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Abstract

The theory of signal propagation in longitudinal one-dimensional electron beams

is reviewed. The kinetic power theorem is proven and used for the characterization of

longitudinal-beam microwave amplifiers in terms of matrices of lossless networks.

The properties of noise in electron beams are studied. The two noise parame-

ters, invariants with regard to lossless beam transformations, are derived from a

simple theorem of matrix algebra. Equivalent noise impedances are defined. As a

result, noise transformations in an electron beam can be handled by conventional

impedance transformation methods.

The noise theory is then applied to derive the expression for the minimum noise

figure of longitudinal-beam tubes. Applications to practical cases are discussed.
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Preface

In the summer of 1955 a special course was given at Massachusetts Institute of

Technology on "Noise in Electron Devices. " Research workers from industrial

research laboratories and from M. I. T. and other universities presented various

topics on noise, including their own most recent work. The present report is based

on notes used by the author for the course.

An attempt was made in the original notes to present a coherent story on noise

in electron beams, starting from very simple fundamental notions. This attempt is

continued in this report. The work done by the author and his friend and co-worker,

F. N. H. Robinson, forms only a fraction of the material presented here. Yet,
inclusion of other material was necessary in order to achieve clarity of presentation.

It is the very inclusion of such material which, it is hoped, will make this report fill

a need that cannot be met by short journal articles. It is hoped that in presenting the

work of others proper credit has been given. If it has not, the author begs forgive-

ness for such unintentional omissions.

Grateful acknowledgment is given to Professor L. J. Chu, who made possible

the results reported here through his own fundamental work. The major part of the
author's work was carried out under Prof. Chu's personal guidance and supervision.
All of the work had the benefit of his advice.

H. A. Haus

August 1, 1956
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1. ANALYSIS OF SIGNAL PROPAGATION ALONG ELECTRON BEAMS

1. 1 INTRODUCTION

The power amplification of a conventional triode is based on the control of the

current from the cathode by a potential applied to the grid. At low frequencies the

control of the current can be achieved without expenditure of power if the grid current

is reduced to zero by a proper bias. The electron flow can be analyzed mathematically

like a time-independent stationary process. Any slow time variation of the process

is represented by a simultaneous time variation of all parameters of the process.

Such an analysis might be called "quasi-stationary. " At frequencies at which the

electron transit time through the tube is not negligibly small compared to a period of

the applied rf grid voltage, the quasi-stationary analysis is inadequate. Transit-time

effects cause induced grid currents. The existence of grid currents calls for a supply

of rf power to the control grid. Successful attempts to minimize transit-time grid

loading and other undesirable high-frequency effects have led to the modern microwave

triode. Simultaneously, new principles of amplification have been recognized and put

to use in a new class of amplifiers, microwave-beam amplifiers. In these amplifiers

transit-time effects are used to advantage. In this report we shall deal with the noise

performance of one subclass of microwave-beam amplifiers, longitudinal-beam

amplifiers. They were chosen for attention partly because the noise in these ampli-

fiers is by now fairly well understood, partly because all low-noise microwave-beam

amplifiers that have been built to date are members of this class.

The analysis of longitudinal-beam amplifiers has some features in common with

the analysis of the high-frequency triode and other related tubes. These we shall call

"space-charge-control" tubes, referring to their basic principle of operation. The

mathematical approach of section 1.2 is also used in the high-frequency analysis of

noise in space-charge-control tubes.

One feature distinguishes microwave longitudinal-beam amplifiers from conven-

tional space-charge-control tubes. In the latter tubes the applied rf fields act on the

electron beam while it passes through the potential minimum in front of the cathode.

The former tubes employ an electron beam formed in an electron gun that is free of

applied rf fields. Examples of longitudinal-beam amplifiers are the traveling-wave

tube (1), the klystron (2, 3, 4), the resistive-wall amplifier (5), the space-charge-

wave amplifier (6), the double-stream amplifier (7), the rippled-wall and rippled-

stream amplifier (8), the backward- wave amplifier (9), and so on. The designer of a

low-noise, longitudinal-beam amplifier can take advantage of the fact that the electron

beam is formed in a region free of applied rf fields. He can design structures sur-

rounding the beam in front of the rf interaction region of the amplifier. Such a

structure, if properly chosen, can reduce the noise output of the amplifier without

affecting its gain. The theory of such noise-reducing schemes, and their limitations,

will be the topic of this report. An expression will be derived for the minimum

obtainable noise figure of a longitudinal-beam amplifier using a beam with a given
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noise. A logical definition of the "noisiness" of an electron beam follows from the

expression for the minimum noise figure. It will be shown that noise-reducing struc-

tures preceding the amplifier are, in principle, sufficient for attaining the minimum

noise figure, and that elaborate feedback and noise-cancellation schemes within the

amplifier cannot lead to a lower minimum noise figure. Finally, it is shown that a

traveling-wave tube with negligible loss in its rf structure preceded by conventional

noise-reducing schemes (10) attains, in principle, the minimum noise figure.

1. 2 ASSUMPTIONS

An exact analysis of the propagation of signals and noise along electron beams is

extremely difficult. Certain approximations have to be made before the problem

becomes amenable to a mathematical treatment.

In all longitudinal-beam amplifiers, amplification is obtained through an energy

transfer from the electron motion to predominantly longitudinal electric fields. If a

very large longitudinal magnetic focusing field confines the motion of the beam, the

energy transferred by the electrons comes entirely from the kinetic energy associated

with the longitudinal motion. In the analysis of longitudinal-beam amplifiers the

assumption of an infinite magnetic focusing field is made quite often because it

represents the physical facts adequately for many purposes, and leads to mathematical

simplicity.

The electrons emitted at random from the cathode in the electron gun of a

longitudinal-beam amplifier form a beam in which the velocity and the density of the

electrons passing any reference cross section fluctuate statistically. Part of the

noise output of an amplifier which employs the beam is caused by the currents induced

in the amplifier structure by the fluctuations in the beam. Also, some of the

electrons may be intercepted by the rf structure of the amplifier in a more-or-less

random fashion if the beam is inadequately focused. This latter source of noise is

commonly called "partition noise. " In a well-designed amplifier the interception

current can be kept to less than 0.5 per cent of the total beam current. Under such

conditions the effect of partition noise is negligible compared to the noise induced in

the rf structure. The present analysis will deal solely with the latter.

An electron beam consists of a large, but finite, number of electrons. The

electrons in the beam interact by virtue of their Coulomb repulsion force. Contribu-

tions to the force on any particular electron come partly from the next neighbors,

partly from electrons farther away. The forces upon any electron exerted by its

next neighbors fluctuate rapidly with time. These forces are usually referred to as

"short-range collisions. " The forces exerted upon the electron by electrons farther

away behave more regularly. These forces are the "long-range collisions. " Up to

the present time, all signal and noise analyses of electron beams have neglected the

granular nature of the charge. (See reference 11 for an interesting discussion of this

approximation. ) The electron beam is treated as a "fluid, " made up of an infinite

number of infinitesimally small particles with an infinitesimal charge. The effect of

2



the short-range collisions among the particles is neglected in the case of high-vacuum

electron beams. An argument that this approximation is legitimate has been given by

Mott Smith (12) for beams of reasonable length and current density. Experimental

results corroborate the validity of this approximation (13).

The granular nature of the electron beam is the cause of noise. In the analysis

of an electron beam as a "fluid" this effect is taken into account a posteriori in terms

of appropriate noise input conditions at the cathode, or at some reference plane

further on in the beam.

The small-signal theory is used for the analysis of noise in electron beams. The

assumption is made that the excitation of the beam can be treated as a small pertur-

bation of the time-average conditions in the beam. The approximations of small-

signal theory are apparently good anywhere along the electron beam except at the

potential minimum. Whether or not the small-signal assumption is applicable to the

region of the potential minimum at high frequencies is not clear. But this question is

academic, since no high-frequency analysis of the electron interaction in the poten-

tial minimum region exists today.t

Electrons emerging from the cathode have different velocities with a Maxwellian

distribution. The analysis of an electron beam as a charged "fluid" still retains this

picture. Parts of the fluid with higher velocities drift through parts with lower

velocities without friction. Friction is neglected as soon as the effect of short-range

collisions is disregarded. The single-velocity theory makes the assumption that a

perturbation in the beam can be treated as if all electrons passing a beam cross

section had the same velocity. This theory has been adopted almost exclusively in

microwave work. Its justification has been discussed by various authors (14,15,16).

The conclusion is that single-velocity theory yields results in good agreement with the

more sophisticated multivelocity theory as long as the range of velocities possessed

by the majority of the electrons is small compared to their average velocity. Such a

situation prevails in a beam that has been accelerated to a few volts above the

potential minimum. At the potential minimum in front of a space-charge-limited

cathode this condition is obviously violated. The single-velocity theory applied to

the potential minimum region cannot give better than qualitative answers. This dif-

ficulty is circumvented in the analysis of noise in electron beams in this report. The

noise input conditions to the electron beam are stated at a cross section beyond the

potential minimum, chosen so that the small-signal and single-velocity theories are

applicable at, and beyond, the cross section. No specific values are assumed for the

noise parameters at the reference cross section. The evaluation of the noise param-

eters is left to a detailed analysis of the potential minimum region which does not

make the single-velocity assumption. t

t In the meantime, such an analysis has been carried out by P. K. Tien on a
digital computer in a way that avoids the small signal assumption.
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Finally, there is the assumption of the one-dimensional theory. Only a single

spatial co-ordinate, the co-ordinate along the electron beam, is retained in the analysis.

The one-dimensional theory in conjunction with all of the assumptions introduced above

leads to a characterization of a perturbation in the beam in terms of two modulation

parameters; for example, the velocity and current modulations. Strictly speaking,

this assumption implies that the electron beam is of an infinite parallel-plane (or

spherical) geometry, with the motion of the electrons confined to the longitudinal axis

(in the direction of the radius vector). All parameters of the beam are assumed

independent of the co-ordinates transverse to the beam. A more practical case which

fits into the one-dimensional formalism is a freely drifting electron beam of finite

cross section on which only two space-charge waves are excited (17, 18). Two waves

can be described by two parameters; their respective amplitudes at a given cross

section, for example. However, if the beam passes through transition regions in

which its shape or time-average velocity is changed, cross-coupling among the

different modes of the beam occurs and, in place of the original two waves, many

other waves travel along the beam. Then, the one-dimensional formalism yields only

approximate answers; the smaller the cross-coupling of modes in a transition region,

the better the approximation should be. This happens in a thin beam, and the one-

dimensional theory gives good approximate answers. Recently, the noise analysis has

been extended to systems propagating any number of modes (19). The results are,

however, rather complex, so that their presentation here does not seem warranted.

Before the noise in electron beams can be analyzed, the propagation of signals

along an electron beam has to be understood. Section 1. 2 and all of section 2

are devoted to this problem.

1. 21 THE BASIC EQUATIONS

The first two equations of Maxwell give the electric field E(r, t) and the magnetic

field H(f, t) produced by a given current distribution J(1, t). The vectors E, H and J

are all functions of the radius vector r, and the time t.

V x E(,t) = - H(rt) (1.1)
St

V x H(,t) = J(i,t) + eE(F,t) (1. 2)
at

The force equation gives the relation between the acceleration of charged particles and

the field. If the motion of the particles is confined by an infinite magnetic focusing

field in the z-direction, or, if the velocity is z-directed for other reasons in the

absence of a time-average magnetic field, we have
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8 v(,) + v(t) - v(,t) e E v(r,t) (1. 3)
at az dt 

where e is the charge of the particle (for an electron it is a negative quantity) and m

is its mass. Equation 1. 3 neglects the force upon the particle from rf magnetic

fields, an approximation legitimate at nonrelativistic velocities. The quantity v(F, t) is

the z-component of the velocity. For the sake of brevity no subscript z is used. The

continuity equation is, if the current is entirely z-directed,

$ J(r,t) = - 8 p(r,t) (1. 4)$z at

If the single-velocity assumption is made, the current density is given as the product

of the velocity and space-charge density:

J(,t) = v(r,t) p(r,t) (1. 5)

Under the small-signal assumption all quantities can be split into a time-average part,

and a time-varying part which is much smaller in amplitude than the time-average part.

In evaluating the time-dependent parts, cross products of the time-varying quantities

can be neglected. The resulting equations for the time-varying quantities become

linear, and thus a sinusoidal excitation of frequency w causes all time-dependent

quantities to vary at the same frequency. The superposition principle can be applied

under the small-signal approximation. Complex notation can be used to represent the

time-varying quantities. We can write

E(r,t) = Eo(i) + Re E(i) eit]

H(r,t) Ho() + Re[H(r) et]

J (r,t) = JO () + Re [J (r) eJt] (1. 6)

v(t) = u () + Re [v () eJ'ct]

p(r,t) = o () + Re [p (i) ejIt]

The circumflex is used to indicate complex vector quantities. These definitions

introduced into Eqs. 1. 1 - 1. 5 lead to a separation between the time-average and

time-varying parts. The time-dependent part of Maxwell's equations is

A (1.7)

V x E(-) j iH(F) (1. 7)

) + jE() (1.8)

V x H(}) , azJ() + i E0) (1. 8)
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where az is the unit vector in the z-direction. The current has been assumed to be
entirely z-directed. The time-average and time-dependent parts of the force equation

are under the same assumptions:

u(8) u() = Eo(Z) (1. 9a)

j v() + [u() v( = e E=z(-T) (1. 9b)

The continuity equation gives

8 J(r) = (1. 10a)

8 J (-) j (1. 10b)

and from Eq. 1. 5 we have

JO(r) = u(T) po(?) (1. 11a)

J( ) = u) p(&) + p(F)v(r) (1. lb)

1.22 THE INFINITE PARALLEL-PLANE BEAM

We shall now analyze the propagation of signals along an electron beam of
infinite cross section. The time-average current density and velocity are constant

throughout the cross section. The positive z-direction is picked as the direction of
positive velocity and current. Thus, a convection current of negatively charged

particles with a positive velocity is, by convention, negative. (See Figure 1. 1.)

The time-average velocity can be found from an
REFERENCE PLANE a REFERENCE PLANE b~I , integration of the time-average part of the force

!~ Z " equation, Eq. 1. 9a. Since the electron flow is assumed
to depend merely upon the z-co-ordinate, we can

u(Z) i replace the independent variable r, which consists of
J(Ztt)
J('.') =- ', all three co-ordinates, by z. We have, from Eq. 1. 9a,
v(z,t) - - I

Fig. 1.1. Direction of posi- m d [u(z)2] = Eoz(z) (1. 12)
tive current and velocity. 2 e dz
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The field, in turn, is determined by the space-charge distribution in the electron beam.

From Gauss' law in its one-dimensional form, we have

d Eoz(z) PO() (1. 3)
dz E

Since the time-average current density is independent of z (according to Eq. 1. 10a)

and is in turn related to the time-average velocity and space-charge density by

Eq. 1. 11a, we can express the space-charge density in terms of J and u(z). Once

this is done, Eqs. 1. 12 and 1. 13 contain only two unknown functions, u(z) and Eoz(z),

and they can be solved subject to appropriate boundary conditions. The variety of

such boundary conditions is great. It is conceptually possible to construct an arbi-

trary dc potential distribution with the aid of infinitely permeable grids, open-

circuited for rf, to which arbitrary dc potentials are applied.

Let us assume that the time-average velocity and space-charge density have been

found in the way described above. Let us further assume that the rf excitation applied

to the electron beam is independent of the transverse co-ordinates x and y.

In this case the curl of H() in Eq. 1. 8 must be zero. We thus have, from

Eq. 1.8,

Ex(z) = E(z) 0

and

J(z) + jEE(z) 0 (1. 14)

Equation 1. 14 shows that the sum of the convection and displacement current

densities is zero in an infinite parallel-plane beam. It can also be observed that

there is no transverse electric field in an infinite parallel-plane electron beam.

Under an excitation uniform in the transverse direction the motion of the electrons is

entirely longitudinal. No magnetic focusing field is required for the confinement of

the motion. Omitting, from now on, any explicit indication of the z-dependence of the

process, we obtain from Eqs. 1. 14 and 1. 9b,

jOv + d [uv] = e J (1. 15)
dz j,

Equations 1. 10b and 1. llb lead to the expression

joJ + u d J = jpPv (1.16)
dz
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Equations 1. 15 and 1. 16 are put into a symmetrical form by introducing the new

dependent variable

V = muv (1. 17)
e

(The quantity V was introduced by L. J. Chu as the "kinetic voltage modulation"(21).

Its particular significance will become apparent later. ) Further, we write

e Po o2
m P

Wp has the dimensions of frequency and is, in general, a function of distance. It is
commonly called the plasma frequency, because an electron plasma of uniform density

pO oscillates at this frequency. With this new notation we can write Eqs. 1. 15 and

1. 16 as

(j + d V = J (1. 15a)

(j + dz) J
= jo V (1.16a)

Physical reasoning leads us to a change of the dependent variables in Eqs. 1. 15a

and 1. 16a which improves their appearance. An electron beam is a system of charged

particles that interact through their space-charge repulsion forces. The sytem moves

with the time-average velocity u. The mere fact that the electrons move with a finite

time-average velocity implies that any perturbation applied to the electron beam at

some point, let us say z = 0, arrives time-delayed at a later point z > 0. If space-

charge forces have time to act upon the electrons during their travel between the

points z = 0 and z, the velocity of the electrons gets modified. This is an effect over

and above the natural time delay. We acknowledge this time delay by introducing a

transformation of the dependent variables in which the time delay is brought out

explicitly:

V = Uej (1.18)

J = Qe-iO (1. 19)

where 0 is the transit angle between the reference plane z = 0 and the point z.

z
O=(of dz

Uf(z) (1.20)
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In terms of these new variables, Eqs. 1.15a and 1.16a assume the more attractive form

d U 1 Q
dz W = (1.21)

d Q = %5} U (1. 22)
dz u

Equations 1.21 and 1.22 are special forms of the equations formulated by Llewellyn (22).

They have the appearance of transmission-line equations with a pure imaginary imped-

ance per unit length Z = 1/jw and a pure imaginary admittance per unit length

Y =- jE W p/u2. U and Q play the role of voltage and current on the analog trans-

mission line (see Fig. 1. 2). Similar equations have been obtained for a spherical

flow (24) and one-dimensional flow of any general geometry (25). The fact that the

impedance and admittance per unit length of the analog trans-
Z dz mi.ion line nr nvrPlv imnainarv imnlip. that the trnnsmissinn

u

- , J .1 ,, D-_D o

line is lossless. Along such a transmission line the power must

be independent of distance. The time-average power flow along

a transmission line is given by one-half of the real part of the
complex product of the voltage U and current Q on the trans-

Fig. 1. 2. Analog mission line, Re [UQ*]/2. Thus, we have for the analog power
transmission line
of an electron beam.

I Re[U(zl) Q(zl)* ] = 1 Re[U(z 2) Q(z2)*]
2 2

where zl and z 2 are the positions of two reference planes along the transmission line.
According to the definitions of Eqs. 1. 18 and 1. 19 we have UQ* = VJ*, and thus

1 Re [V(zl) J(zl)*] = Re [V(z 2) J(z2)*]
2 2

L. J. Chu (21) defined the quantity

1Re [V(z) J (z)*] = Re (Sk) (1. 23)
2

as the "real kinetic power density" of the electron beam. Since one can easily check

that the kinetic power density has the dimension of power per unit area, the name
seems, at least, partly justified. Later on we shall see that there are even more
compelling reasons for the name. For the moment it is sufficient to note that the

kinetic power density is independent of distance in any system of infinite parallel-plane

geometry, regardless of the distribution of the time-average potential. In such a
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system the magnetic field H(z, t) = 0 and, correspondingly, there is no flow of electro-

magnetic power in an infinite parallel-plane beam. In section 2. 2 we shall see that this

fact is responsible for the conservation of kinetic power.

The "transmission-line equations" (1.21 and 1.22) lead to differential equations of

second order with two solutions. These solutions can be used to satisfy arbitrary

boundary conditions. If the kinetic voltage and current-density modulations are known

at any cross section of the beam, they are known everywhere. From the mathematical

point of view the cross section at which the initial conditions are given is arbitrary.

However, since the electromagnetic power flow in an infinite parallel-plane

geometry is zero, an excitation is not transmitted through the beam by electromagnetic

radiation, but is transported along the beam by the electrons. The excitation propagates

in the direction of motion of the electrons. An excitation in the region of an electron

beam is thus most naturally given in terms of the boundary conditions at the input to

the region.

1. 23 THE BEAM IN A DRIFT REGION
An electron beam that flows between two electrodes that are a finite distance

apart, both at the same potential, causes a potential depression between the electrodes

with a potential minimum situated half way between them. The closer together the two

electrodes are, the smaller the potential depression. The potential depression is

negligibly small; thus the time-average fields are negligible when the spacing between

the electrodes is infinitesimal. An electron beam that drifts freely with no time-

average forces acting upon it can be realized by a system of electrodes, all at equal

time-average potential, spaced very closely together and open-circuited for rf.

An electron beam between two equipotential electrodes a finite distance apart,

neutralized by heavy positive ions, acts in the same way. The ions cannot follow the

rf changes of the field and thus do not affect them. However, all time-average fields

are eliminated, since the ions can follow them, although sluggishly, until they fill the

potential minima and compensate the charge of the electrons with their own positive

charge. The two methods of realizing a drift region are artifices used to adapt the

model of an infinite parallel-plane beam to represent a more physical situation: a

finite longitudinal beam surrounded by a perfectly conducting cylindrical wall and

confined by a large, ideally infinite, longitudinal magnetic field. In this latter case

the time-average electric fields produced by space charges are entirely radial.

Therefore the time-average velocity of the electrons is independent of z. The main

features of propagation of signals along such a finite beam are contained in the model

of the infinite parallel-plane beam in a drift region. This accounts for the importance

attributed to the problem of the infinite parallel-plane beam in a drift region.
In the absence of time-average fields, the time-average velocity of the electrons

in the infinite parallel-plane beam cannot change. Correspondingly, the dc charge

density po , and thus the plasma frequency wp, are independent of distance. Equa-
tions 1. 21 and 1. 22 can be solved very easily in terms of two arbitrary constants:
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U = U+ejPZ + U_eJPz

Q = p -w(U +eJP Z - U_ejPp) , with p = 

The kinetic voltage and the current density become

V = (U+eiJp + U _ejpz) ejiez (1. 24)

J= po)E(U+ejlPZ - U_ejfPZ) e-j ez , with fez=oz/u (1. 25)

If we single out one part of the beam of cross-sectional area F, the time-average

current flow through this area is I o = u F po, and the time-varying current is i = FJ.
We define the characteristic admittance of the beam by

F e o I
Yo = FpO, = m = 2 - (1. 26)uU tp m u2 ip

e

Note that both I o and e are negative quantities. Thus, the last expression above is
positive. The characteristic impedance of the beam Z is defined as the inverse of

Eq. 1. 26, Zo = 1/Y o . With the aid of these definitions we can write the solutions for
the kinetic voltage and rf current in the beam of cross section F in the form:

V U+ejP z + U_eJfP ) i e (1. 24a)

= Y (U+eJPpZ - U_e-JpP) e'j e z (1. 25a)

According to Eqs. 1. 24a and 1. 25a, two wave solutions exist in the beam. Their

propagation constants are, respectively, (pe + p) and (e - p). The wave with the

propagation constant Se + /3p has a phase velocity smaller than the time-average beam
velocity, u. The wave with the propagation constant e - p travels with a phase
velocity larger than the beam velocity provided that Be > p. The case of he < p
never occurs in practice. The reason for this will be discussed in section 2. 1. Thus,

we shall call the wave with the propagation constant e- p simply the "fast wave,"
implying that the inequality Se > fp is satisfied.

IRe [FVJ] =1 Re [Vi*] = 1 Y(l|U+2 _- U_12) (1. 27)
2 2 2

11
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According to Eq. 1.27 the real kinetic power of the two waves is additive (orthogonality

of power flow) - the fast wave carrying positive power, the slow wave carrying negative

power.

The kinetic power carried by a beam in a drift tube, Eq. 1. 27, can be written in

a more elegant form by defining normalized wave amplitudes a and a2 as

o1 = (2Z o)'1/ 2 U+ °2 -(2Zo)-/2U_ (1. 28)

With the aid of this definition we can write the kinetic power in the form

1 Re [Vi*] = lail2 - 1a212 (1. 29)
2

We shall find the use of normalized wave amplitudes very convenient later on.

The resemblance of Eqs. 1. 24a and 1. 25a to transmission-line solutions is appar-

ent. This result is not surprising, since Eqs. 1. 21 and 1. 22, from which Eqs. 1. 24a

and 1. 25a have been derived, have the form of transmission-line equations. It is

important, however, to note the difference between transmission-line solutions and the

solutions of a beam in a drift region. Both the voltage and current modulations are
-j Pez

multiplied by a factor e , which does not appear in the transmission-line solutions.

Instead of two waves, one forward and one backward, we have a fast wave and a slow

wave, both with phase velocities in the direction of the flow of the beam.

It is natural to suppose that techniques of conventional transmission-line theory

can be applied to the beam problem. Equations 1. 24a and 1. 25a show that this is

possible if proper precautions are taken. As is common practice in transmission-

line analysis, we define an impedance at any cross section z by

Z - V = Z l +r (1. 30)

where

r Ue-2jipZ (1. 31)
U+

Equation 1. 30 is formally identical with the well-known relation between the impedance

and the reflection coefficient on a transmission line. The reflection coefficient is

defined, as usual, as the ratio of the amplitudes of the voltage in the wave-carrying

negative power (-) and the wave-carrying positive power (+). The role of the (-) wave

is played, in the beam problem, by the slow wave, whose kinetic power is negative,

quite analogous to the negative electromagnetic power carried by the reflected wave of

12
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transmission-line theory. Equation 1. 31 shows one important difference between the

transmission-line problem and the beam problem. The angle of the reflection coeffi-

cient F decreases with increasing z, whereas the opposite is true for the reflection

coefficient in transmission-line theory. The role of the wavelength is played in the

beam problem by the quantity Xp = 2/3p, the so-called plasma wavelength.

The bilinear relation between Z and F as shown in Eq. 1. 30 is conveniently

represented in the plane of complex F, the Smith chart of transmission-line theory (27).

Motion in the positive z direction along the electron beam corresponds to clockwise

rotation in the F -plane at constant F. A shift by half a plasma wavelength along the

electron leaves F unchanged.

1. 24 THE GENERAL SOLUTIONS OF LLEWELLYN'S EQUATIONS

Equations 1. 21 and 1. 22 can be solved for conditions other than those of a drift

region. An important case is the one of an electron beam traveling between two

completely permeable grids at potentials Voa and Vob under the influence of its own

space charge. The details of the solution are rather tedious and not within the scope

of this discussion. The details are given in references 22 and 23. We list here only

the results in the form of a table (Table I). Certain changes of notation have been

made to conform with our notation. In particular, the change in the sign convention

for the current should be noted.

Table I

1. Time-Average Solutions

Relation between potential and velocity:

e = 1 u2 , where e/mi = 1.76 x 101 in rationalized inmks units

Definition of space charge factor:

where T is the transit time of the electrons between planes a and b, T is the

transit time between the same planes in the absence of space charge, with the

potentials at the cross sections unchanged.

Relation between the space charge factor 5 , distance between reference

cross sections d, transit time T, and initial and final velocities u a and Ub:

d = ( - )(ua + ub) T

Current density: Jo (a + ) 2

e T2
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Ratio of the actual current density to the maximum possible current density

Jmax

IJimax 4 (

Maximum current density:

2.33 x 10-6[V1/ 2 + Vl/2]3
0. o a ob

d2
amps/unit area

2. RF Solutions

Vb = AVa + BJa

Jb = CVa + DJa (1. 32)

Va and Vb are the kinetic voltage modulations at the reference cross sections a

and b, respectively; Ja and Jb are the corresponding current-density modulations.

In the equations above the assumption is made that the two grids at the cross sec-

tions a and b are rf open-circuited; the solutions obtained by Llewellyn and

Peterson are more general (22, 23).

The coefficients A to D are given by:

A = 1 ua - (Ua + ub)]e-j0
Ua

B = -T2 (ua + ub) (1- ) ej

C = 2 Ua+ Ub j0e-j0

a T2 Ub

(1. 33)

(1. 34)

(1. 35)

(1. 36)D = 1 L[b - (ua + ub)] ej0
Ub
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2. MATRIX REPRESENTATION OF MICROWAVE AMPLIFIERS

The problem of interaction between an electron beam and electromagnetic fields is

solvable in closed form only under the assumption of small-signal theory. Once this

assumption is made, the differential equations of the system are linear. The solutions

are then linear functions of the excitation of the system on its boundaries. It is con-

venient to write linear relations among sets of variables in matrix form. In sec-

tion 2. 1 we derive a basic relation of small-signal theory that will suggest a convenient

matrix representation of an amplifier. Sections 2. 2 and 2. 3 are devoted to a study of

the restrictions imposed on the matrices.

2.1 KINETIC POWER THEOREM

The definition of kinetic power density was introduced by Eq. 1. 23. The signifi-

cance of the kinetic power concept is studied in greater detail in this section.

Amplification of electromagnetic energy in an electron tube occurs at the expense

of the kinetic energy of the electrons. The flow of kinetic energy into a longitudinal-

beam microwave amplifier minus the flow of the kinetic energy out of the tube is equal

to the electromagnetic power delivered to the rf structure surrounding the beam.

Unfortunately, difficulties are encountered in attempting to make use of this simple

statement.

The small-signal theory linearizes the equations of the electron beam and thus

facilitates a solution. But small-signal theory neglects squares and cross products

of the amplitudes of the excitation. Energy and power relations involve squares and

cross products of the small-signal amplitudes which are of the same order of magni-

tude as the terms neglected in the small-signal approximation. Thus, it seems that

a discussion of energy and power associated with an electron beam is bound to be

inconsistent if it is based on small-signal assumptions.

A closer look at the problem is less discouraging. An identity analogous to the

Poynting theorem can be derived for the longitudinal beam of Fig. 2. 1, starting from

the small-signal equations (Eqs. 1. 7 and 1. 8). These equations hold for a beam whose

electrons are confined to an entirely longitudinal motion.

We take a scalar product of Eq. 1.7 with H(r)*, and of the complex conjugate of

Eq. 1. 8 with E(r). Subsequent subtraction of the two equations gives

-V . [E () x H ()*] = E(i) J ()* + jc p H() H (I)* - eE(i) E (r)*] (2. 1)

Equation 2. 1 looks like the conventional Poynting
dS

theorem. It differs from it in establishing an

A dr I identity among the approximate small-signal

7 ' - -- solutions of Maxwell's equations.
ELECTRON BEAM DIRECTION OF MAGNETIC Through the use of the force equation (Eq. 1. 9b),

FOCUSING FIELD

the continuity equation(Eq. 1.10b), and the relation

Fig. 2. 1. Volume of integration between current density, charge density, and
in Eq. 2. 5.
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velocity (Eq. 1.l1b), we find

r e{i OPo(-) Iv(-)12 + 8 ur)v J(vr) } (2.2)

We define the complex kinetic power density according to L. J. Chu (compare

Eq. 1.23):

Sk() 1 m u( v(r) J(r)* z 1 V(r) J(-)* aZ (2. 3)
2 2e 2

where V(F) is the kinetic voltage modulation defined by Eq. 1.17, and az is the unit

vector in the z-direction. The definition of Eq. 2.3 introduced into Eq. 2.2 and that,

in turn, applied to Eq. 2. 1 leads to an alternate form of the small-signal Poynting

theorem. Noting that

1 $ [V(r) J(r)*] = V- Sk(r)
2 z

we find

- V 2 E(r) x H(r)* + Sk(r)] = j jLH() H(r)* E() E(T)*+ po(r), tvr)2] (2. 4)

Sk is a complex vector in the direction of the flow, i. e., the z-direction, with the

dimension of power density. We shall call it the "complex kinetic power density. "

Integration of Eq. 2. 4 over the volume T enclosed by the surface S, shown in Fig. 2.1

gives,

2 E(T) x H(T)* + k() · d . m r E( ) v(r) 2
-_ dS -j) f xHH(() · H(S)* eE(r) E(d)* + me Pov( dr

(2. 5)

The real part of Eq. 2.5 is

Ref [2 E() x H(r)* + Sk(r)] d = 0 (2.6)

Since the small-signal amplitudes'of the electric and magnetic fields have been

found by neglecting terms involving squares and cross products of the small-signal

amplitudes, the integral Re [fE(r) x H(r)* · dS]/2 cannot give the electromagnetic

power flow through the surface S exactly. However, it is clear that the integral gives

the electromagnetic power flow correctly within second order of the small-signal

amplitudes and neglects only terms of higher order. Such an approximation is legiti-
mate, provided that the applied rf fields are very small perturbations of the time-

average conditions in the beam and the rf structure surrounding the beam is not

resonant at a multiple of the fundamental frequency. By means of Eq. 2. 6 we can
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identify the electromagnetic power delivered by the beam in the volume by computing

the net real kinetic power flow -Re [f Sk(r) dS] into the volume on a small-signal

basis. This is the content of the "Kinetic Power Theorem" first formulated by

L. J. Chu (21).

The usefulness of the kinetic power theorem stems from its generality. It is

applicable to electron flows of arbitrary geometry as long as the motion of the electrons

is confined to one direction; in our case, the z-direction. Thus, for example, the

electron motion in a freely-drifting, thin, longitudinal beam is governed by the kinetic

power theorem. If the beam is surrounded by a perfectly conducting cylinder, no

electromagnetic power can be extracted from the electron beam. A detailed analysis

shows that such a thin electron beam propagates two space-charge waves whose field

and current density are approximately uniform throughout the cross section of the beam,

not unlike the waves propagating along an infinite parallel-plane beam, as found in

section 1. 22. These waves have propagation constants fe + q and fe - q, where

i3e = w/u is the beam propagation constant as before, and q is the so-called reduced
plasma propagation constant. It is related by a factor of less than unity to the plasma

propagation constant / , computed from the space-charge density p and time-average

velocity u, p = (epo/m u2) 1/2 . The factor q/fp is often referred to as the plasma

frequency reduction factor. It is a function of the frequency of operation, w, and

geometry.

A complete analogy can be established between the propagation of the two

space-charge waves along a thin beam and the waves in an infinite parallel-plane

electron beam. Equations 1. 24a and 1. 25a apply to the propagation of space-charge

waves along a thin beam if we replace the plasma propagation constant p by /3q, and

the characteristic admittance Yo of Eq. 1.26 by

Yo -mI u2 °1 (2. 7)
e

Instead of Eqs. 1. 24a and 1. 25a for the kinetic voltage and current in the thin

electron beam, we have

V(z) = [U+eJ/qZ + U_eiJqZ]eJ 3 eZ (2. 8)

i(z) = YO [U+eJZ - U_eiqZ]e /eZ (2. 9)

In practice, q is always smaller than he' so that here at least the name "fast
wave" is justified for the wave with the propagation constant ie - 3q (compare the

statement in section 1.22). U+ and U_ in the equations above are the amplitudes of

the fast and slow waves, respectively, at z = 0. If we introduce normalized wave

amplitudes al and a 2 according to Eq. 1. 28,
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a = (2Zo)-1/ 2U+ and 02 = -(2Zo)l/2U_ (1.28)

we can write the real part of the kinetic power in a particularly simple form:

1 Re [V(z) i(z)*] = a1l2 - Io21 (2. 10)
2

The real part of the kinetic power is independent of distance. This is to be expected

on the basis of the kinetic power theorem if no electromagnetic power is extracted

from the beam.

An excitation in an infinite parallel-plane beam is not accompanied by an

rf magnetic field. On the other hand, an excitation in a thin beam is always associated

with a finite rf magnetic field and thus causes, in general, both an electromagnetic

and a kinetic power flow. It has been shown (28), however, that the electromagnetic

power flow associated with the fast or slow wave is smaller in magnitude than the

real kinetic power flow of the wave by a factor 3 q/ie, usually a small number.

Electromagnetic power can be extracted from a thin beam if it flows through a

structure other than a drift tube. The helix of a traveling-wave tube is an example of

a structure whose fields may impart to, or extract from, the beam electromagnetic

power. In this instance it is convenient to adapt Eq. 2. 6 for a thin beam; then the

kinetic voltage V(r) and the current density modulation J(r) are independent of the

transverse coordinates. The integration in Eq. 2. 6 can be carried over the cross

section of the beam with the result (see Fig. 2. 1):

2Ref E(r) x H(r)* dS 1Re [V(zl) i(zl)*- V(z2) i(z2)*] (2.6a)
2 L 2

where i(z) is the rf current modulation in the beam at the cross section z. According

to Eq. 2. 6a any time-average electromagnetic power extracted from the electron beam

between two cross sections zl and z 2 is balanced by a decrease in the real kinetic

power. On the other hand, if electromagnetic power is fed into the beam, and the

integral on the left is negative, then the real kinetic power between the two cross

sections zl and z 2 must increase correspondingly.

Now that the role of the kinetic power flow is known, we can attempt to obtain a

physical understanding of its meaning. No claim to rigor will be made in the following

discussion. Equation 2. 10 shows that the real kinetic power flow associated with the

fast wave is positive. This follows from the fact that the kinetic voltage, and the

current in the fast wave are in phase, as is shown in Eqs. 2. 8 and 2. 9. Thus, if we

view at a particular cross section z an electron beam propagating a fast wave only,

we find that the kinetic voltage reaches its maximum at the same instant of time as

the current modulation. A positive value of the kinetic voltage corresponds, according

to the definition of Eq. 1.17, to a negative value of the velocity modulation v, since

the electron charge e is negative. Thus, at the instant of time when the kinetic voltage
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is a maximum, the total velocity of the electrons passing the cross section z reaches

the minimum value, u - v . The electrons passing the cross section at this instant

of time travel more slowly than they would travel in the absence of an excitation.

Simultaneously, the current reaches its maximum instantaneous value, Io + il . An

excess of positive current over the current Io in the absence of an excitation in a beam

of negative charge occurs when there is a deficiency of negative particles. Thus, when

the current swings into its maximum, the number of electrons passing the cross section

is less than it would be in the absence of an excitation. Conversely, an excess velocity

of the electrons occurring when the kinetic voltage modulation swings negatively is

accompanied by an excess of particle current. Thus, the number of electrons that

passes the cross section with a velocity higher than u is larger than that passing the

cross section with a velocity less than u. We may therefore conclude that the electron

beam carries, on the average, electrons with a higher kinetic energy in the presence

of a fast wave than it carries in the absence of an excitation.

Conversely, we find that in the slow wave the kinetic voltage and current modula-

tions are 180 ° out of phase. Thus, if only the slow wave is excited, the number of

electrons passing a given cross section with a velocity higher than u is, on the

average, smaller than the number of electrons with a velocity less than u. On the

average, the beam transports less kinetic energy when it propagates a slow wave than

it would carry in the absence of such an excitation. This interpretation of the kinetic

power flow, although not quite rigorous in view of the limitations of small-signal

theory, gives a useful physical picture. According to this picture, a negative kinetic

power flow does not signify a transport of energy in the negative z-direction, but

rather a transport of a lack of kinetic energy in the positive z-direction.

2.2 MATRIX REPRESENTATION OF BEAM
TRANSDUCERS

ANODES

1,, 2,, 3,, The electron beam of a longitudinal

/ I l l beam amplifier is formed in an electron

CATHODE ad ELECTRON BEAM gun in which it is accelerated to anode

I I ~DIRECTION OF MAGNETIC potential. Following the anode there may
I~ ~- FOCUSING FIELD

be some accelerating or decelerating

regions like those used in modern low-
PDIASLTRBUTION L /I noise amplifiers (Fig. 2. 2). These

DISTRIBUTION

regions are termed "beam transducers"

(27). No exact analysis exists for an

accelerated beam of finite diameter con-

fined by a large magnetic field. Instead,

the one-dimensional analysis is used,

with a simple substitution of the reduced

Fig. 2. 2. Multielectrode gun and its plasma frequency Wq for the plasma fre-
potential distribution on the beam axis. =1/2

quency w = (ep/me) . However, some
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general statements which are based on less restrictive premises can be made about

the nature of the accelerating regions.

If the motion of the electrons is predominantly longitudinal, and if the excitation

is approximately uniform across the cross section of the beam, the one-dimensional

representation can be used. The beam excitation at one cross section a, given in

terms of the kinetic voltage and current modulations Va and ia determines uniquely

the excitations Vb and ib at a cross section b further down the beam. Linear relations

must exist among these quantities under the small-signal assumption. Defining the

column matrices t

Wa v Wb = (2. 11)

we can write the linear relations in the form

wb = Ka (2. 12)

The K matrix is sometimes called the "matrix of generalized circuit parameters" (29)

or the (ABCD) matrix. The K matrix is usually written as the following array of

complex scalars (compare Eqs. 2. 11 and 2. 12 with Eqs. 1. 32 to 1. 36):

A B
K =

C D

If no rf electromagnetic power is extracted from the beam in the region between the

cross sections a and b, as is true for the beam transducer of Fig. 2. 2, the real part

of the kinetic power must be conserved in accordance with Eq. 2. 6a.

(V* ia + i*Va) - (Vib + i Vb) 0 (2. 3)

It is expedient to write Eq. 2. 13 in matrix form. For this purpose we introduce the

permutation matrix

0 1
R = (2.14)

1 0

The operations and theorems of matrix algebra which we use here can be
found in many texts on matrices or applied mathematics. See, for example,
F. B. Hildebrand, "Methods of Applied Mathematics" (Prentice-Hall, New York,
1952).
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According to the rules of matrix multiplication we find that

RR = I (2. 15)

where I is the identity matrix. Equation 2. 15 can also be written in the form

R = R-1

indicating that R is equal to its own inverse. Further, we define by A+ the Hermitian

(complex) conjugate of the matrix A. The Hermitian conjugate of a matrix A is

obtained by taking the complex conjugate of all elements of A and then transposing it.

(A+)ij = A;

In particular, the Hermitian conjugate of a column matrix is a row matrix. Referring

to definition 2. 11 we have, for example,

W+ = v a ia]

With the aid of these definitions we can write Eq. 2.13 in matrix form:

+ Rw, - w Rwb = 0 (2. 16)

The vector wb in Eq. 2. 16 can be expressed in terms of wa through Eq. 2. 12.

For this purpose we note only that the Hermitian conjugate of a product of two matrices

A and B is equal to the product in reverse order of the Hermitian conjugates of the

matrix factors:

(AB) + = B+A+ (2. 17)

From Eq. 2.16, with the aid of Eq. 2.12, we obtain

w+(R - K+RK)wa = 0 (2. 18)

Equation 2. 18 has to be satisfied for an arbitrary choice of the vector wa, that is, an

arbitrary choice of the boundary conditions. This is possible if and only if

K+RK = R (2. 19)

This condition is the restriction imposed upon the K matrix by the requirement for

the conservation of the real kinetic power, Eq. 2.13.

For the analysis of noise in the electron beam it will be convenient to use another
form of Eq. 2. 19. In order to obtain that alternate form we shall make use of some

additional definitions of matrix algebra.
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A matrix A is termed nonsingular if its determinant det(A) is not equal to zero.
A nonsingular matrix A always has an inverse, A - 1. Further, it follows from the
properties of matrix multiplication and the multiplication of determinants that the
determinant of a matrix product is equal to the product of the determinants of the
matrix factors.

det (AB) = det (A) det (B) (2. 20)

With the aid of Eq. 2. 20 we obtain from Eq. 2.19

det (K+) det (K) = Idet (K)2 = 1 (2. 21)

By virtue of Eq. 2. 21, the determinant of K is finite; correspondingly, K is nonsingular.
The matrix K has an inverse. Multiplying Eq. 2. 19 from the left by K-1R we have

K+RKK-IR = RK-1R

or, with the aid of Eq. 2. 15,

K+ = RK- R (2.22)

This is the equation that we shall use in the analysis of noise in electron beams.
A drift region is a simple example of a lossless beam transducer. With the

aid of Eqs. 2. 8 and 2. 9 it is easy to show that the kinetic voltage and the current
modulations, Va and ia, at the plane a, transform into corresponding modulations,
Vb and ib, at the plane b, through the following equations:

Vb = [Vacos q + ia jZ sin q ]ei0

(2. 23)
ib = [iaijYsin 0q + iaCos Oq]ej 

where q = q (Zb- za)/u is the transit angle measured in terms of the plasma period,
T = 2r/wq; and 0 =w (zb- za)/u is the conventional transit angle. We shall refer to

0q as the "plasma transit angle. " Equations 2. 23 show that the K matrix of the
transformation of voltage and current by a drift region is

[ cos Oq j ZO sin q 
K = e-j0 (2. 24)

j Yo sin 0e cosOq J
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Simple matrix manipulations show that K as given by Eq. 2. 24 indeed satisfies the
condition of conservation of the real part of kinetic power, Eq. 2. 19.

A relation analogous to Eqs. 2. 23 is given in Table 2 of section 1. 24, for the
voltage-current transformation by an accelerated electron beam. It is not difficult
to confirm that the matrix K, whose coefficients are given by Eqs. 1. 33 to 1. 36,
satisfies the condition of power conservation Eq. 2. 19.

We earlier discussed another set of parameters that is also able to describe the
excitation of a beam: the normalized amplitudes of the fast and the slow waves al and
a2 . Consider a lossless beam transducer that extends from cross section a to cross
section b. Imagine that the transducer is preceded and followed by drift regions of

characteristic impedance Zoa and Zob, respectively. Then the normalized amplitudes
a l and a2 of Eq. 1. 28 can be found uniquely in terms of the voltage Va and current i a

by the use of Eqs. 2. 8 and 2. 9, in which we set z = 0, thus choosing an appropriate
origin of the co-ordinate system in the input drift region.

011 [(2Yoa)- 1/2 ia + (2Zoa)- 1/ 2 V]

(2. 25)

a2 [(2Yoa)- /2ia (2Zoa)-1 /2 Va]
2

Similarly, we can choose the origin of the co-ordinate system in the output drift region
to coincide with the cross section b. In order to avoid confusion we denote the normalized
amplitudes of the fast and slow waves in the output drift region by b1 and b2, respectively.
Thus, we have

b, 1 [(2 Yob)-1/2 ib + (2 Zob) 1/2 Vb]
2

(2. 26)
b = 1 [(2Yob)- 1/2ib - (2Zob)-l/2Vb]

2

The linear relations among the kinetic voltage and current at reference cross sections
a and b, respectively, summarized in Eq. 2. 12, imply corresponding linear relations
among the normalized wave amplitudes. Introducing the column matrices

(a°= and b, (2.27)

a2 b2
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we conclude that the column matrices a and b are related by a matrix M of second
order

b = Ma (2. 28)

The real kinetic power carried by the waves at cross section a is given by
Eq. 1. 29. Equation 1. 29 can be written in matrix form if we introduce the "parity"
matrix

1 0P 

It should be noted that the P matrix is its own inverse.

PP= I

The real kinetic power at cross section a can be written as

(2. 29)

(2. 30)

(2. 31)1 Re (Vai * ) = a+Pa
2

The real kinetic power at cross section a has to equal that at cross section b if the
transducer is lossless:

a+Pa = b+Pb

Using Eq. 2. 28 in this relation, we obtain

a+(P-M+PM)a = 0 (2. 32)

Equation 2. 32 can be satisfied for an arbitrary choice of a if and only if

M+PM = P (2. 33)

Equation 2. 33 is the condition imposed upon the matrix M by the conservation of the
real kinetic power analogous to the relation satisfied by the K matrix, Eq. 2. 19. In
many cases it is convenient to write the transformation between the wave amplitudes
and the current and kinetic voltage, Eqs. 2. 25 and 2. 26, in matrix form. A normali-
zation matrix N has to be defined for this purpose.
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(8 Z)- 1/2
N =

0 (8 O)-1/2 (2. 34)

The subscripts a and b will be applied to the N matrix to indicate whether it is referred

to the beam at plane a or at plane b. It is easy to show that the matrix form of

Eq. 2. 25 is

a = (I + PR)Na a (2. 35)

where I is, as usual, the unit matrix; and P is the parity matrix defined by Eq. 2. 29.

Equation 2. 26 becomes

b = (I + PR)Nbwb (2. 36)

The wave formalism is applicable even when the transducer under consideration is

not preceded or followed by a drift region. Then Eqs. 2. 35 and 2. 36 are the definitions

of quantities a and b, which have but mathematical significance. The admittance Yo in

definition 2. 34 is then arbitrary but is conveniently chosen to correspond to the

characteristic admittance of a drift region with a time-average voltage and a current

density equal to those existing at the reference cross section.

2.3 MATRIX REPRESENTATION OF LONGITUDINAL-BEAM AMPLIFIERS

The kinetic power concept formulated in Eq. 2. 6a is common to all one-

dimensional electron beam systems. (To remind the reader - a one-dimensional beam

is one whose excitation can be characterized in terms of only two parameters. ) With

the aid of Eq. 2. 6a an interesting formalism can be developed for all longitudinal-beam

microwave amplifiers. Consider, for example, a traveling-wave tube as shown in

Fig. 2. 3. The excitation of the fast wave

o
3

b3 a4 , b4
GUN ;I COLL

I i / ' J/ ' T T J J l £\,l ........ -
----- a

,ECTOR

be
b2

os b3 04 b4

BEAM WAVES G b BEAM WAVES
-as b2

Fig. 2. 3. Schematic of a traveling-

wave tube.

and the slow wave in the beam at the gun end

we denote, as usual, by a1 and a 2 . The

excitation of the same set of waves at the

collector end we denote by b1 and b2. The

normalized amplitude of the incident wave

at the input of the amplifier we denote by

a3 ; the incident wave at the output of the

amplifiers, by a 4. The reflected waves at

the input and output are denoted by b 3 and

b 4 . The arrows in Fig. 2. 3 indicate whether

a particular wave carries power into or out

of the amplifier. The wave amplitudes a1

to a4 can be adjusted by means external to

the amplifier. Thus, we could, for example, excite the beam before it enters the
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amplifier. In this way a1 and a 2 could be adjusted arbitrarily. Further, the output

transmission line of the amplifier could be terminated in a matched load, which corre-

sponds to choosing a 4 = 0. Power could be fed through an attenuator matched to the

input transmission line of the amplifier. The wave a 3 would thus be fixed in amplitude

and phase. This example shows that the wave amplitudes a are under our control. The

wave amplitudes b1 to b4 must then be related to the quantities a1 to a 4 by linear

relations (small-signal theory. )

The amplifier can be characterized in terms of a four-by-four matrix G, so that

b = Ga (2.37)

b1 af 1

b2 2
where b is the column matrix) b32 and a is the column matrix a

3a
b4 a4

Chu's kinetic power theorem, Eq. 2. 6a, imposes some interesting conditions upon the

matrix elements of G. Let us assume, first, that no ohmic loss occurs within the

amplifier structure. Accordingly, the difference between the kinetic power at the

input of the amplifier and that at the output of the amplifier must be equal to the electro-

magnetic power delivered to the circuit. The latter is the difference between the power

flowing out in the output transmission line and the power flowing in, in the input trans-

mission line. The electromagnetic power fed to the amplifier in the input transmission

line is

1a312 - lb3 12

The electromagnetic power leaving the amplifier in the output transmission line is

Ib4 12 - la412

(For a discussion of the magnitude of the electromagnetic power carried by an electron

beam, see reference 28 and the remark on p. 18 ) Thus we must have, according to

Eqs. 2. 6a and 2.10

1b4 2 - a1412 - 10312 + Ib3 12 = lal2 - la212 - lbl12 + lb212

or (2. 38)

lb1! 2 - lb2 12 + Ib3 12 + lb4 12 = laol2 - la2l2 + la312 + la412
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Introducing a parity matrix P

P = diag (1, -1, 1, 1) (2. 39)

we can write Eq. 2. 38 in a more elegant form:

b+Pb = +Pa (2. 40)

By the use of Eq. 2. 37 we can express Eq. 2. 40 as

a+(G+PG - P) = 0 (2. 41)

The matrix equation (2.41) has to be satisfied for an arbitrary choice of the a matrix.

This is possible if and only if

G+PG = P (2. 42)

The matrix equation (2.42) contains scalar equations of the form

lG1312 - IG232 + IG3 3 12 + lG4 3 12 = 1 (2. 43)

and

G13 G4 - G23G24 GG 4 + G4 3G 4 (244)

Without any loss of generality we can assume that the input source is matched to

the input transmission line and the load to the output transmission line. Any mismatch

between the terminations and the amplifier can be taken into account by a proper choice

of the matrix elements Gij which represent the amplifier from the circuit point of view

as a two-terminal-pair device. These elements are G3 3 , G3 4 , G4 3, and G44 . The
term G 4 3 2 is the power gain; that is, the ratio of the output power, Ib4 2, over the

available input power, a3 1 , with the load matched to the output transmission line,

a 4 = 0.
Equation 2. 43 has an obvious interpretation. If the power gain of the amplifier is

appreciably greater than unity, G4 31 2 >> 1, Eq. 2. 43 implies that IG2 3 [ 2, the only

term preceded by a minus sign, must also be appreciably greater than unity. In other

words, the input wave a 3 must couple strongly to the slow mode in the beam leaving the
amplifier, if the amplifier has an appreciable gain. The electromagnetic power gain
is obtained at the expense of kinetic power in the beam, which is correspondingly large,

and negative, when the beam leaves the amplifier.
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If the amplifier contains elements with ohmic loss, this reasoning has to be modi-

fied. Because of added complications, it is believed that a discussion of such structures

is not warranted. The qualitative results of such an investigation agree in essence

with those for lossless structures. Reference 19 gives the details.
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3. NOISE IN ELECTRON BEAMS
The preceding sections were devoted to the analysis of electron beams and the

interaction of electron beams with rf structures under steady-state excitation at a

frequency w. The matrix equation (2.12) showed that a steady-state, sinusoidal modu-

lation of the electron beam is completely determined by the knowledge of the kinetic

voltage and current modulations at one reference cross section of the beam. This

result can be used as the starting point of the analysis of noise in electron beams.

Noise is a statistical process which must be analyzed by statistical methods.

Here we shall make use of the extension of Fourier integral theory to the harmonic

analysis of random functions (43).

We assume that the noise process in the electron beam is stationary and has no

hidden periodic components. An observation of the noise process at the reference

cross section a of the beam gives the kinetic noise voltage Va(t) and the current

modulation ia(t) as functions of time. The subsequent analysis will be devoted to

finding the statistical properties of the kinetic voltage and current modulations at some

other reference cross section b in terms of the statistical properties of Va(t) and i (t).

The kinetic voltage modulation, V (t), is not a periodic function of time and

therefore cannot be analyzed by Fourier series methods. Fourier integral methods

are not adequate, either, for the analysis of V (t), since it is intuitively obvious that

the integral

fi jVa(t)2 dt

carried over an infinite interval does not converge. We can choose, however, a

function VaT(t) defined by

(Va(t) - T < t < T
VaT(t) = 1 (3.1)

The function V T(t) satisfies the requirement of convergence of the integral

V NaT (t)l2 dt

as long as T is chosen finite. It represents accurately the random function V(t) over
the interval 2T. We can form the Fourier transform

VaT(Oj) = VaT(t)e'j t dt
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In a similar way we can define a function iaT(t) with the corresponding Fourier transform

iaT(co) . The function iaT(t) represents the random noise current ia(t) over the finite

time interval 2T.

A linear beam transducer relates the Fourier transforms VaT(O) and i aT(co) of

kinetic voltage and current modulations applied to its input cross section to the cor-

responding Fourier transforms at its output b.

VbT(O) = AVaT() + BiaT(O) (3. 2)

ibT(o) = CVaT() + DiaT(W) (3. 3)

The coefficients A to D are, in general, functions of frequency; VbT(o) and ibT(w) are

the Fourier transforms of the time functions VbT(t) and iaT(t). These, in turn, give

the output of the beam transducer produced when the modulations VaT(t) and iaT(t) are

applied to the input over a finite period of time 2T. It may be expected that VbT(t) and

ibT(t) will resemble the true noise output of the transducer Vb(t) and ib(t) over a portion

of the period 2T. This portion encompasses the response of the transducer to the noise

input VaT(t) and iaT(t) over the time during which it is possible to neglect the tran-

sients in the transducer set up at t = -T. The squares of the absolute values of

Eqs. 3. 2 and 3. 3 are

IVbT (o)12 = A 2 IVaT( ()12 + B12 hiaT())12 + AB* VaT(W) iaT() + A* BVaT ()*iaT () (3. 4)

ibT ()12 = IC1 2 VaT (CO) + IDI2 iT (OJ) + CD*VaT ()aT ())* + C DVaT) ())* aT(aT() (3. 5)

The functions VaT(t) and iaT(t) do not represent the random functions Va(t) and i a (t)

exactly as long as the interval 2T is held finite. If, however, the interval T is allowed

to go to infinity, we see from the definition of 3. 1 that VaT(t) becomes indistinguish-

able from Va(t). The same statement can be made concerning iaT(t) and ia(t), VbT(t)

and Vb(t), as well as ibT(t) and ib(t). Generalized harmonic analysis proves that in

the limit T- oo the following quantities approach finite limits

lim VaT(6o)2 = a(0) (3. 6)
T-.o T

lim 7T JiT( () 2 = Ya() (3.7)
T-O = T

m VaT() iaT()* = [rlim VaT()*iaT(W)]*= E)a (o) (3.8)
T-+ T T T
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The bar over the quantities on the left side of Eqs. 3. 6, 3. 7, and 3.8 indicates an

ensemble average. To obtain such an average, consider a set (ensemble) of statistical

processes of identical statistical character. In our particular case we can imagine that

measurements are performed on a large number of identical electron beams. The

average over such a set of measurements is then the ensemble average.

The quantity a is the self power density spectrum (SPDS) of the kinetic noise

voltage modulation, a is the SPDS of the noise current modulation at the reference

cross section a. The cross power density spectrum (CPDS) between the kinetic voltage

and current modulations is 8a. The frequency dependence of these quantities will be

henceforth implied and the parentheses (w) will be omitted. If we take the limit T-oo

of Eqs. 3.4 and 3.5 multiplied by 7/T we find, after taking an ensemble average,

b = IAI2 %a + IB12 %Ta + AB*oa + A*BOe (3. 9)

b = IC12'Da + ID12 a + CD*Oa + C*De* (3. 10)

Multiplication of Eq. 3. 2 by the complex conjugate of Eq. 3.3, transition to T--c of the

resultant equation multipled by 7r/T, and an ensemble average lead to the relation

b = AC*)a + BD*Ta + AD*ea + A*De* (3. 11)

Equations 3.9, 3.10, and 3.11 give the self- and cross-power density spectra of the kinetic

voltage and current of the noise at cross sectionb in terms of the corresponding quantities

at cross section a. The three quantities, *a' 0 a' Oa' the last of them complex,

characterize the noise in an electron beam sufficiently for most practical purposes.

Thus, a noise process in an electron beam is specified by four real parameters.

The SPDS's are related by a factor of 47rAf to the more commonly used quantities,

the "mean-square fluctuations within a frequency band Af. " Thus, for example, the SPDS

of pure shot noise in a beam with a direct current Io is: = eIo/27, whereas the mean-
quare fluctuations of the current within the frequency band Af are known to be:

Ji = 2eIoAf. The reason for the deviation from conventional engineering use of the

definition of the SPDS lies in the simplicity of the resulting relation between the mean

square of the current fluctuations and the frequency integral of 4'. We have

T
tlim - f i2 (t) dt = (o)d 

T-o 2T -T

The SPDS of the noise current 4' at a cross section z of the electron beam is a measur-

able quantity. A cavity with a short gap at the position z has a power output propor-

tional to the value 4(w o) at the resonant frequency wo of the cavity. The classical

experiment by Cutler and Quate (13) was a measurement of Vf as a function of distance
in a drifting beam performed in the described way.
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Equations 3.9, 3.10, and 3.11 can be obtained in an alternate way by matrix methods.

The advantage of such an approach lies partly in its elegance, partly in the fact that

general theorems of matrix algebra can be applied to the noise problem. We define the

column matrices

WaT () = bT () =W.aT()) [ = ] and WbT () (3.12)
L iaT ibT (O)J

Equations 3.2 and 3.3 can be cast in matrix form.

WbT(o) = KwaT() (3.13)

where
A B]

K =
C D

We define the matrices

Wa = limrn WaT ()WaT (co)+
T-,O T

and

Wb = m T WbT()WbT(w)+ (3. 14)

A study of the definitions of Eq. 3.14, and the definitions of Eqs. 3.6, 3.7, 3. 8, and

3.12, shows that the matrix Wa is composed of the SPDS's and the CPDS's as follows:

Wa = (3.15)
*a a

A similar expression holds for Wb. The relation between the matrices Wa and Wb

can be found by multiplying by Eq. 3.13 by r/T and its Hermitian conjugate and by

transition to the limit T--oo. The result is

Wb = KWa K+ (3. 16)

Equations 3.9 to 3.11 are contained in the matrix equation (3.16), as can easily be

demonstrated by matrix multiplication and the aid of Eq. 3.15. Although the matrix

equation (3.16) is a short-hand expression for four equations, it contains only three

distinct relations; the 12 element of the matrix equation (3.16) is equal to the complex

conjugate of the 21 element. This fact is a direct consequence of the Hermitian
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character of the W matrices, namely.

Wb = W and Wa = WI

3. 1 TRANSFORMATION OF NOISE BY LOSSLESS BEAM TRANSDUCERS

An important class of beam transducers is "lossless", i. e., conserves the real
part of the kinetic power. It is therefore of practical interest to devote special
attention to noise transformations by means of such transducers.

The K matrix of a lossless transducer satisfies Eq. 2. 22. The transformation

of Eq. 3. 16 can then be written in the alternate form:

Wb = KWaRK-1R

Multiplication of this equation from the right by R and the condition on the R matrix

(Eq. 2. 15) lead to the transformation

WbR KWaRK-1 (3.17)

Equation 3. 17 shows that the noise matrix WR undergoes a similarity transformation

when the beam is passed through a lossless transducer. A similarity transformation

leaves the trace and the determinant of a 2 x 2 matrix invariant. The WR matrix

written out explicitly has the form

WR : ¢W R ] (3. 18)
o*

The trace of the WR matrix is

Tr(WR) = o + o* = 2Re () (3. 19)

The determinant is

det(WR) = 1e12 -- 'T (3.20)

The physical meaning of the first invariant, the trace, is not hard to grasp. Accord-
ing to Eq. 3. 8, e is proportional to the kinetic power carried in a narrow frequency

band around the frequency w. The real part of the kinetic power in a particular
frequency band has to be conserved in a transition through a linear lossless trans-
ducer, hence the invariance of the trace of WR.

The meaning of the second invariant is less self-evident. Indeed, conventional
network theory has no analog to this invariant. In order to demonstrate this we
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consider, first, a random voltage V(t) applied to a two-terminal network characterized

by the admittance function Y(w). Again, an equivalent Fourier transform of the

voltage V(t) based on a sample of length 2T can be constructed. Denote the Fourier

transform by VT(o). The Fourier transform of the current flowing into the network

under the influence of VT(o) is iT(co) = Y(o) VT(w). Forming the CPDS e between the

voltage and current we obtain

0(o) = lim VT(c))iT()*
T-. T

= lim Y ()* VT( ) I
2

T- T

= Y(o)* lim r7 IVT(O)12
T-a T

= Y())* (0) (3. 21)

where, as before, we denote the self power density spectrum of the voltage by 0 (co).

In a similar way we obtain the self power density spectrum of the current,1jr(w),

(o) = lim iT () iT (o)
T-xo T

= jY(()2:() (3. 22)

Introducing Eqs. 3. 21 and 3. 22 into Eq. 3. 20 we find that for this process

det (WR) = 0 (3. 23)

Consider, next, a cascade of linear two terminal-pair transducers of conven-

tional network theory. The admittance seen across any terminal pair within the

cascade is determined uniquely by the admittance connected to the end of the cascade.

Forming the matrix W of the SPDS' s and CPDS's of the noise voltage across, and the

noise current into, any terminal pair of the cascade we find, again, that det(WR) = 0.

Thus, noise propagating along a cascade of lossless two terminal-pair networks has

only one invariant parameter, namely, Re(O), which is proportional to the time

average power of the noise within a narrow frequency band around the frequency co

fed into the termination of the cascade. Since a conventional transmission line can

be considered as the limit of a cascade of an infinite number of infinitesimal two

terminal-pair networks, the above reasoning applies as well to noise propagation

along conventional transmission lines.

The close analogy between lossless beam transducers and lossless, two

terminal-pair networks makes one wonder whether or not the determinant of the
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matrix WR for a noise process in an electron beam can have a finite value. But, there
is a basic physical difference between a drift region and a transmission line. An

electromagnetic wave of a given frequency incident upon a transmission-line termina-

tion is accompanied by a reflected wave, the phase and amplitude of which depend upon

the termination. The voltage and current in the incident and reflected waves combine

to satisfy the boundary condition imposed by the termination. The admittance at any

cross section of the transmission line is determined by the terminating admittance.

In an electron beam the role of the incident and reflected waves is played by the fast

and slow wave. Both of these waves have a group velocity equal in magnitude and

direction to the time-average velocity of the electron beam. Thus, these waves can

be excited only at the entry plane into a drift region, the plane passed first by the
electrons. The phase relation between the fast and slow waves is determined by the

method of excitation prior to the entry of the electron beam into the drift region.

One could imagine a method of excitation by which the kinetic voltage and current

are not put into a definite ratio to each other. We shall return to the question of
noise excitation later. At this point it is sufficient to state that the kinetic noise

voltage and noise current in the electron beam may or may not have a definite ratio

to each other, and therefore we must allow for the possibility that lel 2 B . It is
known from statistical theory that the inequality

10e2 < 'T (3. 24)

holds. With the aid of this inequality and Eq. 3. 20 we find, for a noise process in

an electron beam,

det(WR) < 0 (3. 25)

According to Eq. 3. 25, noise in an electron beam may well possess two invariants
with regard to lossless beam transformations. Let us choose distinct symbols for

the two invariants of a noise process in an electron beam, for they will prove of

great importance. Since Re(e) plays the role of power carried by noise propagation

along a transmission line we use the Greek letter n to refer to it.

Re () - (3. 26)

The imaginary part of e we denote by

Im(e) - A (3. 27)

The determinant of WR can be written, according to Eqs. 3. 20, 3.26, and 3.27, as

det(WR) = Ii2 - (T - A2) (3. 28)
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Since H in itself is an invariant, we must conclude that the termk 4l -A 2 must also be
an invariant with regard to lossless transformations. We introduce here a symbol for

it. We set

S = (T- A2)1/2 (3. 29)

The inequality (3.25) assures that S is always real. We shall choose S positive by

definition. We shall see later that the invariant S is more easily explained in terms of

physical quantities than the invariant det(WR) itself.

The accelerating regions of a multielectrode electron gun as shown in Fig. 2.2

are lossless beam transducers. The noise in any of the regions is determined by the
noise at its input plane, the plane first passed by the electrons. The parameters S

and H are invariant with regard to lossless transformations and may be traced back to
the input of the first region. Where, then, should the input plane of the first drift region
be chosen, and what determines the values of the two noise invariants? These two
questions are intimately connected. The first region of the multielectrode gun is
formed by a space-charge-limited diode. A space-charge-limited diode is a lossless

transducer, provided that the small-signal, single-velocity approximations are applic-

able. These approximations hold as long as the range of velocities possessed by the

majority of the electrons is small compared to the average velocity of the electrons.

The single-velocity approximation will hold at potentials as low as a few volts above

cathode potential. The input plane for the first region can be picked in front of the

cathode beyond the potential minimum at a plane a few volts above the cathode potential.

The values of S and n at this plane are conserved throughout the multielectrode gun
under the assumption that no electromagnetic power is extracted from the beam on the

way. The parameters S and n are thus entirely functions of the conditions in the

potential minimum-cathode region in which the single-velocity assumption does not hold.

A word of caution is in order. If the potentials applied to the successive elec-
trodes of the gun differ widely, a strong electrostatic lens may result which may cause

crossovers of the electron paths. It is believed that a deviation from laminar electron
flow is accompanied by an enhancement of noise over the values predicted by one-

dimensional, single-velocity theory.

Little is now known about the effect of the region of the potential minimum upon
the noise. Pierce (32) made the assumption that the effect of the potential minimum
region upon the noise is negligible. Then, it is quite reasonable to suppose that the
noise at the input reference plane, beyond which the single-velocity approximation is
legitimate, consists of a current modulation of full shot-noise value, and an
equivalent velocity modulation of the Rack value (33). The SPDS of the shot noise of a
beam with a direct current Io is

= el
2R7
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The SPDS of the kinetic voltage corresponding to the Rack equivalent velocity is

(m u)2 1 (8v)2= (1 \ mkT u,2
4- e -

where u is the average velocity of the electrons at the reference plane, Tc is the

cathode temperature, and the value of the mean-square velocity fluctuations (6 v) is

taken from reference 33. If the reference plane is taken exactly at the potential

minimum, a choice not very convincing in view of the warnings given above, we can

take the value 2kTc/m for u2 . Further, Pierce assumed that the velocity and current

are uncorrelated at the first input plane. Under this assumption the n parameter is

equal to zero. For the S parameter we obtain

S = (P )1/2 = 1 )1 (3. 30)
4 n

3.2 AN INTERPRETATION OF THE S-PARAMETER

A drift region is a lossless beam transducer with a K matrix given by Eq. 2. 23.

The matrix equation (3.16) carried out explicitly for a drift region gives, with the aid

of a simple trigonometric identity,

1 (a + Zoa) + (a -Zo a) cos 2 eq + Z Aa sin 2 eq
2b= (3. 31)

Vb = a + a) 2 (p -Y 2 4a) cos 2 Eq - Y Aasin 2 q (3. 32)

b = Ia + i [Zoa - Yo "a] sin 2 q + jAacos 2 q (3.33)

Equation 3.33, split into its real and imaginary parts, and use of the definitions of

Eqs. 3.26 and 3.27 lead to

Ib Ha (3. 33a)

Ab =2[Zo'Va Yo(a ] sin 2q + Aacos 2 eq (3. 33b)
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Equation 3.33a is simply an expression of the conservation of Re(e) through a trans-

formation by a section of a drift region which is a lossless transducer. Equations 3.31

and 3.32 show that the SPDS of the kinetic noise voltage and current modulations have

the form of standing waves as functions of 9 q, the plasma transit angle. The maxima

of the kinetic voltage and current modulations lie angles A eq = 900 apart. (See Fig. 3.1.)

The maximum of the current SPDS has the value

max =2 (- Y 1 + 'l) + I [(Y2 Ia _ a)2 + 4YA2 2]1/2
2 2 (3(3. 34). v A b.....

Yo , (e,)

Zo* (q)

A (q)

o °mo' -L0 ""max yo -

The minimum is

.1 (Y2 +a 1 C(Y2 a)>a T la) + 4 o 2
/ /

i_ 
I

... (3. 35)

i~ a^q = f _ _'rom vhqs. . a4 anda . be we fin tat te product of
the maximum and the minimum is

Figo 3o 1o Plot of the power
density spectra as functions
of plasma transit angle in a T 2) T Y2S2 (3. 36)
drift region. max rin a - 2 ) o

Equation 3. 36 shows that the product of the maximum and the minimum of the current

SPDS are proportional to the square of the invariant S. The proportionality factor is

the square of the characteristic admittance of the beam. t

The theoretically predicted conservation of the parameter S under lossless

transformations can be checked experimentally. The noise standing-wave ratio in a

drifting beam can be varied by adjustments of the voltages on the electrodes of a

multielectrode gun preceding the drift region. If the potential of the drifting beam is

left unchanged in the process, the characteristic admittance of the beam, Yo' is not

changed. Theory then predicts that the product f max min has to stay invariant.

Experiments were performed (20) which checked the theory satisfactorily. At
standing-wave ratios max /Imin greater than 10 db, the experimentally observed

product I maxgmin exceeded that observed at lower standing-wave ratios. This effect

was ascribed to the existence of higher order space-charge modes which are not
accounted for in the one-dimensional theory (34).

3.3 THE EQUIVALENT NOISE ADMITTANCE

Two noise processes with the same power density spectra, that is, the same

WR matrix, are transformed by a transducer with a given K matrix in the same way.
If a noise process in an electron beam has a WR matrix with det(WR) = 0, it is always
possible to find an analog noise process with the same WR matrix for which an

tThe invariance of the product imax 2 iminl 2 as first proved by Pierce is a

special case of the proof of the invariance of S under lossless beam transformations.
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admittance Y(w) can be defined according to Eqs. 3.21 and 3.22

Y(6) = (3. 37)

We may think of the analog noise process as propagating along transmission lines

interconnected with two terminal-pair networks so chosen that their K matrices are

identical with those of the electron beam drift regions and beam transducers.t The

noise propagating along the transmission lines, henceforth called the analog noise

process, permits the definition of an admittance according to Eq. 3. 37. Once the

admittance of the analog noise process is defined at any reference terminal pair, the

admittance at any other terminal pair is uniquely determined according to the well-

known laws of transformations of admittances by two terminal-pair networks. Many

properties of the analog process can be derived from the knowledge of its admittance.

Thus assume, for example, that the admittance Y(w) of the analog noise is given at a
reference cross section of one of the transmission lines. A particular value of Y is

associated with a particular current standing wave ratio on the transmission line:

'mi 1 Y-
Y +Y

Since a noise process is defined by power density spectra rather than by Fourier

amplitudes, this relation can be conveniently modified so that it yields the ratio of
the maximum to the minimum of the current SPDS along the line. We have

max =; y + (3. 38)

Equation 3. 38 is an example of one of the many uses of the admittance concept for

noise propagation along transmission lines. The admittance concept of the analog

noise process can be applied directly to the corresponding noise process in the

electron beam. The vast body of knowledge concerning admittance and impedance

transformations can be brought to bear directly on the analysis of noise processes in
electron beams for which an analog transmission-line noise process exists.

tIn general, nonreciprocal networks may be needed to accomplish this.

39

-- --_



A noise process in an electron beam with det(WR) / 0 does not possess a network

theory analog. The admittance concept is, therefore, not directly applicable. How-

ever, if the noise is transformed by lossless transducers only it is still possible to

define an analog admittance, as we shall now show.

The WR matrix of a general noise process can be written with the aid of Eq. 3.18

and the definitions of Eqs. 3. 26 and 3. 27 in the form

WR = (3. 39)
v fl -jA

Let us split the WR matrix of a general noise process with det(WR) / 0 into two

parts as shown below.

WR = W'R-IAl (3.40)

where I is the identity matrix and AHis a real scalar given in terms of the invariants

S and 17 of the WR matrix,

Art = S - I (3.41)

According to Eqs. 3. 39, 3. 40, and 3. 41 the explicit form of the W'R matrix is

W R = S+A ( ) (3. 42)
Ts S-jA

The determinant of the W'R matrix is, from Eq. 3. 29,

det (W'R) = 0 (3. 43)

Let us now study the transformation of the WR and W'R matrices by lossless trans-

ducers. Denoting the values of the WR and W'R matrices at the input to the transducer

by the subscript a and at the output by the subscript b, we have, corresponding to
Eq. 3.40,

WaR = WR - IAH

WbR = WR - IAn (3. 44)
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where the scalar AH is the same in both equations because of the choice of Eq. 3. 41
and the invariance of S and H with regard to lossless transformations. The lossless
transformation(Eq. 3.17) applied to Eq. 3. 44 gives

WbR WR - IAR = KWaRK-1 = KWRK-1 - IAIn

or

W, R KW'RK-1

and

WbR = KWaRK-' (3. 45)

Comparison of Eqs. 3. 39 and 3. 42 shows that the W'R matrices have the same off-

diagonal elements and the same imaginary parts of their diagonal elements, as the

WR matrices. According to Eqs. 3. 45 the W'R matrix transforms in the same way as

the WR matrix. Thus, the transformation of the off-diagonal elements, and VI, and

the transformation of the imaginary parts of the diagonal elements, j A, of the WR

matrix can be studied with the aid of the transformation of the W'R matrix. The latter

satisfies the condition of Eq. 3. 43 and thus has an analog noise process with the

admittance

Y'( S - A (3. 37a)e' S+jA

This admittance can be used to describe the current SPDS of the W'R matrix, as

shown earlier. But, this is the same as the current SPDS of the WR matrix, and thus

the latter is also described by the admittance of Eq. 3. 37a. It follows that the admit-

tance concept can be applied to any noise process, even those with det(WR) / 0, if

only transformations by lossless transducers are studied. t

Transformations that extract power from the electron beam do not conserve S

andIn. A split of the WR matrix according to Eq. 3. 40 is not independent of the

reference cross section. In general, no analog process with a W'R matrix which is

such that det(W'R) = 0 can be found whose b, fr, and A would transform identically

with those of the WR matrix.

tThe admittance concept was first used innoise transformations by S. Bloom
and R. Peter (35).
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3.4 ALTERNATE REPRESENTATION OF NOISE

In many computations it is more convenient to use the wave formalism rather

than the voltage-current representation of an excitation in an electron beam. For this
purpose it is necessary to describe a noise process in terms of normalized wave
amplitudes. The Fourier transforms of the kinetic voltage and current in an electron

beam of a noise process viewed during a time 2T were written in the form of a column

matrix in Eq. 3.12. Normalized wave amplitudes can be assigned to these Fourier

transforms according to Eqs. 2. 35 and 2. 36. We have

aT (O) = (I + PR) Na waT () (3. 46)

bT (W) = (I + PR) Nb WbT () (3. 47)

The formation of the noise matrices Wa and Wb suggests similar noise matrices formed

of the normalized wave amplitudes. We define

A = lim 277 aT(O) aT(cO)+ 2 lim T (I + PR) Na WaT () WaT(Co)+Na(I + PR) +

T-O T T-, T

= 2 ( + PR) Na Wa Na ( + PR)+ (3. 48)

where we have made use of the fact that Na is a Hermitian matrix. The factor of 2

was introduced for reasons of normalization. In order to explain the normalization

involved in Eq. 3.48 we give an example. Imagine that a lossless transmission line

is terminated at its two ends into matching resistors at a temperature T. The

resistors exchange noise power over the transmission line. Denote by a1 the normal-
ized amplitude of the wave traveling from left to right, by a 2 the normalized amplitude
of the wave from right to left. The values of the elements of the matrix A as defined

by Eq. 3. 48 would then be

A12 = A21 = 0 , since the two waves are uncorrelated,

and

A1 = A22 kT (3. 49)
47

according to the Nyquist formula, which in its more conventional form gives the mean
power carried in any one of the waves within the frequency band Af as kTAf. The
definition of the A matrix thus differs by a normalization factor of 4rAf from the con-
ventional engineering use. (Compare with the normalization of the current SPDS dis-

cussed on page 31.)
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A similar "noise wave matrix" can be defined at reference cross section b by

B = lim 2 bT() bT ()+ = 2(I + PR)NbWbNb (I +PR)+
T-oo T

A beam transducer between the reference cross sections a

characterized in terms of the transformation of Eq. 2.24.

lishes a relation between the noise wave matrices A and B.

and b is conveniently
This transformation estab-

We have

B = lirm 2 bT(O) bT()+ = lim 2 M aT(c) aT(O)+ M+ = MAM +

T-oc T T- T

Thus

B = MAM + (3. 5

If, in particular, the transducer M is lossless, we must have according to Eq. 2. 29

M+PM = P (. 

1)

m9)

or

M+ = PM-1P (3. 52)

Introducing Eq. 3. 52 into Eq. 3. 51,

equal to its own inverse), we find

and multiplying from the right by P (which is

BP = MAPM-1 (3. 53)

Equation 3. 53 is analogous to the transformation of the WR matrix by lossless trans-

ducers, Eq. 3.17. Equation 3. 53 leads to the conclusion that the transformation by a

lossless transducer must leave the trace and the determinant of the AP matrix equal

to that of the BP matrix. Naturally, the invariance of the trace and determinant of

the AP matrix must be related to the invariance of the same quantities pertaining to

the WR matrix. In order to find how these are related, let us study more carefully

the transformation of Eq. 3. 48. Multiplying Eq. 3. 48 from the right by P, and

noting that RR = I according to Eq. 2. 15, we can obtain

AP = 2(1 + PR)NaWaRRNaRR(I + PR)P (3. 54)
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Now, it is easy to prove, by virtue of the definitions of Eqs. 2. 14 and 2. 34, that

8RNa R = N-a

Further, the following relation is easily proven with the aid of the definitions of

Eqs. 2. 14 and 2. 29.

R(I + PR)+P = 2(1 + PR)-

Thus, we find that Eq. 3. 54 can be written as

(3. 55)AP = [(I + PR) Na] WaR [(I + PR) Na ] 1

2

The AP matrix and

Accordingly, there
two matrices.

the WR matrix are related by a similarity transformation.
is a direct relation between the traces and the determinants of the

Trace (AP) = All - A22 -1 Trace (WR) = II
2

det (AP) = A12 12 - A A22 1 det (WR) =1 (I2 - S2)
4 4

(3. 56)

(3. 57)

The trace of the AP matrix is equal to the real part of the CPDS of the noise process.

The inverse of Eq. 3. 55, which gives the matrix WaR in terms of AP, is also ofa 1
interest. It is obtained from Eq. 3. 55 by premultiplication by [(I + PR) Na]-l, and

postmultiplication by [(I + PR) Na].

WaR = 2 [(I + PR)Na] - AP [( + PR)Na] (3. 58)

The relations between the elements of the WR matrix, as given in Eq. 3. 39, and the

elements of the AP matrix are written out in detail below. The set of Eqs. 3. 59 to

3. 61 is obtained by carrying out the matrix operations in Eq. 3. 55; the set of
Eqs. 3. 62 to 3. 65 follows from Eq. 3. 58.

All = 1 (Yo, + ZO) + 1 
- 2

-A 12 = (Y-Z) -IjA
4 2

(3. 59)

(3. 60)
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-A 2 2 = -I(Yo,+Z 0o) + 1 (3.61)
4 2

n = All - A22 (3. 62)

A = j(A2 - A12) = -j(A 12 - A21) (3. 63)

= Zo (All + A22 - A12 - A* 2) (3. 64)

TV = Yo(All + A22
+ A12

+ A2 ) (3. 65)

The subscript a of the elements of the WR matrix has been omitted in these equations,
thus emphasizing their applicability at any reference plane.

The transformation of the A matrix by a section of a drift region is much simpler
than that of the WR matrix. A section of a drift region of length 8q, measured in
terms of the plasma transit angle and transit angle 9, has the M matrix:

/-j iq) O \
M = (3. 66)

0 e j(6+Oq)

The expression for M, Eq. 3. 66, applied to the transformation of Eq. 3. 51, gives

(written in detail):

B1 1 = A11 2

B12 = A12 e2Jq (3. 67)B22 = A22

The transformation of Eq. 3. 67 is easy to comprehend. Along a drift region the fast
and the slow waves change in phase only. This accounts for the invariance of the
diagonal elements All and A22. Within a drift region of plasma transit angle Oq the
fast and the slow wave get out of phase by an angle 2j Oq, which accounts for the
relationship between B1 2 and A1 2 '

A slightly different interpretation of Eq. 3. 67 is possible. Let us assume that
the reference plane a in a drift region is continuously varied. A movement of the
reference plane forward by a plasma transit angle Oq corresponds to a change of the
argument of A1 2 by an amount 2 q. The reference plane can be so chosen that A1 2 is
real and positive. Equation 3. 65 shows that this reference plane coincides with the
maximum of the current SPDS in the drift region. On the other hand, if the argument
of A 12 is not equal to zero, Eqs. 3. 65 and 3. 67 indicate that the plane of the maximum
of the SPDS lies a plasma transit angle equal to A q = arg(A12)/2 in front of the
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reference plane. "In front" means against the direction of the time-average velocity u

of the beam.

If the off-diagonal element of the A matrix, A1 2 , is equal to zero, the current

SPDS is independent of distance, according to Eqs. 3.65 and 3.67. The fast wave and

the slow wave in the beam are uncorrelated. The A matrix is diagonal. Equation 3.60

shows that this is the case when

c = Z2 ' and A = O (3. 68)

The following question will prove of interest: Given a general noise process at a

reference plane a with some noise wave matrix A, is it possible to pass this noise

process through a lossless beam transducer so that the noise matrix B at its output b

is diagonal? A general proof of the possibility of such a transformation and how it is

achieved is given in reference 19. Here we shall answer the question by simple

physical reasoning which will help towards an understanding of noise transformations.

We have shown in section 3. 3 that it is possible to find an equivalent admittance

for an arbitrary noise process as long as transformations of noise by lossless beam

transducers are considered. The transformation of the current SPDS of the analog

noise process with the admittance Y' (w) of Eq. 3.37a is the same as that of the general

noise process. The question above can be recast into the terminology of admittance

transformations. The requirement that the noise wave matrix be diagonal at the cross

section b is tantamount to (see Eq. 3. 68)

b = y2 A and Ab = O

The admittance of the analog noise process at cross section b must, according to

Eq. 3. 37a and the definition of Eq. 3.29, be

Y = Yo

The equivalent admittance at reference cross section a is

Ya -a a
S + j Aa

Thus, the original question may be formulated as follows: Is there a lossless trans-

ducer that transforms the admittance Yo at its output into Ya at the input? The admit-

tance at the output of the transducer, Y , is positive real; the admittance at the input

has a positive real part. But, it is always possible to find a lossless transducer that

transforms any admittance with a positive real part into any other admittance with a

positive real part.
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Returning to the discussion of the original noise process we can conclude that it is
always possible to find a lossless beam transducer, which, inserted between the
reference cross sections a and b, transforms an arbitrary noise wave matrix into a
diagonal noise wave matrix. Whether such a beam transducer is physically realizable
is an entirely different problem. We know that a great variety of noise transformations

can be achieved with a multielectrode gun (24) as shown in Fig. 2. 2. In the subsequent
discussion we shall postulate that we can always find the beam transducer that is
theoretically required.

When the noise matrix A is brought into a diagonal form B by a lossless beam
transducer, the trace and the determinant have to be conserved. According to
Eqs. 3.56 and 3.57, we must have

Bll - B2 2 = I

BllB22 1 (S2 - 2)
4

with the result that

B11 - (S +)
2

If M is the particular transducer that brings
form B, we have

B22 - 1 (S - )
2

the noise wave matrix A into the diagonal

MAM + = B

with B diagonal. Premultiplying this equation by M 1 , and postmultiplying it by

(M+) -1 , we obtain

A = (M-1)B(M- 1)+

Since M satisfies the condition of power conservation

M+PM = P

we find, after premultiplying Eq. 2. 33 by (M + ) -1, and postmultiplying by M -1,

(M-1)+ P (M- ) = P
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(3. 69)

(3. 70)

(3. 71)

(2. 33)

(3.72)
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Equation 3. 72 shows that the matrix M - 1 is the matrix of a lossless transducer. Using

this knowledge we can interpret Eq. 3. 71 as follows: Any noise process with the

matrix A can be represented by a diagonal noise process B followed by a lossless
transformer with the matrix M 1. The matrix M 1 is the inverse of the matrix M

required to diagonalize A by the operation of Eq. 3. 70.
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4. THE MINIMUM OBTAINABLE NOISE FIGURE

4.1 THE NOISE FIGURE EXPRESSION

The generally adopted measure of the sensitivity of an amplifier is the noise

figure (36, 37). Here we shall deal exclusively with the spot-noise figure. The spot-

noise figure can be evaluated as the ratio of the total noise output of the amplifier N,

within the frequency bandAf, over the hypothetical noise output No which the amplifier

would have if no additional noise were introduced by the amplifier

F-= N
No

The frequency band Af is picked small enough so that the amplifier characteristics can

be assumed to be constant within the band Af. The noise output N of the amplifier can

be ascribed to two sources: the contribution Ni caused by the noise internal to the

amplifier, and the noise No from the input circuit which would be present even if the

amplifier were noise-free. The two contributions No and Ni are, in general, uncor-

related. Thus, the total noise output N can be written as the sum of N o and Ni. The

noise figure can be written in the form

F = + Ni

No
(4. 1)

Figure 4. 1 shows

ANODES I ST 2. 3RD

/ I I 11 T
I |I I I |

a schematic of a microwave longitudinal-beam amplifier. The
excitation at the input reference plane on the

0llb4 I transmission line feeding the amplifier

can be expressed in terms of the normalized
rrrrrf e ffffi-

REFERENCE PLANE
a 

( CURRENT
IN DRIFT

0q-

Fig. 4.1. Schema
longitudinal-beam
electrode gun.

b, amplitudes of the incident and reflectedwaves,

a3 and b3 . The excitation on the output trans-

mission line is given in terms of the incident

and reflected wave amplitudes a 4 and b4.
SELF-POWER DENSITY SPECTRUM The electron beam enters the amplifier at
REGION PRECEDING AMPLIFIER

the gun end with an excitation of the fast and

slow waves a1 and a 2, respectively. The

tic of microwave excitation in the beam leaving the amplifier
amplifier with multi- at the collector end is characterized by the

normalized amplitudes of the fast and slow waves, b1 and b2. The amplifier can be
described by the 4 x 4 matrix G which gives the linear relation between the column

matrices a and b, each formed of the four normalized wave amplitudes.

b = Go (2. 37)
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Without loss of generality we can assume that the input source is matched to the input

transmission line and that the output load is matched to the output transmission line.

For the noise leaving the amplifier with the output transmission line matched to the

load, and thus a 4 equal to zero, we have

N = lim 2 b4 Tb4T47Af
T-. T

The fourth element of the matrix relation (Eq. 2. 37) gives the amplitude b4.

b4 = G41al + G42a2+ G4 3a3 (4. 2)

The noise power No is found by disregarding the noise contribution of the electron

beam, i. e., by setting a1 = a 2 = 0.

N = lim 2 IG43
2 a3 Ta*T4rAf = G43 12 A3 3 4nAf (4. 3)

T-oO T

The noise power carried by the incident wave is given by the Nyquist formula (compare
Eq. 3.49):

A3 347Af = kTAf (4. 4)

where k is Boltzmann's constant, and T is the temperature of the input circuit. The

noise power Ni caused by the noise internal to the amplifier comes from the noise in
the electron beam. We have

Ni = lim 2 (G41al T + G42 a2T) (G41 lT + G42 a2 T)* 4Af
T-oo T

= (IG4112A I + G4212A2 + G41 G2 A12 + G 1G42A2)4nAf (4. 5)

Combining Eqs. 4.1, 4. 3, 4. 4, and 4. 5 we find the noise figure of the amplifier.

F = 1 + 4r I1 [JG 41 J2 All + G4 212 A22 + G41 G 2 A12 + G 1G4 2 A 2 ] (4. 6)
kT }G43

}2

4.2 MINIMIZATION OF THE NOISE FIGURE
Let us imagine that the beam passes through a multielectrode gun as shown in

Fig. 4. 1 before it enters the amplifier. The multielectrode gun is a lossless transducer

t Note the remarks on the normalization of Eq. 3. 48.
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by which the noise can be adjusted at the reference cross section at the gun end of the

amplifier. In many amplifiers the beam passes through a drift region before it enters

the amplifier. We shall assume this to be the case, merely because the adjustment of

the standing wave of the current SPDS in this drift region gives a good visual represen-

tation of the noise transformations by the multielectrode gun. We shall assume that the

multielectrode gun is versatile enough to be able to give an arbitrary standing-wave

ratio of the current SPDS within the drift region. Stated in mathematical language this

assumption is equivalent to the requirement that All, A2 2 , and A1 2 at the input refer-

ence cross section can be adjusted arbitrarily, subject to the condition of conservation

of S and Ilby lossless transformations. We have, from Eqs. 3. 56 and 3. 57,

All- A2 2 = = constant

(4. 7)

(All + A22)2 - 4 A12 2 = S2 = constant

The requirement of the invariance of S and H leaves two of the four noise parameters

adjustable. One of these parameters is the argument of A1 2 which does not enter into

the conditions of Eq. 4. 7. The choice of arg (A 1 2 ) which minimizes the expression of

Eq. 4. 6 is, obviously,

arg (A12 ) = arg (G4 2) - arg (G4 1) + (4. 8)

This condition is achieved when the maximum of the current SPDS in the drift region

preceding the amplifier lies a plasma transit angle,

Aq = l -a arg(G 4 1) + ] 2 [ 2
+ (4.9)

in front of the reference cross section in the beam. The first minimization leads to

the noise figure expression

F = 1 + 4 1 (G 4 112 All + IG4 2 2 A22 - 2 G4 1 G42 j1A12 j) (4. 10)
kT G4 312

This expression allows one further minimization. We can express A 11 and A2 2 in

terms of I A 1 2 1 with the aid of Eq. 4. 7.

Al = 1 [(S2 + 4 A12 I2)1 /2 + T1]
2 (4. 11)

A22 = l [(S2 + 4 1 A12 12)1/2 - n]
2
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These expressions can be introduced into the noise figure expression (Eq. 4.10), which
becomes a function of a single variable, I A1 2 1. Minimization with regard to this vari-
able is achieved when

1A121 - I G41 G 4 2 S (4. 12)fG41F - I1G4212

The minimum noise figure is

Fmin= 1 + 2 D[ S - D f] (4. 13)
kT IDI

where

D = IG4212- IG4112

IG4312

The minimization leads to a duplicity of sign of a square root. The duplicity is
resolved by noting that the contribution of the beam noise to the output must be positive,
regardless of the sign of H.

The standing-wave ratio of the current SPDS required for the minimization of the
noise figure is (see Eq. 3. 65) from Eqs. 4. 11 and 4.12,

max All + A22 + 2jA 12 1 (IG4 11 + G42 (414)
main All + A2 2 - 2A121 IG41 1 - IG42 1

The minimum noise figure of the amplifier obtainable by means of a lossless
transducer in the beam depends, according to Eq. 4.13, partly on the two noise
invariants S and , partly on the amplifier structure through the constant D. In
practice, it is often necessary to find an appropriate multielectrode gun that will give
the best possible noise figure when used in a given amplifier. In view of our limited
theoretical knowledge of the noise input conditions beyond the potential minimum in the
electron gun, a semiempirical approach to this problem may be used. First of all, the
parameters G 4 1 /G 4 3, and G42/G43 can be computed for the given amplifier. For a
traveling-wave tube these parameters are, in Pierce's (1) notation,

41 iC(82 + 83)- (823 - 4QC) 2V0C (KZ)-l/2
G433 2 4QC)

i C (82 + $(- 1/ 2 - (32 3 - 4QC) C (KZ)- /2
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where K is the helix impedance and Z o is the characteristic impedance of the beam as

defined by Eq. 2. 7. The 6 's are the incremental propagation constants that can be

found from a solution of the determinantal equation for the propagation constants of the

traveling-wave tube. C and QC are parameters defined by Pierce to characterize the

strength of coupling between the circuit and the beam, and the space charge in the beam.

The values for G4 1 /G 4 3 and G4 2 /G 4 3 computed from the equations given above can be

introduced into Eqs. 4.9 and 4.14 to find the position of the current standing-wave

maximum and the noise current standing-wave ratio for the optimum noise figure.

Once this is found, a multielectrode gun (see Fig. 2.2) can be tested for the standing

wave of the noise current SPDS. This can be done by a sliding-cavity beam tester

which is now in use in several laboratories (13,20,46). The standing-wave ratio can

be adjusted to the desired value (Eq. 4.14) by changes in the electrode potentials. If

the level of the product kmax min as given by Eq. 3.36 does not change in the process

we can assume that the gun performs as ideally predicted by the theory. Should the
level rise, the gun design is suspect and must be changed. Experience shows that gun

designs with the smoothest possible potential distribution - as shown, for example, in

Fig. 2.2 - perform closest to the idealized theory. When the proper current standing

wave is achieved, the gun can be built into the amplifier. Small final adjustments in
the potentials of the electrodes may be necessary in order to achieve the best per-

formance.

The adjustments described above do not require the knowledge of /. The value of

I7 serves only to determine the final value of the optimized noise figure.

Deviations of the noise behavior from that predicted by the idealized theory are

ascribed, today, to two effects. First, there is the lens action of the various elec-

trodes in the multielectrode gun. The lens action may result in cross-overs of the

electron trajectories. Such cross-overs are believed to be harmful to low noise

figures, since they may cause a transformation of the random motion in the transverse
direction (which is always present under physically realizable magnetic focusing fields)

into the longitudinal direction. Secondly, an electron beam propagates, aside from the

dominant space-charge waves included in the one-dimensional theory (see remark on

p. 38), higher order space-charge waves. These higher order space-charge waves are

excited by the input noise and are picked up by a sliding cavity beam tester. Thus, a

sliding cavity beam tester observes not only the standing wave of noise current set up by

the dominant space-charge waves, but also the noise current pattern of the higher order
space-charge waves. Their effect is particularly pronounced at the standing-wave

minima of the noise current in the dominant space-charge waves and may influence a

reading of the standing-wave ratio of the noise current in the dominant space-charge

waves. Ithasbeenfound experimentally, on anumberof low-noise, multielectrode guns

that the product Imaxf min is conserved through noise transformations that give

standing-wave ratios of noise current of less than 10 db. These findings have been
taken as the experimental proof that the effect of the higher order space-charge waves
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upon a reading of the noise current standing-wave ratio is negligible for current standing-

wave ratios of less than 10db. The value of the standing-wave ratio of noise currentto

be used in the computations of the noise figure of an amplifier is that of the dominant

space-charge waves. This follows directly from the fact that the theory is based on a

two-wave picture and can, therefore, account only for noise carried in two waves.

Since the coupling of slow wave structures to the higher order space-charge waves is

weak, the noise figure of a traveling-wave tube is not believed to be strongly affected

by the existence of the higher order space-charge waves.

4. 3 MAGNITUDE OF THE PARAMETER D FOR A LOSSLESS AMPLIFIER

The subsequent analysis will be limited to lossless amplifier structures. (The

effect of loss in the amplifier is treated in general terms in reference 19. ) It may be

stated here that the minimum noise figure of an amplifier with loss can only be higher

than or, at best, equal to, that of a lossless amplifier.

Equation 2. 42 imposes upon the elements of the G matrix a condition that has a

profound influence upon the characteristic constant D. From Eq. 2. 42 it follows that

Idet (G)j2 = 1

Thus, the G matrix has a reciprocal, G- 1 . Premultiplying Eq. 2. 42 by GP, and

postmultiplying it by (PG)-1, we get

GPG+PG(PG)-1 = GPP(PG)-'

and since the P matrix is its own reciprocal, we have

GPG + = P (4.15)

Superficially, Eq. 4. 15 looks like Eq. 2. 42. But it implies relations among the rows

of the G matrix - as, for example,

IG4 1 12 - G4212 + IG4312 + IG44 12 = 1 (4.16)

From Eq. 4. 16 we find for the amplifier constant D (see Eq. 4. 13),

D = IG4 212 - IG4 1
1

2 =1 _- G4412 (4.17)
IG4312 iG4312

Since G4 3 12 is the power gain of the amplifier, it must always be greater than unity.

Thus, D is always positive. Two classes of amplifiers have to be distinguished. One

class has G4 4 1 < 1; the other has G4 4 1 > 1. Let us recall the significance of the

matrix element G4 4. The fourth element of the matrix relation (Eq. 2.37) reads
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b4 = G41al + G42a 2 + G43 a3 + G44a4

With no excitation in the electron beam, al = a2 = 0, and with the input transmission
line matched to a passive load, a 3 = 0, we find that the reflection coefficient measured

in the output transmission line is G44 = b4 /a 4. A reflection coefficient of magnitude

less than unity is caused by a passive load, a reflection coefficient of magnitude

greater than unity is produced by an impedance with a negative real part. For IG4 4 1 > 1
the output impedance of the amplifier with the input transmission line matched, has a
negative real part. The amplifier is only conditionally stable with regard to end-

loading.

Conversely, if IG44 I < 1, the output impedance of the amplifier has a positive real

part. In this case it is always possible to find a lossless two terminal-pair network

which, inserted between the amplifier and the output transmission line, matches the

output impedance of the amplifier to the line. When this is done, the output power for

a given input power is also maximized. The quantity IG4312 becomes the "available
power gain", Gav, of the amplifier, i. e., the ratio of the available output power over
the available input power. The element G44 is reduced to zero. The parameter D
becomes

D=1 1
GavGav (4. 18)

The class of amplifiers with IG4 41 > 1 cannot be matched to the output trans-
mission line. The quantity IG4 3 12 still has the meaning of power gain, G, the ratio
of the output power over the available input power. For this class of amplifiers,

D >_ 1 1 (4.19)
Gay

Comparison of Eqs. 4.18 and 4.19 shows that amplifiers with an output impedance with
a negative real part are, in general, less desirable from the point of view of noise
performance.

A third possibility should not be excluded, namely, amplifiers with G44 = 1. For
these amplifiers Eq. 4.17 gives directly,

D = (4. 20)

independent of the gain.
Since D is always positive, the minimum obtainable noise figure as given by

Eq. 4. 13 depends only upon the difference of the noise invariants, S - . (This result
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does not depend upon the assumption of zero loss, as shown in general in refer-

ence 19. )

The lowest possible noise figure with a given gain is achieved with amplifiers that

have a IG4 4 I< 1 and have been subsequently matched to the output transmission line.

The minimum noise figure of this class of amplifiers has the form

Fin = 1 + 1 2 (S - (4. 21)
av /kT (4.21)

Equation 4. 21 shows that the noise figure of an amplifier can, in general, be reduced

to unity at a corresponding sacrifice of gain. Such a result is not surprising. Indeed,

one can almost always decouple the microwave structure from the electron beam, thus

preventing any beam noise from entering the structure, with a resulting noise figure

of unity. Naturally, the gain is then reduced to unity also. The dependence of the

minimum noise figure upon the gain may suggest another scheme for achieving ampli-

fication with a small noise figure. Assume that a set of n electron guns is available,

all with the same lowest possible value of S - H. Then, construct n amplifiers using

these guns, each of the amplifiers with a low gain and low noise figure corresponding

to Eq. 4. 21. Is it then possible to achieve a noise figure lower than that given by

Eq. 4. 21 at some large available gain, Gav, by cascading the n amplifiers? To find an

answer to this question let us assume that all n amplifiers have the same available

gain as the first amplifier, g. The gain of the cascade is

Gav = gn (4. 22)

The noise figure of the cascade can be found from the well-known formula for the

noise figure of a cascade of amplifiers:

F = F1 + + .Fn- (4. 23)
91 gn- 1

where the subscripts refer to the order of the arrangement of the amplifiers. In our

case we have assumed that all of the amplifiers have the same gain, and according to

Eq. 4. 21 they have the same noise figure. For the case of n such amplifiers we find,

from Eq. 4. 23,

F = 1 +(F l - 1) 91

91

where F 1 and g1 refer to the noise figure and gain of the first amplifier. Introducing

Eq. 4. 21 for the noise figure of the first amplifier and using Eq. 4. 22, we find
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F = + -. I)2s- ) ( (4. 24)
&av kT

The over-all noise figure is identical with the noise figure obtainable with a single

amplifier at a corresponding gain, Gav. Thus, the cascading scheme cannot lead to

any improvement over the noise figure of Eq. 4. 21.

4.4 APPLICATIONS

The application of the preceding analysis to a series of practical cases is interest-

ing. In principle, alossless traveling-wave tube, as shown schematically in Fig. 4. 1,

can be matched to the input and output transmission lines. Then, no reflection occurs

when power is fed into the output with the input transmission line terminated into a

matched resistor, G4 4 = 0. Equation 4. 21 for the minimum noise figure applies

directly. Thus, the lossless traveling-wave tube is a microwave-beam amplifier that

theoretically achieves the lowest possible noise figure(Eq. 4.21). If we assume, fol-

lowing Pierce, that S is given by Eq. 3. 30, and 7 = 0, we find that the limiting noise

figure is

Fmin 1+ (1i 1 )(4 -)1/2 Tc (4.25)
Gay) T (4. 25)

This expression was obtained by various authors in the limit of large gain (42, 35, 40).

With the choice of T = 300°K, Tc = 1200°K, and Gav-*oo, we have

Fmin 6 db

Next let us consider a klystron amplifier. In order to be consistent with the

assumptions of the preceding theory, we must postulate that the cavities of the klystron

are lossless. If, in addition, the cavity gaps are very short, the beam loading admit-

tance is theoretically zero. The output cavity viewed from the output transmissionline

looks like a reactive termination, thus G44 = 1. According to Eq. 4. 20, D = 1, and

the minimum noise figure is (32)

Fi n = 1 + 2 (S-11) (4. 26)
kT

The formalism that led to Eq. 4. 21 for the minimum noise figure was developed

under the assumption of a lossless microwave structure. It is not hard to modify it

so that it is applicable to several practical cases with loss. One case of practical

interest is the traveling-wave tube with a severed helix. Somewhere between the input

and output, the helix of the traveling-wave tube is interrupted by a lossy section so
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that regenerative feedback from reflections from the output is prevented. One can

represent this effect by assuming that the traveling-wave tube has two lossless helices,

one end of each terminated in matcl

/ I
I

a4 i· i3· fb3 61g 544 be

II b, 1 'Ib

ied loads (Fig. 4.2). The traveling-wave tube is now

characterized by a lossless 6 x 6 G matrix,

relating the column vectors a and b, each of

b. sixth order. The numbering of the waves is

. hnwn in Fir 4 2 Th fst and .lnw wave in

-O0

Fig. 4.2. Schematic of traveling-
wave tube with severed helix.

matched resistances are terminals

(Eq. 415), with G a matrix of sixth

the beam at the input end are still a1 and a2 .

The input and output of the traveling-wave tube

are denoted by the subscripts 3 and 4. The two

new terminal pairs that are terminated in

5 and 6. The 4,4 element of the matrix relation

order and P = diag (1, -1, , 1, 1, 1, 1), reads,

JG4112 - +G4212 + G4 3 12 + I4412 + IG4512 + IG4 6
2 = 1 (4. 27)

If the second helix is matched to the output, we have G4 4 = 0. Further, a wave

traveling in a direction opposite to the flow of the beam cannot excite the beam.

Hence, the wave a6 cannot couple to the output, G4 6 = 0. The quantity IG431 2 is the

available gain of the over-all amplifier, Gay; the term G4 5 1 2would be the available

gain, G,v if only the output helix section were used as an amplifier. If the contribu-

tion to the noise by the matching resistor 5 is neglected, Eq. 4.17 for the parameter D

still holds unchanged. These conditions introduced into Eq. 4.17 give

D=I- 1,+D = Ga Gav
Gav Gav

(4. 28)

Comparison of Eq. 4.28 with Eq. 4.18 shows that D is not necessarily much larger

than the D of a lossless traveling-wave tube. If the gain in the first section of the

severed helix is appreciable, Gav/Ga can be kept small. The noise figure then gets

established essentially in the first section of the amplifier. The over-all traveling-

wave tube acts quite like a cascade of two amplifiers in which the noise figure of the

second amplifier does not affect the over-all noise figure if the gain in the first

amplifier is sufficiently large.

Finally, if we consider a backward wave amplifier as an example, we find that its

formalism is identical with that of a traveling-wave tube. A backward-wave amplifier

with a lossless microwave structure can be described by a lossless 4 x 4 G matrix.

The input terminals 3 are now situated at the collector end; the output terminals 4 are

at the gun end. Aside from this difference in physical appearance, the mathematical
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formalism is identical with that of a traveling-wave tube, and the minimum noise figure

expression (Eq. 4. 21) applies to the backward-wave amplifier as well.
4. 5 AN ALTERNATE DERIVATION OF THE MINIMUM NOISE FIGURE

An amplifier has electromagnetic power gain at the expense of kinetic power in the
electron beam. Electromagnetic po'wer can be extracted from the electron beam only
if the negative kinetic power content in the electron beam is increased. In other words,

an amplifier has to couple to the slow wave in the electron beam which carries negative

kinetic power. This phenomenon was recognized when the magnitude of the term IG2 3 12
in Eq. 2. 43 was discussed.

Noise is carried in the beam both by the fast and by the slow wave. As long as
there is partial correlation between the two waves, the noise in one can be used to
cancel part of the noise in the other. We know that a lossless beam transducer can be
used to achieve this partial cancellation until both noise waves are uncorrelated. This
is equivalent to saying that the noise matrix B beyond the transducer is diagonal.

Let us now assume that the noise waves at the input reference plane of the

amplifier of Fig. 4. 1 are uncorrelated; the B matrix is diagonal. We may then ask,
What is the best possible amplifier which gives the lowest noise figure? In answering
this question we shall gain a better understanding of the noise parameter S - .

The noise figure expression (Eq. 4.6) can be applied directly to the problem by

merely identifying the elements of the A matrix with those of the diagonal B matrix.
We have

F = I + 4 I12 [IG 4112 B11 + IG4212B 22] (4. 29)
kT G431

Next, we may ask, How can we optimize Eq. 4. 29 by a proper choice of the amplifier?

Since both B 11 and B 22 are positive, Eq. 4.29 is clearly optimized if G4 11 and G 4 2 12
are selected as small as possible and G43 12 is selected as large as possible. Condi-

tion 4.16 shows that this is the case when G4 1 = G4 4 = 0, and

1G421
2

1 1 = 1 1(4.30)
(GI~j2= = 1 =1__ (4. 30)

IG412 {G432 Gay

But, according to Eq. 3.69, B 2 2 = (S -)/2. Combining Eqs. 3. 69, 4. 30, and 4. 29,
we find expression 4. 21 for the minimum noise figure.

This simple minimization teaches a useful lesson. As long as there is correlation

between the slow wave and the fast wave there is always a hope of canceling the noise
in one wave with that of the other. Such a scheme fails in the absence of correlation.
The best that can be done from the point of view of noise figure is to couple to the slow
wave only. Such a coupling is necessary for the operation of the amplifier. The fast
wave should not couple to the output (G 4 1 = 0), since it carries positive kinetic power
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and thus cannot be used as a source of electromagnetic power. Coupling to the fast
wave would only introduce additional noise.

4. 6 CONCLUSIONS

Based on the assumptions of the one-dimensional, single-velocity, small-signal

theory, the preceding investigation has shown that there is a lower limit to the noise

figure for microwave-beam amplifiers with large gain. This lower limit is a function

solely of the noise process in the region of the potential minimum. The value of the

basic noise parameter S-I, established in the region of the potential minimum, gives

the minimum noise figure at large gain, F min

Fmin =1 + 2 (S - )
kT

It was also shown that a traveling-wave tube with a microwave structure of zero

(i. e., small) loss achieves the theoretical minimum noise figure solely with the aid of

a conventional multielectrode gun.

Future work on low-noise microwave tubes will, therefore, have to be concerned

with two major questions: (a) What is the lowest possible value of the noise parameter,

S-17? (b) How can the minimum noise figure given by Eq. 4. 24 be lowered by schemes

that fall outside the realm of validity of the assumption of one-dimensional, single-

velocity theory?

The first question has been approached theoretically by P. K. Tien (44) in an

ingenious and elaborate digital computation. He analyzed the motion of the electrons

emitted at random from the cathode between the cathode and the potential minimum.

Mutual repulsion forces among the electrons were taken into account. Then, essen-

tially the parameters S and were evaluated slightly beyond the potential minimum by

an averaging process analogous to that of Rack. Although there may still be some

doubt as to whether or not it is legitimate to compute averages at a reference plane at

In 
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Fig. 4. 3. Tien's computed minimun
noise figure, Fmin = 1 + (2n/kT)S,

versus frequency.

able irregularities in the cathode, it,

which the single velocity approximation does

not hold, Tien's results seem to establish

rather convincingly that the noise parameter

His approximately zero at all frequencies

and that S is a function of frequency, as shown

in Fig. 4. 3. It is noteworthy that S is small at

l low frequencies, rises at somewhat higher
frequencies, but takes a decided dip when the

frequency of operation is somewhat below the

plasma frequency at the potential minimum.

If this dip actually exists, in spite of unavoid-

would prove of great practical importance.
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Undoubtedly, more theoretical and experimental work will be concentrated around this

intriguing question in the future.

The second possibility mentioned above is concerned with a means of circum-

venting the lower limit on the microwave tube noise figure as established in Eq. 4.24.

This would have to be accomplished by schemes for which the single-velocity, one-

dimensional assumptions do not hold. One might try to influence the emission from the

cathode, or potential minimum, so that the noise parameter S-Hwould be reduced. Or

one might look for microwave tubes other than those of the longitudinal-beam type,

which would possess a limit on noise figure lower than that of the longitudinal-beam

tube. Among these, the transverse field tube has been considered (45), particularly

because it seems to allow a reduction of noise by beam collimation, a scheme that pro-
mises to be simpler than are noise reduction schemes that influence the cathode

emission in longitudinal tubes.

Finally, we note that the one-dimensional assumptions used in the present report

imply that the beam can propagate only two waves, the dominant space-charge waves.

If, on the other hand, other waves are, or are made to be, important, the present

theory is not applicable. The more elaborate theory of reference 19 would have to be

used. It is conceivable that the value of the lower limit of the noise figure could be

influenced by a proper choice of geometry.
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