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ABSTRACT
This thesis presents and employs novel mathematics for the inversion of linear, first-

kind Fredholm integral equations (IEs) which have a time t dependent response signal,
a space z dependent source waveform, and a kernel with time dependence (at each z)

corresponding to the impulse response of a thickness z slab of causal, lossy, dispersive,
homogeneous material through which planar disturbances propagate according to the

wave equation. These materials are called CLDP materials; these IEs are called CLDP

IEs. These novel mathematics are applicable to the PESAW (aka PEA) charge recovery
method.

The proposed inversion method recognizes that the (temporal) Fourier transform of

a CLDP IE's response signal can be interpreted as the values of the (spatial) Laplace

transform of that IE's source waveform along a Laplace plane path determined by the

material's propagation wavenumber k(f). Executing the Laplace transform inversion

integral along this CLDP path yields an inverse CLDP IE which recovers the true

source waveform provided that source waveform is real, causal, Fourier-transformable,
and also satisfies the proposed k(f)-dependent 'CLDP criterion'. The forward and

inverse CLDP IEs corresponding to a particular CLDP material model k(f) therefore

comprise a particular integral transform relationship applicable to waveforms satisfy-

ing the CLDP criterion for that material. The CLDP transform relationship for a

lossless/dispersionless material reduces to the (unilateral) Fourier transform.
Even without noise, the 'inverse CLDP'-recovered waveform gleaned from an abruptly

bandlimited CLDP response signal requires regularization - a generalized Gibbs-Dirichlet

kernel dubbed 'the Darrell' comes into effect. The measured (time sampled) PESAW

signal is necessarily bandlimited; this thesis investigates regularization via lowpass
filtering of the measured signal. Both synthetic and experimental examples are inves-

tigated. The focus is on MHz-range signals culled from mm-range polymeric PESAW

experiments. A method for determining the requisite model k(f) from measured PE-

SAW signals is also presented and employed.

Thesis Supervisor: Chathan M. Cooke
Title: Principal Research Engineer
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Chapter 1

Overview

1.1 Requisite Background Material

The reader will find this
information in this short

thesis easier to digest if he first familiarizes himself with the
section and appendices E, F, and G.

+ Va(t)

+ pulse
+

+Transducer +
V(t) .4 -P(t) +

HT(t) +
+

proximal + distal
capacitor + capacitor
plate q, plate

I I I z
0 zi 1

Figure 1.1: The PESAW data collection apparatus: a parallel-plate capacitor with
a pressure-to-voltage transducer HT(t) attached to its proximal plate. Also shown:
a column of plusses representing a hypothetical embedded surface charge layer ql at
position z = zl. Not shown: surface charges generated on the inside surface of each
plate in response to both the bulk charge Q(z) = q16(z - zl) and the applied voltage

Va(t).



Figure 1.1's charge waveform Q(z) = q,6(z - zl), where 6(z) is the Dirac delta
function and ql is measured in units of nC/cm2 . The position z (distance from the
proximal plate) is measured in millimeters, so Q(z) has units nC/(cm2 mm). The
applied, pulsive excitation voltage Va(t) is the impetus for the measured voltage V(t).
The Coulomb force F(z, t) = Q(z) Va(t) / provides the coupling between them.

Note that there will also be surface charge on the capacitor plates. Some of this
plate charge is constant over the acquisition time of the PESAW signal - the image
charges corresponding to the embedded charge waveform Q(z). Some of this capaci-
tor plate charge is time varying - the surface charge C' Va(t) due to the time varying
voltage Va(t) applied to the capacitor C' = e/1, where e is the permittivity of the capac-
itor's dielectric and 1 is the distance between the plates. Bear in mind that the desired,
experimental Q(z) will generally be a continuous function of position z. Figure 1.1's
spatially impulsive Q(z) is introduced for didactic purposes only, to simplify the anal-
ysis.

1.2 Thesis Motivation - PESAW & CLDP

The motivation for the research that led to this thesis was the desire to improve the
Pulsed Electrically Stimulated Acoustic Wave (PESAW, aka PEA; see section 1.18.2)
charge recovery method. Figure 1.1 depicts the PESAW data collection apparatus. The
applied excitation voltage pulse Va(t) is the impetus for the measured voltage V(t).
The Coulomb-force interaction F = Q E between the embedded charge waveform Q(z)
and the Va(t)-generated excitation electric field E(z, t) provides the coupling between

Va(t) and V(t).
In this thesis' one-dimensional planar geometry E(z, t) = Va(t)/l is independent of

z. However, other geometries (eg: coaxial cable) yield E(z, t)'s that are not independent
of z. In the interests of generality, this thesis' results are presented in terms of the
general E(z, t) instead of this thesis' particular form E(z, t) = Va(t)/l.

Over the duration of the excitation pulse the excitation electric field generally causes
bulk charges to move slightly from their pre-excitation positions, in accordance with
Hooke's law F = - K X [83]. The electric field does (spatially distributed) work on the
dielectric, which stores the energy in the form of distributed compression.

Just after the excitation pulse has been applied (time t = 0+ ) the distributed
compression starts to uncoil into kinetic energy, launching a compressional wave toward
the proximal capacitor plate (and also toward the distal plate, although with opposite
polarity. This thesis focusses upon the wave launched toward the proximal plate.).

In the PESAW context, CLDP theory applies to the mapping between this initial,
distributed source (pressure) waveform and the response (pressure) signal P(t) it would
cause to pass through z = 0 if the dielectric region continued for negative z.



1.3 The Quasi-Static Approximation (QSA)

If the duration of the pulsive Va(t) is much longer than the time required for an

electromagnetic wave to traverse the capacitor then, according to the quasistatic ap-
proximation (QSA,[86]), Va(t) will generate a temporally pulsive, spatially distributed

E(z, t) proportional to the product of the signal (function of time alone) Va(t) and
some waveform (function of space alone) E~ (z) that depends only upon the capacitor's
geometry (see section 2.2.3).

Under the QSA the force F(z, t) = Q(z) E(z, t) oc [Q(z)Ez(z)]Va(t) must also have

separable space and time dependencies, and the time dependence of F(z, t) must also

be given by Va(t). Therefore the actual signal V(t) measured as a response to a finite

duration Va(t) will be simply related to the hypothetical signal Vb(t) that would be

recorded if the time dependence of F(z, t) were truly impulsive: V(t) Oc V (t) * Va(t),
where the * denotes convolution.

So although it is physically impossible (see section 4.6) to have a temporally impul-
sive F(z, t), under the QSA it is as reasonable as it is simplifying to think of F(z, t) as
having the separable, temporally impulsive form F(z, t) = Q(z)&(t) where 6(t) is the
Dirac delta function.

The proceeding discussion speaks of applying an impulsive excitation voltage Va(t) =
V6(t) to generate spatially distributed, temporally impulsive fields E(z, t) and F(z, t).
According to the above discussion, this approach to analysis of the PESAW experiment
makes sense provided the QSA holds. Throughout this thesis, it will be assumed that
the QSA holds.

The following chapter's more rigorous analysis introduces a meaningful Q(z) =
VQ(z)/l which has units of pressure (Pascals, Pa) per velocity (millimeters per mi-
crosecond, mm/[s). Therefore, dividing Q(z) by [Pa ps] yields a normalized Q(z)
with units mm-'. Similarly, dividing P(t) by [Pa ps] yields a normalized P(t) with
units ps- 1. The same notation (Q(z) and P(t)) is used for both the normalized and
the un-normalized (physical) quantities. It is in this manner that the physical, PESAW
quantities are generalized into the larger CLDP context.

1.4 PESAW Essentials

With P(z, t) representing a -z directed, Coulomb-force-generated pressure wave travel-
ling through the dielectric after the pulsive Va(t) = V6(t) has been applied, the PESAW
method seeks knowledge of P(t) = P(O, t), and the frequency dependent attenuation
coefficient ca(f) and phase velocity c(f) of pressure waves inside the dielectric, as a
means to determine first Q(z) (oc P(z, 0+)), and then (using Ez(z)) the desired charge
versus position waveform Q(z).

Expanding on the preceeding discussion, this thesis' essential PESAW concepts are -

1. that a -z directed travelling pressure wave P(z, t) will be launched by the in-
teraction (Coulomb force law, F = Q E) of the applied temporally pulsive, spa-



tially distributed PESAW excitation electric field E(z, t) with the assumed-one-
dimensional, spatially distributed charge waveform Q(z) inside the dielectric.

2. that the temporally pulsive pressure signal F(zo, t) oc Q(zo)Va(t) injected into
the dielectric by the charge layer at position zo will be modified (via a(f) and
c(f)) as a result of having propagated through the slab of dielectric between that
charge layer and the proximal capacitor plate

3. that the modifications imposed upon each layer's injected pressure signal will
depend upon that layer's position because the thickness of the intermediate slab
depends upon that layer's position

4. that this travelling pressure wave will, after having been modified, eventually
impinge upon the proximal capacitor plate

5. that some of this impingent pressure wave will be transmitted through the ca-
pacitor plate and into the transducer, where it is ultimately registered as V(t) =
HT(t) * P(t)

6. that the measured V(t) therefore contains 'tangled' information about the desired
source charge waveform Q(z)

7. that information about Va(t), HT(t), a(f), and c(f) is required to 'un-tangle'
the information in the measured V(t) and arrive at some estimate to the source
pressure waveform Q(z) - R(z) which can then be mapped, via Ez (z), to an
estimate for the desired charge waveform Q(z)

As a practical matter, the transducer depicted in figure 1.1 is often comprised of
a delay line with a piezoelectric device attached to its left hand side. Some of the
pressure waves P(z, t) travelling through the dielectric are transmitted through the
proximal plate and into the delay line. These pressure waves eventually arrive at the
piezo device and cause it to emit a voltage signal which can be sampled and stored
by a digitizing oscilloscope. The delay line is added so that the electrical transients
generated by Va(t) will have mostly decayed away by the time the desired, slower-
travelling, pressure-wave signal is recorded by the oscilloscope.

1.5 The PESAW-CLDP Integral Equation

Chapter 2 of this thesis derives a linear, first-kind Fredholm integral equation (IE)
model of the forward problem which expresses the response signal P(t) as the integral
over position z of the product of the source waveform Q(z) with a position-dependent
impulse response function H(z, t) that takes into account the propagation properties
of the dielectric. That is,



P(t) = j Q(z) H(z,t) dz (1.1)

Experimental factors such as the sample thickness I and the applied voltage have
been normalized out so that Q(z) has dimensions of inverse length, and p(t) and H(z, t)
have dimensions of inverse time. This normalization procedure is discussed in more
detail in sections 2.2 and 2.3. A one-page overview of the CLDP-PESAW connection
may be found in appendix G.

1.6 The Dominant Recovery

Setting aside, for now, a discussion of this normalization procedure and the methods
used for reducing the influence of systematic errors and noise upon the measured sig-
nal, the dominant method for mapping temporal signals to spatial waveforms simply
maps time to space via some constant velocity Cd. This dominant recovery Rd(Z) corre-
sponds to the assumption that acoustic waves inside the dielectric propagate without
attenuation or dispersion (see sections 2.5.6 and 2.5.7). The result

1 1 r"
Rd(z) = -p(-) = - .(f) exp(j 27rflc(f)) df (1.2)

Cd Cd Cd -oo

yields a perfect recovery provided that pressure waves passing through the material
are only delayed, not attenuated or dispersed, so that

H(z,t) = 6(t - -) Hd(z,t)
Cd

where 6(t) is the Dirac delta function. Such a material is called a delay-only material..
When it was found that pressure signals measured by the PESAW apparatus could

be interpreted to yield frequency f dependent estimates for the attenuation coefficient
a(f) and phase velocity c(f) of pressure waves travelling inside the dielectric (see
sections 4.11 and 4.12), the following question naturally arose: how can this information
be used to improve the time to space mapping algorithm?

1.7 CLDP Materials, Paths, and Transforms

The previous section ended by asking how information about a(f) and c(f) could be
used to improve the time to space mapping algorithm. This thesis' answer to that
question was found to be, in some sense, larger than the question that prompted it.
The result is that, if the dielectric is a CLDP material (Causal, Lossy, Dispersive,
Plane-wave; see the abstract, or chapter 2) then there exists an inverse CLDP IE that
exactly undoes the forward CLDP IE. The CLDP forward and inverse problem IEs



comprise an integral transform relation which relate spatial waveforms to temporal
signals, and vice-versa. These transform relations are unilateral in the sense that all
the spatial waveforms and the temporal signals treated must be causal, meaning each
must vanish for negative values of its respective argument (z or t).

Bear in mind that, owing to the uniqueness of the Fourier transform, the information
in each temporal signal could equally well be represented in the frequency domain.
That is, the time domain signal P(t) possesses the same information as the frequency
domain signal given by its Fourier transform 2(f). See appendix F for this thesis'
definitions of the Fourier and Laplace transforms.

Although PESAW data is collected in time, and although these CLDP transform
relations could be expressed as space-time transformations, the mathematical analysis
and computer implementation are simpler if the CLDP transform relations are thought
of as space-frequency transformations. From the CLDP transform point of view, func-
tions of space alone (waveforms) are considered to be direct-space functions whereas
functions of frequency alone or time alone (signals) are considered to be inverse-space
functions.

Because each CLPD material corresponds to a unique integral transform relation,
and because there are an infinite number of CLDP materials, this result amounts to the
discovery of an infinite number of transform relations. This set of transform relations
are called the CLDP transforms.

For example, the familiar Fourier transform relation is that member of the set of
CLDP transform relations which corresponds to the delay-only material characterized
by Hd(Z, t). That is: letting I -- oo, inserting the delay-only H(z, t) into the forward IE
expression for P(t), and then Fourier transforming both sides of the IE yields a scaled,
unilateral version of the Fourier transform. The dominant recovery Rd(z) yields a
scaled version of the inverse Fourier transform. See sections 2.5.6 and 2.5.7.

This thesis' demonstration of the correspondence between a CLDP material and its
associated transform relation utilizes the realization that the Fourier transform 2(f)
of a CLDP IE's output signal P(t) can be interpreted as the values of the Laplace
transform of the desired source waveform along the Laplace-plane CLDP path

&(f) = a(f) +j 27rf/c(f)

-Z(f)

where the familiar temporal Laplace transform variable s has been replaced by the
spatial Laplace transform variable C so that

5 = o + jW

S= a + jp

This correspondence between P(f) and the spatial Laplace transform Q(&) of Q(z)
is detailed in chapter 7. The result is that, if Q(IC) is the unilateral Laplace transform
of a causal Q(z), then



= Q( (f) + j 3(f) )

= Q( a(f) +j 27rf/c(f) )

For now, suffice to say that if the Fourier transform Q() of the source pressure wave-
form Q(z) exists, application of the Cauchy-Goursat theorem to the analytic [56, 57]
Laplace plane region between the j 3 axis and the CLDP path results in the realiza-
tion that the CLDP transforms merely exploit the independence of path of Laplace
transforms.

1.8 CLDP Inverse Transforms and the Darrell

The added import of CLDP materials, paths, and transforms follow from the requisite
exponential form of the Fourier transform H(z, f) of a CLDP material's temporally
causal impulse response function H(z, t). For these materials, the source waveform
recovery R(fm, z) given by inserting an abruptly bandlimited response signal P(fm, f)
into the inverse IE can be shown to be the convolution of the true source waveform
Q(z) with a waveform called the Darrell D(fm, z) which is determined solely by the
CLDP material's properties a(f) and c(f) (or simply K(f)), and the bandlimiting
frequency fi. This relationship is called "the Darrell property," and it is expressed
mathematically as

R(fm, z) = Q(z) * D(fm, z)

where the * denotes spatial convolution and "the Darrell" D(fm, z) is given by

D(fm, Z) = m{ exp(z C(fm)))
7rZ

= exp(z a(f)) sin(27rfmz/c(fm))
7rz

Note that the Darrell can be rewritten in terms of the two functions A and A of fm:

D(fm, z) = exp(z/A) sin(27rz/A)
7rz

E(f) = I(C(f) )



where

- c(f m )
fm

1
A = A(fm) -

The function A(fm) does not depend on the material's attenuation coefficient a(f);
the function A(fm) does not depend on the material's phase velocity c(f). And yet A
and A are not truly independent; the functions a(f) and c(f) are linked because they
must correspond to a causal material.

Raising the bandlimiting frequency to infinity results in the exact inverse transform.
Therefore the fm - oo limit of any CLDP material's Darrell must converge to the Dirac
delta function. That is, the Darrell is a delta convergent sequence in fm provided a(f)
and c(f) describe a causal material.

The form of D(fm, z) ensures this convergence provided that the quantities [a(f)]
and [f/c(f)] exhibit appropriate asymptotic behavior in the limit f -+ co. (see the
Technical Introduction's section titled The Darrell As Delta Convergent Sequence). If
some test function varies slowly over every region of width A < A then D(fm, z) acts
like a delta function for that test function, at least for z < A.

This result is consistent with the interpretation of the Darrell as a generalized
Gibbs-Dirichlet kernel: just as the usual Gibbs-Dirichlet kernel (a sinc function [53, 77])
converges to a Dirac delta function as the bandlimiting frequency approaches infinity,
so too does the Darrell. (see the Technical Introduction's section titled The Darrell As
Generalized Gibbs-Dirichlet Kernel).

But real PESAW data is sampled at a finite time step At which corresponds to
a finite f m = (2At)- 1 for which, generally, a(fm) > 0. Therefore an analysis of the
finite f m 'lossy Darrell' is of critical import if these CLDP transforms are to be used
to perform actual numeric recoveries. A numeric CLDP IE source waveform recovery
which uses analytic CLDP transform mathematics is called a Lyons recovery.

1.9 The Behavior of the Darrell

This thesis' analyses assume 0 < A< A < oc, in which case the Darrell has

* a central pulse - centered asymmetrically about z = 0
- with full width at first zero crossing (FWZC) = c(fm)/fm = A
- with height HD - lim{z - 0} [D(fm, z)] = 2fm/c(fm) = 2/A

- with area A = lim {( -+ I [ f D(fm, z)dz]
= 1= 1 FWZC H

2 D



- with full width at half maximum (FWHM) ! A/1.66

* sidelobes that - oscillate with wavelength A
- grow without bound for z > A

1.10 The Impact of the Darrell

Applying the Darrell property to a material with Nq spatially impulsive embedded
sources (excited by an electric field of short duration)

Nq

Q(z) = qn 6(Z - Zn)
n=l

yields the prediction that the recovery gleaned from noiseless PESAW pressure data
sampled and processed 'without numeric error' at a finite time step At (and therefore
finite f, = fM -- (2At)-1 ) will be given by

Nq

R(fm, z)= D(fm, -- z)

n=1

in the limit as At -+ 0 and (Nt At) -* oc, where Nt is the number of time samples.

1.11 The Need for Regularization

Applying this direct version of the Lyons recovery to real PESAW data acquired when

a(f,) does not vanish will result in a source waveform recovery that is desperately in

need of regularization.
That is, even if Q(z) consists of only a single source impulse the recovered waveform

will exhibit significant yet unphysical oscillations, especially for positions A deep or

deeper than that source impulse (see section 8.1.1). The reason is that the exp(a(fm)z)/z
factor in D(fm, z) grows without bound for large z. When multiplied by D(fm, z)'s os-

cillatory sin(27rfmz/c(fm))/wr factor, the result is a waveform that oscillates and grows

without bound for large z.

Even if Q(z) is comprised of only two source impulses separated by a width W - A,
the recovery of the deeper source may well be completely obfuscated by the oscillations

associated with the recovery of the shallower source. Even if A < W << A, the A

oscillations associated with the recovery of the shallower source will be detrimental to

the recovery of the deeper source. It follows that the recovery of a continuous charge

distribution will be troubled as well, especially if its width W > A.



1.12 Possible Regularization Methods

Because only a material model and a sampling rate are required to compute some
material's Darrell, and because the Darrell property involves only convolution of the
true source waveform with the Darrell, one possible solution to this problem would
seem to be simple deconvolution. Unfortunately, the Darrell has no Fourier transform
(because of its exp(z c(fm)) term). Seen another way, deconvolution is impossible to
implement because the Darrell, and consequently the entire recovery, are unbounded
and impossible to parse.

Further, any parsed approximation to the Darrell would tend to be sinc-like. Be-
cause the Fourier transform of a spatial sinc function vanishes for wavenumbers (inverse
lengths) greater than some cutoff wavenumber, the usual Fourier domain deconvolution
technique of division in the wavenumber domain is ill-posed. This is but a particular
instance of the general rule that deconvolution tends to increase noise. The decon-
volution problem is discussed in greater detail in the chapter titled Loss, Dispersion,
Deconvolution.

A second possibility is to use the fact that the usual frequency domain inverse
CLDP IE (2.31) can be expressed in the time domain (2.40) as a linear IE with the
measured P(t) as the source, and the fact that causality requires that the plate pressure
response to deeper charges arrive later than the response to shallower charges, to legit-
imize performing separate recoveries for temporally localized 'chunks' of the measured
pressure signal, then ensuring that the recovered waveform associated with each chunk
does not extend significantly deeper than it ought. A third possibility advocates spatial
filtering of the recovered waveform to explicitly suppress the troublesome characteristic
wavelength A.

Many useful linear, spatially independent spatial filters can be described via convo-
lution with a unit-area waveform which has its center of area at the origin. The 'boxcar
waveform' with height A-1 in the range -A/2 < z < A/2, and zero height elsewhere, is
the member of this class of waveforms which takes most obvious advantage of the fact
that the sidelobes go through one complete cycle in one A range, whereas the central
pulse has all positive area in the same range.

The result D.(fm, z) of convolving D(fm, z) with this boxcar waveform is

DA(fm, z) = [ID(f, + A/2)- ID(fm, Z- A/2) - [U(z + A/2) - U(z - A/2)]

where U(z) is the Heaviside unit step function and the integral ID (fm, z) of D(fm, z) is
expressed in terms of the exponential integral Ei(Z) [52]:



I(fm, z) - D(f,, z') dz'

i= E(z[a(fn)+j 2irfm /c(f m )]) - i(z[a(fm) - j 2irfm/c(fm))]

The result I, (f,, z) follows directly from the definition of Ei(Z) once the sin term
in D(fm, z) is expanded in terms of complex exponentials via Euler's identity. The unit
step component of DA(fm, z) arises from the fact that the exponential integral Ei(Z)
is not analytic at Z = 0. Ei(Z) has a branch cut along the negative real axis of Z.

The impact of the branch cut is that when computing the definite integral of
D(fm, z), the result gleaned via ID (fm, z) and the fundamental theorem of calculus

is unity greater than the result gleaned via numerical integration of D(fm, z) if the
integration range includes z = 0. Plots of D (fm, z) show that it exhibits a significant
reduction in sidelobe envelope when compared with the unregularized D(fm, z). Like
D(fm, z), D.(fm, z) oscillates and grows without bound for z > A.

In addition to standard (linear) wavenumber domain spatial filtering, the nonlinear
median filter may also be useful. The median filter operates upon samples in the
space domain by replacing the sample at position z, with the median value of all the
samples within some neighborhood zo,±L,/ 2 . The result is a filter that tends to remove
large (greater than 1/L,) wavenumber variations from the waveform, while preserving
edges. The median filter preserves slope. If Ln A, the procedure of integrating the
direct recovery, applying the median filter, then differentiating tends to remove the A
oscillations while preserving the central pulse.

It is also possible to decrease the sidelobe envelope of the recovery R(fm, z) by
averaging the results of a number of recoveries utilizing various values of fm (denoted
fi to distinguish them from the constant fm) where all the f 's are less than or equal
to fm. The basic idea is that the central pulses will tend to add whereas (hopefully) the
oscillating sidelobes will tend to cancel. Consider averaging the result of two Darrells:
one with f', = f m and one with fm = f m /2. The result

D(fm, Z) + D(f/2, z) fm 3D2 (fm, ) z) = cos(2r-z/c(fm)) D(- fm, z)2 4 4

corresponds to an effective Darrell whose sidelobes decrease (via the slowly varying cos
term) in the vicinity of its central pulse, which is about 33% wider than D(fm, z)'s
central pulse. However, because the cos term is a continuous periodic waveform with
range (-1,1), the sidelobes still oscillate everywhere and grow without bound for z > A.

The characteristics of the recovery given by averaging all the f" 's between f m /2
and f m is determined by the effective Darrell

_m1 ) c(f m ) sin(ir fz/c(fm)) 3
D(fm, z) D / (fm I z) df'= fm /2 2 D(- f,)



which has a central pulse width that is still only about 33% wider than D(fm, z)'s
central pulse, but which has a sidelobe envelope that is smaller than D(fm, z)'s by a
factor of at least order z over all space. Like D2(fm, z), Do(fm, z)'s sidelobes oscillate

everywhere and grow without bound for z > A. But perhaps the slower growth rate
of the sidelobe envelope could be used in conjunction with one of the other possible
regularization methods to yield an acceptable overall recovery.

1.13 Spatially Dependent BLG (SDB) Filtering

Although the regularization possibilities mentioned in the previous section have shown
some promise, they have not been found to be as satisfying and straightforward to
implement as operating upon a P(f) which has been lowpass filtered via B(f,, f), the
filter known as Blackman's Lucky Guess (BLG; see appendix B):

2(f) -+ k(fc, f) - P(f) B(fc, f)

This technique has been found to regularize the noiseless Lyons recovery and it
removes high frequencies which often have, at least in the practical PESAW context,
a low signal to noise ratio. Its result is called the SIB recovery (Spatially Indepen-
dent Blackman) and should not be confused with the spatially filtered recovery which
operates upon the recovered waveform.

This SIB recovery, although satisfactory in terms of regularization alone, has demon-
strated the less-than-optimum property that the full width at half maximum of recov-
ered source impulses are roughly independent of source position - intuition suggests
that the FWHM of shallow-source recoveries ought to be smaller than that of deep-
source recoveries. This intuition follows from the realization that pressure waves gen-
erated by deep sources have to travel through more attenuative, dispersive material
than do the pressure waves generated by shallow sources.

Theoretically, in the absence of noise, these deeper sources should be equally as
'recoverable' as shallow sources. But practically, the finite noise level in the mea-
sured signal renders the more-attenuated signals generated by arbitrarily deep sources
indistinguishable from the measurement noise.

It is possible to implement a modification of the SIB recovery in which the cutoff
frequency f, of the BLG filter B(fe, f) used on P(f) is a function of z:

(f (z, f) P (f) B(f (z), f) (1.3)

This technique is called spatially dependent BLG (SDB) filtering. The quantity fe(z)
is called the SDB function; see sections 4.14.2 and 4.15.4, or appendix B.

It has been found that the SDB filtered recovery can be made to yield a regularized
recovery for which the FWHM of shallow-source recoveries is smaller than that of
deep-source recoveries.



There is no inherent tie between the concept of spatially dependent filtering and
the BLG filter. Future research may even show that the BLG filter should not be used

for Lyons recoveries because its extreme rejection of frequencies above fc may not be

necessary, and may tend to decrease resolution.
Nevertheless, SDB filtering is the only regularization method investigated in this

thesis. The SDB filtering method was chosen as the workhorse regularization scheme in
this thesis because the BLG filter has an historic association with the PESAW method,
it is simple to implement, and it gives reasonable results.

1.14 The Lyons Recovery

A Lyons recovery is defined as the process, or the result, of numerically implementing
the analytic CLDP inverse transform relation (2.31) defined by some material's prop-
agation coefficient K(f). There are, therefore, many possible implementations of the
Lyons recovery. But unless noted otherwise, in this thesis 'the Lyons recovery' refers
to the SDB filtered Lyons recovery given by (4.60).

As defined above, the Lyons recovery does not pertain particularly to the PESAW
recovery of the charge waveform Q(z) from the measured waveform V(t). Rather, the

Lyons recovery pertains to the CLDP inverse source problem of mapping the generic
frequency-domain response signal k(f) to the generic space-domain source waveform
Q(z). But as section 2.2 shows, the Lyons recovery is the crux of the PESAW recovery
advocated by this thesis.

With this definition, the Lyons recovery is applicable to problems beyond the PE-
SAW context. It is possible to validate the best-case efficacy of the Lyons recovery
by synthetically generating a (to within numerical errors) noiseless P(t) via the stan-
dard model (see section 6.2.2) for the propagation coefficient Kp(f) of polyethylene,
and then performing a Lyons recovery upon the fast Fourier transform 1(f) of the
synthetic, sampled P(t). The following section compares the Q(z)'s gleaned from this
best case P(t) by the dominant recovery, and by the SDB filtered Lyons recovery.

As defined in (1.2), the dominant recovery Rd(z) does not use P,(f) whereas the
Lyons recovery does. Similarly, Rd(z) does not use filtering whereas the Lyons recovery
does. The approximately noiseless property of the data therefore gives the dominant
recovery an unrealistic advantage for z 0 where the effects of attenuation and dis-
persion have not had much distance over which to accumulate. Over larger distances,
however, the Lyons recovery's use of K,(f) will start to overcome the loss of information
(in exchange for regularization) imposed by its use of SBD filtering.

1.15 Lyons Recovery vs Dominant Recovery

The following figure offers a comparison of the best-case SD filtered Lyons recovery
R(z) to the best-case dominant recovery Rd(Z) for a source waveform comprised of
ten impulses placed at half-millimeter increments, from z = 0.25 mm to z = 4.75



mm, inside a slab of what this thesis has dubbed 'standard polyethylene' (see section

6.2.2). The so-called standard model of polyethylene ultimately amounts to a specific

{a(f), c(f)} pair. The specific {a(f), c(f)} pair selected for the model called 'standard

polyethylene' was chosen because its values are typical for polyethylene.
This standard model of polyethylene (PE) will be widely used throughout this

thesis. It will be introduced in the chapter titled Causality And Materials. This

placement of sources is dubbed the standard impulsive source waveform. In this section,
each of the sources is a spatial impulse, or Dirac delta function 6(z). The Dirac delta

function is the limit of a (normalized) Gaussian as the Gaussian's width vanishes. Later

in this thesis, this standard source waveform will employ Gaussians of nonvanishing
width.
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Figure 1.2: Comparison of the noiseless Lyons recovery R(z) to the noiseless dominant
recovery Rd(Z) for the standard source waveform embedded within standard polyethy-
lene.

Note that the SDB filtered Lyons recovery has been denoted R(z), not R(fm, z). The

fm in R(fm, z) has been dropped for two reasons. First, because Blackman filtering
k(f) does not produce an abruptly bandlimited (ie ideal 'square-window' lowpass)
signal; rather, Blackman filtering 2(f) effects a gradual decrease in P(f)'s frequency
content, from total inclusion at the zero frequency to total rejection at the cutoff
frequency f, and above. Second, the value of f, used in the spatial filtering algorithm
depends upon the position z; there is no one special frequency associated with SDB
filtering so the fm in R(fm, z) has been dropped. These recoveries are called 'best case'
because the same standard model of polyethylene was used in both the forward and
inverse CLDP IEs, and no noise was introduced into p(f).

Henceforth R(fm, z) will denote the Lyons recovery obtained from a R(f) that has
been abruptly bandlimited at fm (fin a constant independent of position), and R(z)
will denote an SDB filtered Lyons recovery. Unless otherwise noted, the fe(z) used to
implement this thesis' version of the Lyons recovery is 'the standard fe(z)' depicted in



appendix B. Note that SDB filtering reduces to spatially independent filtering if fe(z)
is a constant fc, and that SDB filtering reduces to no filtering if f' = oo00.

The material model and source placement used here is consistent with this thesis'
goal of establishing the efficacy of the Lyons recovery to PESAW charge recoveries
of up-to-five mm samples of PE. Explicit presentation of P(t) has been omitted here
because the Rd(z) presented in Figure 1.2 is simply a version of P(t) which has been
scaled by the velocity Cd = 2.035 mm/ps. A plot of this P(t) can be found on page 45
in Figure 2.2.

1.15.1 skewness

Returning to Figure 1.2, note that the Lyons recovery is clearly better than the dom-
inant recovery in terms of both the skewness of the recovered source impulses and
in terms of their width. As for skewness, the recovered sources determined by the
Lyons recovery are all nearly symmetric and have, therefore, nearly vanishing skewness
whereas the recovered sources determined by the dominant recovery all have significant
positive skewness (they all have long 'tails' extending to the right).

1.15.2 width

As for the width of the recovered source impulses, note that the z > 2.5 mm source
impulses recovered by the dominant method fail to have a region between them in which
the recovery vanishes, whereas all the source impulses recovered by the Lyons method
do have a nearly-vanishing recovery region separating them. More quantitatively, figure
1.3 depicts a comparison of the position dependent FWHM of the source impulses
recovered via the Lyons method (FWHM,(z)) to the FWHM of the sources recovered
via the dominant method (FWHMd(z)).

Note that FWHM,(z) < FWHMd(z) for all z > .75 mm. The small width of the
z < .75 mm source impulses recovered by the dominant method is due to the fact that
no filtering was utilized to produce Rd (Z)

The small width of these recovered source impulses is an artifact of the known
noiselessness of the data - when operating upon real (noisy) data the dominant recov-
ery would presumably employ filtering, which would surely and significantly increase
especially the small-z FWHMd(Z). It is encouraging that the Lyons recovery, which
employs a significant degree of filtering, fares as well as it does when compared to the
unfiltered Rd(z).

1.15.3 position

Closer inspection of the data depicted in figure 1.2 shows that the Lyons recovery
betters the dominant recovery in terms of positional accuracy as well. The value
Cd = 2.035 mm/ps was chosen to ensure that the dominant recovery's placement of the
peak of the 4.75 mm source was exact. Given this constraint, the root-mean-square
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Figure 1.3: Comparison of the position dependent FWHM of the sources recovered via

the Lyons method to the FWHM of the sources recovered via the dominant method

for the standard impulsive source waveform embedded within a material described by
the standard model of PE

error (RMS) in the dominant recovery's placement of the ten source impulses is 16 pm,

whereas the Lyons recovery's RMS placement error was just 1 pm.

1.15.4 area

The Lyons recovery bettered the dominant recovery in terms of the raw area of the

recovered sources as well. Integrating between -0.25 and 5.25 mm, each raw recovered

area fell short of the expected area of ten; the Lyons recovery yielded an area of 9.91

whereas the dominant recovery yielded an area of 9.74.

But note that actual PESAW recoveries are scaled via a priori knowledge of the

quantity of surface charge on the capacitor plates (see the chapter titled The PESA W

Recovery). It is, therefore, much more important to the PESAW recovery that the area

of a recovered source impulse be independent of position than that the unscaled total

area be accurate.
The result of calculating the RMS deviation in the area of each source impulse,

as determined by integrating ± 0.25 mm around the known position of each source,

results in the realization that the dominant recovery has an RMS deviation of 1.57 %

about its mean whereas the Lyons recovery has an RMS deviation of only 0.15 % about

its mean.
In short, for this noiseless numerical experiment, the Lyons recovery is more suc-

cessful than the dominant recovery in terms of the skewness, width, placement, and

area of the recovered source impulses. The Lyons recovery of area betters that of the

dominant recovery both in terms of raw recovered area, and in terms of the constancy

of the area of each recovered source impulse.



Please remember that the data used in this numerical experiment was as noiseless
as a computer can generate, and that the Lyons recovery used filtering (which would
reduce high-frequency noise if it existed) whereas the dominant recovery did not. The
only category in which the dominant recovery bettered the Lyons recovery was in the
recovered width of sources placed very close to the receiving transducer. These gains
would not be so great if noise were included in the data and/or if filtering were imposed
on the data. The influence of noise will be the subject of the chapters titled The Lyons
Recovery And Noise and Experimental Recovery.

This discussion of the superiority of the Lyons recovery as compared to the domi-
nant recovery is buttressed in the following chapter, where the self consistency of the
dominant recovery's placement of recovered sources is questioned. Note that the Rd(z)
used in this chapter is denoted Rd(z) in the following chapter.

1.16 Preview of Experimental Results

Section 9.2 (The Double-Sided E-Beam Experiment) focusses on an 1 = 2.121 mm slab
of polymethylmethacrylate which was bombarded with a dose of 0.35 MeV electrons on
June 3 1997. The dosage was designed to deliver 200 nC/cm 2 of charge. This irradiated
sample was then set aside until June 28'th. Between June 28'th and June 30'th this
sample was subjected to the PESAW experimental procedure. Many PESAW signals
were measured; some with the DC voltage bias Vo = -2 kV, some with Vo = +2 kV,
and some with Vo = 0. The temperature was held constant at 220 C throughout. See
section 4.3 for an explanation of the meaning of Vo; the current section is only a
preview.

Four of the signals were collected with the sample in the EP configuration (ie: the
sample was mounted with the proximal plate attached to the side of the sample through
which the bombarding electrons entered) and four of the signals were collected with the
sample in the ED configuration (ie: the sample was mounted so that the irradiating
electrons entered through the distal plate).

Figure 1.4 (which is identical to page 196's figure 9.22) depicts the bulk region

(ie: all but the plate region) of the eight charge recoveries corresponding to the eight
distinct measured PESAW signals. This plot was included here because whereas these
eight recoveries differ in terms of mounting orientation (EP and ED, which 'look into'
the sample from opposite sides) and applied DC voltage Vo, these eight recoveries agree
on many of the details of the embedded charge distribution.

That is, all eight recoveries agree that bombarding a sample of PMMA with - 0.35
MeV electrons, and then allowing the embedded electrons to 'settle' for , 25 days,
results in a charge distribution dominated by a negative pulse which has a peak value
occuring at z = 1.23 mm (ie: 1.23 mm from the plane of entry of the bombarding
electrons) and which has a width (FWHM) - 0.26 mm.

The eight recoveries also agree on some of the finer details of the structure of
the charge waveform embedded within this irradiated sample, eg: there is a region of
positive charge in the region between, say, 1.55 and 1.8 mm from the point of entry.
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Figure 1.4: Recovered bulk charge distributions corresponding to eight distinct PE-

SAW bulk signals. Solid lines correspond to the four signals acquired with the sample

mounted in the EP configuration; dotted lines correspond to the four signals acquired

with the sample mounted in the ED configuration.

Further, all eight recoveries roughly agree on the scale of the embedded charge waveform

- the peak value of the charge waveform is - -13.6 ± 0.6 nC/ (cm 2 mm). The fact that

these PESAW recoveries seem to be largely independent of mounting orientation (and

Vo) confirms the efficacy of applying the Lyons recovery to the required mapping of

measured PESAW signals to charge waveforms.

1.17 Generality of the Lyons Recovery

The mathematics behind the Lyons recovery should be applicable to a class of prob-

lems much larger than the polymeric PESAW inverse-source problem. At the very

least, the mathematics invoked will apply not only to polymer dielectrics, but to any

homogeneous dielectric in which the propagation of plane pressure waves is governed

by the wave equation. Further, these mathematics should also prove useful for im-

proving the localization of defects in the field of acoustic emission, and for locating

submarines/airplanes emitting active sonar/radar. Insofar as the earth can be mod-

elled as homogeneous with respect to shockwave propagation, these mathematics could

prove useful for locating, and quantifying the strength of, earthquakes. In the field of

power transmission, these mathematics should prove useful in determining the strength

and location of disturbances from the transients they propagate.

In short, any field which seeks to determine the location and strength of a (possibly

distributed but, if so, necessarily simultaneous) source which can only be sensed after
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propagating through a causal, lossy, dispersive, plane-wave (CLDP) medium may well
benefit from these inverse-source mathematics.

The downside of the Lyons recovery as applied to these other fields is that both the

time of application, and the shape, of the pulsive, simultaneous stimulus signal must

be known so that their influences can be deconvolved out of the measured response

signal. Error in the stimulus time leads predominantly to error in the position of

recovered features; error in the stimulus shape leads predominantly to error in the

shape of recovered features. In the PESAW context, the stimulus time and shape
are well enough known that the Lyons recovery gives recoveries that are at least as

positionally accurate and well resolved as the dominant method's recoveries.

1.18 Charge Recoveries: Motivation and Review

Electrical discharges in solid dielectrics are often abetted by spacecharge formation

[1, 2, 3, 4, 5, 6, 7, 8]. The problem is serious: "picture irradiating [a dielectric device

on a satellite] with energetic electrons [from the solar wind] that can penetrate the

dielectric and actually remain there. They deposit a charge there. So you can have

this charge buildup, and if it gets high enough, the center conductor could arc to the

shield and burn a hole right through the shield material. This phenomenon of deep

dielectric charging is thought to be responsible for satellite upsets [98]."

Spacecharge formation was also suspected as a possible contributing factor to

polymer-dielectric power cable breakdown, which can be disruptive and expensive to

fix. Although the charging mechanism itself is less clear, it's existence is manifest. The

increase in breakdown voltage with polymer-dielectric cable thickness was found to be

less than 'charge-free' electrostatic theory predicted. It was realized that charges inside

the cable modify the otherwise divergence-free electric field there, and can possibly in-

crease it so that it has a value greater than the dielectric's breakdown limit somewhere
within the dielectric. It seemed prudent to develop a charge monitoring system to

investigate the relationship between spacecharge buildup and electrical breakdown.
Researchers have developed a suite of methods for the nondestructive spacecharge

profiling of dielectrics. There are five main methods currently in vogue: the Kerr

Electro-Optic (KEO) method [2, 9], the Thermally Stimulated Current (TSC) method
[10, 11, 12], the Thermal Pulse (TP) method [3, 12, 13, 14, 15], the Pressure Wave

Pulse (PWP) method [3, 4, 5, 12, 13], and the Pulsed Electro-Acoustic (PEA) method,
referred to here as the Pulsed Electrically Stimulated Acoustic Wave (PESAW) method

[1, 3, 6, 7, 8, 16, 17, 18, 19, 20]. These methods allow the monitoring of spacecharge

buildup over time, so that the link between charge formation, migration, and break-

down may be investigated.

1.18.1 Non-PESAW Methods

The KEO charge recovery method utilizes the fact that Kerr media exhibit birefringence
(polarization dependent phase velocity) in the presence of an applied electric field. The



KEO method uses a three-step procedure to determine the charge distribution which
generated the applied electric field - (1) transmit a LASER beam along various paths
through the dielectric under test and measure the phase difference between the beam's
two polarizations; (2) based on the measured phase shift vs path data, reconstruct
what the electric field distribution inside the dielectric must be; (3) use Gauss' law
to relate the reconstructed electric field to the desired charge distribution. The KEO
method is applicable to optically transparent Kerr media.

The TSC method is applicable to dielectrics with a temperature dependent conduc-
tivity. The dielectric is sandwiched between two capacitor plates, and the short circuit
current is measured as the temperature is slowly varied. The impetus of the measured
current is the movement of charges within the dielectric as they arrange themselves
in accordance with the internal field and the time-varying conductivity. The image
charges on the capacitor plates must change if the moment of the internal charge dis-
tribution changes. Information about the charge distribution within the dielectric is,
therefore, embedded in the resultant current versus time and temperature versus time
signals.

The TP and PWP methods are similar to the TSC method in that the charge versus
position information is obtained by measuring the short-circuit current of a capacitor
containing the dielectric under test. But in the TP and PWP methods the impetus for
charges to move from one plate to another is the application of a pulse (thermal for
TP; pressure for PWP) at one of the capacitor plates.

As the effects of these applied pulses move through the dielectric (by diffusion for
TP; by wave-propagation for PWP) they distort various time-dependent regions. That
is, they redistribute the charges in the dielectric (by thermal expansion for TP; by the
expansion and compression which is the sine qua non of a propagating pressure pulse
for PWP), thereby modulating the image charges which must appear on the capacitor
plates and generating the measured signal. If the PWP method's pressure pulse is
generated piezoelectrically, this method is sometimes called the PIPP method (Piezo-
Induced Pressure Pulse); if it is generated by a laser pulse, this method is sometimes
called the LIPP method (Laser-Induced Pressure Pulse).

1.18.2 The PESAW Method

The Pulsed Electro-Acoustic (PEA) method is referred to here as the Pulsed Electri-
cally Stimulated Acoustic Wave (PESAW) method to avoid the impression that this
method relies on some direct (ie: field to field) electro-acoustic process. As the follow-
ing discussion will show, this method relies instead upon a time varying electric field
launching a travelling pressure wave inside the dielectric material by exerting a time
varying force upon the charges embedded within the dielectric.

Although the time varying electric field is the impetus for the resultant travelling
pressure wave, the interaction between the electric field and the pressure field is not
direct. The PESAW method requires charge as an intermediary between the electric
and acoustic fields, and therefore should not strictly be termed electro-acoustic.



The PESAW method is similar to the TP and PWP methods in that some kind
of pulse is applied to a capacitor containing the dielectric under test. In the PESAW
method the applied pulse is the voltage signal imposed between the two capacitor
plates. The temporally pulsive electric field distribution generated inside the dielectric
by the pulsed voltage signal interacts with whatever charge distribution may exist there,
generating a temporally pulsive force field distribution according to the Coulomb force
law F = Q E.

Because the impetus of the force field is the electric field, and because the electric
field is driven by a single voltage source, if the QSA holds then the space and time
dependence of the force field F(z, t) must be separable into the product of a waveform
and a signal: F(z, t) oc Q(z)Ez(z)Va(t) (see section 1).

The stimulus-independent electric field distribution Ez(z) is a priori determinable
from the experimental configuration. Further, Va(t) is the (known) applied signal, so
knowledge of F(z, t) amounts to knowledge of Q(z); dividing F(z, t) by the product of
Ez(z) and Va(t) yields a quantity proportional to the desired charge waveform Q(z).
The problem reduces to that of determining F(z, t). These procedures are actually
implemented in the frequency domain; see The PESAW Recovery for details.

The current state of PESAW inverse-source theory requires that the internal charge
distribution depend solely upon the distance from the capacitor plates. For a planar
sample the surfaces of constant distance are planes; for a coaxial sample the surfaces of
constant distance are cylinders. In either case the three dimensional charge distribution
can be described by a one-dimensional function called the charge waveform Q(z). The
spatial dependence of the force field is called the source (pressure) waveform Q(z).

Because the strength of the pressure waveform is time-varying it launches a trav-
elling pressure wave which propagates through the dielectric, eventually reaching one
of the capacitor plates where its influence can be detected as a plate pressure signal
by a pressure to voltage transducer. PESAW-CLDP theory currently requires that
the spatio-temporal evolution of the pressure wave be governed by the familiar one
dimensional wave equation.

Because the temporal forcing function is assumed impulsive the wave equation
almost never has a forcing term. The wave equation has a forcing term only for t - 0,
when the excitation voltage signal is applied. Therefore the wave equation is almost
always homogeneous, and its short-lived forcing term can be dealt with as a simple
change of initial conditions: there is no pressure waveform for negative times, and the
pressure wave at any positive time is given by propagating the initial (t = 0+ ) force
distribution forward according to the homogeneous wave equation.

Speaking roughly, charges nearer to the transducer launch acoustic waves which
arrive at the transducer earlier than charges which are farther from the transducer.
If the dielectric did not attenuate or disperse acoustic waves propagating through
it, and if the pressure to voltage transducer's impulse response function were itself
impulsive, then the measured plate pressure versus time signal could, to within a scale
factor, be mapped directly to a charge versus position waveform via the frequency-
independent velocity of acoustic waves in that dielectric. The problem is that dielectrics



do generally attenuate and disperse acoustic waves. This direct time-to-space mapping
algorithm therefore yields only an approximate solution, formally valid only when loss

and dispersion are negligible.

1.19 Thesis Outline

This thesis has two related goals: to introduce and establish the novel CLDP mathe-

matics in their own right, and also to explain how to use the proposed CLDP mathe-

matics to perform charge recoveries from measured PESAW data gleaned from i 5 mm

polymer samples. The procedure, or the result, of numerically implementing the inverse

CLDP IE is dubbed the Lyons recovery. The current chapter chapter 1 Overview

merely outlines the central topics, goals, and concerns that will be addressed elsewhere

in this thesis.
The following chapter chapter 2 Technical Introduction is called an introduction

not because its level of discourse is introductory but because, except for one major

exception, it simply states and comments upon this thesis' central results but does not

actually prove or implement them.
Chapter 2's 'one major exception' is the derivation of the PESAW forward problem

IE which shows it to be a CLDP IE. The fact that the PESAW IE is a CLDP IE is

this thesis' unifying concept. Without this tie, the novel CLDP transforms would have

no particular connection to the PESAW problem.
Chapter 2 therefore begins with the derivation of the PESAW-CLDP IE. It then

places the pressure signal to source waveform mapping within the PESAW context.

That is, chapter 2 offers an overview of the relation between the actual measured

PESAW voltage signal, the CLDP inversion mathematics, and the final mapping to

the desired charge waveform. This relationship is examined in more detail in chapter

4. One important point made in chapter 2 is that the actual measured PESAW signal

is measured via a finite bandwidth pressure to voltage transducer, and therefore the

measured signal must be deconvolved with respect to the transducer's impulse response

to arrive at an estimate to the impingent pressure signal.
Chapter 2 also points out the close relationship between delay-only materials (which

exhibit no loss or dispersion), the dominant recovery, and the (unilateral) Fourier trans-

form. It also introduces the Darrell property of the inverse CLDP IE, and establishes

the Darrell as a generalized Gibbs-Dirichlet kernel (ie: it establishes the Darrell as the

product of a sinc function and an exponential).

Chapter 3 Loss, Dispersion, Deconvolution derives the transfer function and im-

pulse response function of a CLDP material from the assumption that waves propagate

according to the one dimensional wave equation. Chapter 3 also discusses the problem

of frequency domain deconvolution within this context. That is, chapter 3 addresses

the problem of how to determine the signal that was input on one side of a slab of

CLDP material given the signal that was output on the other side of the slab and the

propagation properties of the slab.



A convolution integral is a special type of linear, first-kind Fredholm IE - one where
the value of the kernel H(z, t) depends only on the difference (z - t/C) where C is some
velocity. Therefore the generic CLDP IE is not a convolution (the case of a delay-only
material is the sole exception; see section 1.6) so the deconvolution problem is not the
same as the problem of solving a CLDP IE.

And yet the deconvolution problem has a place in this thesis. One reason is that
deconvolution is required to map the measured voltage signal V(t) to an estimated
pressure signal P(t) which may then be submitted to the inverse CLDP IE. Another
reason is that value of the recovery at any one position zo can be expressed in terms
of deconvolution with respect to H(zo, t).

The objective of Chapter 4 The PESAW Recovery I is to describe how specifically
to perform a PESAW recovery, which includes both the recovery of the required approx-
imate material model {(f), E(f)} and the application of this model to the ultimate
goal of recovering the approximate charge waveform Q(z).

Chapter 5 Inverting Linear, First-Kind Fredholm IEsI gives an overview of the
known methods for inverting linear, first-kind Fredholm IEs. The CLDP IEs are a
subclass of this set of IEs.

Chapter 6 Causality And Materials Idiscusses the frequency domain implications
of the requirement that the material impulse function H(z, t) must yield a causal func-
tion of time for any positive z. Chapter 6 first introduces the Kramers-Kronig relations,
which relate the real and imaginary parts of the Fourier transform of H(z, t). Chapter
6 then introduces the nearly-local Kramers-Kronig relations, which relate the real and
imaginary parts of IC(f) for a particular subclass of causal materials.

Chapter 6 also introduces the Paley-Wiener criteria, which give some conditions
Re{LC(f)} = a(f) and 9 m {LC(f)} = 0(f) = 2rf/c(f) must satisfy if C (f) is to yield
a causal H(z, t). The Paley-Wiener criteria constrain the s --+ o0 asymptotic behavior
of ~(s) = -1 C(s/(j2rx)).

Chapter 6 points out that any analytic -y(s) with acceptable s -- oo asymptotic
behavior must yield a causal H(z, t) provided 2(S) is analytic throughout the entire
right half plane (RHP, inclusive of j w axis). These results help determine whether
some proposed model for (I(f) will yield a causal H(z, t).

The generic models for the polymeric, transmission line, and Bromwich materials
are introduced in this chapter, as are their standard models (polyethylene, skin effect,
and standard Bromwich, respectively). See appendix C for plots of these standard
materials' 1 mm impulse response functions H(lmm, t), as well as their attenuation
coefficient a(f) and phase velocity c(f) curves. Note that, in this context, 'standard'
means standard only within this thesis' context; there is no globally accepted standard
brand or model of polyethylene, for example.

Chapter 7 CLDP TransformsI presents, and attempts to validate, this thesis'
novel mathematical results. Chapter 7 starts with 'the principal insight' which con-
cerns 'CLDP paths.' The principal insight is that the temporal output of a CLDP IE
can, after Fourier transformation, be interpreted as the values of the spatial Laplace
transform of the input source waveform along what has been dubbed a CLDP path.



Appendix D offers a graphical depiction of the principal insight.
It is then shown that the Bromwich Laplace transform inversion path is identical

to the CLDP path corresponding to a particular type of CLDP material (dubbed,
not surprisingly, a Bromwich material). This thesis proposes that implementing the
generic Laplace transform inversion integral along a CLDP path will result in the
desired source waveform provided the desired source waveform itself satisfies certain
material-dependent conditions.

The forward CLDP IE maps waveforms to signals; it defines a material-dependent
forward integral transform relation. The proposed inverse CLDP IE maps signals to
waveforms. The question is: for what class of CLDP materials and waveforms does
the proposed inverse CLDP IE 'undo' the forward CLDP IE? (Using this terminology,
the Fourier synthesis integral would be said to 'undo' the Fourier analysis integral.)
This thesis proposes that all CLDP materials (not just Bromwich materials) have this
property, and that each CLDP material defines a CLDP integral transform relation.

As a practical matter, any implementation of the proposed inverse CLDP IE will
be bandlimited because experimental signals can only be sampled at a finite rate. Two
sections of chapter 7 (The Darrell Property Of The Inverse CLDP IE and Deriving The
Darrell) yield surprising results concerning the bandlimited inverse CLDP IE: given a
pure but abruptly bandlimited signal, the recovered waveform must be the convolution
of the true source waveform with a material-dependent generalized Gibbs-Dirichlet
kernel (sinc function) dubbed the Darrell.

In Validation of the Inverse CLDP IE the class of CLDP transformable waveforms
is determined implicitly via the CLDP criterion, which states that a particular Laplace
plane integration path must vanish in a particular limit. In The Darrell As Delta
Convergent Sequence the Darrell property and the sinc-like form of the Darrell itself is
used to examine the class of CLDP transformable waveforms.

The goal of chapter 7's final section is numeric verification of the Darrell property,
and the shape of the Darrell, as descriptors for the noiseless but abruptly (ie: subjected
to an ideal, square window lowpass filter) bandlimited inverse CLDP IE. This final
section of chapter 7 verifies the Darrell property, and the shape of the Darrell, for this
thesis' three standard CLDP materials (polyethylene, skin effect, and Bromwich).

Chapter 8 The Lyons Recovery Applied To Standard Polyethylene starts by fo-
cussing on the standard impulsive source waveform: ten unit-area Dirac delta functions
of source placed at half-millimeter increments, from z = 0.25 mm to z = 4.75 mm.
First it is shown that the unregularized Lyons recovery is unacceptable due to the
Darrell's A oscillations. Then it is shown that lowpass filtering the measured response
signal before executing the Lyons mapping from frequency to space results in an ac-
ceptable recovery. Lowpass filtering is implemented via the filter B(f0 , f) known as
Blackman's Lucky Guess (BLG; see appendix B).

The 'acceptable recovery' described above is dubbed the SIB recovery (spatially
independent Blackman) because the cutoff frequency f, of the BLG filter B(fe, f) used
was not a function of space. Although acceptable, this SIB recovery is not optimum
because it does not take advantage of the fact that the signals emitted by shallower



sources require less amplification than do signals emitted by deeper sources and are

therefore more stable (they are also relatively less inclusive of the often noisy higher
frequencies).

It is then shown that the SDB recovery (spatially dependent Blackman), which uses

a spatially dependent BLG cutoff frequency function (aka: SDB function) fe(z), can be

made to more accurately resolve shallow sources than can the SIB recovery (assuming
the degree of A-oscillation supression is held constant).

The efficacy of the SDB recovery is also shown for the case of distributed (ie: non-

impulsive) sources via the standard Gaussian source waveform, which places Gaussian
distributions of source at those positions formerly occupied by delta functions of source.

The z = 0.25 mm Gaussian source is thin (FWHM = 36.32 pm) and has area -1;
the z = 4.75 mm Gaussian source is thick (FWHM = 95.49 pm) and has area +1. The

standard Gaussian source waveform is defined by repeating this binary base-pair five

times. This definition of 'thin' was determined as the width of the standard recovery
of a z = 0.25 mm delta function of source; this definition of 'thick' corresponds to the
standard recovery of a z = 4.75 mm delta function of source.

Because the author was unable to analytically calculate standard polyethylene's
impulse response Hp(z, t) corresponding to even an impulsive source (much less a dis-
tributed Gaussian source) each Gaussian source is actually modelled via closely spaced
(2 nm) delta functions of source. (With 1 equal to some specific value of z, this thesis
proffers modelled versions Hp[l, ti] of H(l, t) calculated by inverse fast Fourier trans-

forming h[fk] - exp(-l K~(fk)))

Chapter 8 then proceeds to show that this thesis' standard Lyons recovery sub-
sumes the dominant recovery. That is, it will be shown that the SIB recovery can be
regularized (at the expense of increased width and skewness) by relaxing (modulating)
the model used for the recovery (ar(f) and c,(f)) smoothly (in terms of width and ap-
parent skewness) between the limits set by the standard model for polyethylene (ap(f)
and cp(f)) and the delay-only model (ad(f) = 0 and cd(f) = Cd).

The final section of chapter 8 shows that the SDB regularized Lyons recovery can
be relaxed in a similar manner, and that the recovery (measured in terms of recovered
localized area, recovered peak position, and recovered source pulse full-width-at-half-
maximum) is most successful when the model used in the forward CLDP IE (to produce
the synthetic response signal) is also used in the inverse CLDP IE (to map the synthetic
response signal to an approximation to the original waveform).

Although the following result was not confirmed quantitatively (except indirectly,
via analysis of the recovered localized area), the final section of chapter 8 also shows
that the troublesome skewness evident in the dominant recovery is ameliorated when
the model used in the inverse CLDP IE is the same as the model used in the forward
CLDP IE.

Chapter 10 Experimental Recovery ties the thesis together by performing charge
recoveries from four PESAW experiments. The goal is to establish the Lyons recovery
as a reliable means for processing measured PESAW signals.

Chapter 11 Conclusions And Surmises draws conclusions about the CLDP trans-



form theorem, and also about the applicability of the Lyons recovery to the interpreta-

tion of measured PESAW signals. It will also make surmises about (1) how the Lyons
recovery might be extended to apply to inhomogeneous materials and (2) how other

(non-SDB) regularized Lyons recoveries might be implemented.



Chapter 2

Technical Introduction

This thesis has two related goals: one mathematical, one practical. The practical
goal is to describe, and verify numerically, a novel signal processing algorithm which
subsumes the dominant time-to-space charge recovery algorithm currently in vogue
among PESAW researchers (see section 1.6). The mathematical goal is to justify this
novel algorithm in its own right.

The novel mathematics are dubbed 'CLDP transform theory.' The novel signal pro-
cessing algorithm is dubbed 'the Lyons recovery.' This separation of the mathematics
from the processing algorithm it advocates allows application of the Lyons recovery
to cases where, strictly, the application of CLDP transform theory is either (A) not
known to be valid or (B) known not to be valid. These novel mathematics propose
both a 'forward' operator dubbed the CLDP IE and an 'inverse' operator dubbed the
inverse CLDP IE.

These two goals are linked because the PESAW forward problem can often reason-
ably be modelled as a CLDP IE. Therefore the inverse CLDP IE may be applied to
the PESAW problem of determining the charge waveform which gave rise to a particu-
lar pressure signal emitted by a particular material. The following section derives the
PESAW IE from a simple model of the PESAW experiment, and then generalizes it
into a larger context wherein it is referred to as the CLDP IE.

2.1 The PESAW Problem

Figure 1.1 depicts a simple slab capacitor which has a pressure-to-voltage transducer
attached to the external surface of its proximal plate. The capacitor has a surface
charge q, (nC/cm2) embedded at position (plane) z1 within its otherwise homogeneous
dielectric region. The spatially impulsive charge per volume Q(z) (nC/(cm 2 mm)) is
represented mathematically via the Dirac delta function 6(z):

Q(z) = q,6(z - zi) (2.1)

Note that the permittivity of free space Eo rounds to unity in the following units:



C1
b- nC kV

S= .8854 2/ kV (2.2)
cm mm

If E - co, then when applied voltages V,(t) - kV are applied to slab capacitors

with plates separation I . mm, the magnitude of the surface charges qp on each plate

will be - nC/cm2. That is, nC/cm 2 is a sensible unit of surface charge when (as is the

case here) the applied electric fields are on the order of kV/mm.
Suppose the applied voltage Va(t) = V6(t) generates an excitation electric field

E(z, t) within the dielectric which can be modelled as temporally impulsive and spa-

tially distributed

VV
E(z t) = 6(t) iz (2.3)

Please note that the time-varying excitation electric field (described in (2.3)) adds

to the non-time-varying electric field (not described) produced by the charges them-

selves. Also, note that the units of 6(t) are ps- 1 , and that the units of V are [kV Lss].

The PESAW charge recovery method focusses on the time-varying components of the

problem; the non-time-varying portions do not contribute to the measured signal.
According to the Lorentz force law F = Q E, the excitation force field F(z, t)

generated by the excitation electric field interacting with the charge distribution will

be given by

F(z, t) = qV 6(z - zl) 6(t) iz (2.4)

Due to the symmetry of this configuration, this excitation force field acts as a

temporally impulsive pressure (force per area)

Xi(t) = 6(t) (2.5)

which imposes itself in the -z direction at the excitation plane z = zj. Assuming both

ql and V are positive, a positive pressure (compression) wave will be launched from

the excitation plane toward the proximal plate and a negative pressure (rarefaction)
wave will be launched toward the distal plate.

If the slab of material comprising the region 0 < z < zl may be considered a linear,
time-invariant system with impulse response hi (t) with respect to plane pressure waves

passing through it, and if the pressure wave launched toward the distal plate may be

neglected, then the pressure signal P(t) delivered to the transducer by the internal

charge distribution will be given by simple convolution



P(t) = X 1(t) * hi(t) = q1V hi (t) (2.6)

This thesis considers only materials for which hi (t) is real, causal (vanishes for
negative times), and has a Fourier transform h1 (f) (see appendix F) of the form

h1(f) = exp(-zl K(f)) (2.7)

where C(f) is the complex propagation coefficient. These materials are called causal,
lossy, dispersive, plane-wave (CLDP) materials. The term 'causal' refers to the fact
that a physical material must have an impulse response hi (t) that is causal regardless of
the (assumedly positive) value of zl. See chapter 6 for a discussion of causal materials.

The term 'plane-wave' refers to this thesis' focus on plane pressure waves which
propagate according to the familiar, one dimensional linear wave equation. See chapter
3 or appendix A for a derivation of (2.7). The terms 'lossy' and 'dispersive' refer to
the fact that IC(f)'s real and imaginary parts, respectively, can be expressed in terms
of the material's attenuation coefficient a(f) and phase velocity c(f):

2irf
C(f) = a(f) + (2.8)

Note that the propagation coefficient C(f) given here is related to the familiar
complex wavenumber k(f) via

/c(f) = j k(f) (2.9)

The novel notation IC(f) rather than j k(f) has been adopted so that the parallel
between the Laplace transform and a CLDP IE can be made most clear. This relation
to the Laplace transform is demonstrated in section 7.1. Relation (2.9) is derived in
appendix A.

A slab of CLDP material may be considered a linear, time invariant system with
respect to plane pressure waves passing through it. Recall that when a CLDP material
which has a charge distribution of the form

Q(z) = q16(z - zl) (2.10)

embedded within it is subjected to the PESAW experimental procedure, the time
dependent pressure signal P(t) transmitted to the proximal plate transducer by the
charge layer is given implicitly by (2.7) and (2.6) as



P(t =qV 3F-l{exp(-zl (f))} (2.11)

Through linearity it follows that if Q(z) is composed of M charge layers with relative

weights qm

M

Q(z) = q. 6(z - zm) (2.12)
m=1

then the pressure signal P(t) delivered to the transducer by the internal charge distri-

bution will be composed of sum of M weighted responses

M

P(t) = E qm F'{exp(-zm L(f ))} (2.13)
m=1

Please note that this analysis neglects the non-time-varying Coulomb forces gener-

ated by the non-time-varying embedded charges, and that (2.13) is but a special case

of the more general relation

P(t) = V JQ(z) F--l{exp(-z C(f))}dz (2.14)

The result of modifying (2.14) by introducing the time domain CLDP kernel H(z, t)

H(z, t) exp(-z C(f)) (2.15)

P(t) = Q(z) H(z, t)dz (2.16)

Equation (2.16) should make it clear that, if the experimenter makes sure that the

approximations made in this derivation are reasonable, the measured PESAW pressure

versus time signal is the output of a linear, first-kind Fredholm IE (see chapter 5 for a

definition of this class of IEs). The special CLDP kernel H(z, t) justifies calling (2.16)
a CLDP IE.

In the interest of generality, the source waveform Q(z) is proposed as the generic
CLDP waveform that subsumes the PESAW charge waveform Q(z):



Q(z) = WQ(z) (2.17)

so that

P(t) = j Q(z) H(z, t)dz (2.18)

may be termed the forward PESAW IE. The PESAW IE is a CLDP IE; CLDP IEs
are a subclass of linear, first-kind Fredholm IEs. It is interesting to note that (2.18)
implies

J P(t) dt = Q(z) exp(-z a(O))dz (2.19)

That is, if a(O) = 0 then the area of the source waveform equals the area of the
response signal. Equation (2.19) may be derived by Fourier transforming both sides of
(2.18), inserting (2.15), then focussing on the zero frequency. Equation (2.19) can be
useful in evaluating the approximate Q(z) associated with some P(t) by some recovery
algorithm.

Note that, in theory, both the lower integration limits in (2.19) could be raised from
negative infinity to zero due to the assumed causality of both P(t) and Q(z). However,
in practice, P(t) is often filtered. Filtering a function can violate its causality (see
section 6.3) so the lower limits of (2.19) have been modified to reflect this possibility.

The upper limit of the integral of Q(z) has been raised from I to infinity for two
reasons. First, because the generic (non-PESAW) CLDP IE does not require the source
waveform to vanish beyond any particular positive value of z. Second, the PESAW
recovery gleaned via some algorithm will not necessarily vanish above z = I; again,
because filtering can cause the recovery to 'spread' beyond its expected limits.

2.2 From Voltage Signal To Charge Waveform

Determining an estimated charge waveform Q(z) to the desired charge waveform Q(z)
given a measured voltage signal V(t) (and a material model) can be viewed as a three
step process. This section introduces the three steps; chapter 4 discusses these steps
in detail.

The avid reader can find a one-page schematic outline of the PESAW-CLDP re-
lationship in appendix G. The three steps discussed here corresponds to traversing
the three trunks of appendix G's II-shaped schematic in a counter-clockwise direc-
tion: first the right leg, then the top bar, then the left leg. The top bar involves only
CLDP-specific quantities; the two legs suggest how the measured, and the desired,
PESAW-specific quantities relate to the CLDP-specific quantities.



The three steps are as follows:
First, deconvolve the measured V(t) with respect to some estimate He(t) to the

experimental impulse response function He(t), and then perhaps filter, to arrive at an

estimated pressure signal P(t) to the true pressure signal P(t) which inspired V(t) (the
experimental impulse response He(t) is defined in equation (4.15); He(t) involves the

transducer impulse response HT(t), the applied voltage signal Va(t), and the permit-

tivity E and thickness 1 of the dielectric).
Second, map the estimated pressure signal P(t) to an estimated source pressure

waveform Q(z) using an estimated propagation coefficient k(f). Third, map the esti-

mated source pressure waveform Q(z) to an estimated charge waveform Q(z).
Note that the estimated source waveform Q(z) will henceforth be referred to as the

recovered waveform, denoted R(z). These three steps are presented diagrammatically
below. The boxed quantities indicate the information required to map the function on

the left to the function on the right.

Step 1: V(t) IHe(t), filter - P(t)

Step 2: P(t) - -(f Q(z) - R(z)

Step 3: R(z) -- experimental setup -- Q(z)

Figure 2.1: Diagrammatic exposition of the proposed three step method for mapping
a measured PESAW signal V(t) to an estimate Q(z) of the desired source charge
waveform Q(z).

2.2.1 Step 1

The first step is a well known problem whose familiar frequency-domain-division solu-
tion is implemented in this thesis via the Fast Fourier Transform (FFT) and the filter
known as Blackman's Lucky Guess (BLG). See chapter 3 for a discussion of deconvo-
lution; see appendix B for an introduction to the BLG filter. Chapter 4 will describe
how an estimate HT(t) to the true transducer impulse response function HT(t) may be

gleaned from experimental data.

2.2.2 Step 2

The second step forms the mathematical and numerical core of this thesis. A sec-
tion of this introduction will present the major results of this thesis' attempt to solve



this problem. Chapter 4 will describe how an estimate K(f) to the true propagation
coefficient C(f) may be gleaned from experimental data.

2.2.3 Step 3

At first glance the third step appears trivial. Modifying (2.17), the result is

Q(z) = -R(z) (2.20)

However, (2.17) is but the special (planar) case of the more general relation

Q(z) = Ez(z)Q(z) (2.21)

where the excitation electric field E(z, t) has separable space and time dependencies:

E (z, t) = -Ez(z)6(t)iz (2.22)

In general, therefore,

R(z)Q (z)= (2.23)
E, (z)

From (2.22) and (2.3) it follows that in a planar geometry

Ez(z) = V (2.24)

so that (2.20) is recovered from (2.23).
In a coaxial cable geometry (where the recovery variable z and the cable radius r

are related by z + r = ro) which has the voltage signal Va(t) = V6(t) applied to the
inner capacitor plate at r = ri, and which has the outer capacitor plate at r = ro
grounded, elementary electrostatics reveals

Ez (z) = (2.25)
(ro - z) ln(ro/ri)

so that (2.23) yields

(ro - z) ln(ro/ri)
Q(z) = R(z) (2.26)



Generality is served by focussing on Q(z) and R(z) instead of Q(z) and Q(z) because

then questions about geometry and actual applied voltage strength are sidestepped,
and the focus is thrown upon the CLDP IE inversion process rather than experimental

details.
Unfortunately, the previous analysis is only approximate: it has assumed that the

one dimensional (cylindrical) waves generated by the cylindrical charges 'propagate like

plane waves.' Eg: the previous analysis assumes that cylindrical waves propagating in
a lossless/dispersionless material will have an amplitude that is independent of z.

But because a -z propagating cylindrical wave expands as it travels, conservation of

energy requires its amplitude to diminish. A thorough analysis of this effect would re-

quire introduction of the Hankel functions [105], and thereby shift this thesis' emphasis

from its goal of introducing and applying CLDP theory.

2.3 Dimensions And Units

Focussing on Q(z) rather than Q(z) is also seen to serve generality when the dimensions

of (2.18) are considered. From the derivation of the PESAW-CLDP IE, the dimension

of P(t) is clearly pressure. As H(z, t) is defined as the inverse Fourier transform of

the dimensionless quantity H(z, f) = exp(-z (f)), H(z, t) must have dimension of

frequency, or inverse time. Therefore the dimension of H(z, t)dz is velocity (length

dz over time) So the dimension of Q(z) must be pressure per velocity, as indeed it is

according to (2.17).
Generalizing the PESAW IE (2.18) into the broader CLDP context, if the quantity

P(t) somehow had dimension of, say, voltage, then the associated Q(z) would have

to have dimension of voltage per velocity if both sides of (2.18) are to have the same

dimension (which they must).
What is required, fundamentally, is that the quantity P(t)/Q(z) have the same

dimension as the quantity z/t. In this thesis, z will always have dimension of length

and t will always have dimension of time. However, even with this constraint, there is

freedom in the dimensions attached to P(t) and Q(z) because it is only the dimension
of their ratio which is constrained to be velocity. Perhaps pressure and pressure-per-
velocity are not the best choices for the dimensions of P(t) and Q(z).

In this thesis the units of z will be taken as millimeters (mm), the units of t will be

microseconds (ps), the units of Q(z) will be inverse millimeters (mm- 1 ), and the units

of P(t) will be inverse microseconds (ts- 1). This Q(z) is called the source; this P(t)

is called the response. With these dimensions the Fourier and Laplace transforms of

both P(t) and Q(z) are dimensionless.
This choice for the dimension of P(t) may seem exotic at first. Yet from an exper-

imental point of view, P(t) is determined by deconvolving the measured signal V(t)

with respect to the experimental impulse response function He(t), both of which have

the same dimension (see chapter 4). Therefore P(t) must have dimension inverse to

that of its argument; the dimension of t is time so, according to this analysis, the

natural dimension of the experimental P(t) is inverse time.



From the computer simulation point of view, as discussed above, H(z, t) is defined
as the inverse Fourier transform of the dimensionless quantity H(z, f) = exp(-z I(f))
and so has dimension of frequency, or inverse time. Because P(t) is comprised of a sum
of these H(z, t)'s, the natural dimension of the simulated P(t) is also inverse time.

So inverse time is actually a sensible dimension to attach to P(t), both from an
experimental and a computer simulation point of view. Because the dimension of
P(t)/Q(z) must be the same as the dimension of z/t, and because the dimension of
z/t is length per time, it follows from this choice of dimension for P(t) that Q(z) must
have dimension of inverse length.

In the forward problem, the dimension of Q(z) may quite naturally be interpreted as
non-dimensional source per length. Similarly, in the inverse problem (where P(t) is the
'source') the dimension of P(t) may just as naturally be interpreted as non-dimensional
source per time.

Because P(t) has been generalized out of the PESAW context, it is referred to as
'the response signal' rather than 'the pressure signal.' For the same reason, Q(z) is
referred to as 'the source waveform' rather than 'the charge waveform.'

The units of the phase velocity c(f) will be taken as mm/ps. The units of the
Fourier transform variable f will be mega-Hertz (MHz), which are the same as in-
verse microseconds. The units of the attenuation coefficient ~a(f) will be Nepers per
millimeter (Np/mm).

2.3.1 Nepers and Decibels

Note that, qualitatively, Nepers are to decibels (dB) as radians are to degrees (deg).
That is, Nepers and radians are the natural units of the real and imaginary parts,

respectively, of the logarithm of a complex number, whereas decibels and degrees are
scaled versions of the natural units. Although the scale factor for translating radians
to degrees is greater than the scale factor for translating Nepers to decibels, both scale
factors are within an order of magnitude of ten.

To be specific,

360
1 rad = deg r 57.3 deg

27r
and

1 Np = 10 logl 0(e2) dB 8.686 dB

The dimensions chosen for P(t) and Q(z) reflect a striving towards generality;
the units chosen for t and z reflect the reality that much of the work in this thesis
involves PESAW modelling of 'mm-thick slabs of polymer which have phase velocities
~mm/us.

Note that the definitions chosen for the three steps, and the units chosen for the
functions and variables involved in step two, all conspire to make step two a separable
module which may be focussed upon in its own right. This allows the emphasis to



be placed upon this thesis' novel mathematics, and their numeric implementation and

verification, without leaving the PESAW experimenter adrift in abstraction.

2.4 The Need For Improved Recovery

The figure below is offered as a means to understand the deficiency of the dominant

time-to-space mapping algorithm mentioned in the general introduction. It depicts
the modelled output signal P(t) corresponding to a source waveform comprised of ten

unit-strength source impulses placed at half-millimeter increments inside a polyethylene
(PE) slab. The first impulse sits at z = 0.25 mm. The last impulse sits at z = 4.75

mm. This placement of sources is called the standard constellation.
The standard model for polyethylene was used to produce the plot. This model

is introduced in section 6.2.2. For now, suffice to say that the model includes loss

and dispersion; the attenuation coefficient a(f) and phase velocity c(f) are frequency
dependent.
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Figure 2.2: Modelled output pressure signal corresponding to the
source constellation embedded in standard polyethylene.

standard impulsive

The dominant time-to-space pressure waveform recovery Rd(Z) is given by

1 z
Rd(z) - - )

Cd Cd
(2.27)

where Cd has dimensions of length per time, and represents an effective velocity. But
what value should be used for Cd if the phase velocity is frequency dependent? This
question points out one of two main problems with this algorithm. The second problem
is that, regardless of the value of Cd, the recovery of each pressure impulse will be skewed
to the right.



Returning to the question of the value of Cd, one reasonable choice would be to select

Cd to ensure that the time of the earliest pressure peak is mapped to the position of the
shallowest charge: z = 0.25 mm. Denote the value of Cd that ensures this mapping cd
and denote its associated recovery Rd(z). It turns out that c' = 2.119 mm/ps. Another
reasonable choice is to select Cd to ensure that the latest pressure peak is mapped to
z = 4.75 mm. Denote this value cI and denote its associated recovery R (z). It turns
out that Cld = 2.035 mm/ps. The problem is that c' = c.

Rather, cd/c d = 1.041. The result is that Re(z) places the recovered peak of the
z = 4.75 mm charge impulse 196 m too far to the right, and Rd(z) places the recovered
peak of the z = 0.25 mm charge impulse 10 Am too far to the left. It seems there can be
no single correct value for Cd. Perhaps a time-dependent effective velocity Cd(t) would
improve the positioning, but it could not fix the skewness problem.

It is worth noting that R1d(z) gives a better overall recovery than Re(z), as evi-
denced by the following figure which depicts these two recoveries. More quantitatively,
the root-mean-square error in the recovered locations of the ten source impulses, as
measured by the position of each source recovery's peak value, is 109 pm for R'(z) and
only 16 pm for R(z).
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Figure 2.3: Comparison of the dominant recovery Rd(z) for two values (c' and c) of
the requisite constant velocity Cd.

2.5 CLDP Transforms

The mathematical core of this thesis is CLDP transform theory. The existence, and
requirements, of the proposed CLDP transforms are discussed in chapter 7. The re-
maning portions of the current chapter seek only to illuminate the properties of the
proposed CLDP transforms.

CLDP transform theory proposes that, if the propagation coefficient



(f) = a(f) +j 2rf /c(f) (2.28)

P(I)

corresponds to a temporally causal, position z dependent impulse response function

H(z, t) = H(z, t) U(t) H(z, f) - exp(-z I (f)) (2.29)

and if the response signal k(f) is related to the causal, real, Fourier-transformable

source waveform Q(z) via the CLDP IE

P(f) = Q(z) exp(-z C(f)) dz (2.30)

then Q(z) may be determined from P(f) and IC(f) via

IQ(z) = j (f) [-] exp(z I(f)) df (2.31)-o j 27r df

provided Q(z) satisfies the I(f)-dependent CLDP transform criterion (equation (7.73))

lim fm(f) ([a' +j 3(f)])d c' = 0 (2.32)

where Q(IC) is the (spatial) Laplace transform of Q(z) (see appendix F).

It is in this sense that Q(z) and P(f) are said to be CLDP transforms of each other.

This relation is denoted symbolically via

Q(z) _ P(f) (2.33)

Note that Q(z) has been placed on the privileged left hand side of the transform

relation commonly reserved for 'direct space' functions. Of course, like all transforms,
the answer to the question "which is the direct space function and which is the inverse

space function?" is somewhat arbitrary.
The waveform Q(z) has been designated the direct space function because of its

role in the PESAW context, where the forward problem involves calculating P (f) from

Q(z). This is fortuitous because (as section 2.5.6 will show) in the case of the delay-only

material for which the CLDP transforms reduce to the Fourier transform, Q(z) acts like

a function of time. Unfortunately, designating Q(z) as the direct space function forces

the measured PESAW signal P(t) to be designated as an inverse space, or perhaps

'pseudo direct space,' function.



2.5.1 Group Velocity

It is interesting to note that the bracketed quantity in (2.31) is
material's complex, frequency dependent group velocity C9(f).

just the
That is,

1 d (f) _ 1
j27r df C, (f)

inverse of the

(2.34)

so that

(2.35)Q(z) = (f) exp(z C(f)) df

Equation (2.34) follows from the realization that [54]

d [27rf]

d [-j )K(f)]

It follows from (2.34) and

I(f) = a(f) +j 27rf /c(f)

1 _ 1

Cg(f) c(f)

The real part of the inverse of the group velocity involves only the phase velocity;
the imaginary part of the inverse of the group velocity involves only the attenuation.

2.5.2 Time Domain Recovery

It is possible to express the frequency domain recovery (2.35) in the time domain by
applying Fourier theory's initial value and convolution theorems. The result is

g(t)

p(t) *F g(f) }(t)

= [P(t) * g(t) * I(z, t) ]t=o

= f P(t) K(t, z) dt
_OO

d w
!G(f) =

d I(w)

that

(2.36)

(2.37)

1 -
d c(f)

df
f

c(f)

1 d a(f)
j27r df

(2.38)

H(z,t)

• YT- 1 {1/H(z f)}(t)

St=
(2.39)

(2.40)

(2.41)

Q(z) =



where the 'the group signal' g(t) in (2.40) is defined as the second convolved quantity
in (2.39), the II(z, t) in (2.40) is defined as the third convolved quantity in (2.39), and
K(t, z) is, for each particular value of z, the temporal reflection of the convolution of
the group signal with I(z, t). That is,

K(t, z) = {g(t) * H(z, t) } (-t) (2.42)

Because the P(t) in (2.41) must be causal, it follows that (2.41) can be rewritten

Q(z) = j P(t) K(t, z) dt (2.43)

Raising the 1 in (2.18) to infinity (which is valid if, as is assumed, Q(z) vanishes for
z > 1), it is interesting to note that the proposed time domain inverse CLDP IE (2.43)
is a linear, first-kind Fredholm IE just like (2.18):

P(t) = Q(z) H(z, t) dz (2.44)

2.5.3 The Convolution Inverse

Note that, as defined, Il(z, t) is the convolution inverse of H(z, t). That is, for any one
particular value of z = zo,

H(zo, t) * H(zo, t) = 6(t) (2.45)

where (from equation (2.39))

H(zo, t) . 1 = H(-zo, f) = exp(zo K(f)) (2.46)
H(zo, f)

Appendix ?? examines the criterion for the existence of a convolution inverse. But
briefly: to verify (2.45), Fourier transform it. The right hand side becomes unity,
and the left hand side becomes a product according to Fourier theory's convolution
theorem:

1
H(z, f) H(z, - 1 (2.47)

H (zo, f)

The time-domain recovery (2.40) makes it clear that the core of the recovery op-
eration for calculating Q(zo) involves deconvolution with respect to the material im-
pulse response H(zo, t) (deconvolution = convolution with the convolution inverse).



Note that if H(-z,t) = - 1{exp(z C(f)) is used to justify extending the domain of
H(z, t) = F{-l{exp(-z (C(f)) to negative values of z then the inverse CLDP IE may
be succinctly expressed in the time domain:

Q(z) = [ P(t) * g(t) * H(-z, t) ]t=o (2.48)

Assuming Re{(f)} > 0 under the aforementioned conditions yields an H(z, t) that
is causal and stable for z > 0, causal and unstable for z < 0. This H(z, t) satisfies
H(z, t) * H(-z, t) = 6(t) for all real values of z including z = 0, where both H(z, t) and
H(-z, t) equal 6(t).

2.5.4 The Group Signal

It is interesting to ponder the meaning and properties of the group signal

g(t) 4> g(f) 1 (2.49)

Note that g(t)'s dependence on the attenuation coefficient a(f) only includes dac(f)/df
(see equation (2.38)). Any constant term in a(f) will have no effect on g(t). This is
important because, as section 6.1 will show, if some {a(f), c(f)} pair corresponds to a
causal material and if a' is some arbitrary real constant, then the pair {a(f) +a', c(f )}
will also correspond to a causal system (although, depending on a' and a(f), the re-
sulting material may well not be stable).

The result is that the entire family of materials {a(f)+a', c(f)} spanned by different
values of a' all share the same group signal. Note also that g(t) will be real because
g(f) has conjugate symmetry, and that g(t) has a "general measure of duration [58]"
AT satisfying

ATg > _ (2.50)
2 _ ff 2  -2(f) df (.0

In the case of the Bromwich materials (see section 6.1.1), for which {a(f), c(f)} =
{cab, Cb}, the integrals in (2.50) do not converge and (2.49) yields g(t) = 6(t)/cb.

For the reductive case of the Bromwich materials, g(t) is definitely pulsive. If
ICg(f)i does does not increase too rapidly with f then, by the duration-bandwidth
relationship of Fourier transforms, g(t) must have a duration ATg bound by (2.50). In
the case where g(t) is unimodal (pulsive) and somewhat smooth over its duration, the
author wonders whether ATg (given either by (2.50), or by g(t) directly) might not
give the experimenter a material-dependent absolute time scale to help determine the
minimum useful time step At at which to sample V(t).



The argument is that, regardless of the position z at which Q(z) is desired, (2.40)
recommends first convolving with g(t). If g(t) is a smooth pulse the result of convolving
g(t) with P(t) will be to smooth out temporal variations in P(t) that occur on a time

scale smaller that ATg. Therefore, given a smooth unimodal g(t), it does not make
sense to sample V(t) with a time step At that is 'too small' a fraction of ATg.

2.5.5 Conjugate Symmetry

Note that because both Q(z) and H(z, t) are assumed real (as they must be if they
correspond to physical quantities) it follows that IC(f), H(z, f), and P(f) must have
conjugate symmetry; meaning that, for example,

p(-f) = p*(f) (2.51)

where the * denotes complex conjugation. It is possible to use this information to
rewrite (2.35) in unilateral form

Q(z) = 2 Re ) exp(z C(f)) df (2.52)

The recoveries performed in this thesis utilize a discretized form of (2.52) which is
implemented via the Fast Fourier Transform (FFT). See equation (4.60).

2.5.6 Delay-Only Materials And The Fourier Transform

A Bromwich material has a(f) = ab and c(f) = Cb, where 0 b is a non-negative constant

and cb is a positive constant (see section 6.1.1). A delay-only material is a Bromwich
material which has cxb = 0. Using (2.37), it follows that the delay-only K(f), denoted
_d(f), is given by

]-d(f)= j 27rf /cd (2.53)

where the subscript 'b' for Bromwich on cb has been replaced with a 'd' for delay-only

(and dominant). Substituting (f) into (2.30) and (2.31) yields

k(f) = Q(z) exp(-j 27rfz/cd) dz (2.54)

and

Q(z) = - (f ) exp(j 2rf z/cd) df (2.55)
Cd - oo



Introducing time t via

t(z) = z (2.56)
Cd

maps (2.54) and (2.55) into

_(f) = [cd Q(tCd)] exp(-j 2if t) dt (2.57)

and

cdQ(tCd) = j2(f) exp(j 27rft) df (2.58)100
so that it becomes clear that CdQ(t Cd) and P(f) are Fourier transforms of each other.

The Fourier transform is the special case of the CLDP transforms which corre-

sponds to a lossless, dispersionless (delay-only) materials. Note that the version of the

Fourier analysis equation given above is unilateral, whereas the Fourier transform is

conventionally defined bilaterally.
Although it is clearly possible to extend this version of the Fourier transform to

include negative values of z, this thesis does not require this extension and it is unclear

whether the transforms associated with lossy materials can sensibly be extended in this

manner.
Further, as chapter 6 will show, assuming Q(z) is causal (and has a Fourier trans-

form) ensures the right half plane analyticity of the Laplace transform of Q(z). This is

a clear advantage insofar as mathematical tractability is concerned, and so this thesis'

versions of the forward CLDP transforms will continue to be defined unilaterally.

2.5.7 Delay-Only Materials And The Dominant Recovery

If cdQ(t Cd) and P(f) are Fourier transforms of each other, it follows that

P(t) = CdQ(t Cd) (2.59)

Rewriting (2.56) as

z(t) = t Cd (2.60)

and inserting into (2.59) yields

1 z
Q(z = P() (2.61)

Cd Cd

This expression for Q(z) is clearly just the dominant recovery Rd(z) given by (2.27).

It is in this sense that the dominant recovery is said to correspond to the assumption
of a lossless, dispersionless material.



2.6 The Darrell Property of the Inverse CLDP IE

Referring back to section 2.5, the CLDP transform relations

Q(z) > (f ) (2.62)

state that, if the propagation coefficient IC(f) corresponds to a causal H(z, t), and if

Q(z) is real, causal, Fourier transformable and satisfies the CLDP criterion (2.32), then

the P(f) defined by

P(f) = Q(z) exp(-z I(f)) dz (2.63)

and the Q(z) given by

/" 1 dIC(f)
Q(z) = 1(f) d f ] exp(z C(f)) df (2.64)

are CLDP transforms of each other.
The Darrell property of the proposed inverse CLDP IE answers the following ques-

tion: if a pure but strictly bandlimited version P(f m, f) of P(f) were inserted into

(2.64), what would the 'bandlimited recovery' R(fm, z) be? Sections 7.6 and 7.7 show

that, if

P(fm, f) - P(f) [U(f - fm) - U(f + fm)] (2.65)

where U(f) is the Heaviside step function, then

/_ 1 d K(f)

R(fm, z) = p(fm, f) df exp(z (f)) df

f1 d2 d(f)

f= p(f) [ ] exp(z C(f)) df (2.66)
fm j2r df

= Q(z) * D(fm, z) (2.67)

where the * denotes spatial convolution, Q(z) is assumed causal, and "the Darrell"
D(fm, z) is given by



D- 1 d C(f)
D(fm, z) - m ] exp(z C(f)) df (2.68)

m f27 -

= m{ exp(z K(f m ))) (2.69)
7rz

= exp(z a(fm) sin(2rfm z/C(f m )) (2.70)
TXz

The result (2.70) is almost alarming in its simplicity: regardless of a(f) and c(f)'s
excursions for f < fm, the Darrell depends only upon fm, a(fm) and c(fm).

2.6.1 The Darrell As Generalized Gibbs-Dirichlet Kernel

Siebert [53] points out that Gibbs' phenomenon (which manifests itself when a signal
x(t) is forward Fourier transformed into x(f), abruptly bandlimited at fm, then inverse

Fourier transformed into 2(f,, t)) can be described through convolution with a sinc
function (aka Dirichlet's kernel)

sin(2x fmt)
k(fm, t) = x(t) * (2.71)

Compare this result with the Darrell property (2.67)

R(fm, z) = Q(z) * D(fm, z) (2.72)

= Q(z) [exp(z a(f m )) sin(2fz/c(f)) (2.73)

Replacing the z in (2.73) with t via

t = z/c(fm) (2.74)

yields

'(fm, t) = x'(t) [exp(a(fm)c(fm) t) sin(2ft) (2.75)

where



i'(fm, t) - R(fm, c(f m) t)
Qe(c(fm)t)

and x'(t) C (f)

so that (comparing (2.71) and (2.75)) it is clear that the Darrell operates as a gener-
alized Gibbs-Dirichlet kernel.

(2.76)



Chapter 3

Loss, Dispersion, Deconvolution

This chapter's first section (Loss And Dispersion) derives the expression (3.2) for the
transfer function H(1, f) of a thickness 1 slab of material in terms of the propagation
coefficient C(f) via the line of reasoning used by Staelin et al [21]. Appendix A
derives this same result in a shorthand manner that emphasizes the importance of the
frequency domain to solution of the wave equation.

3.1 Loss And Dispersion

The effects of attenuation and dispersion upon a time-dependent signal s(t) propagating
through a linear medium have long been understood and explained via the frequency
domain [21, 22]. With 1 denoting the propagation length through the medium, s(f)
denoting the Fourier transform of s(t), a(f) and c(f) denoting the frequency-dependent
attenuation coefficient and phase velocity, respectively, of waves propagating through
the medium, and with s'(f) denoting the Fourier transform of the output signal s'(t),
the result is

s'(f) = H(1, f) s(f) (3.1)

where the thickness-1 dependent propagation transfer function H(1, f) is given by

H(1, f) = exp(-l IC(f)) (3.2)

and the complex propagation coefficient C(f) is given by

&(f) = a(f) +j 27rf/c(f) (3.3)

Appendix A shows that the IC(f) used here is related to the familiar complex wavenum-
ber k(f) via



c(f) = j k(f) (3.4)

The wavenumber k is often used to describe the evolution of single-frequency, one-
dimensional solutions g(z, t) to the homogeneous wave equation

2  ) 2a2 g(z, t) - C-2 2 g(z, t) = 0 (3.5)

which propagate with the phase velocity c. According to the time-harmonic
the wavenumber k describes propagating solutions via

g(z, t) = R{g j -jkzej27rft} = I~ekz cos(27rft - krz + arg(g))

convention,

(3.6)

where g is a complex constant given in polar form by

(3.7)

and k is a complex constant given in cartesian form by

k = k, + j ki (3.8)

Although the time-harmonic convention pertains only to waves of a single frequency,
there is no reason that the Fourier transform may not be invoked to add up the effects
of a frequency-dependent k(f), so that with

k(f) = kr(f) +j ki(f) (3.9)

the result (3.6) becomes

g(z, t) = _g(0, f) exp(j27rft) exp(-jzk(f))df
-O

(3.10)

g(0, f) = j g(0, t) exp(-j21rft)df
-O

(3.11)

Inverse Fourier transforming (3.10) yields

where

g = I exp( j (g ))



g(z, f) = g(0, f) exp(-jzk(f)) (3.12)

so that equations (3.1) through (3.4) are verified with the understanding that

c(f) = 2rf /kr(f) (3.13)

a(f) = -ki(f) (3.14)

and

s(t) = g(0, t) (3.15)

s'(t) = g(l, t) (3.16)

This analysis makes it clear that a corresponds most directly to the attenuation of
the amplitude of the wave, not its power. The alternative notation K(f) rather than
j k(f) has been adopted so that the parallel between the PESAW integral equation
and the Laplace transform is made most clear (see section 7.1).

3.2 Deconvolution

A common problem related to the PESAW problem is that of recovering s(t) given s'(t)
and H(I, f). This problem is known as deconvolution, which is seen to be a sensible
term when (3.1) is inverse Fourier transformed, and the Fourier convolution theorem
is applied:

s'(t) = H(1, t) * s(t) (3.17)

In (3.17), the '*' denotes convolution, and H(1, t) is the material's thickness-i de-
pendent impulse response function:

H(1, t) 4 H(1, f) = exp(-la(f)) exp(-j27rfl/c(f)) (3.18)

This problem arises in the field of acoustic emission, where a pulse generated by a
fracture within some material is distorted as it travels to the surface [23, 24], and it
arises whenever GHz-range waveforms are acquired electronically through even a short
metallic cable, because then skin-effect losses occurring within the cable distort the
signal as it passes through the cable (see [25, 26], and section 6.5.1).

The deconvolution problem is known to be ill-posed [27], meaning that even small
uncertainties in either s'(t) or H(1, f) can lead to large changes in the estimate §(t)



to s(t) gleaned from s'(t) and H(l, f). The ill-posedness of this problem can be seen
directly by stating the common frequency domain method of deconvolution

(t) s(f) = (3.19)H(1, f)
= '(f)H(-l, f) (3.20)
= s'(f) exp(la(f)) exp(j2xrf/c(f)) (3.21)

If the product la(f) is large for some frequencies fi, even a small positive deviation
in either [s'(fi) or la(fi) will lead to a large deviation in 9(t). The ill-posedness of the
deconvolution operation does not necessarily imply that a meaningful estimate §(t) to
s(t) cannot be determined from s'(t) and H(1, f).

The science concerned with selecting meaningful solutions to ill-posed IEs is called
regularization. Because the convolution IE (and the CLDP IEs) are first-kind Fredholm
IEs, Stenger's pronouncement [39] that "Tikhonov regularization has proved to be a
powerful practical tool to deal with Fredholm IEs of the first kind, and with other ill-
posed linear or nonlinear integral equations of the first kind" suggests that an outline
of Tikhonov regularization is in place here.

In this section's context, Tikhonov [40] and Stenger suggest that (3.19) be regu-
larized by first multiplying the numerator and denominator by the complex conjugate
H*(l, f) of H(1, f), then adding a small positive number r to the new denominator so
that the Tikhonov-regularized recovery is given by

s'(f) H*(l, f)
T(t) 4 s(f) (f) *( f) (3.22)

I7+IH(IJ f)12

The basic idea is that the inclusion of T in the denominator of (3.22) lessens the
degree of spurious over-amplification of s'(f) consonant with IH(1, f) l's signal to noise
ratio dropping dangerously low.

It may even prove sensible to modify (3.22) by allowing T to be a function of
frequency. An f dependent T allows inclusion of a priori knowledge about where
IH(1, f) I's signal to noise ratio is likely to drop. In another context (section 4.14.2),
it may prove useful to allow 7 to be a function of position z (as well as frequency f).
This z (and f) dependent 7 could be used to execute a SD-filtered alternative to the
SD BLG-filtered regularization procedure investigated in this thesis.

More generally, the ill-posedness of this frequency domain deconvolution scheme
is often satisfactorily managed by introducing some filter G(f) into (3.21) which will
suppress the inclusion of the 'dangerous' frequencies fi while minimizing the impact of
G(f) in the case where the data is trustworthy. That is, the new estimate is given by

§(t) 9 _(f) = G(f) s'(f) exp(la(f)) exp(j27rf /c(f)) (3.23)



The task of finding a suitable G(f) for a particular problem requires knowledge of
the expected properties of the material and the expected noise in the received waveform.

This task is difficult, and there is a large body of literature pertaining to it. [27, 28].

One particular G(f) known as Blackman's Lucky Guess (BLG) [29] has proved

useful in analyzing polymeric data, where a(f) increases with f. The BLG filter

B(f, f) (see appendix B) does a remarkable job of suppressing high frequencies while

minimizing the time-domain 'ripple' commensurate with lowpass filtering. High fre-

quencies need to be suppressed where a(f) increases with frequency because, in this

situation, it is at high frequencies that the 'boosting term' exp(la(f)) becomes large
while the signal-to-noise ratio drops, so that [s'(f)l becomes uncertain. BLG filtering
will be this thesis' regularization workhorse; Tikhonov regularization is mentioned for

completeness.
The impact of attenuation and dispersion for millimeter-thick slabs of polymer has

been noted by PEA researchers Li et al [20], who point out that "the acoustic [signal] is
obviously distorted as it propagates through the thick polymer." It is important to note
that the problem faced by PESAW researchers is greater than that posed by convolution
alone. True, the voltage signal produced by the pressure-to-voltage transducer must

be deconvolved with respect to the transducer's impulse response function to find an

estimate for the plate pressure signal.
But this is a small problem compared to the fact that the plate pressure signal is

comprised of a (generally infinite) sum of pressure signals, each one originating from
a different point inside the dielectric and, therefore, each one being attenuated and
dispersed by a different amount.

The deconvolution problem asks: "given the received signal, and given the proper-
ties of the linear, time-invariant system which transmitted the signal, how to find an

acceptable estimate for the signal that was sent?" The PESAW problem asks: "given
the received signal, the transducer's impulse response function, the applied voltage
versus time waveform, and the shape and properties of the material, how to find an
acceptable estimate for the distributed source?"

The deconvolution problem seeks to map a signal to a signal; the PESAW problem
seeks to map a signal to a waveform under the assumption that the distributed sources
emitted simultaneously. As the next section will show, the mathematical relationship
between the charge distribution Q(z) inside a dielectric and the plate pressure versus
time waveform P(t) which it generates when stimulated by a quasistatic field is a CLDP
IE.

It is worth pausing here to point out that this thesis' analyses assume only one
dimension of variation in the charge distribution. For a slab geometry the charge
distribution is assumed to depend only upon the radial distance from the slab's surface,
not upon either of the other two orthogonal directions. For a cable geometry the charge
distribution is assumed to depend only upon the distance from the cable's surface, not
upon the distance along the axis of the cable nor upon the rotation angle. Therefore the
positive variable 'z' in the following discussion will signify a generic position (surface)
inside the dielectric which is a distance z from the proximal capacitor plate surface to



which the pressure-to-voltage transducer is attached.



Chapter 4

The PESAW Recovery

The General Introduction includes a lay introduction to the Pulsed Electrically Stimu-
lated Acoustic Wave (PESAW) method of charge profiling in dielectrics. The Technical
Introduction analyzes the PESAW experiment insofar as needed to derive the CLDP-
PESAW IE.

The objective of this chapter is to describe how specifically to perform a PESAW
recovery, which includes both the recovery of the required approximate material model
{&(f), a(f)} and the application of this model to the ultimate goal of recovering the
approximate charge waveform Q (z).

This chapter therefore addresses some practical PESAW issues, such as:

1. how to attempt to ensure the validity of the CLDP IE model of the PESAW
forward problem?

2. how to extract the transducer's impulse response function from measured data?

3. how to extract propagation parameters a(f) and c(f) from measured data?

4. what are the experimental requirements that determine whether it will be possible
to enact items 2 and 3?

5. given a measured signal, and the results of items 2 and 3, what is the specific
algorithm for generating Q(z)?

4.1 Bulk Forces And Plate Forces

The PESAW experiment proceeds by applying a pulsed voltage between the two plates
of a parallel plate capacitor containing the dielectric under test (see figure 1.1). Ne-
glecting fringing and succumbing to the quasistatic approximation (see section 4.6),
the applied voltage pulse Va(t) creates a -z directed, pulsed excitation electric field



E(t) Va(t) (4.1)

inside the dielectric. The field E(t) is called the excitation electric field to distinguish
it from the static field arising from the static charge ql. This static field produces no

time dependent signal in the measurement apparatus, and so is not included in this

analysis. The field E(t) will therefore be referred to simply as 'the electric field.'

When the electric field interacts with the charge-per-area ql at position z, inside

the capacitor's dielectric it exerts a -z directed force-per-area (pressure)

Fi(t) = q Va(t) (4.2)

at zl according to the Coulomb force law (assuming ql V(t) is a positive polarity pulse).

This pressure signal launches a wave from zl that travels toward, and is detected by, the

transducer attached to the proximal capacitor plate. The Technical Introduction ana-

lyzes the more general case of a generic distributed charge Q(z); this chapter achieves

its goals by considering only the special case Q(z) = q, 6(z - zi) depicted in figure 1.1.

The applied voltage Va(t) also generates time dependent surface charges Q_(t)
and Q+(t) at the proximal and distal capacitor plates respectively. According to the

boundary condition associated with Gauss' law [80],

eVa (t)
-Q_(t) = Q+(t) = a(4.3)

where e is the dielectric's permittivity.
These charges also produce forces. Regardless of the polarity of Va(t), the force-

per-area or pressure exerted by each capacitor plate is always in, towards the opposing
plate. The positive charges on one plate and the negative charges on the other plate
pull towards each other. The pressure Fp(t) exerted by each plate can be calculated
via the principle of virtual work [81, 82]. The result is

1 eV (t)F,(t) = 2 Q+(t) E(t)= V(t) (4.4)
2 212

Feynman [82] points out that the factor 1/2 relating the 'expected' Coulomb-force
result Q+ (t) E(t) to the Fp(t) given above can be understood by thinking of the surface
charges Q_(t) and Q+(t) as having finite thickness A.

Focussing on the positive charge layer Q+ (t) on the surface of the distal capacitor
plate, the electric field in the charge layer decreases linearly from E(t) at z = 1 - A

down to zero at z = 1. The average (i.e: effective) value of the field in the charge layer

Q+(t) will therefore be E(t)/2.



4.2 Bulk And Plate Responses

With H(z, t) denoting the position z dependent material impulse response function

introduced in chapter 2, and with HT(t) denoting the transducer's impulse response
function, the measured voltage V(t) in figure 1.1 will be given by

plates bulk

V(t) = HT(t) * [F,(t) [ -H(0, t)+ 2 H(i, t)] + F (t) * H(zi, t)

= HT(t) * *• [ -H(0, t) + 2 H(1, t) ] + Va(t) * H(z, t) (4.5)
21% 1

proximal distal

The proximal plate response kernel -H(0, t) comes with a minus sign because Fp(t)
causes the proximal plate to deflect towards positive z. This causes a negative pressure

(rarefaction) wave to propagate directly into the transducer. It also causes a positive
pressure (compression) wave to propagate toward the distal plate. This positive pres-
sure wave will eventually reflect off the distal plate, and return towards the proximal
plate.

But this reflected wave will arrive after all the unreflected waves (from the proximal
plate, bulk charge, and distal plate) have arrived. The present analysis is only con-
cerned with the unreflected waves. The reflected waves will be neglected in the service
of simplicity under the (hopeful) assumption that the contribution of these reflected
waves to the measured signal will be temporally resolvable from the contribution of
the unreflected waves.

The zero in -H(O, t) reflects the fact that the pressure signal Fp(t) exerted by the
proximal plate does not pass through any of the dielectric material before it enters the
transducer. Note that H(O, t) = 6(t) because H(z, f) = exp(-z K(f)) so H(O, f) = 1.
and F-1{1} = 6(t). In the next expression of (4.5), H(0, t) will be replaced by 6(t).

Whereas the proximal plate response kernel takes the form -H(0, t), the distal plate
response kernel takes the form 2 H(l, t). The prefactor to the proximal plate response
kernel is positive because the plate pressure Fp(t) causes the distal plate to deflect
towards negative z, launching a positive pressure wave toward the transducer at the
opposite side of the dielectric sample. The 1 in 2 H(1, t) is the width of the dielectric
sample through which this wave must pass.

The factor 2 comes via the assumption that whereas the Fp(t)-generated deflection
of the proximal plate is equally restrained by both the transducer to its left and the
dielectric to its right, the Fp(t)-generated deflection of the distal plate is restrained
only by the dielectric to its left.

The region to the right of the distal plate is assumed to offer no restriction to the
deflection of the distal plate. It is assumed to be incapable of supporting a wave so no
energy can propagate in that direction.



Because the magnitude of the force Fp(t) applied to both plates differs only in direc-
tion (+z at the proximal plate, -z at the distal plate) and because the proximal plate
is twice as restrained as the distal plate, it follows from Hooke's law F = - K X [83]
that the amplitude of the proximal plate's deflection will be half the amplitude of the
distal plate's deflection (and will be the same as what the bulk deflection would be if
F,(t) were somehow exerted at some plane in the bulk).

Stated another way, with ZT denoting the acoustic impedence of the z < 0 (trans-
ducer) material, with Zd denoting the acoustic impedence of the 0 < z < 1 (dielectric)
material, and with Z denoting the acoustic impedence of the z > 1 (unrestrictive)
material, the factor of two results from the assumption that

T  Zd >> Z u  (4.6)

Because the reflection coefficient Fht for waves propagating from region hereh to
region theret is [103]

ht - Zh (4.7)
Zt + Z h

the reflection coefficient vanishes for waves propagating through the proximal plate
whereas the reflection coefficient is -1 for waves attempting to pass from the dielectric
to the unrestrictive region.

According to this impedence-based analysis, the doubling of the distal plate re-
sponse can be thought of as being the sum of the original, unit-sized, positive polarity,
-z directed pulse and a virtual, unit-sized, negative polarity, +z directed pulse which
is immediately reflected back in the -z direction by Fdu = -1.

At first glance, using this impedence based analysis may seem like killing a fly with
a golden brick - the previous 'fly-swatter' analysis did not require the concept of impe-
dence, nor the concept of reflection, nor the concept of a 'virtual pulse.' However, the
impedence based analysis may readily by extended to situations where (4.6) does not
hold even approximately (the terms may even be complex and frequency dependent),
whereas the fly-swatter analysis is tractable only for the special case considered here.

This result concerning the factor 2 is consistent with the realization that whereas
pressure pulses exerted at planes in the region z < 1 launch equal-amplitude, opposite-
polarity pulses in both directions, pressure pulses exerted at z = 1 can launch only one
double-strength wave in the -z direction.

The bulk charge response kernel - ql H(zl, t). If ql = 0, there will be no bulk
response. The strength of the bulk response is modulated by the strength of this
charge layer via the Coulomb force law. The quantity zl enters because the charge
layer q is at position zj. Therefore the pressure wave generated by this charge layer
in the bulk must pass through a thickness-z1 slab of dielectric before it enters the
transducer.



4.3 The Applied Voltage Signal Va(t)

In practice, Va(t) is often comprised of a 'large' positive DC voltage Vo and a 'small'

pulsed voltage vp(t) which is zero everywhere except for times t satisfying Itl < T1/2

for which v,(t) > 0. Either the sum of Vo and vp(t), or the negative of their sum, is
applied to the capacitor. That is,

Va(t) = ± [ Vo + v,(t)

Vo > vp(t) for all times t

(4.8)

(4.9)

so that Va(t) is either always
assuming the transducer does
terms via (4.9),

negative or always positive. Neglecting DC terms by
not respond to a DC pressure, and neglecting 'small'

(4.10)

and

V2(t) = [+[ Vo + v,(t) ]]2 = V2 + 2 Vo vp(t) + v~(t) -- 2 Vo v,(t) (4.11)

Using these approximations, and adding a ± subscript to the V(t) in (4.5) to account
for the two possible polarities of Va(t),

V±(t) = He(t) * P±(t) (4.12)

(4.13)P±(t) -6(t) - H(zi, t) + 2 H(1, t)
, qp

proximal b distal
bulk

EVo
qp- (4.14)

is the magnitude of the DC surface charges on each plate due to V0 , and

where

where

Note that

Va(t) = ±[ Vo + v,(t) ] - ±v,(t)



He(t) =q HT(t) * vp(t) (4.15)

is called the experimental impulse response. The quantity qp is always positive because
Vo is defined as positive even when Va(t) has negative polarity (see (4.8)).

The ± in V±(t) only enters into the bulk response component of P~(t) because
whereas vp(t) always acts to increase the inward pressure F,(t) exerted by the plates,
the polarity of the excitation force acting on charges in the bulk depends upon the
polarity of the applied voltage Va (t) (and the polarity of ql).

Whereas the plate force F, (t) , V2(t), the bulk force F 1 (t) - V,(t). This difference
arises from the fact that whereas the strength of charges in the bulk is independent of
time, the strength of the plate charges vary as Va (t).

4.4 Resolving The Two Plate Responses

As a practical matter, the transducer impulse response HT(t) will have some mini-
mum temporal width TT ~ f, - corresponding to the transducer's assumedly finite
bandwidth fT [58]. Because the experimental impulse response He(t) is the convolu-
tion of HT(t) and v, (t) (which has width Tp), He(t) will also have some finite width T,
where [89]

Te TT + Tp (4.16)

With T defined as the temporal increase in pulse width (spreading) imposed upon
the pressure pulse launched by the distal plate as a result of traversing the thickness
l slab of attenuative, dispersive dielectric, and with C defined as the approximate
velocity of pressure waves inside the dielectric, if

Te + TE < (4.17)

then the temporal response signals V , (t) and Vd(t) due to the forces exerted by the
proximal and distal capacitor plates, respectively, will be well resolved in the measured
signal V± (t). Such a pair of resolvable plate responses are depicted below, in figure 4.1.

Incidentally, equation (6.26) and its discussion on page 99 suggest that the poly-
meric T, - 1 m/r where a(f) = mf. Further, the polymeric C - 2 mm/ps.

4.5 Resolving The Bulk Response

If, in addition, the position z, of the bulk charge ql is not too far from the center
of the sample (i.e: not too close to either of the capacitor plates) then the temporal



response signal Vb(t) due to the pressure pulse generated by the bulk charge ql will also
be resolvable from the plate pressure responses if the inequality (4.17) is sufficiently
strong. Such a resolvable bulk response is depicted below, in figure 4.1.

4.6 Temporally Impulsive Electric Field

On page 36, the derivation of the PESAW integral equation asks the reader to "Sup-
pose the applied voltage Va(t) generates an excitation electric field E(z, t) within the
dielectric which can be modelled as temporally impulsive and spatially distributed."

Despite this statement, there are two reasons why it is physically impossible for the
electric field in the capacitor to truly be temporally impulsive. First, Maxwell's equa-
tions require time for the electric field inside the capacitor to build up. Electromagnetic
waves travel at a maximum velocity Cem 3 105 mm/ps. Let the time constant Tern
associated with the finite velocity of electromagnetic waves be given by Tem I/Cerm.

Second, there will be some finite series resistance R acting in the wires and appa-
ratus delivering v,(t) to the capacitor. The product of this R with the capacitance
eA/ associated with an area A parallel plate capacitor [84] yields the familiar RC time
constant Tc - ReA/ which limits the celerity of the capacitor's response to v,(t) [85].
Yet if the width Tp, of the excitation pulse v,(t) satisfies

Trc + Tem < Tp < T (4.18)

then the 'smearing' due to the finite response time of the electric field inside the
capacitor will be negligible in comparison to the smearing caused by the finite response
time of the transducer and ]E(z, t) may reasonably be modelled as the product of a
spatially distributed waveform and a temporal impulse as in equation (2.3).

The inequality (4.18) includes what is called the quasistatic approximation [86],
which requires only that

Temrn < Tp (4.19)

4.7 A Sample Pressure-Response Signal

Figure 4.1 depicts the pressure response signal for the situation where equation (4.8)
and inequalities (4.9), (4.17) and (4.18) hold. This figure corresponds to an experiment
where 1 = 5 mm, zl = 2 mm, qp = q1, and Va(t) > 0.

Figure 4.1 was produced using the experimental model (4.12) in conjunction with
the fast Fourier transform and the standard model of polyethylene (see section 6.2.2).
The He(t) used was a truncated Gaussian with full width at half maximum = 0.133 ps.
The 'pressure units' used in figure 4.1 are somewhat arbitrary because all the terms
defining He(t) have not been specified.



In the practical PESAW situation, a signal such as that depicted in figure 4.1
might well have units of Volts upon acquisition because these are the units ultimately
registered by many digitizing oscilloscopes. The data depicted in figure 4.1 has been
rather arbitrarily normalized so that the area of the proximal pulse is -1, which requires
that the dimensions of the data (1/time) be the inverse of the dimensions of the data's
argument (time). This normalization procedure will be used throughout this thesis.

Later sections of this chapter will show that, despite the arbitrariness of the scale
and units of the measured signal, useful information may still be extracted from mea-
sured data such as that depicted in figure 4.1.

6 bulk distal

4 response pulse
_ Vb(t) Vd(t)

L 2 = He(t)*H(zj ,t) = 2 He(t)*H(l,t)

Q- -2 proximal
-4 "pulse
-4 -v-(t)

-6" = -He(t)
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time t (gs)

Figure 4.1: Sample PESAW pressure response signal.

4.8 Calibration And Bulk Signals

A pressure signal such as the one depicted in figure 4.1, but which includes only the
proximal and distal pulses, is called a calibration signal. The remaining signal, which
can only correspond to the charge (or more generally, charges) in the bulk of the
dielectric is called the bulk signal.

The Lyons recovery uses the CLDP inverse transform relation defined by the at-
tenuation coefficient a(f) and phase velocity c(f) of plane pressure waves propagating
through the bulk of the dielectric. The PESAW recovery requires, in addition, an ap-
proximation to the experimental impulse response He(t) so that the measured V+(t)
may be deconvolved to yield an estimate for the required response signal P±(t) (see
equation (4.12)).

Estimates for a(f), c(f), and He(t) may all be extracted from the calibration signal.
The following section will outline this process. For now, note well that the information
contained in the calibration signal is of critical import to the PESAW recovery in
general.



If the dielectric sample under study is somehow known to have no charge embed-
ded within it then the measured pressure signal is by definition a calibration signal.
Therefore, one way to obtain a calibration signal is to apply the PESAW experimental
method to a sample that has no embedded charge. Later, after charge has somehow
been embedded within the sample, this calibration signal may be subtracted from the
pressure response signal obtained from the charged sample. The result is a bulk signal.
This method will work well if the initial sample is indeed charge free, and if the exper-
imental conditions (He(t), a(f), c(f), c, 1, etc.) do not change significantly during the
time between these measurements.

If the bulk charge is somehow known to be located within the sample in such a way
that the bulk response is clearly resolvable from both the proximal and distal pulses (as
is the case in figure 4.1) then the calibration and bulk signals may simply be separated
'by hand.'

But if the experimenter starts with a sample which is not known to be charge free,
or if the known position of the bulk charge is too close to one of the plates, then
neither of the two methods mentioned above can be counted on to separate the bulk
and calibration signals. One possible method for separating the bulk and calibration
signals in this case arises from consideration of equations (4.12) and (4.13). Note that
whereas the sign of the bulk response is reversed if the polarity of Va(t) is reversed,
the plate responses remain unchanged.

It is therefore possible in theory to obtain a measurement V±(t) -- V+(t) corre-
sponding to an experiment where Va(t) has positive polarity, and another measurement
V±(t) - V_(t) corresponding to an experiment where Va(t) has negative polarity. Ac-
cording to equation (4.12):

V+(t) + V t) = He(t)* [ 6(t) + 2 H(1, t)] (4.20)
2

and

V+(t) - V_ (t) q He(t)*H(zl,t) (4.21)
2 qp

This procedure should work even in the general case where the bulk charge waveform
is continuously distributed throughout the sample, even up to the capacitor plates.

The rather reductive case of a single charge layer in the bulk has been introduced as
a pedagogical device to show how bulk charge enters into the experimental model. It is
in no way meant to represent a likely physical charge distribution in an actual dielectric
sample. Drawing on the results derived in the Technical Introduction for a continu-
ous source waveform Q(z), if the sources are distributed continuously throughout the
sample then

V+(t) - V_(t) He(t)* H, d (4.22)- He , Q(z) H(z, t) dz (4.22)
2 qp 0



This last result is included for completeness only. The proceeding discussion will

again return to the simplifying assumption that Q(z) oc ql 6(z - zl), and will also
assume that the experimenter has somehow obtained a calibration signal

Vc(t) = He(t)* [- 6(t) + 2 H(, t)] (4.23)

and a bulk signal

Vb(t) = q H(t) * H(z, t) (4.24)
qp

4.9 Sampling Issues

Note well that, depending on how they are obtained, the actual H,(t) acting in the
calibration signal may not be precisely the same as the He(t) acting in the bulk signal.
Further, all of the experimentally determined signals will actually be noisy, sampled
versions of the desired signals.

That is, in the practical PESAW context, the desired generic signal V(t) (which
could represent any of a number of desired signals, eg: V,(t), Vb(t)., He(t)) will only
be known at a set of points t, given by t, = n At where n is an integer satisfying
0 < n < Nt and Nt is the number of samples obtained. That is, V(t) will at best be
represented by V[t,] = V(n At).

This thesis will use the fast Fourier transform (FFT) to map V[t,] into an approx-
imate set of samples V[fk] 2 V(k Af) of the desired Fourier transform V(f) of V(t).

Subsection 4.14.3 will discuss this mapping in more detail. For now, simply note that
Nt must be a positive integer power of 2, that Af = (Nt At)-', and that k is an integer
satisfying 0 < k < Nt/2.

Because the actual number of measured samples obtained from the experimental
apparatus is not necessarily a power of 2, it is sometimes necessary to 'pad' the mea-
sured data with 'fake data' so that the total number of samples submitted to the FFT
is a power of 2. In this thesis, if the last measured sample has value zero then the
fake data is taken to be all zeros as well; if the last sample is not zero, then the BLG
filter B(f,, f) is adapted to the time domain in such a way as to 'connect the dots' in a
continuous manner from the last measured sample down to zero at the requisite power
of 2. The BLG filter is introduced in appendix B.

The assumption is that, although this procedure will change the DC value V[0]

of V[t,], it will introduce less spurious noise into the higher-frequency components of

V[fk] than the sharp cutoff that would result from padding with zeros only.
Although it is often more convenient to use the 'continuous variable notation' (V(t)

and V(f)), it will sometimes be necessary to use the 'discrete variable notation' (V[t]l
and V[fk]). Please bear this in mind in the proceeding sections, which sometimes
alternate between these notations.



4.10 Extracting The Experimental Impulse Response
Signal He(t)

Modifying the definition of the calibration signal (4.23)

Vc(t) = He(t) * [- 6(t) + 2 H(l, t)] (4.25)

= -He(t) + 2 He(t) * H(l,t) (4.26)

VP(t) Vd(t)

and then recognizing the terms associated with the proximal pulse Vp(t) and distal

pulse Vd(t) depicted in figure 4.1, it should be clear that

He(t) = -Vp(t) (4.27)

and

Vd(t) = 2 He(t) * H(1, t) (4.28)

may be easily obtained by parsing a measured calibration signal, provided the proximal
and distal pulses are well resolved. Equation (4.27) gives a simple recipe for extract-
ing H,(t): simply parse out Vp(t), then change its sign. Given Vp(t), Vd(t) may be

determined from V,(t) by subtraction: Vd(t) = V,(t) - Vp(t).

4.11 Extracting The Attenuation Coefficient a(f)

With He(f) denoting the Fourier transform of He(t), Vd(f) denoting the Fourier trans-
form of Vd(t), and H(l, f) denoting the Fourier transform of H(1, t), it follows from
(4.28) and the convolution theorem that

(-1 V(f) _ [2 He(f) H(l, f)] [2 He(f) &(1, f)]
)H(If) (4.29)

2 p(f) 2 [-Y (f)] 2 H(f) - ) (4.29)

To emphasize that the H(1, f) determined experimentally via (4.29) is a numeric
result derived by FFTing sampled versions Vp[t,] and Vd[t,] of V,(t) and Vd(t), re-
spectively, let

S -1 [fk] -1 FFT{V[t (430)
v2 [fk] 2 FFTV,[t,]}



The notation H[I; fk] (using a semicolon) rather than H [I, fk] (using a comma) has
been adopted to emphasize that knowledge of the thickness 1 is not explicitly included
in H,[I; fk]. It is possible to obtain a pressure response signal without knowing the
thickness I of the sample.

A cursory glance at the magnitude of the resultant H,[1; fk] often gives an estimate
for the 'acceptable' frequency range wherein the signal to noise ratio (SNR) is large. For
polymers, which exhibit linearly increasing attenuation with frequency (see Causality
And Materials), there is typically a frequency band {f_, f+} wherein the magnitude
of H [I; fk] decreases continuously with fk. Above f+, the magnitude of H [1; fk] takes
on seemingly random values at each value of frequency. There is no point in trying to
extract an estimate &(f) to the desired, underlying a(f) outside this range; the result
can only be noise.

Comparing (4.30) with appendix A's expression

H(1, f) = exp( -1 [a(f) + j 2f/c(f)] ) (4.31)

it should be clear that information about the numerically-determined approximate
attenuation coefficient d[fk] is contained in the magnitude H [1; fk]l of H[; fk], and
that information about the numerically-determined approximate phase velocity a[fk] is
contained in the phase (H[1I; fk]) of H[1; fk]. It would seem that

-In & [; f k I
d[fk ln l; fk]l (4.32)

and

- 2 7rfkl
a[fk] = fk) (4.33)

Equation (4.32) has been found to yield a satisfactory experimental method for.
approximating the dielectric's attenuation coefficient ax[fk] if

I[; fk] ; fk] 2  ; fk} 2  (4.34)

However, because the phase of a given complex number cannot be determined
uniquely, and because (4.33) requires that (H,[1; fk]) be at least approximately equal
to the true sampled phase -27rfkl/c[fk], some care must be taken in determining the
experimental (H[; fk]) to submit to (4.33).

4.12 Extracting The Phase Velocity c(f)

By definition [87], the principal value of the phase (Z), of a complex number Z falls
in the 'principal range' {-r, r}. Without extra information, computers can only de-
termine the phase of a complex number to within some specific 2r range, which is



commonly chosen to be the principal range. Implementation of (4.33) using the princi-
pal value of the phase (H,[l; fk])p of HJ[; fk] yields a valid a[fk] only if the true sampled
phase -27rfkl/c[fk] falls within the principal range for f in the frequency band of inter-
est (a recovered a[fk] is called valid in some frequency band if the phase error incurred
by using the approximate E[fk] rather than the true c[fk] is always much less than 27
for positions z of interest).

If the true sampled phase -2-rfkl/C[fk] falls outside the principal range for some
frequency band then the a[fk] gleaned by submitting (H,[l; fk])p to (4.33) only yields
the correct principal value of the phase at the one position z = 1. In this case the
estimated transfer function H[z, fk] gleaned via a[fk] and &[fk] produces, after inverse
FFTing, a reasonable estimate H[z, tk] to the desired, underlying H[z, tk] for the case
of z = 1 only. The fundamental problem is that the principal value 'wraps' all possible
values of the phase into the principal range. The principal value of the phase (H [1; fk])p
of HI[1; fk] should be carefully 'unwrapped' before it is submitted to (4.33) in the hopes
of extracting a valid c[fk].

This thesis invokes a three step process for unwrapping the phase: (1) minimize the
tendency for the phase to wrap by subtracting off known components of the phase; (2)
unwrap the 'remainder phase' so that the change in slope at each discrete frequency is as
small as possible; (3) define the desired unwrapped phase as the sum of the 'smoothed
remainder phase' and the known component of the phase that was subtracted off in
step (1).

The point of step (1)'s removal of known components of the phase is to leave a
remainder phase that is as smooth, and therefore unlikely to 'wrap,' as possible. The
problem is one of aliasing: if the true slope of the phase yields a 27 phase-jump in one
frequency increment Af then the principal value of both data points will be the same.
The idea is to subtract off known components of the phase so that the assumption that
the phase will have at most a shallow slope will be more likely to be valid.

As implemented here, step (1) utilizes the realization that the ratio of the Fourier
transforms of two temporally resolvable pulses such as Vp(t) and Vd(t) will have a linear
phase component 2rfTpp corresponding to the temporal duration ,pp separating the
time of the peak value of Vp(t) I and the time of the peak value of |Vd(t) . Subtracting
-27rfkTpp from (H,[I; fk])p yields a remainder phase

(H[l; fk])r (H ; fk])p + 2rfkTpp, (4.35)

Step (2) utilizes the realization that the f = 0 value of the phase of H(l, f) must
be zero because H(l, t) is a real function of time, and H(l, 0) is proportional to the area
of H(1, t). Therefore (H[l; 0]), = 0. The value of the remainder phase (H[1; fi]), at
the first nonzero frequency fk = Af can be coerced into the principal range, thereby
defining what might be called the 'first principal slope' of the remainder phase.

The value of the remainder phase (H[l; f2])r at the second nonzero frequency can
be uniquely determined by adding the (possibly negative) integer number of 27's that
brings about the smallest change in the first principal slope. The slope determined by



the first and second nonzero values of (H,[l; fk])r might be called the second principal
slope. Choose (H[1; f2])r so that the second principal slope is as close as possible to
the first principal slope.

Proceed similarly for (H,[l; f3]),, and so on for each discrete frequency until step
(2) is completed. Step (3) involves adding -2wrfkTpp to the result of step (2). The
result is this thesis' best guess as to the (H,[1; fk]) that should be submitted to (4.33)
to determine c[fk].

4.12.1 A Possible Improvement

Note that step (2) could possibly be improved by using knowledge of &[fk] to make
some preliminary guess a,[f.k] as to what c[fk] might be (see Causality And Materials).
With this Ea [fk] and the sample thickness 1 in hand, the previous expression (4.35) for
the remainder phase (H[l; fk])r could be updated:

(H[I1; fkl) = (H ; fk])p + 27rfkl/a[fk] (4.36)

Because 1/a, [fk] can be described by

1/a[fk] = pp + Tdisp[fk]  (4.37)

where Tdisp[fk] is the frequency dependent excess (with respect to Tpp) time delay ef-

fected by the frequency dependent velocity, the result of (4.36) may well be a remainder
phase that is even less rapidly varying than the remainder phase defined in (4.35).

The additional 'flattening' of the remainder phase potentially afforded by this im-
provement should be most pronounced in thick (large 1) samples where the 'dispersive'
time delay Tdisp[fk] has had a longer distance over which to accrue. It would make

sense to validate ca[fk] via the time-domain techniques described in section 4.13.2
before supplanting Tp with l/ 4a[fk].

4.13 Curve Fitting And Parameter Extraction

4.13.1 Frequency Domain Parameter Extraction

Given an approximate {&[fk], a[fk]} pair, and given closed-form, parameterized models

{ &[, fk], 7 , fk] } for the desired {a((f), c(f)} expressed in terms of the attenuation

coefficient parameters ( and the phase velocity parameters C, it is possible to employ
a variety of frequency domain curve fitting procedures to determine a 'best fit' set of
parameters ' from d[fk] and a best fit set of parameters Z' from C[fk].

Note that whereas 'tildes' (as in &) correspond to approximate quantities, 'hats' (as
in d) correspond to modelled quantities. In this thesis the closed-form, parameterized
polymeric model (see equation (6.23))



&p[{m, b}, fk] = m fk + b (4.38)

and the parameterized phase velocity model (see equation (6.24))

c(fo) 2 m n() b[1 1] (4.39)

are used in conjunction with Powell's method [88] for minimizing multidimensional
functions to determine the best-fit polymeric parameters {(P, (p} that minimize the
RMS difference between the measured frequency domain samples and the sampled
closed-form expressions over the SNR-acceptable frequency range {f_, f,} described
previously.

In regards to the curve fit determining c(f), it should be noted that the author
implemented the curve fit to 3(f) = 27rf/c(f) (rather than to c(f) directly) because
the data arrives as the principal value of the phase angle [-0l(f)] whereas c(f) is a
derived quantity:

-2x fl-2(f) = f 
(4.40)

[-3lp(f)]

It is known a priori (from the fact that the material's impulse response H(1, t) must
be real) that

lim {f (f)} = 0 (4.41)
f--oo

It follows that even a 'small' error in the measured low frequency value of [-10(f)]
will lead to a relatively large error in the low frequency c(f).

4.13.2 Time Domain Parameter Extraction

Note that because 'p is determined from &[fk] alone, and because 'P is determined
from E[fk] alone, it is entirely possible to extract m and b values from d[fk] that do
not agree with the m and b values extracted from a[fk]. In this case (and others) it
is sometimes useful to employ Powells' method in the time domain as a 'tie-breaker'
when in doubt as to what one set of parameters gives the 'best fit.' The idea is to
search for the one set of parameters 5, that minimizes the RMS values of

7r]7[, tn] - Vd[tn] - d[p, tn] (4.42)



where

p - p U (p = {m, b, fo, c(fo)} (4.43)

includes all the parameters involved in the model. The quantity Vd[rp, tn] is meant to

represent the samples of a modelled version Vd( p, t) of Vd(t) which can be calculated

using equation (4.28), the measured samples He[tn] of He(t), and the modelled transfer

function ff( , 1, f) determined by the parameters lp. Fourier transforming (4.28) using
the convolution theorem,

Vd(f) = 2 He(f) H(1, f) (4.44)

so that

Vd[§, t,l = FFT-' 2 i.fk] 1 , fk] (4.45)

4.13.3 Final Note On Parameter Extraction

It is important to realize that the 'best attenuation fit' set of parameters & determined

from &[fk], the 'best velocity fit' set of parameters ' determined from a[fk], and the

'best time domain fit' set of parameters ' determined from He[t,] and Vp[t,] will not,
in general, agree with each other. Also, the 'best fit' will depend on the frequency

range { f_, f+} used in the case of and Z, and on the time range used in the case of '.

A forthcoming paper by Cooke and Lyons [69] presents evidence supporting the

efficacy of these parameter extraction techniques. The results of this paper which

concern polyethylene, the principal material investigated in this thesis, are summarized

in table 6.1. The specifics of the procedure used to determine the set of coefficients

presented in table 6.1 are not yet well defined; they involve at least as much art as
science.

But regardless of the precise details of the procedure used to define the 'true best fit'

set of parameters, the result is a closed form expression for the estimated attenuation

coefficient &(f) and phase velocity 5(f). This is useful in terms of data reduction,
and also for calculating the required approximate derivatives d&(f)/df - (f) and

da(f)/df - f (f) which may then be used to produce their respective sampled versions

af[fk] and f [fk]. The proceeding discussion assumes that such a model has somehow

been established, and reverts to denoting that model as a(f) and c(f).

4.14 Implementing The Lyons Recovery

A Lyons recovery is defined as the process, or the result, of numerically implementing
the analytic CLDP inverse transform relation determined by the propagation coefficient



K(f) = a(f) + j 27f /c(f)

The CLDP inverse transform uses C(f) (and its derivative Kf (f)) to define the
following mapping (see equation (2.52)) between the Fourier transform 2(f) of some
real of time function P(t) and a real function of space Q(z):

Q(z) = 2 Re exp(z((f)f)) df (4.47)

where the group velocity Cg(f) is given by

1 __ (f- 1 F f dc(f) 1 d (f)
= 1 - d + da(f) (4.48)

cg(f) j2r c(f) c(f) df j2r df

Given K(f), &f,(f), and samples P[tn] of P(t), there are many possible ways to
numerically implement the CLDP inverse transform relation. There are, therefore,
many possible versions of 'the Lyons recovery.'

These versions will differ chiefly on the details of

I. How the recovery (4.47) is regularized to mollify the oscillations associated with
the Darrell property of the bandlimited CLDP inverse transform

II. How the recovery (4.47) is regularized to decrease the influence of noise

III. How approximate values for P(f) are determined from the measured P[t,]

IV. How the frequency domain integration (4.47) is implemented

4.14.1 Relationship To The PESAW Experiment

The four items listed above are generic; they have no specific connection to the PESAW
experiment. All researchers possessed of a time-sampled CLDP response signal (and
a material model) who are interested in implementing a Lyons recovery must address
these four issues. These four issues will be discussed in turn in the following subsections.
The point of this subsection of to place 'the Lyons recovery' within the context of 'the
PESAW charge recovery.'

Section 2.2 introduces an approach which breaks the process of mapping a measured
PESAW pressure signal V(t) to an estimate Q(z) of the desired charge waveform Q(z)
into a three step process.

Step 1 involves deconvolving the measured signal V(t) with respect to the exper-
imental impulse response He(t) to gain some estimate P(t) to the response signal

(4.46)



P(t). This thesis uses the familiar frequency domain deconvolution scheme discussed

in Loss, Dispersion, Deconvolution, and bypasses the much-touted Tikhonov regulariza-

tion scheme also discussed in that chapter in favor of the more familiar lowpass filtering

scheme discussed in the next subsection. Because the deconvolution is enacted in the

frequency domain the natural result is not the time-domain p(t) mentioned above but,
fortuitously, a frequency domain version P(f) ripe for submission to (4.47).

Step 2 is concerned with how to map P(f) to an estimate R(z) of the source

waveform Q(z), and step 3 is concerned with how to map R(z) to the charge waveform

estimate Q(z). Step 2 is the focus of all but this specific subsection 4.14.1 of this

section 4.14; step 2 can be completely decoupled from the PESAW experiment, and
so will not be discussed further here. Step three is a relatively trivial space-to-space
mapping that must be performed as the final step of a PESAW recovery, and so its

discussion will be deferred to the final section of this chapter Putting It All Together.

4.14.2 SDB Filtering (Items I & II)

This thesis' version of the Lyons recovery answers items I and II via a spatially-

dependent implementation of the filter known as Blackman's Lucky Guess (BLG).

That is, the P(f) in (4.47) is replaced by

P(z, f) - (f) B(fc(z), f) (4.49)

where both the BLG filter B(fc, f) and the standard SDB function fC(z) are intro-

duced in appendix B. Applying the familiar frequency domain deconvolution scheme
discussed in the previous chapter to equation (4.12) yields

V(f)
(f) = ( (4.50)

Note that because He(t) is parsed from the calibration signal V,(t), and because
V,(t) has the same dimensions as the generic V(t) in (4.50) (in the case of a plate-charge
recovery, V(t) is V,(t)), the ratio P(f) in (4.50) must be dimensionless. It follows that
the inverse Fourier transform P(t) of 2(f) must have dimensions of frequency, or
inverse-time.

Substituting (4.50) into (4.47) yields

Q(z) = 2 Re (f) f exp(z IC(f)) df (4.51)

where equation (4.47)'s left hand side has been replaced with Q(z) to emphasize that
the result of the integration in (4.47) is generally only a recovered approximation to
the desired Q(z).



4.14.3 Time Samples To Frequency Samples (Item III)

The generic quantity V(f) in equation (4.51) may correspond to any number of signals,
including V,(f) and VL(f) (see section 4.8). Item III is concerned with how information
about V(f) is extracted from the measured samples V[t,] of the underlying V(t).

This thesis' version of the Lyons recovery answers item III by implementing equation
(13.9.6) of Press et al [90]. In short, (13.9.6) advocates FFTing the list of numbers
V[tn] into another list of numbers V[fk] which are then taken as samples of the desired
Fourier transform V(f) of V(t). This thesis' definition of the FFT is introduced in the
following subsection High-Frequency Inaccuracy.

Press et al do not recommend this approach. They point out: "equation (13.9.6)
becomes systematically inaccurate as w [= 27rf] increases." Yet equation (13.9.6) is
simple to implement, and this thesis only uses the results of (13.9.6) at low frequencies
where its results are presumably more reliable.

Press et al suggest a more sophisticated approach that future researchers may choose
to implement. This 'more sophisticated approach' is called 'the dftcor approach' here
because dftcor is the name of the sophisticated approach's workhorse subroutine.

High-Frequency Inaccuracy

It is worth drawing attention to one specific example of the inaccuracy (at high fre-
quency) of approximating V(f) with the V[fk] determined via Press et al's equation
(13.9.6). Please recall that Nt, the number of samples of V(t) comprising the V[t,]
submitted to the FFT, must be an integer power of 2, and that if (as is the case here)
all the numbers comprising V[t,] are real then V[fk] will have conjugate symmetry.

The practical result of this symmetry is that only the first (1 + Nt/2) elements

{V[0],vE[fi],... ,E[fN,/2]} of V[fk] are unique; the last (-1 + Nt/2) elements of V[fki]
may be determined from the first (1 + Nt/2) elements simply by reversing their or-
der, discarding the first and last elements, then taking the complex conjugate of each
element.

Therefore the number of unique frequency values Nf = 1+ Nt/2, and the maximum
frequency fM available through the FFT of data sampled with time step At is

fM = Af (Nf - 1) =(N 1  ) ( = -2 t (4.52)

corresponding to k' - Nt/2, so that fM = fk' (defining k' allows the unattractive
notation fNt/2 to be replaced by fk').

Now consider the proposition

V(fM) - V[fk'] (4.53)

in light of the fact that



Nt-i

V[fk] = FFT{V[t,]} - At E V[t,] exp(-j 27 k n/Nt) (4.54)
n=O

so that

Nt-1

V[fk'] = At 5 V[tn] (-1)n  (4.55)
n=O

= At [ V[to] - V[tl] + - + V[tNt-2] - V[tNt-11] ]

Whereas the f = fM value of the imaginary part Sm {( (f) } of the Fourier transform

V(f) of some arbitrary real function V(t) is itself arbitrary, m{V[fk']} must be zero if

all the elements of V[t,] are real. Therefore equation (4.53) cannot be generally valid.

Note that the FFT operation introduced in equation (4.54) is actually implemented

in the computer in a less direct but more efficient manner which yields the same results.

See [91] or [92] for information concerning the FFT and the inverse FFT, introduced

below:

Nt-1

FFT-1{V[fk]} - Af E Y[fk] exp(j 27 k n/Nt) (4.56)
k=O

The prefactor to this thesis' 'dimensioned' version of the FFT (4.54) is At; the

prefactor to the IFT (4.56) is Af. In general, the definition of an FFT/IFT pair requires

that the product of these prefactors be 1/Nt. Note that because Af (NtAt) -1,
the prefactor product of this thesis' versions of the FFT and IFT satisfy the general

constraint.

Consequences

If the true material impulse response H(l', t) (l' some specific value of 1) is sampled to

yield H['; tn], and if H[1'; tn] is then FFT'd to yield a set of samples H['; fk] which are

meant to satisfy

H[1'; fk] - H(l', fk) - exp(-l' [a(fk) + j 27fk/c(fk)]) (4.57)

it should be clear from the results presented in the previous section that, unless

0 = m { H(l'; fk')} = - exp(-l' a(fk,)) sin(27rfk,l'/c(fk,)) (4.58)

it cannot possibly be true that H[l'; fk,] = H(l', fk').
The implications of the "high-frequency inaccuracy" associated with this thesis'

approach to calculating &[fk] and a[fk] are clear: these numeric approximations to the

desired a(f) and c(f) will generally fail in the limit as f -+ fk,



4.14.4 Frequency Domain Integration (Item IV)

The frequency domain integral expression (4.51) for the PESAW source waveform
recovery R(z) is re-presented below for consideration.

(_ =(f) Cg(f)

In this thesis, only equally-spaced approximate samples V[fk] and H [fk] of the
desired quantities V(f) and H,(f) are available. Because I(f) is assumed to be repre-
sented by closed-form, parameterized models ac(f) and c(f) extracted from measured
data, both KI(f) and 1/CG(f) (which is proportional to the derivative of i(f)) are
assumed to be known continuous functions of frequency. The BLG filter B(fe, f) is
also a known continuous function of frequency (see appendix B). But the end result is
that equation (4.59)'s integrand is known only at the equally spaced set of frequencies
fk= k Af.

This thesis uses a simple approach to the numerical integration of (4.59):

R(z) ' IV[fk] B(fc(z), fk)) (4
R(z) - Af E two[k] Re -- exp(z (fk)) (4.60)

where two[0] = two[k'] = 1, and two[k] = 2 for k # {0, k'}.
The function two[k] arises from the assumed conjugate symmetry of V[fk] (recall

that V[tn] is assumed real); if the real-part operator Re were removed and the summa-
tion over k was extended from 0 to 2k' -1 (so that the summation includes all Nt = 2k'
values produced by the FFT) then the function two[k] could be removed.

The left hand side Q(z) of (4.59) has been replaced with R(z) in (4.60) to reflect the
fact that whereas Q(z) is an approximate analytic expression for the PESAW source
waveform, R(z) is an approximate numeric expression. R(z) defines this thesis' imple-
mentation of the Lyons recovery for determination of the PESAW source waveform.

This definition of the function two[k] follows from the realization that, from (4.56),

Nt-1

V[t,] = Af E v[fk] exp(j 27 k n/Nt) (4.61)
k=O

k'

= Af E two[k] Re {V[fk] exp(j 27 k n/Nt)} (4.62)
k=O

in the case where V[tn] is a real sequence of numbers and, consequently, [fk] has
conjugate symmetry. Using two[k] rather than 2 avoids double-counting of the special-
case frequency components fo and fk',.

If fe(z) is 'significantly' less than fM(= fk'), then the errors associated with the
"high-frequency inaccuracy" of this thesis' naive identification V(fk) k V[fk] should
be mollified if not quelled.



Possible Frequency Domain Integration Improvement

Press et al [100] highly recommend Romberg integration. Unfortunately, as envisioned
by these authors, Romberg integration requires knowledge of the integrand at arbitrary
abscissa's. Romberg integration could provide an alternative to (4.60) for numerically
integrating (4.59) if V(f) and He(f) were calculable at arbitrary f instead of only at
fn = nA f = n/(NtAt).

Fortunately, Press et al (see section 4.14.3, or [90]) provide a relatively high accuracy
(compared to Press et al's equation (13.9.6)) 'dftcor method' for computing estimates
to the Fourier transform _(f) of some signal P(t) given knowledge of P(t) only at the
set of sampled points P[tn] = P(nAt).

It would be possible to improve this thesis' SDB-filtered version of the Lyons recov-
ery, and other frequency-domain implementations of the proposed CLDP inverse IE as
well, by using Romberg integration to perform the frequency domain integration of an
integrand whose values are computed from V[tn] and He[tn] via the dftcor method.

4.15 Putting It All Together

4.15.1 Overview

Given a calibration signal Vc[t,], a bulk signal Vb[tn], and the plate charge qp generated
by the DC component Vo of the applied voltage (see equation (4.14)), the first step of
the suggested algorithm for determining estimated samples Q[zi] of the desired PESAW
charge distribution Q(z) is to solve the inverse medium problem of estimating the
dielectric's propagation parameter I(f) = a(f) + j 27rf/c(f).

The information required to solve the inverse medium problem is contained in V,[t,].
Vc[tn] must be parsed into its proximal plate component V,[tn] and its distal plate
component Vd[tn], which must then be analyzed to determine models for a(f), c(f)
and, ultimately, &(f). Sections 4.10 through 4.13.3 explain this process.

Having solved the inverse medium problem, the next task is the inverse source
problem of determining the normalized, estimated source pressure waveform R[z,]. R[z,]
must then be scaled (by Ez(z); see equation (2.23)) to yield the normalized estimated
charge waveform Q,[z] - which must then be un-normalized to yield Q[zi].

As described in section 1.11, the Darrell property of the bandlimited CLDP inverse
transform necessitates that the recovery be regularized. This thesis has implemented
the BLG (Blackman's Lucky Guess) filter B(f&, f) as a means to this end. This filter
appears in R(z)'s defining expression (4.60) as B(fe(z), f). The process of determining
the spatially-dependent BLG filter frequency cutoff function fe(z) will be deferred to
section 4.15.4.

4.15.2 The Need For Spatially Dependent Scaling

The scaling by Ez(z) takes into account the fact that (generalizing equation (2.21))



S,/2 ~Tp/2
Q(z) -- F(z, t)dt = Q(z) E(z,t)dt =Q(z) Ez(z) (4.63)

-T%/2 -P/2

is the true impetus of the measured Vb[tn]. Note that the F(z, t) (and, likewise, the
E(z, t)) in (4.63) is the excitation field due to the excitation voltage vp(t) - not the DC
field due to the static charge Q(z), and not the DC field due to Vo.

The temporal width Tp of the excitation voltage pulse Vp(t) is introduced in
section 4.3. The Q(z) = ql 6(z - zl) special case of F(z, t) is given in equation
(2.4). The implicit definition of Ez(z) given above is a generalization of the special
case (Va(t) = VS(t)) implicit definition given in equation (2.22).

For a parallel plate capacitor Ez(z) is a constant and there is, therefore, no need
for spatially dependent scaling. For a coaxial (cable) capacitor, Ez(z) 1/(r, - z),
where ro is the radius of the outer conductor; see equation (2.25).

In short: because the impetus of the measured bulk signal Vb [t] is the initial, dis-
tributed pressure waveform F(z, t), and because F(z, t) is the product of the (possibly
spatially dependent) excitation electric field Ez(z) and the desired charge waveform
Q(z), the recovered, normalized pressure waveform R[zi] must divided by the excita-
tion electric field to determine (the shape of) Q [zi]. It will be shown that only the
shape of Ez(z) is needed; the overall scale of Ez(z) is effectively determined by the
un-normalization procedure described in section 4.15.5.

4.15.3 SD Filtering And The Spatial Sampling Interval

Note that sampled abscissa's zi at which R[zi] is to be determined need not be spaced
evenly in z. According to (4.60), each R[zi = zi] can be determined independently of
all the other R[zi]'s. This section discusses how to select a spatial sampling rate.

The Nyquist Interval

Adapting the results of section 2.6 to the the current case, where

P(f) V- Y(f) (4.64)
H (f)

If P(f) is abruptly bandlimited at f, but otherwise noise-free, then

R(fm, z) = Q(z) * D(fm, z) (4.65)

where



D(fm, z) = exp(z ac(fm)) sin(2lfmZ/C(fm)) (4.66)
7rz

= exp(z/A) sin(27rz/A) (4.67)
7Fz

and

A = A(fm) - (f) (4.68)
fm

1
S= A(fm) (f (4.69)

Note that, according to Stenger's definition [94] of the sinc function,

lim D(fm, z)= sin(2z/sinc( z) (4.70)
A-oo 7rz = s

so that, when A - 1/a(f m ) = 00,

2 2
R(fm, z) = Q(z) * sinc(2 z) (4.71)

The results of the sampling theorem [93] to this special (sharp bandlimiting,
a(fm) = 0) case are clear: information about R(fm, z) will be irretrievably lost to
aliasing if the spacing Az between consecutive zi's is larger than the Nyquist interval

Az, C(f) (4.72)
2 2f m

It is, therefore, recommended that the sampling interval Az be some 'small' fraction

x of Az,:

Azx = X Az, (4.73)

where

0 < x < 1 (4.74)

Adapting the well-known results associated with the sampling theorem, the recom-
mended procedure for the sharp bandlimiting, a(fm) = 0 case is to oversample the
unregularized R(z) at the rate Az x and then apply a lowpass spatial filter with cutoff
wavenumber 1/A.



Spatially Dependent Nyquist Interval

The previous discussion assumed sharp bandlimiting and a(fm) = 0, so that the Darrell
reduced to a sine function. It then followed that the sampling interval Az between
successive sampling abscissa's zi should be Azx, and that filtering to remove the A
oscillations could successfully be performed post-recovery, in the inverse space domain.

These results do not apply to the a(fm) > 0 case because the a(fm) > 0 Darrell is
not a sinc function. The a(fm) > 0 Darrell grows exponentially for

z > A 1/a(fm) (4.75)

and the unregularized Azx-sampled recovery R[zi] can become dominated by the Dar-
rell's exp(z/A) term when z > A. Inverse space domain filtering cannot be counted
upon to remove this exponential growth.

This thesis advocates pre-recovery frequency domain BLG filtering of P(f). This
procedure produces a non-sharp bandlimited P(f). Carefully applied, this procedure
has been found to remove the exp(z/A) growth associated with the Darrell. It also re-
moves the A oscillations, and it inherently quells the often noise-ridden higher frequency
components of the experimental _(f).

Further, it is a simple matter to introduce spatially dependent filtering into the
BLG filter B(f&, f) via the SDB function f,(z) so that B(fe, f) --+ B(f&(z), f). Care-
fully applied, this procedure has been found to result in recoveries with the intuitively
appealing (see section 1.13) property that the width of a recovered source impulse
decreases with its placement depth.

But what should the interval Az between successive sampled abscissa's zi be for
the SD BLD filtered Lyons recovery? Experience has shown that the experimenter will
be rewarded if she takes a small leap of faith and extends the results of the sampling
theorem to the SD BLG filtered recovery. Although the BLG filter B(fe, f) does not
introduce a sharp cutoff, it's fe-dependent 3 dB point f3(fc) (= Ka3f, where 3 -

0.24445) may reasonably be interpreted as f,.
The result is a position z dependent quasi-Nyquist interval

Az (Z) fc()) (4.76)
2 N3 fe(z)

which is a spatially-dependent factor of approximately fm/(K3 fc(z)) times larger than
the true Nyquist interval Az, in the case where c(fm) - c(K3fc(z)) for all z.

Rather than use (4.76) to implement a spatially dependent sampling interval, this
thesis advocates determining the smallest value Az' of Az(z) (which should be near
z = 0 because fc(z) decreases monotonically with z), and then sampling at a constant
interval Azo = XAz, where X is some small fraction as in (4.74).

Using equation (4.76) in this manner for the case of standard polyethylene (see
section 6.2.1) and the standard f,(z) (see appendix B) has resulted in the choice
Azo = 2 nanometers.



4.15.4 Determining The SDB Function fe(z)

Calculation of some sample R(zi) of R(z) via (4.60) requires zi and the signals VI[fk,

H [fk], [fk], _[fk], and the SDB function f,(z).
This section assumes that the proximal plate signal Vp[fk] and the distal plate signal

V,[fk] have been determined; these are the two signals that will, in turn, play the role

of the generic V[fk] in (4.60). It is also assumed that the experimental impulse response
H[fk], the propagation coefficient L(f), and the complex group velocity Cg(f) have
been determined. Given these signals, this section's goal is to describe one method of
determining fe(z).

The Proximal Plate Recovery: Determining fe(O)

Start by letting Y[fk] - Yp[fk] and fe(z) = oo. Calculate R[zi] at a sequence of

positions z satisfying Iz < 5A. Use a spatial sampling rate of Azo, as determined in
section (4.15.3).

Because Vp[t.] = -He[tn] (see equation (4.27)), the operant data signal Ep[fk] in
(4.60) must be

p[fk] = = -1 (4.77)

Substituting (4.77) and B(oo, f) = 1 in (4.59), then comparing with (2.68):

'f m 1 dK(f)D(fm, z) 1 d (f) ] exp(z IC(f)) df (4.78)
127r df

f exp(z f )) df (4.79)

2 exp( f)) df (4.80)

results in the realization that the resulting sequence R[zi] = -D[fm, zi].
That is, the operation described above will result in a set of numerically approximate

samples of the Darrell. Because the selected zi's oversampled a range extending over
many A about z = 0, the Darrell's A oscillations will be clearly visible. Now, experiment
with various decreasing fe(z) = constant values and observe the lessening of the A
oscillations and commensurate increase in the central pulse width of the recovery. The
tradeoff between the degree of allowable A oscillation and the degree of allowable pulse
spread is up to the experimenter's discretion.



The author chose to decrease f,(z) = constant just until the oscillations could not be
seen on a plot showing the recovery of the entire pulse, and then another 20% reduction
was executed 'for good measure.' This process is not yet an exact science. Denote the
resulting value of fe(z) = constant as f hi. This value gives the first datapoint in fe(z):

fc(0) = fhi

The Distal Plate Recovery: Determining f.(1)

Now let V[fk] -- ld[fk], fc(z) = fhi, and compute R[zi] for Iz-1 I < 5A. The resultant
recovery will look noisy in part because the operant data signal

f -] - d[fk -= 2 H[l, fk] + noise[fk] (4.81)Hd[fk = He[fk]

The inclusion of the noise[fk] term in Pd[fk] follows from the assumption that the
frequency dependence of the random noise signal injected into the measured calibration
signal V~[tn] for times t, corresponding to the arrival of the proximal pulse was not
precisely the same as the frequency dependence of the random noise signal injected
into V~[ta] for times t, corresponding to the arrival of the distal pulse.

In the case of the proximal plate recovery the operant data signal was a noiseless
kp [fk] = -1 and the range of zi's sampled in that case were all presumably much less
than 1 (assuming 5A < 1) so that the frequency dependent 'boosting term' exp(zi a (f))
in exp(zi IC(f)) was relatively small for all the zi's.

But now the mean position of the range of sampled zi's is - 1, so the boosting
term is a relatively larger quantity - exp(l a(f)). The combined effect of the larger
boosting term combined with the existence of noise in Pd[fk] results in a distal plate
recovery that is noisier than the proximal plate recovery.

However, just as in the case of the proximal plate recovery, lowering fe(z) = constant
will reduce the recovered noise at the expense of a wider (than the proximal plate recov-
ery) distal plate recovery. The observed decrease in noise, A oscillation, and A growth
in the presence of a decreased fe(z) = constant selection are all consistent with the
increased suppression of the relatively noisy higher frequencies that would otherwise
be overamplified by the recovery's exp(zi a(f)) term.

Again, decrease fe(z) = constant just until the oscillations cannot be seen on a
plot showing the recovery of the entire pulse, and then execute another 20% reduction.
Denote the resulting value of fe(z) = constant as flo. This value gives the second
datapoint in fc(z): fc(l) = flo

Intermediate Values

When fe(0) > fc(l) the proximal plate recovery will be thinner than the distal plate
recovery. This is entirely in agreement with the General Introduction:



"Intuition suggests that the FWHM of shallow-source recoveries ought to be smaller

than that of deep-source recoveries. This intuition follows from the realization that

pressure waves generated by deep sources have to travel through more attenuative,

dispersive material than do the pressure waves generated by shallow sources. Theoret-

ically, in the absence if noise these deeper sources could be recovered equally as well

as shallow sources. Practically, the finite noise level in the measured signal renders the

more-attenuated signals generated by arbitrarily deep sources indistinguishable from

the measurement noise."
In cases where the quantity [1 a(f(l1))] < 1 the distortion caused by propagation

loss through the dielectric is small, so fe(0) will approximately equal f,(1) and the two

plate recoveries will have approximately the same width. But this special low-loss case

is not the general case. This thesis focusses on the high loss case where [1 a(fc(1))] > 1,
in which case f,(0) > f(l1).

It seems reasonable to expect that the cutoff function fe(z) will decrease monoton-

ically, be concave up, and approach zero only asymptotically. The line connecting the

two known values of fe(z) would not be appropriate because this line will cross zero at

a finite value of z. Some function similar to

f(z)= fhi exp(-z/ze) (4.82)

where

z e = (4.83)
ln( f hi/ f 10 )

would be more appropriate.
It is possible to 'test' this f'(z) by computing modelled impulse responses H[zo; t,]

for various values of zo, and then sampling the R(z) gleaned by submitting HfI[z; fk]

as V[fk] in (4.60) at abscissa's zi satisfying iz - zl < 5A to determine whether or not
observed degree of A oscillation is the same that given by using fe(z) = f,(zo) and
following the approach used to determine fe(O) and fc(l).

The standard SDB function fc(z) presented in figure B.2 was determined by per-

forming this process, changing the value of f'(zo) in those cases where the test failed,
then performing some additional hand-modifications to promote an apparently intrinsic
tendency towards linear FWHM vs z behavior .

The Vp[t,] and Vd[tn] used were the same as that which generated the polymeric

model presented in table 6.1. The resultant fc(z) was found to be steeper than f'(z)

for zi's near z = 0+, and less steep than f'(z) for zi's near z = 1-. The value of

fc(z) for z < 0 was set at the constant value fc(0) to ensure continuity of fc(z). The

value of fc(z) for z > 1 was extrapolated using the same method used to determine the
intermediate, interpolated values.



4.15.5 The Un-Normalization Procedure

The Lyons recovery (4.60) produces a set of spatial samples R[zi] corresponding to
some pair of measured time samples {V[tn], He [tn] obtained from a material with a
known (or at least approximately known; see sections 4.10 through 4.13.3) propagation
coefficient L(f). The units of V[tn] and He[tn] must be the same (because they are
measured by the same apparatus) so the units of R[zi] must be mm - 1 (because z is
measured in mm).

Presumably IC(f) was determined from a calibration signal Vc[t,] which had been
broken up into a proximal pulse Vp[tn] and a distal pulse Vd[tn] (see sections 4.8 and
4.10), and the goal is to determine estimates Q[zi] to the bulk charge waveform Q(z)
given samples Vb[tn] of the bulk signal Vb(t) and knowledge of the capacitor's geometry
(parallel-plate or coaxial-cable). It is assumed that Vc[tn], Vb[tn], and He[tn] were
obtained under similar experimental conditions (Va(t), HT(t), ce(f), c(f), e, etc.; see
section 4.8).

Generalizing equation (4.14)'s qp beyond the planar geometry by defining it as the
magnitude of the surface charge on the capacitor plate the transducer is attached to (ie:
the proximal plate), the PESAW researcher knows a priori that the area (Az E, Q,[zi])

of Q [zi] should equal -qp where Qp[zi] is the un-normalized version of R[zi] gleaned
from Vp[tn] (see section 4.2).

With qd defined as the quantity of surface charge on the distal capacitor plate (for
coaxial-cable geometry, qd > qp; for planar geometry, qd = qp) the PESAW researcher
also knows a priori that the area of Qd[zi] should equal 2qd where Qd[Zi] is the un-
normalized version of Rd[zi] gleaned from Vd[t,] (see section 4.2).

Drawing on the results of sections 2.2.3 and 4.15.2, the recovery R[zi] must be di-
vided by a geometry-dependent function of space Ez[zi] before the quantity R[zi]/Ez[zi]
can be un-normalized (scaled by a constant v) to represent samples of the desired charge
waveform estimate Q [zi].

Because the un-normalization procedure will take care of the overall scale (to ensure
that Az Ei QP[zi] - -qp and Az Ei Qd[zi] - 2qd) only the shape of Ez(z) is important.
For the planar case, Ez(z) is a constant so there is no need to change the shape of R[zi]
before un-normalizing it. For the cable case, Ez(z) - ro/(ro - z) (see equation (2.25))
so multiplying R[zi] by (r, - zi)/ro prepares that R[zi] for un-normalization.

There are two ways to select the un-normalization constant v. First option: choose
v = v, to ensure that Az Ej Qp[zi] = -qp. Second option: choose v = vd to ensure
that Az Ei Qd[Zi] = 2 qd. In theory, vp should equal vd. In practice, experimental errors
often conspire to violate the equivalence vp = d.

Using these two values of v (and the same 'shape change function' Ez(z)), the

PESAW researcher can determine two bulk recoveries Qb[Zi: (P) [zi], corresponding

to v,; and Qb [zi] corresponding to vd. The PESAW researcher must use her own
discretion in determining which recovery is 'more valid.'



Chapter 5

Inverting Linear, First-Kind
Fredholm IEs

A linear first-kind Fredholm integral equation (IE) has the form [30]

y(r) = jK((, )x()dx (5.1)

where a and b are constants. The function K(c, 7) is called the kernel of the IE. It

is clear from this definition that the PESAW IE is a linear first-kind Fredholm IE,
whether expressed in the time domain (7.3) or the frequency domain (7.6). To solve

such an IE is to determine x( ) given knowledge of y(T), K( , T), a and b.
An IE is said to be singular "when one or both limits of integration become infinite

or when the kernel approaches infinity at one or more points within the range of
integration." [31] A kernel is said to be separable if [31]

K((, 7) = E gk()hk(T) (5.2)
k=l

where the functions g1(g),...,gn(() and the functions h1(7), ... ,hn(7) are linearly
independent. A kernel is said to be Hermitian [31] if it satisfies K(, 7) = K*(-r, ).

There are some theorems pertaining to the analytic solution of singular, linear
first-kind Fredholm IEs, and to linear IEs with kernels which are either separable or
Hermitian. Unfortunately the PESAW IE meets none of these criteria, except for the
fact that the upper limit 1 may be taken as infinite because of the a priori knowledge
that Q(z) vanishes for z > 1. This fact will be taken up later, when the parallels
between the PESAW IE and the Laplace transform are discussed. Otherwise, none of

these theorems pertain to the PESAW IE and will, therefore, not be discussed.
The following quote from Numerical Recipes in C (NRiC,[30]) neatly outlines the

difficulties posed by first-kind Fredholm IEs: "Fredholm equations of the first kind
are often extremely ill-conditioned. Applying the kernel to a function is generally a



smoothing operation, so the solution, which requires inverting the operator, will be
extremely sensitive to small changes or errors in the input. Smoothing often actually
loses information, and there is no way to get it back in an inverse operation."

The Laplace transform is a linear, first-kind Fredholm IE. Chapter 7 shows that
the CLDP IE inversion problem is a particular type of Laplace transform inversion
problem (one where path of integration is a CLDP path). Stenger's warning about
this class of problems is blunt: "it is a simple fact that all methods of inversion of the
Laplace transform are ill-posed. [43]"

NRiC points out that "almost all methods for solving IEs numerically make use
of quadrature rules" which discretize (5.1) into a set of linear equations which could,
theoretically, be solved via linear algebra. However, Hansen [32] has pointed out that
"all the classical numerical methods, such as LU and Cholesky factorization, fail to
compute a meaningful solution once (5.1) has been discretized."

Hansen surveys "several numerical tools that can be used for the analysis and
solution of systems of linear algebraic equations derived from Fredholm IEs of the
first kind" and finds that if a regularized or 'smooth' solution is desirable, then the
singular value decomposition (SVD) and the generalized singular value decomposition
are the preferred tools for selecting a regularization parameter and a solution. Among
the methods to which these results pertain are Tikhonov's method, truncated SVD,
iterative methods, and "a whole class of regularization methods ... of which the most
promising are semi-iterative methods and the method of conjugate gradients."

Convolution equations are the subclass of linear, first-kind Fredholm IEs for which
K( , 7) in (5.1) reduces to K(( - r), while a and b take on the values -oc and +oo
respectively. A frequency domain adaptation of Tikhonov's method to the problem
of deconvolving signals modified by transmission through CLDP materials is intro-
duced in chapter 3. NRiC [41] provides an overview and analysis of frequency domain
deconvolution schemes.

NRiC notes that, until recently, the numerical solution of (non-convolution) IEs was
almost never treated in numerical analysis textbooks. It is a relatively young science.
"There are many different kinds of equations, each with many possible pitfalls; often
many different algorithms have been proposed to deal with a single case." Given that
this is the state of IE theory in general, and given that first-kind Fredholm IEs are
among the most difficult of these equations to solve, it should come as no surprise that
Hansen's is not the only authoritative voice to speak on this topic.

Tarantola [33] is one of these voices. He proposes a probabilistic approach to the
solution of first-kind IEs and compares it to the Backus-Gilbert method, summarizing
"I feel the probabilistic approach to be much richer than the mathematical approach
of Backus and Gilbert, but they probably feel the contrary." NRiC also discusses the
Backus-Gilbert method, and they both also discuss the Maximum Entropy method for
the solution of first kind IEs. Wavelet analysis has also been proposed as a method for
obtaining approximate numerical solutions to discretized first-kind Fredholm IEs [34].
On this topic, NRiC says: "wavelet transforms ... can ... be used to transform some
classes of integral equations into sparse linear problems that allow fast solution [30]"



Stenger [59] uses Sinc-based methods to perform and analyze the inversion of linear,
first-kind Fredholm IEs in general, and in the particular case of the inverse Laplace
transform. Krylov [111] also discusses the numerical inversion of Laplace transforms.

Despite all these approaches to the numerical solution of linear first-kind Fredholm
IEs, to the best of this author's knowledge no-one but those executing a Bromwich
inversion [42, 75, 44] of the Laplace transform has considered the inversion of CLDP
IEs ... except for the recent attempt by PEA researchers Li et al [20]. Li approached
the inversion problem from the time-domain perspective by producing a time-domain
kernel from frequency-domain values for a(f) and c(f) gleaned from an effective time-
domain through-transmission pulse pair.

Li generated the forward discretization matrix from her time-domain kernel, and
solved it for her known plate pressure versus time waveform via the Jacobi relaxation
method. She apparently met with success, as evidenced by the fact that her relaxation-
recovery of the impulsive plate-charge distributions were thinner and taller than those
gleaned via the dominant recovery, and yet had the same area. That is, her relaxation-
recovery of the plate charges more closely approximated the spatially impulsive nature
of these plate charges than did the dominant recovery.

Her success can be understood by realizing that even when attenuation and dis-
persion are non-negligible, the forward time-domain discretization matrix will tend to
be diagonally dominant and, therefore, relatively easy to solve. Further: she used an
iterative method, as recommended by Hansen. Forward time-domain discretization
matrices tend to be diagonally dominant because charges nearer the proximal plate
have the time of their peak plate pressure sooner than charges farther from the prox-
imal plate; if dispersion were absent, the forward time-domain discretization matrix
would be purely diagonal. See section 9.2.3 for a more complete discussion of these
discretization matrices.



Chapter 6

Causality And Materials

The goal of this chapter is to outline the frequency domain (see appendix F) relation-

ships pertaining to real, causal functions and materials. This discussion is relevant

because this thesis is concerned only with waveforms (functions of space alone), signals

(functions of time alone), and materials that are real and causal. A function is called

causal if it vanishes for negative values of its argument. A material is called causal if

its thickness 1 dependent transfer function

H(1, f) = exp(-l I(f)) (6.1)

where

L(f) = a(f) + j 27rf/c(f) (6.2)

(f)

yields a causal temporal impulse response function H(l > 0, t) when it is inverse Fourier

transformed:

H(1, t) H(1, f) (6.3)

Materials which satisfy these conditions are called CLDP materials (Causal, Lossy,
Dispersive, Plane-wave). See chapter 3 for proof and explanation of the terms and

equations discussed above.
The results presented in this chapter will help in determining whether some given

I(f) corresponds to a causal material. Most of the results presented in this section

have been culled from the excellent discussions of the frequency domain implications

of causality found in Guillemin [45] and Hahn [47]. The section on the nearly-local
Kramers-Kronig relations is the sole exception.



6.1 The Kramers-Kronig Relations

Although this material is covered by Guillemin and Hahn, the presentation given here
was inspired especially by Siebert [65]. This section uses the definitions of the Fourier
and Laplace transformations given in appendix F. Using the notation introduced there,
the Kramers-Kronig (KK) relations state that the real and imaginary parts of the
Fourier transform G(R) of a causal G(x) must be a Hilbert transform pair. To see this,
start with the following direct-space statement that G(x) is causal:

G(x) = G(x) U(x) (6.4)

where U(x) is the Heaviside unit step function satisfying

S 6(N)+ 1
U(x) 2 + j2

2 j2xN
(6.5)

The result of Fourier transforming equation (6.4) via the
inserting (6.5), is

convolution theorem, then

G(N) = G(N) * [( + j2r (6.6)

where the * denotes convolution. Applying Dirac's identity
yields:

G(N) = G(N) * -jr

to (6.6), then rearranging,

(6.7)

Separating G(R)
yields

into its real and imaginary parts G,(R) and Gi(N), respectively,

[Gr(N) +j G(N)] = [Gr(R) +j Gi(R)] * j
jirN

(6.8)

Separating (6.8) into its real and imaginary components yields the Hilbert transform
relations 7-:

1
G,(t) = Gi (R) * --

7rrN

-1
Gi(N) = G,(R) -*

7r-
(6.9)

where the principal value of the convolution integral is to be taken in the case of a
singular integrand.



This derivation of the KK relations is reversible, meaning that if some propagation
coefficient I(f) yields an H(1, f) with real and imaginary parts that satisfy the KK
relations then that H(1, f) corresponds to a causal material.

Note that the Hilbert transform relations are linear, implying (in part) that if
H(1, f) satisfies the KK relations then TH(1, f) (where T is some positive constant)
will also satisfy the KK relations. It follows that if some {a(f), c(f)} pair corresponds
to a causal material, then the material described by {a(f) - In(T)/1, c(f)} will also be
causal.

Adding a constant to the a(f) associated with a causal material will result in
another causal material. However, depending on the original a(f) and the constant
added, the resulting material may or may not be stable (if a(f) > 0 for some band
of frequencies, then the amplitude of those frequencies will grow exponentially as the
wave propagates).

6.1.1 Example: Bromwich Materials

A Bromwich material is defined as a material for which a(f) = ab and c(f) = Cb
where ab and Cb are constants satisfying ab >_ 0 and Cb > 0. These materials bear the
name 'Bromwich' because, as section 7.4 will show, the so-called CLDP path associated
this choice of form for a(f) and c(f) corresponds to the Bromwich Laplace transform
inversion path [42, 75, 44].

Inserting the Bromwich models for a(f) and c(f) into (6.1), it follows that the real
and imaginary parts of the Bromwich material's transfer function Hb(1, f), denoted
Hbr(l, f) and Hbi(l, f) respectively, are given by

Hb,(,1, f) = exp(-l ab) cos(27rfl/cb) (6.10)

and

Hbi(1, f) = - exp(-l b) sin(2lrf 1/cb) (6.11)

From the fact that

cos(27 f 1/cb) 4 - sin(2 f 1/cb) (6.12)

it follows via the KK relations that the Bromwich material is causal.
Note that Cb must be positive because, otherwise, the combined effect of the even

symmetry of Hb(l, f)'s cos term and the odd symmetry of Hb((l, f)'s sin term would
be to remove the leading minus sign on Hb((l, f). In this case Hb,(l, f) and Hbi(l, f)
would not be a Hilbert transform pair, so the material would not be causal.

This same result may be seen more directly by inserting the Bromwich model di-
rectly into equations (6.1),(6.2), and (6.3) to arrive at



H(z, t) = exp(-zcab) 6(t - Z/Cb)

It should be clear that (assuming z > 0) if cb is positive then 6(t - z/cb) will be a

causal signal, whereas if cb < 0 then (t - z/cb) will be an acausal signal. Also, the

constraint Cb > 0 follows from the requirement that

lim {H(z, t)) (6.14)
Z---*

remain bounded.

6.2 The Nearly-Local KK Relations

Whereas the KK relations exactly relate the real and imaginary parts of the entire

spectrum of any causal material's transfer function H(1, f), the nearly local Kramers-

Kronig (NLKK) relations [66, 67, 68, 69] state approximate relations between a(f) and

c(f) for a particular subclass of materials over some frequency range. A derivation of

these relations can be found in O'Donnell [35].
According to the NLKK relations, if some material has no sharp resonances in the

frequency range of interest, and if

a (f)c( 2 < 1 (6.15)
27rf

is valid for all frequencies, then:

(f 7r2f 2 dc(f) (6.16)
c2(f) df

Integrating (6.16) yields

1 1 1  / ao()
c(f) c(f) 2 =fo 2(6.17)

If, for frequencies f of interest,

Ic(fo)l > Ic(f) - c(fo) (6.18)

then the left hand side of (6.17) is approximately [c(f) - c(fo)]/c 2 (fo), and

(6.13)



c(f) c(fo) + [C(f ] 2j a  dO (6.19)

Note that whereas the KK relations are global (require information over all frequen-
cies), (6.19) is nearly local because it allows the calculation of an approximate c(f)
given knowledge of a(f) over a finite range (between fo and f). Equation (6.16) is al-
most entirely local; it allows the calculation of an approximate a(f) at some frequency
f' given knowledge of c(f) over an infinitesimal range of frequencies about f'.

Following Hahn's discussion [47] of minimum phase transfer functions, the NLKK
relations seem to rely on the fact that the real and imaginary parts a(f) and P3(f) of
a propagation coefficient

(f) = a(f) + j O(f) (6.20)

which corresponds to a causal H(1, t), and which corresponds to a 1(s/(j2r)) which
has all its zeros in the left half plane, form a Hilbert transform pair:

a(f) (f) (6.21)

Quoting Hahn directly: "These relations [between a(f) and 3(f)] can be converted
to take the form of the well-known Bode phase-integral theorem:

rda 1 oF dc do 1
S(f) = da + - n(coth( )) du (6.22)

where u = ln(f/fo) is the normalized logarithmic frequency scale, and da/du is the
slope of the a-curve in a In-In scale. The Bode formula shows that for the minimum-
phase transfer functions the phase depends on the slope of the a-curve ... The factor
ln(coth(lu/21)) is peaked at u = 0 (or f = fo) and hence the phase at a given fo is
mostly influenced by the slope da/du in the vicinity of fo." The principal value of the
integral (6.22) is to be taken in the case of a singular integrand.

O'Donnell [35] does not explicitly invoke the Bode phase-integral in his derivation
of the NLKK relations, but he does explicitly invoke the KK relations. Like Bode and
Hahn, he also introduces the normalized log frequency scale u = ln(f/fo) and arrives
at an integral involving the function ln(coth(lu/2I)).

O'Donnell proffers a plot of ln(coth(lu/21)) and observes that "the function has a
sharp singularity at u = 0, and thus the magnitude of the integral is dominated by the
value of the integrand at u = 0." O'Donnell therefore Taylor-expands ln(coth(lu/21))
about u = 0 and, after making some approximations, arrives at the NLKK relations.

The following quote from O'Donnell places the entire situation in context: "Bode
[104] demonstrated that at any frequency the phase shift is approximately related to



the local rate of change of the gain with frequency. The approximation is quite accurate

if both the gain and phase shift are sufficiently well behaved (ie, exhibit no resonances)
over a limited frequency range centered at the frequency of interest."

6.2.1 Example: Polymeric Materials

Assuming that hysteresis absorption is the dominant loss process manifesting itself in

some polymer, the polymeric attenuation coefficient may be modelled as [71, 70, 69]

a,(f) = mf + b (6.23)

where m and b are constants which depend on the polymer under study. Inserting

(6.23) into (6.19) yields

c ]2[mln(+)b[± f 1] (6.24)
c(f) = c (fo)+ 2 m In( ) + b[ ] (6.24)

This model for a(f) and c(f) clearly includes no resonances. Submitting (6.23) and

(6.24) to (6.15), and setting b = 0 for simplicity, yields

2
m[c,(fo) + m [ o)2 n( )] < 1 (6.25)
2r 7r fo

This is the b = 0 requirement that m, fo, and cp(fo) must satisfy within the fre-

quency range f for the hysteresis absorption model for a,(f) and the resultant NLKK
model for c(f) to satisfy the NLKK relations.

It is interesting to note that submitting the b = 0 polymeric model to equations
(6.1), (6.2), and (6.3), then applying Fourier theory's convolution theorem, yields the

following expression for the polymeric thickness 1 dependent impulse response function:

H,(1, t) = ( 2 m 1t)2 {exp(-j27rfl/cp(f))}(t) (6.26)

where Cp(f) is given by (6.24) and the * denotes temporal convolution.
The b = 0 polymeric model for H(1, t) is the convolution of the term associated

with dispersion and the term associated with attenuation. The term associated with

attenuation is a Lorentzian with full width at half maximum Im/ir and peak output
2/(lm).

The Lorentzian term is acausal; it does not vanish for any finite value of t. The

dispersive term modulates the acausal Lorentzian term, making the entire temporal
response (approximately) causal for each 1 > 0.



This analysis suggests that the temporal width of the impulse response of a b = 0
polymer should increase approximately linearly with 1, and that the value of its peak
output should vary as the inverse of 1. The expected linear increase in temporal FWHM
with 1 is implicit in the exhibited linear increase in spatial FWHM with 1 depicted in
figure 1.3's Rd(z); Rd(z) uses a linear mapping from time to space.

6.2.2 The Standard Model For Polyethylene

Cooke and Lyons [69] applied chapter 4's inverse medium techniques to more than one
sample of polyethylene, averaged the results for m, b, and c(fo), and arrived at the
following model:

m = 6.29 ±5% dB/(cm MHz)
b = -2.5 ±50% dB/cm

fo = 1 MHz
c(fo) = 1.982 ±0.2% mm/ps

Table 6.1: Cooke & Lyons' experimentally determined values for the hysteresis absorp-
tion/nearly local Kramers-Kronig model of polyethylene.

Setting b = 0 and changing units yields

m = 0.073 Np/(mm MHz)

fo = 1 MHz
c(fo) = 1.982 mm/ps

Table 6.2: Values for the hysteresis absorption/nearly local Kramers-Kronig model of
standard polyethylene.

This thesis' standard model of PE is determined by submitting these values (and b = 0)
to the polymeric model for ca(f) and c(f) given by (6.23) and (6.24). The resulting
functions are denoted cOp(f) and cp(f). Submitting cp(f) and c,(f) into (6.2) yields
the standard model for PE's propagation coefficient, denoted &p(f).

Similarly, standard PE's thickness I dependent transfer function is denoted H p(1, f)
and standard PE's thickness 1 dependent impulse response function is denoted HP,(, t).

Submitting the standard PE model to the NLKK requirement (6.25) and allowing
(0.1)2 < 1 yields the generous result that the frequency range acceptable to the NLKK
relations is {10 - 158, 1099} MHz.

6.3 The Paley-Wiener Criterion

The Paley-Wiener criterion [47, 72, 45]is given by
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0 (f) df < 00 (6.27)
j 1 + f 2

An important corollary of this Paley-Wiener theorem is that no real, physical (ie:

causal) system can absolutely filter out a finite frequency range. This would corre-

spond to a(f) --+ oo00 for that frequency range, and so (6.27) would automatically fail.

Guillemin points out that if the asymptotic behavior of a(f) is described by

a(f) -- f" for f -+ 00 (6.28)

then the integral (6.27) can have a finite value only if n < 1.

6.3.1 Failure Of The Polymeric Model

It follows immediately that the hysteresis absorption model of polymeric attenuation

(6.23) cannot be valid over all frequencies.
However: first, this model is just barely on the wrong side of the border n < 1; this

Paley-Wiener criterion would be satisfied if a(f) = r f( 1-O) where o is an arbitrarily
small positive number (perhaps the hysteresis absorption model should be modified in

this manner). Second, this model seems to agree well with experimental results (see
[69]), at least for frequencies in the MHz range. Third, the NLKK relations are not
meant to apply to all frequencies; they are nearly local. Fourth, this thesis' numeric

recoveries do not seem to suffer from the 'acausal' nature of the standard model of
PE. Therefore this thesis will continue to use the standard model of PE in spite of its
seeming inconsistency.

6.3.2 Existence Theorem

Siebert [72] points out that, for every a(f) satisfying (6.27) there exists a corresponding
,3(f) such that the corresponding H(1, t) is causal. The NLKK relations give one
approximate method for determining this P(f). Guillemin [45] also addresses this
problem, as does the Bode phase integral theorem (6.22).

6.4 The Paley-Wiener-Guillemin Criterion

Guillemin [45] submits another version of the Paley-Wiener criterion which speaks to
the asymptotic behavior of 0(f). He points out that if the asymptotic behavior of

(f) - 2r f/c(f) is described by

3(f) --* f m for f -- 00 (6.29)
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then there exists a corresponding a(f) such that the related H(1, t) is causal only if
1 < m < 2. The m = 1 case corresponds to the delay-only material for which c(f) is
constant. Again, both Guillemin and the NLKK relations offer suggestions about how
to determine the a(f) which corresponds to an acceptable /(f).

6.4.1 Existence Theorem

According to Hahn [47], the Bode phase integral theorem (6.22) follows from the fact
that the a(f) and P(f) of a minimum phase transfer function must be a Hilbert trans-
form pair (6.21).

Although the author has not found this stated explicitly in the literature, it seems
that if some given /3(f) satisfies the Paley-Wiener-Guillemin criterion then there must
exist at least one a(f) such that the corresponding H(1, t) is causal. From the results
of section 6.1, it follows that if there exists even one such associated a(f) then there
must exist an infinite number of associated ca(f)'s which differ from each other by only
a constant.

6.5 Analytic Propagation Coefficients

Guillemin [45] uses Cauchy's integral formula and the assumption of a

y(s) = -1 C(s/(j27r)) (6.30)

that has acceptable s -- oo asymptotic behavior (ie: satisfies the Paley-Wiener criteria)
and is analytic in the entire right half plane (RHP, inclusive of jw axis) as a starting
point for a rigorous inspection of the Hilbert transform relations between the real and
imaginary parts of

H(1, f) = exp(y(j2w7f)) = exp(-1l /(f)) (6.31)

Because a function H(1, f) that satisfies the Hilbert transform relations must be
causal (see section 6.1), it follows that if C((s/(j27r)) is analytic in the RHP and has
acceptable s --+ oo asymptotic behavior then it must correspond to a causal H(1, t).

This result justifies investigation of the so-called transmission line materials. Their
y(s)'s are analytic in the entire RHP (simply let f - s/(j27r) in (6.38) and (6.39)),
and the f -+ oo asymptotic behavior of their a(f)'s is either - Vf (if S' > 0) or
- constant (if S' = 0). In either case, their a(f)'s f -+ co asymptotic behavior is well
within the a(f) - fl limit set by the Paley-Weiner criterion.
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6.5.1 Example: The Standard Skin-Effect Material

Extending Staelin et al [49], a periodic transmission line (TL) with lumped parallel
admittance Y'(f)Az and lumped series impedance Z'(f)Az per length Az will yield a
propagation coefficient

K(f) = Y'(f) Z'(f)

in the limit Az -, 0.
Using the following result [55] for real numbers X, and Xi,

/X + j Xj =
Vx + Xi + x,

2
+J 2 + X - x,

2

(6.32)

(6.33)

if the product Y'(f) Z'(f) can be separated into real and imaginary parts X,(f) and

X (f )

Y'(f) Z'(f) = Xr(f) +j Xi(f) (6.34)

then the attenuation coefficient a(f) and phase velocity c(f) determined by Y'(f) and
Z'(f) through

_(f) = a(f) + j 2ff/c(f) (6.35)

a(f) = + 1 + [ i LX(f) 2 (6.36)

c( f ) 
2rf

Xi(f) r + 1+ Xi(f)]2
(f) 1 X(f)

The TL model presented here uses

capacitor

Y'(f) = j 27rfC'

Z'(f) = R'+ j 2fL' + S'j 27rf

resistor inductor skin effect
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(6.37)

(6.38)

(6.39)



In a coaxial cable, the capacitive and inductive terms correspond to the cables'
inherent per-length capacitance and inductance. The resistive term corresponds to the
assumed-finite conductivity of the cable walls. This model does not include dielectric
leakage; there is no shunt conductance. The remaining term S' models high frequency
skin-effect impedance in the conducting walls [50, 51].

For this model,

Xr(f) = -2 fC' [L' 2r f + S'

X (f) = 2fC ' [R + S' f

The resultant model for the attenuation coefficient and phase velocity is

a(f) = VCf L' 2f + S' 7/ LR' + S' ir7
L' 2 rf + S'V--f

2 J
c([) = [R + Sv/7]

V R' + S' ~

V/L' 27rf + S' /,

1

, R' + S' v7
L' 2f + S'

(6.41)

It is worth pointing out that if {R', C', L'} > 0, and if S' > 0. then

lim c( f ) =
f--oo

(6.42)

Further, if S' = 0

R' C'
lim a(f) = -f-oo 2

(6.43)

These TL materials are introduced only to allow comparison of the Lyons recovery
for standard PE with the Lyons recovery of some other causal materials - to show that
the results are general.
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skin-effect units
R' 0.378503 Q/mm
S' 0.378503 Q/(mm rM-z)
C' 0.471105 1/(Q mm MHz)
L' 0.471105 Q/(mm MHz)

Table 6.3: Values of the transmission line components which yield this thesis' 'standard

skin-effect material.'

Therefore, rather than choose 'physical' values for the example TL material, the

example TL material will adopt values that put it roughly on the same scale as standard

PE. The example TL material is called the standard skin effect material, and its four

parameters {R', S', C', L', } are given by
Note that, in these units, the numeric value of R' is the same as that of S', and the

numeric value of C' is the same as that of L'. The standard skin-effect materials' specific

component values were selected by requiring that the standard skin effect material and

standard polyethylene have the same f = 25 MHz value for both the attenuation

coefficient and the phase velocity. That is,

ap(25 MHz) = a,(25 MHz) = 1.825 Np/mm (6.44)

and

c,(25 MHz) = c,(25 MHz) = 2.07553 mm/ps (6.45)

The standard Bromwich material's constant values for a(f) and c(f) were selected

to agree with this constraint, so all three materials investigated in this thesis (polyethy-

lene, skin-effect, Bromwich) have the same 25 MHz values for the attenuation coefficient
and phase velocity. Appendix C compares these three materials' a(f) and c(f) curves,
and also depicts each of their 1 = 1 mm impulse response functions H(1 mm, t).
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Chapter 7

CLDP Transforms

7.1 The Principal Insight

The principal insight which led to this thesis' approach to the inversion of CLDP IEs

(and, by extension, to the inversion PESAW IEs as well) was the realization that

2(f) = Q(c(f)) (7.1)

That is, the frequency dependent values of the Fourier transform P(f) of the
temporal CLDP response signal P(t) may be interpreted as the values of the spatial

Laplace transform Q(/) of the source waveform Q(z) along a path in the spatial
Laplace plane K given parametrically by the propagation coefficient C(f).

Equation (D.1) constitutes CLDP theory's requisite link between space and time (or
frequency). This link subsumes the dominant recovery's fundamental link Cd between
space and time (see equation (1.6)).

To derive (D.1), start with the PESAW-CLDP IE (2.18):

P(t) = Q(z) H(z, t)dz (7.2)

Outside the PESAW context there is no reason for the source waveform Q(z) to
vanish for z > 1 so the upper integration limit 1 of (7.2) may be raised to infinity to
reflect the possibility of a source extending throughout all z > 0.

Thinking another way, if it is known that Q(z) vanishes for z > 1 then raising the
upper integration limit 1 to infinity cannot change the result of the integration. Either
way, replacing the upper integration limit 1 with infinity is justified. This thesis is only
concerned with causal source waveforms so the lower integration limit z = 0 remains.

With this modification, (7.2) becomes

P(t) = j Q(z) H(z, t)dz (7.3)
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Using (2.15) to justify replacing

H(z, t) = F'-{exp(-z C(f))}(t) (7.4)

in (7.3) yields

P(t) = Q (z) [-'l{exp(-z I(f))}(t)] dz (7.5)

Fourier transforming both sides of (7.5) results in

2(f) = Q(z) exp(-z C(f )) dz (7.6)

The validity of this result follows from the fact that the Fourier transform is an

integral over time, whereas (7.5) is an integral over space. For each position z = zo the
Fourier transform integral may be taken inside the spatial integral (7.5).

Now compare (7.6) with appendix F's definition of the spatial Laplace transform

Q() of the source waveform Q(z):

() = Q(z) exp(-z I) dz (7.7)

Defining

(7.8)- (fo)

and

(7.9)

it should be clear that, for f = fo,

(7.10)

and that, for the generic frequency f,

as(f) = (adverti(f))

as advertised.
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7.2 CLDP Paths

The spatial Laplace transform variable

IC = a + j p = a +j 2i (7.12)

denotes a generic position in the spatial Laplace plane K just as the temporal Laplace
transform variable

s = a + j w = u + j 27rf (7.13)

denotes a generic position in the temporal Laplace plane s. However, contemplation
of the principal insight

(f) = -(~O(f)) (7.14)

results in the realization that 2(f) only contains information about the values of Q(&)
along a particular path in the K plane defined by the propagation coefficient IC(f). This
path is called a CLDP path because the propagation coefficient

IC(f) = a(f) + j 2-xf /c(f) (7.15)

is assumed to correspond to a CLDP material.
Note that because the attenuation coefficient a(f) and the phase velocity c(f)

are dependent upon the CLDP material under consideration, the CLDP path is like-
wise dependent upon the CLDP material under consideration. Appendix D proffers a
graphical depiction of the principal insight.

7.3 The Bromwich Path

Siebert states that Q(z) may be recovered from its spatial Laplace transform Q(_C) via
the Laplace synthesis integral (see appendix F)

Q(z) = j Q (&) exp(z k) d k (7.16)

"where the integral is a line integral along an appropriate [path] C in the complex
plane. [74]"

Stenger [42], Seely [75], and LePage [44] each point out that the Bromwich path
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e{ }IC = a', a constant

is an appropriate path provided it passes through the region of convergence of Q(&).
Note that this thesis only considers causal waveforms Q(z) which have a convergent

Fourier transform. It follows that (E__) will be convergent and analytic in the entire

right half plane [57, 75], inclusive of the j P axis. Therefore, for this thesis, the
Bromwich path ReI&} = a' is an appropriate path to use in the Laplace synthesis

equation provided a' > 0.
Appendix D's figure D.2 depicts the CLDP path corresponding to standard polyethy-

lene. If it were plotted in figure D.2, the generic Bromwich path would appear as a

vertical line in the RHP.

7.4 The Bromwich Inversion

The Bromwich inversion, defined by (7.16) where C is given by Re{Z(} = a' > 0, may

be expressed [42]

Q(z) = Q() exp(z () (7.18)
Jz J'- _j27r

Introducing

Jc'(f) = a' + j 27f /c' (7.19)

where c' is some positive constant, it is possible to write (7.18) parametrically [76]:

Q(z)= (f )) [1 d (f)] exp(z C'(f)) df (7.20)( -oo r df

Now recall that the Bromwich material was defined as having a(f) = ab and c(f) = Cb
where ab 0 and cb > 0 so the propagation coefficient ICb(f) determined by inserting

the Bromwich material's model into (7.15) yields the realization that the Bromwich
material's CLDP path will be identical to the Bromwich path discussed by Stenger,
Seely, and LePage provided ab = a' and cb = C'.

In this case, K'(f) = __(f). Using this relation and (D.1) it is possible to rewrite

(2.31) as

) oo 1 d (f)
f1Q(dz= ) f] exp(z -b(f)) df (7.21)

f-o j 27 df
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Note that, if ab = 0, (7.21) reduces to

Q(z) = 2(f) exp(j 27rz []) d[] (7.22)

which is clearly just the inverse Fourier transform.

7.5 The Proposed Inverse CLDP IE

Note that (7.21), which follows directly from the results stated by Stenger, Seely, and
LePage, is but a special case of the proposed general case (2.31)

1 d C(f)
Q(z) = p(f) [-j2 d exp(z I(f)) df (7.23)

which corresponds to the causal Bromwich materials (see section 6.1.1).
CLDP transform theory proposes that if some generic L(f) yields a causal H(z, t)

via (7.4), then the P(f) determined by

E(f) = Q(z) exp(-z :(fI)) dz (7.24)

and the Q(z) determined by (7.23) constitute a transform pair provided Q(z) is real,
causal, Fourier-transformable, and also satisfies the K(f))-dependent relation

lim Q(a' +j 27rf/c(f)) d' = 0 (7.25)

where Q(C) is the spatial Laplace transform of Q(z). Equation (7.23) is the proposed
inverse CLDP IE. The relevance of 'the CLDP transform constraint' (7.25) is explained
in section 7.8.

If some trinity {(f), Q(z), p(f)} meets all the criterion listed above then, accord-
ing to CLDP transform theory, Q(z) and P(f) can be said to form a transform pair
under the CLDP path parameterized by IC(f). This relationship is denoted symboli-
cally as

Q(z) p(f (7.26)
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7.6 The Darrell Property of the Inverse CLDP IE

The goal of this section is to prove that if Q(z) and P(f) are a CLDP transform pair

Q(z)
K (7.27)

where

2(f) = Q(z) exp(-z IC(f)) dz (7.28)

and

Q(z) = j(f) [ df)] exp(z K(f)) df- j27 df
(7.29)

then the result of inserting a strictly bandlimited version P(fm, f) of P(f)

(f m , f) - P(f) [U(f- fm)- U(f + fm)] (7.30)

into (7.29) will yield a recovery

1mz)m, d (f] exp(z (f)) df
R(fm, z)- fmlf) [j27r df

=1 (f (f) ] exp(z (f )) df
Y ()j27 df

(7.31)

(7.32)=Q(z) * D(fm, z)

where the * denotes spatial convolution, Q(z) is assumed causal, and "the Darrell"
D(fm, z) is some material dependent waveform.

To see this, start by inserting (7.28) into (7.31). Note that there are two distinct
z's; one in the forward problem (7.28) and one in the inverse problem (7.31). To ensure

that these two invocations of z do not get confused, change the z in (7.28) to a (. The

result is

R(fm, z) = I fm
J fm
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Changing the order of integration, rearranging, and combining yields

R(fm, z) = J0 00Q() )
if; 1d IC(f)] exp([z - ] &(f)) df d

- D(fm,z- )

where the bracketed quantity is defined as the Darrell D(fm, z - (). Therefore

D(fm, z) = f 1 d (f)] exp(z L(f)) df

f[j27r df
Note that D(fm, z) must be real because K(f) has conjugate symmetry, and the

limits of integration of (7.35) are symmetric about f = 0. Using the assumed causality
of Q(z) to justify lowering the lower limit of the ( integration in (7.34) to minus infinity,

R(fm, z) = Q(z) * D(fm, z) (7.36)

as required.

7.7 Deriving the Darrell

First note that

[d ]df = d
df

(7.37)

So that

D(fm, z) - I 1 d K(f)
[ d )] exp(z (f)) df
j27r df

Now recall that IC(f) satisfies
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(7.34)

(7.35)

(7.38)

=exp(z C) d~
j21rI_(_ fm)

exp(z IC(fm)) - exp(z k(-fm))

j 2' z

(7.39)

(7.40)



c(-f) = K*(f)

where the * denotes complex conjugation. Therefore (7.40) can be rewritten

D(fm, z) =
exp(z )(f m )) - exp(z C*(fm))

j 27r z

j 2 Qm{exp(z (fm))}
j 2w z

Qm{exp(z )(f m ))}

Or, substituting

(f) = a(f) +j 2rf /c(f)

the result is

D(fm, z) = exp(z a (f,

= exp(z/A)

sin(27rfmz/c(fm))m))
7rz

sin(27z/A)
7rz

c(fm)A = A(fm)
fm

A = A(fm) -

7.8 Validation of the Inverse CLDP IE

It has been proposed that the so-called 'inverse CLDP IE' yields a valid inversion (ie: a

valid inverse CLDP transform) in the case of the (causal) Bromwich materials because,
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(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

where

(7.46)

(7.47)



in this case, the Bromwich inversion integral results. But the class of waveforms Q(z)
to which this alleged transform relationship applies has not yet been specified. Nor has
Bromwich inversion been validated in its own right.

The argument for the validity of the proposed inverse CLDP IE starts by investi-
gating the argument for the validity of the Bromwich inversion, and then extending
that argument to the generic CLDP inversion. The argument for the validity of the
Bromwich inversion can be made by extending Fourier theory into the Laplace plane.

Siebert [106] points out that it is "exceedingly difficult" to rigorously justify Fourier's
transformation theorem, and that the first of many versions of a 'Fourier theorem'
was proposed by Dirichlet in the form of conditions on the functions to which the
Fourier transformation relationship applies. The Dirichlet conditions ("a set of suf-
ficient but not necessary conditions" [75]) require Q(z) to be absolutely integrable

(f0 I Q(z) I dz < c0) and also to have a finite number of maxima and minima in a
finite interval.

The conditions on Laplace transformable functions (according to Greenberg [109])
are also sufficient but not necessary: Q(z) must be piecewise smooth over every finite
interval, and Q(z) must also be of exponential order (ie: there must exist real constants
K, C, and Z such that IQ(z) < K exp(C z) for all z > Z).

These 'Laplace transform conditions,' and the Dirichlet (Fourier transform) condi-
tions, are called "sufficient but not necessary." In the case of the Laplace transforms,
this term means that all functions which are of exponential order and are piecewise
smooth over every interval are Laplace transformable. But the converse is not neces-
sarily true. That is, there may exist functions which are Laplace transformable but
fail to satisfy the stated 'Laplace transform conditions.'

A function Q(z) is said to be Laplace transformable (ie: has a Laplace transform
Q(K) ) if the Bromwich inversion (defined below) converges to Q(z) almost everywhere
(eg: converges to Q(z) everywhere except at a finite set of points). A function is said to
be Fourier transformable if it is Laplace transformable and the region of convergence
includes the j-axis, so that Q(b) = _(j27b) can meaningfully be called the Fourier
transform of Q(z).

The goal here is not to study Fourier and Laplace transform theorems themselves
but, instead, to point out the necessity to specify the functions to which some proposed
transformation relation (such as the CLDP transform corresponding to some partic-
ular CLDP path KC(f)) will apply. The proposed proof of the validity of the CLDP
transforms utilizes Laplace transform theory - and it is with respect to the Laplace
transform Q(&) of some given Q(z) that the forthcoming 'CLDP criterion' (7.73) will
be stated - and so Guillemin's outline [46] of the relationship between Fourier and
Laplace transform theory is deemed relevant:

"Fourier theory is introduced as a method of creating a desired interfer-
ence pattern from steady sinusoids, by applying this theory first to pe-
riodic functions and then extending the method to aperiodic ones. The
paramount issue here is the evaluation of error and its depencence upon
the spectral width, which results in the fact that one can make the error
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arbitrarily small, although not zero, with a sufficiently large but still finite
spectral width [note that the Darrell property, and the delta-convergence of
the Darrell, speak directly to this 'paramount issue . Through the simple
use of Cauchy's integral law one can then extend the procedure to con-
structing such interference patterns with sinusoids involving complex fre-
quencies; that is to say, through the use of sinusoids having exponentially
modulated amplitudes. This amounts to extending the Fourier integral to a
double-ended Laplace transform, and one thus recognizes that the Fourier
transform is the Laplace transform evaluated along the j-axis."

This thesis considers only causal, real, Fourier-transformable Q(z)'s. The (spatial)
Laplace transforms Q(K) for this class of Q(z)'s

* have conjugate symmetry [107]: Q(C*) = * (Kc)

* converge in the entire right half plane [57, 75] (RHP, inclusive of the j-axis)

* are the same, regardless of whether the Laplace transformation is defined unilat-
erally or bilaterally ('double-ended'-ly)

Stenger [42] offers a quotable explanation of how the inverse Fourier transform
relates to the Bromwich inversion integral:

Let R+ = (0, oc), let Q(z) be defined on R+ [ie: let Q(z) be causal], and
let Q(K) be defined by the integral

( f) = j exp(-z IC) Q(z) dz (7.48)

Upon setting L = a + j 0 in (7.48), we get

Q(a + j 3) = j [exp(-z a) Q(z)] exp(-j P z) dz (7.49)

We may thus think of the Laplace transform (7.48) as a Fourier transform;
this analogy immediately leads to the inversion formula

(z) = - ([a + j ]) exp([a + j 3] z) d3 (7.50)

That is, we get the Bromwich inversion integral

1 a+j () exp(z ) d (7.51)

Q(z) = Q(L) exp(z IC) d IC (7.51)
j 2r Ja-j co
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Note that the frequency f parameterized Bromwich/CLDP path

=I b(f)

(f) = Ob + j 27rf/Cb , -oo > f 2 00, where ab > 0 and cb > 0 (7.52)

is an open path (contour), as is the path associated with the Fourier transform inversion
integral (which simply specifies ab = 0). According to Seely [75], for positions z > 0
the evaluation of the Bromwich inversion integral usually proceeds by using Cauchy's
integral theorem, which specifies that

Q(z)= lim T 1 )exp(z ) dK(7.53)
f --+ i(iU ) j2 () exp(z d C (7.53)

= S residues of Q() exp(z I) at the singularities to the left of ab (7.54)

where the path Fl(f m ) consists of a vertical path (extending from IC (fm ) = ab -j/b(fm)

to K b(f m )), and a constant radius IKb(fm)I semi-circular path (extending from _b(f m )
back to ~ (fm)) in a mathematically positive (counter-clockwise) sense.

The semi-circular portion of rl(fm) includes only points to the left of ab. The arc
subtended in this semi-circular integration decreases from slightly more than r radians
(when abCb < fm < oo) to exactly r radians in the limit as fm -- oc. When fm, < 00

and ab > 0 the semi-circular portion of Fi (fm) extends into the RHP. If it can be shown
that the fm -- oc limit of the semi-circular integration described by Fi(fm) vanishes
then the Bromwich inversion is validated.

For positions z < 0 the appropriate path is F2(f m ), which differs from F (fm) only
in that the semi-circular portion is traversed in a mathematically negative (clockwise)
sense, so that the semi-circular portion of r2(fm) includes only points to the right of

ab. For the RHP-analytic Q()'s considered here the result of the 2 (f m ) integration
vanishes independently of f m (by the Cauchy-Goursat theorem [79]) so that the Q(z)
recovered via P2(fm) in the limit as fm -- oo will be causal, as required.

This thesis considers only Fourier transformable functions, defined above as being
those functions for which the Fourier transform inversion integral (aka the ab = 0
Bromwich/CLDP inverse IE) yields Q(z) almost everywhere. From the discussion
above, it follows that the f m -4 00 limit of the semi-circular integration described by
L (fm) must vanish for these Q(z)'s. The Bromwich inversion is valid for the waveforms

considered in this thesis (provided that, as specified, ab > 0 so that the Bromwich path
falls in the region of convergence of Q(Q)).

For the case of a Bromwich material -b(f), the Bromwich inversion integral (7.51)
may be expressed parametrically as

1 d (f)
Q(z) = (' - (f)) j2 dfdf (7.55)

J , f
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By the principal insight (section 7.1) the response signal P ,(f) produced by a
waveform Q(z) embedded in a Bromwich material is given by

_(f) = Q(-(f)) = j Q(z) exp(-z _(f)) dz (7.56)

Now the Bromwich inversion (7.55) may be re-written

(z)= (f) d (f) exp(z __(f)) df (7.57)Qz = --OO j27r df

so that Q(z) and P_(f) effectively form a CLDP transform relationship under the

Bromwich propagation coefficient __(f).
Insofar as the validity of the proposed inverse CLDP IE is concerned, the question

is whether (7.56) and (7.57) form a valid transform relationship when the K__(f) acting

in these equations is replaced by a generic, stable (a(f) > 0) CLDP propagation

coefficient )(f). le: for what {Q(z), &(f)} pairs do

Q(f m ,z)

Q(z) = lim 2(f exp (z I (f )) df (7.58)
fm--+ (-fm j27r df

and

(f) = Q(~(f)) = j Q(z) exp(-z I(f)) dz (7.59)

form a valid CLDP transform relation?
In addressing this question, note first that the generic CLDP path corresponding

to a stable material does not depart the known-analytic RHP (which is defined as

including the j-axis). Now consider the generic finite-length Laplace plane integration

path traversed in calculating Q(fm, z) when f m is finite.
Because the integrand is analytic in the RHP, and because no stable CLDP path

departs the RHP, the result is independent of path. The resultant, generic CLDP

Q(fm, z) will be identical to the Bromwich path result which could be obtained by
vertical integration from IC(-f m ) = __*(f m ) to __(fm ) if 0(&) were known along that

path.
Of course, if only the non-Bromwich P(f) = Q(&(f)) is known then this hypotheti-

cal Bromwich integration cannot be executed (except possibly via analytic continuation
of P(f)) but this fact in no way contradicts the statement that if Q(L (f)) were known

then the two Q(fm, z)'s (one obtained via the hypothetical Bromwich CLDP path, and
one obtained via the given CLDP path) would be identical.
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If some generic CLDP material's

.(f) = a(f) + j 2-7rf/c(f) = a(f) +j P(f) (7.60)

satisfies

lim fa(f )} ao. < 00o and lim {o(f)} = o (7.61)

then the validity of the inverse CLDP IE (for these materials) follows directly from
the validity of the Bromwich inversion by analogy to the Bromwich path described by
aOb = aoo.

Now note that causality, via the Paley-Wiener-Guillemin criterion (PWG, see sec-

tion 6.4), ensures that limf.o{P(f)} = oc; the PWG criterion requires that, as
f -* c, 3(f) must increase at least as rapidly as f (and less rapidly than f 2 ).
Unfortunately, the Paley-Wiener criterion does not ensure the finiteness of c; the
Paley-Wiener criterion only states that, as f -- 00, a(f) cannot approach infinity as
fast as f.

The validity of the inverse CLDP IE is ensured for materials with a, < 00. So
consider now the general case, which includes the case a00 = oo. Taken together, the
Paley-Wiener criteria ensure that, as f --+ o00, |(f)I -+ oo and (K(f)) - 7r/2 (where
IZI denotes the magnitude of the complex variable Z and (Z) denotes the principal
value of its phase: Z = IZJ exp(j (Z))).

Note that this generic result holds for the Bromwich materials as well. That is,
for all causal materials, the CLDP path starts at -joo and ends at +joo. Because
the result of the inversion integral depends only upon its endpoints, and because the
endpoints are the same regardless of the (stable) CLDP material under consideration,
it seems that the the general validity of the inverse CLDP IE follows immediately.

The author prefers to be more cautious, noting that these results do not depend
upon the {Q(z), &(f)) pair under consideration. Intuition suggests that the waveforms
Q(z) which are 'CLDP transformable' under some particular C(f) should depend upon
that IC(f).

First, recall that the spatial Laplace transforms Q(&) of the the class of Q(z)'s
under discussion are known to be analytic in the RHP (where the RHP is defined as
including the j axis). The function exp(z I) is also known to be analytic in the finite
RHP (and elsewhere; it is entire [108]). Therefore their product is also analytic in the
RHP [96]. It follows from the Cauchy-Goursat theorem [79] that

Si Q() exp(z K) d I = 0 (7.62)

where k denotes the sum of the following four integrations, none of which need depart

the RHP:
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* the 'top path' tp, extending from .IC(fm ) = c(fm) + jL(fm) to jp(f m )

* the 'left path' ip, extending from j,3(fm ) to -jO(f m )

* the 'bottom path' bp, extending from -jp(fm ) to IC(fm) = a(fm) - j/(fm)

* the 'right path' rp, extending from I*(f m ) to IC(f m )

That is, re-writing (7.62) using the definition of Y(K) given there (for compactness)
and the four paths described above,

O() d ft ) d k+ P(C) dp d + rpY( C=

(7.63)

Note that, except for a change in sign corresponding to the direction of integration,
the f m -- oo limit of the integration along the left path is identical to the integration
in (7.57) when ab = 0 because limfm,o{f3 (fm)} = oo. That is,

lifmu o Y() d7oo lim j2 () exp(z IC) d = -Q(z) (7.64)
fm" Jlp fm-oo p j 2J

Therefore, any waveform Q(z) with a Laplace transform Q() satisfying

lim (c ) exp(z L) d +f Q(&) exp(z I) d }=0 (7.65)
fm--+ 0 p ---- - bp

must have the property

1-r
lim - Q(C) exp(z I) d _ = Q(z) (7.66)

fm-oo rp 27r -

Equation (7.65) is the necessary and sufficient condition which ensures the validity
of the Bromwich recovery for the class of Q(z)'s under discussion. Because of its

importance (it is the basis of the CLDP criterion), it is re-written below in a form which

takes advantage of the conjugate symmetry of the quantity Y(&) = j- Q(K) exp(z k).
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Rewriting (7.65),

0 = lim

= im

= lim

= lim

fm --+0

I Y(L) d _+ Y(K) d K
Jtp~ bp

(fm)

jOc(fm)

10 
Ckfn)

Y(a' -j /(fm)) d

[(a' - j 0(f m )) - Y(a' + j (f m )) ] d a'}

{ja(fm)
=-2j lim

fm-- 0

Qm{(a' +j3(f m ))} d a'}

results in the realization that (7.66) (by way of (7.65)) requires that the Laplace trans-
form Q(K) of some Q(z) satisfy

lim {j (f) rm{Q([a' + j 3(f)]) exp(z [a' +j /3(f)])} d a' = 0

(where fm has been replaced by f) in addition to being causal, real, and Fourier-
transformable.

The appearance of the variable z in (7.72) suggests that the inverse CLDP recovery
may be valid only for certain specific values (or perhaps ranges) of z. However, the
Darrell property of the inverse CLDP IE implies that if the f m -* 00 limit of the inverse
CLDP recovery converges anywhere, then it converges everywhere. Therefore (7.72)
may be re-written with z replaced by zero:

lim
f -+ o

Qm{.([a' +j 3(f)])d a' = 0

Equation (7.73) is dubbed the CLDP criterion. A real, causal, Fourier transformable
Q(z) will be CLDP transformable under some given, analytic IC(f) if the CLDP crite-
rion is satisfied.
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a,}
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(7.68)
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7.9 The Darrell As Delta Convergent Sequence

The previous section adopted a Laplace plane approach to answering the question of
when (ie: for which {K(f), Q(z)} pairs) the inverse CLDP IE yields the desired Q(z)
from the given P(f). The result of section 7.8's analysis was the CLDP criterion
(equation (7.73)).

The current section approaches the same question via the Darrell property, and the
fact (to be shown) that the Darrell D(fm, z) converges to a Dirac delta function 6(z)
in the limit as fm --+ oo for a particular, K(f)-dependent class of Q(z)'s.

As in section 7.8, the goal is to determine the I(f)-dependent constraints on Q(z)
such that the P(f) produced by submitting Q(z) to the I(f)-dependent forward CLDP
IE will reliably yield Q(z) when this particular {P(f), C(f)} pair is submitted to the
inverse CLDP IE. The previous section's results seem complete so the author feels
justified in adopting a 'hand-waving' positure in the current section.

7.9.1 The Basic Idea

It is clear from the Darrell property of the inverse CLDP IE

R(fm, z) = Q(z) * D(fm, z) (7.74)

that if

lim D(fm, z) = exp(z a (fm)) sin(27rfz/c(fm = 6W(z) (7.75)

then the inverse CLDP IE's recovery R(fm, z) will yield the desired Q(z). In this case
the Darrell is said to be delta convergent.

7.9.2 Interpreting The Dirac Delta Function

A legitimate question is, what is the Dirac delta function 6(z)? Siebert [60], following
Dirac and Heaviside, recommends defining what 6(z) is by what 6(z) does. He says:
"Mathematically, the effect of a unit impulse function inside an integral is to pick out
the value of the remainder of the integrand where the impulse 'is."'

That is, to test whether some waveform A(z) 'is' a Dirac delta function, Siebert rec-
ommends integrating the product of A(z) with some test function Q(z) to see whether
A(z) exhibits the sifting property [95]

Q(Z) = A(z - zo) Q(z) dz (7.76)
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If (7.76) holds for all zo and Q(z) under consideration then, Siebert would argue,
A(z) might as well be thought of as 6(z) for those Q(z)'s. It is also possible to select
zo = 0 in (7.76) without loss of generality (rather than shifting A(z) to the right by
zo, shift the arbitrary test function Q(z) to the left by zo). The result is:

Q(O) = A(z) Q(z) dz (7.77)/
Now let

A(z)

D(fm,z)

lim exp(z a(f)) sin(2rfmz/c(f))}
fm-OO z J (7.78)

so that it can be seen that the Darrell will be delta convergent if and only if

Q(0) = j

=lim
fm-00 J -0oo

( ) lim
im-oo

exp(z a (f m ))

Q(z) exp(z a(f m ))

sin(27'fmz/c(fm))
7rZ

sin(27rfmz/c(fm))
7rz

for the Q(z)'s of interest. The goal is to determine the {a(fm), c(fm)}-dependent
constraints on Q(z) which ensure the validity of (7.79).

7.9.3 Darrell-Determined Constraints on Q(z)

A causal material's Darrell will be delta convergent with respect to some Q(z) if

(7.80)
00

EQn = Q(0)
n=-oo

where

Qn { lim /(2n+1)zD (fm)fm-'*0 (2n-1)AzD (fm
)

= lim (
2 n+l)AzD 

(fn)

fm 0 J(2n-1)AzD (fm)

Q(z) D(fm, z) dz

Q(z) exp(z a(fm))
sin(2i7rfmz/c(fm))

7rz
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and

AZD (f) c(f M) (7.82)
2f m

because E Q, is just a handy way of expressing the right hand side of (7.79).

To perceive this, note that

I. Az (f) is the distance between sin(27rfmz/c(fm))'s zero crossings

II. Q, is the area of Q(z)D(fm, z) extant between zero crossing 2n - 1 and zero
crossing 2n + 1

III. the range of z's associated with each Q, is distinct, and the range of z's associated
with all the Qn's is -00o < z < 00

IV. E Qn represents the sum of all these infinitesimal 'chunks' of area, and is there-
fore identical to the right hand side of (7.79)

Equation (7.80) ensures that lim[fm -- oo]{D(f,, z)} will act like a Dirac delta
function 6(z) with respect to Q(z) because they ensure that 6(z)'s sifting property

(E Qn = Q(0)) will hold.
In brief, the argument is that the Darrell is approximately a sinc function for

z < 1/a(fm) (ie: where the effect of the Darrell's exp term is small). It is known that
the f m --+ 00oo limit of the sinc function is a Dirac delta function [53] so that, except for
the troublesome z > 1/a(fm ) region of the Darrell, the f m - 00oo limit of the Darrell
is also a Dirac delta function. Constraints are placed on Q(z) satisfy the 'non delta
function like' aspect of the Darrell for z > 1/a(fm).

Although the following quote from Siebert [60] refers to the Fourier transform, it is
deemed relevant because it brings important issues to the foreground:

Attempts to state and prove mathematically rigorous forms of Fourier's
Theorem that apply to some general class of Q(z) must cope with a dual
problem. On the one hand, the "tails" of Q(z) must be adequately con-
strained as Iz -, 00 so that the infinite integral defining Q(b) exists in
some appropriate sense; we shall call this a global condition. On the other
hand, Q(z) must not be too "wiggly" or else the "tails" of Q() as tlj --+ 00

will be so badly behaved that the inverse transform integral will have no
satisfactory meaning; we shall call this a local condition.

The first requirement on Q(z) will be that it must not be too wiggly; it must
be 'smooth' in a sense that will become clear in the forthcoming discussion. This
requirement is local in the sense of Siebert. It is to be expected that Q(z) must also
satisfy some global requirement. This global requirement will also become clear in the
forthcoming discussion.

The argument starts by showing that
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I Q& 0 for all n 4 0

II Qo0 (0)

and then proceeds to deduce (7.80) by 'borrowing' from the known delta convergence
of the sinc function.

The discussion supporting I and II utilizes

lim AZD (ffm) =- (f - 0 (7.83)
fm--+OO 2f m  1(fm)J

which follows directly from the causality constraint of CLDP materials by way of the
the Paley-Wiener-Guillemin criterion (PWG, section 6.4). The PWG criterion states
that, as fm - oc, 3(f m ) = 27rfm/C(fm) must increase at least as rapidly as f m (and
less rapidly that f2). But P(fm) is directly proportional to the inverse of AZD (fm), so
(7.83) follows directly.

Requirement I

For n such that

nc(fm )2nAZD(fM) - - zn(fm) < 1/a(fm ) (7.84)
fm

two effects conspire to satisfy I for smooth, finite-valued Q(z)'s which are roughly
constant over the range of z defining the arbitrary Qno:

* the integrand defining Q, is negative for z satisfying (2n - 1)Az, (fm) < z <
zn(fm), and negative for z satisfying zn(fm) < z < (2n + 1)AzD(fm); the total

integral defining Q therefore tends to cancel

* equation (7.83) ensures that the range of integration defining Qn vanishes; there-
fore, Q, itself tends to vanish

The following analysis confirms these observations mathematically, and points out
the need for a global constraint on Q(z) for zn(fm) > 1/a(f m) (in which case the
Darrell varies rapidly with z due to its exp term). Equation (7.85) is an approximation
to (7.81). Equation (7.85) exploits (7.83) and the assumed smoothness of Q(z), and
also makes use of the fact that the average value of the sin function between zero
crossings is ±2/Tr:

Qn L- lim AZD(fm ) Q(z+(fm)) exp(z+(fm) (fm)) 7r
fm--OO x ( z(fm)

- Q(zn(f m )) exp(z,-(fm) ca(f m )) 2/f (7.85)
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where

z,(f m) (2n ± 2) Az,(fm ) = zn(fm) ± 2Az(fm)
2

Equation (7.85) may be approximated further by noting that

Q(z+ (fm))
z+(f m )

S(zn (fm ))
z;- (fm)

Q(zn(fm))

zn(f m )

The result is:

lim{
fm---oo

Az ) Q(zn(fm)) exp(z (fm)a(f m )) - exp(zz,( f m) ,
(7.88)

Equation (7.86) allows the square bracketed quantity in (7.88) to be re-written:

exp(zn(fm) a(f m )) [exp(AZD(fm) a(f m )) - exp(- 2 AzD(f ) a(fm))] (7.89)

The Paley-Wiener criterion (PW, section 6.3, which also holds for all causal mate-

rials) implies that, as f m -+ oc, a(fm) cannot increase as rapidly as fm. But by the

PWG criterion, AZD(fm) must decrease faster than 1/f m so the product quantity

r(f m)
a(fm )c(f m )

- A(fm) (f) 2fm
7r(fm)
- (fm)

(7.90)

must satisfy 0 < r(f m ) < 1 for large fm. That is,

lim 7(fm) = AZD(fm) a(M)fm) a (fm2f m
fm--oo 2 f

oa(f m ) _

= (fm) f

Using this information, and approximating

exp(=) + 77

allows (7.89) (the square bracketed quantity in (7.88)) to be approximated as

(7.91)

(7.92)

(7.93)
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Replacing the square bracketed quantity in equation (7.88) with (7.93) yields:

m exp(zn(fm)O(fm))
2 lim Q(z,(fm)) Az,(fm)9?(fm) (7.94)

7 2 fm---,,o Zn(f m)

The square bracketed quantity in equation (7.94) approaches zero at least as rapidly
as (fm)-h (where h > 1) as fm -+ c. When z,(fm) < 1/a(f m) (and assuming
Q(z,(fm)) < o), it follows that Qn -- 0 and I is satisfied. When zn(fm) > 1/ll(fm),
however, the exponential term dominates and only a global constraint on Q(z) can
ensure I.

Using (7.82), (7.86), and (7.90) to re-write (7.94) in terms of a(fm) and c(fm) yields:

Qn lim Q(c(f ) (fm nc(fm) expn(f (fm)) (7.95)
fm-o0 fm 2(xn)2 f, fm

For I to hold, Qn must vanish when n and fm approach infinity in such a manner that

lim zn(fm) = n c(fm)} (7.96)
n-oo fm

That is: I requires not only that Q(z) be smooth compared to the f m - o00 oscillations
of the Darrell, but also that

Q (z) a(fm) c(fm) exp(z f m )) 0 (797)L lim 0 (7.97)
m-oo 2 7r fm z C (fm)

It follows from (7.91) that

lim (fm) (fm = 0 (7.98)

However, the fact that the square bracketed quantity in (7.97) (ie: the curly-
bracketed quantity in (7.98)) vanishes as the inverse of some positive power of fm
as fm -- oo is not enough to ensure (7.97) because (7.97)'s exp(za(fm))/(za(fm))
term grows exponentially with z when

lim {j(f m )} - co o 0 (7.99)
fm-oo

So that, besides smoothness, I (by way of (7.97)) requires that Q(z)'s z - oo0 asymp-
totic "tail" approach zero faster than

z aoo exp(-z aoo) (7.100)
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Requirement II

Setting n = 0 in (7.81) yields

Qo = lim f6 ZDm)

fm--oo J-AzD (fn)
Q(z) exp(z a(f m )) sin(27rfz/c(fm)) dz}

7rz

Because the range of integration vanishes as fm -* co, the smoothness requirement

on Q(z) ensures that Q(z) Q(0) for all the z's in (7.101). It is therefore legitimate

to move Q(z) outside the integral as the constant Q(0). Performing this operation,
and using (7.82) (the definition of AZD (fm)) yields

Qo Q(0) lim +c(f m )/(2fm)

m-oo J -c(fm)/(2fm)
exp(z a(f m )) sin(27rfmz/c(fm))

7rz
dz (7.102)

Now note that

(7.103)c( f< )If <
2fm

for all z's in (7.102). Equation (7.102)'s monotonic exp(za(fm)) function therefore
takes its ± extremum values

expt
extremum

-exp (a(f)c(fm)
2fm

at z = ±c(fm)/(2fm). By equation
(7.102). Using this approximation,

Qo Q(0) lim
f"'--+ 1

(7.91), therefore, exp(za(fm)) - 1 for all the z's in
(7.102) becomes

S+c(fm)/(2fm)
-c(f m )/(2fm )

sin(27rfmz/c(fm))
7rz

dz (7.105)

Changing variables from z to

27 rf
C z( =p(f m )c(fm)

yields
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Q(0) m sin(x)
7r fm-+o _ x

7r
[Si(Tr) - Si(-r)]

1.179 Q(0) (7.107)

where Si() = fo[sin(t)/t]dt is the sine integral [110]. Note that Qo Q(0), as required
by II.

Borrowing From The Delta Convergence Of The Sinc Function

Consider now the discrete valued function

z [n]
n

n =-n

l f+(2n+l)AzD (fm)

fm 00 -(2n+1)AzD (fm)

Q(z) D(fm, z) dz

IZ[0] = Qo

,[1] = Q-1 + Q0 + Q1

(7.109)

(7.110)

(7.111)I2[2] = Q- 2 + Q- 1 + QO + Q1 + Q2

It should be clear from (7.108) and the discussion leading to (7.107) that if Q(z) is
nearly constant for z's falling between - (2n + 1) AZ, (fm) and +(2n + 1) AzD (f) then

Q(0)
I[n] -  [Si(Ir[2n + 1]) - Si(-r[2n + 1])]

For sufficiently smooth Q(z), the series

-Q[n] ,, {1.179, 1.066, 1.040, 1.029, 1.022, 1.018, 1.016, 1.014, 1.012, 1.011,
Q(0)

(7.112)

(7.113)
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approaches unity monotonically.
Using (7.112), the odd symmetry of Si( ), and the fact that [110]

lim {Si()}= - (7.114)
-oo 2

it follows immediately that

lim { Q[n]} = Q n Q(0) (7.115)
n--+00

n=-oo

for sufficiently smooth Q(z) satisfying (7.97), as required by (7.80).
A CLDP material's Darrell will be delta convergent with respect to all the causal

Q(z)'s for which the sinc function is delta convergent (ie: the Fourier transformable
Q(z)'s) provided these Q(z)'s also satisfy constraint (7.97), which itself reduces to an

ao,-dependent constraint on the z -+ o asymptotic behaviour of Q(z). If a,0  = 00,

Q(z) must have finite support (ie: Q(z) must not only be causal, but must also vanish

for z > z' where z' is some positive constant).

Comparing Laplace-plane And Darrell-Determined Constraints On Q(z)

It is worth pointing out that section 7.8's discussion (which culminated with equa-

tion (7.73), page 120; the CLDP criterion) also contains local and global constraints
on Q(z). Section 7.8 required that Q(z) be Fourier transformable, and Siebert has

pointed out that Fourier transformable functions must satisfy both a local and a global
constraint.

Furthermore: like (7.97), the CLDP criterion places especially stringent require-
ments on Q(z) in the case where ao, is large. The 3 - oo Laplace plane integral

which comprises the CLDP criterion (and which registers the high frequency behaviour
of Q(z)) is then relatively long and is therefore less likely to vanish as required unless
Q() has small values at large 3. Q(C) is unlikely to satisfy the CLDP criterion unless
Q(z) satisfies stringent local and global constraints.

7.10 Numeric Verification Of The Darrell Property

This section's goal is to numerically verify the Darrell property, and the shape of the
Darrell, as descriptors for the noiseless but abruptly (ie: subjected to an ideal, square
window lowpass filter) bandlimited inverse CLDP IE. That is, with

P(t) V 2(f) = Q(z) exp(-z I(f)) dz (7.116)
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[1 d/((f)]
j 2x d f exp(z IC(f)) df

2 f m Re {(f )
exp(z C(f))

Cg(f)

1 1 d C(f)

C(f) j27r df

and

(f) = a(f) +j 27rf /c(f)

this section's goal is to numerically verify chapter 7's analytic result that

R(fm, z) = Q(z) * D(fm, z)

(7.117)

(7.118)

(7.119)

(7.120)

where

(fm, m {exp(z IC(fm))}
D(fm,) = 7rz

sin(2r fmz/c(fm))
= exp(z (fm)) _ (7.121)

In the practical PESAW context the actual measured signals are time sampled
versions P[tn] -- P(nAt) of P(t). In this thesis, estimates P(f) to the desired '(f)
are determined from the measured (or synthetic) P[tn] via the FFT

P(fk) = p[fk] = FFT{P[t ]} (7.122)

and equation (7.117)'s integration is implemented straightforwardly:

(7.123)R(fm, z) = Af > two[fk] Re k[fk] exp(Z k))

fk=O (fk)
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As introduced in section 4.14.4, the discrete-valued function two[fk] has value 2 for

all k 0 {0, k'} (where k' = Nt/2). When k = 0 or k = k', two[k] has the value unity.
Please recall from section 4.14.3 and appendix E.9.1 that fM -- (2At) -1 is the

maximum frequency available from the FFT of time sampled data. So whereas fm

is the generic abrupt-bandlimiting frequency appearing in (7.117), fM is the specific

maximum value of fm that can reasonably be submitted to this thesis' numeric ap-
proximation (7.123) to (7.117).

It is of course impossible to exhaustively verify the Darrell property (7.120) and

the shape of the Darrell (7.121) for all materials _(f), all bandlimiting frequencies fm,

and all source waveforms Q(z).
However, for any one particular material model, bandlimiting frequency, and source

waveform, it is possible to calculate the error between the expected, analytic recovery

given by a(f m ), c(fm) and Q(z) via (7.120) and (7.121) with the actual numeric recovery

given by (7.122) and (7.123).
For example, the Hp [1 mm, t,] depicted in figure C.1 was calculated using At = 2 ns,

Nt = 4096, Q(z) = 6(z - 1 mm), and the LC,(f) model for standard polyethylene de-

scribed in section 6.2.2 and depicted in figures C.2 through C.5. More explicitly,

HIp[1 mm, tn] = FFT - 1 {exp( -1 mm [ap(fk) +j 2lrfk/cp(fk)])} (7.124)

where fk = k/(Nt At) and the inverse fast Fourier transform FFT - 1 is defined in

section F.3.
Submitting FFT {IIp[1 mm, t.]} -~ p[fk], Lp(f) - IC(f), and f m -- fM in equation

(7.123) yields the R[fM, zi] depicted in figure 7.1. The analytically expected recovery

Dp[fM, zi - 1 mm] is also depicted in figure 7.1. The RMS error between these two

waveforms is 2.474 mm- 1 over the approximately 10 A's plotted.
The central (ie: z = 0) height HD of Dp(fm, z) may be determined analytically

from the form of the Darrell as 2f,m/c(fm). Because At = 2 ns, fM = (2At) - 1

= 250 MHz. Table C.1 yields c%(fM) = 2.14243 mm/ps so standard polyethylene's

H, (fM) = 233.4 mm- 1 and the normalized RMS error (raw/peak) associated with this

numeric experiment is the dimensionless quantity

2.47 mm- 1

1.06 10-2 =
233.4 mm- 1

that appears in table 7.1.
It is also possible to prematurely truncate the summation in (7.123) so that the

effective value of f m in (7.117) is fm - 25 MHz. In this case the expected shape of the

Darrell changes (see equation (7.121)) but the expected location (z = 1 mm) of the cen-

ter of the Darrell stays the same. The normalized RMS error between the expected, an-

alytic Dp,( , z-1 mm) and the numeric R(fm, z) determined from FFT{H,[1 mm, tn]}

is 4.22 10 - 4 .

This value appears as the second (of six) normalized RMS errors appearing in the

fm= 25 MHz column, just to the right of the 1.06 10-2 entry. This value (4.22 10- 4)
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happens to be the same as the normalized error culled from the numeric experiment

for standard polyethylene where f m = 25 MHz and Q(z) = 6(z). Therefore 4.22 10- 4

also appears as the first entry in the fm = 25 MHz column.
In each of the twelve numeric experiments alluded to in table 7.1 the recovery was

compared over a region of about 10A (5A to either side of the source impulse) at a
spatial sampling rate Az - A/25. Perusing table C.1 (or figures C.2 through C.5),
please note that the values for c(fm) and c(fm) agree for all three materials. Therefore
the expected shape of the Darrell is the same for the entire fm = 25 MHz column.

Reviewing all the entries in table 7.1, it seems clear that both the Darrell property
and the shape of the Darrell have been confirmed numerically. The largest normalized
RMS error in the table is only 1.06 10- 2 . The agreement between the numeric and
analytic waveforms associated with this entry is good enough that a cursory glance
could fail to discern that there are two distinct waveforms plotted.

The next largest entry in the table (1.36 10- 3) is less than one seventh of the largest
entry, and the smallest entry in the table (7.58 10-6) is nearly 1400 times smaller than
the largest entry.

It is interesting to note that both the largest and the smallest entries in table 7.1
are associated with standard polyethylene intrinsically bandlimited at fM. The largest
error is associated with a source placed at z = 1 mm. The smallest error is associated
with a source placed at z = 0 mm. These two entries are the only pair of entries that
differ from each other (all the other entries are independent of source placement depth,
but differ according to the propagation model or bandlimiting frequency used).

It is possible to parlay knowledge of the fact that, at high frequencies,

I. the approximation F{P(t)} - (fk) [fk] - FFT{P[nAt]} becomes

systematically inaccurate (see section 4.14.3)

II. standard polyethylene's attenuation coefficient is significantly larger (at least
thrice for f > 200 MHz; see figure C.2) than either the Bromwich or skin effect
material's attenuation coefficient

into an explanation for why table 7.1's entry (1.06 10- 2) corresponding to difference
between the recovery R(fM, z) (gleaned from H,[1mm, t,] and (7.123)) and the analyt-
ically expected result Dp(fM, z - 1 mm) should be the largest in the table.

With IZI denoting the magnitude of the complex number Z, with (Z) denoting its
phase (so that Z = IZ exp(j (Z))), and with I(f) = a(f) +j f(f), equation (7.123)
may be re-expressed:

R(fm, z) = Af f [fk] exp(z (f) t [fk] os ( (fk) + (P[fk]) - (C(fk)))
fk=O (fk

(7.125)
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Assuming the high-frequency error in 12[fk] is of the same order of magnitude for

all three materials and for both source depths, then that error is amplified most signifi-

cantly by the exp(z a(fk)) term acting in the calculation of the R(fM, zj)'s gleaned from

Ip[1mm, tn]. This follows because the product of the zi's calculated with the ap(fk)'s
involved is larger for this entry than any other. Inspection of figure 7.1 confirms this

hypothesis: the difference between the numeric and expected (analytic) waveforms
increases with z.
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0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04
position z (mm)

Figure 7.1: Comparison of R[fM, zi] (calculated numerically from FFT{Hp[1 mm, tn]})

with the expected, analytic Dp[fM, zi - 1 mm]. Az = 0.2 pm.

Polyethylene

Skin Effect

IBromwich

fm = fM
250 MHz

7.58 10- 6

1.06 10- 2

2.22 10- 4

2.22 10- 4

1.72 10- 4

1.72 10- 4

fm = fm
25 MHz

4.22 10- 4

4.22 10- 4

1.36 10- 3

1.36 10- 3

4.30 10- 4

4.30 10- 4

R(fm, z) calculated from

H [0mm, tn]
Hp[1mm, in]

H, [0mm, tn]
HI [1mm, t,]

Hb[Omm, tf]
Hb[lmm, tn]

Table 7.1: Normalized RMS error (raw/peak) between numerically and analytically
computed Darrells. Results presented show the dependence of this error on the ma-
terial (polyethylene, skin effect, Bromwich), the bandlimiting frequency f m (250 MHz,
25 MHz), and the source placement depth (0 mm, 1mm).
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Chapter 8

The Lyons Recovery Applied To

Synthetic Data

8.1 The Standard Impulsive Source Waveform

The standard impulsive source waveform Qi(z) is discussed in sections 1.15 and 2.4,
and also on page 33 (thesis outline). Mathematically,

10

Qi(z) = E (z -[ - ] mm)
n=l

= 6(z - 0.25 mm) + 6(z - 0.75 mm) + -- +-6(z - 4.75 mm) (8.1)

The response signal P [t] = /Cp Qi(z) corresponding to this standard impulsive
source waveform embedded in standard polyethylene is depicted in figure 2.2.

8.1.1 The Unregularized Recovery

The Darrell is defined by the three quantities {f m , a(fm), c(fm)}:

D(fm, z) = exp(z a(fm)) sin(2rfmz/c(fm)) (8.2)
7-z

Every Darrell has a unique central (ie: z = 0) height H,

2fm 2
H, lim {D(fm, z)} = m - (8.3)

z- o c(f m ) A(fm)

and envelope function E (z)

E(z) exp(z a(fm)) (8.4)
E (z)Z (8.4)DW 7rz
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Defining 'the safety length of the Darrell' 1, as that value of z which satisfies

E D(z) = HD (8.5)

it follows from the Darrell property that if two source impulses are separated by a dis-

tance 1D or greater then the A oscillations associated with the recovery of the shallower
source will significantly obfuscate the recovery of the deeper source.

Equation (8.5) is transcendental so it is not possible to analytically solve for ID
in terms of fm, a(fm), and c(fm). But it is possible to find approximate numeric
solutions to (8.5). For standard polyethylene abruptly bandlimited at f m = fM =

250 MHz, 1,(f) - 0.29452 mm (see table C.1 for the requisite values a(fm) and
c(fm)). Standard polyethylene abrupted bandlimited at f m = m = 25 MHz yields

1D(fm) = 2.9665 mm.
Because the sources in Qi(z) are separated by 0.5 mm (which is greater than stan-

dard polyethylene's 1,(fM)), the unregularized R[fm, z] determined from Pi [t,] will be

unsatisfactory: the A oscillations associated with the recovery of the z = 0.25 mm
source impulse will significantly obfuscate all the other nine sources.

Figure 8.1 demonstrates that this is so by depicting the recovery of the two shal-
lowest sources. As expected, the recovery of the second source impulse is completely
obfuscated by the A oscillations associated with the recovery of the first source impulse.

Figure 8.2 is a closeup of figure 8.1 which demonstrates that the recovery of the first

(ie: z = 0.25 mm) source appears as expected (ie: it appears as Dp(fM, z - 0.25 mm))
when the scale has been changed ... actually, the first pulse in the recovery should
appear as

Dp(fM, z - 0.25 mm) + Dp(fM, z - 0.75 mm) +- - + Dp(fM, z - 4.75 mm)

influence of deeper sources

but, practically, the influence of these deeper sources for the z's plotted in figure 8.2
is on the order of the negligible quantity exp([-0.5 mm] [ap(fM) = 18.25 Np/mm]) -
10 - 4

Figure 8.3 depicts the error waveform (numeric - expected) between the two wave-
forms depicted in figure 8.2. The error waveform has a negative average value reflecting
the fact that the area (Az = 0.5 pm times the sum of the 183 points plotted) of the
numeric waveform (1.0122) is slightly less than the area of the analytic, or expected,
waveform (1.0135). The RMS value of this error waveform is 4.55 10-2 mm- 1 . The
central value HD = 2/A of the expected waveform is 233.4 mm-' so this raw RMS error
corresponds to a normalized RMS error of 1.95 10- 4 . Note that the error waveform
increases with z.

Figure 8.4 demonstrates the fm = fm = 25 MHz version of this same 'obfusca-
tion' effect, which manifests itself in the unregularized Lyons recovery of extended
sources. Figure 8.4 demonstrates this obfuscation effect, and it numerically confirms
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the Darrell property by comparing the numeric R[fm,z] determined by submitting

P[fk] - FFTPi[tl]} to (7.123) with the expected R[fm, z] given by submitting the
standard impulsive source waveform Qi(z) to the Darrell property. That is, figure 8.4's

expected R[fm, z] is given by

expected, analytic R(fm, z) = Qi(z) * Dp(fm, z) (8.6)

Because 1D(fm) = 2.9665 mm, figure 8.4 only plots R[fm, z] from z = 0 mm to z = 3 mm.

This range of z includes the recovery of the first six source impulses.
In accordance with (8.6), figure 8.4 confirms that the numeric recovery from P7 [t,]

is almost exactly the sum of a set of shifted Darrells: the naked eye can just barely
discern that there are actually two waveforms plotted. The RMS difference between

the two waveforms plotted is 1.83 mm- 1.
Figure 8.5 is an 'error waveform.' It depicts the difference between the two wave-

forms plotted in figure 8.4. Figure 8.5 confirms the expectation (see page 7.10) that
this error should increase with z. Perhaps surprisingly, the error waveform depicted in

figure 8.5 has an oscillatory nature that would be reasonably well characterized by the
product of a sin and an exponential.

Figure 8.6's closeup of the 'large z' portion of figure 8.4 shows that the error between

these two waveforms is due more to a difference in phase (ie: shifting) than a difference
in amplitude: it appears that the two waveforms would overlap if the numeric waveform

were shifted - 2 pm to the left (of course, actually shifting the numeric recovery in

this manner would throw the 'small z' portion of figure 8.4 out of kilter).
This behavior contrasts with the behavior exhibited in figure 7.1, where the error

appears to be due more to a difference in amplitude than phase. The author offers no
explanation for these disparate behaviors, but notes that they correspond to disparate
values of fm and result in errors that increase with z.
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Figure 8.1: The unregularized recovery R[fM, z] of Q&(z) determined from FFT {P [tn]}.
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Figure 8.2: Closeup (z = 0.2 to 0.3 mm) of figure 8.1.
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Figure 8.3: Error waveform representing the difference (numeric-analytic) between the
two waveforms depicted in figure 8.2.

Figure 8.4: Comparison of the unregularized numeric recovery R[fm,
mined from FFT{Pi[t.]} with the expected, analytic recovery.

z] of Qi(z) deter-
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Figure 8.5: Error waveform representing the difference (numeric-analytic) between the
two waveforms depicted in figure 8.4.

Figure 8.6: Closeup (z = 2.5 to 3 mm) of figure 8.4.
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8.2 The Standard Gaussian Source Waveform

Having determined that the unregularized Lyons recovery is unsatisfactory via analysis

of the standard impulsive source waveform Qi(z), it seems clear that the unregularized

Lyons recovery of any source waveform (especially an extended one) will be unsatis-

factory as well. Focus now shifts to the SIB and SDB regularized Lyons recoveries of

the more realistic (extended) standard Gaussian source waveform Qg[zi]:

Qg[zi] = a(-1)n g(FWHM[n], z - [- -] mm) dz (8.7)
Jzi-az/2 n=1

where

2 2 z 2
g(FWHM, z) 2 exp -v (8.8)

FWHM# e FWHM

and FWHM[n] = 36.32 pm for n odd whereas FWHM[n] = 95.49 pm for n even.

These rather arbitrary values (36.32 Am and 95.49 [m) correspond, respectively,
to the z = 0.25 mm and z = 4.75 mm values of the FWHM of the standard SDB

recovery of the standard impulsive sorce waveform embedded in standard polyethylene

(see figure 1.3).
Note that g(FWHM, z) is a normalized (ie: unit area) Gaussian waveform indepen-

dent of FWHM. This can be seen by starting with the standard deviation a dependent

normalized Gaussian

1 exp 1

used by Stark and Woods [101], then realizing that FWHM{g'(u, z)} = u 2vn2.

The standard Gaussian source waveform Qg[zi] depicted in figure 8.7 was calculated
at the set of points zi = iAz (where Az = 2 Am and 0 < i < 2500) via the error function

erf [101]. The area of each Gaussian pulse is ± unity.
The modelled response signal 'Pg[t] = Cp{ Qg[z]} corresponding to this standard

Gaussian source waveform embedded in standard polyethylene is depicted in figure 8.8.

In figure 8.8, the response signals due to the deeper Gaussian sources overlap sig-

nificantly. The dominant recovery, which maps signals to waveforms without changing

their shape (see sections 1.6 or 2.4), will certainly yield a poor deep-source recovery

from Pg[tn].
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Figure 8.7: The standard Gaussian source waveform Qg[zi].
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Figure 8.8: The modelled response signal P g[tn] = /C{Qg(z)}. Only the first 3 ps of a
total of 8.192 ps are shown. At = 2 ns.
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8.3 The SIB Recovery

Section 8.1.1 made it clear that the unregularized Lyons recovery is unsatisfactory.
This section investigates SIB (spatially independent frequency domain filtering via the
filter known as Blackman's Lucky Guess) regularization. The filter B(f, f) known as
Blackman's Lucky Guess (BLG) is defined in appendix B. The BLG filter's parame-
ter fc is the cutoff frequency, above which the BLG filter has value zero. The BLG
filter's attenuation increases steadily with f up to fc, at which point the BLG filter's
attenuation jumps to infinity (ie: all frequencies above f, are set to zero).

SIB filtering is readily implemented: simply replace the P[fk] in (7.123) with

E[fk] B(fe, fk) so that (7.123) becomes

fm exp(z IC(fk))
Rsib(Z) = Af L tWO[f[e fk] B(f, fk) xg (fk) (8.9)

fk=o -9

The previous section's unsatisfactory recoveries correspond to using fc = 00 in
(8.9) because B(oo, f) = 1. The following two figures (8.9 and 8.10) depict the SIB
recoveries Rsib(Z) gleaned using (8.9) with ft set at two distinct frequencies: f, = 52.8
MHz and ft = 28.8 MHz, respectively.

The last recovered Gaussian in figure 8.9 is 'troubled;' it exhibits something akin
to the A oscillations that filtering was meant to remove. Decreasing the SIB filtering
cutoff frequency f, from 52.8 to 28.8 MHz (ie: from figure 8.9 to 8.10) removes the
A oscillations from this troubled recovered pulse at the expense of an increased pulse
width (which increases from 104.1 to 133.0 um).

The area of this troubled recovered pulse (Az = 2 pm times the sum of the 251
samples between z = 4.5 and 5.0 mm) is 1.005. The peak position of this troubled
recovered pulse (which was calculated to the nearest ,m via a 3-point quadratic fit)
is 4.754 mm. Analagous definitions for the recovered pulse area and peak position are
used throughout (eg: for the z = 2.75 mm pulse, the relevant range is z = 2.5 to 3 mm).

The following comments on the area, peak position, and FWHM (width) of the
recovered pulses pertain to all nineteen of the 'untroubled' recovered pulses depicted
in figures 8.9 and 8.10. All the areas fell within (in many cases, well within) 0.1 % of
their expected areas (± 1). The peak position was always 1 Am too deep, except for
the first three positive pulses in figure 8.9, which were exact (to the nearest pm).

All the recovered thick (ie: positive) pulses in figure 8.9 have a FWHM of 107.8 pm
(13% wider than source). All the recovered thin (ie: negative) pulses in figure 8.9 have
a FWHM of 63.05 pm (74% wider than source). All the recovered thick (ie: positive)
pulses in figure 8.10 have a FWHM of 133.0 /m (39% wider than source). All the
recovered thin (ie: negative) pulses in figure 8.10 have a FWHM of 101.5 pm (180%
wider than source).

It is remarkable that SIB filtering so accurately produces recovered pulses with
widths that are independent of source depth (when original source pulse width and fc
are held constant). Reviewing figures 8.9 and 8.10, it seems clear that SIB filtering
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produces recoveries with a resolution that is independent of source placement depth
and determined by the degree of A oscillation supression desired for the deepest source.

The fact that the resolution of the SIB recovery at all positions is determined by the
resolution of the deepest source (once the desired degree of A oscillation supression has
been specified) forms a recommendation for investigation of the spatially dependent
BLG (SDB) recovery which uses a cutoff frequency fc which is a function of z: f, --+
f,(z) in (8.9). The spatially dependent BLG filter cutoff frequency fe(z) is often simply
referred to as the SDB function.

Before investigating the SDB recovery, it will be shown that the SIB recovery can be
'smoothly relaxed' to the dominant recovery by modulating the model used for the re-
covery (ar(f) and cr(f)) between the limits set by the standard model for polyethylene
(ap(f) and Cp(f)) and the delay-only model (ad(f) = 0 and Cd(f) = Cd).
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Figure 8.9: The fe = 52.8 MHz Rsib[Zi] gleaned from P9g[tn].
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Figure 8.10: The f, = 28.8 MHz Rsib[zi] gleaned from P~,[tn].
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8.3.1 Relaxation To The Dominant Recovery

This section demonstrates that the SIB recovery can be 'smoothly relaxed' to the

dominant recovery by modulating the model used for the recovery (Or(f) and cr(f))
between the limits set by the standard model for polyethylene (ap(f) and cp(f)) and
the delay-only model (ad(f) = 0 and cd(f) = Cd).

Both ap(f) and Cp(f) are discussed and defined in section 6.2.2 and in appendix C.

The delay-only (aka: dominant) recovery is discussed in sections 1.6 and 2.4. Section 2.4

verifies Cd = 2.035 mm/ps as a resonable value to use for standard polyethylene. The

quantity X will be used as the modulation parameter, so that

{ar (f), cr(f ) {ar (X, f), cr (X, f)} (8.10)

where

ar(X, f) -- X ap(f) + [1 - X] ad(f) (8.11)

cr(X, f) - X c,(f) + [1 - X] cd(f) (8.12)

so that, when X = 0, the dominant recovery results and, when X = 1, the 'standard
polyethylene' SIB recovery investigated in section 8.3 results. The response signal
Pg[tn] depicted in figure 8.8 will be submitted to the Rsib[z] defined in equation (8.9).

The SIB recovery given by submitting Pg [t,] and {a,(X, f),Cr(X, f)} to (8.9) will be
denoted Rsib[X, zi].

Figure 8.11 depicts Rsib[1.00, zi] and Rsib[0.75, zi]. Figure 8.12 depicts Rsib[0.75, zi]
and Rib[0.50, zi]. Figure 8.13 depicts Rib[0.5, zi] and Rsib[0. 2 5, zi]. Figure 8.14 depicts
Rsib[0.25, zi] and Rsib[0.00, zi]. For all these SIB recoveries, fc = 28.8 MHz.

Reviewing figures 8.11 through 8.14: it seems clear that both the recovered pulse
width and the recovered pulse asymmetry increase steadily with decreasing X, and that
the manifestation of these effects increases steadily with source position z.

For example: the z = 0.25 mm Gaussian pulse recovery is relatively unaffected by
the value of X, whereas the z = 4.75 mm Gaussian pulse recovery degenerates from
fairly successful at X = 1 (FWHM = 133.0 pm, peak position = 4.751 mm, and area
= 1.0009, in agreement with the positive pulses in figure 8.10) to quite poor at X = 0
(FWHM = 308 pim, peak position = 4.775 mm, area = 0.518).

It is expected that the X = 0 recovery should have this behavior because X = 0
corresponds to the dominant recovery, which does not change the shape of P(t) (except
possibly through frequency domain filtering). It is also expected that the X = 1 recov-
ery should have the behavior it exhibited because X = 1 corresponds to the 'unrelaxed'
SIB recovery investigated in section 8.3.

What is surprising and gratifying is that figures 8.11 through 8.14 demonstrate
that there is a reasonably smooth transition between the X = 0 recovery and the
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X = 1 recovery. This behaviour is exhibited in figures 8.15,8.16, and 8.17 which depict,
respectively, the X dependent behavior of the z = 4.75 mm pulses' recovered FWHM,
area, and position. In each plot, moving from X = 0 to X = 1 effects a transition
towards the correct value.
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Figure 8.11: 'Relaxed' SIB recoveries Rsib[1.00, zi] (labelled X=1.00) and Rsib[0.75, zi]

(labelled X=0.75).
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Figure 8.12: 'Relaxed' SIB recoveries R,ib[0.75, z,] (labelled X=0.75) and R,ib[0.50, zi]
(labelled X=0.50).
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Figure 8.13: 'Relaxed'
(labelled X=0.25).

SIB recoveries R,ib[0.50, zi] (labelled X=0.50) and Rib[0.25, zi]

Figure 8.14: 'Relaxed' SIB recoveries R,ib[O.25, zi] (labelled X=0.25) and Rsib[0.00, zi]
(labelled X=0.00).
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Figure 8.15: Dependence of the FWHM of the z = 4.75 mm Gaussian pulse recovery
on the SIB 'relaxation parameter' X. Correct value = 95.49 pm.

Figure 8.16: Dependence of the localized area (i 0.25 mm) of the z = 4.75 mm
Gaussian pulse recovery on the SIB 'relaxation parameter' X. Correct value = 1.
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Figure 8.17: Dependence of the position of the z = 4.75 mm Gaussian pulse recovery
on the SIB 'relaxation parameter' X. Correct value = 4.75 mm.
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8.4 The SDB Recovery

Section 8.3 ended by recommending replacing the SIB cutoff frequency f, used in
Rsib(z) with some SDB function fe(z), so that (8.9) becomes

Rsdb(Z) = Af E two[fk] e k] B(f(z), fk) exp(z (fk)) (8.13)
fk=O CA

In the special case where the SDB function fe(z) used in (8.13) is the standard
SDB function fc(z) (see appendix B), the resultant recovery is called the standard
SDB recovery. The standard SDB recovery is denoted R(z).

It is possible to 'relax' the standard SDB recovery in the same manner as the SIB re-
covery was relaxed in section 8.3.1. That is, with {ap(f), c(f))} denoting the standard
model of polyethylene (see sections 6.2.2 and appendix C) and with {ad(f), cd(f)}
denoting the Cd = 2.035 mm/ps delay-only material (see sections 1.6 and 2.4), it is
possible to insert into (8.13) a 'relaxation model'

a,(X, f) X ap(f) + [1 - X] ad(f) (8.14)

Cr(X, f) -X Cp(f) + [1 - X] Cd(f) (8.15)

which yields the delay-only model when X = 0, and which yields the standard model
of polyethylene when X = 1. The nondimensional quantity X is called the relaxation
parameter.

This section investigates two of these relaxed SDB recoveries: the 'standard relaxed
SDB recovery' which uses fe(z) = f(z) (denoted R(X, z)) and the 'overfiltered relaxed
SDB recovery' which uses fe(z) = 0.65f(z) - f'(z) (denoted R'(X, z)).

As in section 8.3, relaxed recoveries will be gleaned from the modelled response
signal Pg [t] arising from the standard Gaussian source waveform g[zi] for the values
X = {0, 0.25, 0.5, 0.75, 1}. Please recall that g[z] is comprised of five 'thick' (FWHM
= 95.49 pm) Gaussians with area +1 placed at z = 0.75, 1.75, 2.75, 3.75, and 4.75 mm
and five 'thin' (FWHM = 36.32 ,m) Gaussians with area -1 placed at z = 0.25, 1.25,
2.25, 3.25, and 4.25 mm.

The recovery R(1, z) is the standard SDB recovery R(z). But whereas the recovery
Rsib(0, z) investigated in section 8.3 is a fc = 28.8 MHz BLG-filtered, frequency domain
implementation of the dominant recovery, R(0, z) does not reduce to the dominant
recovery. Like Rib(O, z), R(0, z) uses {ad(f), cd(f)}. But whereas Rib(0, z) uses the
constant fe = 28.8 MHz, R(0, z) uses the SDB function f,(z).

8.4.1 Plots Pertaining To The Relaxed SDB Recovery

Pages 154 and 155 depict the standard (ie: fe(z) = f,(z)) relaxed SDB recoveries
R[X, zi] where X = {1.00, 0.75, 0.50, 0.25, 0.00}.
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Pages 156 and 157 depict the overfiltered (ie: fe(z) = f,(z) = 0.65f,(z)) relaxed
SDB recoveries R[X, zi] where X = {1.00, 0.75, 0.50, 0.25, 0.00}.

Pages 158 and 159 contain four plots. Each plot consists of five lines. Each line

depicts the relaxation parameter X dependent FWHM of one of the twenty recovered
pulses depicted on pages 154 through 157. The two plots on the even (left-hand) side
correspond to the fe(z) = f(z) 'standard relaxed SDB' experiment. The two plots
on the odd (right-hand) side correspond to the fe(z) = f,(z) = 0.65f,(z) 'overfiltered
relaxed SDB experiment' experiment.

The two upper plots on pages 158 and 159 correspond to the thin pulses; the lower
plots correspond to the thick pulses. On each of these four plots (which corresponds
only to either thin/negative pulses or thick/positive pulses), information pertaining
to the first (ie: shallowest) source recovery is indicated with a solid line; information
pertaining to the second (ie: next shallowest) source recovery is indicated with a dotted
line; and so on, in accordance with figure 8.18.

Pages 160 and 161 also contain four plots. But whereas the four plots on pages 158
and 159 pertain to the FWHM of the Gaussian pulse recoveries depicted on pages 154
through 157, the four plots on pages 160 and 161 pertain to the area of the recovered
pulses. The four plots on pages 162 and 163 contain four plots pertain to the error in
recovered peak position (calculated-expected) of the Gaussian pulse recoveries depicted
on pages 154 through 157
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Figure 8.18: The standard Gaussian source waveform (figure 8.7) broken up into the

five thick (95.49 Atm) positive pulses and the five thin (36.32 Am), negative pulses.

The first pulse (whether negative and thin, or positive and thick) is plotted with lines

described as: solid; second pulse: dotted; third: dashed; fourth: dash-dot; fifth: dash-

dot-dot.

thin/negative

Istandard (z) -- overfiltered f'(z)

.1
Sthick/positive

Table 8.1: Significance of the arrangement (left/right,top/bottom) of the sets of four

plots found on pages 158 and 159 (FWHM), 160 and 161 (localized area), and 162 and

163 (numeric - expected error in peak position). The two left-handed (even-sided) plots

depict data corresponding to the relaxed SDB recovery where the standard SDB func-

tion fe(z) was used; the two right-handed (odd-sided) plots depict data corresponding

to the relaxed SDB recovery where the overfiltered SDB function f"(z) was used. The

two upper plots correspond to the thin/negative pulses; the two lower plots correspond

to the thick/negative pulses.
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Figure 8.19: Standard (fe(z) = fe(s)) relaxed SDB recoveries R[1.00, zi]
X=1.00) and R[0.75, zi] (labelled X=0.75).

Figure 8.20: Standard (fe(z) = fe(s)) relaxed SDB recoveries R[0.75, zi]
X=0.75) and R[0.50, zi] (labelled X=0.50).

154

E 0

-5

0 -10

- - X=1.00
-15 -- .......... X=0.75

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
position z (mm)

5

E o
E

S-5

o -10

Si- X=0.75
-15 - .......... X=0.50

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
position z (mm)

(labelled

(labelled



Figure 8.21: Standard (fe(z) = fe(s)) relaxed SDB recoveries R[0.50, zi] (labelled

X=0.50) and R[0.25, zi] (labelled X=0.25).

Figure 8.22: Standard (fe(z) = fi(s)) relaxed SDB recoveries R[0.25, zi]

X=0.25) and R[0.00, zi] (labelled X=0.00).
(labelled

155

5

E 0
E

?, -5

-10
S-- X=0.25

.......... X=0.O0
-15

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75

position z (mm)



Figure 8.23: Overfiltered (fe(z) =
(labelled X=1.00) and R'[0.75, zi]

Figure 8.24: Overfiltered (fe(z) =
(labelled X=0.75) and R'[0.50, zi]

f,(z) = 0.65f(s)) relaxed SDB recoveries R'[1.00, zi]
(labelled X=0.75).

f'(z) = 0.65fe(s)) relaxed SDB recoveries R'[0.75,
(labelled X=0.50).
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Figure 8.25: Overfiltered (fe(z) =
(labelled X=0.50) and R'[0.25, zi]

Figure 8.26: Overfiltered (fe(z) =
(labelled X=0.25) and R'[0.00, zi]

f',(z) = 0.65fe(s)) relaxed SDB recoveries R'[0.50, zi]
(labelled X=0.25).

f,(z) = 0.65 f(s)) relaxed SDB recoveries R'[0.25, zi]
(labelled X=0.00).
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Figure 8.27: Relaxation parameter X dependent width (FWHM) of the thin/negative
pulse recoveries gleaned via the standard (ie: fe(z) = fe(z)) SDB recovery.
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Figure 8.28: Relaxation parameter X dependent width (FWHM) of the thick/positive
pulse recoveries gleaned via the standard (ie: fe(z) = fc(z)) SDB recovery.
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Figure 8.29: Relaxation parameter X dependent width (FWHM) of the thin/negative
pulse recoveries gleaned via the overfiltered (ie: fc(z) = f,(z) = 0.65f,(z)) SDB recov-
ery.
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Figure 8.30: Relaxation parameter X dependent width (FWHM) of the thick/positive

pulse recoveries gleaned via the overfiltered (ie: fe(z) = f,(z) = 0.65f,(z)) SDB recov-
ery.
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Figure 8.31: Relaxation parameter X dependent area of the thin/negative pulse recov-
eries gleaned via the standard (ie: fe(z) = fe(z)) SDB recovery.
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Figure 8.32: Relaxation parameter X dependent area of the thick/positive pulse recov-
eries gleaned via the standard (ie: fe(z) = fe(z)) SDB recovery.
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Figure 8.33: Relaxation parameter X dependent area of the thin/negative pulse recov-

eries gleaned via the overfiltered (ie: fe(z) = f'(z) = 0.65f(z)) SDB recovery.
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Figure 8.34: Relaxation parameter X dependent area of the thick/positive pulse recov-

eries gleaned via the overfiltered (ie: fe(z) = f'(z) = 0.65f,(z)) SDB recovery.
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Figure 8.35: Relaxation parameter X dependent error (measured - expected)
position of the thin/negative pulse recoveries gleaned via the standard (ie:
f,(z)) SDB recovery.
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Figure 8.36: Relaxation parameter X dependent error (measured - expected)
position of the thick/positive pulse recoveries gleaned via the standard (ie:
f,(z)) SDB recovery.
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Figure 8.37: Relaxation parameter X dependent error (measured - expected)

position of the thin/negative pulse recoveries gleaned via the overfiltered (ie:

f'(z) = 0.65f,(z)) SDB recovery.

Figure 8.38: Relaxation parameter X dependent error (measured - expected)

position of the thick/positive pulse recoveries gleaned via the overfiltered (ie:

fc'(z) = 0.65fc(z)) SDB recovery.
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Chapter 9

The Lyons Recovery Applied To

Experimental Data

This chapter only analyzes PESAW data obtained from planar samples assumed to be
homogeneous both electrically (in terms of their dielectric permittivity e) and acousti-
cally (in terms of their material propagation parameter I(f)). The embedded charge
distribution is not assumed homogeneous, but it is assumed one-dimensional (ie: the
charge distribution is assumed to depend only on the distance z from the proximal
plate).

Section 4.15 includes the following overview of this thesis' proposed procedure for
mapping a measured PESAW pressure (usually detected as voltage) signal V[tn] to
a set of approximate samples Q[zi] of the desired charge waveform Q(z) embedded
within, and existing at the surface of, the dielectric sample:

Given a calibration signal Vc[tn], a bulk signal Vb[tn], and the plate charge
qp generated by the DC component Vo of the applied voltage (see equation
(4.14)), the first step of the suggested algorithm for determining estimated
samples Q[zi] of the desired PESAW charge distribution Q(z) is to solve
the inverse medium problem of estimating the dielectric's propagation pa-
rameter i(f) = a(f) +j 2rf/c(f).

The information required to solve the inverse medium problem is contained
in Vc[tn]. Vc[tn] must be parsed into its proximal plate component Vp [tn]
and its distal plate component Vd[tn], which must then be analyzed to de-
termine models for a(f), c(f) and, ultimately, C(f). Sections 4.10 through
4.13.3 explain this process.

Having solved the inverse medium problem, the next task is the inverse
source problem of determining the normalized, estimated source pressure
waveform R[zi]. R[zi] must then be multiplied by some dimensioned con-
stant to yield an estimated charge waveform Q [z].

This chapter's goal is to legitimize application of the Lyons recovery to measured
PESAW data. The most definitive validation of a charge recovery method would be to
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'successfully' recover a known charge distribution. It would be helpful if the relative

success of various recoveries could be quantified via comparison with the known charge
waveform Q(z).

Unfortunately, the author knows of no way to accurately embed a one dimensional

charge waveform Q(z) inside a sample without violating the requisite homogeneity of

the samples' electric and acoustic propagation properties.
However: (part one) it is possible to embed an 'approximately known,' approxi-

mately one dimensional charge waveform within a homogeneous dielectric sample via

E-beam irradiation; (part two) it is also possible to attempt to recover the known

proximal and distal surface plate charges associated with a measured calibration signal

VC[tn].
In 'the E-beam experiment' the test charge waveform is known to be embedded

within the dielectric, but the shape of the waveform is not well known. In 'the cali-

bration experiment' the shape and size of the test charge waveform is well known (at

least theoretically, at macroscopic space scales), but contains no bulk charge.

One measure of the success of the recoveries gleaned from either of these two exper-

iments is whether the recovered charge waveform, integrated twice and appropriately

scaled, meets the known, applied DC voltage boundary condition (see section 9.1).

Another way to attempt to validate a charge recovery is to make sure that the total

charge vanishes (again, see section 9.1).
In the case of the E-beam experiment it is also possible to check whether the

recovery gleaned when the proximal plate is attached to the side of the slab through

which the E-beam entered (the EP configuration) is 'similar to' the recovery gleaned

when the distal plate is attached to the side of the slab through which the E-beam

entered (the ED configuration).
Note that the ED recovery must be translated (reversed and shifted, so that the pre-

translation ED position z' = 1 maps to the EP position z = 0 and the pre-translation

position z' = 0 maps to z = 1; ie: z = 1- z') before it can be compared with the

EP recovery, which is awarded primacy. The need for one of the recoveries to be

translated before comparison with the other arises from the fact that the EP and ED
sub-experiments 'look into' the dielectric from opposite sides.

If both the charge distribution and the experimental conditions (see section 4.8)

can be assumed or shown to be roughly constant over the time between the EP and ED

sub-experiments, then the success of the Lyons recovery is, in essence, independently
confirmed and therefore validated to some degree.

Although the spatially impulsive charge distribution extant in the calibration ex-

periment is well known in advance, it does not extend into the bulk of the dielectric.

Yet according to PESAW theory (and excepting an overall multiplication factor of two;

see section 4.2) a charge layer at the distal plate z = 1 acts like a charge layer at any

other position 0 < z < 1. Therefore the worst case (z = 1) efficacy of the Lyons recovery

of PESAW data can be determined via the calibration experiment.
In this thesis, the double-sided E-beam experiment is performed on relatively low-

loss polymethylmethacrylate (PMMA) and the calibration experiment is performed on
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relatively high-loss polyethylene (PE). Hopefully, these results will convince the reader
that the Lyons recovery is a legitimate method to apply to experimental PESAW data.

The section following both The Double-Sided E-Beam Experiment and The Calibra-
tion Experiment presents the results of two more experiments. These latter experiments
explore the range of application of the Lyons recovery.

9.1 The Voltage Boundary Condition

The total charge waveform Q(z) associated with the PESAW experiment (see figure 1.1,
page 10. Note polarity of applied voltage) is assumed to be comprised of the sum of a
bulk charge waveform Qb(z) and two impulsive plate charges, so that

Q(z) = Qb(z) + qpS(z) + qd6 (Z - 1) (9.1)

where qp denotes the quantity of surface charge (nC/cm2) on the proximal capacitor
plate and qd denotes the quantity of surface charge on the distal capacitor plate. It is
assumed that the electric field inside each capacitor plate vanishes so that, by Gauss'
law, it follows that the net charge must vanish as well:

0 = qp + qd + Qb(z) dz (9.2)

According to (9.2), if the sample has net bulk charge embedded within it then Iqp,
cannot equal Iqdl. With O(z) denoting the one dimensional electric potential which
satisfies

dq(z)E(z) = (9.3)
dz

the DC component Vo of the applied voltage signal Va(t) (see section 4.3) must equal
the potential drop across the capacitor:

0(l) - 0(0) = Vo (9.4)

Integrating (9.3) and inserting Gauss' law (9.5)

E(z) = - Q(z') dz' (9.5)

yields
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(z) - (0) q= - j Q(z")dz" dz' (9.6)

Considering z = 1 in (9.6), then inserting (9.4), yields:

V = -1 Q(z')dz'dz (9.7)

Equation (9.7) is the known voltage boundary condition that the experimental

recovery Q(z) must satisfy. As a practical matter, the resolution of the recovery will

be finite. That is, although the plate charges are known to be impulsive, the recovery of

each plate charge will have finite thickness. The range of integration must be extended

beyond the physical dielectric region 0 < z < 1.
With z = 0- denoting some position on the order of one resolution FWHM to the

left of z = 0, and with z = 1+ denoting some position on the order of one resolution

FWHM to the right of z = 1, equation (9.7) can be re-written in terms of the recovered

charge waveform estimate Q(z)

V~o Q(z') dz' dz (9.8)
6 0- 0

9.2 The Double-Sided E-beam Experiment

The double-sided E-Beam experiment focusses on an 1 = 2.121 mm slab of polymethyl-

methacrylate (PMMA) which was bombarded with a dose of 0.35 MeV electrons on

June 3 1997. The dosage was designed to deliver 200 nC/cm2 of charge. This irradiated

sample was then set aside until June 28'th. Between June 28'th and June 30'th this

sample was subjected to the PESAW experimental procedure. Many PESAW signals
were measured; some with the DC voltage bias Vo = -2 kV, some with Vo = +2 kV,
and some with Vo = 0. The temperature was held constant at 220C throughout.

Some of the signals were collected with the sample in the EP configuration (ie: the

sample was mounted with the proximal plate attached to the side of the sample through

which the bombarding electrons entered) and some of the signals were collected with

the sample in the ED configuration (ie: the sample was mounted so that the irradiating

electrons entered through the distal plate).

9.2.1 Inverse Medium Solution

Figure 9.1 depicts the EP and ED calibration signals Vc[t,] for this experiment. Note

that, although the sample was remounted between the measurement of the EP and the
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ED calibration signals, these two signals are remarkably similar. A cursory inspection
could fail to discern that there are actually two signals plotted.

A theoretic, hysteresis absorption/NLKK model for the polymeric attenuation co-
efficient ap(f) and phase velocity cp(f) was extracted from these two measured cali-
bration files via the techniques described in chapter 4. The proximal pulse is defined
by the samples falling between t = 0 and t = tp; the distal pulse is defined by samples
falling between t = tp and t = td (see figure 9.1).

The parameters selected to define the theoretic model for this sample of PMMA
are given in table 9.1.

m = 0.011 Np/(mm MHz)
c(f,) = 2.7534 mm/ps

fo = 1 MHz
b = 0 Np/mm

Table 9.1: Polymeric model selected to describe the slab of polymethylmethacrylate
analyzed in The Double Sided E-Beam Experiment.

See section 6.2.1 for an introduction to the polymeric hysteresis absorption/NLKK
model.

Figure 9.3 depicts measured (EP and ED) and theoretic values of the attenuation
coefficient a[fk] corresponding to this slab of PMMA. Figure 9.4 is analogous to figure
9.3, except the phase velocity c(f) plays the role of a(f). Visual inspection of these
two plots confirms this model for PMMA, especially for frequencies between, say, 2 and
14 MHz. The theoretic and measured values for a(f) (and c(f)) appear more closely
correlated inside this range than outside it.

Whereas figures 9.3 and 9.4 support the validity of this model for PMMA via the
frequency domain, figure 9.2 suggests the validity of this model via the time domain.
Figure 9.2 depicts measured and theoretic values for the distal pulse parsed from the
EP calibration file. The 'theoretic' values for the EP distal pulse were computed by
synthetically propagating the measured EP proximal pulse through a thickness 1 =
2.121 mm slab of modelled (m, c(fo), fo) material.

Figure 9.2 supports this model for PMMA - the time-domain modelled data fits the
measured data like cellophane on a pickle. The author found that 'cross-propagation
comparisons' (ie: comparing the measured EP output pulse with the result of synthet-
ically propagating the ED input pulse through 1 = 2.121 mm of modelled material; and
vice versa) yielded comparable success.

Because the sample was known to have electrons embedded within it, the only
known method for obtaining a calibration file is the subtraction method discussed in
section 4.8. Section 4.8 emphasizes the requirement that the experimental conditions
(He(t), a(f), c(f), 1, , etc.) remain roughly constant over the time between succes-
sive measurements (different mountings, different applied voltages, different number of
averages, different temperature, pressure, etc.)
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The EP calibration data was taken between 2:56 and 4:10 PM on June 29. The ED
calibration data was taken between 11:31 AM and 12:44 PM on June 30. All ten (two
calibration and eight bulk) of this experiment's data signals were obtained between
June 28'th (4:35 PM) and June 30'th (3:14 PM).

The elapsed time between the measurement of the two calibration signals is on
the order of (about one-half of) the elapsed time over which all the data (calibration
and bulk signals) was obtained, and this 'total duration of data measurement' is only
about one-twelfth of the elapsed time between the irradiation of the sample and the
beginning of the duration of data measurement. The agreement between the measured
calibration signals themselves, and also between the measured signals and the theoretic
model, supports not only the model but also the validity of the assumption of constant
experimental conditions.

So far, this experiment's investigations have focussed on calibration signals Vc[tn]
to the exclusion of bulk signals Vb[tn]. These investigations have also focussed on
confirming the validity of the inverse medium solution (m, c(fo), fo) to the exclusion of
the inverse source solution.
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Figure 9.1: EP and ED calibration signals for the E-beam irradiation experiment.
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Figure 9.2: Measured (EP) and theoretic values of the distal pulse parsed from the
calibration file corresponding to the 2.121 mm sample of PMMA investigated in the
E-beam irradiation experiment.
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Figure 9.3: Measured (EP and ED) and theoretic values of the attenuation coefficient

a[fk] corresponding to the 2.121 mm sample of PMMA investigated in the E-beam

irradiation experiment.

Figure 9.4: Measured (EP and ED) and theoretic values of the phase velocity c[fk]
corresponding to the 2.121 mm sample of PMMA investigated in the E-beam irradiation
experiment.
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9.2.2 Inverse Source Solution - Calibration Waveforms

The transition to verification of the inverse source solution starts with the calibration

files. The goal is to verify that the recovered charge distribution satisfies the known

voltage boundary condition (9.8). Calibration signals, which correspond to the dif-

ference of Vo = +2 kV and Vo = -2 kV bulk signals, have an effective Vo of +4 kV.

Analysis focusses arbitrarily upon the EP calibration signal - the author found that

the ED calibration signal results were entirely comparable.
Figures 9.5 and 9.6 each depict two SIB source recoveries gleaned via page 82's

equation (4.60), which is re-presented below:

R(z) Af Etwo[k] Re V [fk] B(fk(z ) exp(z (fk)) (9.9)

To be explicit, please recall that page 82's discussion points out that k' = Nt/2

(where Nt denotes the number of time samples, so that the number of frequency samples

Nf = 1 + k') and that two[0] = two[k'] = 1, whereas two[k] = 2 for k #' {0, k'}.

The FFT of the EP calibration file was used as V[fk] in (9.9); the negative of the

FFT of the EP proximal pulse was used as Hfi~lk] (see figure 4.1 and equation (4.27);

both state that He(t) = - Vp(t)). The requisite Af = 1/(NtAt) sampled functions

IC[fk] and C_[fk] were calculated by sampling the closed form functions

&(f) = a(f) + j 27rf /c(f) (9.10)

and

( 1 f dc(f 1 d(f) (9.11)

cg(f)f= c(f) df j 2 7r df

where

c(f) = mf (9.12)

0.011 Np
1[ f (9.13)

mm MHz

and
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c(f) = c(fo) +m C2( In( ) (9.14)

mm 0.011 Np [2.7534m ]2
= [2.7534 ] +0.011 Np In( (9.15)

ps mm MHz 72 1 MHz

The sampled complex group velocity Cg[fk] was calculated by submitting

da(f) = m and dc(f) _ m c2 (f) (9.16)
df df f 72

into (9.11), then sampling. Note that the total number of time samples Nt = 8192, the
sampling time-step At = 0.5 ns, so the frequency step Af = 1/(NtAt) = 0.2441 MHz.
The spatial sampling interval Az = 0.01 mm.

Figure 9.5 compares f, = 50 MHz and f, = 20 MHz SIB recoveries. Note that the 50
MHz SIB recovery clearly exhibits significant non-physical oscillations with wavelength
- 83 pm, whereas the 20 MHz SIB recovery does not. Further, it is clear that the fc
= 50 MHz plate charges (proximal and distal; near z = 0 and z = 1, respectively)
are more finely resolved than the fc = 20 MHz plate charges - the resolution FWHM
of the 50 MHz recoveries is - 185 Im whereas the resolution FWHM of the 20 MHz
recoveries is about 100 pm less (- 85 pm).

Figure 9.5 clearly demonstrates the need for the experimenter to make an arbitrary
(application dependent) decision regarding the expected tradeoff between resolving
power and suppression of noise. It is interesting to note that the f, = 50 MHz recov-
ery's noise appears as a wavelength - 83 pm oscillation which is on the order of that
recoveries' resolution FWHM (- 85 pm).

Figure 9.6 compares the f, = 20 MHz SIB recovery described above with the fc
= 33 MHz SIB recovery. This value for f, was chosen arbitrarily by modulating fe
until the characteristic noise oscillations were just barely discernible on a vertical scale
including the plate charge recoveries. The resolution FWHM of the fe = 33 MHz SIB
recovery is 111 pm.

There is no need to invoke the SDB (f,(z) = constant) recovery - if the resolution
were spatially dependent then, as the SIB f, were decreased from +oo recovery-by-
recovery, the proximal plate recovery would 'resolve itself up out of the noise' before
the distal plate recovery (see, eg, figure 9.33). Figure 9.7, which compares the f, =
90 MHz and the f, = 70 MHz SIB recoveries, clearly depicts both plate recoveries
simultaneously resolving themselves up from the noise. Interestingly, the noise in both
these recoveries has the same characteristic wavelength (83 pm) as the 50 MHz SIB
recovery.

The author proposes interpreting the seemingly ubiquitous 83 pm noise oscillation
as follows: this experiment's measured signals inherently cannot be trusted to accu-
rately resolve features smaller than 83 pm. The value f, = 33 MHz is used for all of
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this experiment's forthcoming recoveries; the spatially-independent 111 pm resolution
FWHM of this recovery suggests that features larger than 83 pm yet smaller that 111
pm will not be resolvable either.

Figure 9.8 depicts the indefinite integral f-0.3 mmR[zi]Azi of the fe = 33 MHz
recovery depicted in figure 9.6. This plot clearly demonstrates that the area of the raw
recovered proximal pulse is approximately -1 whereas the area of the raw recovered
distal pulse is nearly, but not quite, 2.
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Figure 9.5: Comparison of the raw, f, = 50 MHz and the rawm f, = 20 MHz SIB re-
coveries gleaned by deconvolving the EP calibration signal with respect to the negative

of its proximal pulse.
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Figure 9.6: Comparison of the raw, f, = 33 and the raw, fc = 20 MHz SIB recoveries
gleaned by deconvolving the EP calibration signal with respect to the negative of its
proximal pulse.
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Figure 9.7: Comparison of the raw, fc = 70 and the raw, fe = 90 MHz SIB recoveries
gleaned by deconvolving the EP calibration signal with -respect to the negative of its
proximal pulse.

Figure 9.8: The indefinite integral
recovery depicted in figure 9.6.
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9.2.3 Raw Lyons-Recovered Localized Area

Continuing the previous sections's discussion: that the ratio (distal/proximal) of some

measure of the recovered localized area should be -2 is evident from the discussion

(sections 4.2 through 4.8) culminating in equation (4.23), re-produced below:

Vc(t) = He(t) * [-6(t) + 2 H(l, t)] (9.17)

In theory, the response signal corresponding to the distal plate charge is boosted by

a factor of two arising from the given assumptions re acoustic impedence mismatches at

the capacitor plates. The difference in sign arises from the fact that the the capacitor

plates exert forces of equal magnitude but opposite sign.
There are an infinite number of ways that this ratio of recovered area could be -2; eg:

the recovered proximal plate area could be 17 and the recovered distal plate area could

be -34. The following argument proposes that, for calibration waveform recoveries,
the raw recovered localized area of the proximal plate should be -1 whereas the raw
recovered localized area of the distal plate should be - 2.

Recall page 40's equation (2.19):

j P(t) dt = j Q(z) exp(-z a(O))dz (9.18)

According to the polymeric a(f) = mf model, a(O) = 0 so (9.18) can be simplified:

J P(t) dt = Q(z)dz (9.19)

Now note that the forward problem can be discretized (approximated) as a CLDP
matrix equation. That is, when a(0) = 0, the forward CLDP IE

P(t) = j Q(z) F- 1 {exp(-z C(f))} dz (9.20)

can be approximated as

P[tn] K[zi, t,] * C[zi] (9.21)

where

177



(i+1/2)Az

Q[i] = Q(z) dz (9.22)

S(n+1/2)At

p[t,] = / P(t) dt (9.23)
(n-1/2)At

and

[zi, t,] = H(zi, t,) (9.24)

H(zi,f)

= exp(-z[a(f) + j 2if /c(f)]) exp(j27rftn) df (9.25)

_(f)

Note that each column of the forward-propagation matrix IC[zi, tn] corresponds to
the sampled impulse response signal H[zi, t,] of a thickness zi slab of material described
by the propagation coefficient (f). By (9.19) and the definitions describing (9.21) it
should be clear that

E C[zi] E [tn] (9.26)
zz tn

That is, the modelled polymeric forward problem conserves area; the dimensionless,
non-localized area of a source waveform embedded within an a(O) = 0 material must
give rise to a response signal with identical non-localized area.

Further, insofar as the various signals H(z = z', t) corresponding to various con-
stants z' can be modelled as a well resolved center of area with an arrival time that
increases smoothly with z, the matrix I[zi, t,] will tend toward diagonality.

In any real material, causality will ensure that (in some not-yet-precisely-defined
sense) the temporal response pulses corresponding to deeper source pulses will 'arrive
later' than the response pulses corresponding to shallower sources. Therefore, forward
time-domain discretization matrices K[zi, t.] tend toward diagonality.

As an example, consider figure 2.2 (page 45). Figure 2.2 depicts the CLDP response
signal corresponding to a set of equally-spaced, unit-amplitude impulses of source lo-
cated at the positions zi = {0.25 mm, 0.75 mm, ... , 4.25 mm, 4.75 mm} within a
modelled sample of standard polyethylene (see section 6.2.2). Unfortunately, figure 2.2
depicts the sum of the ten desired signals. However, it is still possible to observe that
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the response to each successive source impulse arrives later than its predecessor. Stan-

dard polyethylene's forward-propagation matrix ,p[zi, t,] tends toward diagonality.
In the case of a diagonal matrix which preserves area it is reasonable to think of

the forward transformation as conservatively mapping localized areas from the neigh-

borhood of each zi to an approximately localized distribution ('larger' neighborhood,
aka region) of t,'s. It seems that the forward problem is linear and tends to preserve

localized area in a smoothly varying manner.

If the approximate inverse CLDP matrix (K: [t, zi], defined below) corresponding

to the Lyons recovery shares these properties, then (it will be shown) it is a simple
matter to see that the raw recovered localized area of the proximal plate charge should

be -1 whereas the raw recovered localized area of the distal plate charge should be 2.

Is it possible that the Lyons recovery has the property of conserved localized area?

Intuitively, the diagonal forward matrix interpretation (9.26) of (9.19) supports the

proposal that the inverse CLDP matrix will also tend to preserve localized area. Or,
simply interpret (9.19) from right to left (the inverse direction) rather than from left

to right (the forward direction). This question could also be addressed mathematically

via the results of section 2.5.2, which legitimizes the discretization matrix approach to

the inverse source solution by formally casting the proposed inverse CLDP solution as

a linear, first-kind Fredholm IE with inverse kernel K(t, z).

Intuition and mathematical theory aside, it is possible to numerically investigate

whether a particular instance (the PMMA model given above) of the known-linear

Lyons recovery investigated in this thesis results in a matrix that preserves localized

area.
Figures 9.9 attempts to addresses this question. It depicts five columns of the

-i1 1

'inverse impulse response' matrix K: [tn, zi], where :C [ta, zi] is the recovery R[z,]

gleaned from a temporally impulsive response signal P[t'] = 6[t' - tn]. That is,

[zi, tn] = IC{6[zi - Zi]}[tn] (9.27)

-- 1

1C [tn, zi] = IC-1{6[t'n - tn]}[zi] (9.28)

where the inverse-CLDP mapping C- 1 is approximated here via the Lyons recovery.
=-1

Figure 9.9 depicts the five columns (waveforms) of KC [t,, zi] which correspond to

the five cases tn = {0.0, 0.2, 0.4, 0.6, 0.8} pjs. Figure 9.10 depicts the indefinite integrals

of these five 'inverse kernel waveforms.'
To be completely explicit, note that each of the five waveforms plotted in figure 9.9

is the f, = 33 MHz SIB Lyons recovery (9.9) gleaned from a sampled signal

FFT V[fk]
p[t,] He[fk] (9.29)
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which is non-zero at exactly one time tn, where the sole non-zero sample has value
2000 As- '.

The value 2000 ps- ' comes from the requirement that a continuous time Dirac
delta function must have area unity; 2000 ps-' = 1/At, where At = 0.0005 ps is the
temporal sampling step. The model used to compute these waveforms is the PMMA
model given above. Equation (9.9) was used to compute the waveforms shown. He[t,]
was effectively set to 6[tn] and V[t,] was zero for all samples except for the sole non-zero
sample discussed above.

Figures 9.9 and 9.10 support the claim that the approximate inverse CLDP matrices
determined by this thesis' implementation of the Lyons recovery tends to preserve
localized area in a smoothly varying manner - as t, increases, a localized, symmetric,
approximately unit-area pulse clearly moves smoothly towards greater z's.

The observed increase (see figure 9.9) in undershoot of the columns (waveforms) of

the inverse matrix K: [ts, zi] with tn suggests that hand-modification (regularization)
of the columns of the inverse matrix matrix might well yield a more well-behaved
recovery than the current implementation. The inverse matrix could be regularized
to remove the observed undershoot of the columns corresponding to the larger t,'s.
Intuition suggests that the inverse matrix, like the forward matrix, should have only
positive entries. The regularization procedure should ensure that the recovered area
for each tn remains unity.

But the current goal is not to investigate some hand-regularized variant of the
frequency-domain-based SDB/SIB recoveries that are this thesis' focus. Rather, the
current goal is to understand the observed fact (see figures 9.6 and 9.8) that the raw
Lyons-recovered area of the proximal plate is approximately -1 whereas the raw Lyons-
recovered area of the distal plate is nearly 2.

To see why, start by considering the case where the V[fk] submitted to (9.9) is
given by V[fk] = -_Hel[fk] = Yp[fk]. According to (9.9), the operant frequency domain
signal 7P[fk] = V[fk]/He[fk] will be precisely -1. Inverse FFTing into the time domain,

it follows that the operant time domain signal P[it] will be -6[tn].
The signal -6[t,] clearly has all its area (-1) localized at t, = 0. Because the Lyons

recovery preserves localized area, the recovery gleaned from this signal should have
area -1 localized in some region. And in fact, by definition, the Lyons recovery of the
signal -6[t,] will be the negative of the t, = 0.0 ps waveform depicted in figure 9.9.
Indeed, less than 0.16% of the total recovered area falls outside the region z = ± 0.3
mm.

In the more realistic case of a calibration signal with well resolved proximal and
distal pulses, deconvolution with respect to the negative of the proximal pulse (He[t,]
= - Vp[tn]) will still leave net area r -1 'near' t, = 0, and will also leave net area a 2
near the delay time of the distal pulse. The temporal regions distinct from these two
special regions should have net zero area.

Therefore, by the conservation-of-localized-area property of the Lyons recovery, and
by the expected distribution of localized area associated with a successfully deconvolved
calibration signal, the localized area associated with the proximal plate recovery should
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be -1 and the localized area associated with the distal plate recovery should be 2.

Figures 9.11 through 9.14 demonstrate the validity of these statements concerning
the expected distribution of localized area in a successfully deconvolved calibration

signal Vc[tn]. Figure 9.11 depicts the raw deconvolved calibration signal

Pc[tn] = FFT - 1  FFT{-V,[tn] (9.30)

associated with the EP calibration signal. Note that the apparent noise is punctuated

by the relatively large negative excursion at tn = 0 which corresponds to the decon-

volved proximal pulse. As expected, in figure 9.11 the t, = 0 value is very nearly the

-2000 ps - 1 value which corresponds to area -1 at a single At = 0.0005 ps sample.
The observed deviation of the tn = 0 sample from the value -2000 ps-1 can only

be due to noise associated with the deconvolution of the distal pulse; deconcolving the

proximal pulse with respect the the negative of the proximal pulse would result in the

precise (to within numerical error) value -2000 ps- 1 at t, = 0, and zero at all other

times.
Figure 9.12 depicts the ft = 33 MHz BLG filtered version of P, [tn]. Note the two

regions of localized area. The first, located near tn = 0 (and near tn = NtAt; see

'wrap around' discussion below), corresponds to the localized area that maps to the

proximal plate recovery. The second, which peaks near t, = 0.765 ps, corresponds

to the localized area that maps to the distal plate recovery. Further, note that the

localized area associated with the proximal plate recovery 'wraps around' to large

values of time.
This wrap-around effect is an artifact of the fact that the FFT effectively operates

upon a periodic signal; eg: the largest value of time tn = (Nt - l)At can be interpreted

equally well as tn = -At. Figure 9.13 depicts the same data as that depicted in figure
9.12. In figure 9.13, however, the data has been rotated 0.2 ps to the right and the

formerly-rightmost points have been labelled as negative.
Figure 9.14 depicts the indefinite integral of the 33 MHz BLG-filtered P [tn] depicted

in figure 9.13. This plot clearly shows that the localized area associated with the
portion of the signal corresponding to the proximal pulse is approximately -1 whereas

the localized area associated with the portion of the signal corresponding to the distal

pulse is not quite the expected value of 2. Given the localized-area-mapping behavior of

the Lyons recovery, and given the fact that the localized temporal area of the measured
signal corresponding to the distal pulse is not quite 2, it seems entirely reasonable that

the Lyons recovery of the distal pulse should also have localized area that is not quite 2.

This seeming peculiarity of the measured signal could be explained by a frequency

dependent reflection coefficient at the distal plate - if low frequency signals experienced

a reflection coefficient with magnitude less than unity whereas higher frequency signals

experienced a reflection coefficient with magnitude - unity, the results would agree

with these observations.
Regardless of the cause of the apparent decrease in localized area of the portion

of the signal associated with the distal pulse, the result in terms of the measured
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a[fk] would be the sharp f --+ 0 up-turn observed in the measured data depicted in
figure 9.3. Similaraly, a difference in phase between low- and high-frequency values
of the reflection coefficient could explain the observed low-frequency deviation from
theory observed in the measured phase velocity (see figure 9.4).
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Figure 9.10: Indefinite integrals of the five waveforms depicted in figure 9.9.
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9.2.4 Un-Normalization And The Voltage BC

According to the discussion in section 4.15.5, the fc = 33 MHz waveform depicted in
figure 9.6 need only be multiplied by some constant v (which must have units of charge
per area for the recovery to have the required units of charge per volume) to yield an
actual estimated charge recovery Q[zi]. According to the discussion in section 9.2.3,
the area of the recovered proximal pulse should have area ~ -1.

The recovered source waveform R[zi] has units of mm-', so multiplying by

E Vo
v =- qp -E 1 (equation (4.14)) (9.31)

should yield a charge waveform with the correct units and magnitude.
If the ratio (distal/proximal) of the raw recovered localized areas corresponding to

the two plate charges is not -2 then the experimenter is in an unfortunate situation:
if v is chosen such that the proximal plate recovery has area -qp then the distal plate
recovery will not have the expected area 2qp. Conversely, if v is chosen such that
the distal plate recovery has area 2qp then the distal plate recovery will not have the
expected area -qp.

The author has chosen to present recoveries with v chosen such that the proximal
pulse has area -qp. The f, = 33 MHz data depicted in figure 9.6 is known to have a
ratio (distal/proximal) of raw recovered areas that is greater than -2: with localized
area defined as the area between -0.14 mm, this ratio is -1.9634 = 1.9626/(-0.9996).

The permitivity E of PMMA 3.4 c, where Eo is the permittivity of free space
(see equation (2.2)). The sample thickness 1 = 2.121 mm. Because the EP calibration
file discussed here is the difference of two bulk files acquired with Vo = ± 2 kV, the
effective Vo of this calibration file is 4 kV. Therefore, the value of v appropriate for
this E-beam experiment is

3.4 [0.8854 nC / kV ] 4 kV nCcm - 5.68 (9.32)(0.9996) 2.121 mm cm 2

the fudge-factor (0.9996) included in the denominator is the magnitude of the recovered
localized area associated with the proximal pulse recovery.

9.2.5 Verifying the Voltage BC for Calibration Waveforms

Figures 9.15 and 9.16 depict, respectively, the Lyons-recovered charge waveform asso-
ciated with the EP calibration signal and its associated voltage waveform. The voltage
waveform was calculated from the charge waveform via the right-hand side of page
167's equation (9.8).

The charge waveform was calculated from the fc = 33 MHz source waveform de-
picted in figure 9.6 by multiplying it by the value of v given in (9.32). This same value
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of v, and the same experimental impulse response signal He(t), are used, respectively,
to scale and deconvolve all the data associated with this E-beam experiment.

Figure 9.16 clearly shows that the charge waveform very nearly integrates to the
correct effective applied voltage of +4 kV. The actual recovered voltage at z = I is
3.828 kV, merely 4.4% less than the expected value. If the PESAW-recovered distal
pulse was not doubled (due to an artifact of the PESAW experiment itself) then the
voltage would level off for positions z > 1. The EP calibration signal voltage BC
appears to be satisfied.
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Figure 9.15: The recovered charge waveform associated with the EP calibration signal.
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Figure 9.16: The recovered voltage waveform associated with the EP calibration signal.
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9.2.6 Verifying the Voltage BC for Bulk Waveforms

Figure 9.17 depicts two raw measured PESAW bulk signals Vb[tn]. Both signals were
acquired from the same irradiated, I = 2.121 mm sample of PMMA analyzed previously.
Both signals were acquired with the sample mounted in the EP configuration. However,
the signal represented by the dashed line was acquired with the DC voltage bias Vo
= -2 kV whereas the signal represented by the dotted line was acquired with Vo =
+2 kV.

Figures 9.18 and 9.19 depict, respectively, the recovered charge waveforms and
voltage waveforms associated with the signals depicted in figures 9.17. The same
value v = 5.68 nC/cm2 used to map the recovered source calibration waveform to its
associated charge waveform was used for these recoveries as well.

The value of the Vo = +2 kV recovered voltage waveform at z = I is 1.882 kV, just
5.9 % less than the expected value of 2 kV. The value of the Vo = -2 kV recovered
voltage waveform at z = 1 is -2.030 kV, a mere 1.5 % greater (in magnitude) than the
expected value of I - 2 kVJ.

These errors (5.9% and 1.5%) seem small enough to justify the statement that the
voltage boundary condition for these two recoveries has been verified. Besides the
inexactness of the Lyons recovery itself, there are a number of possible sources for this
error. Perhaps chief among them is the observed low frequency difference between the
theoretic and modelled values for a(f) and c(f) (see figures 9.3 and 9.4, especially the
region below 2 MHz). But there is also a question concerning the DC offset of the
measured PESAW signal itself.

The PESAW signals depicted in figure 9.17 (and the calibration signals depicted
in figure 9.1) were 'zero adjusted' by adding a constant selected to force the temporal
region before the 'start' of the signal (ie: between, say, 0 and 0.35 ps) to have zero
average value. However, there is no reason to believe that the zero adjustment selected
was correct. That is, there may well be a slight error in the DC value of the measured
signal.

According to the Lyons recovery's observed property of preserved localized area, a
DC error in the measured signal will map, at least approximately, to a DC error in the
recovered charge waveform. Now note that the voltage waveforms depicted in figure
9.19 were calculated via two indefinite integrations of the charge waveforms depicted
in figure 9.18.

Double integration of a constant waveform (- unity) yields a quadratic waveform
(~ z2), so even a 'small' (ie: invisible to the naked eye at the scale shown) DC error in
the recovered charge waveform can lead to 'large' (ie: observable) error in the voltage
waveform at z = 1. Again, and even more emphatically, the observed errors (5.9% and
1.5%) seem small enough to justify the statement that the voltage boundary condition
for these two recoveries has been verified.

It should prove possible to select a constant value to add to the measured PESAW
signal to coerce the voltage waveform to have the correct value at z = 1, but this
procedure has been left for future researchers to investgate. Indubitably, it would be
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possible select such a (presumably related, via conservation of area) constant value to
add the charge waveform itself.
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Figure 9.17: Two raw bulk PESAW signals gleaned from a 1 = 2.121 mm sample of
E-beam irradiated PMMA. Dashed line depicts signal obtained with DC voltage Vo =
-2 kV; dashed line depicts signal obtained with Vo = +2 kV.
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9.18.
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9.2.7 Closer Analysis Of The Bulk Signals

Figure 9.20 depicts the same two signals as those depicted in figure 9.17, except that:

I. the signals in figure 9.20 were deconvolved with respect to the negative of the EP
proximal pulse depicted in figure 9.1 (He(t) = -Vp(t))

II. these deconvolved signals were then filtered with a fc = 33 MHz BLG filter

III. these deconvolved, filtered signals were then rotated 0.2 is to the right to lessen
the visual impact of the 'wrapping' associated with the periodic nature of FFT-
based filtering (see, eg, figures 9.12 and 9.13)

Figure 9.20 is, therefore, an estimate to P[th], the actual (normalized) pressure signal
arriving at the proximal plate. According to CLDP theory, such a normalized pressure
signal is called a response signal.

In a relatively short, relatively low-loss sample such as the one under discussion the
Lyons recovery reverts (approximately) to the dominant recovery. That is, in such a
sample the deconvolved, filtered signal looks much like the Lyons-recovered waveform.
The sample under discussion is an example of a short, low-loss sample - compare the
signal depicted in figure 9.20 with the waveform depicted in figure 9.18. (The following
experiment discusses a relatively thick, relatively high-loss sample.)

Focussing on the dashed (Vo = -2 kV) response signal depicted in figure 9.20, the
first pulse (near tn = 0) is large and has positive polarity. This pulse is associated with
the relatively large, positive proximal plate charge generated by the negative voltage
bias (note the convention re the polarity of the applied voltage Va(t) on page 10's
figure 1.1). Comparing this first pulse with the first pulse appearing in the Vo = +2 kV
response signal, it is clear that the change (+4 kV) in voltage bias has significantly
reduced the quantity of proximal plate charge.

The +2 kV and -2 kV response signals are almost identical in the temporal region
between, say, 0.2 and 0.6 4s. This temporal region contains information about the
electrons deposited in the bulk of the dielectric. These signals diverge again in the
temporal region near t = 0.76 ps. This latter temporal region contains information
about the distal plate charges.

The negative polarity pulse appearing in the temporal region between, say, 0.95
and 1.4 tps also corresponds to the electrons deposited in the bulk of the dielectric.
Please recall that charges in the bulk always emit two pressure waves in response to
the PESAW excitation force. These two waves travel in opposite directions and are of
opposite polarity.

The negative polarity pulse appearing between 0.95 and 1.4 ps is the 'image' (as
in reflection) of the wave received between 0.2 and 0.6 [s. This image pulse reflected
off the distal plate, which has a reflection coefficient F -1. Reflection therefore
reversed the image pulse's polarity and direction, sending it back towards the proximal
plate with the same sign as its object (as in 'source of reflection'). Note the apparent
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symmetry about t, 2 0.76 ps. In theory, this symmetry would be perfect in a lossless,

dispersionless material - the image pulse must pass through more material than the

object pulse.
Closer analysis of these twin pulses could help confirm or reject the frequency-

dependent reflection coefficient hypothesis proposed near the end of section 9.2.3 (page
181). But this question will be left for future PESAW researchers.

Given some proximal and bulk charge distribution, the distal plate charge is com-

pletely determined by the physical necessity that the total charge in the sample vanish.

That is, modifying equation (9.2)

(9.33)qd= -[ q + Qb(z) dz ]
0

It is clear that changing the sign of the applied DC voltage bias Vo moves charges

from the proximal to the distal plate, and leaves the bulk charge unmolested. This

result will be still more evident in the plots of the actual recovered charge waveform.

For now, please simply recall that the impact (upon the measured PESAW signal) of

the distal plate charge qd is doubled by an artifact of the PESAW experiment. The

Lyons recovery itself cannot 'undo' the effects of this doubling; the recovered distal

plate charges will appear twice as large as they actually are.
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9.2.8 Comparing Bulk Charge Recoveries

Returning to the Vo = +2 kV and Vo = -2 kV charge waveform recoveries depicted in
figure 9.18, it seems clear that these waveforms agree in the bulk region (from, say, z
= 0.15 to 1.95 mm) and disagree in the proximal and distal plate regions (from, say, z
= -0.15 to 0.15 mm and z = 1.95 to 2.3 mm, respectively).

It should be evident from the discussion in the previous sections that the disagree-
ment in the plate regions is due to the fact that the differing voltage bias conditions
(Vo = ±2 kV) actually give rise to differing amounts of surface charge at the plates.
The agreement of these waveforms in the bulk regions should come as no surprise - the
discussion of figure 9.20 pointed out that the portion (between, say, 0.2 and 0.6 ps) of
these signals which correspond to the bulk charges are almost identical.

But still, it is worth pointing out that the recovered qauntity of bulk charge seems
not to depend upon the voltage bias conditions. Figures 9.21 and 9.22 depict the results
of a more stringent test of the Lyons recovery method as applied to experimentally
measured PESAW signals. These figures depict the recoveries gleaned from all eight
of the PESAW signals gleaned from the double-sided E-beam experiment.

Figure 9.21 depicts the these recoveries for the range z = -0.3 to 2.43 mm. Figure
9.22 is a close-up of figure 9.21; figure 9.22 depicts the these recoveries for the range z
= 0.15 to 1.95 mm. Figure 9.21 includes the plate charge recoveries; figure 9.21 does
not. Preference was given to the EP configuration; the ED recoveries were 'reversed'
(via z = 1- z'; see page 165) so they could be compared directly with the EP recoveries.

There are two sources for the large deviations in the plate recoveries evident in fig-
ure 9.21. First, recoveries corresponding to various values of Vo were plotted together.
Therefore, the actual amount of surface charge on each plate varies between recoveries
corresponding to various values of Vo. Second, the distal plate (which has a relation-
ship to the side of the sample through which the bombarding electrons entered which
depends on whether the sample was mounted in the EP or the ED configuration) is
always !- 2 times too large owing to the previously-discussed assumptions re acoustic
impedence mismatches at the capacitor plates.

That is, the z r 1 values for the solid lines (EP configuration) are known to be
about twice as large as they should be, and the z - 0 values for the dotted lines (ED
configuration) are known to be about twice as large as they should be. The agreement
between waveforms plotted in figure 9.22 (which does not include the plate charge
recoveries) amounts to a confirmation of the Lyons recovery as applied to measured
PESAW signals - the recoveries for both configurations (EP and ED) and all three
values of Vo (Vo = -2 kV, 0 kV, and +2 kV) agree as to the size and shape of the
charge distribution within the bulk of the dielectric.

That is, all eight recoveries agree that bombarding a sample of PMMA with - 0.35
MeV electrons, and then allowing the embedded electrons to 'settle' for - 25 days,
results in a charge distribution dominated by a negative pulse which has a peak value
occuring at z = 1.23 mm (ie: 1.23 mm from the plane of entry of the bombarding
electrons) and which has a width (FWHM) - 0.26 mm.

194



The eight recoveries also agree on some of the finer details of the structure of

the charge waveform embedded within this irradiated sample, eg: there is a region of

positive charge between, say, 1.55 and 1.8 mm from the point of entry. Further, all

eight recoveries roughly agree on the scale of the embedded charge waveform - the

peak value of the charge waveform is r -13.6 ± 0.6 nC/(cm2 mm).
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9.3 The Calibration Experiment

The Double-Sided E-beam Experiment focussed on a relatively thin (1 = 2.121 mm),

relatively low loss (m = 0.011 Np/(mm MHz)) sample of polymethylmethacrylate

(PMMA). The Calibration Experiment focusses on a relatively thick (1 = 6.27 mm),
relatively high loss (m = 0.075 Np/(mm MHz), as will be shown) sample of polyethylene

(PE).
The Double-Sided E-beam Experiment confirmed the efficacy of the Lyons recovery

to the PESAW recovery of bulk charges situated relatively close to the receiving trans-

ducer by showing that recoveries gleaned with the transducer placed on each of the

two opposing sides of the relatively thin sample agreed with each other.

It would be good if the double-sided E-beam experiment could be repeated for this

thicker, lossier sample. Unfortunately, this was not possible. The data associated with

the double-sided E-beam experiment takes significant time and care to acquire, and

no such data is currently available. The Calibration Experiment therefore attempts to

confirm the efficacy of the Lyons recovery to thicker, lossier samples by attempting a

plate charge recovery of this sample of PE.
The argument is that, except for the apparent doubling of the distal plate charge

caused by the acoustic impedence mismatch at the distal plate, plate charges behave

like bulk charges (section 4.3 supports this argument mathematically, given certain

assumptions re experimental conditions which are valid here).

Figure 9.23 depicts the raw measured (calibration) signal analyzed in this section.

This data's sampling time step At = 2 ns. The proximal pulse Vp(t) is defined by the

values plotted between time t = 0 and time t = tp. The end of the calibration signal

is indicated by td. The BLG filter was used in the time domain to gracefully relax the

non-zero value which terminates the proximal pulse down to zero over a duration of

2 ps.
The calibration signal was gracefully relaxed in the same manner. In each case,

zeros were added to the end of the relaxed signal so that the total number of samples

Nt = 8192. The distal pulse Vd(t) was calculated via page 71's equation (4.23), which

yields:

1 1
Vd(t) = He(t) * H(l, t) = -[V,(t) - V,(t)] (9.34)

where

H,(t) = -Vp(t) (9.35)

Comparing the calibration signal depicted in figure 9.23 with either of the calibra-

tion signals depicted in figure 9.1, it is clear that loss and dispersion had a greater

effect upon the pressure waves which traversed the thicker sample.
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In figure 9.1, the proximal and distal pulses have similar shapes and widths. In
figure 9.23 the distal pulse is significantly thicker, and has significantly less structure
(eg: fewer inflections), than the proximal pulse. More quantitatively, in figure 9.23 the
ratio of the widths (FWHM, distal/proximal) is 4.36 whereas in figure 9.1 this ratio is
less than 1.1. It should now be clear that this section's data poses a significantly greater
challenge, in terms of the need to 'undo' the effects of attenuation and dispersion, than
did the previous section's data.

9.3.1 Inverse Medium Solution

The parameters selected to describe this 1 = 6.27 mm slab of polyethylene (PE) are
given in table 9.2. This model was chosen via analysis of the proximal and distal pulses
in the manner described briefly in the previous section, and in more detail in chapter 4.
Figures 9.24, 9.25, and 9.26 confirm this model by comparing measured and theoretic
values of, respectively, the distal pulse Vd[t,], the attenuation coefficient a[fk], and the

phase velocity c[fk].

m = 0.075 Np/(mm MHz)
c(fo) = 1.9528 mm/ps

fo = 1 MHz
b = 0 Np/mm

Table 9.2: Polymeric model selected to describe the slab of polyethylene analyzed in
The Calibration Experiment.

The measured and theoretic values for the attenuation coefficient agree well for
frequencies between, say, 0 and 8 MHz. Measured and theoretic values of the phase
velocity agree well between, say, 4 and 10 MHz. The measured and theoretic values for
the distal pulse agree well overall, but there is some deviation evident between, say, 4.1
to 4.5 ps. In this range the theoretic values do follow the overall shape of the measured
values, but fail to reach the same positive and negative extrema.

The agreement between theoretic and measured values is not as good as the agree-
ment observed in The Double-Sided E-beam Experiment. However, experience suggests
that the model selected is about as good as this thesis' hysteresis absorption/NLKK
model for polymers allows: the author found that varying any of the four parame-
ters from their given values gave worse results than those presented. This model will
therefore be taken as the inverse medium solution for this slab of PE.
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Figure 9.23: The raw measured PESAW calibration signal analyzed throughout The
Calibration Experiment.
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Figure 9.24: Comparison of measured and theoretic values of the distal pulse Vd[tn].

199



1.0 .. '

1. - - measured
S08 ......... theoretic

0

z 0.4

C

-: 0.2

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

frequency f (MHz)

Figure 9.25: Comparison of measured and theoretic values of the attentuation coeffi-
cient a[fk].-

2.03
2.03~- measured .........................................

S2.02
. .......... theoretic

= 2.01
E
E 2.00

0 1.99
1.98

-2 1.97

(D 1.96

ua 1.95 -

1.94-

1.93-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

frequency f (MHz)
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9.3.2 Inverse Source Solution

Pages 204 through 207 contain eight plots; two plots per page. At the top of each
of these pages is a raw Lyons-recovered waveform corresponding to the raw PESAW
signal depicted in figure 9.23. Each recovery corresponds to a different value of the
SIB cutoff frequency f. In order of appearance, those values of f, are: 10, 15, 20, and
25 MHz. At the bottom of each page is the indefinite integral of the recovery above it.
The recovery was calculated at a set of zi's ranging from z = -0.5 to 7 mm; the spatial
sampling step Az = 2 pm.

Excepting the distal pulse recovery depicted on the last (f0 = 25 MHz) page, all
the recovered proximal and distal plate recoveries are well resolved pulses which can
be assigned a meaningful width (FWHM) and position (location of extremum value,
calculated to the nearest pim via a unique quadratic fit to the extremal point and the
two points surrounding it).

The value of each plate recovery's width is shown on the plot depicting that recovery.
The recovered proximal pulse positions are, in order of appearance (ie: in order of
increasing f,), z = 0.000, 0.001, 0.001, and 0.001 mm. The recovered distal pulse
positions are, in the same order, z = 6.266, 6.271, 6.274, and ? mm (the '?' reflects
the fact that the fc = 25 MHz distal pulse was not resolvable). That is, the positions
of all the resolvable recovered pulses were correct to within (usually well within) ± 4
p1m.

In general, the position of the proximal pulses was more accurately recovered than
the position of the distal pulses: the RMS deviation from the expected position (z =
0) of the four proximal plate recoveries was less than 1 /pm. The RMS deviation from
the expected position (z = 6.27 mm) of the three resolvable distal plate recoveries was
3.3 pm.

Of the three recoveries (f = 10, 15, and 20 MHz) which had resolvable proximal and
distal plate recoveries, all but one (the f, = 10 MHz recovery) resolved the proximal
plate better than the distal plate (ie: the pulse corresponding to the proximal plate
recovery had a smaller FWHM than did the pulse corresponding to the distal plate
recovery). The f, = 10 MHz recovery resolved the distal plate better than the proximal
plate, but not by much: the ratio (proximal/distal) of FWHM's is ! 1.01.

The resolving power (ie: the 'smallness' of the recovered FWHM) clearly increased
with f. Focussing first upon the proximal plate recoveries, the recovered FWHM's
are (in order of appearance, which corresponds to increasing fe): 0.267, 0.180, 0.135,
and 0.109 mm. The corresponding sequence for the distal plate recoveries is: 0.264,
0.185, 0.161, and ? mm (where, as before, the '?' reflects the fact that the f, = 25
MHz distal pulse was not resolvable). In each case (proximal and distal), the resolving
power increased with fc.

Figure 9.33 (which corresponds to f, = 25 MHz SIB filtering) clearly illustrates the
need for SDB filtering (rather than SIB filtering) in the case where maximum resolution
of shallow charges is desired in a thick, lossy sample. At f, = 25 MHz, the proximal
pulse is well resolved whereas the relatively large value of fc has included more of
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the relatively noisier high frequency data than the Lyons recovery of the distal plate
can 'manage' (the decrease in the signal-to-noise ratio with f is evidenced by figure
9.25, which shows the increasingly erratic behavior of the measured a(f) as f increases
above, say, 8 MHz).

The Lyons recovery's inability to resolve the distal plate when fc > 20 MHz is
almost certainly due to the fact that the Lyons recovery of deeper charges utilizes a
higher degree of amplification than does the Lyons recovery of shallower charges. To
see this, note that the Lyons recovery (9.9) can be re-written by expanding I(f) into
its real and imaginary parts (see page 172's equation (9.10)):

amplification

R(z) = Af E I[fk] B(fc(z), fk) exp(z O(fk))
fk

two[fk] cos (z 27rfk/c(fk) + ( k[fk]) - (Cg(fk))) (9.36)

where, eg, (_[fk]) yields the phase of 2[fk].
Inspecting equation (9.36), it is clear that the spatially-dependent degree of am-

plification (the exp(z a(fk)) term) increases with z for some fk if a(fk) > 0. Lossy
materials generally have a(f) > 0 independent of f, so the the degree of amplification
used by the Lyons recovery in a lossy material will generally increase with z.

Further, materials (such as the one under discussion, for which a(f) = m f) which
have an attenuation coefficient that increases with frequency require the Lyons recovery
to employ an increase in amplification with z that increases with f!

If the signal-to-noise ratio decreases with f (and if f, is not small enough to prevent
it) then the Lyons recovery of deeper sources will over-amplify the noise extant at these
higher frequencies. This is almost certainly the reason that, when fe(z) is constant (ie:
when SIB filtering is in effect), the Lyons recovery of the distal plate 'breaks up' before
the proximal plate recovery breaks up.

Incidentally, this same effect is described in section 7.10. However, in that section,
the increase in noise with frequency was (presumably) due mostly to the high-frequency
inaccuracy (see page 80) of the FFT as an approximation to the Fourier transform. In
the current situation, the increase in noise with frequency is presumably due mostly
to weaknesses inherent to the data itself.

As mentioned previously, each of the four plots on the bottom of pages 204 through
207 depicts the indefinite integral of the raw waveform recovery above it. These plots
were included to show that the Lyons recovery delivers raw source waveform recoveries
with localized area that is only weakly dependent upon f,: the first three indefinite
integrals (corresponding to fc = 10, 15, and 20 MHz) clearly show that, regardless
of the fc-dependent width of the recovered pulses, the recovered area of the proximal
pulse is - -1 whereas the recovered area of the distal pulse is 2.
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Even more remarkably: figure 9.34 shows that, even in the case of an unresolved
Lyons recovered pulse (ie: the unresolved distal pulse depicted in figure 9.33), the unre-
solved pulse is still possessed of an approximately correct area. Speaking colloquially,
it seems that the Lyons recovery 'tries to do the right thing' (in terms of mapping
localized areas from time to space) even in some of those cases where it appears to be
dominated by noise.
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Figure 9.29: f, = 15 MHz SIB recovery from The Calibration Experiment.
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Figure 9.33: fc = 25 MHz SIB recovery from The Calibration Experiment.
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Experiment.
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9.3.3 Voltage Waveform Verification

Somewhat arbitrarily choosing the f, = 15 MHz SIB raw source waveform recovery
depicted in figure 9.29 as the best SIB recovery, only the un-normalization coefficient
v is required to determine the charge waveform recovery. To calculate the value of v
corresponding to that given by equation (9.32), it is necessary to know that

I. for PE, e E 2.3Eo

II. the calibration signal depicted in figure 9.23 was collected with the DC component
Vo of the applied voltage Va(t) equal to 10 kV

III. the thickness 1 of this sample of PE is 6.27 mm

IV. the raw localized area (between z = ± 0.3 mm) associated with the fc = 15 MHz
proximal pulse recovery = -0.986

The result is:

2.3 [0. 8 854 / kV ] 10 kV nC
Vc- - 3.29 (9.37)

(0.986) 6.27 mm cm 2

Figures 9.35 and 9.36 compare, respectively, the recovered charge and voltage wave-
forms associated with the Lyons, and with the dominant, recoveries.

Please recall that the voltage waveform is determined from the charge waveform
via the scaled double integration indicated by page 167's equation (9.8), and that the
dominant recovery (see page 14's equation (1.2), page 51's equation (2.55), and page
52's equation (2.61)) is given by

1 z
Rd(z) = -P(-) (9.38)

Cd Cd

= - (f) exp(j 21rfz/cd) df (9.39)
Cd f-oo

where Cd is the assumed-frequency-independent phase velocity of pressure waves prop-
agating through an assumed-lossless material.

With the inclusion of BLG filtering, the frequency-domain-based dominant recovery
(9.39) becomes

Rd(z) = i 2(f) B(fe, f) exp(j 27rfz/cd) df (9.40)
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The value of Cd used was determined by f, = 15 MHz BLG filtering the deconvolved
signal derived from the signal depicted in figure 9.23, then dividing the length of the
sample (6.27 mm) by the time separating the extremal values of the portions of the

deconvolved, filtered signal associated with the proximal and distal pulses (3.150 ps).
The result Cd = 1.990 mm/As is designed to locate the peak of the recovered distal
pulse at z = 1.

The f, = 15 MHz dominant recovery presented in figure 9.35 was calculated in the
frequency domain (9.40) and, because the localized area of the this recovery's proximal
plate pulse was -0.9995 (rather than the Lyons recovery's corresponding value -0.986),
the value of v used for the dominant recovery was 3.24 nC/cm2 rather than the 3.29
nC/cm2 value used for the Lyons recovery.

Figure 9.36 shows that the voltage boundary condition is very nearly satisfied by
both the dominant and the Lyons recoveries. In terms of the recovered voltage at z = 1,
the dominant recovery betters the Lyons recovery: the value of the recovered voltage
at the distal plate position z = 6.27 mm is 9.568 kV for the Lyons recovery (4.3% less
than the expected value of 10 kV) whereas the corresponding voltage associated with
the dominant recovery is 9.898 kV (only 1% less than the expected value).

Before concluding that the dominant recovery of the desired charge waveform is
inherently superior to the Lyons recovery, please recall that a relatively small DC
change in the measured PESAW signal (or in the recovered waveform itself) will result
in a relatively large change in the recovered voltage at z = 1. Similarly, by the linearity
of the charge-to-voltage mapping, a mere 4.3% change in the value of v used in the
Lyons recovery (or a 1% change in the value of v used in the dominant recovery) would
yield the correct voltage at z = 1. That is, the deviation of the z = 1 value of the
recovered voltage waveform from the expected value is not a robust measure of the
accuracy of a recovery (it is included only to allow a 'ballpark' check of the validity of
some recovery).

Figures such as those depicted on page 212 yield a more robust means to compare
the efficacy of these two recoveries. On that page, figure 9.37 depicts the the raw Lyons
recovered source waveform with the raw source waveform produced by the dominant
recovery; figure 9.38 depicts the indefinite integrals of the waveforms depicted in figure
9.37

Perusing page 212, it is clear that the proximal plate recoveries are nearly identical
and have area 2 -1. On the other hand, it is clear from these figures that (1) the Lyons
recovery has resolved the distal plate pulse much better than the dominant recovery
has and (2) the localized area of the Lyons-recovered distal pulse is much closer to the
expected value of 2 than is the dominant recovery.

More quantitatively, the width (FWHM) of the Lyons-recovered distal pulse is 0.185
mm whereas the width of the distal pulse recovered by the dominant method is 0.397
mm - more than twice the width of the Lyons-recovered distal pulse. With the area of
the distal pulse defined as the definite integral over the region z = 1 ± 0.27 mm, the
dominant-recovered area is 1.34 (33% less than the expected value of 2) whereas the
Lyons recovered area is 2.1 (5% greater than the expeced value of 2).
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Perhaps most importantly, it is clear from figure 9.37 that the Lyons recovery of the
distal pulse is much more symmetic than the dominant recovery of the distal pulse - the
dominant recovery's distal pulse has a long tail extending toward positive z whereas the
Lyons recovery's does not. It should be clear from all these analyses that, as expected
from chapter 8's analyses of synthetic data, the Lyons recovery yields a better overall
recovery of deep charges in lossy materials than does the dominant recovery.
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9.4 Overview Of The Remaining Two Experiments

At this point the general applicablity of the Lyons recovery to measured PESAW signals
has been established via the analysis of the two preceeding experiments. Therefore,
analyzing more experiments could arguably be dismissed as superfluous.

On the other hand, given that the motivation for this entire thesis is to establish the
applicablity of the Lyons recovery to the PESAW experiment, analysis of more than two
experiments seems entirely justified - the reader may not yet have gained confidence
in the Lyons recovery. There are still important questions to be answered, eg: is the
Lyons recovery applicable to PESAW signals obtained from samples containing -

* charges generated by long term exposure to DC electric fields?

* a charge dipole (closely spaced layers of charge with opposing polarity) located
near the proximal plate?

* a charge dipole near the distal plate?

Seeking to reconcile these two opposing viewpoints, the author has chosen to present
the results of applying the Lyons recovery to the remaining two experiments (The DC
Field Experiment and The Distal Dipole Experiment) but forgo some of the exploratory
analyses that can be found in the previous two sections.

The first of these latter two experiments (The DC Field Experiment) addresses the
first two of the three questions posed above (it could be called The DC Field and
Proximal Dipole Experiment). The second of these latter two experiments (The Distal
Dipole Experiment) addresses the third question.

9.5 The DC Field Experiment

9.5.1 Inverse Medium Solution

The DC Field Experiment focusses on an I = 0.983 mm slab of polyethylene (PE)
modelled via the parameters given in table 9.3. Figure 9.39 depicts the measured
calibration signal from which this model was derived.

m = 0.095 Np/(mm MHz)
c(fo) = 1.545 mm/pts

fo = 1 MHz
b = 0 Np/mm

Table 9.3: Polymeric model selected to describe the slab of polyethylene analyzed in
The DC Field Experiment.

The number of data points available in this measured calibration signal was rela-
tively small and therefore failed to show the image (reflection) of the proximal pulse
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signal which arrives after the distal pulse signal if the distal plate reflection coefficient is
non-zero (this reflected signal is evident in the other experiments' measured calibration
signals; see figures 9.1, 9.23, and 9.49).

It was therefore possible to show, on one graph, the measured signal and the 'Black-
man tail' used to gracefully relax the last measured data point down to zero before
zero-padding out to Nt, the power of 2 number of points chosen for the analysis.

The other experiments' calibration signals also had Blackman tails added (after
tp, when defining the operant proximal pulse; after td, when defining the operant
calibration signal) but, for those signals, the author opted to display the raw measured
signal and the two times (tp and td) at which Blackman tails would be added rather
than the two post-Blackman-tail-addition versions.

Figures 9.40, 9.41, and 9.42 depict, respectively, comparisons of measured and
theoretic values for the distal pulse Vd [tn], the attenuation coefficient a[fk], and the
phase velocity c[fk]. The agreement between theory and measurement evidenced by
these plots is by no means perfect: the measured values for a[fk] significantly exceed
the theoretic values in the two frequency bands f = {0, 3} and {27, 40} MHz, and
the measured values for c[fk] significantly exceed the theoretic values in the frequency
band f = {0, 5} MHz. Presumably relatedly, the theoretic values for the distal pulse
failed to accurately track the measured values between, say, times t = 0.92 and 1.2 ps.

Although the agreement between theory and measurement evidenced by these three
plots is by no means perfect, the author was unable to discover a more acceptable model
and, so, opted to accept them as they are.
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9.5.2 Inverse Source Solution - Calibration Waveform

The calibration signal depicted in figure 9.39 was obtained with Vo = 10 kV. Applying
the Lyons recovery to this calibration signal (deconvolved with respect to the negative
of its proximal pulse) yields a waveform with a proximal pulse that has raw localized
area of -0.994. The associated value of the un-normalization coefficient v for this PE
sample is, therefore:

2.3 [0. 8 85 4 n/ kV] 10 kV nC
c = mm 20.8 (9.41)

(0.994) 0.983 mm cm 2

Figures 9.43 and 9.44 depict, respectively, the recovered charge and voltage wave-
forms associated with The DC Field Experiment's calibration signal. They were calcu-
lated via f, = 25 MHz SIB filtering.

The width (FWHM) of the recovered charge pulse associated with the proximal
plate is 86 Am. The width of the recovered distal pulse is 82 pm. Therefore the f,
= 25 MHz Lyons recovery of data associated with this experiment cannot be trusted
to accurately resolve features of the actual embedded waveform which are significantly
smaller than, say, 80 pm. Paraphrasing, the resolution limit of the fc = 25 MHz Lyons
recovery is 80 pm

The value of the recovered voltage waveform at z = 1 is 9.42 kV , 5.8% lower than
the expected value of 10 kV. Although this value for the recovered voltage waveform
at z = 1 is by no means exact it does ascertain that associated charge waveform has,
at least approximately, the correct scale.
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9.5.3 Inverse Source Solution - Bulk Waveform

This experiment's sample was subjected to a -10 kV DC voltage for 22 hours. At times

t = 0.5, 2, 6, and 22 hours the sample was subjected to the PESAW experimental

methodology. The applied DC voltage Vo at the time of measurement was 0 kV - for

each measurement the applied voltage was increased from -10 kV to 0 kV, then the

PESAW signal was obtained, and then the voltage was decreased back to -10 kV.

The duration of each PESAW measurement was small compared to the total time

(22 hours) that the sample was under stress so the sample was 'almost always' under

-10 kV stress. The resultant raw measured PESAW signals are depicted in figure 9.45.

Figure 9.46 depicts the fc = 25 MHz Lyons-recovered charge waveforms associated

with the four bulk signals depicted in figure 9.45. Figure 9.47 depicts the voltage

waveforms derived from figure 9.46's charge waveforms.
At z = 1 all of these voltage waveforms are within ± 0.05 kV of the expected value

of 0 kV. The error associated with the z = 1 value of the voltage waveform associated

with with the calibration signal is 0.58 kV (10 kV - 9.42 kV; see page 217), so each of

the bulk voltage waveforms has much less (a factor of ~ 0.58/.05 less) error at z = 1

than the 'calibration voltage waveform.'
Figure 9.46's waveforms clearly depict a broad (wider than the resolution limit of

80 im) region of negative bulk charge growing in the region between, say, z = 0.2 and

0.84 mm. The central lobe of waveform associated with the signal acquired after 22

hours of applied field (the '22 hour charge waveform') has a width of 186 pm; this lobe

is well resolved. It is safe to say that the applied voltage has caused negative bulk

charges to form inside the dielectric.
The 22 hour charge waveform has a ± pair of charge pulses located near the proximal

plate. The negative pulse component of this ± pulse pair peaks at z = -37 pm (outside

the 'physical region' 0 < z < 1) and has width (FWHM) of 50 pm. The positive pulse

peaks at z = 44 pm and has width of 69 pm.
The width of each of these pulses is less than the resolution limit of 80 pm. The

distance (44 pm - (-37 gm)) between the pulse peaks is 81 pm, a value on the order of

the resolution limit. These facts suggest that the charges near the proximal plate act

like a dipole with respect to the f, = 25 MHz Lyons recovery.
This 'dipole hypothesis' is confirmed by figure 9.48, which depicts the results of the

fe = 45 MHz Lyons recovery (which must have a smaller resolution FWHM than the fc

= 25 MHz Lyons recovery). In figure 9.48, the width of the negative pulse has shrunk

to 32 pm and the width of the positive pulse has shrunk to 39 pm. Therefore the ±

pulse pair which straddles the origin in figure 9.46 was indeed acting like a dipole with

respect to the Lyons recovery - the width of a resolved object does not decrease when

the resolving power of the observing instrument increases.
This section has shown that the Lyons recovery is applicable to PESAW signals

obtained from samples containing bulk charges generated in response to an applied

DC voltage, and that the Lyons recovery is applicable to PESAW signals obtained

from samples containing dipole charges located near the proximal plate.
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9.6 The Distal Dipole Experiment

9.6.1 Inverse Medium Solution

The Distal Dipole Experiment focusses on an 1 = 4.445 mm slab of polymethylmethacry-
late (PMMA) modelled via the parameters given in table 9.4. Figure 9.49 depicts the
calibration signal from which this model was derived.

m = 0.011 Np/(mm MHz)
c(fo) = 2.7050 mm/ps

fo = 1 MHz
b = 0 Np/mm

Table 9.4: Polymeric model selected to describe the slab of polymethylmethacrylate
analyzed in The Distal Dipole Experiment.

Figures 9.50, 9.51, and 9.52 depict, respectively, comparisons of measured and
theoretic values for the distal pulse Vd[tn], the attenuation coefficient a[fk], and the
phase velocity c[fk].

The time domain agreement between theory and measurement exhibited in figure
9.50 is quite good; except for times near t = 2.128 ps (the time of the positive extremum
of the measured distal pulse) the theoretic model fits the measured data like a hand
in a glove. Near time t = 2.128 js, the theoretic values for the distal pulse exceed the
measured values by about 8%.

The theoretic values for the phase velocity fit the measured values well for all
frequecies up to 20 MHz, except for the frequency range f = 0.3 to 2 MHz. In this
range the measured data exceeds the theoretic data. The maximum deviation between
theoretic and measured data in this range is 0.017 mm/ps.

The theoretic values for the attenuation coefficient track the measured values well
up to 20 MHz, except that they are an average of about 0.015 Np/mm too small. It
would have been possible to use b = 0.015 Np/mm (recall that the hysteresis absorption
model is given by a(f) = m f + b) to make the theoretic values of a(f) track the
measured values more successfully.

But except for the 'DC offset' (ie: the apparent non-vanishing value of b) between
the measured and theoretic values for the attenuation coefficient, the given theoretic
model fits the measured data well. The given model was chosen also because no other
set of parameters fit the data as well; a non-vanishing value of b was found to yield a
less successful fit between measured and theoretic values of both the distal pulse and
the phase velocity.

Besides, the question of finding a polymeric mechanism to explain the physical
origin of a non-vanishing value of b was thought to be too great to justify its inclusion
at this point. An apparent non-vanishing value of b can just as easily be explained by
hypothesizing that the distal-plate reflection coefficient Fd f -1, or that the proximal
plate reflection coefficient Fp r 0.
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9.6.2 Inverse Source Solution - Calibration Waveform

The calibration signal depicted in figure 9.49 was obtained with Vo = 10 kV. Applying
the Lyons recovery to this calibration signal (deconvolved with respect to the negative
of its proximal pulse) yields a waveform with a proximal pulse that has raw localized
area of -0.998. The associated value of the un-normalization coefficient v for this

PMMA sample is, therefore:

3.4 [0.8854 C/ V ] 10 kV nC
v = = 6.79 (9.42)

(0.998) 4.445 mm cm 2

Figures 9.53 and 9.54 depict, respectively, the recovered charge and voltage wave-

forms associated with The DC Field Experiment's calibration signal. They were calcu-
lated via f, = 30 MHz SIB filtering.

The width (FWHM) of the recovered charge pulse associated with the proximal
plate is 121 Am. The width of the recovered distal pulse is 120 pm. Therefore the
resolution limit of the fe = 30 MHz Lyons recovery is 120 um The value of the recovered
voltage waveform at z = 1 is 9.918 kV, only 0.82% lower than the expected value of 10
kV. This rather small (0.082 kV) error suggests that the charge waveform depicted in

figure 9.53 does indeed have the correct scale.
With the localized area at position z defined as the area between z± 0.2 mm, the

ratio (proximal/distal) of the recovered plate charge is -1.85 (7.5% less, in magnitude,
than the expected value of -2). Rather remarkably, the recovered position (location of
extremum value, as determined via a quadratic to the extremum data point and its
two nearest neighbors) of the proximal and distal pulses is correct to the nearest pm.
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Figure 9.53: The fe = 30 MHz Lyons-recovered charge waveform associated with The
Distal Dipole Experiment's calibration signal.

Figure 9.54: The f, = 30 MHz Lyons-recovered voltage
Distal Dipole Experiment's calibration signal.

waveform associated with The

226

10 - - ------- --- - --- - -

9

8 10 kV

7

S 6-

5

S4

> 3
2

1

O-

0 1 2 3 4 5

position z (mm)



9.6.3 Inverse Source Solution - Bulk Waveform

This experiment's sample was irradiated with a dose of 0.85 MeV electrons designed
to deliver 400 nC/cm2 of charge. The sample was then left alone for 25 hours at 250 C
with no voltage applied. Bulk PESAW signals were acquired from the sample 2 minutes
after irradiation, 37 minutes after irradiation, and 25 hours after irradiation. The value
of the DC component Vo of the applied PESAW excitation voltage Va(t) was 0 kV.
These three raw measured PESAW bulk signals are depicted in figure 9.55.

Figure 9.56 depicts the fc = 30 MHz Lyons-recovered charge waveforms associated
with the three signals depicted in figure 9.55. Figure 9.57 depicts the voltage waveforms
derived from figure 9.56's charge waveforms.

At z = 1 all three of these voltage waveforms have negative values whereas, ac-
cording to Vo = 0, these three values should all be zero. The z = 1 value of the '2
minute voltage waveform' (ie: the waveform depicted with a solid line in figure 9.57)
is -0.44 kV. The z = 1 value of the 37 minute voltage waveform is -1.94 kV. The
z = 1 value of the 25 hour voltage waveform is -1.05 kV. The error (10 kV - 9.918 kV)
in the calibration voltage waveform (figure 9.54) is only 0.082 kV; the errors in the
z = 1 values of these bulk voltage waveform is between 5 and 13 times as great as the
corresponding error in the calibration voltage waveform.

But, according to the previous discussion re the uncertainty in the DC value of the
measured PESAW signal and the relatively large impact of this uncertainty upon the
uncertainty in the recovered value of the voltage waveform at z = 1, the recovered value
of the voltage waveform at z = 1 is not a robust measure of a charge recovery's success.

Further, the recovered value of the voltage waveform at z = 1 is also effected by
the fact that the impact of the distal plate charge is (in theory, assuming a distal
plate reflection coefficient Fd = -1 and a proximal plate reflection coefficient rp = 0)
multiplied by a factor of 2. The analysis of the calibration charge waveform uncovered
the fact that, for this experiment, this expected value of 2 was closer to 1.85.

There is another measure of the likely validity of a charge recovery but, unfor-
tunately, it too is complicated by both the fact that the 'distal plate multiplication
factor' is not unity, and by the fact that the recovery has finite resolution. This other
measure is the physical requirement that the total recovered charge (proximal plate,
distal plate, and bulk; see page 166's equation (9.1)) vanish.

The problem lies both in the inability to accurately determine the value of the
distal plate charge (the distal plate charge is, approximately, the integration over some
region about z = 1 - but which region? And, what if some bulk charge is included
in this region?) and in the uncertainty in the distal plate multiplication factor, which
must be used to reduce the impact of the distal plate charge so that the requirement
that the total charge vanish can be verified.

Focussing on the '2 minute charge waveform,' the charge on the proximal plate
(between z = ± 0.2 mm) is 81 nC/cm2 . The charge on the distal plate (between
z = 4.445 mm ± 0.2 mm) is 205 nC/cm 2. The charge in the bulk region (between z =
0.2 mm and z = 4.245 mm) is -203 nC/cm2 . If the distal plate multiplication factor
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were known to be 2 then it would be required that the raw recovered distal plate charge

be -2 times the sum of the proximal plate and bulk charges.
But, because the distal plate multiplication factor was found to be 1.85 (rather

than 2), in the current situation 'the total charge vanishes' if the distal plate charge

is -1.85 times the sum of the proximal and distal plate charges. That is, according to

this analysis the distal plate charge should be

(81 nC/cm 2 - 203 nC/cm2) • (-1.85) = 226 nC/cm 2  (9.43)

The actual distal plate charge is 205 nC/cm 2 , 9% smaller than expected. A similar

analysis of the 37 minute charge waveform yields an actual distal plate charge that is

4.5% smaller than expected; the 25 hour charge waveform's distal plate charge is 10%

smaller than expected.
Figure 9.58 depicts a close-up of the distal plate region of the bulk charge recoveries

depicted in figure 9.56. The positions z = 1 i 0.2 mm (4.245 and 4.645 mm) are clearly
indicated. As discussed previously, the various (2 min, 37 min, 25 hour) estimated distal

plate charges were calculated by integrating these various charge waveforms between

4.245 and 4.645 mm.
On this scale it becomes clear that the estimated plate charges were smaller than

expected, at least in part, because the integration region included negative bulk charges.
The 25 hour waveform illustrates especially well the fact that the integration region

has also included a contribution from the image of (ie: the reflection off the distal
plate of) the negative charges extant just inside (ie: just to the left of) the distal plate.

The inclusion of this negative image charge has exacerbated the unwanted effect of the
negative charge in the physical region just inside the distal plate.

It might well have been wiser to choose more narrow integration limits when at-

tempting to verify that the Lyons recovery yields results that are consistent with the
physical requirement that the total charge within and upon the sample must vanish.

Regardless, at this point it seems reasonable to say that the observed errors in the
values of the recovered voltage waveforms at z = 1, and the deviations between the
expected and the 'measured' (quotes because the measurement is manifestly inexact)
values of the distal plate charge, seem to be small enough (in light of their known
dependency upon quantities which have, quite likely, non-neglibible errors associated
with them) to justify the statement that the Lyons recovery of charges embedded within
(and upon) this slab of PMMA seem to have been reasonably well recovered.

Figure 9.58's dashed line (which represents the 25 hour charge waveform) depicts
a negative pulse of bulk charge near the positively-charged distal plate. This ± pulse
pair is the 'distal dipole' after which this experiment was named. The negative pulse
has its extremem value at 4.232 mm, 213 pm from the position (1= 4.445 mm) of the
distal plate. The FWHM of this negative pulse is 123 pm, so that it is just resolved.
The Lyons recovery has successfully recovered this distal dipole.

Figure 9.59 depicts a bulk charge closeup of the three f, = 30 MHz Lyons-recovered
charge waveforms. The abscissae plotted include both plate regions but the ordinates
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plotted were selected such that the plate charges themselves would not dominate the
figure (figure 9.57 plots this same data with the same abscissae, but the ordinates
plotted in figure 9.57 are such that the plate charges dominate).

At the scale plotted, the dominant feature of each of the three waveforms depicted in
figure 9.59 is a single well-resolved negative pulse. The 25 hour waveform also includes
a striking spike of negative charge near the proximal plate; this is the negative portion
of the previously mentioned distal dipole. The image of this striking negative spike is
also clearly apparent in the non-physical region just outside (ie: just to the right of)
the distal plate.

Noting the various post-irradiation acquisition times of the various PESAW signals
to which these waveforms correspond, it seems that as time progressed -

* the center of area of the dominant bulk pulse moved toward the proximal plate

* a thin region (a 'spike') of negative charge accumulated just inside the distal plate

These observations are confirmed in figure 9.60, which differs from figure 9.59 only
in that its recovered waveforms were calculated using f, = 25 MHz rather than f, =
30 MHz. In figure 9.60, the readily observable short wavelength (where 'short' means
'significantly shorter than the width of the dominant pulse') fluctuations seemingly su-
perposed onto the broad shape of each dominant pulse are exposed as noise: decreasing
f, by 5 MHz removed these fluctuations but did not disturb the overall shape of the
dominant pulse.

Note that whereas decreasing fc significantly reduced the noise fluctuations, de-
creasing f, did not have a significant impact upon the negative spike: although the
magnitude of its maximum excursion decreased 15% (from 13.7 nC/(cm2 mm) to 11.7
nC/(cm2 mm)) its width increased only 3.3% (from 123 pm to 127 pm). That is to
say, whereas decreasing fc significantly decreased the visible impact of the noise, this
decrease in f, did not significantly decrease the visible impact of the negative spike.

Figure 9.63 is to figure 9.58 as figure 9.60 is to figure 9.59: the only difference
between figure 9.63 and figure 9.58 is that the waveforms depicted in figure 9.63 were
calculated using f0 = 25 MHz whereas the waveforms depicted in figure 9.58 were
calculated using fc = 30 MHz.

Figure 9.63 confirms the existence of the negative 'spike' (quotes because the spike
appears more like a lobe at this scale) just inside the distal plate. Further, figure 9.63
makes it clear that the short wavelength fluctuations evident in figure 9.58 were an
artifact of the recovery process (in particular, the relatively high value of f,) and not
a feature of the desired charge waveform itself.

Figure 9.64 confirms these conclusions even more strongly. It compares the fc = 30
MHz recovery of the 25 hour charge waveform with its fc = 25 MHz counterpart. In the
bulk region, where the dominant pulse is much wider than the ' 130 pm fluctuations,
f, = 25 MHz waveform appears to act like a curve-fit to the relatively noisy f, = 30
MHz recovery. In the region near the voltage spike the f, = 30 MHz recovery does not
appear to act like a curve fit to noisy data. As discussed previously, the f, = 30 MHz
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recovery of this spike is wider and has an extremum that is smaller in magnitude than
the f, = 25 MHz recovery.

The author proposes that -

* the 'curve-fit like' behavior effected by the decrease in fc upon the recovery of
the dominant pulse is a generic feature of the Lyons recovery as applied to a
signal which contains enough information to enable the resolution of its source
waveform.

* the 'sagging' behavior effected by the decrease in fc upon the recovery of the
negative spike is a generic feature of the Lyons recovery as applied to a signal
which does not contain enough information to enable the resolution of its source
waveform.

Further, the author proposes that the wavelength of the noise fluctuations (if they
can be determined) give at least as good an estimate of the resolution limit of the
charge recovery as the FWHM of the calibration signal recovery.
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Chapter 10

Conclusions And Surmises

10.1 Conclusions

This thesis' goal has been

* to present novel inverse source mathematics for the solution (inversion) of a
subclass of linear, first-kind Fredholm IEs (CLDP IEs) which map waveforms
(functions of space alone) to signals (functions of time alone)

* to present the novel PESAW inverse medium solution for determining a pressure
wave propagation model a(f) and c(f) from a measured PESAW calibration
signal

* to employ these 'inverse procedures' in the service of the PESAW charge waveform
recovery method

10.1.1 CLDP IEs

Chapter 7, which forms the mathematical core of the thesis, points out that the (tem-
poral) Fourier transform of a CLDP IE's response signal can be interpreted as the
values of the (spatial) Laplace transform of the source waveform along a Laplace plane
path determined by the material's complex wavenumber k(f).

That is, with

H(z, t) exp(-z (f)) (10.1)

where

&(f) = a(f) + j 2f/c(f) - j k(f) (10.2)
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and

P(t) = Q(z) H(z, t) dz P (f) = Q(z) exp(-z C(f)) dz (10.3)

the Fourier transform P(f) of P(t) is given by

p(f) = (~((f)) (10.4)

where Q() is the spatial Laplace transform of Q(z):

Q()= £{Q(z)} Q(z) exp(-z ) dz (10.5)

Equation (10.3) is called a CLDP IE if I(f) is chosen such that H(z, t) is causal
(ie: satisfies H(z, t) = H(z, t) U(t)) for any positive z, in which case H(z, t) is causal
for all positive z). Equation (10.3) demonstrates the fact that the CLDP IE may be
expressed equally well in either time or frequency.

Expressed in the frequency domain, the causality of H(z, t) requires that exp(-z C (f))
satisfy the Kramers-Kronig relations (which state that the real and imaginary parts of
a 'causal' exp(-z C(f)) form a Hilbert transform pair); exp(-z (_(f)) will satisfy the
Kramers-Kronig relations if I(f) is analytic.

A material is called stable if a(f) = R,{L(f)} > 0 for all f. All passive materials
are stable. If a material is stable, it follows that the frequency-f-parameterized Laplace
plane CLDP path (f) will not leave the right hand plane (RHP, defined as including
the j-axis).

This thesis only considers the inversion of CLDP IEs corresponding to stable ma-
terials. The waveforms Q(z) considered are real, causal (meaning they vanish for
negative z's) and Fourier transformable (meaning that there exists a complex function
Q() which yields Q(z) when subjected to the inverse Fourier transformation operation
defined in section F.1).

10.1.2 Inverting CLDP IEs

The proposed method for inverting CLDP IEs is itself expressed an IE: the inverse
CLDP IE. The inverse CLDP IE may be derived by extending the Bromwich inversion
integral [42, 75, 44]. In the CLDP context, the Bromwich inversion integral may be
expressed as

Q(z) = P(f ) exp(z __(f)) df (10.6)
-) j27r df
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where

-b(f) b(f)) (10.7)

and

b (f) = b + j 27rf /cb ab > 0 andCb > 0 (10.8)

The inverse CLDP IE is simply obtained by replacing Pb(f) --+ (f) (where P(f)
is given by (10.3)) and replacing -b(f) --+ (f) (where IC(f) corresponds to a stable
CLDP material).

The result

" 1 d C(f)
2(z) = (f) exp(z C(f)) df (10.9)Q(Z) = f) j2r df

is one form of the so-called inverse CLDP IE.
When considering the range of applicability of (10.9).(ie: for which { Q((f), Q(z)}

pairs does (10.9) yield a valid recovery from the 2(f) produced by (10.3)?), note that
the Paley-Wiener criteria (sections 6.3 and 6.4) ensure that the generic CLDP KI(f)
(as well as the particular case (f) = kb(f)) will satisfy

lim {CI(f)I} = 00 (10.10)
f--oo

and

lim {(((f))} - (10.11)
f-oo 2

where IZI and (Z) denote, respectively, the magnitude and principal value of the phase
of the complex numberZ: Z = IZI exp(j (L(f))).

The argument for the validity of the inverse CLDP IE as applied to stable CLDP
materials satisfying

aoo lim {a(f)} < o0 (10.12)
f-*oo

proceeds apace: because the integrand is analytic in the RHP (and because the CLDP
path does not leave the RHP) the value of the integral is independent of path; it
depends only upon the endpoints. By equations (10.10) and (10.11) these endpoints
coincide with those of the cb = Cao Bromwich materials (see sections 6.1.1 and 7.3).
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Therefore the Bromwich inversion integral result applies directly to stable CLDP ma-
terials satisfying (10.12).

For stable CLDP materials failing (10.12), however, the correspondence to the
Bromwich inversion integral result is less clear. Section 7.8 derives the so-called CLDP
constraint (10.13) which must hold for the proposed inverse CLDP IE to yield the de-
sired Q(z). This result holds whether or not a.. is finite. Using the given assumptions,
the CLDP constraint follows directly from complex variable and Laplace transform the-
ory. It amounts to an implicit constraint on the Q(z)'s which are CLDP transformable
under a particular I(f).

Besides the requirements that the CLDP material C(f) = a(f) + j 27rf/c(f) be
stable and the waveform Q(z) be real, causal, and Fourier transformable, for the inverse
CLDP IE to yield Q(z) from the given k(f) the Laplace transform Q() of Q(z) must
also satisfy

lim Qm { Q([a' + j 27rf/c(f)]) exp(z [ce' +j 27rf/c(f)])} d' = 0 (10.13)
f--+00

Section 7.9 attempts to determine the IC(f)-dependent constraints on CLDP trans-
formable Q(z)'s from a Darrell-oriented perspective. The result, which was derived
without reference to the Laplace plane, states that Q(z) must satisfy

lim 0 Q(z) exp(zc) = 0 (10.14)
z--0 ZOo

Equation (10.14) must be consistent with (10.13), but (10.14) is not as definitive
as (10.13), partly because it does not constrain the high frequency behaviour of Q(z).
Equation (10.13) relies directly upon Laplace transform theory, whereas (10.14) was
derived in a 'hand-waving' manner. Therefore (10.13), although opaque in comparison
with (10.14), is proferred as the CLDP criterion.

When (10.13) holds, the waveform Q(z) and the signal P(f) are said to be CLDP
transforms of each other:

Q(z) = <P(f) (10.15)

10.1.3 Group Velocity

Because

1 d K(f) k1 d(f) _ 1
Sdf df (10.16)

j2r df 27: df C( f )
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where C (f) is the material's group velocity, the inverse CLDP IE (10.9) may be re-
expressed as

Q(z) = j ( exp(z _(f)) df (10.17)
_0 Cg(f)

10.1.4 CLDP Theory And The PESAW Charge Recovery

Under certain seemingly reasonable assumptions (see chapters 2 and 4) the PESAW
forward problem can be modelled via a CLDP IE. According to this model, the mea-
sured PESAW voltage signal V(t) is related to the desired charge waveform Q(z) via the
experimental impulse response H,(t) and the CLDP dielectric's acoustic propagation
coefficient K(f) (which is related to H(z, t) via (10.1)):

V(t) = He(t) * P(t) = Q(z) H(z,t) dz (10.18)

where the * denotes temporal convolution, He(t) is determinable from some measured
PESAW calibration signal V,(t) (see chapter 4), and

Q(z) = Q(z) (10.19)

where 1 is the sample thickness (which is also the parallel plate capacitor's plate separa-
tion distance) and V is the strength of the impulsive component of the applied PESAW
voltage signal Va(t) = Vo + V6(t).

Fourier transforming both sides of (10.18) and re-arranging yields

He(f)P(f ) = Q(z) exp(-z __(f )) dz = H-(f (10.20)

Chapter 4 discusses how to determine a model for IC(f) from the aforementioned
V,(t), so it seems that one need only replace the p(f) extant in the inverse CLDP IE
(10.17) with V(f)/He(f) to determine the desired charge waveform Q(z). That is, it
seems that

Q(z) = ( exp(z K(f)) df (10.21)
Q - He(f) C (f)

would yield the desired PESAW charge recovery.
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10.1.5 The Darrell

Unfortunately it is known that, even in the absence of noise in the measured signal
p(f) = V(f)/He(f), the unregularized recovery given by (10.21) will be unsatisfactory
because the measured (time-sampled) signals V[tn] and He[tn] are inherently bandlim-
ited due to the finite value of the sampling rate At operant in tn = n At. The signals

V[t,] and He[t,] contain no information about the desired signals V(t) and He(t) for
frequencies f greater than fM - 1/(2At) (see sections 4.9 and 4.14.3).

That is, with f m some generic bandlimiting frequency, it is known that if

Em(f) W(fm, f) E(f) = j Q(z) exp(-z (f)) dz (10.22)

where

W(fm, f) U(f + fm) - U(f - fm) (10.23)

then

QM (z) j -Q exp(z K(f)) df

f fm P(f)
f exp(z I(f)) df

(f)

= Q(z) * D(fm, z) (10.24)

where

D(fm, z) = exp(z a(fm)) sin(27rzf/c(f)) (10.25)
rz

is called 'the Darrell' and (10.24) is called 'the Darrell property.' Section 7.10 nu-
merically investigated and validated both the Darrell property and the shape of the
Darrell.

Clearly, if the quantity [z a(fM)] operant in an experimantal (bandlimited via finite
At) implementation of (10.21) is non-neglibible then that recovery will be unacceptable
due to the impact of the Darrell.

With fk -k Af and Af = 1/(NtAt) (where N is the number of time samples
comprising both V[t,] and He[t,]), this thesis investigates regularization of the nu-
meric implementation of (10.21) by lowpass filtering P[fk] via the filter B(f&, f) known
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as Blackman's Lucky Guess (see appendix B). This thesis' resultant Lyons recovery

(regularized numeric implementation of (10.17)) is:

R(z) Q(z)

= Af B(f(z), f) [fk] exp(z _(fk)) (10.26)

fk=-fM

from which it follows (in accordance with (10.21)) that

I
Q(z) = R(z) (10.27)

when P[fk] is replaced with V[fk]/H [fk] where V[fk] and H [fk] are, respectvely, the
FFT's of V[t,] and He[tn].

If the BLG cutoff frequency fc(z) is a function of z the resultant recovery is termed
an SDB recovery (spatially dependent Blackman); if fc(z) is a constant the resultant
recovery is termed an SIB recovery (spatially independent Blackman).

10.1.6 Synthetic Validation Of The Lyons Recovery

Chapter 8 investigated both SIB and SDB recoveries of source waveforms Q(z) embed-
ded in standard polyethylene &P(f). Both recoveries were found to be satisfactory, but
it was found that the SDB recovery was superior (when fe(z) was selected appropri-
ately) in the case where the effects of attenuation and dispersion upon the deep charges
was non-negligible and maximum resolution of shallow charges was desired.

The SIB and SDB recoveries were also relaxed, ie: modulated between the P(f)
used in the forward problem and an appropriately chosen delay-only 'd(f) = j 27r f/cd.
The relaxation model &,(f) used in the Lyons recovery (10.26) was modulated via the
relaxation parameter X:

Kr(f) = X ,Kp(f) + (1 - X) -(f) (10.28)

When X = 0 the delay-only model results; when X = 1 the standard model for
polyethylene results. The relaxed recovery was investigated for values of X between
zero and unity in 0.25 increments. It was found that, independent of source-placement
depth, the recovered width and the recovered localized areas of the embedded source
pulses each moved monotonically towards their correct values as X increased. The
error in the location of peak position was not a monotonic function of X for each
source location and for each range of X, but the peak-location error did decrease for
each source location as X was increased from 0.75 to 1.
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These results were confirmed for two functional forms for fe(z): fc(z) = fe(z) (the
standard SDB function; see appendix B) and fe(z) = 0.65f,(z) - f,(z). For the case X
= 1, the position-independent 35% decrease in the operant fe(z) (from If(z) to f'(z))
resulted in a position-independent 53% increase in the recovered pulses' FWHM. This
suggests that the SDB-regularized Lyons recovery exhibits a kind of generalized bound
durationobandwidth (here, spatial widthebandwidth) product relationship analogous
to that exhibited by the Fourier transform [58].

Because using KC (f) with X = 0 in (10.26) results in the dominant recovery whereas
using X = 1 results in the Lyons recovery, the fact that the X -- 1 recovery of embedded
source pulse width, localized area, and peak location bettered the X -+ 0 recovery sug-
gests that the Lyons recovery should give a better overall recovery than the dominant
recovery in the experimental setting.

10.1.7 Experimental Validation Of The Lyons Recovery

It is difficult to experimentally validate non-destructive charge recovery methods be-
cause the desired charge waveform embedded within the dielectric is not known in
advance; the current situation is markedly different from the previous section's. Chap-
ter 9's endeavor to address this difficulty proceeded by attempting to confirm that
the recoveries gleaned from one single sample, mounted in each of the two possible
mounting orientations, agree with each other. The idea is that if the recoveries gleaned
from these two mounting orientations 'agree with each other' (however that might be
defined) then that common charge recovery will be, in effect, independently confirmed
and therefore validated.

It is, of course, possible that the Lyons recoveries gleaned from the signals acquired
from each of these two mounting orientations may agree with each other and yet sub-
stantively disagree with the true charge waveform because some unknown effect is at
work to make the recoveries appear so.

However, the successes observed in the previous section suggest that the 'unknown
effect' hypothesis may reasonably be rejected by appealing to Occam's Razor. The
likelihood of the 'unknown effect' hypothesis being valid may be reduced even further
by (A) investigating whether the recovered charge waveform 'satisfies' (however that
might be defined) the known applied voltage boundary condition and (B) investigating
whether the physical requirement that the total charge in and on the sample vanish is
'satisfied.'

If the charge waveforms gleaned from the signals acquired with the sample mounted
in the two orientations agree with each other, and if that common charge waveform
also satisfies the two known physical requirements of the embedded charge waveform,
then the simplest (and therefore the most likely, according to Occam) explanation is
that the recovered charge waveform is actually 'correct.'

Section 9.2 (The Double Sided E-Beam Experiment) executes this 'recovery from
two sides.' In this experiment, as in the three others, comparisons of measured and
theoretic values corresponding to the inverse medium problem (determining K(f))
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suggest that a useful model has been obtained. This thesis' proposed inverse medium
solution appears to be valid.

Visual inspection of the charge waveform recoveries (see page 196's figure 9.22)
shows that the recoveries gleaned from the two mounting orientations agree quite well
with each other insofar as the gross features of the embedded charge waveform are
concerned. The voltage boundary condition was also reasonable well confirmed. It
seems that the Lyons recovery is indeed applicable to the required PESAW time to
space mapping.

However, the sample analyzed in The Double Sided E-Beam Experiment was not
thick, lossy, and dispersive enough to pose a real challenge for the Lyons recovery; the
dominant recovery might have succeeded almost as well. The next experiment (The
Calibration Experiment) focussed on a thicker, lossier, and more dispersive sample.
Unfortunately the signal analyzed in The Calibration Experiment corresponds only
to plate charges, not bulk charges - but according to PESAW theory the validity of
the recovery can be verified by analyzing such a calibration signal. The Calibration
Experiment's charge recovery seems to be as successful as The Double Sided E-Beam
Experiment's. Taken together, the results of these two experiments suggest that the
Lyons recovery is applicable to the PESAW time to space mapping even in the case of
deep-seated bulk charges.

The remaining two experiments (The DC Field Experiment and The Distal Dipole
Experiment) start from this standpoint and proceed to validate that the Lyons recovery
is applicable to the PESAW time to space mapping of signals acquired from samples
containing (A) charges generated by long term exposure to DC fields and (B) charge
dipoles, even if they are located near the capacitor plates.

Although it is difficult to quantify - qualitatively, the novel PESAW inverse medium
procedure for determining a pressure wave propagation model {a(f), c(f)} from a
measured PESAW calibration signal appears quite successful. For example, see figures
9.3 and 9.4. These figures show that the raw (pre-parameter estimation) recovered
models for a(f) and c(f) gleaned from calibration signals acquired with the sample
mounted in each of its two possible configurations agree admirably.

10.1.8 Overall

This thesis has presented and employed a novel theory for the inversion of a class of
IEs (the CLDP IEs) arising from the analysis of the PESAW experiment. Although
the focus has been placed upon polymeric materials, the mathematical theory (and
the preliminary numeric results concerning the Darrell property and the shape of the
Darrell) suggest that these methods should also work for non-polymeric dielectrics.

These mathematics may well prove useful beyond the PESAW context - they are
independent of the PESAW experiment. The results concerning the Darrell and the
CLDP criterion may prove important to the theory of the inversion of the Laplace
transform.
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10.2 Surmises

10.2.1 Recovery From Inhomogeneous Materials

Consider a slab of material with an inhomogeneous (spatially dependent) propagation
coefficient C'(z, f), where the diacritical mark ' denotes a correspondence to the in-
homogeneous case. The relationship between a homogeneous material's (f) and its
transfer function H(z, f) has already been established: H(z, f) = exp(-z C(f)). But
what is the generalization H'(z, f) corresponding to IK'(z, f)? And how might the
recovery (10.17) be generalized for this inhomogeneous case?

This analysis starts by attempting to calculate H'((, f), where ( is some specific
value of z. By mentally subdividing the material between z = 0 and z = into a
series of Nz thin (Az = /Nz) slabs of material, H'(, f) must (by Fourier theory's
convolution theorem) be the N, --+ oc limit of the product of the Nz slabs between
z = 0 and z =:

'(, f) = im exp( - ([i - f)) (10.29)
Nzi= 1

This process can clearly be repeated for arbitrary . The result is that H'(z, f) has
effectively been obtained. Now note that replacing exp(z K(f)) = 1/H(z, f) in (10.17)
yields

(z) = (f) (10.30)

It seems that if an (inhomogeneous) analogue C(z, f) to the (homogeneous) C (f) in
(10.30) could be found, then

/" _' (f) df
Q'(z) = 0 C '(zf)' f (10.31)

might well yield an at least approximate recovery from the P'(f) given by

P'(f) = 0Q'(z) H'(z, f) dz (10.32)

The author proposes generalizing the usual definition of the group velocity

1 = d(f) (10.33)
CG (f) j27r df
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1 1 [89 L'(z, f)-
(z, f j(10.34)

and simply notes that, in this case,.the proposed recovery for inhomogeneous materials
(10.31) reduces to the inverse CLDP IE in the case of a homogeneous material.

Unfortunately, given the proposed definitions of H'(z, f) and C' (z, f), neither
(10.31) nor (10.32) take into account the spatially distributed wave reflections that
will occur in the bulk as a result of the spatially dependent acoustic impedence corre-
sponding to the spatially dependent I'(z, f).

10.2.2 Supplanting The BLG Filter

Defining

7(f; z, f) _ z a(f) + ln(B(fe, f)) (10.35)

allows this thesis' BLG-regularized Lyons recovery

R(z) = (f B(f, exp(z [a(f) +j 2f/c(f)]) df (10.36)
_0 Cg(f)

to be expressed as

) 1 exp((P(f)) - (Cg(f)) +j z 27rf/c(f))

R(z) = - (f) exp((f;z, df

(10.37)

where, eg,

2(f) = IP(f)l exp(j (k(f))) (10.38)

The term exp(y(fc; z, f)) corresponds to the frequency-dependent amplification
used in the BLG-regularized Lyons recovery of a source at z; the term y(fc; z, f) is
the natural logarithm of that amplification.

Figure 10.1 depicts the frequency dependent logarithm of the amplification used in
the BLG-regularized Lyons recovery of a z = 5 mm source (solid lines) and a z = 1
mm source (dashed lines) embedded in standard polyethylene Cp(f). For each source
depth z, figure 10.1 depicts the frequency dependent logarithm of both the unfiltered
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(f& = c; circled lines) amplification and the filtered (f& = 25 MHz; un-circled lines)
amplification. Note that B(fc = cc, f) = 1.

In each case (z = 1 mm and z = 5 mm) the amplification used by the filtered

recovery decreases significantly with frequency. It seems that if the data in _(f) were
valid up to, say, 25 MHz then the BLG-regularized Lyons would, in effect, be 'throwing
out the baby with the bathwater' by not fully including the information in the lower

(f < 25 MHz) frequencies.
The author surmises that, in this case, it might be wiser to implement a non-BLG

~(z, f) that (for any particular z) falls between the filtered and the unfiltered versions

of -y(f,; z, f).
In the extreme case, y(z, f) would be given by za(f) for f < 25 MHz and would

equal negative infinity for f > 25 MHz. This would amount to k(f) being sharply
bandlimited at 25 MHz and so the recovery (not including the influence of noise at these

lower frequencies) would then be, according to the Darrell property, the true charge
convolved with the Darrell determined by a(fm), c(fm), and fin. This un-regularized
recovery could then be regularized post-recovery (ie: in the space domain) via some
technique optimized to remove both the Darrell's oscillations and the influence of noise.

8- z=5mm
8 ---- un-filtered

Z. 6 filteredz
4-

c 2 ...-.-.. ----
--------- "

-4
o ---0---- un-filtered

-6- ----------- filtered

nlulnlnl l l l Illn l ll III II | l l 'l 'le l 'l l I j

0 5 10 15 20 25

frequency f (MHz)

Figure 10.1: Logarithm of the frequency dependent amplification used in the BLG-
regularized Lyons recovery of a z = 5 mm source (solid lines) and a z = 1 mm source
(dashed lines) embedded in standard polyethylene. Circled lines correspond to un-
filtered (f, = oo) recoveries; un-circled lines correspond to f, = 25 MHz recoveries.
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Appendix A

Wave Equation Transfer Function

This appendix provides a self-contained, shorthand derivation of chapter 3's result that
the transfer function H(1, f) for a thickness 1 slab of CLDP material is given by

H(1, f) = exp(-1L(f)) (A.1)

where the complex propagation coefficient C(f) is given by

&(f) = a(f) +j 27f/c(f) (A.2)

This appendix is meant to augment, not replace, chapter 3's discussion by empha-
sizing the importance of the frequency domain to analysis of the wave equation. This
appendix's starting point is the familiar linear, one dimensional linear wave equation

02 1 2
g(z, t) 2 - g(z, t) = 0 (A.3)

for which c is assumed positive and real. Note that in the time domain it is unclear
how to include the possibility of a frequency dependent c -- c(f), and even less clear
how to include the possibility of frequency dependent attenuation a(f).

In shorthand form, Fourier analysis advocates replacing

-t j 27rf (A.4)

and

g(z, t) -- g(z, f) (A.5)

where g(z, f) is the Fourier transform of g(z, t) (see appendix F for this thesis' definition
of the Fourier transform). Performing these transformations upon (A.3) results in
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d2

d g(z, f) + k(f)2 g(z, f) = 0 (A.6)
dz2

where

k(f) = 2rf (A.7)
c

is the familiar propagation wavenumber [21].
According to the definitions outlined by Churchill and Brown [78], Fourier trans-

forming (A.3) changes it from a hyperbolic to a parabolic differential equation. It also
changes it from a real, partial differential equation to a complex, total differential equa-
tion. Churchill and Brown state that the generic second order linear partial differential
equation

A uzz + B uzy + C uy, + D uz + E u, + F u = G (A.8)

in u(z, y) where A, B, ... , G are constants or functions of z and y only, is of hyperbolic,
elliptic, or parabolic type in a region of the zy plane if the quantity F - B2 - 4AC is
positive, negative, or zero, respectively, throughout that region.

In the time domain, y -- t whereas in the frequency domain y - f. Reviewing

the time domain expression of the wave equation (A.3) and the frequency domain
expression of the wave equation (A.6) it is clear that, in either domain, A = 1, B =
D = E = G = 0, and the relevant region is the entire zy plane. In either domain, F
reduces to - 4 C.

In the time domain C = -1/c 2 and F = 0 so F = 4/c 2 > 0. The time domain
wave equation is hyperbolic. After Fourier transforming, C = 0 and F = k2 (f). The
frequency domain expression of the temporal wave equation is parabolic. Fourier trans-
forming the wave equation fundamentally changes its nature so that it becomes directly
integrable. The solutions to (A.6) are

g(z, f) = exp(± j z k(f)) g(0, f) (A.9)

Although the k(f) given by (A.7) is certainly real because all of its terms are real,
the solution (A.9) to (A.6) would still be valid if k(f) were complex:

k(f) = kr(f) +j k(f) (A.10)

where both kr(f) and k (f) are real. Inserting this complex k(f) in place of the real
k(f) in (A.9) yields

249



g(z, f) = exp(q= z ki(f)) exp(± j z kr(f)) g(O, f)

Inverse Fourier transforming (A.11) via the convolution theorem yields

g(z, t) = [F 1 exp( z k(f )) * (t)* g(O, t ± z/c(f)) (A.12)

where the phase velocity c(f) is given by

c(f)
27rf

kr (f)
(A.13)

Assuming c(f) > 0 and requiring +z propagating solutions (because the goal is to
find the z = 1 transfer function) excludes one of the two solutions for g(z, t) given in
(A.12), so that

g(z, t) = [- { exp(z ki(f))}(t)] * g(0,t - z/c(f))

Fourier transforming (A.14) yields

g(z, f) = exp(z ki(f)) exp(-j 27rfz/c(f)) g(0, f)

or, substituting 1 for z and rearranging,

g(, f) H(1, f) = exp(l ki(f)) exp(g(0, f )
Defining the attenuation coefficient a(f) via [62]

-ln H(l, f)
a(f) -

implies

a(f) = -ki(f)

250

-j 27rfl/c(f))

so that

(A.14)

(A.15)

(A.16).

(A.17)

(A.18)

H(, f) = exp(-l [a(f) + j 27rf/c(f)]) (A.19)

(A.11)



This result is completely in agreement with (A.1) and (A.2). Finally, note that ex-
pressing (A.2) in terms of k,(f) and ki(f) via equations (A.13) and (A.18) yields

2f
C(f) = ce(f) +j -

c(f)

= [-ki(f)] +j 27rf
[2rf/kr(f)]

= j [kr(f) + j ki(f)]

= j k(f) (A.20)
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Appendix B

The BLG Filter B(fc, f) And The
Standard SDB Function fc(z)

B.1 The Filter B(fe, f) (Blackman's Lucky Guess)

In this thesis, the lowpass filter known as Blackman's Lucky Guess (BLG) is used
exclusively because it has an historic connection to the PESAW experiment that arose
from its almost total lack of the time domain ripple generally effected by lowpass
filtering.

The BLG filter B(fe, f) is not defined for f < 0. For f > fe, B(fe, f) yields zero.
For 0 < f < f,

B(fc, f)= 0.35875 (B.1)

+0.48829 cos( rf/ fc)

+0.14128 cos(2f/ fe)

+0.01168 cos(3rf/ fe)

Figure B.1 depicts the BLG filter. Note that B(fe, 0.24445f,) 1/V2, so that the
3 dB point f3 of the BLG filter is given approximately by

f3(f) - K3fc (B.2)

where

a3 = 0.24445 (B.3)
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Figure B.1: The BLG filter.

B.2 The Standard SDB Function fc(z)

The BLG filter B(f&, f) (figure B.1) and the standard SDB function fe(z) (figure B.2)
are used together to in part define this thesis' SDB-regularized Lyons recovery (4.60).

As discussed on page 89, the standard SDB function was hand-modified to deter-
mine a shape that would yield "acceptable suppression" of the A oscillations and yield
as small a resolution FWHM as possible and preserve an apparently intrinsic tendency
towards linear FWHM vs z behavior.

The exponential fit fe(z) shown is defined through equations (4.82) and (4.83)

using fhi = 80 MHz, flo = 23.3 MHz, and I = 6 mm so z' - 4.864 mm. Equation

(4.82) and equation (4.83) are re-produced below:

fe(z) = fhi exp(-z/z e )  (B.4)

where

z e  (B.5)

(fFigure B.3 depicts B((z), f) for two values of z: z = 0.25 mm and z 4.75 m.

Figure B.3 depicts B(fc(z), f) for two values of z: z = 0.25 mm and z = 4.75 mm.
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Figure B.2: Comparison of the standard SDB function fe(z) with the exponential SDB
function fe(z) that agrees with fe(z) at z = 0 and z = 1 = 6 mm.

Figure B.3:
f,(0.25 mm)

Comparison of B(f,(0.25 mm), f) with B(f,(4.75 mm), f).
= 76.8 MHz whereas f,(4.75 mm) = 28.8 MHz.
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Appendix C

Data Describing The Three
Standard Materials

Section 6.2.2 introduces the model {ap(f), cp(f)} for standard polyethylene . Section

6.5.1 introduces the model {a,(f), c, (f) } for the standard skin-effect material. Section

6.1.1 introduces the Bromwich materials { ab(f), cb(f)} = f{b, Cb}.
The standard skin-effect and Bromwich materials were chosen so that all three

a(f)'s have the same 25 MHz value, and all three c(f)'s have the same 25 MHz value.

That is,

b = ap(25 MHz) = a,(25 MHz) = 1.825 Np/mm (C.1)

cb = cp(25 MHz) = c,(25 MHz) = 2.07553 mm/us (C.2)

Figure C.1 on page 256 depicts each material's 1 mm impulse response function.

That is, figure C.1 depicts {Hp(1 mm, t), H,(1 mm, t), Hb(1 mm, t)}.
The fast Fourier transform (FFT) was used to produce these plots. The number of

time samples Nt = 4096; the temporal sampling rate At = 2 ns. This implies

Af = (Nt At)-' = (8.192 ps) - ' 1.2207 MHz (C.3)

and

fM = (2At) -1 = (0.004 ps) - l = 250MHz (C.4)

Figure C.2 on page 257 depicts each material's a(f) over the full 250 MHz range.

Figure C.3 on page 257 depicts each material's a(f) over the {0, 25} MHz range.
Figure C.4 on page 258 depicts each material's c(f) over the full 250 MHz range.

Figure C.5 on page 258 depicts each material's c(f) over the {0, 25} MHz range.
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Figure C.1: The 1 mm impulse response for standard polyethylene, skin-effect, and
Bromwich materials. That is, the plotted functions are Hp [1 mm, tn], H, [1 mm, tn],
and Hb[1 mm, tn]. Only the most interesting 0.1 ps of a total of 8.192 ups are plotted.

Table C.1: Values of the attenuation coefficient and phase velocity of this thesis' three
standard materials at the two special frequencies fM = 250 MHz and fm = 25 MHz.
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250 MHz 25 MHz
polyethylene 18.25 1.825

a(f) skin effect 5.45392 1.825 Np/mm
Bromwich 1.825 1.825
polyethylene 2.14243 2.07553

c(f) skin effect 2.10756 2.07553 mm//ps
Bromwich 2.07553 2.07553



ii I

o 50
I ' I . '

100 150
frequency f (MHz)

Figure C.2: Full frequency range plots of the attenuation coefficient a(f) for standard

polyethylene, skin effect, and Bromwich materials. That is, ap(f), as(f), and Yb(f)
are plotted.

Figure C.3: Low frequency range plots of the attenuation coefficient

polyethylene, skin effect, and Bromwich materials. That is, ap(f),
are plotted.

a(f) for standard
as(f), and ab(f)
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Figure C.4: Full frequency range plots of the phase velocity c(f) for standard polyethy-
lene, skin effect, and Bromwich materials. That is, cp(f), c,(f), and cb(f) are plotted.

0 50

Figure C.5: Low frequency range plots of the phase velocity c(f) for standard polyethy-
lene, skin effect, and Bromwich materials. That is, cp(f), cs(f), and cb(f) are plotted.

Note that c(f = 0) is set to -oo for each material. This ensures that the angle of
the transfer function at the zero frequency will vanish; (H(l, f = 0)) = 0. The true
constraint is that lim{f -+ O}[f/c(f)] = 0; enforcing c(0) = -oo ensures that this
constraint is met.
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Appendix D

Graphical Depiction Of The
Principal Insight

The principal insight of CLDP theory (see section 7.1) is stated mathematically as

p(f) = -Q((f)) (D.1)

That is, the temporal Fourier transform P(f) of a CLDP IE's response signal
P(t) can be interpreted as the values of the spatial Laplace transform Q() of that

IE's source waveform Q(z) along a Laplace plane path determined by the material's

propagation coefficient

I(f) = a(f) +j 2rf/c(f) (D.2)

For this reason, the propagation coefficient I(f) is sometimes called a CLDP path.
Now note that, by Laplace transform theory,

p(f) = P(s = o + jw)Is=j2rf (D.3)

That is, the Fourier transform (if it exists) of a causal P(t) is given by the values
of P(t)'s Laplace transform along the j axis. The principal insight therefore relates,
point-by-point, a particular path in P(t)'s Laplace plane to a particular path in Q(z)'s
Laplace plane. Most explicitly,

2( 0+ j 2rf )= (a(f) + j 27rf/c(f)) (D.4)

so that any one particular frequency f (say, f = 30 MHz) relates a specific point in the
s plane to a particular point in the C plane. Figure D.1 (the temporal Laplace plane)
and D.2 (the spatial Laplace plane) demonstrate this correspondence graphically for
the case of standard polyethylene LKp(f) (see section 6.2.2).
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Figure D.1: The temporal Laplace plane.
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Figure D.2: The spatial Laplace plane.

Figure D.3 is the same as figure D.2 except that standard skin effect and Bromwich
CLDP paths are shown as well.
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Figure D.3: The spatial Laplace plane.
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Appendix E

Key Concepts & Notation

E.1 Bars, Tildes, Hats, Checks

Quantities which may be complex are denoted with an underbar. The temporal Fourier
transform P(f) of P(t) is an example, as is the temporal Laplace transform variable

s = a + jw = a + j2rf (E.1)

and as is the temporal Laplace transform 2(s) of P(t). The P denoting the Laplace
transform P(s) has a tilde as well as an underbar, to distinguish it from the Fourier
transform.

Quantities with tildes but no underbars represent approximate quantities. Func-
tions with square brackets are discrete-valued (meaning: the abscissa's are equally
spaced).

For example, d[fk] represents a series of approximate values of the continuously-
valued attenuation coefficient a(f). The fk's are given by fk = kAf, 0 < k < Nf. In
this same vein, P[tn] denotes a set of equally spaced temporal samples of P(t) and Q[z]
denotes a set of equally spaced, approximate spatial samples of Q(z). In this thesis
R[zi] is used in place of Q[zi] to emphasize 'recovery,' and also to avoid producing
calligraphic effects in the plotting package.

The spatial Fourier transform of Q(z) is denoted Q(b). The spatial Laplace trans-
form of Q(z) is denoted Q(K) where the spatial Laplace transform variable

IC = a + j3 = a + j27r (E.2)

There are exceptions to these conventions for the use of underbars and tildes. For
example, equation (1.3) uses the notation P (z, f) to denote a filtered approximation
to P(f). So bear in mind that, in all cases, if the argument of a function bearing
both an underbar and a tilde is complex then that function is a Laplace transform. If
the argument of such a function is not complex then that function is not a Laplace
transform; rather, it is an approximate complex quantity.
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The Fourier and Laplace transforms of temporal (eg: P(t)), spatial (eg: Q(z)), and
generic (eg: G(x)) functions are introduced in appendix F. The Hilbert transform and
this thesis' proposed CLDP transforms are introduced as well.

An F denotes the Fourier transformation. For example, P(t) P 2(f) states that
P(t) and P(f) are a Fourier transform pair, implying both that P(t) = F- 1{(f)}
and 2(f) = Ff{P(t)}. In the same vein: an £ denotes the Laplace transformation,
an 7- denotes the Hilbert transformation, and a K: denotes one of the proposed CLDP
transformations.

Hats denote modelled quantities. Eg: V [, t.] represents a modelled set of samples
of V(t) parameterized by the vector ( of m parameters {q1, 2, (3 ' " , m -

Checks denote the causal convolution inverse G(x) (if it exists) of a given causal
G(x). A function G(x) is causal if G(x) = G(x) U(x) where U(x) is the Heaviside
unit step function (integral of the Dirac delta function 6(x)). By definition, a function
G(z) and its convolution inverse 6(x) satisfy G(x) * O(x) = 6(x) where the * denotes
convolution. jZ I denotes the magnitude of the complex number Z; (Z) represents the
principal value of its phase, so that Z = JZ exp(j(Z)).
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E.2 Acronyms

BC Boundary Condition
ED E-beam Entering Distal plate
EP E-beam Entering Proximal plate
IE Integral Equation

KK Kramers-Kronig
PE Polyethylene
SD Spatially Dependent
TL Transmission Line

BLG Blackman's Lucky Guess
FFT Fast Fourier Transform
PEA Pulsed Electro-Acoustic
QSA Quasi-Static Approximation
RHP Right Half Plane
RMS Root Mean Square
SDB Spatially Dependent BLG filtering
SIB Spatially Independent BLG filtering

CLDP Causal, Lossy, Dispersive, Plane-wave
FWHM Full Width at Half Maximum
FWZC Full Width at first Zero Crossing
NLKK Nearly Local Kramers-Kronig

PESAW Pulsed Electrically Stimulated Acoustic Wave
PMMA Polymethylmethacrylate

PW Paley-Wiener
PWG Paley-Wiener-Guillemin

E.3 Signals, Waveforms, Standards

Signal = function of time (or inverse time) alone.
Eg: P(t), P(f), and P(s).

Waveform = function of space (or inverse space) alone.
Eg: Q(z), Q(), and Q(K).

Standard = standard with respect to this thesis only.
Eg: No manufacturer intentionally produces 'standard polyethylene'

(section 6.2.2) nor has any other researcher discussed it.
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E.4 Functions Describing Experiment & Recovery

* Va(t) The pulsive applied excitation voltage.
Volts; Va(t) = Vo + ~(t)

* Q(z) The desired distributed source charge waveform.
(nC/cm2)/mm

* P(t) The pressure signal entering the transducer (CLDP response signal).
Pa = 0.1 (nC/cm2) (kV/mm); normalized: is- '

* HT(t) The pressure-to-voltage transducer.
V/(Pa ps)

* V(t) The measured voltage signal.
Volts

* Q(z) The distributed source pressure waveform (CLDP input waveform).
R(z) Pa/(mm/ps); normalized: mm-'. R(z) is the recovered estimate to Q(z).

* He(t) The experimental impulse response
Volts; He(t) = (qp/l) vp(t) * HT(t)

* Ez(z) The spatial component of the separable electric field E(z, t) = E,(z)Et(t)
Volt ,s/mm. Q(z) = Q(z)Ez(z) = Q(z) V/l.

* B(f, f) The filter known as Blackman's Lucky Guess (BLG). B(o0, f) = 1
no dimension. B(fe, f) describes a lowpass filter that vanishes for f > f.

* fe(z) The spatially dependent BLG cutoff frequency.
MHz. Used as B(f&(z), f) to implement SDB filtering.

Appendix G is a one page diagram depicting the relations between the six most impor-
tant of these functions. The top bar of the II shaped diagram represents the proposed
CLDP transform relations between Q(z) and P(t). The left leg shows the relationship
between Q(z) and Q(z), the right leg shows the relationship between P(t) and V(t).

E.5 The Meanings Of IC

With a(f) denoting the attenuation coefficient (Np/mm) and c(f) denoting the phase
velocity (mm/ps) of some material, the quantity

I(f) = a(f) + j 2irf /c(f) (E.3)

0(f)

is defined as the propagation coefficient (see appendix A, or section 3.1). This thesis'
principal insight (section 7.1) is that
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P(f) = Q(C(f)) (E.4)

so that whereas IC by itself denotes a generic spatial Laplace plane point a + j /3, (f)
denotes both a propagation coefficient and a frequency-parameterized path a(f) + j 0(f)
in the spatial Laplace transform plane 1C.

E.6 The Derivative Of IC(f)

Note that C(f) = j k(f) (where k(f) is the familiar propagation wavenumber from
travelling wave theory; see appendix A) so travelling wave theory's C,(w) = dwl/dk(w)
(where w = 27rf and Cg(w) is the material's group velocity; see section 2.5.1) becomes

d k(f) j27r (E.5)df _ Cg (f)(E.5)

The group signal g(t) (see section 2.5.4) is defined as the inverse Fourier transform
of 1/C,(f):

1 1 d
g(t) g(f) -- - [a() + j27rf/c(f)] (E.6)

C(f) j 2x df

E.7 Lyons Recovery vs Inverse CLDP IE

A Lyons recovery is the process, or the result, of computing a recovery R[zi] via a
numeric implementation of the proposed inverse CLDP IE (F.9). Defined this way,
the efficacy of the Lyons recovery to PESAW (or other) problems can be evaluated
independently of the CLDP transform theorem.

The inverse CLDP IE describes a specific path for inverting the Laplace transform
(see sections 7.2 through 7.5). Whether integrating along that path truly inverts the
Laplace transform in the appropriate limit is a separate question from whether some
specific, truncated, regularized numeric implementation of the proposed inverse CLDP
IE yields a worthwhile recovery.

Equation (4.60) specifies this thesis' version of the Lyons recovery.

E.8 CLDP Transfer Function

The transfer function for a thickness I slab of CLDP material is H(1, f) = exp(-l KC(f))
(see appendix A, or section 3.1). That is, if an impulse (Dirac delta function) of pressure
is input at position z = 0, the output at z = 1 will be H(1, t) = F-1{H(, f)}. The
quantity H(1, t) is called the thickness 1 material impulse response function.
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The quantity C(s/(j27r)) is the analytic continuation of C(f):

_(s/(j27))j, = _(f) (E.7)

so that

£{H(1, t)}= H(l,s) = exp(-1(s/(j27r))) = exp(y(s)) (E.8)

where y(s) is Guillemin's 'propagation function' (see section 6.5).

E.9 The Darrell

The Darrell D(fm, z) is the sharply bandlimited (at f = fin) inverse CLDP transform
(F.9) of unity (see section 7.7). The Darrell depends implicitly upon the real and
imaginary parts of K_(fm ) = a(fm) + j 27rfm/c(fm):

W(f,f)

D(fm, z) = IC-1{U(f + fm) - U(f - f m )) (E.9)

= exp(z a(fm))sin(27zfm/c(fm)) (E.10)
7'z

= exp(z/A(fm))sin( 2 7z/A(fm)) (E.11)
7rz

The Darrell bears this name because, when a(f) = ab and c(f) = cb (ab _ 0, cb > 0),
the f m -+ oo limit of the Darrell is the Dirac delta function 6(z). The Dirac delta func-
tion is thin and symmetric whereas the finite f m lossy (a(fm) # 0) Darrell D(fm, z) is
asymmetric and has finite width. The name 'Darrell' starts with a capital D meant to
connote finite width and asymmetry and a relationship to 6(z).

The Darrell's importance lies in the fact that (see section 7.6), if

P(f) = K {Q(z)} (E.12)

then

R(fm, z) K- 1 { (f) W(fm, f) } (E.13)

= D(fm, z) * Q(z) (E.14)

267



That is, if a CLDP output signal P(f) is sharply bandlimited at f m then the recov-
ery effected by the proposed inverse CLDP transform will be completely characterized
by D(fm, z). This is called the Darrell property of the inverse CLDP transform.

A(fm) fm) f (f) (E.15)
A(fm) a(f m )c(f m ) 27r a(fm)

is a figure of merit for the Darrell specifying how many wavelengths A fit within the
e-fold length A.

E.9.1 fm vs fM

Equation (4.52) and the surrounding discussion point out that if some signal P(t) is
sampled with a time step At then the maximum frequency available in the FFT P[fk]

of P'[t,] = P(nAt) is fM = (2At) - 1

That is, sampling with a finite time step At implicitly imposes abrupt bandlimiting
at f = fM. However, given some k[fk] implicitly bandlimited at fM, it is possible to

impose abrupt bandlimiting at f = f m (where fm < fM) by multiplying 2[fk] by the
ideal, square window lowpass filter

W[fm, fk] = U[fk + fm] - U[fk - fm] (E.16)

In short, f m is the generic frequency at which P(f) is abruptly bandlimited (as in
(E.13)) whereas fM is the value of f m implicitly imposed upon sampled functions of
time. Unbandlimited Fourier transforms P(f) have f m = oo. If a function has been
non-abruptly filtered (ie: smoothly filtered via the BLG filter B(fe, f) rather than
abruptly filtered via W(fm, f)) then there is no associated value of f,.

The appearance of the variable fm in some expression implies that some function of
frequency has been abruptly bandlimited at fm; the appearance of the variable fM in
some expression implies that the abrupt bandlimiting at f m = fM has been implicitly
imposed by the finite sampling time step At.
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E.10 Subscripts: Usual Meaning, Example

a applied Va(t)
b Bromwich Cb(f); or bulk Vb(t)
c calibration V,(t); or cutoff f,(z)
d delay-only -d(f); or dominant Rd(Z); or distal Vd(t)
e experimental H,(t)

em electromagnetic Tern

g group Cg(f); or Gaussian Qg(z)
i particular value of z: zi; or impulsive Qi(z)
k particular value of f: fk
r kappa IC,(f)
m maximum fm
n particular value of t: to
o Ohmic ,o(f); or specific value fo
p polyethylene &1(f); or proximal Vp(t); or pulsive vp(t); or plate Fp(t)

pp peak-to-peak Tpp
r relaxation Kr

rc resistor-capacitor T,
s skin-effect s,(f); or spreading T,

T transducer HT(t)
z z-dependent portion of a separable function of space and time.

Eg: the E,(z) in E(z, t) = E (t) Et(t)
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Appendix F

Transform Definitions

To ensure that any transform-related results will be readily extensible to either the
space or time domain, the transform relations presented here are expressed in terms of
a generic real, causal function G(x) where x can be thought of as either space or time.
The Fourier and Laplace transform relations presented here agree with those defined
by Siebert [63]. Although the definitions agree, the notation does not.

In this thesis, the Laplace transform L of G(x) is denoted !(X), where the complex
Laplace transform variable X has real part Xr and imaginary part Xi. The Fourier trans-
form F of G(x) is denoted G(N), where the Fourier transform variable t = Xi/(27r).

The following table outlines how to relate the generic results for G(x) to signals
and waveforms:

Table F.1: Relationship
and Laplace transforms.

between temporal, spatial, and generic versions of the Fourier
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L variable £ F variable F

signal P(t) s = a + j w P(s) f =w/(27r) P(f)

waveform Q(z) AC = + j 1 _(Q ) b = /(2w) _(b)

generic G(x) X = Xr, + jXi !(X) = Xi/(2') G(R)



F.1 The Fourier Transform

Following Siebert, the Fourier transform relation is defined by

G(x) = j G() exp(j2rxl) de G(N) = j G(x) exp(-j2x) dx (F.1)

Fourier synthesis integral Fourier analysis integral

A 27 factor has been explicitly included in the exponent of both the Fourier analysis
and synthesis integrals. This choice obviates the need for the product of the integral
prefactors of the synthesis and analysis equations to equal (27) -1 (cf Oppenheim [64]).
Inclusion of the 27r factor in both exponents requires that the prefactor product equal
unity. This requirement is simply and symmetrically met by letting both prefactors

equal unity.

F.2 The Laplace Transform

Following Siebert again, the Laplace transform relation is defined without the 27r factor

in the exponent:

G(x) = j l (x) exp(x X) dX  G(x) = G(x) exp(-z X) dx (F.2)

Laplace synthesis integral Laplace analysis integral

The subscript C on the Laplace synthesis integral denotes a line integral along an
appropriate path (contour) in the Laplace plane [74].

Section 7.5 has much to say about what these 'appropriate paths' might be, but
this is not the place for such a discussion. However, it is worth pointing out that if

the X, = 0 path is chosen then the inverse Laplace transform reduces to the inverse
Fourier transform in the sense that, for causal G(x),

(X I X=j 27 = G(N) (F.3)

It follows that if the region of convergence of G(X) does not include the jXi axis

then the Fourier transform does not exist.
Conversely, because the Laplace transform is analytic wherever it is convergent [57],

if a causal G(x)'s Fourier transform G(N) exists (ie: converges for all Xi) then G(X)
must be an analytic function of X in the entire right half plane (RHP, inclusive of j Xi
axis).
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F.3 The Fast Fourier Transform

Chapter 4's definitions of the fast Fourier transform (FFT, equation (4.54)) and inverse
fast Fourier transform (FFT- 1, equation (4.56)) are repeated below for convenience:

FFT analysis equation

N,-1

G[RNh] = FFT{G[m]} - Ax G[xm] exp(-j 27r h m/Nx)
m=O

Nx-1

G[xm] = FFT-1{G[Nh]} - AN G[Nh] exp(j 27r m h/Nx)
h=O

FFT synthesis equation

(F.4)

(F.5)

where Nx is an integer power of 2 and AN = 1/(NxAx). Note that AxAN
these definitions satisfy the usual FFT prefactor-product constraint.

= I/Nx so

F.4 The Hilbert Transform

The Hilbert transform relations are introduced in terms of the Kramers-Kronig rela-
tions in section 6.1. The Hilbert transform Gh(x) of some generic G(x) is given by

G(x) = Gh(x) * -
Hilbert synthesis equation

Hilbert synthesis equation

-1
Gh(x) = G(x)* --

7Hilbert analysis equation

Hilbert analysis equation

where the * denotes convolution and the principal value of the convolution integral is
to be taken in the case of a singular integrand. Note that the argument of the Hilbert
transform of some given function is the same as the argument of the given function.

Hahn [47] and Guillemin [45] both offer extensive discussions of both the Hilbert
transform and its relationship to causal and analytic functions. They both ultimately
express the Hilbert transform in terms of Laplace plane contour integrals.
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F.5 The CLDP Transforms

If some analytic K(f) yields a stable (and necessarily causal; see below) H(z, t) via

H(z,t) H(z, f) - exp(-z K(f)) (F.7)

then

P(f) = Q(z) H(z, f) dz (F.8)

and

Q W1 d K(f) P(f) (F.9)
Q(z) = -J df H(z df (F.9)

form a valid CLDP transform relation (Q(z) 4 P(f)) under that IC(f) provided Q(z)

is real, causal (vanishes for negative values of z), has a convergent Fourier transform

Q( ), and also satisfies the CLDP criterion:

lim { m{Q([a'+ j 27rf/c(f)]) exp(z [a' + j 27rf/c(f)])} d a' = 0 (F.10)

where

P(f)

(f) = a(f)+j 27f/c(f) (F.11)

satisfies a(f) > 0 for all f, in which case the material (and H(z, t)) is called stable. An

impulse response function H(z, t) is called causal if it vanishes for all t < 0 if z > 0. The

assumed analyticity of C(f) implies the causality of H(z, t) because analytic 1C(f)'s

yield H(z, f)'s which satisfy the Kramers-Kronig relations; see chapter 6 for more

details. Note that (F.10) provides a material dependent constraint on the waveforms
Q(z) which are 'CLDP transformable.'

The plural (transforms) used in this section's title reflects the fact that each ac-
ceptable C(f) defines one integral transform relation; the CLDP transforms determine
as many unique transform relations as there are unique (and acceptable) K(f)'s.

Choosing the shortest path in (F.10)'s Laplace plane integral allows the following
re-expression of this constraint:

lim {jQ ( ' +j 2f/c(f)) d o' = 0 (F.12)
f -+(0 )
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Appendix G

PESAW-CLDP Overview
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