering two examples at the beginnings of which we make

certain requirements, and then ask what sort of a domain will satisfy our requirements.

The derivation of Eq. 4. 7 has shown that it is very useful to define measures on a class

S of sets that contains the intersections of sets belonging to S. Our first example

shows the same thing with respect to finite unions, and thus, in effect, indicates that

S should be at least a ring.

EXAMPLE 4. 1. It seems reasonable to require that a simple function defined on meas-

urable sets be itself a measurable function. Let us see what this implies. Suppose

that s(x) is a simple function that takes on n values al, a, . . ., an on the sets

E 1 , E .. En, respectively. With suitable relabeling, we can arrange the values

so that al < a < a 3 < ... < an. Let S be a class on which is defined a measure i.,

and let the sets E 1, E, . . , E n be measurable. (For a concrete example, see

Fig. 4. 2.) The question is, Is s(x) a measurable function?
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For an affirmative answer, it is necessary that the sets {x: s(x) < a} be measurable

for every a. Let us list these sets:

For a < a {x: s(x) < a} = O

for al < a a {xs(x)< a = E 1

for a 2 < a ~ a 3 {x: s(x) < a} = E1 U E 2

for a3 < a a4 {x:s(x)< a= E1 U E U E 3

n

for a > an {x : s(x)< a} = U Ei

i=l

Remembering that by hypothesis the sets E 1 , E Z ,..., En belong to S, the above

relations indicate that, to make s(x) measurable, our class must include the empty

set and all finite unions of sets belonging to S. Thus the derivation of Eq. 4. 7 and

this example, taken together, have shown that we want the class S of measurable

sets to include finite unions and intersections of sets belonging to S, and that we

want S to include the empty set. All of these requirements are met if S is chosen

to be a ring.

EXAMPLE 4. 2. In this example we attempt to make plausible the notion that the class

S should not only be a ring, but in fact should be a r--ring. It happens frequently in

practical problems that we are given a sequence of integrable functions that converge

to a limit, and we wish to know whether or not the limit will also be integrable.

This sort of problem will be treated more fully later on. For the present, we need

only observe that in order to be integrable the limit function must first be measur-

able. This leads us to ask, Given a sequence {fn(x)} of measurable functions and

given lim fn(x) = f(x), will f(x) also be measurable? Clearly, it would be very

desirable to be able to give an affirmative answer. Let us see what such an answer

implies for the following special case.

Let {fn(x)} be a convergent sequence of measurable functions defined on a set E.

Let S be a class of sets (which contains E) on which is defined a measure ±. Let

the sequence {fn} be monotone nondecreasing, that is, let fl(x) < f 2 (x) < f3 (x) < ....

and define f(x) = lim fn(x). Our question is, Is f(x) measurable? For an affirmative

answer, it must be true for every real a that {x : f(x) > a} is a measurable set. Con-

sider the relation

00

{x : f(x)> a} = U {x : fn(x) > a} (4.8)

n=l

which is proved in Appendix I. Since fn(x) is measurable for every n (by hypothesis),
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each of the sets in the countable union is measurable. That is, for all n,

{x: fn(X) > a} E S

Now if the class S is such that every countable union of sets of S also belongs to

8, then {x :f(x) > a} belongs to S, and our limit function is measurable. We have

already seen in the previous example that S should be at least a ring. Our present

requirement will be satisfied if is a a-ring.

To illustrate what we have accomplished by making our class of measurable sets

a a-ring, we proceed to list some properties of measurable functions the proofs of

which are given in Halmos (1), Rudin (4), or Munroe (3). Let S, the class of meas-

urable sets, be a a-ring, and let f be a measurable function. Then the following func-

tions are all measurable:

1. af + b (a, b are any real numbers)

2. Ifl
3. fa If fla (a is any positive real number)

4. f+, f

5. F(f(x)) (F is any continuous function)

Furthermore, if g is also a measurable function, the following functions are all

measurable:

6. f+ g, fg,f (g 0)
g

7.* max(f, g), min(f, g)

In addition, we have the extremely important property:

8. the limit function of any convergent sequence of measurable functions is meas-

urable.

In other words, if the class of measurable functions is a --ring, then measurability

is preserved under practically all ordinary processes of analysis. As a result of this

circumstance, any function we are likely to meet will almost certainly be measurable.

[An exception: It is not true, in general, that a measurable function of a measurable

function is measurable. For proof and comment, see Halmos (1), p. 83, or McShane

(9), p. 241. This case is rather unusual and we shall ignore it here.]

Can any significant advantage be gained by continuing the process of including

increasingly more complicated conglomerations of sets in the class S ? The question

is imprecise and so does not have a definite answer, but Halmos (ref. 1, Sec. 16)

answers it indirectly by showing that it is quite difficult to find nonmeasurable sets

when the class of measurable sets is a a-ring. It follows that, under these conditions,

it is equally difficult to find nonmeasurable functions. Thus it appears that a a-ring

*The expression max(f, g) means the function h(x) which has the property that, for
every value of x, h(x) = f(x) if f(x) g(x), h(x) = g(x) if f(x) < g(x). Similarly, for
min(f, g).
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is a class of measurable sets that is large enough for all known purposes; that is why

a-rings are usually chosen as the domains of measure functions.

The only problem now is that, while we have just concluded that we want a-rings

as domains for measure functions, in Section 3 measures were defined on rings, not

on a-rings. How do we reconcile the definition of Section 3 with our present require-

ments ? The process that is needed here is somewhat reminiscent of the theory of

analytic continuation, whereby the domain of a function of a complex variable is

extended (in a nonarbitrary way) from one region of the complex plane to a larger

region. For our purposes we shall simply take it for granted that a measure function

(defined on a ring) can be extended uniquely and meaningfully to a measure function

defined on a a-ring which contains the ring. In effect, then, we shall proceed as

though measure functions had been defined on a-rings to start with.

However, there are some difficult and important problems associated with the

extension of measures from rings to a-rings. The example that follows illustrates

how these problems arise, and at the same time presents some terminology and ideas

that occur frequently.

EXAMPLE 4. 3. This example is meant to provide an extremely brief glimpse of the

problem of extending a measure from a ring to a a-ring for the special case of the

Lebesgue measure of the real line. We shall employ the definitions and notations of

Examples 3. 3 and 3. 5b. There we had the ring ' of all finite unions of intervals,

and on we defined the measure which to every interval assigns its length.

Our first problem is to construct a a-ring out of the ring A. We achieve this

by performing all possible finite or countable unions, intersections, and differences

of sets in . The class of all sets which are reached by performing these opera-

tions a finite or countable number of times is called the class of Borel sets of

the line. It can be verified from the definition that is a a-ring. Suppose, now,

that the set A belongs to -' but not to . Then the symbol (A) is meaningless,

since is defined for sets of ' only. And yet, it would be desirable to associate a

measure with every set of . Our problem, therefore, is how to extend the meas-

ure from p-defined-on-' to ~p-defined-on-4. To see that we cannot do this in an

arbitrary manner, consider two disjoint sets A and B belonging to $ but not to

', but with the property that A U B does belong to . If pL' is a measure which

is the extension of p. to A, we want '(E) to equal 4p(E) for those special sets which

belong both to and to . Therefore, in our example, we want pL'(A U B) = >'(A) +

W'(B) = p.(A U B), which will certainly not be generally true if ,p'(A) and 1.'(B) are

assigned arbitrarily. How should we proceed? We note first that any set in ~ can

Example to show that this is possible: Let A be the set of rationals of (0, 1), and
B the set of irrationals. Then A n B = 0, A U B = (0, 1). A and B belong to ~ but
not to ; on the other hand, A U B, being an interval, belongs to .
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be covered by a countable union of sets of A; that is, if A E A, there exists a
0oo

sequence E1 , E 2, E3, ... that is such that A C U E.i and E. E for i = 1, 2
i=l 1

We define the outer measure of A, (A), to be the set function

p (A) = inf LZ (Ei) (4. 9)

oo

with A C U Ei and Ei E . That is, we fit the set A with the tightest possible
i=l1

cover of sets of , where tightest is interpreted to mean, having the least total

measure. This least total measure of the covering of A is then the outer measure

of A. We have, then, that is defined on the a--ring A, and has the property that

if E E , . (E) = Jp(E), since the tightest possible cover of E is just E itself.

It can be shown that . , as defined, is unique and that it is a countably additive

set function. Since it follows from Eq. 4. 9 that p. is nonnegative, and that

. (0) = (0) = 0 (since 0 E ), we have that p is indeed a measure. Thus is an

extension of to the class , and is our desired measure defined on a -ring.

As an illustration of Eq. 4. 9, we shall determine the measures of the set R

of rationals of the unit interval 0 < x < 1, and then the measure of the set I of

irrationals of the same interval. Our derivation for the rationals is made possible

by the fact that there is a countable number of rationals in the unit interval (for

proof, see e.g., Rudin (4), p. 23). Let E be the interval of length / 2 n whichn
thcovers the n rational number. Then R C U E n, and

n=l

p (R) = inf _ (En E

n=l n=l

Since this result is true for any value of E, and since L is nonnegative, it follows

that (R) = 0. Thus the set of rationals (or, for that matter, any other countable

set) has Lebesgue measure zero. If now we denote the unit interval by E (and

note that E E A), then E = R U I, the union of two disjoint sets. Thus

pL (E) = (R) + (I) = (E) = 1

Since p. (R) = 0, p (I) = 1. Thus the set of irrationals of the unit interval has

measure one.

tThe abbreviation "inf" stands for "infimum" (least). Given a set of numbers {ai},
the infimum (or greatest lower bound) of the set is the largest number a for which it
is true that a < ai for all i. If the set {ai} consists of a finite collection of numbers,
the infimum is just the smallest number in the set.
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Having extended the measure from r to A, we denote both ,u and Mu simply by

B, and call 1j the Lebesgue measure defined on the -ring of all Borel sets of

the real line. This concludes our example.

We have now collected all of the necessary tools for the study of integration. In the

remainder of the work, we shall always start out by assuming (either explicitly or

implicitly) that we are given a space X, a a-ring S of subsets of X, and a measure 

defined on S. We shall summarize these data with the symbol (X, S, ).
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5. INTEGRATION

In the first two sections of this paper we showed, in an intuitive way, how integra-

tion should be defined. In Sections 3 and 4 we developed the language and concepts

necessary to lend precision to the desired definition. Now we shall bring together the

ideas of all the previous sections and proceed to the rigorous definition of the integral

and the derivation of some of its properties.

The procedure is the following:

1. Define integration for simple functions.

2. Consider any arbitrary, nonnegative function f as the limit of a sequence of

simple functions, and define the integral of f as the limit of the integrals of the

simple functions which approximate f.

3. Extend step 2 to functions which are both positive and negative.

In effect, then, the integral of any function is obtained in terms of integrals of simple

functions.

We start with a space X, and a r--ring S of subsets of X, this -- ring being the

domain on which is defined the set function , our measure.

Let s(x) be a measurable simple function defined on X, s(x) having the values

al, a 2 ... eN on the sets E 1 , E2..., EN, respectively. As usual, we represent s(x)

by

N

s(x) = aiKE

i=l

where KE is the characteristic function of the set Ei. The integral of s(x) with
1

respect to , over the whole space X, is defined to be

N

s d =E ai (E i ) (5. 1)

This definition corresponds to our tentative definition 2. 2. In particular, if the simple

function s is the characteristic function of the measurable set E, s = KE, definition 5. 1

yields

Xs d =. KE d, = (E)

The integral in Eq. 5. 1 extends over the whole space X. If we wish it to extend only

over the measurable subset E of X, we can achieve this by defining

s d =X KE s d (5.2)
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Thus we achieve our purpose by making the integrand zero on all points outside the set

E. Since KE is a measurable simple function, so is sK E, and therefore we can apply

definition 5. 1 to determine the right-hand side of Eq. 5. Z2. It is instructive to work

this out a little further. The product sK E can be written

N

sKE = ai KEi KE

i=l

Noting that for any two sets A and B the product KAKB is nonzero only on points

belonging to both A and B, we have

KAKB = KA n B

so that

N

sKE = ai KEE
i=l

Therefore, definition 5. 1 applied to Eq. 5. 2 yields

N

E s d = KE s d = a i (Ei E) (5. 3)

That is, to integrate over a set E we use only those portions of the sets E i which are

contained in E.

Now consider any nonnegative measurable function f defined on X. As was shown

in Sections 2 and 4, any such function may be considered as the limit of a sequence {n}

of measurable simple functions. We define the integral of f with respect to 1i over the

space X by

f d = lim X s n d (5.4)X n-.oo

This definition is meaningful because all of the members of the right-hand side can be

evaluated by using Eq. 5. 1. Note that definition 5.4 is the rigorous counterpart of our

earlier tentative definition 2. 6.

To extend the definition to an arbitrary measurable function f defined on X, we

split the function into positive and negative parts f+ and f-, as in Eq. 2.5. Then both

f+ and f- are nonnegative measurable functions, and

f = f+ - f

We now define the integral of f with respect to B, to be
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f d =X f+ dL - fd d (5. 5)

Both terms on the right of Eq. 5. 5 fit the requirements of definition 5.4.

As before, if E is a measurable subset of X, we define the integral of f with

respect to over E by

e f dr = KE f d1± (5. 6)

[The requirement that E be measurable is necessary because if it should happen that

f = c, a constant, thenf f di = cf KE d = c L(E) which would be meaningless unless

E is measurable.]

For the special case when is the Lebesgue measure on the real line, the integral

of f over E is sometimes denoted by

f dx or by f dx (5.7)

if E happens to be the interval (a, b). The integral is then called the Lebesgue integral

of f on E. [This nomenclature is not uniform; some authors call the general integral

(Eq. 5. 5) the Lebesgue integral with respect to . and call Eq. 5. 7 the Lebesgue integral

with respect to Lebesgue measure.]

As a matter of terminology, a measurable function f is said to be integrable (or

summable) if ff d4L is finite. If f d is infinite, the integral is still defined, but f

is not integrable. Only when both ff+ dp and ff d are infinite is the integral not

defined and then because ff d = o - oo, which is meaningless. If

f di

is finite, then we say f is integrable with respect to on E, and we abbreviate this by

writing the symbol f E Y(p.) on E. (The symbol says that f belongs to the class of

functions which are integrable with respect to on E.)

To illustrate these ideas, we shall use the fundamental definitions of Eqs. 5.4 and

5. 1 to determine the integral of a function.

EXAMPLE 5. 1. We shall determine the integral with respect to the Lebesgue measure

of the function f(x) = Ax, on the interval (0, 1). The function is shown in Fig. 5. 1.

The first step is to find a sequence {sn of simple functions whose limit is f(x).

To determine the nth member of the sequence, the axis of ordinates is subdivided

in strips A/n wide, as shown in Fig. 5. 1. Then sn(x) is given by
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0 for all xE{x : -<(x)f }x: 0 x<}= En0

A for all x E x
n

ZA
n

A A :
< f(x)< _}= x : 1-<xn n n

for all x E {x: A < (x) < .A} = {xm A f o r a l l x n A n m l A I X r < ~ ~ I:n < < 3n= EnZ
n n n2

mA for all Ex : mA<f(x)< (m+l)A m m+ 1
n n n n n nm

(O < m • n- 1)

Since the measure of every set E is just l/n, a constant, we
nm

nition 5. 1, that the integral of the nth simple function is

n-1

sn(x) dx = mA

m=O

have, using defi-

n-l

~(En) = > mArA 1
nm) n n

m=O

n-l
A 0

-2 m

n m=O

A (n-)(n) A nl)
=-

n 2 2 n
n

And now, from definition 5. 4, the Lebesgue integral of f(x) is

f(x) dx = lim |
n-oo

s dx lim A (n ) 
n n-oo

n-co

which is the expected answer.

Example 5. 1 has shown two things. The first is that the result of Lebesgue

integration is the same that we would have obtained with a Riemann integral.

A
n

L
T-

0

This is

- Sn(x)

Fig. 5. 1. Construction involved in determining the integral of f(x).
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reasonable when we recall how Lebesgue integrals were constructed in Sections 1 and 2,

and it leads us to suspect that the following statement might be (as in fact it is) generally

true: Whenever a function is both Riemann integrable and Lebesgue integrable, the two

integrals are equal. The second thing that we can see from the example is that the use

of the fundamental definitions to determine Lebesgue integrals is not very practical,

any more than it is practical to determine a Riemann integral by using its fundamental

definition. [For a convincing example of this, see Whittaker and Watson (6), p. 64.]

How do we evaluate Riemann integrals? Except in cases in which numerical integra-

tion is unavoidable, we proceed in the following manner: Using their fundamental defini-

tion, we derive various properties of the integrals, and in particular we find that the

following theorem is true: If

x

F(x) = F(a) + | f(t) dt

then, at every point of continuity of f(x),

dF = f(x)

Knowing this fact, a table of integrals is constructed by the simple expedient of con-

structing a table of derivatives. Then, when we wish to determine the indefinite

Riemann integral of some function f(x), we look in the table for a function F(x) which,

when differentiated, yields f(x). Thus we avoid completely the cumbersome funda-

mental definition. The question is, What can we do to evaluate our more general inte-

grals ? For the general case, we cannot do very much; but for the special case of

Lebesgue integrals on the real line (the case most often encountered in practice) if the

integrand also happens to be Riemann integrable, the solution is simple. We make use

of the fact that the Lebesgue and Riemann integrals will be equal, and look up the inte-

grand in a table of Riemann integrals, thus completely sidestepping the problem of

inte gration.

If the integrand is not Riemann integrable, or if the function is to be integrated over

a general set, or with respect to a general measure, then other means must be found

to determine the value of the integral. However, from a theoretical point of view, the

entire question of determining values of integrals is not particularly important. The

criterion in judging the value of a given defirion of integration is whether or not the

integral so defined will be generally useful in analysis. Flexibility, ease of manipula-

tion, general applicability, and so forth, are far more important as criteria than the

more or less arithmetical question of how to associate a number with the symbolfE f d.

Therefore we abandon the question of the determination of integrals, and proceed, in

the following sections and the remainder of this one, to derive some of the properties

that make our general integrals more useful, and simpler, than the Riemann integral.
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In the following theorems we shall give complete proofs only when they are either

very brief or else very instructive.

THEOREM 5. 1. If f and g are two functions defined on X, and if both are integrable

with respect to ,u on E, so that f, g E Y(p.) on E, and if a and are any two real

numbers, then (af + g) E () on E, and

I (af + g) d±
E

= a f d + f g du

THEOREM 5. 2. If f is defined on X, f E (~) on E, and f 0, then

f dL 0

THEOREM 5.3.

f g, then

If f and g are two functions defined on X, f, g e -Y(~) on E, and

f fdfL g d

PROOF: Since f g, (f-g) > 0. Therefore, from Theorem 5. 2,

f (f-g) d 0
E

and f f dK f g dF

THEOREM 5.4. If f E Y() on E, then IfI E Y()on E.

PROOF: In terms of positive and negative parts,

f = f+ - f- and Ifl = f+ f+ +
and since f E () on E, both

and
f+ d

f d.

E

are finite. Therefore

If d =f f+ d + f- d 

is also finite.
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It is easy to show that the converse of this theorem does not hold. That is, f E 

does not, in general, imply that f E Y. The following counterexample shows why.

Suppose that the measurable set E can be written as the union of two disjoint nonmeas-

urable sets A1 and A 2 , and let f(x) = 1 for x E A1, and f(x) = -1 for x E A2 . Then

fl = 1 on E, and therefore If is measurable and integrable, andf If dp = F(E). On

the other hand, f is not measurable, and therefore its integral is not even defined.

The difficulty in the counterexample is obviated if we assume explicitly that f is

measurable. With this additional hypothesis, Theorem 5.4 does have a converse. The

revised statement reads:

THEOREM 5.4a. If f is measurable, then f E Y(p) on E if and only if

Ifl £E Y() on E.

The fact that the integrability of f implies that of If is sometimes described by

saying that our integrals are absolutely convergent. This property makes possible,

among other things, the existence of functions which are Riemann (or, more properly,

Riemann-Cauchy) integrable and not Lebesgue integrable. [Riemann-Cauchy integrals

are the generalization of Riemann integrals to unbounded sets and unbounded functions.]

For example, sin x is measurable, and Riemann-Cauchy integrable on (-oo, o). How-x
ever, while

sin x dx
X dxx

is finite,

sin xx 

is not. Therefore, according to Theorem 5. 4a, sinx is not Lebesgue-integrable overx
the interval (-oo, oo). As another example, consider functions whose integrals exist

only as Cauchy Principal Values, such as l/x on the interval (-1, 1). Since

1

I dx

is infinite, l/x is not Lebesgue integrable on (-1, 1). These difficulties have led to the

definition of Perron and Denjoy integrals, which have many of the properties of

Lebesgue integrals but are not absolutely convergent. For further discussion of this

problem, the reader is referred to Munroe (3), page 189.
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THEOREM 5. 5. If f E Y() on E (whence If I is also integrable) then

J f d 
E

Since IfI If, /If

f If l dA--f d.

d >- f d (Theorem 5. 3). Similarly, since

The refore

f I d > f d |

THEOREM 5. 6. If E is a measurable subset of X and 1(E) = 0, then every function

is integrable on E, and

f f d = 0

PROOF: If f is bounded, so that for some finite K, I fl < K, then, by using

Theorem 5. 5, we obtain

f f d4BE

whence / f dL = 0.

This theorem can also be proved for f not bounded.

For Riemann integrals it is well known that if a < c < b, then

b c b

fx = f(x)dx a f(x) d x

The following theorem is a generalization of this property to general sets.

is given as an illustration of the use of our definitions.

THEOREM 5. 7. If A and B are two measurable subsets of X, and if E =

A n B = 0, then for every function f integrable on E,

The proof

A U B, and

f d = f f d + B f df
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PROOF: For any measurable simple function s, given by

s= a i KE.
1

we have

s d. a i .,(Ei n E) = ai [Ei n (A U B)]
i i

-= a i 14[(E i n A) U (E i n B)]

i

and because of the finite additivity of ,u, and the disjointness of A and B, we have

[(E i n A) U (E i n B)] = ~(E i n A) + (E i n B)

The refore

s d a i a(E n A) + > ai (Ei n B) = s d± +f s dL

B i i A B

Thus the theorem holds for simple functions. For any integrable function f,

n-oo n-oo f fd~: lira =E Srnf n lira i; n ndi]

and since limits and finite sums may always be interchanged,

n-oo n-oo

This proof* may be extended immediately to any finite number of sets.

Suppose that, using the symbols of the preceding theorem, Ip(B) = 0. Then according

*A much simpler but less instructive proof of the theorem: Using the same nota-
tion as above, let KA and KB be the characteristic functions of A and B, respectively.

Then, for every x E E, it is certainly true that f = KAf + KBf, whence, from Theorem
5. 1, we obtain

Ef d = KAf d + fKBf dL= f dL + f dL
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to Theorem 5. 6 we have

f f d = f dt + f f d = f d±

This equation shows that sets of measure zero do not contribute anything to an integral

and may therefore be ignored completely. Thus, for example, if a function is bounded

everywhere except at most on a set of measure zero, we may just as well assume, in

problems involving integrals, that it is bounded everywhere, without thereby losing

generality or affecting the results. The possibility of ignoring the behavior of functions

on sets of measure zero is so useful so often that the following abbreviated terminology

is in common use. If aproperty P holds for every x E E except at most on a subset A

of E of measure zero, we say that the property P holds for almost all x E E, or holds

almost everywhere on E. [Sometimes the phrase is further abbreviated to "P holds

a.e. on E," or, in some British and French texts, to "P holds p.p. on E," where p.p.

stands for presque partout (the French for almost everywhere).] Of course, whether

or not a set has measure zero depends on what is the measure under consideration.

Therefore, if more than one measure enters into a particular discussion and we wish

to say, for example, that f = g except at most on a set of jl1 -measure zero, we write

f = g a.e. (1) or f = g [[L1]

Now, suppose that we have two integrable functions f and g defined on a set E,

and that f = g a. e. on E. Let A be the subset of E on which f = g, and let B be the

subset of E on which f g. That is,

A = {x : f = g n E, B = {x : f g} n E

Clearly, A U B = E, and since A and B have no points in common, A n B = 0. Also,

by definition of almost everywhere equality, 1(B) = 0. Then, using Theorem 5. 7, we

have

f (f-g) d = f (f-g) d + f (f-g) dt

Of the two integrals on the right, the first one is zero because the integrand is identi-

cally zero, and the second one is zero because (B) = 0. Therefore

f (f-g) d = 0, so that f f d =fE g d

Thus we have proved that if two functions are equal almost everywhere, their integrals

are equal. Since the set E is arbitrary, the integrals in question are, in effect, indef-

inite integrals. Now, when the indefinite integrals of two functions are equal, the
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integrands themselves may be thought of as being equal in some sense or other, since

from the point of view of the integral they are indistinguishable. (This feeling is

strengthened by the known fact that if the indefinite Riemann integrals of two continuous

functions are equal, the functions themselves are exactly equal.) It is desirable to have

a notation to express this effective equality, and so we write

f-g on E

if {x: f g} n E has measure zero, and we say that f is equivalent to g on E.

Now let us suppose that we have a class of functions defined on a set E, any two

functions in the class differing from each other at most on a set of 1-measure zero.

We call that class of functions an equivalence class. If we have several equivalence

classes, the indefinite integral cannot distinguish between members of any one equiva-

lence class - it can only distinguish between any two equivalence classes. For example,

one says that under suitable restrictions the Fourier spectrum of a time function is

uniquely related to the time function in the sense that given one, the other is uniquely

derivable from it. This cannot possibly be true, since altering the time function at a

finite or even countably infinite number of points does not affect the value of the integral

which defines the spectrum, and vice-versa. The Fourier transform pair can only

relate uniquely equivalence classes of time functions with equivalence classes of spectra.

We might note, by the way, that the definition of such concepts as "almost every-

where" and "equivalence class" allows, in effect, the introduction of a controlled

amount of imprecision into a perfectly rigorous discussion. As a result, we are no

longer forced, in the course of an argument, to say more than we need or can say

about the behavior of a function on unimportant sets. While this is hardly a fundamental

point in favor of the Lebesgue theory (something like this could have been developed

within the framework of the Riemann theory), it is nevertheless a worthwhile improve-

ment in the language in which we think. It allows us to satisfy our desire for rigor

while allowing us to circumvent the need for increasingly restrictive hypotheses at

every turn of a discussion. The net effect of this increased flexibility in language is

that we are enabled to make statements about less restricted classes of functions,

hence to increase the generality of our results and to simplify our arguments.

Having derived some of the basic properties of the integral, we proceed in the

following sections to the study of some related topics in which the properties of the

integral are applied. In Section 6 we use the ideas of the present section to arrive at

various possible concepts of convergence for a sequence of functions. In Section 7 we

shall be concerned with the interchange of limits and integration (or summation and

integration), and we shall present some important results which illustrate the advan-

tages of the general integral over the Riemann integral. In Section 8, the integral is

considered as a set function, a point of view which leads in a natural way to the concept

of the Radon-Nikodym derivative.
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6. CONVERGENCE

A sequence of numbers a 1 a 2' a 3 .. . is said to converge to a number a if, given any

e > 0, there exists a number N with the property that

an - al < E

for all n a N. Then a is called the limit of the sequence. A necessary and sufficient

condition for the existence of the limit is that, given any E > 0, there exists a number

N with the property that

la -a < 

for all m N and n N. Any sequence that satisfies this condition is called a Cauchy

sequence.

We now ask, How should convergence and limit be defined if, instead of a sequence

of numbers, we are given a sequence of functions ? The most obvious first thought is to

consider pointwise convergence of functions. That is, suppose that we have a sequence

fl f f3 ... of functions defined on a set E. Let x be some fixed point of E. Then the

sequence fl(x), f 2 (x), f3 (x), .. . is just a sequence of numbers, as before, and we say that

it converges to a number f(x) if, given any e > 0, there exists an N such that

Ifn(x) - f(x)I < for all n N (6.1)

The set of numbers f(x) which are the limits of the sequence {fn(x)} at each value of x

defines a function f on the set E, and we may think of this function f as the limit of the

sequence of functions {fn } . Note that, in general, the N in Eq. 6. 1 is a function both

of e and x. If N is independent of x (that is, if one single value of N will satisfy

Eq. 6. 1 for all points x E) the convergence is said to be uniform on E.

While our definition of convergence for a sequence of functions is acceptable and

useful, we might ask whether it is not excessively demanding for some purposes. After

all, suppose that there are some points x of E at which the sequence {fn } fails to con-

verge, so that at those points the limit function f is undefined. If the set of points on

which the sequence fails to converge is small enough, this does not seem to be a suffi-

cient reason for throwing out the whole sequence, considering, for example, that for

some problems the behavior of a function on a set of measure zero may be ignored

completely. Again, as we saw in the preceding section, for some purposes we are not

really interested in specifying functions but only equivalence classes of functions. Since

pointwise convergence defines a particular function, it might be useful to find some other,

softened, form of convergence which only defines an equivalence class of functions, and

does not pinpoint any one function exactly. In still other problems, we might not even

be interested in knowing whether the sequence {fn} has an equivalence class as a limit,

but only whether some expression like
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If - fn d (p > 0)

approaches zero with increasing n.

All of these possibilities, and others which will not be discussed, have in common

the general idea that a sequence of functions assumes a definite character (in some

sense or other) for n sufficiently large, and therefore are included within the general

intuitive meaning of convergence. In this section we shall define and present some of

the properties of three types of convergence (other than pointwise convergence) which

occur frequently and which we shall need in later sections.

The first definition of convergence embodies our willingness to ignore failure of

pointwise convergence on sufficiently small sets. Let {fn} be a sequence of functions

defined on a set E. {fn} is said to converge almost everywhere to a limit f if there

exists a subset A of E such that p(A) = 0, and {fn(x)} converges pointwise to f(x) for

all x E (E-A). That is, {fn(x)} converges pointwise to f(x) everywhere on E except

at most on a set of measure zero. Symbolically, convergence almost everywhere is

denoted by

lim f = f (a.e.) or f - f (a.e.)n-oo n n

Since the set A on which pointwise convergence fails may be empty, in which case we

have ordinary convergence, it is clear that if a sequence converges in the ordinary way

(i.e., at every point of the set) then it also converges almost everywhere.

EXAMPLE 6.1. In this example we consider a sequence {fn} of functions defined on

the real line which converges almost everywhere but not everywhere. For this

example, the measure used is the Lebesgue measure of the real line, so that the

phrase "almost everywhere" means everywhere except at most on a set of

Lebesgue measure zero. Let

fn( ) =(cos nr\ sin(2n+l) x n = 1, 3, ... )
n \ 2n + 1 sinrx (n = , 2, 

with value f = cos nrr at the points x = 0, 1, ±2, ... Then for a fixed, nonintegern
value of x, we have

f( I cos nr sin(2n + 1) rrx< 1 1 < E
en 2n + sin irx n + sin x

That is, for any E > 0, I fn(x)l can be made smaller than E by choosing a sufficiently

large n. Therefore, for noninteger values of x, the sequence converges to zero:

fn(x) - 0 for x 0, 1, 2, . . .

But if x has any integer value k, then
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f (k) = cos nTr (2n + 1) = cos nT(k)- n + 1

Therefore, for x = k, the sequence, written out, is

-1, 1, -1, 1, -1, 1, -1, 1, . . .

which obviously does not converge to any number. So we find that f n} converges

for all values of x except the integer values. Since the integers form a countable

set, the set of all integers has Lebesgue measure zero (cf. Ex. 4.3). Thus {fn} con-

verges everywhere on the real line except on a set of measure zero. In symbols,

this is expressed as

fn - 0 a.e. (Lebesgue measure)

This concludes the example.

With ordinary (pointwise) convergence, if a sequence converges to a limit function,

that function is defined exactly and uniquely. In contrast to this, convergence a. e.

defines uniquely only an equivalence class of functions, as is shown in the two following

theorems.

THEOREM 6. 1. If, for the sequence {fn}) fn - f (a.e.), and if there is a function g

such that f g [read: f is equivalent to g], then it is also true that fn - g a.e.

PROOF: f - f a.e. means that for n large enough, fn - fJ < E a.e.

f -g means f = g a.e., or If - g = 0 a.e.

But now f - g = I(f n f) - (g - f)l Ifn - fl + Ig - fl = Ifn - fl a.e.

Therefore, for n large enough

Ifn - g < E a.e. or fn -- g a.e.

THEOREM 6.2. If, for the sequence {fn }, fn - f a. e. and at the same time fn -- g a. e.,

then f- g. (The limit is unique up to an equivalence. )

PROOF: For any E > 0, choose N sufficiently large so that, for all n > N,

If _fI < a.e.
n 2

Ifn - g < a.e.

This is possible by hypothesis. Then

If - g = (f - fn) -(g - fn) If - fn + Ig - fn < E a.e.

Therefore

If- g < E a.e.

and since E is arbitrary

If - gl = 0 a.e. or f - g

A second type of convergence is convergence in measure, which is defined as fol-

lows. A sequence {fn} of a.e. finite-valued, measurable functions fn is said to con-

verge in measure to the measurable function f if, given anyE > 0, the measure of the
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set on which

Ifn -fi aEn

approaches zero with increasing n. That is, f - f in measure if, given any E > 0,

lim p. [{x: f (x) - f(x) - E}]= 0

Symbolically, convergence in measure is denoted by

lim f = f (meas.) or f -f (meas.)n-oo n n

When put into words, the definitions of convergence in measure and convergence

a.e. sound almost indistinguishable. This is misleading, because while it is true that

if the sequence {fn} converges a.e. on a set of finite measure it also converges in

measure, the converse is not true. The truth of these statements is not obvious, but

the proof is too involved to give here. Those readers who have developed an intuitive

understanding of the difference between the Strong Law of large numbers and the Weak

Law of large numbers in probability theory, can apply that understanding to the present

problem since, when probability is regarded as a measure, the Strong Law corresponds

exactly to convergence a.e., while the Weak Law corresponds to convergence in meas-

ure. [For a discussion of the problem from a probability point of view, see Feller (10),

p. 191 or Munroe (3), p. 226 and p. 227, Exercises a and b.]

The following example will illustrate the use of the definition in testing a given

sequence for convergence in measure.

EXAMPLE 6. 2. Let X be the real line and ~p the Lebesgue measure of the line, and S

the class of Borel sets of the line. Let An be the interval, (n = 1, 2, 3, .

and let KA be the characteristic function of An, so that KA (x) = 1 if x E An, and
n n

is zero otherwise. Since A E S, the functions KA are measurable, and they cer-
n

tainly are finite. Consider the sequence {K }, some members of which are shown

in Fig. 6. 1. We shall show that the sequence converges in measure to zero. In

fact, the nth member of the sequence, KA , is greater than zero only for those
n

points x contained in An, and so for any E > 0 (but less than 1, of course),

.[{x: (KA - 0) n

Therefore, n- [{ :(Kn - 0) } = 0, which proves our assertion.

*For a proof that convergence a.e. on a finite set implies convergence in meas-
ure, see Natanson (2), p. 95, or Munroe (3), p. 224. Counterexamples that prove
that the converse is not true are given in the same places.
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/~ ' ~ Fig. 6.1. Example of convergence in measure.

4 2

Incidentally, the sequence {K A } also converges pointwise (and therefore also
n

a.e.) to zero. To see this, note that for each x contained in (0, 1), it is possible

to find a number N so large that for all n > N, KA (x) = 0. Therefore
n

KA (x)-O for allx Ex : 0x < x <
n

Note, however, that the convergence is not uniform. We shall digress briefly to

illustrate the difference between ordinary (pointwise) convergence and uniform con-

vergence. By definition, if the sequence {K A } converges to zero uniformly, given
n

any E > 0 we must be able to find an N large enough so that, for all n > N,

IKA (x) - 0 < for all values of x E (0, 1). In this example, this is impossible.
n

For, suppose that N is the appropriate number. Then it would have to be true that

KA < E for all n N O, and for all values of x in the unit interval. The inequality

1 1 1
is certainly true for x > ; but for 0 < < say x f = 1 for all

o o o
No < n < 2No, so that the inequality is not satisfied and the convergence is not uni-

form. Note that in proving ordinary convergence we had to choose a point x first,

and then find an appropriate N. This would not be necessary if the sequence con-

verged uniformly.

A sequence that converges in measure, like one that converges almost everywhere,

does not define a unique limit function. Both types of convergence define only an equi-

valence class of functions. As Example 6.2 has indicated, and as can be shown in gen-

eral, if a sequence converges both in measure and almost everywhere, the two limit

functions are equivalent.

Yet another type of convergence which is frequently useful, especially in the study

of series of orthonormal functions and in the theory of Fourier integrals, is convergence

in the mean. Let {f } be a sequence of measurable functions defined on a set E, and

with the additional property that fn P (p > 1) is integrable. If there exists a measur-

able function f such that f P is integrable on E and such that

lim r fl P
n- ooEJE ~n~~
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we say that {fn} converges in the mean of order p to f, and write

lim fn = f (mean P ) or f - f (mean P )

The special case p = 2 arises in a natural way in work involving orthonormal series

and Fourier integrals. For this case, it has become customary simply to say that

{fn } converges in the mean to f, and to write

l.i.rm. fn = f , or fn - f (mean)

Instances of sequences which converge in the mean are plentiful, for example, in

the study of convergence of Fourier integrals. Here we shall give a very simple exam-

ple of a mean convergent sequence, principally for the purpose of illustrating the use

of the definition.

EXAMPLE 6. 3. Consider the sequence of functions defined in Example 6. 2. We had

fn(x) = 1 for all x E {x: 0<x<}

= 0 elsewhere

We shall prove that this sequence converges in the mean to zero. In factJI. 1r·J I/n
I fn - fI 2 d =

E 

(1 - 0) 2 dx = .
n

Therefore

lim f - f d lim 0
n-oo n n-oc n

whence

l.i.m. f = 0n-ao n

as asserted.

For simplicity, all of

order two, although most

As is the case for the

only up to an equivalence,

THEOREM 6.3. Suppose

f and g. Then f - g.

the following statements refer only to mean convergence of

of them are true for arbitrary p > 1.

other types of convergence, the limit in the mean is unique

as the next theorem shows.

that the sequence {fn} converges in the mean to the functions

PROOF: The fact that

fn - f (mean) and fn - g (mean)

means that, for any E > 0, there exists an N sQ large that for all n > N we can make
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IE

JE
(fn - f2 < 

g) d < T
4

Now consider the relation

(f - g)2 dI =

fE
[(f - f) - (g - fn)]2 dp.

;=/ (f - fn)2 d +E (g - f n) 2 dp.

.1 E

We already have bounds for the first two integrals. To find a bound for the third,

we use the Schwartz inequality, and obtain

(fE- fn) (g -fn ) d L JE (f f) d , (g - ) 2 d <

Therefore,

fE

Since E is arbitrary and the left-hand side is nonnegative, we have

(f - g)2 d = O

fE

and since the integrand is always positive, this implies that f = g

as asserted.

a.e., or f - g,

How is mean convergence related to the other types of convergence ? One simple

relationship is expressed in the following theorem.

THEOREM 6.4. If a sequence {fn } converges in the mean to a function f, then it also

converges to f in measure.

PROOF: The statement

fn -- f (mean)

says that, for any given E > 0, there exists an N with the property that, for all
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n a N,

f (f n f)2 d < 

Consider the subset A of E defined byn

An = {x: fn(x) - f(x)I > a}

where a is some given positive number which remains fixed. Then, since the inte-

grand is always positive,

E (fn d f)gd f n f)d a (An )

n

Therefore, a 2 (An) (f - f) 2 dL < E, which is the same as saying that as n

increases, [L(An) -0, which, by definition, means that fn - f (meas.).

It is true, and perhaps plausible, that convergence in the mean does not imply point-

wise convergence or even convergence a.e. [For an example which proves this state-

ment, see Wiener (8), p. 29.] What is more unexpected is that pointwise convergence

does not imply mean convergence either, as the following counterexample shows.

EXAMPLE 6.4. Let our space be the interval [0, 1], and our measure the Lebesgue

measure of the line. Let the sequence {fn} be defined by

fn(x) = 0 at x = 0

fn(x) = n for 0 < x < 1/n

fn(x) = 0 everywhere else

Then, for any x E [0, 1], it is possible to find an N sufficiently large so that for all

n > N, fn(x) = 0. Therefore f (x) - 0 everywhere as n - c (although not uniformly).

On the other hand,

1 1/n

(fn(x) - 0) dx = n dx = nnd = n

which grows without limit as n tends to infinity. Therefore the sequence {fn} does

not converge in the mean.

Since convergence everywhere implies convergence a.e. and convergence in meas-

ure, the example has also shown that these latter two types of convergence do not, in

general, imply convergence in the mean.
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Fig. 6. 2. Summary of interrelationships for various types of convergence.

In this section we have spoken of convergence pointwise, a.e., in measure, and in

the mean. Figure 6.2 is an attempt to summarize graphically the rather involved inter-

relationships that obtain among these various types of convergence. Each circle in the

figure represents a class of sequences that converge in the mode specified by the label

on the circle. The diagram shows, for example, that all listed types of convergence

imply convergence in measure (since all the points of the smaller circles are also

points of the large circle) but that there are sequences that converge in measure but not,

say, in the mean.

In addition to the modes of convergence that were discussed above, several others

have been found useful. A more complete discussion of convergence is given in Halmos

(1) or Munroe (3), and an excellent graphical summary of interrelationships can be

found in Munroe (3), p. 237. We shall leave this subject here, and proceed to consider

briefly one of the important features of Lebesgue integration - its properties with

respect to limit processes.
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7. INTEGRALS AND LIMIT PROCESSES

Suppose that we have a sequence {fn} of integrable functions defined on a set E, and

suppose that the sequence converges, in some sense or other, to a limit function f. In

this section we shall consider under what conditions it is true that

n nlimf fd=f [lim - f d. (7. 1)

That is, our problem is to determine the conditions under which the order of a limit

process and integration may be interchanged.

The answer to this problem has frequent practical application, for example, in

determining when an infinite series may be integrated term by term. This comes about

as follows: Suppose that we are given a convergent series of integrable functions fk(x),

so that

oo

5(X) = Z fk(x)

k=1

We define the nth partial sum, crn(x), by

n

-n(x) = fk(x) (7.2)
k=1

If the infinite series is convergent, then the set of partial sums

(' (x), o2 (x), o3 (x), ... , -n(X), ...

forms a convergent sequence, and

lim (x) = r(x) (7.3)

In terms of partial sums, asking whether or not it is true that

fE ~ ~ fkd = fk dp (7.4)

is the same as asking whether or not

f [lim r n]dL = limf d (7.5)

To see this, note first that the left-hand members of Eqs. 7.4 and 7. 5 are identical by

definition. Next, using the definition of 0-n , we have
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n n

( C dCL = fk d = k f

k= k= 

the last equality following from Theorem 5. 1, which states that the order of finite sums

and integrals may always be interchanged. Therefore,

n

n n n lk k
Eii ·dJ ik=1 k=l

so that the right-hand members of Eqs. 7.4 and 7.5 are also identical. Therefore, the

problem of determining when the order of limit and integration may be interchanged for

sequences contains, as a special case, the problem of when an infinite series may be

integrated term by term. These considerations provide us with a practical motivation

for our interest in the topic of this section.

With Riemann integration, the standard theorem used in connection with problems

of interchanging limits and integration is the following (see, for example, Rudin (4),

p. 121):

THEOREM 7. 1. Suppose that fn is Riemann integrable on [a, b] for every n, and sup-

pose that {fn} converges uniformly to f on [a, b]. Then

1. f is Riemann integrable on [a, b], and

2. f(x) dx im fn(x) dx = lim fn(x) dx (7.6)

The fact that this is the standard theorem used with Riemann integrals reveals some

of the fundamental limitations of the Riemann definition. We shall study in detail the

reasons for making the hypotheses of Theorem 7.1 and show, by means of examples,

why some other apparently possible sets of hypotheses do not work. In order not to

interrupt the discussion with the examples, they will all be presented in Appendix II,

and reference to them will be made at appropriate points in the development.

We notice first that the conditions specified by the theorem are sufficient, but not

necessary. That is, there are sequences that do not converge uniformly, but for which

the conclusions of the theorem are nevertheless true, as in Example AII-1. On the other

hand, the conclusions of the theorem are definitely false, in general, if the adverb "uni-

formly" is omitted in the statement of the theorem. A simple instance of this failure

is given in Example AII-2, in which omitting uniformity leads to an unbounded sequence.

On the evidence from these examples, we might ask, Why is ordinary (pointwise) con-

vergence, together with boundedness ( fn[ - K for all n, which implies I f K) not

enough? Why is uniformity of convergence involved in the problem ?

The relation that we want to justify is given by Eq. 7.6. There we notice that two

things must be proved: 1) that the limit function f is integrable, since otherwise the
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symbols in Eq. 7.6 are meaningless, and 2) that the interchange itself is possible. With

Riemann integrals, most of the difficulty of interchange theorems arises in making con-

clusion 1 possible. In fact, once the first conclusion is established, the second follows

under very mild conditions. To see this, let us assume the truth of conclusion 1 as a

separate hypothesis. Now the interchange theorem becomes simply:

THEOREM 7.2. (Arzela-Osgood Theorem). Let {f } be a sequence of functions

Riemann integrable on [a, b], and converging pointwise to f, and let f be Riemann

integrable on [a, b]. Then, if there exists a finite constant K such that I fn(x) < K

for all n and all x E [a, b],

b b b

n n 

Thus we find that ordinary convergence and boundedness can replace uniform con-

vergence provided that the Riemann integrability of the limit is eliminated as a problem

by postulating it separately. (The proviso is necessary: As is shown in Example AII-3,

the limit of a convergent, bounded sequence of Riemann integrable functions need not be

Riemann integrable. )

Theo-rem 7.2 begs the question: it solves the simple problem, the interchange prob-

lem, but leaves us with the difficult one. To use the theorem in practice, we must be

able to guarantee that the limit of a sequence will be Riemann integrable without (usually)

knowing what that limit is. But how are we to know ahead of time whether or not the

limit of a sequence is Riemann integrable ? This is where uniformity comes in.

As we have seen before, a bounded function is Riemann integrable (on a finite inter-

val) only if it is not a" too" discontinuous. The precise statement reads:

THEOREM 7. 3. Let f be bounded on [a, b]. Then f is Riemann integrable on [a, b]

if and only if f is continuous almost everywhere on [a, b].

That is, the set of points of [a, b] on which f is discontinuous must have Lebesgue

measure zero. If a function is discontinuous on a set of positive measure, as in the

example in Section 1, its Riemann integral does not exist because the lower and upper

sums defined in Section 1 do not approach a common value. Our problem is, Given a

sequence {fn} of functions (which might even be continuous for every finite n), how can

we know ahead of time that the limit function will also be continuous enough to be

Riemann integrable ? On the one hand, we know that limit processes in general do not

preserve continuity (Example AII-4); on the other hand, some form of continuity is the

most basic requirement in making possible the existence of the Riemann integral.

Now we can see why uniformity appears as a requirement of Theorem 7. 1: It is

there mainly to guarantee the integrability of the limit, because with uniform conver-

gence we have an a priori guarantee that continuity will be preserved. We can also

see why the requirements of the theorem are sufficient but not necessary: As is
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shown in Example AII-5, uniform convergence is a sufficient, but not a necessary, con-

dition for the preservation of continuity. Besides, according to Theorem 7. 3, we do

not really require the limit to be continuous everywhere - it need only be bounded and

continuous almost everywhere. Thus the requirement of uniform convergence is too

stringent and that of pointwise, bounded convergence is too lax. Unfortunately, classi-

cal analysis has not developed anything useful in between.

In an imprecise way, then, this discussion shows why Riemann integrals become

inflexible in connection with limit processes: The integral is based on continuity, and

continuity is an awkward property when considered in connection with limit processes.

In this respect, the more general integral is far superior to the Riemann integral.

It does not depend on evanescent properties like continuity; instead, it is based on

measurability, a dependable quality which, as we saw in Section 4, is always preserved

in the course of limit processes. This circumstance virtually eliminates, right from

the start, the possibility of ending up with limit functions for which an integral cannot
*

be defined. Thus it is possible to find relatively undemanding conditions under which

the order of limits and integrals may be interchanged.

We shall start with a special case of the Lebesgue Bounded Convergence Theorem:

THEOREM 7.4. Let {fn} be a sequence of measurable functions, defined on the meas-

urable set E of finite measure, and converging pointwise to a function f. If there

exists a finite constant K such that fn(x)I < K for all n and all x E E, then

linm f d= im f dIll f dp.

The interesting thing about this theorem is that it is almost identical in form with

Theorem 7.2. But there is one important difference: the integrability of the limit does

not have to be postulated separately; instead, it is a direct consequence of the other

hypotheses. The gain in ease of application, and hence in usefulness, is obvious - we

have all of the simplicity of the Arzela-Osgood theorem without its major drawback.

Of course, we also automatically gain all of the generality inherent in the Lebesgue

language: the functions in the sequence need not be Riemann integrable, they need only

be measurable; their domains can be general sets, instead of being limited to intervals

of the real line; and the integrals can be taken with respect to any measure, instead of

*The reader is reminded that, from the definitions given in Section 5, the integral
of f (with respect to p. on E) exists (i.e., is defined) if f is measurable and either

fE f+ d orf f d is integrable. A function f is integrable (with respect to on E)
if it is measurable and if f d4 is finite. Since the limit of a sequence of measurable

functions is always measurable, to insure the integrability of the limit we need only
place just enough constraints on the sequence to insure that the integral of the limit will
be finite.
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just the length of intervals.

Is it possible to eliminate the boundedness requirement ( fn1 < K) in Theorem 7.4,

and thus justify interchange without any special hypotheses ? No, as is demonstrated

by Example AII-6. But we can generalize the theorem tremendously, and do this in

two directions. 1) Since what happens on sets of measure zero does not affect the values

of integrals, we might suspect that all we really need is that the sequence shall converge

almost everywhere, not everywhere. As a matter of fact, we need even less than that:

The theorem is even true for convergence in measure. 2) The sequence does not have

to be bounded by a constant; it is sufficient if it is dominated by an integrable function,

and, of course, the inequality need only apply almost everywhere. And so we arrive

at Theorem 7.5.

THEOREM 7.5. (Lebesgue Dominated Convergence Theorem). Let fn } be a sequence

of measurable functions defined on a measurable set E. Let {f } converge to the

limit f in measure. If there exists an integrable function g that is such that, for

all n and for almost all x E E,

I fn(x)I - g(x)

then

lim fn d-= [linmfd. f fd .
n n

[The existence and finiteness of the integral of the limit is part of the conclusion.]

The requirements of Theorem 7. 5, mild as they are (compare with uniform con-

vergence of a sequence of Riemann integrable functions), are still more stringent than

is necessary. More general conditions are given in Natanson* (2), p. 153 et seq., but

they are expressed in terms of concepts which have not been presented here, and which

it would be too complicated to introduce at this point. However, there is a theorem.

whose hypotheses are simpler than those of Theorem 7.5, this simplicity being gained

by restricting the type of sequences to which it applies. This is the Lebesgue Monotone

Convergence Theorem, which applies only to monotonic sequences. We shall present

it here in the form it takes when it is to be applied to the problem of interchanging

summation and integration of infinite series.

THEOREM 7.6. Given an infinite series of nonnegative functions, each integrable on

E. If for almost all x E

Other variations and examples of interchange theorems may be found in:
Munroe (3), p. 186 and p. 233 et seq.;Riesz-Nagy (11), p. 33 et seq.; Graves
(12), p. 190 et seq.
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Z fn(x) = f(x)
n=1

then

1. f is integrable on E if and only if

E fn d> < oc

n=l

and if this is the case, then

2. f n d fn dF {f d4
=1 n=l 

One of the most interesting and suggestive features of this theorem is the form in

which its conclusions are stated. As in the familiar engineering rule of thumb, the

theorem says, essentially, that a series of nonnegative functions may be integrated

term by term, provided the result does not blow up. In its use, therefore, the theorem

is indistinguishable from the usual pragmatic attitude toward the interchange of summa-

tion and integration. But there is, of course, this difference: Despite its informal

appearance, the theorem is a precise statement whose validity can be established with

full rigor, so that its use is always completely justified.

However, the similarity between the theorem and the rule of thumb does suggest

an interesting thought: despite its abstract form and basis, the Lebesgue theory may,

in its results, be considerably closer to engineering thought and practice than the

Riemann theory. We remarked on this once before, in connection with the structure

and flexibility of the Lebesgue language, and we see it again in this section, in the

comparative simplicity of the Lebesgue theorems and the ease and naturalness with

which they may be employed.

While in practical analysis there is no real difference (in the value of the result)

between justifying an interchange by means of a theorem or proceeding by the usual

combination of physical insight and casualness, it is interesting to realize that, often,

an interchange performed in a purely heuristic spirit is actually rigorously defensible

just as it stands, without any changes. Without any changes, that is, except for the

insertion of the qualification that the integrals are to be understood in the sense of

Lebesgue. This is not true with the Riemann theory. As long as Theorem 7. 1 is the

main available guide, so that something in the way of uniform convergence is required,

formal interchanges of limit and integration (or summation and integration) are fre-

quently indefensible. And this is so despite the fact that we find it practically impos-

sible to think of a single example, especially a physically meaningful example, of a

bounded , pointwise convergent sequence that ends up in a limit that fails to be Riemann
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integrable.

The difference is not in the integrals - if we just consider integrals defined on inter-

vals, there is no practical difference between a Riemann integral and a Lebesgue

integral - the difference is in the method of constructing the integrals. The new

construction allows us to establish properties of the integral which, while they seemed

intuitively evident, could not be proved within the framework of the Riemann theory.

The abstract formulation studies more fundamental, more cogent properties of functions

than does the Riemann theory, and the results are simpler, more powerful theorems.

Thus it seems that although the Riemann theory is more commonsensical in its con-

struction, it is the Lebesgue theory that, in its actual results, parallels and justifies

the procedures of practical analysis.

We conclude this section with an example that illustrates the use of Theorem 7.5

and at the same time proves a property of integrals that we shall require in the next

section.

EXAMPLE 7. 1. In Theorem 5. 7 we showed that integrals are finitely additive. That is,

given any integral fE f d, if E is the union of N measurable, disjoint sets

Al, A2 . . ., AN, then the integral of f over E is equal to the sum of the integrals

of f over each of the component sets:

fd AN
f d f dL

We shall extend this result to show that integrals are countably additive, so that

Theorem 5.6 remains true even when the number of component sets is countably

infinite. Our proof will proceed along the lines of that in the footnote to Theorem

5. 7, and will serve to illustrate the use of the Lebesgue Dominated Convergence

Theorem.

Let {Ai} be a collection of pairwise disjoint measurable sets whose union is a

given measurable set E, so that

co

E = U Ai A j = 0 if i* j, and AE S for i = 1, 2,...

i= 1

Let ,p(E) be finite. We wish to prove that, for any measurable function f which is

integrable on E,

f d= f d (7. 7)

i= 1
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PROOF: Let KA. be the characteristic function of the set A i . Then, since every
1

x E E belongs to exactly one Ai ,

f = K f +KA f + K f+
A fA1 2 3

00

X KA.f (7.8)

i=l 1

We notice that if it were possible to integrate the infinite series (Eq. 7. 8) term by

term, we could get the result of Eq. 7.7 immediately, since then

L f Le Afjd = E fOf dii~t KA f d = f dp

The object of the whole proof is the justification of the interchange of infinite sum-

mation and integration. We shall proceed in a roundabout way in order to make use

of some of the ideas and definitions presented in previous sections.
th

Let ( denote the n partial sum of the series Eq. 7. 8,
n

n

n = KA f (7.9)

i=l 1

Then, by definition of the characteristic function, we have immediately

n

-n(x ) = f(x) for x U Ai
i=l

- n o

= 0 for x e E UA Ai (7. 10)

i= 1 i=n+ 1

and since the A. are measurable sets, the ur are measurable functions. Our proof
1 n

will be divided in two parts: First, we shall show that r-n - f (meas.); and then

use this fact to prove countable additivity.

Let Qn be the set of values of x for which C- does not equal f:

Qn ={x : n(X) f(x)}

For the reader in a hurry: notice, from the definitions (Eqs. 7.9 and 7. 10), that

I o-n(x)I < f(x) for every x E E, that f is integrable, and that n - f pointwise. There-

fore, the conditions of Theorem 7.5 are satisfied (since pointwise convergence
implies convergence in measure) so that the desired interchange of summation and
integration is justified.

58

�I_ _ _ � ___



Our problem is, essentially, to prove that (Qn) . From Eq. 7. 10 we see that

Qn C E - U A = U Ai
- 1 i=n+ 1

Therefore, because of the monotonic nature of measures (property 2, Section 3),

(Qn ) U A i = 1 k(A i ) (7. 11)
i=n+ 1 i=n+ 1

The last equality in Eq. 7. 11 is made possible by the countable additivity of meas-

ures and the fact that the sets A i are disjoint. We recall that the set E is a count-

able union of the Ai, and that E has finite measure, that is,

(E) = r Ai = (Ai) < °° (7. 12)
ii= l

Therefore it must be true that, for anyE > 0, there exists an N sufficiently large

so that for all n > N

Z p(Ai) < E
i=n+l

Substituting this result in Eq. 7. 11, we have that, for all n > N,

IL(Qn) < E (7. 13)

Now take any number 6 > 0. The set of values of x for which I f(x) - r(x)1 > 6 is

certainly a subset of Qn' since Qn is the set where f(x) - (x). That is,

{x : If(x)- n(x) 6} C Qn

so that, for n > N,

p[I{x: if(x) -n(X) a }] (Qn)< E (7.14)

Since this is true for any 6 > 0, it corresponds precisely to the definition of con-

vergence in measure given in Section 6. Therefore, we have proved that

n - f (meas.)

Now we note that from Eq. 7. 10 it follows that, for every x E E,

I n(x)l f(x)l

and since f was assumed integrable on E, so is fl . Therefore, { an} is a sequence

of measurable functions which converges in measure to f and is dominated by the
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integrable function fl 

we have immediately

lim "
n

Thus {-n} fits all of the specifications of Theorem 7. 5, and

(7. 15)

To identify the terms in Eq. 7. 15, note that the right side is just

on the left side,

f d, and that

on di KA f

E i=l i=l f

K Aif
1

d = z f dB

i= 1 Ai

n ,. 00

lirm 1 f df dL= i Jf d.
n

i=1 A. i= 1 A.
1 1

Eq. 7. 15 becomes

cf df = Z f dL
i=l i

1

as we wished to show. Thus the integral is countably additive.
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8. SET FUNCTIONS, ABSOLUTE CONTINUITY, AND DIFFERENTIATION

If f is a measurable function defined on a set X, and if it is integrable on X, then

its indefinite integral

v(E) = f d (8. 1)

is defined for every measurable subset E of X. If S is the class of measurable

subsets of X, then v(E) is a set function defined on S since v assigns a number to

every E E S.

Using the properties of integrals derived in previous sections, we can easily

determine many of the properties of the set functions defined as in Eq. 8. 1. A very

interesting special case occurs when f 0 a. e. In this case, the set function v is a

measure function defined on the same domain as p.. To see this, we need only recall

that, by definition (see Sec. 3), a measure is an extended real-valued, nonnegative,

and countably additive set function, defined on a ring of sets, and such that its value

for the empty set is zero. But when f > 0 a. e.,

f f d. 0

for any E, and

E d = 

E

if (E) = 0. Furthermore, as we showed in Example 7. 1, E f dp is countably additive.

Thus we have proved that when f 0 a.e., v is a measure. Therefore we can generate

new measures v from a given measure B. by means of any nonnegative integrable func-

tion f. A measure defined as in Eq. 8. 1 is sometimes called the Lebesgue-Stieltjes

measure induced by f. It is a generalization of the measure defined in Example 3. 5c.

It is interesting to ask, Can any set function defined on the class of measurable sets

be represented as in Eq. 8. 1? That is, are all set functions indefinite integrals?

Quite clearly, the answer to this question is "no," because all integrals are countably

additive, so that a set function must at least be countably additive, in order to qualify.

But besides this, what characterizes set functions for which an f exists which makes

possible the representation given in Eq. 8. 1?

The search for the property that distinguishes indefinite integrals from other set

functions led to the concept of absolute continuity, which is defined as follows. If .

is a measure defined on a -ring S of sets, and v is a set function also defined on S,
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then v is absolutely continuous with respect to if for every E > 0 there exists a 6 > 0

such that Iv(E) < E for every measurable set E for which (E) < 6. In an imprecise

way, absolute continuity of v with respect to B. requires that Iv(E) be small whenever

>(E) is small. (Absolute value signs are used around v because it is just an arbitrary

set function, not necessarily a measure, and therefore not necessarily positive.) There

is no standard notation to denote absolute continuity. We shall say "v is -continuous"

as an abbreviation for the statement "v is absolutely continuous with respect to ."

The relationship is not symmetric; that is, the fact that v is L-continuous does not, in

general, imply that Bp is v-continuous.

It is easy to give an example of a set function v which is not absolutely continuous

with respect to pt. Let Bt be the Lebesgue measure of the line, and let v be the meas-

ure which to every set assigns the number of points contained in the set. Then, for a

countable set E, v(E) = oo, while (E) = 0. Therefore there is no 6 with the property

that v(E) < E whenever L(E) < 6. The following example will help to clarify the notion

of absolute continuity.

EXAMPLE 8. 1. We shall be concerned with absolute continuity with respect to

Lebesgue measure of the real line, and for this special case it is convenient

to restate the definition of absolute continuity in a somewhat different form. A

bounded function f(x) defined on the interval [a, b] is said to be absolutely continuous

if for every E > 0 there exists a 6 > 0 such that for every finite set of subintervals

(a 1 , bl), (a., bz), .. , (an, bn) of total length less than 6

n

Z (bk - ak) < 6 (8.2)

k=l

it is true that

n

If(bk) - f(ak) < (8.3)
k=l

This definition is derivable from our original definition, as is shown in Halmos (1),

page 181.

We can use our new definition to find a large class of functions that are abso-

lutely continuous. In fact, any function that satisfies, for every choice of x and x',

the inequality

If(x) - f(x') I K Ix - x' t (K finite) (8.4)

will do. To see this, we need only form the sum Eq. 8. 3 and obtain
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n n

X If(bk) -f(ak)I KZ bk-akl (8.5)

k=l k=l

Then, given E > 0, we can make expression 8. 5 less than E simply by choosing

6 < E/K because then

n n

Z If(bk)- f(ak) I K (bk - ak)<K 6 < E
k=l k=l

Now we shall show that any function that has a bounded derivative at every point of

(a, b) satisfies the inequality of Eq. 8.4. This follows immediately from the mean

value theorem, which states that if f(x) has bounded derivatives at every point of

(a, b), and if x and x', x > x', are any two points of (a, b), there exists a point i

with the property that

If(x') - f(x)I = If ()I · x - xl (x' . -•x) (8. 6)

Since the derivatives f'(x) are assumed bounded, there exists a finite K large

enough so that If'(x)l < K for all x E (a, b). Substituting in Eq. 8.6 we have

If(x')- f(x) I K xl - x 

which was to be shown. Thus every function that has bounded derivatives at every

point is absolutely continuous. It follows immediately from Eq. 8. 3, by setting

n = 1, that all absolutely continuous functions are also continuous. That the

converse is not true is somewhat awkward to prove. We shall simply refer the

interested reader to the counterexample given in Munroe (3), page 193, or to the

simpler one in Natanson (2), pages 248-9 (footnotes).

Why is absolute continuity important? Because it isolates precisely that quality

which distinguishes set functions that are integrals from set functions that are not.

Its importance is shown in the following two imprecise but suggestive statements:

1. All integrals are absolutely continuous: if v(E) = / f d, then v is 1± -continuous.

2. All (finite, countably additive) absolutely continuous set functions are inte-

trals: if v has the stated properties, there exists an integrable f such that

v(E) =/E f d .

The finiteness of v is not necessary, since there are perfectly good functions f
that have finite integrals on some sets but not on others. Thus the condition v finite
everywhere" can actually be relaxed to something less stringent. However, doing this
involves introducing new concepts which will not add anything to our understanding of
the main ideas. Therefore, in all that follows we shall always require our set functions
to be finite, with the understanding that this is not necessary and that more general
conditions can be found in Halmos (1), Chap. VI. Our restriction will not diminish in
any way the meaningfulness of our results, and it will simplify them.

63

- -II I ___ _ ___11 ___�_��_��_114_ ___ _�_



The next two theorems will render our statements more precise. We assume as

usual that we are given a space X, a -ring S of subsets of X, and a finite measure

iL defined on S.

THEOREM 8. 1. If f is an integrable function defined on X, and if for every meas-

urable set E,

v(E) = f dp.

then v is it-continuous.

PROOF: We shall prove the theorem only for functions f which are bounded, that

is, for which Ifi < K, where K is a finite number. A proof can also be found for

unbounded (but integrable) f. In our case,

'v(E)I = i f du I f d < K(E)

so that Iv(E)I < if L(E) < 6 = E/K. We have thus shown that there exists a 6 such

that Iv(E)I < E whenever L(E) < 6. Therefore v is L -continuous.

The second proposition is more difficult. It is essentially the Radon-Nikodym

theorem which, stated precisely, reads as follows.

THEOREM 8. Z. (Radon-Nikodym) Let p. be a finite measure defined on , and let

v be a finite, countably additive set function also defined on S. If v is absolutely

continuous with respect to p., then there exists a finite-valued integrable function

f defined on X with the property that

v(E) = I f d

for every measurable set E. The function f is unique up to an equivalence [.].

That is, if it is also true that

v(E) = g do

then f = g a.e. [ ]

One of the most interesting things about this theorem is that it gives us one possible

approach to the problem of defining differentiation for set functions. The indefinite

integral
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v(E) = f dp

which holds for any measurable set E, suggests that the Radon-Nikodym integrand f

might be regarded as the derivative of v with respect to p, in the sense that f, when

integrated with respect to Ia, yields v. The suggestion is strengthened by defining a

new notation for Radon-Nikodym integrands. We shall write

f dv or f d4 = dv

and instead of calling f a Radon-Nikodym integrand, we shall call it a Radon-Nikodym

derivative.

The value of this notation is enhanced by the fact that all of the properties of dv/dp

that are suggested by the ordinary differential formalism turn out to correspond to true

theorems, with the qualification that they do not hold everywhere, only almost every-

where.

EXAMPLE 8. 2. If p, v, X are set functions that satisfy the requirements of the Radon-

Nikodym theorem, then we have:

a. if v is -continuous and is -continuous,

d v+) dv dX
d ( T) d t dF a.e. [i]

b. if v is p-continuous and is X-continuous,

dv dv d .
dX - a.e. [X]

c. if v is p-continuous and at the same time is v-continuous,

dv d

d. if p is X-continuous and if f is integrable with respect to p,

f d = f - dX
dX

Formally, therefore, the Radon-Nikodym derivative bears a very close resemblance

The use of differential notation for Radon-Nikodym integrands does not in any way
imply that a connection can be shown to exist, in general, between-ordinary derivatives
and the symbols written above, nor that f can be obtained from v by the ordinary
processes of differentiation. Regardless of their usefulness in suggesting new ideas,
the symbols themselves only mean what they are defined to mean.
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to the ordinary derivative.

Unfortunately, so far as the specific purpose of defining differentiation is concerned,

there is something rather sterile about the approach used above, because, while the

Radon-Nikodym theorem asserts the existence of the corresponding integrand, it does

not give the slightest indication of how to determine it. What is wanted in that case is

a constructive definition of differentiation, that is, one that shows how to determine the

derivative of a given function. Such an approach must start from something that

resembles the limit process that is used in defining ordinary differentiation. It then

becomes necessary to show that the two definitions are consistent, and to prove the

truth, for example, of a statement like: A function is equal to the integral of its deriva-

tive. These problems become rather complex, and will not be considered here. A

general treatment is given in Munroe (3), Chap. VII. The special case of differentia-

tion on the real line is treated in Natanson (), Chap. IX, and Burkill (5), Chap. IV.
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APPENDIX I

In this section we shall present some useful definitions and results from elementary

set algebra.

If A and B are two sets, the union of A and B, written A U B, is the set of all

points that belong either to A, or to B, or to both. In other words, A U B is the set

of all points that belong to at least one of the sets A and B, For example, if sets A

and B are thought of as circular regions, as shown in Fig. AI-1, then A U B is the

set of points contained within the dotted line. The union of n sets El, E, ... , En is,

as before, the set of all points that belong to at least one of the sets E i (i = 1, 2, ... ,n).

It is written

E1 U E2 U ... U E n

or, more conveniently,

n

U Ei
i=l

For a countable sequence of sets E 1 , E2 , E 3 ,... the union is defined in the same way

and is denoted by

0oo

U Ei
i=l

If A and B are two sets, the intersection of A and B, written A n B, is the set

of all points common to A and B. If sets A and B are thought of as circular regions,

as shown in Fig. AI-2, then A n B is the set of points shown shaded. For n sets

El, E 2 ... En, the set of all points that belong simultaneously to all n sets is denoted

by

n

n Ei
i=l

*A sequence, or a set, is said to be countable (or denumerable) if its members
can be put into a one-to-one correspondence with the members of the set of all positive
integers. Thus a countable set is infinite, but, speaking loosely, it is the smallest
type of infinity. As an example, the set E of all positive even integers is countable
since, if e E E, we can establish the required correspondence with the integers by
letting e correspond to the positive integer e/Z. It has been shown (see, for example,
Rudin (4), p. 23) that the set of all rational numbers is countable, but that the set of
all irrational numbers is uncountable (or nondenumerable). Speaking loosely again,
this means that there are many more irrational numbers than there are rationals.
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nB

I IA A

Fig. AI-1. Union of two sets. Fig. AI-Z. Intersection of two sets.

nA B A-B AnB

Fig. AI-3. Difference of two sets. Fig. AI-4. Illustrating Identity I.

and the intersection of a countable number of sets is written

00

n E i
i=l

The operations of union and intersection of sets are very similar to addition and

multiplication of numbers. As in arithmetic, the commutative and associative laws

are true for unions:

AUB=BUA

A U (BUC) = (AUB) U C = A U B U C

and similarily for intersections. The distributive law also holds:

A n (BUC) = (AnB) U (An C)

If A and B are two sets, the difference A - B is the set of all points that belong

to A and not to B. Fig. AI-3, where A - B is shown shaded, illustrates the relation-

ship.

The empty (or vacuous) set is the set that has no members. It is denoted by 0. If

the intersection of two sets A and B contains no points (i. e., if A and B have no

points in common) we write A n B = 0, and say that A and B are disjoint.

As examples of our definitions, we shall prove three identities which, while not

particularly important in themselves, are useful in the discussions in Sections 3 and 4.

IDENTITY I. A n B = A -(A-B) (AI. 1)

That this relation is plausible can be seen immediately from Fig. AI-4. The points

that belong to the intersection are shown crisscrossed; the set (A-B), the points that

belong to A but not to B, are shown shaded. From the figure it follows immediately

that the points that belong to A but not to (A-B) are just the points common to A and
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B, which is what is asserted in Eq. AI-1. For brevity, let E = A n B, F = A - (A-B).

Then, for an analytical proof of the equality of E and F, we must show (by definition

of equality of two sets, Section 2) that all the points of E belong to F (E C F) and at the

same time all the points of F belong to E (FCE). If these two requirements are

satisfied, then E = F. We show this in two steps:

1. If x e E, then, by definition of intersection, x E A and x E B. Therefore,

x y (A-B). Therefore, since x is a point of A which is not in (A-B), x E [A - (A-1)].

Thus x E E implies x E F, which means that E C F.

2. Now suppose that x E F. Then it must be true that x E A but not in (A-B).

Therefore x E B. Thus x is a point common to A and B, so that x E A n B = E.

Therefore x E F implies x E E, which means F C E.

Results 1 and 2 establish that E = F, which was to be shown.

00 oo

IDENTITY II. n E = - u (E -Ei)

i=l i=l

This relation is a generalization of Identity I to the case in which instead of two

sets, we have a countable number of sets. The interpretation and proof are exactly

analogous to those for Identity I. Let

oo 0oo

E = n Ei , F= E1 - U (E 1 -Ei)

i=l i=l

Then,

1. If x E, it follows that x Ei for all i. Therefore x K (E 1 - Ei) (i = 1, 2, ... ).

and so x j U (E1 - Ei). Thus x E F, which shows that x E E implies x E F. There-
i=l

fore E C F.
00

2. If, on the other hand, x E F, then x E E 1 but x j U (E 1 - Ei). Therefore
i=l

x ' (E 1 - Ei) for any value of i. But since x E E 1 , this implies that x E E i for all

values of i. Therefore x is common to all E i (i = 1,2,... ), and so x E E. Thus F C E.

Results 1 and 2 show that E = F, which establishes the desired identity.

IDENTITY III. The usefulness and meaning of this identity will become apparent

to the reader when he reaches Section 4. Here we limit ourselves to its statement

and proof.

Let {fn(x)} be a convergent sequence of functions, and let the sequence be monotone

nondecreasing, that is,

fl(x) < f2 (x) - f 3 (x) _< ... (AI. 2)

Define f(x) = lim f(x). Then
n-oo
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o0

x : f(x)> >a= U x: fn(x) > a} (AI. 3)

n=l

Proof. Let

00oo

A={x:f(x)> a}, B = U x: fn(x)> a}

n=l

To prove that Eq. AI. 3 is correct, we must show that A C B and B C A, which means

that A = B.

1. Consider any x E B. Since x E B, it must be true for some value of n, say N,

that fN(x) > a. But then, from Eq. AI. 2 it follows that fn(x) > a for all n - N. Thus

it must also be true in the limit that f(x) > a, so that x E A. Therefore x E B implies

x E A, which means that B C A.

2. To prove the inverse relation, choose any x E A. For that value of x, f(x) > a.

Since the sequence {fn(x)} converges to f(x), given any E > 0, there must exist an N

such that for all n > N, f(x) - fn(x) < E, so that fn(X) > f(x) - E. Choose E = (f(x) - a)/Z

(E is greater than zero, since f(x)> a). Then

f(x ) - a f(x) f(x)
fn(X) >f)L f(x) - -- = -+ a => + a

2 Z Z

We have proved that if x E A, then there exists an n with the property that, for the

chosen value of x, fn(x) > a. For that n, then, the set {x : fn(x) > a} is nonempty,

and our chosen value of x belongs to the set. Since the set is a subset of B, it follows

that x E B. Therefore x E A implies x E B, which means that A C B.

The results of 1 and 2 show that A = B.
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APPENDIX II

We present here some examples that illustrate the discussion of Section 7.

EXAMPLE AII-1. Consider the sequence of functions KA where KA is the

characteristic function of the interval (0,1). It was shown in Example 6. that

KA - 0 for all x E (0, 1) but that the convergence is not uniform. We have
n

KA (x) dx = 1 dx =

so that, in spite of nonuniformity of convergence,

lim K dx dx = 0
n n nA

EXAMPLE AII-2. Consider the sequence {f } defined in Example 6.4. It was

shown there that fn(x)- 0 for all x E [0, 1], but that the convergence is not uniform.

Clearly,

lim fn] dx = O

On the other hand,

Il l1/n

f' fn(x) dx ndx = 1

so that

lim f dx 1 lim fndx

We notice that the functions fn are rectangles of height n and width /n, so that they

become taller and narrower as the limit is approached, while their area remains con-

stant. There is a 6-function lurking here, and one way to exorcise it is to require that

the sequence be bounded.

EXAMPLE AII-3. Consider the sequence of functions {fn(x)} defined on the unit

interval [0, 1 ] by

fn(x) = sgn[sin n! x] (n = 1, 2, 3,...)
~~~~~~~~~n=1,,3...
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where sgn(y) is defined by

-1 if y< 0

sgn(y) = 0 if y = 0

1 if y> 

Then, for rational values of x, say x = p/q, sin2 n! (p/q) = 0 for all n > q, so that, for

rational values of x, fn(x) - 0 as n - oo. On the other hand, for irrational values of x,

n! Trx will never be an integer multiple of wr, so that sin n! rx > 0. Therefore, for

irrational values of x, fn(x) = 1 for all n, so that, for these values of x,

lim fn(x) = 1
n

Thus the limit of the sequence {fn(x)} is the characteristic function of the set of irra-

tionals of the unit interval. This function, as we saw in Section 1, is discontinuous at

every point of [0, 1], so that a Riemann integral cannot be defined for it.

On the other hand, for every finite n, fn(x) is a bounded function (its values being

either zero or one) and f (x) is certainly Riemann integrable, since it equals one every-
k

where except at the points x = (k = 0, 1, .. ,n! ), so that it has only a finite number

of discontinuities. Thus {fn} is a convergent, bounded sequence of Riemann integrable

functions whose limit is not Riemann integrable.

EXAMPLE AII-4. Let f (x) = x on [0, 1]. Then each f(x) is continuous. On then = n n
other hand,

limxn = 0 for 0 x< 1
n

lim xn = 0 for 0 x 1

nlim x = 1 for x = 1

so that the limit is discontinuous.

EXAMPLE AII-5. Consider the sequence {fn(x)}, where

fn(x) =n for 0 < x 1

(Note that the point x = 0 is not included in the interval of definition, so that every f (x)

is continuous and finite.) Clearly, fn(x)- 0 as n - oo, for all 0 < x 1, so that the

limit, being constant, is continuous. On the other hand, the convergence is not uniform,

since, given E > 0, it is impossible to find one single N such that, for all n N,

l/(nx) < E for every value of x. The appropriate N is necessarily a function of x.

EXAMPLE AII-6. If we disregard the boundedness requirement of Theorem 7.4,

the sequence of Example AII-2 fits all the requirements of the theorem (with the
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measure p. taken as the Lebesgue measure of the line). Thus, from Example AII-2, we

see that the conclusion of the theorem is false if the boundedness condition is removed.
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Index of Definitions

absolute continuity, 62
absolute convergence (of integrals),
additivity, finite, 15

countable, 16
almost all, 40
almost everywhere (a. e.), 40

Borel set, 28

Cauchy sequence, 42
characteristic function, 8
continuity, 2

absolute, 62
convergence

almost everywhere, 43
in measure, 44
in the mean, 47
of a sequence of numbers, 42
of a sequence of functions, 42
pointwise, 42
uniform, 42

countable additivity, 16
countable (sequence or set), 67
countably additive (set function), 1

denumerable (sequence or set), 67
difference (of two sets), 68
domain of definition, 7

empty set, 14, 68
equivalence class, 41
equivalent functions, 41

finitely additive (set function),
function

measurable, 24
negative part of, 11
point, 7
positive part of, 11
set, 14

infimum, 29
integrable (function), 33
integral

absolutely convergent, 37

37
general, 32
Lebesgue, 33
of a simple function,
Riemann, 2

intersection, 67

31

Lebesgue measure, 20
Lebesgue-Stieltjes measure,
1. i. m., 47
limit (of a sequence), 42

measurability
of a function, 24
of a set, 23

measure, 20
Lebesgue, 20, 30
Lebesgue - Stieltjes,
outer, 29
probability, 21
subtractive, 22

20, 61

outer measure, 29

6 pointwise convergence,
presque partout (p. p.),
probability measure,

42
40

21

Radon- Nikodym derivative,
range (of a function), 7
Riemann integral, 2
ring, 16

cr-ring, 18

15 set
Borel, 28
finite, 17
function, 3
measurable, 23

sequence, Cauchy, 42
c-ring, 18
simple function, 8
subtractive measures,

union, 67

vacuous set, 14, 68

22
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