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ABSTRACT

This thesis describes an investigation of regularized algorithms for ranking

problems for user preferences and information retrieval problems. We

utilize regularized manifold algorithms to appropriately incorporate data

from related tasks. This investigation was inspired by personalization

challenges in both user preference and information retrieval ranking

problems. We formulate the ranking problem of related tasks as a special

case of semi-supervised learning. We examine how to incorporate

instances from related tasks, with the appropriate penalty in the loss

function to optimize performance on the hold out sets. We present a

regularized manifold approach that allows us to learn a distance metric for

the different instances directly from the data. This approach allows

incorporation of information from related task examples, without prior

estimation of cross-task coefficient covariances. We also present

applications of ranking problems in two text analysis problems: a) Supervise

content-word learning, and b) Company Entity matching for record linkage

problems.
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INTRODUCTION

Motivation

The continuous explosive availability of computers and the internet has

changed the way humans interact with information. The excess amount of

information has made a difficult and time consuming task the human

processing and filtering through the available information to find what

human users are looking for. When users search for information, they

would like to receive the most likely results to satisfy their query first.

Internet search engines alleviate the problem for users when searching

for unstructured keyword matches by trying to present the most reputable

or through personalization, the most appropriate results for that user first.

The motivation for this thesis is to alleviate the information overload

problem when the users search for structured, multi-attribute products,

documents or other artifacts of information. When the user searches for

the ideal multi-attribute product, like a car configuration, a restaurant with

ratings, an LCD screen or other electronics, with multiple specifications, and

other complex purchasing decisions, where price is not the only driving

factor, the users expect to receive the candidate products in the order of

their preference. Also, when a user reads through a long article on their

smart phone, they prefer to read a summary in the smaller screen, rather

than a long multi-page article. When the user expects to read a

summarized article, they again expect to receive the important information

to them first. There are many similar problems such as these ones, where

the information overload problem can be alleviated with intelligent ranking

algorithms, so that the human user gets to the right information first.
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Ranking as an approach to Information Overload

This thesis investigates primarily practical applications of Preference

Modeling. When human users evaluate multi-attribute products, they

expect the computer system to present those products in a rank order that

is most likely to represent their expected satisfaction from each product

configuration. Otherwise the human user will have to browse through

multiple configurations of the product, in case there is a better

configuration for their taste, several pages later. Many such preference

modeling problems can be approached as ranking learning problems, where

the objective of the computer system is to learn the representation function

of the internal utility function of the users. If the human users have

heterogeneous preferences, and therefore different evaluation behaviors,

we may build systems that learn personalized ranking functions that try to

predict the choices of individuals separately.

Likewise, we can use ranking algorithms as an approach to different

Information Retrieval problems. When we build a system for automated

summarization of a news article, we expect to rank the information, and

concepts of the news article, and select the highest ranked ones to keep in

the automatically generated summary. A practical way to build such

automated summarization systems is to identify the sentences within the

article that have the most important (or highest ranking) content, and

construct a summary by concatenating the important sentences, in the

order they originally appeared in the full text of the article.

Another information overload problem, where intelligent ranking

algorithms can be valuable is the task of record linkage between databases
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on fuzzy matches of fields. For example, when a corporation tries to

standardize the information of customers, or suppliers in their Enterprise

Resource Planning (ERP) systems, they need to identify duplicate records,

and match the remaining to standardized reference files. With an

intelligent ranking algorithm, the human user can accept high confidence

matches automatically, and then analyze lower confidence matches faster,

by having the candidates presented in order of likelihood of a match.

Ranking algorithms have also been used in other practical domains,

where we will not deal with in this thesis. Such domains include Information

Extraction problems, such as identification of boundaries in named-entity

extraction. (Collins, 2002). Also, multiclass classification problems can be

seen as a case of ranking problems, where the label with the highest

ranking of confidence is assigned as the likely label for a particular example.

These areas of ranking problems can be future directions of research for the

ideas presented in this thesis.

Outline of the Thesis

This thesis describes an investigation of regularized algorithms for ranking

problems for user preferences and information retrieval problems, and an

investigation of regularized manifold algorithms to appropriately

incorporate data from related tasks. The second investigation was inspired

by personalization challenges in both user preference and information

retrieval ranking problems. The thesis consists of four chapters.

The first chapter investigates regularized ranking algorithms for user

preference modeling. The algorithms are evaluated on a standard widely
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available artificial data set framework used by the market research

community. The same chapter introduces a simple meta algorithm for

combining aggregate information to train better performing individual

models.

The second chapter expands on the ideas of the first one by formulating

the ranking problem of related tasks as a special version of semi-supervised

learning. We investigate how to incorporate instances from related tasks,

with the appropriate penalty in the loss function to optimize performance

on the hold out sets. We present a regularized manifold approach that

allows us to learn a distance metric for the different instances directly from

the data. We present experiments on real datasets of user preference

modeling problems, and a benchmark dataset for multitask learning

algorithms, the Inner London Examination Authority (ILEA).

The third and fourth chapters present two text analysis applications of

ranking problems. The third chapter investigates ranking problems for

information retrieval. We first introduce a set of statistical and syntactical

information features that we will use to learn to identify content words

from Yahoo news articles. The results of the binary classification

predictions (whether it is a content word, or not) are used for two tasks:

Image retrieval, based on the captions associated with the same images in

previous articles, and article summarization. We evaluate both tasks on

both hold out sets, and with psychophysics experiments. We then repeat

the same tasks by reformulating the content word identification as a

ranking problem.
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The fourth chapter studies the problem of company entity matching.

Different corporate and demographic databases identify corporate entities

by name and address, and sometimes telephone numbers and other

contact information. Since many of these records are created manually, or

based on custom reference files, the quality of these databases degrades

over time, with duplicated entries, caused by misspellings, abbreviations,

and other user generated inconsistencies, and outdated records of

companies that have changed locations, renamed themselves, merged, or

otherwise ceased operations. Also, when someone tries to enrich such

corporate databases with reference files, with additional company data, like

industry codes, financials, or other corporate descriptors, the data

representation in the two sources make the process impossible to achieve

with exact keyword matching, or join operations in relational databases.

We present supervised learning algorithms that express the company entity

identification problem as a ranking problem. We train our algorithms on a

small subset of user generated examples to automate the joining of multi-

million record reference files.

Contributions of the Thesis

To summarize, the contributions of the thesis consist of two parts. First we

examine ranking problems, as supervised learning problem. We generalize

metric based, and choice based ranking problems as a supervised learning

binary classification problem of pairwise feature differences. The binary

classifier of parwise differences is trained to identify the winning vs. the

losing configuration of the two examples compared. We develop

preference modeling, supervised content-word extraction, applied to text
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summarization, and a record linkage application, using this framework of

ranking applications.

The second contribution of the thesis is motivated by the problem of

learning from related tasks, specifically in the domain of user preference

modeling. Such algorithms are useful when we have few examples per

tasks, but many relatively similar tasks, which can inform the training of the

task specific models. We develop algorithms that utilize regularized

manifold learning, to account for the similarity of the foreign task data. We

run experiments on real user datasets for preference modeling, and a

benchmark dataset for multi-task learning (ILEA), on which our proposed

algorithm outperforms the currently reported algorithms in the literature of

multi-task learning.
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CHAPTER 1: REGULARIZED RANKING FOR USER PREFERENCE

MODELING

Introduction

The amount of data capturing preferences of people for particular products,

services, and information sources, has been dramatically increasing in

recent years largely due for example to electronic commerce. Traditional

preference modeling methods such as conjoint analysis (Carroll & Green,

1995), (Green & Srinivasan, 1978), (Green & Srinivasan, 1990)have been

used for many preference modeling applications (Wittink & Cattin, 1989)

typically with data gathered under controlled conditions such as through

questionnaires. However, much of the available information today about

choices of people, such as scanner or clickstream data, is not gathered in

such a controlled way and therefore is more noisy (Cooley, Srivastava, &

Mobasher, 1997), (Kohavi, 2001). It is therefore important to develop new

preference modeling methods that are (a) highly accurate, (b) robust to

noise, and (c) computationally efficient in order to handle the large

amounts of choice data available.

Several statistical approaches to information retrieval, and other ranking

problems like preference modeling, assume that there is explicit metric

information available (Cui & Curry, 2003), or other side information like

transitive rankings (Herbrich, Graepel, & Obermayer, 1999), or frequency of

clicks (Joachims, 2002). In choice based data, we only know which

combination is the highest ranking, among the available options.
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The objective of choice based conjoint analysis, for a market researcher,

is to determine the most preferred combination of attributes, typically for

new product development (Toubia, Simester, Hauser, & Dahan,

2003)(Toubia, Hauser, & Simester, 2004). In this chapter we present

regularized learning methods that can learn such user preferences from

choice based data. We compare our SVM based methods with logistic

regression (Ben-Akiva & Lerman, 1985) (Louviere, Hensher, & Swait, 2000),

Hierarchical Bayes (HB) (DeSarbo & Ansari, 1997)(Allenby, Arora, & Ginter,

1998)(Arora, Allenby, & Ginter, 1998), and the polyhedral estimation

methods of (Toubia, Hauser, & Simester, 2004) using simulations as in

(Arora & Huber, 2001); (Toubia, Hauser, & Simester, 2004). We show

experimentally that the SVM based methods are more robust to noise than

both logistic regression and the polyhedral methods, to either significantly

outperform or never be worse than both logistic regression and the

polyhedral methods, and to estimate nonlinear utility models faster and

better than all methods including HB.

Individual users may have different preferences, expressed as different

utility functions. The heterogeneity of a population is an informal measure

of the variance of the users' utility functions. In this chapter we focus on

the problem of learning each individual's preferred combination, which is

equivalent to learning personalized ranking models, in an information

retrieval task. Therefore, we also extend the SVM for ranking algorithms

with a combined classifier approach that handles heterogeneity across

many individuals, with promising results compared to HB. We learn each

user's utility function as combination of the learned partworth parameters
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from an individual user's data, and the partworth parameters learned from

the aggregate data. Our extension does not involve an intermediate step of

clustering (Cohn, Caruana, & McCallum, 2003), or estimating of a distance

metric between individuals (Schultz & Joachims, 2003). The combined SVM

algorithm tries directly to minimize the number of erroneous choices on a

validation set, given the estimated individual and aggregate partworh

parameters.

This chapter makes three contributions to the ranking learning problem:

We demonstrate the robustness and computational efficiency of regularized

methods in general and SVM in particular to ranking problems with noisy

data and non-linearities. In addition, we introduce positivity constraints

through virtual examples, a prior knowledge commonly available in many

ranking estimation problems. Finally, we introduce a combined classifier

approach that allows us to exploit information from the aggregate data set.

The weighted aggregate information (estimated through cross validation)

improves the individual specific models.

Related Work

This chapter is related to preference modeling research in the market

research, and the machine learning community, and to information retrieval

research. As we will show later in the chapter, the preference modeling

problem is equivalent to a ranking learning problem, like many information

retrieval problems (Collins, 2002)(Herbrich, Graepel, & Obermayer,

1999)(Joachims, 2002)(Schultz & Joachims, 2003)
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(Joachims, 2002) presents a method that reranks the retrieval

candidates of search engines, based on observed clickthrough data.

Similarly to our approach, he uses SVM to classify vectors of difference, and

proves that minimizing the number of classification errors on vectors of

differences is equivalent to maximizing the Average Precision (Baeza-Yates

& Ribeiro-Net, 1999) in the information retrieval definition. One difference

with our approach is that in the clickthrough reranking problem, there is

inferred relative ranking information, that can be inferred from the

presentation order of the links (links presented before some clicked link, are

treated as lower ranked ones). Although the problem investigated by

(Joachims, 2002) is more general than the ordinal regression one studied by

(Herbrich, Graepel, & Obermayer, 1999), (which requires explicit rankings,

with same scale), it is still more restrictive than the one investigated in this

chapter: namely winner-loser comparisons, without inferred relative

ranking constraints. Also, our methods take advantage of prior knowledge,

by incorporating positivity constraints in the training data set. In our

experiments, this prior information affects the test set accuracy

significantly. The features used by Joachims can all infer the same kind of

positivity constraints (since they are all similarity metrics, or other search

engines rankings), and we believe they can also improve on the overall

performance of the meta-search experiment.

(Collins, 2002) presents a similar approach for reranking algorithms for

named-entity extraction, using exponential loss functions on attribute

differences. The algorithms presented by Collins use features (which are

also transformed to vectors of differences) that include the ranking of a

-16-



baseline maximum-entropy tagger, and an additional set of global

hypotheses. The proposed re-ranking algorithms optimize the weight of the

information form the two sources using a validation set. This approach is

related to our SVM-Mix approach, where we learn individual specific

models by using both the prediction of the aggregate model, and the

features specific to the individual. Also, Collins adds two training examples

for every comparison (eg "A" is better than "B", and "B" is worse than "A"),

something we also utilize, and have observed that the addition of both

examples helps improve the accuracy in the binary classification

formulation of our ranking problem. The named-entity reranking

algorithms also use features that imply positivity constraints (at least the

maximum-entropy baseline), which, if added properly in the training set,

could again improve performance accuracy.

(Schultz & Joachims, 2003) use SVMs for vectors of differences

classification, to learn a distance metric for different classes of documents.

Their approach successfully learns weighted Euclidean distances that

improve similarity predictions, by just implicit information. The approach is

similar to the manifold regularization (Belkin & Niyogi, 2004), semi-

supervised clustering (Blum & Mitchell, 1998), and transductive learning

(Gammerman, Vapnik, & Vovk, 1998). These approaches are also relevant

to the problem of estimating the heterogeneity of the user set, and utilizing

training information from the other users, based on a weighted distance

metric. In this chapter, we do not attempt to solve the distance metric

estimation. Instead, we employ a linear combined classifier approach that

gives promising results.
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The market research community has traditionally approached utility

estimation problems through function estimation. Conjoint analysis is one

of the main methods for modeling preferences from data (Carroll & Green,

1995)(Green & Srinivasan, 1978). A number of conjoint analysis methods

have been proposed - see for example (Sawtooth Software, 2009). Since the

early 1970s conjoint analysis continues to be a very popular approach with

hundreds of commercial applications per year (Wittink & Cattin, 1989). In

conjoint analysis designing questionnaires is a central issue (Arora & Huber,

2001)(Kuhfeld, Tobias, & Garratt, 1994)(Oppewal, Louviere, & Timmermans,

1994), which, as mentioned above, we do not address here.

Within the Discrete Choice Analysis area users' preferences are modeled

as random variables of logit models (Ben-Akiva & Lerman, 1985)(Ben-Akiva,

et al., 1997)(McFadden, 1974)(McFadden, 1986). Both conjoint analysis and

discrete choice methods have always faced the tradeoff between model

(multinomial logit models) complexity and computational ease as well as

predictive performance of the estimated model. This trade off is linked to

the well known "curse of dimensionality" (Stone, 1985): as the number of

dimensions increases an exponential increase in the number of data is

needed to maintain reliable model estimation. The SVM-ranking method we

present in this chapter can handle this issue, as already shown for other

applications (Vapnik, 1998).

A different approach was implemented by (Herbrich, Graepel, &

Obermayer, 1999) who instead of trying to apply regression techniques for

utility function estimation, they reformulated the problem as an ordinal

regression estimation and used SVM to predict transitive ranking
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boundaries. More recently (Cui & Curry, 2003) used directly SVM for

predicting choices of consumers. Our methods are similar with those in

(Herbrich, Graepel, & Obermayer, 1999) and (Cui & Curry, 2003): in

particular they are almost equivalent to SVM. Unlike (Herbrich, Graepel, &

Obermayer, 1999) and (Cui & Curry, 2003), we focus here on choice based

conjoint analysis and on the comparison with logistic regression, HB, and

polyhedral estimation (Toubia, Hauser, & Simester, 2004).

Finally, recent work by (Toubia, Simester, Hauser, & Dahan, 2003)

(Toubia, Hauser, & Simester, 2004) addresses the problem of designing

questionnaires and estimating preference models through solving

polyhedral optimization problems which are similar to the methods we

discuss below. They develop methods for both metric (Toubia, Simester,

Hauser, & Dahan, 2003) and choice based (Toubia, Hauser, & Simester,

2004) conjoint analysis. (Toubia, Hauser, & Simester, 2004) focus more on

the design of individual-specific questionnaires while we focus on the

estimation of a utility function from data. In the experiments below we only

use the utility function estimation method of (Toubia, Hauser, & Simester,

2004) and not the questionnaire design method they have developed.

A key difference of our SVM-ranking approach from the method of

(Toubia, Hauser, & Simester, 2004) is that in our case we optimize both the

error on the data and the complexity of the solution, simultaneously by

solving a standard SVM quadratic optimization problem. (Toubia, Hauser, &

Simester, 2004) do not handle this tradeoff between error and complexity

through a simultaneous optimization. We conjecture that the difference in

performance between our method and the method of (Toubia, Hauser, &
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Simester, 2004) shown in the experiments below is due to the difference

between the way these two methods handle this trade off.

A Theoretical Framework for Modeling Preferences

Setup and Notation

We consider the standard (i.e. (Louviere, Hensher, & Swait, 2000)) problem

of estimating a utility function from a set of examples of past choices all

coming from a single individual - so from a single true underlying utility

function. We also present an approach of combined classifiers to handle

heterogeneity, and better learn personalized utility functions by combining

information from both individual and aggregate data.

Formally we have data from n choices where, without loss of generality,

the ith choice is among two products (or services, bids, etc) {xi, x, }. To

simplify notation we assume that for each i the first product x' is the

preferred one - we can rename the products otherwise. All products are

fully characterized by m-dimensional vectors - where m is the number of

attributes describing the products. We represent the j th product for choice i

as x = {x(1), x (2),...x (m)}. So the ith choice is among a pair of m-

dimensional vectors. We are now looking for a utility function that is in

agreement with the data, namely a function that assigns higher utility value

to the first product - the preferred one - for each pair of choices. This is the

standard setup of choice based conjoint analysis . (Louviere, Hensher, &

Swait, 2000). Variations of this setup (i.e. cases where we know pairwise

relative preferences with intensities) can be modeled in a similar way.
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Support Vector Machines for Linear Utility Function Estimation

We first make the standard assumption (Ben-Akiva & Lerman, 1985);

(Srinivasan & Shocker, 1973) that the utility function is a linear function of

the values (or logarithms of the values, without loss of generality) of the

product attributes:

the utility of a product x = {x (1),x(2),..., x (m)}

is U(x)= w, x(1)+w 2 -x(2) + ... + wm -x ( m ) .

We are looking for a utility function with parameters w1, w2 ,... wm that

agrees with our data, that is we are looking for w,, w2 ,...wm such that for

Vie {1, 2,..., n} :

2 1 W .2((1)
W, X, (1)+ W2 " x, (2)+...+ wm X (m) ()

w, .xf (1)+ w2 -x, (2) +...+ Wm "xi (m)

Clearly there may be no wf that satisfies all n constraints, since in

practice the true utility function does not have to be linear and generally

there are a lot of inconsistencies in data describing preferences of people.

To allow for errors/inconsistencies we use slack variables, a standard

approach for optimization methods (Bertsimas & Tsitsikilis, 1997). For each

of the n inequality constraints (1) we introduce a positive slack variable ,

which effectively measures how much inconsistency/error there is for

choice i, like in (Srinivasan & Shocker, 1973) (Joachims, 2002). So we are
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now looking for a set of parameters w1, w 2 ,... wm so that we minimize the

error i , where 0 and satisfy for Vi e {1,2,...,n} :

w, x, (1)+ w2 -x' (2)+...+ w, -x (m) (2)

2 w, -x(1)+ w2 -x, (2) +...+m w-x (m)-

Notice that one may require to minimize the LO norm of the slack

variables i so that what is penalized is the number of

errors/inconsistencies and not the "amount" of it. In that case the

optimization problem becomes an integer programming problem which is

hard to solve.

So in this simple model we are looking for a linear utility function that

minimizes the amount of error/inconsistencies on the estimation data. This,

however, may lead to models that over-fit the current data, are sensitive to

noise, and can suffer from the curse of dimensionality - therefore are less

accurate and cannot handle well choice data that involve a large number of

attributes m and which are noisy (Vapnik, 1998). It is therefore important to

augment this model to avoid over-fitting hence improve accuracy

performance and handle noise better.

We use a model complexity control that is standard for other data

analysis methods, such as for SVM (Vapnik, 1998), (Wahba, 1990), (Girosi,

2003). Intuitively, we require that constraints (1) hold (when they are

feasible) with some "confidence margin": we would like to find a function
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that assigns to the preferred products utility which is larger than that

assigned to the non-preferred products by as high an amount as possible.

The SVM-ranking method is to simultaneously minimize the error we

make on the example data, via minimizing the slack variables 4, and

maximize the margin with which the solution satisfies the constraints. As in

the case of SVM it can be shown (Vapnik, 1998) that this is achieved

through the following optimization problem - for simplicity we omit the

mathematical derivation and we refer the reader to (Vapnik, 1998) for it:

minw E + E w
i=l...n f= m

subject to:

w, -x (1) + w2 -x, (2) +...+ w -x, (m) 3)

2 w 1, x (1)+ w2 x 2 (2)+... + wm X 2 (m)+ 1-

for Vie {1, 2,..., n}, and

We can rewrite the comparison constraints of (3) in such a way that the

utility estimation problem becomes that of classifying vectors in the space

of "differences of products". Formally, constraint:

w, .x (1)+ w2 -x (2)+...+ wm,,,x, (m) 2 w, -.x (1)+w 2 x ,
2 (2) +...+ wm -x2 (m) +1-
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is the same as:

w, - (x1 x2 (1)) + w2 -(x (2) - xi2(2)) +... + w, ( m) _ XI : >-

If we label all vectors (x -x 2 ) ("winner - loser") with label +1 and all

vectors (x2 -xI) ("loser - winner") with label -1, then searching for a

utility function that satisfies the comparison constraints in (3) can be seen

as equivalent to searching for a function (hyperplane in the case of linear

utility functions) that separates the vectors with the +1 labels from the

ones with the -1 labels. To see this simply add the constraints:

(-1) (w, -(x (1)- x (1))+ (x (x2) x (2))+... + w.-(x (m)-x (m))) -

and replace i with , + in the cost function. The only effect this addition

has is equivalent to dividing by half the parameter A2- since the optimal (

is the same as , and we count , + in the cost function. The equivalent

SVM classification problem solved then becomes:

i=1...n f=1.. m

subject to:

(+1)(w, -(x (1)-x (1))+ w2(- (2)-x (2)) +... + (xw (m)-x (m)))21-,

(-1) (, (1) - X) (1)) + W2 x(2) -x) (2))+... + w (x2 (m) - x (m))) -
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for Vi {l,...,n}, and

>O

>20

which is equivalent to the standard SVM optimization (Vapnik, 1998)

(Cortes & Vapnik, 1995) the for the difference vectors with labels +1

defined above. We therefore have the following lemma:

Lemma: The solution of formulation (3) is the same as that of a support

vector machine linear classification of the vectors of differences of attribute

values of the compared products with labels defined as above.

Given this equivalence, the complexity control w has also the

intuitive interpretation of SVM: in the case that the difference vectors are

separable with a hyperplane (which is the case that the feasible space of

utility functions satisfying the constraints in (3) with ( =0 is non-empty),

the method finds the separating hyperplane that has the largest "margin"

from the data (difference vectors) as shown in Figure 1. This is a standard

characteristic of SVM and leads to robust to noise solutions with good

predictive performance (Vapnik, 1998).
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Figure 1 Separating hyperplane and optimal separating hyperplane. Both solid lines

separate the two classes, circles and stars, but one leaves the closest points (filled circles

and stars) at the maximum distance -within the parallel lines. These filled points are called

support vectors and correspond to the "hard choices".

The trade off parameter A that controls "how much" the constraints

need to be satisfied. The equivalency to SVM classification provides some

useful characteristics, namely:

* The estimation is done through fast quadratic programming

optimization with box constraints, namely constraints that give only

upper and lower bounds to the parameters to be estimated;

* The estimated utility function turns out to depend only on certain

data - the "hard choices" which are the data touching the margin

hyperplanes in Figure 1 that are automatically detected;

* The generalization to highly nonlinear utility functions - that turn out

to be linear in parameters (Vapnik, 1998) - is straight forward and

computationally efficient (explained below);

* The probabilistic guarantees on the future performance of the

estimated model can be given under certain assumptions about the
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probability distribution of the data. In particular, it can be shown that

the predictive performance of the estimated models - that is, how

often the estimated utility assigns higher utility to the correct product

for future choices - increases as w12 (which controls the confidence

margin on the estimation data as discussed above) and the error

-i decrease and as the number of data n increases (Vapnik, 1998) .

The following theorem is well known for SVM (Vapnik, 1998)

(Evgeniou, Pontil, & Poggio, 2000): With probability 1-r, the probability e

that a future point is misclassified by a support vector machine classification

solution that makes k misclassifications on n example data and has margin

11w112 on this data is bounded by:

kC <+ 0 12

n/

where D is decreasing with n and qr, and increasing with w112 . One can also

replace k with J, and use a different D. For simplicity we do not give the

form of D here and refer the reader for example to (Vapnik, 1998)

(Evgeniou, Pontil, & Poggio, 2000):. We note that this theorem holds only if

the n data (product differences) are i.i.d., which is not necessarily the case

for the preference modeling setup. It is an open question how to extend

this theorem to the conjoint estimation case. This theorem currently

provides only an informal motivation for the proposed approach.

27-



Dual Parameters and Hard Choices

It turns out that like in the case of SVM the utility function estimated

through (3) can be written in the form:

S*)n 2(4)

U(x)=w, x = a (x -x').x
i=1

where ai are the dual parameters (Bertsimas & Tsitsikilis, 1997)

corresponding to the dual optimization problem of (3). The dual problem is

a Quadratic Programming problem with box constraints which has a unique

optimal solution and is fast to solve in practice - (Cortes & Vapnik, 1995). It

can be shown (Vapnik, 1998) that for the optimal solution (4), and for SVM

in general, only a few of the coefficients ai are non-zero. These are the

coefficients ai that correspond to the pairs of products (x ,x2)hard to

choose from. In other words the utility function model developed from a set

of choices is specified only by the "hard" choices, which are automatically

found by the SVM-ranking algorithm. This is in agreement with the intuition

that preferences are shaped by the hard choices one has to make.

Moreover, although we do not deal with this issue here, intuitively one

could also use this characteristic of the SVM-ranking algorithm to design

questionnaires in the spirit of (Toubia, Simester, Hauser, & Dahan, 2003).

For example there has been work in the area of active learning - see for

example (Tong & Koller, 2000) - that can be used for this problem. It is

interesting to note that the questionnaire design approach of (Toubia,
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Simester, Hauser, & Dahan, 2003) is similar in spirit with the active learning

methods in the literature. We plan to explore this direction in future work.

Generalization to Nonlinear models

Having shown the equivalence of the utility function estimation

formulation, which we outlined above with classification of the differences

of attribute vectors using SVM, we can now use standard methods from the

literature of SVM to estimate non-linear utility functions by finding non-

linear separating surfaces in the space of difference vectors. To this purpose

we use the approach of building models within Reproducing Kernel Hilbert

Spaces (see for example (Wahba, 1990) (Vapnik, 1998)). These are spaces

of functions which can be expressed as linear combinations of complex

features (possibly infinite number of them).

Consider for example the simple case where the number of attributes m

of the products is 2. When estimating a linear utility function we look for a

function

U(x)= w, x(1)+w 2 -x(2). On the other hand, by estimating a utility

function which is a polynomial of degree 2 we can add all attribute

interactions. The utility function then is

U(x) = w,. X(1)
2 +w 2 x (2) 2 + 3 x(1) x(2)+ w x(1)+w- x(2)

which can be seen again as a linear function if we consider that the

products x are represented using 5 attributes
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(x(1)2 , x (2)2 , x (1) x(2), x (1),x(2)).

It turns out that one can still estimate the nonlinear functions very

efficiently even if the number of primal parameters wf is very large - for

example we include all attribute interactions (Wahba, 1990) (Vapnik,

1998)). This is done by solving the corresponding dual optimization

problem, therefore always optimizing for n free parameters a,

independent of the dimensionality of the "data" x or the higher

dimensional space created. The dual formulation is always a Quadratic

Programming optimization problem with box constraints and number of

variables (a,) equal to n, the number of constraints in (3) (Vapnik, 1998).

So the number of variables wf in the primal formulation (3) is not

important (Vapnik, 1998)) - products with a very large number of attributes,

as well as highly nonlinear utility functions that, for example, include all

(higher) interactions among the product attributes can be computationally

efficiently estimated in a robust way.

Notice that for the dual formulation (3), all we need is the nx n matrix

K of dot products of the data. If we can efficiently compute this matrix of

dot products for the new high-dimensional representations (like the 5-

dimensional one corresponding to polynomials of degree 2 we showed

above), then the number of dimensions of the new space we define does

not matter. This can be done through the use of a kernel function that

defines a dot product in the high dimensional spaces called Reproducing

Kernel Hilbert Spaces (RKHS) (Wahba, 1990). We explain the idea with a

simple example.
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It is simple to check that for the 2 dimensional products we considered

above, the dot product between two vectors

(x(1)2 ,x(2) 2 ,x(1) x(2),x(1),x(2)) and

(x'(1)2 , x'(2)2 , '(1) x'(2), x'(1), x'(2))

(the mappings in the 5-dimensional space of the two 2-d (initial) vectors x

and x') can be written (up to some constant factors) as (x -x +1 .

Indeed:

(x.x'+ 1)2 = (x(1)x'(1)+x(2)x'(2) + 1)2

= x(1) 2 x'(1) 2 + x(2)2 .x'(2)2 +1+

+2x (1) x'(1) -x (2) x'(2) + 2x (1)x'(1) + 2x(2)x'(2) =

(X (1)2 ,x(2) 2 ,1x (1) -x(2), x (1 ), x (2), 1).

( x '(1),x'(2)2, x'(1) -x'(2), -x'(1), 2x'(2), 1)

which is the dot product of the five-dimensional vectors (plus constant 1)

defined above. The function (x . + 1)2 is a kernel function.

Using as kernel functions polynomials of degree d, namely (x-x' +l ,

is equivalent to estimating a utility function that is a polynomial of degree

d capturing all interactions up to order d among the product attributes.

Other kernel functions can be defined (Wahba, 1990) (Vapnik, 1998) - i.e.

consider function e1x - x' 112 to get highly nonlinear models.

-31-



Notice that to solve (3) for the case of utility estimation where the data

are "differences of products", we need to compute the dot products of

difference vectors. This is a point where the SVM-ranking methods differ

from standard SVM. If we represent as O(x) and 0(y) the high

dimensional (expanded, non-linear, feature set) maps of initial products

xand y, then we need to compute ( (x)-0(y))-.((x)- (y)). This can

be written as

( (x)-0 (y))( (x)-f (y))=

= 0(x)- (x) + 0(y)- 0) (y)-(y 2(x) - (y)=

= k(x,x)+k(y,y)-2k(x,y).

where k(x,y) is the kernel evaluated at x and y , for example

k(x,y)=(x.y+1)d. So the dot product of the difference of the high

dimensional vectors O(x) and 0(y) can still be efficiently computed using

only kernels.

Finally, the estimated utility function can be always using the dual

parameters a*, as in the linear case. For example, for a polynomial kernel

of degree d (therefore for utility functions that are polynomials of degree

d - capturing all interactions among attributes up to degree d ), the

estimated utility function has the form:

U(x)= (( +1d X .+1)d) (5)

i=1
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where we just replaced dot products with kernel functions. The number of

dual parameters a* that are non-zero is still small - corresponding to the

constraints that are not satisfied with margin more than 1 by the estimated

non-linear utility function. Finally, because of the constraints on the

complexity of the utility function through minimizing the norm of w (primal

parameters), it turns out that even for highly non-linear utility functions

overfitting can be avoided and the curse of dimensionality is not a problem

(Vapnik, 1998). It is the norm 112 of the optimal solution that measures

the complexity of the solution, and not the number of parameters

corresponding to the dimensionality of the created feature space (Vapnik,

1998). For example SVM have been used successfully for many problems

where the number of dimensions is in the thousands and the number of

data small (Vapnik, 1998).

Estimating the regularization penalty

Parameter 2 controls the tradeoff between fitting the data (-, ) and the

complexity of the model (w 12 ). There are a number of ways to choose

parameter A (Wahba, 1990) (Vapnik, 1998). For example it can be chosen

so that the prediction error in a small validation set is minimized or through

cross-validation (also called leave-one-out error) (Wahba, 1990). Briefly, the

latter is done as follows.

For a given parameter 2 we measure its leave-one-out error as follows:

for each of the n choice data, we estimate a utility function using (3) only

with the remaining n - 1 data and test if the estimated function correctly
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chooses the right product for the choice data point not used (left out). We

then count for how many of the n choice points there has been an error

when they were left out. This is the cross validation (leave-one-out) error

for the parameter A. We then choose the parameter A with the smallest

cross validation error.

We can use cross-validation when we can assume that the future data

(choices) come from the same distribution as the data used for estimation

(Vapnik, 1998). However, in conjoint analysis this may not be always the

case. For example, when the estimation data come from an orthogonal

design: the orthogonal design is not a sample from the probability

distribution of the future choices. So formally we cannot use cross-

validation with an orthogonal design. Therefore, for the experiments we

describe below, we use an additional validation set approach, with the

assumption that the validation data come from the same probability

distribution as the future data.

In the experiments below we tuned A using cross-validation. We chose,

using line search, a A between 0.001 and 100 (samples every order of

magnitude only). Because we have a few data for each individual we use the

same A for all individuals which we chose using the average cross-

validation error across all individuals.

Adding Positivity Constraints

The coefficients of a utility function, wf in problem (3), are sometimes

assumed to be positive - if not the values of the corresponding attributes

can be often negated and have the corresponding coefficients be positive
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(Toubia, Simester, Hauser, & Dahan, 2003). Therefore in practice it is often

(but not always) important to add such constraints to the estimation of the

utility function. To do so the estimation method, for example in the simple

linear case, should be modified by adding to (3) the extra constraints:

wf ! O, Vf = 1,...,m. (6)

However such a modification makes the generalization of the method to

the nonlinear case using kernels impossible (Vapnik, 1998) It is therefore

not possible to add such constraints directly and still be able to estimate

efficiently highly non-linear models (Vapnik, 1998).

To avoid this problem we use virtual examples (Niyogi, Poggio, & Girosi,

1998) (Scholkopf, Burges, & Vapnik, 1996). In particular, the positivity of the

m parameters wf is incorporated in the models by adding m (virtual)

example difference vectors

{ (1, 0,..., 0),(0, 1,..., 0),...,(0, 0,..., , 1)} .

These difference vectors correspond to pairs of products that have all

attributes the same apart from one: the product with a higher value (by 1)

for the one attribute the two products differ is preferred. Formally this

modifies problem (3) as follows:

mnn; 1  M (7)minw, ., i + + W
i=1 f=1 f=1 ...m

Subject to:
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wI x, (1) +w2 "x, (2) +...+Wm -x (m) >

w . x (1) + w2 2 (2) +...+ w, -x2 (m) +1-

for Vi {l,..., },

w, 2 1-{, , Vf = l,...m

20

Notice that m constraints of the form w,f2 1 -1 ,m new slack variables

S, and m constraints 2 0 have been added. The slack variables f push

the optimal w, to be positive. Notice that we can further tune the SVM-

ranking method by putting a different weight C on the f in the cost

function so that we can have wf being more or less pushed towards

positivity. For example, if the cost function is

n m (8)
minw +....Ci I f + I wZ2

i=1 f=1 f=1...m

for a very large C, then all wf will become positive (if there is a positive

feasible solution for wf). This way one can control the requirement of w,

being positive. In the experiments we have used the simple method where C

= 1 so equal weight is put on all slack variables. Parameter C can in practice

also be tuned using cross-validation or a validation set. In the nonlinear case

- using kernels - the use of the virtual examples will not force only the linear

effects of attribute f to be positive, but the overall effects of this

attributes to be positive - for example for a polynomial kernel of degree 2,
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2> f-f . So in the general nonlinearthe virtual examples will force wf+ 1- So in the general nonlinear

case the virtual examples as used here will imply that for two products "all

else being equal, more of a particular attribute by 1 is better", and this

requirement can still be relaxed/controlled by the use of C for the slack

variables f . Using virtual examples to enforce positivity constraints, with

non linear utility functions, can be risky when the non linear coefficients are

negative. In the experiments presented in this chapter, the linear

coefficients are dominating the non linear ones, even when they are

negative, so the incorporation of the positivity constraints with virtual

examples, still helps improve the algorithm's performance.

The experiments were designed like in (Toubia, Hauser, & Simester,

2004) where the positivity of the underlying utility function is used to

capture the assumption that we know for each product attribute which

level has the lowest partworth - one can remove that level and assume that

all other partworths are positive. If, instead, the products are represented

as binary vectors with each attribute corresponding to a number of

dimensions equal to the number of levels for that attribute with a 1 at the

location of the present level and a 0 elsewhere - often used in practice

(Arora & Huber, 2001), (Toubia, Hauser, & Simester, 2004) and also in our

experiments - then the virtual examples corresponding to the prior

knowledge that the partworth of a level is the smallest one would be, for

example, of the form

(1,0,0,-1,oo,0,0,o,0,o0,0,0,0o,,0)
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in the case of 4 attributes with 4 levels each for which we know that for the

first attribute the fourth level has the smallest partworth - smaller than the

first level in this case. This is the representation we used in the experiments

for our method and for logistic regression. Finally we note that one can add

other types of prior knowledge to constraint the estimation of the utility

function through the use of virtual examples (Scholkopf, Burges, & Vapnik,

1996).

Handling Heterogeneity

The method discussed so far assumes that the data come from a single true

underlying utility function and we estimate one utility function. In practice

the data may come from many individuals, therefore from different

underlying utility functions. A state of the art approach to handling such

data is by assuming a priori that all utility functions come from a probability

distribution, for example a (unknown) Gaussian, and then estimating all

utility functions simultaneously through also estimating the parameters of

this distribution, like it is done in the case of Hierarchical Bayes (Lenk,

DeSarbo, Green, & Young, 1996) (DeSarbo & Ansari, 1997) (Allenby, Arora,

& Ginter, 1998) (Arora, Allenby, & Ginter, 1998)

In Chapter 3, we develop methods along the lines of the ones presented

here that can be used to simultaneously estimate many utility functions

that are assumed to be related in some way - i.e. all come from the same,

unknown, Gaussian distribution. Some possible directions can be, for

example, along the lines of boosting (Freund & Schapire, 1996) (Friedman,

Trevor Hastie, & Tibshirani, 1998) or learning with heterogeneous kernels
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(Bennett & Bredensteiner, 2000). The issue is an open one also in the area

of statistical learning theory.

In this chapter we compare our approach with HB even though we

estimate one utility function for each individual independently - hence HB

has a relative advantage in the experiments since it combines information

across all individuals. We extend our SVM-ranking approach along the

direction of combining the models estimated for each individual as in

(Toubia, Hauser, & Simester, 2004), briefly as follows.

First we estimate one model, for example one linear utility function wk,

for each individual k independently. We then take the mean of the

1
estimated models w= -- k k , where N is the number of individuals.

N

Finally, for each individual we replace wk with YkWk + (- Yk)w. Parameters

Yk are between 0 and 1 and we estimate them by minimizing the mean

square error of ykWk +(l-yk)W from the true utility function of each

individual k: this gives an upper bound on the performance that can be

achieved if we were to estimate yk using only the available data as should

be done in practice (in practice a validation set can be used to set the

parameters yk as for the case of parameter A discussed above). We call

this method SVM-Mix to discriminate from the basic SVM-ranking approach

in the experiments below. Although this is a very simple and ad hoc

approach to handling heterogeneity, the experiments show that the

proposed direction is promising. We plan to explore this direction in the

future.
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Experiments

We run Monte Carlo simulations to study the performance of the methods

under varying conditions. Simulations have been often used in the past to

study preference modeling methods (i.e. ((Carmone & Jain, 1978)(Toubia,

Simester, Hauser, & Dahan, 2003) (Andrews, Ansari, & Currim, 2002)). They

are useful, for example, in exploring various domains in order to identify

strengths and weaknesses of methods. Below we explore domains that vary

according to noise (magnitude) and respondent heterogeneity. We used

simulations to compare our methods with logistic regression, the recently

proposed polyhedral estimation method of (Toubia, Hauser, & Simester,

2004), and with HB for heterogeneous data, considered a state of the art

approach. It is important to note that in all cases we generated the data in a

way that gives an advantage to logistic regression and HB - that is, the data

were generated according to the probability distributions assumed by these

methods. Moreover, the comparison with HB is not well-defined since our

methods are for individual utility estimation while HB uses information

across many individuals. SVM-Mix is the only method that can be directly

compared with HB.

Design of Simulations

For easy comparison with other work in the literature we followed the basic

simulation design used by other researchers in the past. In particular we

simply replicated the experimental setup of (Toubia, Hauser, & Simester,

2004), which in turn was based on the simulation studies of (Arora & Huber,

2001). For completeness we briefly describe that setup.
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We generated data describing products with 4 attributes, each attribute

having 4 levels. Each question consisted of 4 products to choose from. The

question design we used was either orthogonal or randomly generated. For

the orthogonal design to be well-defined we used 16 questions per

individual as in (Toubia, Hauser, & Simester, 2004). The random design is a

closer simulation for data that are not from questionnaires, such as more

unconstrained consumer choice data.

We simulated 100 individuals. The partworths for each individual were

generated randomly from a Gaussian with mean -, - I , for

each attribute. Parameter 6 is the magnitude that controls the noise

(response accuracy). As in (Toubia, Hauser, & Simester, 2004), we used 6=3

for high magnitude (low noise) and 6 = 0.5 for low magnitude (high noise).

We modeled heterogeneity among the 100 individuals by varying the

variance 7
2 of the Gaussian from which the partworths were generated.

The covariance matrix of the Gaussian was a diagonal matrix with all

diagonal elements being 072 . We modeled high heterogeneity using 72 =

3/f, and low heterogeneity using U2 = 0.56, like in (Toubia, Hauser, &

Simester, 2004). As discussed in (Arora & Huber, 2001) and (Toubia,

Simester, Hauser, & Dahan, 2003) these parameters are chosen so that the

range of average partworths and heterogeneity found in practice is covered.

Notice that for each of the four attributes the mean partworths are the

smallest for the first level and the largest for the fourth level - in increasing

order. Because the polyhedral estimation method of (Toubia, Hauser, &

Simester, 2004) requires that constraints about the relative order of the
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actual partworths for each level relative to the lowest level are added (in

the form of positivity constraints (Toubia, Hauser, & Simester, 2004)), we

incorporated this information to all other methods. For our method and for

logistic regression this was done using the virtual examples approach

discussed earlier in the chapter. For the case of HB this was done by simply

constraining the sampling from the posterior during the HB estimation

iterations to be such that we only use partworth samples for which the

lowest levels are the same ones as the actual lowest levels. Adding

constraints to HB can be done in other ways, too, as discussed in (Sawtooth

Software, 2009), but none of them is standard. Notice that the relative

order may be changing as we sample the partworths for the four levels: we

incorporated constraints about the actual lowest levels and not the lowest

levels of the mean partworths.

Finally, all experiments were repeated five times - so a total of 500

individual utilities were estimated - and the average performance is

reported.

Experimental Results

We compare the methods using the RMSE of the estimated partworths.

Both estimated and true partworths were always normalized for

comparability. In particular, as in (Toubia, Hauser, & Simester, 2004), each

attribute is made such that the sum of the levels is 0, and the utility vector

is then normalized such as the sum of the absolute values is 1. We also

measured the predictive performance (hit rate) of the estimated models by

generating 100 new random questions for each individual and testing how

often the estimated utility functions predict the correct winning product. In
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the table below we report the hit rates below the Root Mean Square Errors

(RMSE).

Table 1 Comparison of Methods using RMSE and hit rates in parenthesis. The true utilities
are linear and linear utility models are estimated. Bold indicates best or not significantly
different than best at p < 0.05 among analytic center, SVM, and logistic regression - the
first three columns only. With a * we indicate the best among all columns.

Mag Het Design Analytic SVM Logistic HB SVM_mix

L H Random 0.92 0.69 0.77 0.60* 0.64

79.1% 81.8% 81.1% 84.5% 83.1%

L H Orthogonal 0.75 0.66 0.67 0.56* 0.61

81.2% 82.7% 82.7% 85.5% 83.9%

L L Random 1.15 0.86 1.00 0.66* 0.69*

74.5% 77.4% 75.7% 82.6% 81.7%

L L Orthogonal 0.89 0.81 0.83 0.62* 0.67

76.9% 78.6% 78.3% 83.8% 82.3%

H H Random 0.67 0.53 0.52 0.46* 0.48*

84.0% 85.9% 86.9% 88.2% 87.2%

H H Orthogonal 0.81 0.61 0.59 0.49* 0.51*

80.4% 84.1% 84.9% 87.3% 86.3%

H L Random 0.65 0.52 0.53 0.35* 0.37*

83.3% 86.0% 85.8% 90.3% 89.5%

H L Orthogonal 0.81 0.68 0.65 0.34* 0.53

79.2% 81.3% 82.8% 90.6% 85.8%
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Table 1 shows the results. The format of the table is the same as that of

(Arora & Huber, 2001) and (Toubia, Hauser, & Simester, 2004). We label our

first method that uses individual only data as "SVM-ranking" since it is very

similar to SVM classification. The polyhedral method of (Toubia, Hauser, &

Simester, 2004) is labeled as "Analytic" - the method is called Analytic

Center in (Toubia, Hauser, & Simester, 2004). We also report the results of

the SVM-Mix methodology that utilizes aggregate information from across

the 100 individuals.

We performed two significance tests: a) one to compare only the

analytic center method, logistic regression, and the method proposed here -

the three methods that don't combine information across individuals; the

best of the first three columns is reported in bold; b) one to find the best

among all columns (including HB and SVM-Mix) which we report with a "*"

From Table 1 we observe the following:

* SVM significantly outperforms both the analytic center method and

logistic regression, the latter for the random designs and when there is

noise. It is never worse than logistic regression or the analytic center

method.

* Both SVM and SVM-Mix are relatively better for the random design.

For example SVM is similar to logistic regression in all orthogonal design

cases. We believe this is partly due to the problem with choosing

parameter A for the orthogonal design, as discussed above, and because

in general the future data come from a different probability distribution

than the estimation data. This limitation also indicates that it may be
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important to combine the SVM-ranking method with a similar method

for designing questionnaires. As shown by (Toubia, Hauser, & Simester,

2004) such an extension to questionnaire design can lead to significant

improvements. We leave this as part of future work.

* The SVM-ranking method significantly outperforms both logistic

regression and the analytic center method when there is noise for the

random design. The performance drop from high magnitude to low

magnitude, namely when noise increases, is significantly lower for SVM

than for both logistic regression and the analytic center for the random

design. It is significantly lower than logistic regression for the orthogonal

design but larger than the analytic center method in that case. However

the latter is always significantly worse than the SVM-ranking method.

The SVM-ranking method is therefore overall more robust to noise than

the other methods. We also note that for our method the performance

drop from low to high noise is influenced by the relative As used since

different As are used for the high and low magnitudes (chosen using

cross-validation).

* Heterogeneity: the SVM-Mix extension shows promising results. For

the random design, HB is better only in the case of low magnitude and

high heterogeneity, while in all other cases HB and SVM-Mix perform

similarly. This, coupled with the fact that the SVM-ranking method is

computationally efficient - while HB is not (Sawtooth Software, 2009) -

indicates the potential of the proposed approach.
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Estimation of Nonlinear Models

The next set of experiments considers the case where the true underlying

utility function of each individual (respondent) is nonlinear. In order to

account for the nonlinear effect, we estimate nonlinear models as described

earlier in the chapter. A typical nonlinear effect in consumer preferences is

simple interactions between two different product attributes (i.e. price and

brand). In our case, adding interactions among all product attribute levels

(all 16 dimensions) would lead to a large number of parameters to estimate

(15*16/2 = 120) which would be computationally intractable for HB.

Therefore we only added the interactions between the first two attributes.

Since each attribute has 4 levels we added an extra 4 x 4 = 16 dimensions

capturing all interactions among the 4 levels of the first attribute and the 4

levels of the second one. Thus, the utility function of each individual

consisted of the original 16 parameters generated as before, plus 16 new

parameters capturing the interactions among the levels of the first two

attributes (clearly, without loss of generality, other choices could be made).

These new 16 parameters were generated from a Gaussian with mean 0

and standard deviation ,,i . The size of a,,n controls the size of the

interaction parameters of the underlying utility functions. We assume we

don't know the sign of the interaction coefficients, other than for the

method of (Toubia, Hauser, & Simester, 2004). The method of (Toubia,

Hauser, & Simester, 2004) requires prior knowledge of the least desired

level of each feature, so we incorporated this information (in the form of

positivity constraints for the interaction coefficients) for the analytic center,

effectively giving that method an advantage relative to the other ones. In
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practice we may not know the sign of the interaction coefficients, so we did

not add this information to the other three methods.

Our objective is to do experiments with two different levels of

nonlinearity: low nonlinearity and high nonlinearity. Our definition of "level

of nonlinearity" is given below in the form of a short sequence of

computations. For a given o,,:

* Draw a random population of 1000 utility functions (1000

individuals);

* Generate the set of all 4 x 4 x 4 x 4 = 256 possible 4-attribute

products;

* For each individual and each product, compute the absolute values

of the nonlinear and linear parts of the utility of the product

separately;

* For each individual, add all 256 absolute values of the nonlinear

parts and the linear parts separately, and take the ratio between the

sum-absolute-nonlinear and the sum-absolute-linear;

* Compute the average of this ratio over the 1000 individuals.

We use the average ratio computed in the last step as a characterization

of the relative size of the underlying nonlinear (interaction) effect in the

simulated population. In the sequel, we present experiments for the cases

where the average-ratio is 25% (Low nonlinearity) and 75% (High

nonlinearity). In other words, over all possible products the average

nonlinear part of the utility is about 25% (low nonlinearity) or 75% (high

-47-



nonlinearity) of the linear part. The values of o,,t that result in the specified

levels of nonlinearity are:

* For low magnitude and high heterogeneity: 0.61 and 1.84 (low and

high nonlinearity, respectively)

* For high magnitude and low heterogeneity: 1.26 and 3.80 (low and

high nonlinearity, respectively)

To estimate the nonlinear utilities using logistic regression and HB we

represented the data using 32 dimensional vectors (16 linear plus 16

nonlinear). For the method of (Toubia, Hauser, & Simester, 2004) we

followed the suggestion in (Toubia, Simester, Hauser, & Dahan, 2003): we

introduced an additional feature with 16 levels corresponding to the 16

nonlinear interaction parameters. Therefore the three methods (other than

SVM which as we discussed always estimates the n dual parameters a,)

estimated 32 parameters for each individual. Notice that HB can hardly

handle even this low dimensional nonlinear case (Sawtooth Software,

2009), which in contrast is a computationally mild case for the polyhedral

method, SVM, and logistic regression. For computational reasons (for HB)

and to avoid cluttering we only did experiments in two cases:

1.high magnitude and low heterogeneity - the "easiest" case in

practice;

2.low magnitude and high heterogeneity - the "hardest" case in

practice, and also the case where our method has the least

advantage relative to HB as shown in Table 1.
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For computational reasons we also simulated 100 individuals only once

(instead of 5 times in the linear experiments case) for these experiments.

In Table 2 we compare only SVM-Mix and HB, since the conclusions

about the comparison of the polyhedral method, SVM, and logistic

regression are similar as for the linear utility experiments. We show the

performances of the logistic, SVM, and polyhedral methods in the Appendix

at the end of the chapter. Although the actual utilities are nonlinear, we

also estimated linear models to see if it is even worth estimating nonlinear

models to begin with. To compare the linear and non-linear models we use

hit rates: the percentage of correct prediction of 100 out-of-sample choices.

In the Appendix below we report other RMSE errors. In Table 2 we also

report the RMSE of the nonlinear parts of the utility functions, which

captures the accuracy with which the 16 interaction coefficients are

estimated. Therefore in Table 2 we show the hit rates of: linear SVM-Mix

with the mixture parameter y estimated as in the linear experiments, non-

linear SVM-Mix where now we estimated two mixture parameters y and

Yn, for the linear and non-linear parts of the estimated utility using again

the method outlined in the linear experiments, linear HB, and non-linear

HB. In parenthesis, for the non-linear models, we report the RMSE of the

interaction coefficients (the 16 coefficients for the nonlinear part of the

utility function).
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Table 2 The true utilities are nonlinear. Hit rates and the RMSE of the

estimated interaction coefficients in parenthesis are reported. Bold

indicates best or not significantly different than best at p < 0.05 across all

columns.

Mag Het NL Des SVM-Mix Lin SVM-Mix NL HB Lin HB NL

H L Rand 81.6% 81.1% (1.43) 82.7% 81.5%
(1.56)

Orth 81.7% 81.0% (1.49) 82.7% 80.7%
(1.61)

H H Rand 75.3% 78.1% (1.15) 76.2% 78.6%
(1.33)

Orth 75.2% 76.6% (1.30) 75.4% 76.1%
(1.50)

H L L Rand 87.9% 87.6% (1.48) 88.2% 88.4%
(1.57)

Orth 85.5% 84.1% (1.48) 89.0% 88.3%
(1.61)

H L H Rand 78.6% 82.6% (1.14) 79.8% 83.2%
(1.31)

Orth 77.5% 78.6% (1.27) 79.8% 81.1%
(1.41)

The results show the following:

* When the non-linearity is low the linear models are generally better

than the nonlinear ones.

* When the nonlinearity is high, it is generally better to estimate

nonlinear models both for HB and for SVM-Mix.

The best (among linear and nonlinear) HB outperforms the best (among

linear and nonlinear) SVM-Mix in the cases it outperformed it in the linear
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experiments (Table 1). However, the relative differences of the hit rates

decrease as the amount of nonlinearity increases. For example in the high

nonlinearity case the nonlinear SVM-Mix is similar to HB in 3 out of the 4

cases (Low-High or High-Low for random and orthogonal), while in Table 1

SVM-Mix is similar to HB only in 1 out of the 4 cases. This indicates that the

proposed approach has a relative advantage when there are nonlinearities.

When we estimate non-linear models, the RMSE of the nonlinear part of

the estimated function is smaller for SVM-Mix than for HB. In other words

the SVM-ranking method captures the nonlinear interactions better than

HB. In the Appendix below we show that the simple SVM-ranking algorithm

(not "Mix") is also on average better than any other method in terms of

capturing the nonlinear effects.

Summary and Contributions

This chapter presented two SVM based methods for learning ranking

functions from choice based comparisons of the form "the user prefers

choice i=j than all other choices i e{1,n} ". In other supervised

information retrieval problems, the training data includes explicit or implicit

relevance rankings, either by experts, or by empirical observations. In the

choice based conjoint problem we only know which the winning

combination is. We transformed the problem to a binary classification task

of pairwise comparisons, and use an SVM-like regularized loss function to

account for noise in the users' choices. We also present an approach of

combined classifiers to better learn personalized ranking functions by

combining information from both individual and aggregate data. We
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compared our method with standard algorithms used by the marketing

community for utility function estimation: logistic regression, polyhedral

estimation, and hierarchical bayes (HB). We evaluated on standard, widely

used, simulation data. The experiments show that SVM adapted to ranking

problems handle noise and nonlinearities significantly better than the

baseline approaches, and significantly faster than HB, the best performing

baseline approach.

Preference modeling has been a central problem in the marketing

community and is becoming increasingly important in other business areas

such as in supply chain and procurement where the procurement processes

are automated and data describing past choices are captured. At the same

time, the "democratization" of data, in the sense that data is captured

everywhere and under any conditions, implies that companies often need

to use preference modeling tools that do not assume the data is generated

in a controlled environment - i.e. through questionnaires. As the conditions

under which preference data are captured vary, and as more and more

applications arise, there is an increasing need for new tools and approaches

to the problem of preference modeling that are computationally efficient,

have high accuracy, and can handle noise and high (multi-attribute

products) dimensional data. The work presented here aims at opening a

direction of research in the area of preference modeling that can lead to

such new approaches and tools. We did not discuss here issues such as how

to use the proposed framework for example for designing questionnaires -

we believe this is possible, as we briefly discussed and as is indicated by the

work of (Toubia, Simester, Hauser, & Dahan, 2003), and we leave this for
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future research. Instead we focused on laying the foundations for methods

and tools to solve a variety of preference modeling problems.

In this chapter we presented a framework for developing

computationally efficient preference models that have high accuracy and

can handle noisy and large dimensional data. The framework is based on

the well-founded field of statistical learning theory (Vapnik, 1998). Highly

non-linear conjoint estimation models can be also computationally

efficiently estimated. The models estimated depend only on a few data

points, the ones that correspond to "hard choices". This can provide useful

insights to managers by focusing their attention only to those choices.

Moreover, this characteristic can be used to design individual specific

questionnaires along the lines of (Toubia, Hauser, & Simester, 2004).

The experiments showed that:

The proposed approach significantly outperforms both the method of

(Toubia, Hauser, & Simester, 2004) and standard logistic regression, the

latter when there is noise and for the random design. It is never worse than

the best among these three methods.

The proposed approach is less sensitive to noise - high response error -

than both logistic regression and the method of (Toubia, Hauser, &

Simester, 2004). It is therefore more robust to noise.

The proposed approach is relatively weaker when data from an

orthogonal design are used. This limitation indicates that it may be

important to combine the SVM-ranking method with a method similar in

spirit for designing questionnaires. As shown by (Toubia, Hauser, &
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Simester, 2004), such an extension to questionnaire design can lead to

significant improvements. We leave this as part of future work.

The SVM-Mix extension for handling heterogeneity leads to promising

results with performance often similar to that of HB;

When the true underlying utility function is nonlinear (for example there

are interaction effects between the product attributes) it is better to

estimate nonlinear models when the nonlinearity is high. Moreover the

SVM-ranking method estimates the interaction coefficients significantly

better than all other methods.

Furthermore, the estimation is computationally efficient, so, for

example, large datasets for products with large numbers of attributes can

also be used - unlike the case of HB.

A number of extensions are possible within this framework for

preference modeling. A clear direction for future work is to incorporate to

the individual-specific models cross-respondent information in the case of

heterogeneity. The experiments show that even a simple SVM-Mix

extension for handling heterogeneity is already promising. Another

important direction is to develop other preference modeling methods using

the principles of Statistical Learning Theory: in particular, there is evidence

(see for example (Rifkin, 2002)) that the most important part of the

proposed approach is the incorporation of the complexity control in the

estimation process. It may be the case that logistic regression with

complexity control, for example along the lines of (Zhu & Hastie, 2001), is a
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more appropriate approach than the one we tested here, since it may

better capture the noise model of the data typically assumed in conjoint

analysis.

The machinery developed for SVM as well as statistical learning theory

can be used for solving in new ways problems in the field of conjoint

analysis. For example, one can extend the use of virtual examples we used

here for adding positivity constraints on the utility function. Empirical

evidence shows that if the original data used to estimate a model are

extended to include virtual examples then the performance of the

estimated models improves (Scholkopf, Burges, & Vapnik, 1996). Generally

virtual examples are data that are either added to the estimation data by

the user because of prior knowledge about them, or are generated from the

existing data using transformations that the user knows a priori do not alter

their key characteristic (i.e. which product is the preferred one) (Scholkopf,

Burges, & Vapnik, 1996). Furthermore, models for metric based conjoint

analysis (Toubia, Simester, Hauser, & Dahan, 2003) can be also developed

within the framework in this chapter, for example in the spirit of SVM

regression instead of classification (Vapnik, 1998). Finally, another direction

of research is to develop active learning (Tong & Koller, 2000) type methods

for the problem of adaptively designing questionnaires, like for example in

(Toubia, Simester, Hauser, & Dahan, 2003).

Once the problem of preference modeling is seen within the framework

of statistical learning theory and SVM, a number of new methods can be

developed for the conjoint analysis field. The work in this chapter does not

aim by any means to replace existing methods of preference modeling, but
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instead to contribute to the field new tools and frameworks that can be

complementary to existing ones for solving preference modeling problems.

Finally, the experiments presented here are by no means exhaustive: more

experiments by other researchers will be needed to establish the relative

strengths and weaknesses of the proposed approach, as is always the case

with any newly developed method.

Appendix

Hierarchical Bayes2

The Hierarchical Bayes algorithm referred to in this chapter, and later in this

thesis is a regression approach for learning preference models in two levels:

1)The individual level

2)A higher level, representing the individual preference regression

weights as a multivariate normal distribution. (assuming linear

representation of utility functions)

The algorithm assumes that the individual linear regression weights are

drawn from the multivariate normal distribution:

wi-N(a, D)

Where wirepresents the coefficients of the utility function of the ith

individual, a is the vector of the means of the regression coefficients, and D

is the matrix of variances and covariances of the weights across individuals.

2 This section is summarized version of the algorithm description in (Sawtooth Software, 2009)
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At the individual level the individuals are assumed to have preference

behaviors described by the utility function:

yi =- XjWi + eij

where eij is a random error, with mean zero, and variance 6 2.

The algorithm starts a Gibbs sampling iteration with w, a, and the

covariances set to zero, and the variances and a set to one. Then iterates

between the following four conditional estimations:

1)a, given D, and w,

2)D, given w, and a

3)w, given a, D, and a

4)o, given a, D, and w

This process is typically repeated for thousands of iterations, until the

algorithm achieves convergence.

Nonlinear Experiments: Detailed Results

We show all the results of the nonlinear experiments in Table 3. In each cell

we report five performances: a) the RMSE when we estimate a linear

model; b) the out of sample hit rate when we estimate a linear model; c)

the RMSE of the linear part of the utility when we estimate a nonlinear

model; d) the RMSE of the non-linear part when we estimate a nonlinear

model; e) the out of sample hit rate of the nonlinear model estimated.

From the results we observe the following:
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* Nonlinear part estimation: The key result is that SVM-Mix estimates

the nonlinear parts of the utility functions better than all other

methods, including HB. SVM - without combining information across

individuals - is also better than both the logistic regression and HB. It

should be noted that all methods have large RMSE as compared to the

linear estimations. We attribute this to the fact that each 32-

dimensional vector describing a product includes just a single nonzero

element out of the total 16 nonlinear elements (since only one of the

four levels of the two attributes involved for the nonlinearity is

nonzero for each product). In contrast, there are 4 nonzero elements

out the 16 linear ones. Effectively there is little information about the

nonlinear part of the utility functions.

* Linear part estimation: For the linear parts of the estimated utility

function the comparison of SVM, logistic, and polyhedral is

qualitatively similar as in the linear experiments (Table 1).

* Linear part estimation comparison with HB: The difference between

HB and "SVM-Mix" for the linear parts of the utility function is

relatively smaller than in the linear utility experiments (Table 1): our

method is therefore less influenced by nonlinearities than HB.
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Table 3 Comparison of methods when nonlinear models are estimated.

Mag Het NL Des Performance Analytic SVM Logistic HB SVMmix

L H L Rand RMSE Lin 0.95 0.70 0.81 0.62 0.67

Hit Lin 78.1% 80.8% 79.6% 82.7% 81.6%

RMSE Lin/NL 0.86 0.69 0.77 0.66 0.65

RMSE NL/NL 1.55 1.52 1.63 1.56 1.43

Hit NL 77.6% 80.4% 77.8% 81.5% 81.1%

L H L Orth RMSE Lin 0.80 0.69 0.70 0.61 0.65

Hit Lin 78.7% 80.6% 80.6% 82.7% 81.7%

RMSE Lin/NL 0.83 0.71 0.72 0.65 0.66

RMSE NL/NL 1.57 1.61 1.70 1.61 1.49

Hit NL 78.7% 79.8% 80.2% 80.7% 81.0%

L H H Rand RMSE Lin 1.08 0.85 0.94 0.74 0.79

Hit Lin 72.8% 75.1% 74.5% 76.2% 75.3%

RMSE Lin/NL 0.96 0.79 0.81 0.76 0.74

RMSE NL/NL 1.32 1.20 1.31 1.33 1.15

Hit NL 77.0% 78.2% 77.1% 78.6% 78.1%

L H H Orth RMSE Lin 0.95 0.82 0.84 0.75 0.76

Hit Lin 73.4% 74.4% 73.5% 75.4% 75.2%

RMSE Lin/NL 0.95 0.79 0.78 0.78 0.74

RMSE NL/NL 1.42 1.36 1.44 1.50 1.30

Hit NL 75.6% 76.4% 75.9% 76.1% 76.6%

H L L Rand RMSE Lin 0.71 0.55 0.58 0.39 0.39

Hit Lin 81.8% 84.7% 84.1% 88.2% 87.9%

RMSE Lin/NL 0.78 0.54 0.59 0.41 0.40

RMSE NL/NL 1.58 1.54 1.61 1.57 1.48

Hit NL 80.4% 84.4% 83.7% 88.4% 87.6%

H L L Orth RMSE Lin 0.84 0.67 0.66 0.35 0.51

Hit Lin 78.9% 81.5% 82.1% 89.0% 85.5%

RMSE Lin/NL 0.92 0.71 0.70 0.39 0.56

RMSE NL/NL 1.56 1.55 1.56 1.61 1.48

Hit NL 76.6% 79.9% 80.7% 88.3% 84.1%

H L H Rand RMSE Lin 0.95 0.74 0.81 0.52 0.43

Hit Lin 75.1% 77.1% 76.7% 79.8% 78.6%

RMSE Lin/NL 0.88 0.67 0.67 0.54 0.44

RMSE NL/NL 1.32 1.17 1.25 1.31 1.14

Hit NL 78.6% 80.5% 80.8% 83.2% 82.6%

H L H Orth RMSE Lin 0.94 0.83 0.77 0.50 0.56

Hit Lin 74.0% 75.5% 75.9% 79.8% 77.5%

RMSE Lin/NL 1.03 0.75 0.75 0.49 0.62

RMSE NL/NL 1.42 1.33 1.31 1.41 1.27

Hit NL 74.2% 77.7% 77.5% 81.1% 78.6%
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CHAPTER 2: REGULARIZED MANIFOLDS FOR LEARNING FROM

RELATED TASKS

Introduction

Recent work in multitask learning (Evgeniou & Pontil, 2004)(Chapelle &

Harchaoui, 2005)(Girosi, 2003) has shown that data from related tasks can

be used effectively by regularized learning algorithms, with nonlinear loss

functions that penalize errors based on aggregate data less than the errors

from the task specific data. The same approach can apply to different

regularized algorithms, including SVMs, Regularized Least Squares

Classification (RLSC) (Rifkin, 2002), or Regularized Logistic Regression

(Minka, 2001).

In the first chapter we examined how to use regularized learning algorithms

in a hierarchical learning problem, by proposing a simple weighted average

algorithm of the task specific SVM ranking algorithm, with an SVM trained

on the aggregate dataset. This simple approach allowed us to get

performance that was competitive to the Hierarchical Bayes one.

In this chapter we first present how to implement the non-linear loss

function approach with RLSC. Then we extend the RLSC algorithm with the

graph Laplacian transformation, to show how to pose the same problem as

a special case of semi-supervised learning, with regularized manifolds

(Belkin & Niyogi, 2004). We also show that, in the linear case, our approach

is a generalization of the kernel based methods for multi-task learning,

without enforcing constraints on cross-task covariance metrics.
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Related Work

Multi-task learning, or transfer learning has received a lot of attention over

the last few years in the machine learning community. The work in the

transfer learning domain has focused on two directions: a) How to best

train the task specific models, with the additional information, if a problem

is appropriate for transferring information between tasks, and b) Indentify

situations where transferring such information is appropriate.

In this chapter and in this thesis in general, we only deal with the former

kind of problem, and we leave the latter to be determined through

experiments using cross-validation. The related work to the problem

investigated in this chapter assumes that the underlying tasks do share

some structure, and they are therefore appropriate for sharing information

between tasks (Wilson, Fern, Ray, & Tadepalli, 2007) (Argyriou, Micchelli,

Pontil, & Ying, 2007) (Maurer, 2006.). Many approaches rely on hierarchical

learning iterations (Sawtooth Software, 2009), or cross-validation iterations

(Evgeniou, Toubia, & Pontil, 2007) to assess the task similarity, to optimally

transfer information between tasks. Our work is mostly related to (Chen,

Song, Wang, & Zhang, 2008) who use regularized Laplacians to learn

multiple-label problems, and (Sheldon, 2008) who assesses the task

relationship based on a graph structure on the tasks. Like (Evgeniou,

Toubia, & Pontil, 2007) we also rely on cross validation to optimize the

parameters controlling the transfer of knowledge between the tasks.

Semi-Supervised Learning Intuition
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The intuition for this approach is that learning from related data is similar to

semi-supervised learning. In both cases, we want to incorporate related

data to our problem, but we are not sure about the labels of the instances

from the related data, and how much they should contribute to the loss

function, compared to the labeled data for the task. Regularized manifolds,

and other clustering approaches (Nigam et al 200; Belkin, and Niyogi 2003)

try to estimate the labels based on a weighted combination of the labels of

the closest labeled instances. The closest instances are chosen based in the

transformed space representing the clusters or manifold. In the problem of

learning from related tasks, we do not need to estimate the labels of the

similar (or close in the distance metric transformation) instances, because

they are already labeled. As we have seen in the case of combining

preference data, it sometimes helps to incorporate the related information

from the instances of other tasks to the training of the task specific models.

The open question is how much penalty we should pay for errors we

make on the instances of the related data, compared to the penalty we pay

for errors of on the training instances of the same task. In the experiments

below we show that the distance of the instances in the manifold space can

also be used to appropriately penalize the related data, when training task

specific models.

Penalized Regularized Least Squares (PRLSC) for Related Tasks

Consider the standard algorithm for Regularized Least Squares

Classification, with I instances of training data per task. We can learn the

task specific models by minimizing the following loss function:
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min (Yi,- f(x))2 + f 2K
i=l

Now assume that for each task model we have another u instances of

related data. We incorporate the related instances in the loss function, but

we weigh the penalty we pay for errors in this instances by a factor

0 : <1. Then our learning with related data loss function becomes:

m HK 2 i=l i 

The loss function can be rewritten as follows:

1 I+u X
minmE (y f(x ))2 + y li

1 i=1

yU = y, ,x" = x, for i l<

y1 = y, ,x = l x for 1<il+u

(9)

And the dual representation of the problem becomes:

f* (x) = * aK"(x,x,)
i=1
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K" is the (l +u)x(l+u) gram matrix K' = K(x",xf )

Y" = y P + ...y...1 (f *.+u

Replacef(x), take partial derivatives and solve for a*

a = K + 7 ( l + u ) I) yY

(10)

Note, that the scaling by the factoru only works in this derivation, when

f(x) is a linear function.

Penalized Laplacian RLSC (PLapRLS), for Related Tasks

Laplacian RLSC algorithms (Belkin & Niyogi, 2004) have been used

successfully in other semi-supervised learning settings. The loss function of

the Laplacian RLSC penalizes the weighted deviation of the estimated

function f(x), for instances i,j that fall close to each other in the geodesic

space of a manifold (high weight in the manifold space Wj). The manifold

is estimated on both the labeled and the unlabeled data. The additional

loss term accounting for the deviation is:

1 2

i,j=l

(11)

In our problem setting, we already have an estimate for the labels,

namely the labels from another task in the particular instance. Therefore,

we modify the Laplacian RLSC formulation introduced by (Belkin & Niyogi,
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2004) to use the actual labels for the additional instances u, and we again

penalize the related information with a penalty term .

As a reminder a manifold regularization algorithm (Belkin & Niyogi,

2004), for semi-supervised learning with 1 labeled instances and u

unlabeled instances, minimizes the following loss function:

f' = n,,K V(x"" y )+y, 1(u+7 ( 2i)IX1  I ?vY, If)+YAIIJ IIK + f)
i=1 ) ij=L

=argr 1 - V(x,y,f)+yA I I f Lf

Laplacian L = D-W

(12)

In our case we focus in the Laplacian RLSC algorithm, for its algebraic

flexibility:

min 1 " f TLf
ifHK ( 1Y'-f(X+ ll) + (u+ )2

(13)

When we add additional instances u, with labels from related tasks, our

loss function becomes:
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min

1 /(-fx)

fEHK"- (y - (x )) +
Ii=1

2 l+u

I (y,
U i=1+l

I(xi )2+ 1+ Y, frLf-(x))2 ll + )2

(14)

This is equivalent to the following minimization:

minm , K -f(x)) 2 ,A li K Y f 
T Lf

(u + 1)

l+u

S(x) = *K" (x,x,)

y" = y, ,yx = x 1 for i < I

y = /'y, ,x = A'x, for 1 < i < + u

u

(16)
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K" is the (l + u) x (l + u) gram matrix K = K(xf%, x)

Y' = y' ---Y ,97+,..y /-]u
Replacef (x), take partial derivatives and solve for a

a = K +,A11 + l)2 LKu Y

(u +1)

(17)

Evaluation

User Preference modeling

We evaluate the algorithm in a user preference modeling problem on the

publicly available dataset provided by Sawtooth Software. The dataset

includes data from 100 individuals, with 10 metric instances of products

with five attributes (the users provide metric ratings for each product

configuration). We transform the problem to choice based comparisons by

creating the vectors of differences of the instances, and classifying each

comparison with a "+1" or "-1" for a winning and losing comparisons

respectively (see the first chapter for more details).

We experiment with the RLSC algorithm (9),(10) with a subsample of

l= 10 comparisons per individual, and different amounts of related data

u = {10,20,30,50,100} randomly sampled from the other 99 users. We run

the experiment with 10-fold out of sample evaluation each time for each

one of the 100 individuals. Table 4 shows the average accuracy over 10

experiments per individual, for the 100 individuals. The best performance

for each experiment is displayed with bold fonts.
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As we can see from the experiments, more foreign examples imply

smaller optimal I (heavier penalty on the data contributed by other

individuals). Also we can see that adding more data from other users

improves the performance, if the penalty term u is close to the optimal

one, for each number of related data u .

Table 4 Results of RLSC experiments with u instances of related data. And weight a on

loss contributed by the related data. The bold-italic cells, show the best performance.

u=10 u=20 u=30 u=50 u=100

P=0 18.141% 18.090 % 18.380 % 18.040% 18.430 %

p=0.000001 18.268 % 18.117 % 17.847 % 18.152% 18.009 %

p=0.00001 17.897 % 18.123 % 18.217 % 18.182% 18.164 %

p=0.0001 17.999 % 18.135 % 18.067 % 18.089 % 18.036 %

R=0.001 18.182 % 17.835 % 18.092 % 18.140 % 18.135 %

p=0.01 17.986 % 17.905 % 18.043 % 18.023 % 18.174 %

IP=0.1 17.132 % 16.508 % 16.225 % 15.636 % 15.242%

p=0.2 16.133 % 15.520 % 15.157 % 15.323 % 15.276 %

p=0.3 15.998 % 15.602 % 15.918 % 16.304 % 17.055 %

p=0.4 16.581% 16.786 % 17.162 % 17.812 % 19.494 %

p=0.5 17.455 % 17.810 % 18.676 % 19.838 % 22.090 %

p=0.6 18.748 % 19.589 % 20.440 % 22.355 % 25.258 %

With this type of approaches (Evgeniou & Pontil, 2004), (Chapelle &

Harchaoui, 2005), the instances from other individuals contribute the same

amount of information, independently of how similar the other individuals

are, with the one for which we are building the model each time.
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Table 5 Results of Laplacian RLSC experiments with u instances of related data. And weight

u on loss contributed by the related data. The bold-italic cells, show the best performance.

u=10 u=20 u=30 u=50 u=100

p=O 17.50% 18.50% 18.38% 18.20% 17.54%

g=0.000001 17.34% 19.46 % 17.52 % 18.11% 20.10 %

Ip=0.00001 18.30 % 18.20 % 17.54 % 18.46 % 18.10 %

p=0.0001 18.56 % 18.76 % 18.02 % 17.73 % 17.90 %

P=0.001 17.20 % 18.12 % 18.28 % 17.87 % 18.00 %

p=0.01 16.92 % 17.52 % 17.98 % 17.70 % 18.15 %

p=0.1 16.86 % 16.68 % 16.04 % 15.58 % 16.30 %

p=0.2 14.80 % 14.68 % 14.86 % 14.89 % 14.30 %

p=0.3 16.22 % 16.76 % 16.74 % 16.57 % 18.60 %

p=0.4 15.94 % 16.54 % 17.94 % 17.93 % 20.75 %

p=0.5 17.90 % 16.64 % 18.74 % 19.48 % 20.60 %

1p=0.6 17.74 % 20.20 % 20.60 % 22.38 % 25.35 %

We repeat the same experiments with the Laplacian RLSC approach and

show the results in Table 5. We observe the optimal u gives better

performance, than without the Manifold setting. The optimal U = 0.2

seems to not depend on the amount of additional data, and the addition of

more data from other users does not seem to affect the performance

significantly (unlike the results in Table 4). The results in Table 5 seem to

indicate that the instances from the related data have an impact that

depends on the manifold transformation, and the intrinsic penalty term

seems to account well for examples that are neighboring on the manifold,

and have opposite labels.
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Multiple School Exam Score data

One of most commonly datasets used for the evaluation of multi-task

learning algorithms is the Inner London Education Authority (ILEA) dataset,

which contains exams scores for 15362 students from 139 secondary

schools. The input features consist of the following data: year of the exam,

gender, VR band, ethnic group, percentage of students eligible for free

school meals in the school, percentage of students in VR band one in the

school, gender of the school (male, female, mixed), and school

denomination. We expand the nominal features as binary features set, and

add a bias term, so our final training sets have 27 attributes. Most papers

dealing with this dataset, evaluate their training performance on a random

split of 75% of each school data, and test on the remaining 25%. However,

as it was observed in previous papers(Evgeniou, Micchelli, & Pontil, 2005),

the different schools seem to be similar tasks, and in fact, with the

previously reported algorithms, the best performance is in fact achieved by

pooling all the school data together.

In our experiments we evaluate the contribution of related task data in

sparse cases, where the training set is 10%, 25%, 50%, and 75% to also

directly compare with (Bakker & Heskes, 2003), and (Evgeniou, Toubia, &

Pontil, 2007). Also, for the purposes of direct comparison we report the

explained variance on the test set, which is defined as the total variance of

the data minus the sum-squared error on the test set, as a percentage of

the total data variance (Bakker & Heskes, 2003), (Evgeniou & Pontil, 2004).

We ran our experiments for a range of values for the cost on the related

task data p=[ 0.001 0.01 0.5 0.7 0.8 0.9 1], and a range of yj=[0 0.001 0.01
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0.1 0.5 1 5 10]. Note that, when y'=0 the algorithm is equivalent to the

PRLSC case, when p=1 the algorithm treats the problem as a single task

problem, where the data is pooled together from different tasks, and as p

gets closer to 0, it is equivalent to training each school's data separately.

For all the experiments we use a fixed YA = 1, and we repeat each

experiment 10 times over sub-samples with replacement, based on the

'Split' percentages.

For the case where the data set is split to 75% training points vs. 25%

test points, the best performance reported by (Bakker & Heskes, 2003) is

29.5%, and the best performance by (Evgeniou & Pontil, 2004) is 34.37% for

YA = 1, while our PLapRLS approach achieves an explained variance of up to

36.88% Also both (Bakker & Heskes, 2003), (Evgeniou & Pontil, 2004)

conclude that the dataset seems to behave as single task, and they achieve

their best performance by pooling together all the data, as if they are

learning a single task. In our PLapRLS experiments, we note that multitask

nature of the dataset is more apparent when the number of examples per

school is smaller. Our PLapRLS approach can be seen as a generalization of

Hierarchical Bayes (Bakker & Heskes, 2003) and other existing multitask

kernel approaches (Evgeniou & Pontil, 2004), where the loss function

penalizes data from other tasks based on coefficient similarity across tasks,

rather than instance similarity (11) (12). We analyze how our approach

relates to multitask kernel methods, and HB in the next section.

We show details of our results in Table 6, and illustrate the effect of

different settings of the experiment in the graphs in Figure 2, Figure 3, and

Figure 4. As we can clearly see from the graphs, the related task data
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should have less contribution than the task specific data, because the

optimal values of I are usually between 0.5 and 0.9 (Figure 2). Also, the

optimal values for the Laplacian regularization yl are usually between 0.1,

and 0.5, which shows that the graph regularization penalty, while our

ambient space regularization parameter is fixed at yA = 1.

The graphs Figure 3 and Figure 4 show clearly that the absolute

performance increases as we increase the percentage of the task specific

examples, as we move from a 10% split, to a 75% split between training and

test points, per school. But in all cases, the addition of some penalized

geodesic information, calculated on both task specific, and task related data

improves the overall accuracy, independently of the size of the split Figure 3

and Figure 4.

37.00% ---------- ------
37.00% 

-

35.00% --

33.00% -----------

-1-0.001
31.00% 

- 00

-h-0.01
29.00% -
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=[0.001 0.01 0.5 0.7 0.8 0.9 1

Figure 2 Average Explained variance on the ILEA dataset as function of the related data

penalty term I for different Laplacian regularization penalties yV.
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Figure 3 Average Explained variance on the ILEA dataset as function of the Laplacian
regularization penalty y, for different training/test splits.

40.00%/ --- ; --- - - --- -- -- --- ------- - ---

35.00% ------ --

30.00% su--i~ split

25.00% - - - -- - - ------- -- 10%

20.00% -- ---....................... -- . . .. .--- -- 25%

15.00% ........... -- ....................-- --- ------................--- .......-- - -- ---- -

-w-75%

0.00% -
- --- ---.. ----------

0.00%/ ------------------- --- -- - --

=[0.001 0.01 0.5 0.7 0.8 0.9 1]

Figure 4 Explained variance on the ILEA dataset as function of the related penalty term V,
for different splits.
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Table 6 ILEA experiments. The split column describes the percentage split of training vs.

test data. The columns show the results for different penalties p, and the Yi row. The bold

cells show the best performance for that experiment.

Split P 0.001 0.01 0.5 0.7 0.8 0.9 1
Yi

10% 0 11.21% 11.28% 30.97% 30.65% 30.29% 29.76% 26.76%

10% 0.001 11.36% 11.42% 31.21% 30.86% 30.27% 30.00% 26.76%

10% 0.01 11.56% 11.61% 31.25% 30.94% 30.37% 30.13% 26.83%
10% 0.1 12.99% 12.98% 31.50% 31.54% 31.13% 31.06% 27.42%

10% 0.5 14.11% 14.24% 31.24% 32.11% 32.18% 32.26% 28.63%

10% 1 13.49% 13.21% 30.28% 31.84% 32.05% 32.06% 29.47%

10% 5 7.13% 7.41% 22.45% 26.53% 27.15% 27.84% 30.19%

10% 10 5.31% 5.10% 17.44% 21.33% 22.25% 23.48% 29.99%

25% 0 26.07% 26.33% 34.23% 33.97% 33.64% 33.42% 30.22%

25% 0.001 26.40% 26.26% 34.04% 34.05% 33.82% 33.27% 30.31%

25% 0.01 26.54% 26.40% 34.08% 34.10% 33.87% 33.34% 30.37%

25% 0.1 27.44% 27.19% 34.45% 34.36% 34.08% 33.88% 30.90%

25% 0.5 27.07% 26.97% 33.71% 34.45% 34.54% 34.35% 32.10%

25% 1 24.76% 24.85% 32.23% 33.75% 33.92% 34.18% 32.76%

25% 5 16.09% 16.17% 23.31% 27.26% 28.22% 29.50% 32.77%

25% 10 12.86% 12.98% 18.36% 22.16% 23.30% 24.80% 31.82%

50% 0 32.14% 32.39% 35.70% 35.56% 35.65% 35.44% 32.27%

50% 0.001 32.38% 32.37% 35.95% 35.86% 35.42% 35.12% 32.07%

50% 0.01 32.28% 32.32% 35.83% 35.61% 35.49% 35.29% 32.49%

50% 0.1 33.04% 33.01% 36.18% 36.14% 35.73% 35.49% 32.59%

50% 0.5 32.61% 32.63% 35.62% 35.73% 35.82% 35.76% 33.84%

50%' 1 31.19% 31.10% 34.41% 35.17% 35.28% 35.27% 34.11%

50% 5 23.37% 23.66% 26.53% 29.17% 29.84% 30.94% 34.24%

50% 10 19.51% 19.63% 22.06% 24.50% 25.16% 26.66% 33.00%

75% 0 34.18% 34.62% 36.55% 36.64% 36.51% 36.35% 33.33%

75% 0.001 34.16% 34.43% 36.57% 36.65% 36.41% 35.85% 33.37%

75% 0.01 34.56% 34.30% 36.88% 36.56% 36.40% 36.15% 33.26%

75% 0.1 35.37% 34.66% 36.80% 36.79% 36.88% 36.41% 33.75%

75% 0.5 34.58% 34.90% 36.40% 36.74% 36.58% 36.16% 34.74%

75% 1 33.66% 33.65% 35.67% 35.96% 36.14% 36.05% 35.09%
75% 5 26.94% 27.34% 28.60% 30.53% 30.99% 31.60% 34.70%

75% 10 23.27% 23.17% 24.06% 25.89% 26.80% 27.81% 33.50%
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Theoretical similarities with HB, and multitask kernel methods

Existing multitask kernel methods such as the RR-Het algorithm (Evgeniou,

Toubia, & Pontil, 2007) (Evgeniou & Pontil, 2004) implement multitask loss

functions that penalize the deviation from the average task coefficients.

They optimize the task deviation penalty by estimating a covariance matrix

D for the linear coefficients of the kernel function, and rely on polynomial

expansion to support non-linear multitask scenarios. These approaches

estimate the covariance matrix D through cross validation, which is very

similar with the approach described in the first chapter of this thesis. RR-

Het has the additional regularization benefit of solving all the tasks as a joint

optimization (18).

II I

min (xw - y 2 + ywi 0)TlD- (w - wo)

i=1 j=1 i=1

Where i,j are different tasks

(18)

Similarly for the Hierarchical Bayes (Bakker & Heskes, 2003) (Evgeniou,

Toubia, & Pontil, 2007) (Evgeniou & Pontil, 2004) approach, the conditional

posterior distribution of the partworths is:

P (wi Iwo,, D, data) OC
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exp - 2 (w - wo)J
-22 -2 J(Wi - WO

i=1 j=1 i=/

Where i,j are different tasks

(19)

We point the reader to (Evgeniou, Toubia, & Pontil, 2007) for the

derivations of (18) and (19).

Now recall the PLapRLS minimization from (12)(15):

minfeHK i - f() + YAf+ Yi ju+ Wi) (i)- f(Xj))2

(20)

Where i,j are different examples from the same task. We can transform the

loss function of equation (20) to the loss function of equation (18), by

assuming linear models, and block matrix version of the Laplacian such that,

for each task t

Use ft(x)=wtx, in the loss term,

Use ft(x) - fo(x) = (wt - Wo)x in the regularization term

Wij = Dt/(xi - X)wtwT(x, -xj) T

Therefore, the RR-Het and the Hierarchical Bayes approaches can be seen a

special cases of the PLapRLS algorithm, where:

1)f(x) is linear

2)The manifold does not consider the geodesic similarities of each

pair of points, but it rather penalizes them based on a covariance

like matrix D, of the coefficients wt of the estimated linear functions

ft(x) = xwt, for each task t.

3)RR-Het estimates the matrix D through cross validation, or
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Expectation Maximization like iterations (Evgeniou, Toubia, & Pontil,

2007)

Summary and Contributions

We presented PLapRLS, a semi-supervised inspired approach to learning

models for related tasks. Our experiments on benchmark datasets show

that the value of our methods, as well as other multi-task learning

approaches, is more evident, when the task specific datasets have few

examples, and the properly penalized related task examples can enrich the

training set.

Our approach outperforms all published results on the same dataset,

with the same experimental setting. Also, our approach does well without

having to learn the cross-task similarity through iterative EM like

approaches. Instead, we can rely on the regularized manifold learning

setting, but we may need to estimate the intrinsic space regularization

parameters (Belkin & Niyogi, 2004), and the related task penalty through

cross validation. Our penalized Laplacian approach makes no assumptions

about consistent cross task similarities, but it relies on the similarity of

training examples in the manifold space, to estimate the relevance of the

examples from the related tasks.
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CHAPTER 3: SUPERVISED CONTENT WORD EXTRACTION

Introduction

With the plethora of text documents available today in electronic form, we

often need to reduce the textual information, for both end user

consumption, and for other automated applications. By reducing a text

document to a subset of the most informative content words, we can

potentially construct machine generated summaries, use the content words

for information retrieval tasks, or utilize them as informative features in

document classification (Rogati & Yang, 2002). One practical use case for

such an application is the delivery of summarized news articles to mobile

phones with Personal Digital Assistance (PDA) features. While the user may

want to be informed about a specific news item, it is more usable to deliver

smaller summary of regular news article, which can be easily read in a small

screen, rather than a regular multipage news item.

In this chapter we present a supervised learning approach for the

identification of content words from a corpus of news articles and journalist

generated summaries. The informal summaries of the news articles, in our

corpus, usually appear as captions for images relevant to the news article.

Like the rest of this thesis, we approach the supervised content-word

learning problem as a choice based ranking problem. We know the chosen

content-words for the summary, and the ones not-chosen, but we do not

have any information about the partial sort order between the chosen

words, or the partial order between the words in the not-chosen set.
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We evaluate the quality of the predicted content-words by four

different experiments:

a)We evaluate the content words as a feature selection method: we

compare how well we can classify the genre of the articles using only

content words vs. using the whole text of the original article.

b)Information Retrieval to evaluate the usefulness of the content words

as a query method, to retrieve the relevant caption that appeared with

a news story. We evaluate the text similarity between the caption

database and the content-words vs. the whole text of the original

article.

c) We construct summaries based on the identified content-words, and

contact psychophysics experiments to evaluate the quality of the

constructed summaries vs. summaries constructed by a standard

unsupervised summarization technique.

d)Finally we use the content words to query the image database based

on the text description of the images, and contact psychophysics

experiments where we evaluate how appropriate the selected image is,

for an unseen news article. We approach the problem as an information

retrieval task (Salton., 1968) where the query is the news story itself,

and our results will be a list of candidate pictures or photographs.

Overview

In this chapter we present two content extraction engines: WordEx and

SentEx. WordEx attempts to extract the important words from a text
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document. These are the content-words that summarize the content of the

document. SentEx uses WordEx in order to extract important sentences

from the text document. We first describe how WordEx chooses the

content words. We then describe how SentEx uses the output of WordEx in

order to extract sentences from the original text to create cohesive

summaries. Finally, we present four applications for WordEx and SentEx

(classification, information retrieval, summarization, and text query based

image retrieval), evaluating their performance.

WordEx

We use supervised learning to train WordEx to predict content-words on a

corpus of news articles. The news stories have three parts: the news story

text, an image accompanying the story text, and a caption describing the

image. In our corpus, the caption accompanying the image is a summary of

the main news story, and most of the content words of the caption, are

included in the main news story. WordEx therefore takes a news story text

as input and classifies the words in the text into two categories: "content-

words" and "other-words". Words classified as "content-words" are ones

that are in the story text and also in the caption. Words classified as "other-

words" are ones that are in the story text but are not in the caption.

WordEx uses a supervised learning to perform the classification. Our

training set consisted of 9394 instances. Each instance is described by a

feature vector. The current version of WordEx uses nine features. Each

instance is a word, and therefore each of these features is a feature that

describes the word. For example, "the number of times the word appears in
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the story text" is a feature. The feature vector is described in detail in the

following section.

The 9394 training instances were obtained from a set of 938 news

stories. These news stories were taken randomly from our complete data

set described in the next section. Therefore, the stories spanned the whole

time period from November 2001 to April 2003. Since part of the objective

of this research was to construct automated summarization algorithms, we

kept only news articles that had at least 100 words.

From these 938 news stories, with at least one captioned image, we

paired the story text with the union of the caption texts appearing with that

story. There were 938 story texts, and 1138 caption texts. Therefore, there

were more captions than story texts because some news stories had more

than one image, and therefore more than one caption. Each word in a story

text is an instance that can be used for training. All the story texts have a

total of 187882 words. Each word can be classified as a "content-word" or

"other-word", depending on whether it also appears in one of the captions

associated with the story text. From these 187882 words, 15224 of them

were content-words, and 172658 of them were other-words. Based on this

definition, our corpus has on average 8% of content-words, and 92% of

other-words.

To train WordEx, we did not use all of the 187882 instances. We used a

5% balanced sample. As can be seen in Table 7, only 9394 instances were

used, with a roughly equal number of content-words and other-words.

-81-



Table 7 The training set used to train WordEx

The feature vector

The story text given to WordEx as input is split up into tokens. Each token is

a single word. If a word appears more than once in the text, only a single

token is created for that word. A list of 524 stop words is used to remove

common words that provide little or no information. For example, words

like "and", "if", and "or" are in the list of stop words. No stemming is

performed in this version of WordEx. After the stop words are removed, a

feature vector is created for each of the remaining words. The following list

describes the nine features present in the feature vector of each token.

1. The number of times the word appears in the whole story text.

2. The number of times the word appears in the title of the story text.

3. The number of times the word appears capitalized in the body of the

story text.

4. The number of times the word appears capitalized in the title of the

story.

5. The part of speech of the first occurrence of the word. (Noun, Verb,

etc.) (Brill 1992)

6.The position of the first appearance of the word in the whole story

text.
-82-
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7. The length of the word in characters.

8. The TFIDF score of the word. (Salton 1991).

9. The Information Gain score of the word (Mitchell 1997)

For example, the feature vector created for the word "minister" would be:

3, 1, 1, NNP,2,8,11.669298, 0.17626

The first feature has the value of 3, and it indicates that the word

"minister" appeared three times in the whole story text (once in the title,

and twice in the body of the story). The second feature has the value of 1.

This indicates that the word "minister" appears once in the title of the story.

The third feature has the value of 1, because the word "minister" appears

capitalized once in the body of the story text. The fourth feature also has

the value of 1, because the word "minister" appears capitalized once in the

title of the story.

The fifth feature indicates the part of speech. The value NNP means that

the part-of-speech tagger (Brill, 1992) recognized this word as a proper

noun.

The sixth feature has the value of 2. This is the position where the word

"minister" appeared for the first time in the whole story text (title

included). The word "minister" has eight characters (letters). This is

indicated by the value 8 in the vector.

The last two features are the TFIDF and Information Gain scores.
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Data

The data we used for our experiments was taken from the Yahoo! News

website (Yahoo!). We found the data from this site appropriate because the

captions of the images were significantly larger than those of other on-line

news sites.

We collected news stories with their images and captions within the

time period of 18 months: from November 2001 until April 2003. During this

time we collected a total of 35766 news stories. For all of these, we stored

the story text and the caption text. In order to conserve disk space, we only

stored the images of 3695 of these stories, because the actual images were

not needed for the actual construction of the machine learning algorithms.

The images were only used for evaluation purposes.

Details

On average, each story text has about 565 words, with stories ranging from

as low as 20 words, to as high as 2000 words. Each story has a title. On

average, each title has 7 words, with titles ranging from 1 to 16 words.

On average, each caption has about 50 words, with captions ranging

from 10 to 140 words. Each news story usually appears on-line with one

image. Sometimes, however there can be two images. Each image has its

own caption. We say these captions are associated with the news story,

because the images they describe appeared on-line as part of the news

story.
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SentEx

SentEx calculates the average content-word score for each sentence based

on the content-words that each sentence contains. Each content-word in

the sentence has a confidence score, produced by the base classifier used in

WordEx. The formula for the score of each sentence is:

S= - M Ci
n

S is the score of the sentence. The sentence has a total of n words, and k

content-words. Each content-word is numbered from 1 to K. Ci is the

confidence score of word i. The summary created by SentEx is the collection

of the highest-scoring sentences. If SentEx is asked to create a 20%

summary for example, it returns 20% of the original sentences, with the

highest score.

Evaluation of Applications

We evaluate the quality of the predicted content-words by four different

experiments:

1. Classification: We test how well we can perform multiclass classification

based on the content-words only vs. using the whole text of the original

article

2. Information Retrieval: We test how well we can retrieve the relevant

caption that appeared with a news story, by evaluating similarity between

the caption database and the content-words vs. the whole text of the

original article
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3. Summarization: We construct summaries based on the identified

content-words, and ask users to evaluate the quality of the constructed

summaries vs. summaries constructed by a standard unsupervised

summarization technique.

4. Image Retrieval: We use the content-word predictions to automatically

retrieve an appropriate picture or photograph for a news story, by

evaluating the similarity with the caption database, stored with the images.

Table 8 Classification accuracy using the complete text of the articles vs. the content-words

only

Size of Percentage

training Accuracy

set full story content-words

10% 67.13 63.25

20% 73.15 69.92

30% 76.2 72.59

40% 75.92 72.89

50% 75.92 72.7

60% 74.94 71.68

70% 73.64 70.36

80% 70.73 67.61

90% 63.75 60.18

Classification

We took a corpus of 294 news stories, each one belonging to one of six

categories: Business, Entertainment, Health, Politics, Sports, Technology.

We performed classification on these stories using Naive Bayes. Some of the
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stories were used as the training set and the rest as the test set. We

performed 100 iterations of the test and took the average percentage

accuracy. Then we extracted the content-words from each news story and

performed exactly the same classification, but this time instead of using the

full story, we used only the content-words. We used a varying size for the

training set and test set. Table 8 shows the results. We can see that the

classification results are slightly worse when using only the content-words.

However, the difference is statistically insignificant with p>0.99

Information Retrieval

The caption of the image can also be thought of as the summary of the

news story. We can use the content-words extracted by WordEx to retrieve

this caption. Once the content-words are predicted, we use them as the

input to a TFIDF Information Retrieval query, which in turn returns a ranked

list of candidate captions. Table 9 shows the results for two indexed data

sets: a small data set consisting of 938 news stories, and a large data set

consisting of 11019 news stories. We compare two different retrieval

queries:

1)the full story text (on average, each query contains 560 words)

2)the predicted content-words, which were the output of WordEx

(on average, each query contains 62 words)

We observe that in the Information Retrieval task, both the full text, and

the content-word approach have worse performance, when used on the

larger index. This seems to be a weakness of the TFIDF approach used for

the similarity evaluations, but it warrants more investigation. The
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performance of the two methods is the same with p>0.99 in the small data

set experiment. In the larger data set experiment, (although the two

approaches have again similar percentages of correctly retrieved captions),

the performance of the two methods is statistically significantly different.

Table 9 Number of correct captions retrieved using the full story, the predicted content-
words and the actual content-words as the query

Number of correct captions

Small data set Large data set

(938 news stories) (11019 news stories)

Rank full Predicted full predicted
story content-words story content-words

1st 599 599 3024 2852

2nd 81 83 113 1193

3rd 36 38 58 719

4th 18 11 39 530

5th 15 15 19 368

total 749 746 5897 5662

percentage 80% 80% 53% 51%

Summarization

We used SentEx to create a 20% summary of 99 news articles. These news

articles were downloaded from the Yahoo news web site between 11 Nov

2001 and 25 Nov 2001. We evaluated our results by asking humans to

evaluate them. We created a web interface where evaluators could rate

how good the summary was. The evaluator was presented with a news

story and summary, chosen randomly from the 99 news stories. The

evaluator could choose from four options: poor, adequate, very good, and
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cannot decide. The results are presented in Table 10. The table compares

our results to those obtained by using OTS, which is described below.

Open Text Summarizer (OTS)

The Open Text Summarizer (OTS 2003) is an open source library that uses a

rule-based system with unsupervised scoring techniques to grade sentences

for text summarization. The OTS grader consists of three components:

1)A syntax grader

2)A term count grader, and

3)A term frequency grader

Table 10 Psychophysics experiments for the Text Summarization task using SentEx vs. OTS.

We note that the two sets of the responses differ significantly (p>0.95) and the SentEx user

ratings are better than the OTS ratings.

OTS SentEx

Rating number of percentage number of percentage
ratings ratings

very good 27 43% 41 48%

adequate 24 38% 30 35%

poor 12 19% 14 16%
cannot 1 (ignored) (ignored) 3 (ignored) (ignored)
decide
total 63 100% 85 100%

One key feature of the OTS is that it runs a stemmer before it assigns

weights to the different words to count derivatives of the same words

properly. Before OTS selects the content-words, it removes frequent English

words, based on a predefined stop-list. The syntax grader gives higher

scores to the first line or the title of the document, if it has one, and the first
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line of each paragraph. The term count grader, counts the number of times

a word appears in the document, and the term frequency grader discounts

the weight of words that appear in multiple documents frequently, by

calculating the TFIDF score.

Image Retrieval

In the final experiment we use the content-word predictions to

automatically find an appropriate picture or photograph for a news story.

On-line news sites usually accompany their news stories with an

appropriate picture or photograph. To keep the terminology consistent, the

name we will use for these pictures or photographs is images. On most

news sites, these images also have a caption that describes the image in the

context of the news article.

Therefore, we construct a database of past news articles, with the

following components per article:

1)The story text - the news story

2)The image - picture, photograph, etc.

3)The caption text - the caption describing the image

In this set of experiments, we train supervised algorithms that learn how

to select the appropriate image file for a new article, from a database of

previously stored images with their captions.

In this chapter we will only use a text-based approach. We do not

perform any image processing. The only data we will use to solve the stated

problem is the caption text and the story text. We try to predict if an image
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is appropriate for a certain story, by using the caption of the image, and not

the image itself.

Like in the Information Retrieval experiment described above, we use

the text similarity between the predicted content-words, and the available

captions in the corpus, to select the closest caption from our corpus. We

then select the image that was associated with the stored caption, and

attach it to the new article.

Table 11 Psychophysics experiments for the image retrieval experiments

actual articles predicted articles

Rating number of percentage number of percentage
ratings ratings

very well 339 45% 311 40%

adequately 239 32% 228 30%
poorly 176 23% 226 30%

cannot decide 46 (ignored) (ignored) 71 (ignored) (ignored)

total 754 100 % 765 100%

Table 11 shows how human evaluators rated the images that our

algorithm selected. We compared this to how they evaluated articles that

appeared on the actual news site. An actual article is a story text, together

with the actual image that was used on the on-line news site. It is a news

story just like it appeared on-line. A predicted article is a news story text,

together with an image that was predicted by our algorithm. The algorithm

uses WordEx to predict a suitable image for the story text.
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We had 65 people taking part in the evaluation. In total, 1519 articles

were ranked. We do not consider the "cannot decide" response as an

answer. We can see that although the rankings for the predicted articles are

slightly worse than those of the actual articles, the two results are

statistically similar with p>0.95

Summary and Contributions

We presented a supervised ranking learning approach for content-word

extraction. We created statistical and syntactic information features, which

we used to train supervised algorithms to predict the content-words that

appear in the journalist generated summary of each article. We evaluated

the quality of the predicted content-words by running four different

experiments: a) as a feature selection method, for classification b) as n

Information Retrieval to evaluate the usefulness of the content words as a

text query method, c) as an automatic summarization approach, where the

content words identified the content sentences, and as d) as a query

method for image retrieval.

Our approach can reduce the size of the text to about 10% of the original

text, and still maintain the important content of the original text. This has

been shown using the four evaluation methods above. When we used

WordEx to extract content sentences for summarization, users rate the

summarization quality significantly higher than a standard unsupervised

summarization method. The same supervised content-word learning

approach also allowed us to build a system that retrieves relevant images

files for news articles, from a database collected images with textual

descriptions. In our psychophysics evaluation, the users rated the retrieved
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image quality with statistically similar satisfaction ratings (P>0.95) as they

rated the original samples from the corpus.
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CHAPTER 4: COMPANY ENTITY MATCHING

Introduction

In this Chapter, we study the problem of fuzzy company entity matching

between disparate databases. The problem arises from manual entry of

company name records in different Enterprise Resource Planning systems,

like Accounts Payable, Accounts Receivables, Customer Relationship

Management, Supply Chain Management and other corporate systems.

When a corporation tries to integrate such systems, to build data

warehouses or to rationalize their databases, they find out that not only do

they have duplicate records of the same corporate entity within the same

database, but they also have different fields between databases, different

abbreviations, misspellings, and other issues that make integrating these

data sources through standard relational database operations impossible.

In this chapter we study how to automate the multi-field record linkage

problem by treating it as a supervised ranking problem.

The Company Record Matching problem

Most ERP systems, which aggregate corporate entity information, try to

capture the basic company identification information that would help a

human user uniquely identify a particular company record. With rare

exceptions the captured fields include the fields shown in Table 12. More

recent files may also include electronic contact information, like contact

email address or a company URL. In the files we have processed those

cases are still a rare exception.
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Table 12 Example business record fields

Field Example 1 Example 2 Standardized
Record

Business Name Open Ratings ORI Open Ratings,
Incorporated

Phone Number 781-895-6109 781-895-6109 +1-781-895-6100
Address Field 1 200 West Street 200 West Str 200 West St
Address Field 2 First Floor
City Waltham Waltham Waltham
State MA MA MA
Postal Code 02451 02451-1121
Country US USA

Information service providers like D&B, Experian, InfoUSA, Bureau van

Dijk, Creditlnfo, and Open Ratings provide such reference files cleansed and

from duplicates, and with standardized records indexed by unique

identifiers. They also provide data cleansing services with automated

algorithms, mostly built on decision trees. The market leader in the

business information space is D&B which indexes its records by the Data

Universal Numbering System (DUNS), a unique business identifier currently

required for doing business with US government, the European Union, and

the United Nations. The algorithms presented in this chapter are compared

on the proprietary D&B matching engine for benchmarking purposes.
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Table 13 Typical matching problems

Field Record 1 Record 2 Description
Business Name Open Ratings ORI Acronyms
Business Name Open Ratings OpenRatings Merged

Words

Business Name Open Ratings Operating Misspellings
Business Name SideStep Kayak.com Different

Names;
Acquisition

Business Name General Electric NBC Different
Name;
Subsidiary

Business Name IBM Intern. Bus. Abbreviation
Mach.

Business Name IBM Corp. I.B.M. Abbreviation;
Missing
Words

Phone Number 781-895-6109 781-895-6100 Different
phone
number.
Sometimes
both correct,
so likely to
belong to
same block.

City Boston Missing City

City N. York New York Abbreviation

City City of Cambridge Cambridge, Different
City of word order

City Boston Waltham Different
Cities. Mistake
or Change of
Address.

Postal Code 02139 02142 Different
Postal Codes;

Postal Code 02451 Missing Postal
Code
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The business problem of company name matching problem arises in

three frequent use cases:

1)Merging multiple corporate databases to a single warehouse.

2)Data cleansing of a corporate database, by using a reference file.

3)Data enrichment by combining two reference files, that provide

different business characteristics. For example, we may want to

enrich a reference file with financial data, with socioeconomic

characteristics, like 'Minority owned', 'Woman Owned', and 'Small

Business Status' data.

The first problem is usually approached by cleansing the individual

databases based on a reference file, and indexing the records on the unique

identifier provided by the reference file. Therefore all three use cases are

essentially an information retrieval problem, where the records of the less

standardized file are matched on more a standardized one, and enriched

with a unique identifier.

Related Work

The record linkage problem has been investigated for decades (Fellegi &

Sunter, 1969) (Newcombe, 1967)in several domains, including company

entity matching, name matching for census data, and medical records

matching. Most of the literature focuses on rule based methods, statistical,

or machine learning methods for training algorithms with little labeled data

from a pair of two files (Ipeirotis, Verykios, & Elmagarmid, 2007). The

objective is to match the two files, and then merge their fields. Several

methods spanning the whole spectrum of machine learning have been
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tried, including clustering methods with Expectation Maximization

(Dempster, Laird, & Rubin, 1977), semi-supervised learning (Winkler W. E.,

2002), tree based methods (Cochinwala, Kurien, Lalk, & Shasha, 2001), and

SVMs (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003). Our

approach is different from the existing methods in that we want to be able

to have one general algorithm, which will work well enough on unseen

input files requiring cleansing. Each record of the query file represents a

separate multri-attribute query, for which we want to find automatically the

most likely correct match. Like the previous chapters of this thesis, our

record linkage application is approached as a ranking problem, where the

objective is to identify the most likely candidate to be a correct match for

the company referred to in the query.

Information Retrieval for Company Record Matching

One approach to the Company Record Matching problem would be to build

a text index, and run fuzzy queries for each candidate name. While this

approach produces high quality candidates, it is not scalable for large

database merging tasks, because the scoring algorithm is not optimized for

the particular problem. When we want to merge databases with millions of

records, the objective is to select single unique matches with extremely high

confidence of correctness. We propose a supervised learning approach

where the learning algorithm can distinguish the most likely candidate to be

correct.

Our approached is based on creating several distance metric scores that

measure the likelihood of two business records being dissimilar, based on

typical matching problems, such as the examples shown on Table 13. Then
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we train a supervised learning algorithm, on the vectors of differences of

the labeled examples, to learn a ranking function, similar to the examples

described in the previous chapters of this thesis. Finally, we estimate a

threshold for separating the correct matches using cross validation, so that

we have zero false positive matches on the training set.

Implementation details

Indexing the reference file

The system in implemented by using the Lucene package from the Apache

project. Lucene is a customizable text indexing, and search engine, that

allows us to implement the distance metrics needed for Company Matcher

problem. Before the reference filed is indexed, we preprocess it so that the

input name is standardized: we convert common tokens like "Inc." and

"Corp." and converted to "Incorporated", "Corporation". We standardize

US addresses based on the United States Postal Service guidelines, so for

example we convert "Street", and "Str" to "St". Additionally, words are

unpluralized, and numbers are replaced with numeric representations. For

example "One IKEA Way" is stored as "1 IKEA Way". The address field is

parsed into the numeric part, the street name and PO Box number, if they

are present. We discard floor, and suite numbers.

Score metrics for candidate matches

Then we create candidates for the records in the input file to be matched

using fuzzy search queries. The queries standardize the input record, using

the same preprocessing step that we used to index the reference file. The

queries are hierarchical, the first query is the most restrictive and the last
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one is the loosest, until we generate at least 25 candidate matches per

input record.

We generate our features by calculating a number of metrics between the

input and the candidate index records:

Levenshtein distance: The Levenshtein distance measures the edit

distance between two strings. The metric counts the minimum number of

additions and deletions required to create the second string from the first

one. We calculate the Levenshtein distance for the standardized name. We

also calculate the Levenshtein distance for the standardized name with its

tokens alphabetically sorted. The distances on the alphabetically sorted

tokens help create informative similarity metrics in cases where the tokens

are sorted differently in the two sources, or when some token may be

missing. We also calculate the Levenshtein distance of the metaphone

string of the standardized name, the full address, the alphabetically sorted

tokens string of the name, and of the full address (to account for cases

where for example the "City" field is found in the "Address Field 1"), the

street name, the metaphone of the address, street number, Po Box, city,

the metaphone of the city, and the zip code. For all of the above, we also

calculate the normalized distance (the Levenshtein distance is divided by

the length of the longer of the two records), and the Levenshtein distance

between the least frequent tokens in the input and index records.

Cosine similarity of TFIDF weighted vectors representing the tokenized

Business Name, the full address, the street name, the address number, PO

Box, city, and the zip code.
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Jaro-Winkler string similarity (Winkler, 2006) metrics for the full name,

the full address, the street name, the city, and for the least frequent tokens.

The Jaro-Winkler metric is mostly used for short string similarity

comparisons, particularly for record linkage problems in large databases like

the census data. The metric is normalized so that a score of zero means the

compared strings are totally different, while a score of one means that they

are identical. We include more information about the Jaro-Winkler metric in

the Appendix II section.

We also track as a nominal attribute the number queries required to

generate at least 25 candidates, before terminating the retrieval of

candidates. The depth of the queries required to retrieve enough

candidates represents the types of fuzzy queries that were required.

Additionally, we maintain binary attributes indicating whether the street

address for either the input or the index record is blank, and a binary

attribute for the presence of the street number.

Supervised ranking learning for matching

Our matching algorithm consists of a two stage prediction process:

1)A binary classifier makes a prediction whether the candidate

matches are classified as 'match', or 'nomatch'. If there is a single

candidate classified as 'match', and all other candidates are

classified as 'nomatch', we assume that we have a single unique

match, and link the records as matched. If all the candidates are

classified as 'nomatch', we assume the record does not exist in the

database corpus used to create the index.
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2)If there is more than one candidate in the 'match category', then

we need to select a winner as the potential match. We use the same

approach described in the first chapter of the thesis (3)(4), where we

train a supervised algorithm on the vectors of differences of the

different candidate records.

Experiments

We manually created a training set of 20000 positive examples, from two

reference files, from two separate information providers of US company

data. SA, the first reference file, includes 11 million US businesses, with

geocoding data, and PF, the second reference file, contains 13 million

businesses with socioeconomic and demographic data fields.

We indexed the PF reference file, and ran queries to generate the score

metrics for the 20000 positive examples from the SA file. Then we removed

the positive examples from the PF file, and ran the same 20,000 queries to

generate the negative examples for the two training files above. We use as

our negative examples the top 20,000 records based on the Lucene

Similarity metric.

We train one overall model, that includes a binary classifier for

match/nomatch, and a ranking model for choosing the best match, when

there is more than one potential matching record. We ran files from three

different industries for the purposes of data cleansing, and report the

results in Table 14
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Table 14 Company Matcher performance

SA file Defense Industry Tools manufacturer

suppliers suppliers

Correct matches 17608 17930 3119

Mismatches 846 163 198

Correct non 14150 18329 3265

Matches

False non matches 159 167 388

Precision 95.42% 99.10% 94.03%

Recall 99.10% 99.08% 88.94%

Summary and Contributions

We presented a supervised ranking learning approach to the record linkage

problem of company entity matching. The system produces high enough

accuracies to allow automated record linkage, and data cleansing of

corporate databases. The approach combined ideas from the first two

chapters of this thesis. In a the second chapter we created features that

described the potential significance of each keyword based on syntactical,

formatting, and statistical, and structural text metrics, and then built

supervised learning algorithms that predicted the content words. In this

chapter we generated features that described the phonetic, and

orthographic characteristics of the different tokens, and used standard

phonetic similarity, and string distance metrics to create measures of
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similarity for the different company entity descriptors. Then, we created

supervised ranking learning algorithms, which relied on classifying vectors

of differences to rank likely candidates for a record linkage, like the task

specific ranking learning approach of the first chapter. Our approach

allowed us to link two multimillion record databases, and to automatically

standardize supply base data files from different industries.
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SUMMARY AND THESIS CONTRIBUTIONS

As the available information in computer systems and the internet has

exploded in size, it has become a difficult and time consuming task for

humans to process and filter through the available information to find what

human users are looking for. When users search for information, they

would like to receive the most likely results to satisfy their query first. This

thesis focused on ranking algorithms in applications that try to alleviate the

information overload problem.

To summarize, the contributions of the thesis consist of two parts. First we

examined ranking problems, as supervised learning problem. We

generalized metric based, and choice based ranking problems, as well as

information retrieval problems, as a supervised learning binary classification

problem of pairwise feature differences. The binary classifier of pairwise

differences is trained to identify the winning vs. the losing configuration of

the two examples compared. We develop preference modeling, supervised

content-word extraction applied the approach to text summarization, and a

record linkage application, using this framework of ranking applications.

The second contribution of the thesis was motivated by the problem of

learning from related tasks, specifically in the domain of user preference

modeling. Such algorithms are useful when we have few examples per

tasks, but many relatively similar tasks, which can inform the training of the

task specific models. We developed algorithms that utilize regularized

manifold learning, to account for the similarity of the foreign task data. We

run experiments on real user datasets for preference modeling, and a
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benchmark dataset for multi-task learning (ILEA), on which our proposed

algorithm outperforms the currently reported algorithms in the literature of

multi-task learning (Evgeniou, Toubia, & Pontil, 2007).
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APPENDIX I: RANKING METRICS AND LOSS FUNCTIONS

Throughout this thesis, we have solved different ranking problems by

creating loss functions that minimize the number of discordant items. We

show in this space that such minimizations also optimize several rank

correlation metrics used in statistics, and information retrieval applications.

Kendall's r coefficient

P-Q 2P 2Q

P+Q n)

Where:

P is the number of concordant pairs

Q is the number of discordant pairs

Value ranges from -1 for reverse rankings to +1 for same rankings.

O implies independence

Spearman's rank correlation

One frequently used metric from statistics is the Spearman's rank

correlation p. The computation of p assumes that we first convert the raw

scores of two observations to rankings, and then calculate the rank

differences d. Then we calculate p as:
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6 d,
n(n 2 -1)

From the definition of d:

d (p 2  p,2 2 <(Q+n(n+)/2)2+i 2

Therefore:

6 d2 >

p=ln(n 1
n(n2-1)

6[(Q+n(n+1)/2)2 +Z2

n(n 2 -1)

Therefore, when we minimize the number of discordant pairs: Q, we can

get a higher lower bound for p,

Mean Average Precision3

In Information Retrieval the Average Precision of a system measures the

relevance of a truncated list of candidate items, and their relative ranking

produced by the system.

Therefore the Mean Average Precision is defined as:

3 For a more detailed derivation of this bound, see (Joachims, 2002)
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Mean(AvgPrec) = 1 I
n , p

where:

pi = rank of sorted retrieved item i

n = number of ranked retrieved items

A permutational computation shows that:

p, =Q+n(n+1)/2
i=1

Q = number of discordant items

We can calculate a lower bound on the Mean Average precision by

solving the following minimization:

1"
min

n =p,

subject to p, < pJe NVi < j

Use Lagrange multipliers:
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minL= - +/II p,-Q-n(n+1)/2
fl1i=1 i i= 1

aL i -2 iS- - p, + u = O p,
dpi n nl

L- -+Ipt I-Q-n(n+)/2 =2,
a i=1 n

aL- _ l -[ Q+n(n+1)/2]= 0 == I1

Mean(AvgPrec) Xi [Q+n(n+1)/2

ne i -p Q+n(n+1)/2]

Iji1[Q+n(n+1)/2]]

Therefore minimizing Q also maximizes the lower bound on the Mean

Average Precision.
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APPENDIX II: STRING SIMILARITY METRICS

Levenshtein Distance

The Levenshtein Distance measures the edit distance between two strings,

by counting the insertions, deletions, and substitutions required to create

one string from the second one(Levenshtein, 1966).

Consider the following example from (Levenshtein distance)

1. kitten -- sitten (substitution of 's' for 'k')

2. sitten -) sittin (substitution of 'i' for 'e')

3. sittin 4 sitting (insert 'g' at the end).

Therefore the Levenshtein Distance of the strings 'kitten' and 'sitting' is

equal to 3.

Jaro-Winkler string similarity

The Jaron-Winkler string distance (Winkler W. E., 1999) is a measure of

similarity between two strings, which is best suited for comparisons of short

strings, like person names. Given two strings s1, and S2, their Jaro-Winkler

distance dw is (Jaro-Winkler):

dw = dj + lp( - dj)

Where:

dj = + ~ + the Jaro distance
- 3 Is1l IS21 M

m is the number of matching characters

t is the number of transpositions
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1 is the length of common prefix, up to a maximum of four characters

and p is a scaling factor controlling the weight of common prefixe, usually

set to 0.1

Soundex

The soundex algorithm is a phonetic algorithm for the English language,

trying to encode different spellings of the same sounds into the same

encoding. Soundex was developed and patented in 1918, and used

extensively by the US government (Russell, 1918) as a metric for fuzzy text

matching for census data. The soundex representation consists of the first

letter of a word, followed by three digits representing the first three

consonants of the word. In the example above, 'openratings' has a soundex

of 0156, while the soundex of 'operating' has a soundex of 0163. The

consonant mapping table is shown on Table 15

Table 15 Soundex Consonant Mapping

Consonant Soundex mapping

b, f, p, v 1

c, g, j, k, q, s, x, z 2

d,t 3

I 4

m, n 5

r 6
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Metaphone

The Metaphone algorithm was developed as an improvement of the

soundex algorithm (Philips, 1990). Unlike the soundex encoding, it uses

variable length keys, and it uses a larger set of English language rules, to

better represent the English pronunciation.

Table 16 Metaphone Implementation from Ruby's Text library

[ /([bcdfhjklmnpqrstvwxyz])\1+/,
'\1' ], # Remove doubled consonants except g

# [PHP] remove c from regexp.

[ /^ae/, 'E' ],

[ /^[gkp]n/, 'N' ],

[ /^wr/, 'R' ],
[ /^x/, 'SE ],
[ /^wh/, IWI ],
[ /mb$/, 'M' ], # [PHP] remove $ from regexp.

[ /(?!^)sch/, 'SK' ],
[ /th/, 'X' ],
[ /t?chlsh/, 'XI ],
[ /c(?=ia)/, 'X' ],
[ /[st](?=i[ao])/, 'X1 ],
[ /s?c(?=[iey])/, 'S' ],
[ /[cq]l, 'K' ],
[ /dg(?=[iey])/, '3' ],
[ /d/, 'T ],
[ /g(?=h[^aeiou])/, ],
[ /gn(ed)?/, 'N' ],

[ /([^g]|^)g(?=[iey])/,
'\13' ],

[ /g+/, 'K' ],
[ /ph/, 'F' ],
[ /([aeiou])h(?=\bl [^aeiou])/,

'\1' ],
[ /[wy](?![aeiou])/, ],
[ /z/, 'S' ],
[ /v/, 'F' ],
[ /(?!^) [aeiou]+/, ],
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Lucene Similarity

The Lucene Similarity score is a TFIDF based similarity metric, based on

summing the similarity scores between the query terms, and the terms

found in the candidate document. For more details, we include the javadoc

documentation of the Luceme Similarity Class in Table 17

Table 17 Javadoc for Lucene Similarity Class

public abstract class Similarity

extends Object

implements Serializable

Expert: Scoring API.

Subclasses implement search scoring.

The score of query q for document d correlates to the cosine-distance or dot-product

between document and query vectors in a Vector Space Model (VSM) of Information

Retrieval. A document whose vector is closer to the query vector in that model is scored

higher. The score is computed as follows:

score(q,d) = coord(q,d) - queryNorm(g) (tf(t in d) • idf(t)2 * t.getBoost() norm(t,d))

t in q

where

1. tf(t in d) correlates to the term's frequency, defined as the number of times term t

appears in the currently scored document d. Documents that have more

occurrences of a given term receive a higher score. The default computation for

tf(t in d) in DefaultSimilarity is:

tf(t in d) = frequency'

2. idf(t) stands for Inverse Document Frequency. This value correlates to the inverse

of docFreq (the number of documents in which the term t appears). This means

rarer terms give higher contribution to the total score. The default computation

for idf(t) in DefaultSimilarity is:
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numDocs

idf(t) = 1+ log(

docFreq+l

3. coord(q,d) is a score factor based on how many of the query terms are found in

the specified document. Typically, a document that contains more of the query's

terms will receive a higher score than another document with fewer query terms.

This is a search time factor computed in coord(q,d) by the Similarity in effect at

search time.

4. queryNorm(q) is a normalizing factor used to make scores between queries

comparable. This factor does not affect document ranking (since all ranked

documents are multiplied by the same factor), but rather just attempts to make

scores from different queries (or even different indexes) comparable. This is a

search time factor computed by the Similarity in effect at search time. The default

computation in DefaultSimilarity is:

1

queryNorm(q) = queryNorm(sumOfSquaredWeights)

sumOfSquaredWeightsA

The sum of squared weights (of the query terms) is computed by the query Weight

object. For example, a boolean query computes this value as:

sumOfSquaredWeights = g.getBoost() 2 ( 7 t.getBoost() 2

t in q

5. t.getBoost() is a search time boost of term t in the query q as specified in the

query text (see query syntax), or as set by application calls to setBoost(). Notice

that there is really no direct API for accessing a boost of one term in a multi term

query, but rather multi terms are represented in a query as multi TermQuery

objects, and so the boost of a term in the query is accessible by calling the sub-

query getBoost().

6. norm(t,d) encapsulates a few (indexing time) boost and length factors:

o Document boost - set by calling doc.setBoost() before adding the

document to the index.

o Field boost - set by calling field.setBoost() before adding the field to a
document.

o lengthNorm(field) - computed when the document is added to the index
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Information Gain

The information gain metric measures the total entropy for an attribute, if

for each of the attribute values a unique classification can be made for the

result attribute.

InfoGain(Class, Attribute) = H(Class) - H(Class I Attribute)

The higher the information gain of an attribute, the more valuable for

the purposes of feature selection for classification.
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in accordance with the number of tokens of this field in the document, so
that shorter fields contribute more to the score. LengthNorm is
computed by the Similarity class in effect at indexing.

When a document is added to the index, all the above factors are multiplied. If the
document has multiple fields with the same name, all their boosts are multiplied
together:

norm(t,d) = doc.getBoost() - lengthNorm(field) - f.getBoost()

field fin d named
as t

However the resulted norm value is encoded as a single byte before being stored.
At search time, the norm byte value is read from the index directory and decoded
back to a float norm value. This encoding/decoding, while reducing index size,
comes with the price of precision loss - it is not guaranteed that
decode(encode(x)) = x. For instance, decode(encode(0.89)) = 0.75. Also notice that
search time is too late to modify this norm part of scoring, e.g. by using a different
Similarity for search.



TFIDF

The TFIDF(Term Frequency Inverse Document Frequency) metric (Salton,

1991) is a common Information Retrieval weight for measuring how

important a token is to a document, given a corpus of documents. The

importance increases if the word has a higher frequency in the document,

but it decreases if the same word appears in many documents in the

corpus.

ff n,j IDI

tfidfi nj Idj: t E d

Where

nij : the number of occurrences of the considered term in document dj

IDI: total number of documents in the corpus

I (d: t 1E dj : number of documents where the term ti appears
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