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Abstract

The area of time-domain synthesis considered here is the process of finding the

system function of a lumped-element, linear, passive, bilateral network whose impulse

response approximates a prescribed function of time.

Time-domain synthesis can be regarded as essentially equivalent to the design of

a rotational delay-line approximant. Suppose esT* to be such an approximant. Hp(s)

is the Laplace transform of a suitably chosen semiperiodic (periodic for t greater than

zero, and zero for t less than zero) trigonometric polynominal approximation of period

T to the desired network impulse response that is also of duration T. Then the function

Hp(s)(1 - e - sT*) is the desired rational system function.

The first method of synthesis bases the choice of a rational delay-line approximant

upon the particular impulse response that is being synthesized. Care must be taken in

the selection to insure realizability of the resultant network and proper convergence of

the impulse response. However, the method is straightforward and gives good results:

a fairly accurate error prediction can easily be made, so that no trial-and-error pro-

cedure is needed. Several examples show that a close approximation to the desired

impulse response is attainable with relative economy of network elements.

The second of the many possible procedures based on the same underlying philosophy

uses a rational delay-line approximant which is independent of the function that is being

synthesized. One example seems to show that this approach also produces satisfactory

results.





I. WHAT IS TIME-DOMAIN SYNTHESIS?

Let us start with a formal definition. Time-domain synthesis is the design of
lumped-element, linear, passive, bilateral, electric networks, with the network design
criterion that the response to a given excitation approximates a prescribed function of
time. The word "approximates" is important here. In the usual case, we have to be
content with an approximation to the desired response; and the problem of time-domain

synthesis can be correctly described as an approximation problem. The reader will
notice that, by implication, we are assuming that only one excitation and one response

pertain to a given network. We are, therefore, limiting our definition to one- or two-
terminal-pair configurations. We shall similarly limit our discussion.

The words "time domain" in the definition have a very specific meaning. They
imply, of course, that we are more interested in the input and output time functions

associated with a network than we are in other properties. But we can be more specific:

we shall gauge the success or failure of the synthesis, in the time domain. Denoting by

the word "error, " the difference between the desired response and the actual network
response, both as functions of time, we shall assess the error. A small error denotes
a good synthesis, a large error denotes a less satisfactory one.

We do not mean to imply by our definition that we exclude the possibility of using
functions of frequency in the synthesis process. These functions usually enter the
process at one stage or another; indeed almost the entire synthesis can be carried out
in the frequency domain. The name time domain refers to our objectives, not to our
methods.

The synthesis process is often considered in three parts. In the first part, we
start with an excitation function and a response function. The problem is to find the
impulse response that corresponds to this excitation-response pair. In particular, given

the excitation function, fe(t), and the desired response function, fr(t), a solution, fd(t),
to the equation,

fe (t) * fd (t) - fr(t) (1)

is to be found, where the star denotes convolution. In practical situations, of course,

the solution to Eq. 1 is apt to be an approximate one. The second part consists in
obtaining a realizable network system function whose inverse transform approximates

the desired impulse response. (By a realizable system function we mean a quotient of
finite polynomials in which the denominator is a Hurwitz polynomial having at least the

same degree as the numerator. ) In the third part, a network realization of the system
function is found.

In this report we shall consider only the second of the three steps outlined. We
refer the reader who is interested in part 1 to references (1) and (2). Many treatments
of part 3 have been published; for a particularly interesting discussion, see reference (3).
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II. THE RELATION OF DELAY LINES TO TRANSIENT SYNTHESIS

There is a close connection, either explicit or implied, between delay line concepts

and time-domain synthesis. We shall show how, by use of a delay line approximant, a

system function that has as its inverse Laplace transform an arbitrary impulse response

can be approximated by Fourier methods. We shall also provide the conceptual basis

for the next section, which deals with actual methods of finding this system function.

It may, at first sight, seem that, in considering delay lines as a means to achieve

time-domain synthesis, we are proposing to approach the study of a problem that is

merely difficult by first attacking one that is impossible. Thus it is evident that any

rational function can only approximate a delay line in a limited sense, because the phase

of a delay line increases without limit as the applied frequency increases. However,

let us pursue this apparently illogical course a little longer, for it will appear that the

delay line is acceptable, even if it is far from perfect; and in any case, by considering

its shortcomings we shall achieve a better insight into the mechanism of the synthesis

process.

We are concerned with both functions of "s, " which are system functions, and with

their inverse Laplace transforms, which are functions of time. We shall not, for the

moment, be concerned with networks corresponding to these system functions, or even

with their potential realizability (these subjects are covered in Section 3). It may,

nonetheless, be helpful in visualizing what is going on, to think of the system functions

as though they had network realizations; we resort to this device when it seems expedient.

We use the fact that the cascading of two networks corresponds to multiplication of their

system functions, while the impulse response of the combination is the convolution of

the inverse Laplace transforms of the system functions.

2.1 DERIVATION OF A SYSTEM FUNCTION

Let us denote by fd(t) the desired function, that is, the ideal impulse response that

is to be approached by the final network. This function is, of course, zero for t < 0,

and we suppose it to be limited in duration to T: fd(t) = 0 for t>T. The restriction

implied by this statement is practically negligible, as it will appear subsequently.

Denote by fdp(t), a function constructed by repeating fd(t) periodically; for the present

purpose, the period is conveniently chosen equal to T; it must be at least T, but could

equally well be greater.

fdp(t) - fd(t) + fd(t - T) + fd(t + T) + fd(t - 2T) + fd(t + 2T) + ...

If fdp(t) is now approximated by a finite trigonometric series, ft(t),

fdp (t) ft (t)

n

ft(t) akeikto 2ff/T
k-n

where complex notation has been used for convenience in the subsequent manipulations.
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Let

hp(t) = ft(t) t > O

=O t <O

Hp (s) L[hp (t)]

n

ak
k=-n S - j k

Examples of fd(t) and hp(t) are shown in Fig. la and b.

Thus hp(t) is a repetition, for positive values of t, of a trigonometric approximation

to fd(t), and is evidently Laplace transformable because it is zero for t < 0. For the
same reason, it is not strictly periodic. Nonetheless, the notation was chosen because

it was suggestive of the repetitive character of the function; the subscript p will be used

consistently to denote either a periodic function or a periodic function which has been

modified by the requirement that it be zero for negative values of time.

Evidently, Hp has only j-axis poles. A network realization would therefore be
lossless, and its impulse response, hp(t), would never die out, which accords with the
definition of hp(t) as an infinite train of pulses.

The next step is to obtain an impulse response that is one pulse alone, rather than

the unending function hp(t). To this end, Hp(s) is multiplied by the function G(s), defined
as follows:

G(s) = 1 - esT

Here we encounter the delay line mentioned above; the function e-sT corresponds

in the time domain to a perfect delay of T seconds. For the moment, we merely use

this function without being concerned about the question of how it might be realized.

0 T

h,( t )(a)

0 T 2T "-
0 T

(b)

(big. 1 Fig. 2)

Fig. 1 Fig. 2
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The inverse transform of G(s) is:

g(t) = u, (t ) - u,(t - T)

where the notation uo(t) denotes the impulse at t = 0; g(t) is shown in Fig. 2a.

Consider now the system function H (s) G(s), and its inverse transform. The

latter can be evaluated by convolving hp(t) with g(t); hence it is evidently just equal to

one of the pulses whose repetition makes up hp(t). Since each of these pulses approxi-

mates fd(t), we have achieved an approximation to the desired impulse response. This

we denote f(t), using a star to indicate approximation.

f (t) L-' [F*(s) (2)

Fd(s) = Hp(s) G(s) (3)

f (t) is shown in Fig. 2b.

It is both instructive and useful to obtain an alternative derivation of the results of

the last paragraph, by making use of the frequency domain. From this point of view,

Hp(s) represents a lossless network which rings when excited. G(s) can be represented

by a device that has two channels; one channel passes the input without distortion, while

the other delays all important frequencies a time equal to one period of the fundamental.

The response corresponding to G(s) is the difference of the outputs of the two channels.

Suppose, now, that Hp(s) and G(s) are cascaded and an impulse is applied; then, the

response is evidently caused by Hp(s) alone, for a single period, T; but, for t > T,

there is no response at all. In other words, the impulse response is f(t). Thus,

consideration of the pertinent function of frequency leads, as it must, to an interpretation

entirely consistent with that already obtained by using the convolution viewpoint.

2.2 PRACTICAL CONSIDERATIONS

So far, we have made no attempt to discuss realizability of the functions of "s"

with which we have been concerned. Nonetheless, it is not difficult to appreciate from

physical considerations that a time-domain synthesis method based on the foregoing

discussion is feasible. A rigorous treatment will be given below and specific methods

will be introduced. Here,we appropriately present some plausibility arguments to help

motivate the subsequent material.

In the derivation of f (t) from the frequency functions, H (s) and G(s), we observed
-sT n-sT

that the role of the term e , in the expression G(s) = 1 - e , is that of delaying and

inverting all important frequency components of H p(s). The key word here is "important."

Evidently, for any practical fd(t), I Hp(jw) I becomes small as w increases indefinitely;

in other words, the periodic extension of the desired function has a limited spectrum.

Evidently, the behavior of G(s) need be controlled only over the same limited spectrum;

hence it is reasonable to assume that a satisfactory rational approximation to G(s) can

be made.
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We do not consider the details of this approximation now, but some of the considerations

involved may be mentioned. Since e s T is the troublesome quantity in the expression

for G(s), we confine our attention to this term, denoting by e s T * a rational approximant
-sTto e-sT

In the first place, we cannot expect the relation

e-sT* e-sT s = j (4)

to be valid for all w values at which H(jw) is non-zero; rather, the objective is to

satisfy this relation well for those values of co for which I H(jo) is largest. In the

second place, I Hp(jwo) is certainly negligibly small for all values of [I .o larger than

some constant coo. Hence the approximation 4 need be valid only over a finite fre-

quency band; accordingly, we expect that a finite network realization of e - s T * can be

found.

An error will occur in f (t), as a result of the inaccuracy of relation 4, and it is

collaterally interesting to notice that this could have been predicted from the nature of

finite networks. The function fd(t), is of limited duration, as is one cycle of its

trigonometric approximation. If g*(t) were the idealized function shown in Fig. 3a,

which is also dead for t > T, then f (t) would likewise possess this property. However,

fa(t) cannot be of limited duration, because it is the impulse response of a finite lumped-

element network and must therefore be equal to a finite sum of damped sinusoids.

Hence we conclude that f(t) is not identically zero for large t, the discrepancy being an

error, and that the error must arise because g*(t) is not ideal. Thus the approximate

nature of the delay line causes an imperfect g*(t), which, in turn, produces an infinite

tail on the impulse response of the final network. Our approach produces an error of

a kind that is unavoidable in this problem.

With regard to the question of choosing the rational delay-line approximant, no

simple criterion for making a choice is given; but certain frequency functions are more

convenient than others. The reader may have noticed, and worried about, the j-axis

poles that seemed to occur in the final system function G(s) · Hp(s) as a result of their

presence in the latter factor of this product. If they are not cancelled by corresponding

zeros in G(s), they will cause undamped, hence undesirable, terms in the network

impulse response f(t). It is therefore expedient to choose esT* so that the zeros of

G(s) coincide with the poles of H p(s); this choice corresponds to placing the zeros of

1 - e - sT* at the 2n zeros of 1 - eT that are nearest the origin and is, therefore, not

the cause of an unreasonable restriction. It is not essential to choose the zeros of
1 - esT* in this manner because they will in any case almost cancel the poles of Hp(s).

This choice is computationally convenient, however. (See Section 3. 3 and Fig. 21.)
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III. DERIVATION AND APPLICATIONS OF A SYNTHESIS PROCEDURE

The notation used in this section is, in general, consistent with that introduced in

Section II. We have, however, extended the definition of the function G(s) to include

the possibility of using a rational delay-line approximant. Thus we make use of the

relation, G(s) = 1 - esr*

Hereafter, we shall frequently encounter functions that are periodic in the range

t > 0, but are defined to be zero for t < 0. The function, hp(t), introduced previously,

is an example of a function of this character. We refer to these functions as "semi-

periodic. " In addition, it will often be convenient to speak of the "frequencies" and

the "periods" of semiperiodic functions. These terms are useful, and their meanings

should be clear, but we should, strictly speaking, apply them only to truly periodic

functions.

3.1 A RATIONAL DELAY LINE APPROXIMANT

In this section we accomplish the first step in deriving F* (s), the selection of a

suitable rational delay-line approximant. We derive an appropriate expression,

starting with the desired network impulse response, fd(t). This function is now

supposed to have a duration of r /2 seconds and to be repeated over and over, for both

positive and negative time, with a period T. Referring as before to the periodic

extension as fdp(t), we have

fdp(t) = fd(t) + fd(t-r) + fd(t + fd(t - 2r) + fd(t-2r) + 2r) + ...

It is important to notice that fdp(t) is not made up merely by repeating the desired

function, but by repeating the combination of fd(t) followed by a dead space, the whole

having a period T, of which the duration of fd(t) is half and the duration of the dead

space is likewise half. Thus our present fdp(t) differs from that of the last chapter in

that the fundamental period is now twice the duration of fd(t), instead of equal to it,

this change being necessary in order to achieve the present purpose of deriving a

delay-line approximant. To avoid confusion, we have introduced the new notation, ,

for the fundamental period; the duration of fd(t) is, accordingly, /2.

As before, the function fdp(t) is approximated by a trigonometric polynomial

denoted ft(t), and a corresponding function, dead for t < 0, is defined:

n
ft (t) = E akejkt 2/r

k=-n

fp(t) = ft(t) t > O

-0 t <O 
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Let f1 (t) = E k ejkt t > e

k=-n
k odd (6)

=0 t <O 
n

f2 (t) = E akejkct t > 

k odd (7)

0 t<O 

It is interesting to examine some of the properties of these semiperiodic functions,

examples of which are shown in Figs. 3 and 4. Since it contains only even harmonics,

yt) f2 (t) has a "frequency" twice that
of the fundamental. Formally,

, f2(t) = f 2 (t + r/2) t > 0 (8)

Furthermore, any half-period of

F 3 f2(t) is the Fourier approximation
to (1/2) · fd(t). This assertion
follows from a consideration of

the functions fd(t) and

(1/ 2 )[fd(t) + fd(t - T/2)], together
o /2 hT with their Fourier approximations.

Fig. 4 The fundamental period of each
approximation is taken to be Tr.

Evidently, the coefficients of the even harmonic terms are the same for one approx-

imation as they are for the other. Since the Fourier approximation to

(1/ 2 )[fd(t) + fd(t - T /2)] contains only even-order terms, the sum of the even-order
terms in the approximation to fd(t) has the period T/2, and the stated property follows.

Any half-period of f 1 (t) also approximates (1/ 2 )fd(t) in the Fourier sense, but it

has the opposite sign in alternate half-periods starting with the second. This property

is deduced from Eq. 7 by reasoning entirely similar to that of the preceding paragraph.

Since fl(t) contains only odd harmonics, the relation

fl(t) = -fl(t + r/2) t > (9)

holds.

We are now in a position to consider two quantities which are the keys to our

subsequent derivation: the sum and the difference of f 2(t) and f1 (t). (See Fig. 5.) By

definition, [f2(t) + f1 (t)] is equal to fp(t), and its properties are, therefore, familiar
(see Eq. 5). It is collaterally interesting, however, to elaborate upon these properties

through use of those pertinent to the components fl(t) and f2(t) as described above. For
values of t in the range from 0 to T/2, fl(t) and f 2(t) are both Fourier approximations to



(1/Z)Id(t); accordingly, their sum
is a Fourier approximation to

fd(t) in this range. This conclu-
sion is in accord with the definition

r /2

r/20

Fig.

The most important

difference of Eqs. 8 and

in Eq. 5. However, for t-values

greater than T/2 but less than T7,

f 2 (t) and fl(t) are Fourier approx-

imations to (1/2) fd(t - T/2)

and -(1/2) fd(t- T/2), respec-

tively. Hence, [f 2 (t) + f1 (t)j is a

Fourier approximation to zero for

5 these values of t, which again

checks with our previous result.

property of the quantity [f 2 (t) - fl(t)] is derived by taking the

9. We obtain, using the semiperiodicity of fl(t)+ f2(t),

f2 (t) - fl(t) = f2 (t - -./2) + fl(t-r/2) t - r,2 (10)

which expresses the fact that [f 2 (t) - f 1 (t)] is essentially a delayed version of

[f 2 (t) + fl(t)]. The equation holds for t > r/2, and evidently holds also for t < 0, since
both sides are zero for this range of t. It does not hold for intermediate t-values in

the range 0 < t < T/2, since we have

f2(t - r/2) + f(t- r/2) = 0 0 < t < r/2 (11)

although

f2 (t) - fl(t) = f2 (t + -/2) + f(t + r/2)

where use is made of Eqs. 8 and 9 in deriving Eq. 12.

Let us define, for convenience,

e(t) = f2 (t) - f (t)

= 0
which gives

0 < t (12)

0 t r/2

otherwise

f2 (t) - f1 (t) = f2 (t - r/2) + f1 (t - r/2) + e(t) (13)

This equation is valid for all values of t, according to the argument of the preceding

paragraph. Let us examine the role played by the function e(t) in Eq. 13. From

Eq. 12 and the definition of e(t), it follows that

e(t) = f2(t + r/2) + fl(t + r/2) 0 < t < r/2
0 otherwise

Now, if we use
fp(t) = fl(t) + f2(t)

8
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and recall that fp(t) is a Fourier approximation to zero in the range T/2 < t r, we
find that e(t) is small. Furthermore, as the degree of approximation implied by
Eqs. 6 and 7 is increased, e(t) becomes still smaller; the trigonometric polynomial
may be so chosen that the absolute value of e(t) is less than an arbitrary positive
epsilon for all t. This result can be achieved by choosing a trigonometric approxima-
tion which converges uniformly, as does the F6jer series, for instance. It is apt to
be more expedient to use Fourier series, however, even at the expense of mathe-
matical neatness. Hence, it is justifiable to write, for all t,

f2(t) - f1 (t) t f2(t- r/2) f (t - /2) (14)

which is the basic equation leading to the delay line design. It will be necessary to
keep in mind the approximation involved in relation 10, but we shall, for the moment,
proceed to use this relation without worrying about the error that may result.

It is convenient to use the frequency-domain equivalent of relation 14,

[F2 (s) + F1 (s)] eS/ 2
- F(s) - F1 (s)

or

[F2 (s) + F(s)1e-sr/2 * - F2 (s) - F1 (s)

where a star, as usual, denotes an approximant. Formal manipulation immediately

gives:

esr2* = F2(s) - F1(s)........ (15)
F2 (s) + F (s)

[F2(s) - Fl(s ) (16)

1 F2 () + F1 (S)

The function on the right is rational, since F 1 (s) and F 2 (s) are rational; also, it
approximates e s . It is the desired delay-line approximant.

3.2 DERIVING THE SYSTEM FUNCTION

It is only necessary to follow the procedure outlined in the previous section to
obtain a system function whose inverse Laplace transform approximates the desired
network impulse response. In accordance with the discussion there, but using in
place of T, and with the aid of Eq. 10, we obtain

G(s) = - eS r*

F2(s) - F l(s)] 2

F2 (s) + Fl (s)

4 Fl(s) F2(s)

[F1 (s) + F2 (s)]2

9



F (s) = Fp(s) G(s)

= [F (s) + F2 (s)]. 4F 1 (s) F2 (s)
[F1 (s) + F2 (s)]2

F*(s) 4Fl(s) F2 (s) (17)
F, (s) + F2 (s)

The last expression is the desired system function. Its inverse transform is the

solution to our problem of finding an impulse response that approximates the desired

function, fd(t). Formally,

fd(t) - fd (t) L-1 [F* (s)]

It may be mentioned that, if the use of Eq. 17 were entirely straightforward, our

problem would be solved. There would be no reason to go further, except, perhaps,

to consider some applications. However, as with so many things in life, there are

problems. These problems will be discussed and resolved below. The reader should

be aware that Eq. 17 is a fundamental result, but it will require some later interpre-

tation and modification. Equation 17 was first derived by E. A. Guillemin (4) who used

a method quite different from that given above. This work gave rise to subsequent

further investigations (9) and (10) leading to a better understanding of the principles

involved in this kind of an approach.

There is one feature of the derivation that may require some explanation, namely,

the fact that the basic building block whose repetition makes up fp(t) is not an approx-

imation to fd(t) alone; instead it approximates both fd(t) and a dead space of equal

duration which follows it. This particular definition of fp(t) arose in the preceding

section and was essential there, but for present purposes it may seem to be unneces-

sarily complicated. A more logical procedure would, perhaps, be to use an f p(t) that

satisfies the relation:

fp(t) - fd(t) + fd(t - r/2) + fd(t - r) + 

We should, of course, make a corresponding change in the delay-line approximant to

accommodate the new period T/2, instead of . Let us explore the consequences of

this minor change of approach.

It is necessary, first, to obtain the modified version of fp(t), i. e., a semiperiodic

function, any cycle of which approximates fd(t). This requirement is fulfilled, except

for a multiplying constant, by f 2 (t), as can be seen by referring to the definition and

subsequent discussion about this function. The multiplying constant is 2. Since the

period of 2f 2 (t) is T/2, the modified G(s) is

G(s) = 1 _ e-s/2*

10

L(



and the use of Eq. 15 yields:

G(s) = - F2 (s)-Fl(s)]
F2 (s) + F1 (s)

2F 1 (s)

F1 (s) + F2 (S)

Now, substitution in

Fd (s) = Fp (s) G(s)

gives

F* (s) - [ 4F(s) F 2 ( s)

LF1(s) + F2 (s)

which is the same as the expression derived originally.

We are now in a position to answer the question about the logic of the original
method of derivation. We see that the approach of Section 3. 1 is feasible, and so is

that in the foregoing section; both give identical results. We have what amounts to
two ways of looking at the same thing; neither is inherently more correct than the

other. There are additional ways of deriving Eq. 17, but it would be an unnecessary

digression to detail these various approaches here. The interested reader can find

an alternative method treated in reference (4).
3.3 REALIZABILITY

In the derivation of Eq. 17, which gives the desired network system function, we

were not concerned with any question of realizability. But our reasoning started with

a more or less arbitrary time function, fd(t), and there is no assurance that every

fd(t) that may be selected for approximation will lead to a system function without
right-half-plane poles. In addition, for any particular choice of fd(t), any one of

numerous degrees of approximation might be used - that is, in Eq. 5 any integer

value of n is possible - and any of these approximations might or might not lead to a

realizable result in Eq. 17. Accordingly, we shall discuss the question of determining

the realizability of the system function when a given fd(t) is to be approximated.

Fa(s) can be thought of as a product of two other functions of "s", Fp(s) (or Hp(s))

and G(s), as shown in Eq. 3. It will be recalled that F p(s) possesses only j-axis poles
and that these poles are in any case cancelled by zeros of G(s). Hence, any right-half-
plane poles in Fp(s) arise from G(s). The formula for G(s) is

G(s) = 1 - e-s r (18)

therefore any right-half-plane poles of G(s) are possessed by e St and also by

e-sr /2* (see Eqs. 15 and 16). Our problem is to find out why right-half-plane poles

occur in e

11



It is illuminating, in this connection, to consider the inverse transform of

e -S /2. Define u(t - T/2) by
0

u* (t - r/2) L-1 [esr/2*] (19)

Now Eq. 14 can be written as

f2 u* (t - r/2) * f2 (t) + fl(t) (20)

by using Eqs. 15 and 19. The function f2 (t) - fl(t) is approximately a delayed version

of f2 (t) + fl(t), as we see from Eq. 13. Hence we conclude that u* (t - T/2) is ap-

proximately a unit impulse occurring at t = T/2 seconds. (In this conclusion, there

are some assumptions about the nature of the function fp(t) = f2 (t) + f1 (t). It is not

obvious just what mathematical restrictions must be placed on fp(t), but it seems

clear that they are satisfied by any function which is acceptable on physical grounds.)

The word "approximately" refers, of course, to the convolution properties of u*(t- T/2),
0

and does not imply that the difference between the two functions is small for all values

of t.

It is important to consider the range of values of the independent variable, t, in

the convolution product of Eq. 20. We mean, by "small" values of t, those values in

the range from zero to several times the fundamental period, , this statement being

intentionally imprecise. We want mainly to exclude large asymptotic values of time,

and to include some values of t larger than T/2. With the aid of this definition, we

can state specifically that u* (t - /2) approximates uo(t - T/2) for "small" values of t.

Furthermore, as the approximation in Eq. 5 is refined, u* (t - T/2) becomes a better
O

and better approximation to uo (t - T/2), although it is still only for "small" values of t.

It is worth digressing to note that we have not stated any criterion of approxima-

tion. The degree of approximation needed in Eq. 5, that is, the value of "n" which

must be selected, depends on several factors, of which the most important are the

nature of fd(t), and the quality of approximation to fd(t) that is demanded. In a

general treatment like this, with these factors left arbitrary, we have to be satisfied

with what is essentially a plausibility argument, and rest our final proof on an

empirical test. Basically, the reason for this attitude lies in the complexity of solu-

tions to convolution equations. Some latitude must, therefore, be left in the choice of

n, by any treatment that is not restricted to one particular function or class of functions.

The statement that u* (t - T/2) is approximately equal to uo(t - T/2) for small

values of t has important consequences. From it we conclude that our delay-line

approximation is valid for "small" delays; and from this fact and the discussion in

Section 2 it follows that f(t) approximates fd(t) for small t. Let us consider the

components of f(t). At small values of t, the decaying sinusoids are evidently most

important, although, for large values of t, any growing sinusoids contained in f(t)

predominate. Thus, clearly, the part of f(t) attributable to the decaying sinusoids

12



is the one of interest; this part approximates fd(t) for small t and dies out for large t.

We shall define a new notation, f*(t), for these decaying sinusoidal components of
f*(t). The growing exponentials contribute little to f(t) for small t and are undesirable

at large values of t because they blow up. Consequently, their removal has little effect

on f(t) for values of t of the order of magnitude of T/2 or less, but it improves the

behavior of f(t) for large t. At the same time, the removal of these terms guarantees

the realizability of the transform of what is left, that is, of L[fa*(t)]. Thus, the solu-
tion to the realizability problem is merely to throw away troublesome terms. Let us

see how this can be done.

Since f(t) is a finite sum of exponentially changing sinusoids, the removal of

certain terms is effected by subtracting these terms from the sum. The correspond-

ing process in the frequency domain is equally simple. F(s) is expanded in partial

fractions and the terms involving right-half-plane poles are dropped, which gives the
result Fa*(s). The justification for this procedure - that the residues of F*(s) in its

right-half-plane poles are small relative to the residues in the left-half-plane poles -

is the analog of, and follows from, our conclusion about f(t), that the exponentially

growing terms in the function are relatively small for small t. It is worth noticing

that obtaining F~*(s) from F*(s) in this way does not involve any great computational

labor, since Fa(s) must, in any case, be expanded in partial fractions in order to

compute f(t).
Another method of eliminating right-half-plane poles from Fa(s) is the association

of each pole with the zero of F*(s) that is nearest to it in the s-plane. All such pole-
zero pairs are then simply removed from F*(s) as though they were perfectly self-

cancelling. This procedure is based on the assumption that a pole and a zero which

are cancelled as a pair are reasonably close together in the s-plane. This condition

is likely to occur, because the residues in any right-half-plane poles are small: a

small residue in the pole of a rational function usually means that a zero is nearby.

Hence cancellation of poles and zeros in the way described is not illogical. It has,

nonetheless, the disadvantage that we do not know physically what happens to the time

function during the cancellation process. Owing to this drawback, we have ordinarily

used the method given first. However, an example is shown (Fig. 21) in which the

cancellation scheme is used. It is interesting to notice, in that case, that the two

methods give results which are comparable in quality.

Our discussion of realizability is now complete, and we shall use the results

henceforth. In every case involving the use of an Fa(s) computed from Eq. 17, we

shall tacitly assume that the right-half-plane poles have been removed. The method

of removal, except when we note otherwise, is by subtraction of the terms involving
these poles from the partial fraction expansion of Fa(s). Since we shall always be
dealing with an Fd(s) which has been thus modified, that is, with F*(s), no confusion
will occur if we drop the second star from the notation for Fa*(s). Accordingly, F(s)

13



denotes henceforth a system function that has been modified, if necessary, to make it
realizable.

3.4 ERROR PREDICTION

Error, in synthesis, is the difference between the desired result and the result
actually obtained. In our own case the error is

fd (t) - f (t)

The sine qua non of a synthesis procedure is that the error be easily predictable.

This is particularly true of time-domain synthesis for the following reason: It is
obviously vital in any synthesis problem to know something about the error. Yet exact

computation of it is usually a tedious process in time-domain synthesis: for the method

described in this chapter, an error computation involves finding and inverse-trans-
forming F*(s) - no easy job. If the computation reveals that the error is unacceptably

large, then the whole process must be repeated, perhaps many times. It is evident
that, if a method is to be practical, the error must be easily predicted.

It is important to state that we do not expect our error prediction to be exact. If
it were exact, it would be an error computation. We expect it to be good enough for

practical use, and easy to determine. This is the basis of our present discussion of
error.

It is convenient to obtain a new expression for f(t). To this end, recollect Eq. 13.
It can be rewritten as

e(t) = f2(t) - fl(t) - f2 (t - r/2) - fl(t - r/2) (21)

If we define E(s) as the Laplace transform of e(t), we can write the transform of

Eq. 21.

E(s) = F2 (s) - F1 (s) - [F2 (s) + F1 (s)]est/2 (22)

From Eq. 22 there follow:

2E(s)esr/2 = 2[F2 (s) - Fl(S)]eSr/2 - 2 [F2 (s) + F1(S)]eSr (23)

and
E2 (s) [F2(s) - F1(s)]2 _2 [F2(s)- Fl(s)]sr/2 + [F2(s)+ F1 (S)] esr (24)

F2(s) + F) F2 (s))

If we add Eqs. 23 and 24, we obtain

E2(S) + 2E(s)esr/2 = [F 2(s) )] (s) + Fl(S)]e-sr (25)
F2 (s) + F (s) F2 (s)+ F (s)

This result, in turn, can be rewritten as

4F 2(S) F1(s) [F2 (s) + F1(s)] [1 - e-s r ] - 2E(s)est/2 - E2 (s) (26)
F2(s) + F1(S) F2(s) + F(s)

14
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An equation similar to Eq. 26 was first derived by Guillemin (4). It is useful to con-
sider the inverse transform of this equation. By recalling that

4 F2(s) F (s) F*(s)
F2(s) + F(s)

and

F2 (s) + F1 (s) = Fp(s)

we can, at the same time, simplify the result:

fd (t) = fp(t) * [uo(t) - u(t - r )] - 2e(t - r/2) - e(t) * e(t) * L-1[ ] (27)

(In this equation, as in some others we write, a star has two possible meanings that

can be distinguished by its position. A star written as a part of the notation for a

function denotes an approximation, whereas a star between any two functions means

convolution. )

It is now possible to write an expression for the error,

Error = fd(t) - fd (t)

Error = (fd(t) - fp(t)* [u(t)- Uo(t- r)]) + 2e(t -r/2) + e(t) * e(t) * L-[ F-] (28)

Equation 28 is a fundamental result which will be interpreted in the following para-
graphs.

The effect of convolving the semiperiodic function fp(t) with uo(t) - u (t - ) is

therefore to extract one period of fp(t). Accordingly, the time function in the first
parenthesis on the right-hand side of Eq. 28 is the error in the Fourier approximation

to fd(t). Of course the term in this parenthesis contributes nothing to the error for

t >.

The term 2e(t - T/2) is easily interpreted with the aid of an equation derived in
Section 3. 1.

e(t) = f2 (t + r/2) + fl(t + r/2) 0 < t < r/2 (29)

= 0 otherwise

Manipulation of this equation gives

2e(t - r/2) = 2 f 2 (t) + f(t)] 7/2 < t r (30)

= 0 otherwise
Referring to the discussion in Section 3. 1 for aid in interpreting Eq. 30, we see that

the contribution of 2e(t - T/2) to Eq. 28 is twice the Fourier approximation to zero in

the range T/2 < t < T-, and is zero elsewhere.

The triple convolution product in Eq. 28 is harder to assess because the function

L- [1/Fp(s)] is not known. Furthermore, we do not wish to compute L 1/Fp(S)]

accurately because the computation is too long. We might, of course, approximate

this function, and we shall discuss presently the practicability of doing so. First,
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however, a simpler approach will be considered. The term e(t) * e(t) occurs in the
triple convolution product. Since e(t) is small, e(t) * e(t) is smaller still. Hence we

expect e(t) * e(t) * L 1[1/Fp(s)] to be negligibly small, and it seems reasonable to
drop this term entirely. We do so, and investigate what remains of Eq. 30.

One of the two remaining terms, 2e(t - T/2), is zero for t < T /2, that is, for
the entire duration of the desired pulse, fd(t). For the range 0 <t < T/2, which is of
greatest interest, the term fd(t) - fp(t) * [uo(t ) - uo(t - )], alone, approximates the

error. Hence we write

Error fd(t) - fp(t) * [u(t) - Uo(t r)] (31)

This relation is less accurate in the range -/2 < t < T than if we had included the term
2e(t - T/2) on the right-hand side but it is also simpler. Since 2e(t - T/2) and

fd(t) - fp(t) * [uo(t) - uo(t - - )] are of the same order of magnitude (both being of the
order of magnitude of the error in the Fourier approximation to fd(t)), our expression
is still in the right ball park, even though it omits one of these terms. We use Eq. 31
for error prediction.

The specific way in which Eq. 31 is useful is as follows. When a function fd(t) is
to be approximated, we begin by making a trigonometric series approximation to the
combination of this function followed by a dead space. (See Section 3. 1. ) The error
predicted for the synthesis procedure is then just the error in the trigonometric ap-
proximation, in accordance with Eq. 31. The trigonometric approximation is adjusted,
if necessary, by using methods which are more fully discussed in Section 6, until the
predicted error is satisfactory. We then proceed with the synthesis.

It is interesting to see how this process works out in practice. We show, in
Figs. 6, 7, and 8 comparisons of computed error with error predicted according to
relation 31. The graphs of f(t) to which these error curves refer are shown in
Figs. 17, 22, and 23.

We should mention the possibility of refining our error prediction by means of
approximate evaluation of the triple convolution product appearing in Eq. 28. The
essential problem in such evaluation is that of obtaining an approximant to
L 1[1/Fp(s)], or, in other words, of solving equation

fp(t) * x(t) = uo (t) (32)

for x(t). Practical methods for approximate solution of equations like Eq. 32 are
described in reference 2; therefore this approach seems feasible. The application of
these methods to our problem has not been tried, largely because of the good ap-
proximating properties and simplicity of Eq. 31, but they might prove useful.
3.5 USE OF PREDICTED ERROR

In this section, we discuss the means of applying Eq. 31. This equation states
that the total error is approximated by the error with which one period of a
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o0. ----- PREDICTEDERROR trigonometric polynomial, f (t), approximates
ACTUAL ERROR the desired pulse. Accordingly, we shall touch

0oi ief /7 \ 2 .m,, t on some ideas that are useful in deriving an
[7 '--xzj/ v ¥ acceptable trigonometric polynomial.

Fig. 6 There are various series whose partial sums
can be used as trigonometric approximating

1.0-. PREDICTED ERROR polynomials. Of these we shall discuss only the
ACTUAL ERROR

Fourier series, for two reasons. First, the
Fourier series is easy to use, and the pro-
spective network synthesizer is probably familiar

with it. This familiarity is useful when cut-and-

O i'-I 2 3 4 t try enters into the selection of a series, as it

sometimes does. Second, the Fourier series
yields an approximation that is roughly equal-

Fig. 7 ripple in character, except at discontinuities,
and this is generally desirable. It is true that at

discontinuities of the approximated function, the

Gibbs phenomenon causes a problem, but we

shall mention presently how this can be handled.

It is helpful in thinking of the techniques we

are discussing to have a specific example in mind,

and we accordingly consider a function, fd(t),
whnp orrnnh i n rtnnglp Thi.s fntfinn is

Fig. 8 shown in Fig. 9. At the outset of the synthesis of
this function it is evident that we cannot achieve an

f*(t) which exactly equals fd(t), because of the discontinuity at t = T/2. We have to
accept an approximating function whose slope is always finite, which has rounded

"corners" and various other imperfections. To minimize
the imnprfeftinn wup d-ciro that ftho frionnnmftri-n nrmvnnmin1

be a very good approximation to fd(t). But this leads to a
difficulty, since the better the approximation, the more poles

there are in the system function; hence the more elements in
the ntwork rnlizntinn thnt i., ltimntplv nhftinprl Rvirlontlv o

a compromise must be made in the choice of the trigonometric Fig. 9
polynomial.

The most obvious method of arriving at this compromise would be finding the
Fourier series of the rectangular pulse, and computing several partial sums. By

examining each partial sum in the light of the number of poles in the system function,

we could select one that fits the requirements of the problem at hand. This method is
straightforward and relatively simple. However, it can be varied in a way which is
often useful.

17
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We start with the observation made above, that we cannot expect perfection in our

approximation. Accordingly, instead of using the Fourier partial sums derived from

the rectangle function, we modify the function before finding its Fourier approximation.

In effect, we choose a new fd(t) which is more realistic in that it is more easily ap-

proximated by a trigonometric polynomial.

A simple example of this process is shown in Fig. 10, in which the vertical

sides of the rectangle have been replaced with sloping sides in order to make a

symmetrical trapezoid. The dimension 6 in this figure should be noticed. It is not

tf (,) a constant, but a parameter which can be varied; the Fourier

coefficients relating to the modified fd(t) are functions of 6.

We make a compromise, again, between the precision of ap-
proximation of the Fourier series and the allowable number

o0 poles n rd4s). NOW, nowever, there is a new parameter
Fig. 10 in the problem, 6, which can be used to advantage in any of

several ways. 1. Perhaps a reasonable value of 6 can be chosen by virtue of the

requirements of the problem. That is, perhaps an acceptable slope of the sides of

the rectangle can be decided upon in advance. If so, for any positive value of 6, the

resulting Fourier series converges faster than the old one did. (See ref. 5 for the

Fourier series for this and other modifications of the rectangle function.) Hence,
fewer terms may be required in the partial sum. 2. Suppose that allowable network

complexity limits the partial sum to a fixed number, n, of terms. In this case, the

value of 6 can be adjusted to suit the circumstances. There is a gain in flexibility

over the original method, in which only a fixed, zero-value of 6, was considered.

3. The choice of a positive value of 6 eliminates discontinuities from fd(t). Hence

the Fourier series of fd(t) can be expected to converge to the function, and the Gibbs

jump is avoided. It should be clear, in this connection, that the elimination of the

Gibbs jump from the sum of a Fourier series does not automatically eliminate over-

shoots from the partial sums. Nonetheless, a partial sum can be chosen to make the

overshoots as small as desired, provided that we are willing to include enough terms.

As a practical matter, we might easily choose a more involved modification of

the rectangular pulse than the one shown in Fig. 10. Nevertheless, the principle

illustrated above of varying the modification in accordance with the number of terms

in the Fourier series is still valid. Figure 22 illustrates a network impulse response

for a case in which fd(t) is a modified rectangle. The exact modification that we used
is not relevant here; it is given in Section 3. 7.

One useful way of modifying fd(t) is to decrease its duration with respect to a
full period of fp(t). That is, we propose to shrink the pulse uniformly by a scale
change in its time coordinate. Insofar as fd(t) is concerned, this change is trivial,

but the trigonometric polynomial approximant, ft(t), is affected drastically. It is

evident that there might be an advantage, in some cases, in changing ft(t) in this way;
an instance in which this is true will be given.

18
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3.6 CONTROL OF INITIAL VALUE

A special situation arises near the origin, in that our method, as we have
described it so far, sometimes fails to yield a good approximation to fd(0 +) by the
value f(0+). Here we have used the symbol "0+" to denote a vanishingly small
positive value of t. This is true even though the approximation is very good at larger
t-values. We shall show, first, why this difficulty would be expected to occur, and
second, how the remedy is found.

We start with Eq. 28. With the aid of a definition,

x(t) = L-1 [F i (33)

Equation 28 can be written,

Error = fd(t) - fp(t) * [uo(t) - u(t - r)] + 2e(t - r/2) + e(t) * e(t) * x(t) (34)

Let us consider the last term in this equation, the triple convolution product. The
only unknown term in this product is x(t), a function which, from Eq. 33, satisfies

the equation

fp (y) * x(y) = (t) (35)

(We use "y" as a dummy variable to avoid the confusion that might result if there were
two different uses of the symbol "t". )

In order to investigate x(t), it is convenient to state a known result about con-
volution equations. We consider the equation

fp (y) * x(y) = z(t) (36)

where, in the interest of generality, we have substituted z(t) for uo(t) on the right-hand
side. Assume that the first n derivatives of fp(y) are continuous at the point y = to,
but that the (n + 1)th derivative is discontinuous there. We include, among the

derivatives in this statement, the zeroth derivative, that is, fp(y) itself. Furthermore,
let us assume that the first m derivatives of x(y) are continuous at t , but that the
(m + 1 )th is discontinuous at this point. Our conclusion is that dn+fn+lz(y)/dyn+m+l

is continuous at to, but dn+m+2z(y)/dyn+m+ 2 is not continuous at this point. It may be
helpful to interpret graphically the convolution equation,

z(t) = x(y)fp(t - y)dy (37)
o

which is, of course, the equivalent of Eq. 36.

We are now in a position to deduce certain properties of x(y). At y = 0, fp(y) may
be discontinuous, but at all positive values of y, fp(y) and all its derivatives are con-
tinuous, since fp(y) is a finite sum of sines and cosines. From Eq. 35 and the result
of the last paragraph, if fp(y) has a discontinuity at y = 0, then x(y) must contain a
doublet at this point, since we have reasoned that, if x(y) has merely a simple
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discontinuity or an impulse at y = 0, the right-hand-side of Eq. 35 is at most dis-
continuous, and cannot be an impulse. Similarly, if fp(y) is continuous, but has a
discontinuous first derivative at y = 0, x(y) must contain a triplet at y = 0. Moreover,
the statement of the previous paragraph can also be used to show that x(y) is continuous
for t > 0. If this were not true, we could deduce, contrary to fact, that uo(t) or one of
its derivatives is discontinuous at some finite, positive value of t.

From these results about x(t), we come to some interesting conclusions about the
triple convolution product in Eq. 34: e(t) may have discontinuities, but it contains no
singularity functions, so that e(y) * e(y) is surely continuous. Hence, e(y) * e(y) * x(y)
is continuous for t > 0, but at the point t = 0, e(y) * e(y) * x(y) may fail to be continuous.
Furthermore, the discontinuity at this point might be serious enough to make the error
(Eq. 34) very large at small values of t. We shall investigate the discontinuity, and
how its size can be controlled.

An expression for the initial value of f (t) is needed, and this we derive as
follows:

F(s) as" + as " ' 1 + ... (38)
bn+s l + b 1s

- 1 + ...

F2 (s) C cmsm + Cm lsm'l + ... (39)
dm+lSm+l + di-sm 'l + ...

From the initial value theorem of Laplace transforms,

fl(O+) =n (40)
n+l

f2(O+) Cm (41)
dm+l

Now
F*(s)= 4- Fl(s) · F2(s)

F1, (s) + F2(s)

which can be rewritten, with the aid of Eqs. 37 and 38, as

Fd(s) 4 ancms+m + (an lm + anCm 1)sn+m'-l +
(an dm+l + cm b n+l) sn ++ l+ ..

Hence, again, from the initial value theorem,

f (O+) - 4 cm
an dm+l + cm bn+l

and, using Eqs. 40 and 41, we find:

4 f(0O+)· f2(0+) (42)

(O+) + f2 (0+)
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This is the desired relation between the initial value of the impulse response and the
initial values of f 1(t) and f2(t).

Equation 42 is interesting because it confirms the result of our previous discus-
sion. If f 1(0+) and f 2(0+) are nearly the same in magnitude but have opposite signs,
f(O+) may be very large and highly dependent on a small change in either fl(0+) or
f2(0+). Of course, a small change in either of these functions reflects only a small
change in fd(O+). Hence, in these circumstances, it is evident that f(O+) may differ
a great deal from fd(0+).

In addition, Eq. 42 points the way toward correction of the difficulty discussed
above. We must choose fl(0+) and f2(O+) in such a way that f(0+) has an acceptable
value, such as the value fd(0+). We shall consider how we might proceed in order to

choose f 1(t) and f2 (t).
We shall explain a process with reference to a specific example, for which fd(t)

is shown in Fig. 11. In the light of the discussion in Section 3. 5, we modify fd(t) to
the form shown in Fig. 12, with "a" equal to 0. 97r. Next, fl(t) and f 2(t) are computed,

fd(t) and f(0+) is determined by use of Eq. 42. (The reader
interested in the computation will find expressions for f 1(t) and
f2 (t) in Appendix I. ) In this case, the value of f(O+) is found

o to be unacceptably large for any "n"; therefore, further modi-
Fig. 11 fication of fl(t) and f2(t) is indicated, in accordance with the

fd(t) suggestion of the last paragraph.
We observe, from Eq. 42, that either fl(0+) = 0 or

f2(0+) = 0 ensures that f*(0+) = fd(+) = 0. Our object, then, is

0o ,, to modify, say, fl(t) so that fl(0+) is zero. We proceed by

Fig. 12 scaling the time coordinate of fd(t). It is helpful, in this
regard, to look at a plot of f 1(t). (See Fig. 13.) The value of

n pertinent to Fig. 13 is 6, and only half a period is shown, since the second half-
period is the same as the first, except for a change in sign. From Fig. 13 we can
guess that the duration of fd(t) should be reduced by about 5 per cent in order to
ensure that f(0+) is approximately zero. The corresponding modified versions of

fd(t) and f1(t) are shown in Fig. 14. In Fig. 14, the dimensions a and b correspond
to the notation used in the expression for fp(t) (see Appendix II). The choice of 0.945ir
for the value of b is an
informed guess based
on the figure and the
equation in AppendixII.
It is apparent from
Fig. 14 that f(0+)= 0.
T- V-- r n s -r __ -c--

0.5 _ I

a 0.850'

b= 0.945,

0 a it
O a b r'

to zero that a slight, and Fig. 13 Fig. 14
to zero that a slight, and Fig. 13 Fig. 14
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otherwise completely trivial, change in any one of the odd coefficients in the Fourier

series, ft(t), would suffice to make f1 (t) = 0. Actually, using Eq. 42, we obtain

(0.004) for the value of f(O+) pertaining to our last modification of fd(t); hence, no
such change is necessary. The rest of the computation is straightforward, and the

approximating impulse response is shown in Fig. 23.

There is a further technique which may sometimes be useful in the event that

fd(O+) is not equal to zero. Suppose that

fd ( +) a 0

In this case, it is possible to subtract a decaying exponential term, such as ae- t,

from fd(t) before starting the synthesis procedure. We obtain, by so doing, some

added ease of manipulation that comes from working with the value of fd(O+) = 0.

When the synthesis is done, a pole representing the removed exponential term must

be added to the network. In some cases, this may not be too high a price to pay for

added convenience.

It is possible to extend the techniques we have discussed, and to fix the first and

higher initial derivatives of f(t), just as we have fixed f(0O+). Formulas for these

initial derivatives can be derived (the formula for the first derivative is given in

Appendix III). However, we feel that, except in special instances, use of such

formulas is computationally too involved to be worth while.

3.7 EXAMPLES

In this section we present some examples of applications of the method described

above. We present examples in some detail because we wish to provide a basis for

judging the usefulness of the method. An evaluation must obviously be performed, if

an intelligent choice is to be made, in any particular case, between the various

synthesis techniques that are available. A method is to be judged by two criteria: its

ease of application and its results. Accordingly we give our results, in Figs. 15

through 23.

It is worth pointing out that specific examples, which have been derived by a given

method, are particularly useful in time-domain synthesis. This is true because, as

we pointed out in Section I, it is difficult to state an error criterion which is both ac-

curate and generally applicable to time-domain synthesis problems. Consequently,

we cannot usually know in advance exactly what result to expect from a given design.

Under these circumstances, even the decision whether or not to use time-domain

synthesis at all may be difficult, in the absence of previous results from which an as-

sessment of quality can be made.

We have given various functions in Figs. 15-23. The literal expression for f(t),

valid for t > 0, is included in each case, so that the reader can check the plot against

it. Any quantity labeled "term neglected" is the inverse transform of a term sub-

tracted from F(s) when that function is modified in accordance with the discussion
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in Section 3. 3. The "factor neglected" is a factor removed from F*(s) under the same

circumstances.

Some explanation of the symbolism in these figures may be helpful. In the plots,

a dashed line denotes the graph of fd(t), a solid line denotes fa(t); 7T seconds was

chosen for the pulse duration, for the sake of convenience. The pole plots and pole-

and-zero plots refer to Fa(s); for cases in which this function has been modified, the

plots apply to the modified version of F*(s).

We shall now discuss special features of some of the functions we have synthesized.

An appendix reference will be given to an intermediate computation that is of more

than routine interest.

EXAMPLE 1. The Triangle Function. We refer to the function whose graph is

the dashed curve in Fig. 15 as the triangle function. We have studied this function
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more thoroughly than any other, and it is worth pointing out the reason for this

emphasis. First, we are anxious to test our synthesis method, and the triangle func-
tion is particularly informative in this regard. The function cannot be synthesized

well by inspection, therefore its use is not trivial, but because the triangle function
is continuous, a good approximation should be possible. (In contrast, we do not

expect to be able to make a good approximation in the vicinity of a discontinuity

(except at t = 0) of a discontinuous function.) Second, the triangle function is used as

an example in references 1 and 6, and it is always helpful in judging a method to be
able to compare alternative treatments with the one at hand.

Figures 15 through 20 form a group in that the various functions, f(t), are all
derived in the same way. A Fourier approximation was made to the unmodified

triangle function, and Fa(s) was computed according to Eq. 17. F(s) was then
expanded in partial fractions, and modified by the removal of all terms involving

right-half-plane poles. In Figs. 15 through 17, no right-half-plane poles occurred in

F*(s); consequently none were removed. In Figs. 18 through 20 one conjugate pair
of right-half-plane poles occured in each case. These poles were deleted from F(s),
but the time functions corresponding to the removed poles are given in the figures.
It is interesting to see how small these time functions are, for small values of t.

The example illustrated in Fig. 21 was computed exactly like the examples il-
lustrated in Figs. 15-20, except that a different method was used in removing the
right-half-plane poles from F(s). F(s) was written as a quotient of polynomials,

with both numerator and denominator in factored form. The pair of right-half-plane
poles and a pair of zeros were then cancelled out of the expression, as explained in

Section 3. 3. It should be noted that the cancellation process may affect the amplitude
scale factor of f(t); accordingly the scale factor in our example was adjusted after
the poles and zeros were cancelled.

The triangle function is also synthesized in Section IV by an approach which is

described there. Figure 24, which is comparable to Figs. 17, 18, and 21, is of
interest in this connection.
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EXAMPLE 2. The Rectangle Function. The rectangle function is shown by the

dashed curve in Fig. 22. We have chosen to synthesize this function for two reasons.

First, it is of interest to try out our method on a function that contains a discontinuity,

and, second, various examples exist that furnish informative comparisons of the

synthesis of the rectangle function (7 ' 8). In this synthesis we start from a modified

version of fd(t). (See Appendix IV for the pertinent expression.)

EXAMPLE 3. The Reversed Ramp Function. The reversed ramp function and

its approximant are shown in Fig. 23. This function is of especial interest for our

purposes, in the light of the discussion in Section 3. 6. We mentioned the problem

about the initial value of f(t), which occurs in this case, and how the solution is

obtained. In addition, right-half-plane poles occur in the function, F(s), which is

computed on the basis of Fig. 14, hence the methods of Section 3.3 have to be used.

The small dip and the overshoot following it, found in the graph of f(t), are there

because the initial derivative, f *(O+), was not controlled in this synthesis process.

A synthesis which is better in this respect could be achieved by using the methods

discussed in Section 3. 6 and Appendix III.
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IV. AN ALTERNATIVE SYNTHESIS METHOD

We recognize that many variations are possible within the framework of the basic

philosophy of synthesis presented in Section II. Just as there are many delay line

designs, correspondingly many synthesis formulas can be developed. In this section,

we derive one such formula for its collateral interest. The application that we give is

a synthesis of the triangle function, and Fig. 24 is comparable with Figs. 17, 18, and

21 of the last chapter.

The Laplace transform of the impulse response approximation can be written

Fd (s) 2F 1(s) G(s) (43)

In Section 3. 2 we derived the relation

A. F(s) = 2F 2 (s )' (1 - eT/2*

In order to save space we did not derive

B. F(s) = 2Fl(s) ' (1 + eST/2)

but we could equally well have done so. The function, G(s), corresponding to (B) is

G(s) = 1 + e -s/2 (A) and (B) serve equally well as bases for the development of

explicit synthesis formulas. In Eq. 43, F(s) is the transform of the function fl(t)

introduced in Eq. 7. Use of the multiplying constant, 2, conforms to the notation in

Section 3. 2. Since fl(t) has a period of iT, for G(s), we have

C(s) = I + esr/2* = I + es * (44)

We next derive the rational approximant, e .

Let us denote by M(s) a polynomial which contains only even powers of s, and by

N(s) a polynomial which contains only odd powers of s. Let us choose an eS7* in the

form

e-S,* = M(s) - N(s) (45)
M(s) + N(s)

By this choice, we obtain an approximation that is equal in magnitude to e - S along the

j-axis:

I, S s=jo = IeSIsij.

To achieve the end of selecting M(s), we rewrite Eq. 43 as

F (s) -= 2F 1 (s)- [l + M(s) - N(s) (46)
d f3~ Fl-L M(s) + N(sJ (46)

or

F (s) 4F1 (s) M(s) (47)
M(s) + N(s)

F 1(s) has j-axis poles at ±jl, j3, .... These poles must be effectively cancelled by
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zeros of M(s), since otherwise F*(s) would contain them, and f(t) would then possess

an undesired periodic component. Hence we choose the zeros of M(s) at s = ±jl, ±j3,
and so forth.

In choosing the zeros of N(s) we consider the imaginary parts of e -S * and e -S 7 on
the jco axis.

I, M(s) - N(s) ] (48)
L (s) + (s) s=j L2(S) - N2(S)_Sjj

Im (eST)s=j = - sin (cor) (49)

The right-hand side of Eq. 49 is zero for w = 0, 1, ±2, .... We should like to choose
these same zero locations for the right-hand side of Eq. 48, in view of the desired

relationshi.ps,

e-sn * = es (50)

Im(e-sr)s io, - Im (eS)s_j (51)

Equation 51 can be rewritten as

- 2M(s) N(s) ] -sin (o7) (52)
ML 2(s) _ N2(s) s=-

Both sides of this equation are zero fr o = ±1, ±3, ... by virtue of our choice of M(s).

We choose the zeros of N(s) at s = 0, ±j2, j4, and so forth, in accordance with Eq. 51,
thereby ensuring that Eq. 52 is also an equality at these additional values of s. The

reason for choosing those j-axis zeros of Im(e - s i7) which are nearest the origin to be

zeros of N(s), instead of zeros which occur at odd-integer multiples of 1 (but possibly

at other than the smallest odd-integer multiples) is as follows. The largest values of

F l (jw) usually occur at small values of w; it is, therefore, at these values that the
approximate relations 50 and 51 must be most accurate. Accordingly, we are naturally
led to match zeros in Eqs. 48 and 49 at the lowest possible frequencies.

It is collaterally interesting to notice that we have chosen the zeros of M(s) and

N(s) so that they interlace on the j-axis. We have, therefore, ensured that M(s) + N(s)
is a Hurwitz polynomial; then, in accordance with Eq. 47, F(s) is surely realizable.

It remains to choose the constant multipliers associated with M(s) and N(s). One
of these is arbitrary, and we choose the constant multiplier of M(s) to be 1. The

constant multiplier of N(s) can be chosen by referring again to Eq. 52. A minimum of
-sin (wr) occurs for w = (1/2), and we select the constant, k, in N(s), so that Eq. 52
holds exactly at this minimum:

- sin (/2) [ - 2M(s) -· N(s) -1 (53)
M2(s) N2(s) Jsj/2
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As might be expected, this choice of k incidentally leads to a phase characteristic of

e - jw * that has good approximating properties at small values of w.

We can now write M(s) and N(s) as follows:

M(s) (s2 + 1)(s2 + 9)... (s2 + n2) (54)

N(s) - ks(s2 + 4)(s2 + 16)... (s2 + (n - 1)2) (55)

In these equations, k is unspecified because its value is dependent upon the choice of n.

We chose n equal to or greater than the "n" that appears in Eq. 6.

It is interesting to notice the value of f (O+) in the synthesis procedure that we have

described. We compute f (O+) as follows. Regroup Eq. 47 as

Fd (s) 4F(s) N(s) M(S) (56)

In this equation, M(s) is of higher degree than N(s), so that the coefficients of the

highest powers of s occurring in the numerator and denominator of the fraction on the

right-hand side of the equation are the same. Consequently, if we apply the initial value

theorem to Eq. 56, we obtain

f (O+) 2 [2f 1(0+)] (57)

If both sides of this equation are zero, we have, alternatively,

f (O+) - 2 [2 f (O+)] (58)

In other words, the initial value of the impulse response, f(t), is twice that of the

Fourier approximation to fd(t). In case Eq. 58 holds, the same remark can be made

about the initial derivatives. It is, of course, possible to reduce or remove this dis-

crepancy by the methods discussed in Sections 3. 5 and 3. 6, if it is necessary to do so.

In Fig. 24 we show an example of the synthesis of the triangle function by means of

the method discussed above. The triangle function was used in unmodified form to

obtain the function, f 2 (t), in the synthesis. The pertinent value of n is 5, and of k is 5.5.
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APPENDIX I

n

fl(t)-= 
i-=
i odd

1 _ [(cos(ia) - 1 + 20)cos (it) + sin (ia) sin (it)]
ai 2 (R - a) 

= -

n

f2 (t)= E
i=1
i even

=0

1 . [(cos (ia) - 1) cos (it) + sin (ia) sin (it)] + 1/4
ai 2 (nr- a)

31
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APPENDIX II

The equation for fp(t) corresponding to fd(t), as shown in Fig. 14,is:

n

fp(t) b 1 ] (1/i2) [(b/a) cos (ia)- cos (ib)+ 1- b/a] cos (it)
47 (b -a) j__

+ [(b/a) sin (ia) - sin (ib)]sin (it)} t > O

= 0 otherwise
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APPENDIX III

Define: fl(O) = a

fl(O+) a2

f2 (0+) = ab

f2(0+) =- b

where d/dt is denoted by a prime.

Then,

f (O+) = 4oab
al + bl

(2 b b2
fd*(O+) = 2 b2 + a2b

(a01 + bl)2

The most convenient way to derive expressions for higher initial derivatives of

f*(t) is by using the Laplace transforms of f(t), f2 (t), and f(t). Each of these trans-

forms is a quotient of polynomials, the coefficients of whose Laurent expansion about

the origin are the initial derivatives of the related time function. By substituting the

pertinent Laurent expansions in Eq. 17, and then finding the Laurent expansion of

F*(s), we arrive straightforwardly at pertinent expressions for the higher initial

derivatives.
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APPENDIX IV

The modification of fd(t) used in the computation of f (t) in Fig. 22, with p = 7/10,
is:

fd (t) 0

t + 1 sin (t/p)
2p 2R

- 1/2

= O

t <O

0 t < p

p < t < r -p

t > r

The graph of the function is symmetrical about the line t = 7/2, which completes the

definition in the range (r-p) < t < r.

The pertinent function, fp(t), is:

fp(t) = 1/2 +
n

k=l
k odd

(2/ k)) . sin (kp/2)[ kp/ 2 J
cos (k p/2) sin (kt)

1 - k2 p2/if2 A
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