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EQUILIBRIUM EXIT IN STOCHASTICALLY DECLINING INDUSTRIES

Charles H. Fine

Lode Li

ABSTRACT

We study a complete information model of exit in which the stage payoffs

are governed by a nonstationary Markov process that reflects the stochastic

decline of the Industry. For a monopolist, our model is an optimal stopping

problem. For duopolists, we analyze the (perfect) stopping time equilibria of

the exit game. There are multiple perfect equilibria of our exit game, in

contrast to several papers in the literature. We explain how relaxing an

arguably unrealistic assumption in those models will give multiple equilibria

in those models also. Finally, we show an equivalence between stopping time

equilibria, and perfect equilibria of complete-information, stochastic exit

games.
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1. INTRODUCTION

The decline of products and industries is a natural by-product of the

growth and evolution of industrial economies. Economic decline puts pressure

on firms' profits and on their ability to remain in the business. Most firms

eventually depart if the decline is severe. However, those who manage to stay

in after a shakeout can often earn significant profits.

In this paper, we analyze firms' decisions to exit an Industry that is

suffering from economic decline. In contrast to the literature on entry, the

study of exit decisions by firms in oligopolistic industries is not

extensive. Ghemawat and Nalebuff (1985) analyze a continuous time, perfect

information model for an asymmetric duopoly in a deterministically declining

industry, where the firms differ by their capacities and related fixed costs

per period. Unless the high-fixed-cost firm has significantly lower operating

costs than the low-fixed-cost firm, the unique perfect Nash equilibrium in

their model is for the firm with the larger capacity and fixed costs to exit

at the first time that its duopoly profits are nonpositive. The smaller firm

then remains until its monopoly profits become negative.

Fudenberg and Tirole (1986) also analyze an asymmetric duopoly exit game

in a continuous time model with deterministic demand paths. However, they

assume that each firm does not know the fixed operating cost per period of its

rival. Thus their model is a war of attrition where each firm continually

revises downward its estimate of the other's costs, as long as the contest for

the market lasts. With an assumption that each firm assesses positive

probability that its rival will never find it optimal to exit, the model
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yields a unique perfect Nash equilibrium where the higher cost firm exits the

market before the firm with lower costs.

We also model an industry that begins as a duopoly. Like Ghemawat-

Nalebuff and Section 5 of Fudenberg-Tlrole, we assume that the Industry

declines over time so that the profits of the two firms shrink until one of

them exits, leaving a monopoly for the other. In contrast to the results of

Ghemawat and Nalebuff, and Fudenberg and Tirole (each of whom obtains a unique

perfect equilibrium in a continuous time, deterministic model), there are

multiple exit-time equilibria in our stochastic, discrete time framework. As

a consequence of the multiplicity of the equilibria, the stronger firm, which

has a stage-payoff advantage, may not always exit last.

The multiplicity of equilibria in our model is a consequence of the fact

that the industry demand process can jump from a point where both firms are

viable as duopolists to a point where neither firm is viable a.s a duopolist

but each is viable as a monopolist. At such a point in time, exit by either

could constitute an equilibrium in stopping times. Both Ghemawat and Nalebuff

and Fudenberg and Tirole avoid this problem by assuming that demand falls

continuously (and detenninistically) over time. However, their models would

also exhibit multiple equilibria as ours does if their demand process were

allowed to have jumps. Thus, an assumption in the direction of more realism

(a demand process with discrete jumps) destroys the equilibrium uniqueness in

each of their models.

We characterize the generic form of any equilibrium in our model. These

equilibria are obtained by solving a time-indexed sequence of fixed point





-3-

problems. Among the equilibria, two are particularly Interesting because they

provide the upper and lower bounds for any equilibrium exit times and because

each player prefers one of the two equilibria to all other equilibria. In

particular, each firm favors the equilibrium which makes his active period the

longest. We provide a necessary and sufficient condition for the "natural"

equilibrium (in which the stronger firm always outlasts its rival) to be the

unique perfect equilibrium.

To model the exit game, we adopt a natural multiperson extension of the

optimal stopping time concept (see, e.g., Breiman (1964), Shiryayev (1978),

Dynkln (1969), and references in Monahan (1980)) which is the concept of

stopping time equilibrium, a Nash equilibrium in stopping time strategies.

(Our concept of stopping time equilibrium is not unlike that of Ghemawat and

Nalebuff or Fudenberg and Tirole, except that in their models the single-firm

optimal stopping problem is of little intrinsic interest because their models

have deterministic demand paths.) In general, any stochastic dynamic game in

which each player's strategy is a single dichotomous decision at each stage

can be formulated as a stopping time problem. Further, in such games, the

notion of equilibrium stopping time can be applied. For this type of game, we

show that the stopping time equilibria correspond to the subgame perfect

equilibria in the natural extensive form game.

One characteristic of the firms' optimal policies in our model is that one

or both firms may earn negative profits in some period(s), but remain in the

market. This can occur for either of two reasons. First, industry demand can

suffer a stochastic negative shock, such that, demand will increase in the

next period, in expectation. In such cases, fiirms will absorb the loss in
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that period, knowing that demand is likely to recover. This result accords

with observed practice. Most industries experience stochastic downturns that

do not lead to mass exit from the industry. A firm may also choose to absorb

losses and remain in the market in the expectation that its rival will exit

the industry first, leaving a more profitable, monopolistic industry for the

remaining firm. Although the former effect is unique to our model, the latter

effect is also present in the Fudenberg-Tirole formulation.

For both the single-firm and two-firm cases, we solve examples with linear

demand and linear costs. For the single-firm example, the optimal exit time

is decreasing in the firm's unit costs, the slope of the demand curve, and the

per unit fixed cost of being in the market. The optimal exit time increases

in the firm's discount factor. In the two-firm example with Cournot

competition, these results also hold for each firm. In addition, the high

cost firm's optimal exit time increases in the low cost firm's unit costs.

The remainder of the paper is organized as follows: In Section 2, the

single-firm exit problem is formulated as a stopping time problem and several

basic results are established. In Section 3 the notion of stopping time

equilibrium is presented, and the main results regarding equilibrium exit

behavior in a duopoly are proved and discussed. Concluding remarks and

possible extensions follow in Section 4.
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let F^ " a(a ; 8<t), the o-field generated by (a ;s£t}. We may think of

P as the information available at time t obtained by observing {a ; s <^ t}. A

random time T: i^ -^ N is said to be a stopping time of (P ) if {T£t}eP for every

teM. In other words, information F available at time t is sufficient to tell

whether the event {T<t} has occurred.

Let t be the first time that demand has declined to the point where the

industry is no longer profitable. That is, t " Inf {t:fi(a ) < 0, a.s.}. We

assume that t* > to avoid a trivial case and that t* < °° to guarantee that the

firm will exit in finite time.

Let 6 be the firm's discount factor. The firm's problem is to choose

stopping time T so as to maximize the expected discounted profit

T-1
E [ I e'^ 7i(a.)

I
a.] . (1)

t=0
^ ^

Proposition 1 below characterizes the optimal stopping times for this

problem. It defines time Indexed sets B such that the firm's optimal

policy is to exit at the first time t such that a e B . The sets

B^ are defined by the recursively defined profit-to-go functions

u (a ) and take the form B = {a £ h } where the h 's are defined in terms of

the u (•) functions. Proposition 1 is preceded by a technical lemma that orders

the expectations of the positive parts of monotone ordered functions of random

variables that are ordered by stochastic dominance.
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Lenuna 1 . Suppose f,(*), f2(*) are increasing functions and f (z) > fJ,z),

for zeZ. And suppose z,, z~ are random variables with probability measures

\i , y„, respectively. Moreover, \i. stochastically dominates M„. Then

E(f ^(Zj^)l(Q oo)(fi(zi)] IE [f 2(22^^(0, <=)^^2^^2^^^' ^°*^ strict inequality

holds if E[1(Q „jfj^(z^)] > 0.

Proof ; Since f.^(z) > £2(2) implies {f^(z) > 0} _ {f2(z) > 0} and y > y ,

^t^l^^l^\0,«)(^l^h>)^- ^{f^(z)>0}^^^^^V^^

^^{f2(z)>0}^(^^^^l^^^ ^ ^{f2(z)>0}^/^^%^^^

^ ^{f2(z)>0}^2^^^<^V^^

= E[f2(z2) l^Q „)(f2(z2))]. Q.E.D.

Proposition 1;

(1) A unique minimal optimal stopping time for the problem described in (1)

can be characterized by T = inf{t:a e B ) where B = {u (a ) £0},

u^(a^) = TT(a^) + '^Wj.^j^Ca^), and

^t+l^^t^ ° ^f"t+l^^t+l^ ^(0.<»)^"t+l^^t+l^^'^t^'

with w (•) = for t 1 t*.

(ii) For t >^ and zeZ, w (z) >_ w ,,(2) and u (z) >^ u (z). Let

h = sup{z : u (z) < 0}. Then h is increasing in t, B = (a £h } and

B B for t >_ 0.
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Proof

!

Part (1) follows from the optlmality principle of dynamic progranmiing

;

cf. Shlryayev (1978, Chapter 2).

To prove (11), note that

Wt*-l<^^^
° E[n(a^^_^)l(Q^„j(TT(aj.^_^))lz] > = Wj.^(2).

Suppose w . - w 2 ^ for £ t £ t*-2. Note that u (•) is Increasing since

7t(») is increasing. Furthermore, u (z) - u (z) = S(w ,,(z) - w .,(z)) ^0.

Lemma 1 implies w^(z) ^v^_^_^iz) since w^( •) = E[u (a )1^q oo^^^t^^t^^ '
*^ *

Finally, we need to show that u ( •) are monotone for t ^ or equivalently

,

that w (•) are monotone for t ^ 0. Again, by induction, if w ( •) is

increasing, then u (•) " tt (•) + 6w ^(•) is increasing and w (•)

E[u (a )1.Q aj-)^"t^^t^^ '
*^ ^^ increasing by Lemma 1. Hence, B can be written

as {a^ 1 hj.} with h^. = sup{z:u^(z) < 0} for t >.0. Q.E.D.

Note that Uj-Csj.) is just the expected discounted profit from time t

until exit under the optimal stopping policy. Therefore, the optimal policy is

to stop the first time that a falls so low that u (a ) £ 0. This cutoff

point for a is denoted by h , and the set of a values that dictate optimal

exit, that is, the set of points less than or equal to h , are denoted by B .

Figure 1 illustrates a sample path of {a }, h as a function of t,

and the optimal stopping time T. The dashed horizontal line represents the zero

profit line z " it (0). For t ^ 0, if a falls above (below) this line, then

TT(a ) > (TT(a ) < 0). The cutoff points h always lie below this line. Thus,

the firm is sometimes willing to sustain a certain level of current loss in the

hope of receiving future profits. In fact, even if TT(a ) < and

E[Ti(a .)la ] < 0, the firm's optimal policy may be to remain in the market.

To see this, suppose TT(a ) = -e < and E[TT(a )la ]
< 0, but

TT(aj.) + e Et^^^t+i^lfo ")*'^^^t+l^^ '^t^
^ ^' ^^^° ^^^ ^^^^ ^^^ ^^^ ^ ^° period
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t for the option of staying in the market in the hope that demand will be higher

than expected next period. Because the firm can choose to exit at no cost after

seeing a ^ , the option of being able to observe aj^^, and profit from it has

positive value. The variable h-^ represents how heavy a loss the firm will

tolerate in period t in the hope of future profits.

The next proposition provides general comparative static results for the

model. It says that the optimal stopping time is increasing in the

one-stage payoffs and in the discount factor.

Proposition 2 ; If ti'(z) ± ti"(z) for z e Z or S' 1 Q" , then w < w , u 1 u ,

h
I

^ h for t ^ and T' ± T" almost surely.

Proof ; Let t' = inf{t : TT'(a^) <_ 0, a.s.} and t" = inf{t : TT"(a ) £ 0, a.s.},

Assume t" < °°. Obviously t' £ t". For t ^ t" , w = w =0. Assume that

f •• I •

w <^ w . We want to show w £ w . This follows from the fact

t t I. 11

that u (z) = TT'(z) + Sw .(z) £ Ti"(z) + Q w (z) = u (z) and an application

' " -1
of Lemma 1. Then h ^ h is obvious by noticing that h = u (0).

In turn, h^. ^ h^. implies B O B and B S. B , for t ^ 0. Thus, {T* > t} =

t t

(n B'} Q (Ob"}- (T" > t} for every t > 0. So T' < T" almost surely.
3=0 ^ 8-0

^

The results for Q' ± S" follow from a similar argument. Q.E.D.

Proposition 2 provides a very convenient tool for dealing with the

comparative statics analysis of the optimal stopping time. It says that

looking at the stage payoff is sufficient.

For example, consider a monopolist who faces a stochastic linear demand

function and produces a homogeneous good at constant cost c. The random
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variable a^ is the intercept of the inverse demand and the constant b is the

slope. The opportunity cost of staying in the market is k. (Alternately, the

firm has to pay a fixed fee, k, each period in order to participate in the

production activity.) Then, at each period t, the maximum profit that the

monopolist can obtain is

(a -c)^

^^V 'I -^ ^ if a^ > c

V - k otherwise.

Clearly n(») is an increasing function. Also TT(a ) = TT(a ,b,c,k) decreases as

c, b, or k increases. This fact, together with an application of Proposition

2, implies that the optimal exit time T decreases almost surely as c,b,k

increases or 6 decreases. That is, the monopolist optimally exits earlier

when the marginal cost of production is higher, a better alternative

opportunity exits (a higher k) , the price is less sensitive to the quantity

change (a higher b), or the firm is less patient (a smaller S).

3. THE DUOPOLY MODEL - EXIT AS EQUILIBRIUM STOPPING TIME

We next analyze optimal exit in a duopoly. We formulate the exit game and

characterize the optimal stopping equilibria. For l,j = 1,2, denote by ''^^/a )

the payoff to firm i in period t, given there are j firms in the market and the

demand is a . We assume that either firm will prefer high demand to low

demand and will prefer having the market to itself to sharing the market. That

is, "^/a ) are increasing in a for i,j = 1,2, and ''^^o^^^ — ^11^^^ ^°^ i~l>2

and zeZ. At each time t, the active firms observe (a :s<t) and then simultaneously
3 —

decide whether to stay in the market and earn ff. ,(a ) (depending on the number

of firms who stay in) or to exit and get zero profit thereafter. Firm i's
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strategy is a stopping time T,: ^ -^ N. The payoff (as a function of T.) to firm

i, i ^^ j, at time t is completely determined by observing the history

(a ;s<t), i.e.,
s —

.[ (a^.Tj) . ^2^a^)l(x^>,} ^ V^^^djlt}

Let e. (0 < e. £ 1) be the discount factor for firm i. Then firm

i's problem is an optimal stopping problem if its opponent's exit time, T ,

is also a stopping time. Given T , i ¥ i, a stopping time, let

T-1
vj: (aJ - sup E{ I ej TT^ (a.,T.) I a.},^u

T t'O-'
for i " 1,2, where the supremum is over all possible stopping times T.

Definition 1 ; (T, , T-) is a stopping time equilibrium if T,, T- are

stopping times and for i=l,2, and j ?• i,

t=0 '

Definition 2; Firm 1 is stronger than Firm 2 if ^-.Az) > ^21^^^

for j=l,2 and every z.

To aid the game-theoretic analysis that follows, we first solve four

single-firm problems, two for each firm. That is, by applying the results in

the previous section, we derive the optimal exit time for each firm i _a3 J^

there were j firms in the market throughout i's stay in the market. Each

single-firm problem is indexed by i and j and takes ^jA*) as the stage

payoff. We emphasize that the functions calculated below and used in Facts

1-4 _do not represent equilibrium behavior. Rather, they provide useful

manipulations of the two-firm profit function data, ^/j(*)» that will
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be used In the equilibrium analysis to follow. Following the notation In

Section 2, define recursively for i"l,2, j=l,2,

ii * *
r

with w -^ - for t It, where t = inf {t:TT (a ) _< 0, a.s. }. By

Propositions 1 and 2 we have the following results:

Fact 1 ; T, . inf {t i a ± hj^} is the optimal stopping time where

h^J - sup{z:u^J(z) < 0}.

Fact 2 ; w are decreasing in t and h are increasing in t for all i,j.

Fact 3 ; For i=l,2, and for all a^., w^^^Ca^) Iw^^j^Ca^.), h^""" < h^^ for

t ^ 0, and T ^^ . almost surely.

Fact 4 ; If Firm 1 is stronger than Firm 2, then for j=l,2 and for all a^^,

^ii^s^ ^ ^ii^s^' ^t^ ^ ^t^
''''

' ^ °' ^^^ ^j '- hi
almost surely.

1 j *
Figure 2 illustrates h , t.., a realization of the {a } process, and

stopping times, T. , for the case when Firm 1 is stronger than Firm 2.

For i=l,2, and j;*i, we use the following notation to denote the equilibrium

functions analogous to the single-firm functions described above. Suppose (T ^,T ^^

is a stopping-time equilibrium. For 1=1,2, and for each t, let B denote a

subset of Z that represents the exit set for firm 1 in the equilibrium (T^,T-)

;

and let B denote the complement of this set. That is, T = inf{t:a £ B }
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and B. - Z\B. . Whereas B is always an laterval of the form B = {a <_ h } in

the single-firm problem, B. is, in general, not an interval in the multiperson

exit game.

* 1 *
For t ^ t .., define w (•) =• 0. Then define recursively for t <_ t -1

,

and

\ (Vi^ - ^ ^\^\^ ^(o,-)"t^S^'Vi^-

Finally, define h " sup {z: 11.2(2) + S.w ,(z) < O}. The h variable plays

a somewhat different role in the multiperson game from the role of h in the

single-firm model where we had B = {a £ ^t^*
H^^^* ^ does not completely

describe the equilibrium strategy of firm i. Rather, it provides an upper bound

for the exit set B, of firm i.

Our first result is that the optimal single-firm stopping times, T.- and T .

-

impose upper and lower bounds for Firm i's equilibrium stopping time. That is,

for any equilibrium, (T ,T ), T - 1 T < T almost surely, for i"l,2. The

intuitive argument goes as follows: At any time t, it is not i's best response

12 12
to exit as long as a is above h . This follows because w . is the expected

profit from t+1 on obtained by acting optimally in the situation when other firm

12
will be in the market throughout the game. Therefore, w is the minimum

possible future gain that firm i can guarantee for itself. If w ^, is the

i 12
expected equilibrium profit from t+1 on, then w ,,(a ) ^w ,,(a^) and

TT^ (a^) + B^wJ+3^(a^) t "i2^^t^
"*

^i^t+l^^t^
^ ° ^°^ j=1.2. Hence, Firm i

will stay active at time t. By a similar argument. Firm i will exit whenever

a falls below h since w , is the highest possible expected future gain
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from t+1 on in the most optimistic situation, i.e., when he will be in the market

alone from t+1 on. This completes the arguments required to prove

Proposition 3. Suppose (T-, ,12) is an exit time equilibrium and

il 12
T^ -inf{t : a e B, }. Then B <1 B, CB for t > and
1 tit t— it— t —

T „£T <T , almost surely, for i=l,2.

Fi

We now turn to an asymmetric situation in which Firm 1 is stronger than

rm 2, that is, ^^ .(*) ^ tt (•). The natural equilibrium for this

11 22
situation has B,^ " Bj^ and Bjj. " B ; the weak firm exits the

first time that its expected present-plus-future duopoly profits are negative,

and the strong firm then remains as a monopolist until its expected monopoly

profits turn negative. Although this is the unique euqilibrium that obtains

in the models of Fudenberg-Tirole and Ghemawat-Nalebuf f , it is only one of

many equilibria here.

To built intuition for understanding the complete characterization of the

21 12
equilibria in our model, consider the situation where a £(h ,h ].

In this case, either firm will find it profitable to stay in the market if

his opponent exits, but both firms have negative expected profits if neither

exits. Exit by either the strong firm or the weak firm could constitute an

equilibrium.

1 2
In fact, any equilibrium in this game can be characterized by h , h , and

21 1 21 12
a set A C (h ,h ] C.(h ,h ]: If both firms are in the market at time t

and a eB, = (- °o,h
] U A , then Firm 1 exits at t and Firm 2 stays. If

t It t t

2 2 -
both firms are in at t and a eB = (-°°, h ] f) A , then only Firm 2 exits.

Proposition 4 formally states and proves this result.
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Proposltlon 4 Suppose Firm 1 is stronger than Firm 2. Any exit time

equilibrium (T ,T.) can be characterized as T =* inf{t:a efl } for i=-l,2.

The exit sets B , i=l,2, t _^ are defined recursively as follows:

11, . _ , _ , 2,
B
It " (•- "' ^t ^ ^t' ^2t " ^~ °°'

^t^ "^^t*

where

21 1 -
A is a Borel set contained in the interval (h , h ], A = Z\A

,

"t+l^^t^
" 0, for t > t^^, and

w^^^(a^) = E[uJ^^(a^^^) l(o.=o)("t+l^^+i)) I ^^

for <^ t < t ,

uj(a^) > (.^^(a^) + 3^w^^^^(a^)l5^^(a^)

+ (TT^l(a^) + e/^J:^(a^))l3_^^(a^). j ^ i,

Proof ; Backward induction.

For t > t*j^. P^^i/^t^ > 0} = 0, i.j = 1,2. So P{a^ £ B^^} <

FiHj^j^Caj.) > 0} - and Pfa^. e B^^.} = 1 for 1=1,2. Also w^^Ca^.) = wjca^.)

= w (a ) = for 1=1,2. The proposition is trivially true.

Now assume that it is true for s ^ t+1. Then by the definitions of h and

\^\^' vi^%^ ^ vi^^) i \li^\^ ^""p^^- "^ '- ^i - <
12





-16-

for i-1,2. Suppose both firms are in the market at time t. Given any strategy

^^2t' ^2t^
adopted by Firm 2, Firm 1 will be a monopolist from t on if a^ e B^^,

and he will be involved in a game which gives expected payoff w , ,if a e B„

and equilibrium strategies follow from t+1 on. Remaining active at t, Firm 1

expects to get

u'^(a^) - (TT^^^a^) + S^wJ^^ (a^)) 1-^^ (a^) + (n^^Ca^) + S^wJ^^ (a^) ) ^^^^(^^

Firm I's best response then is to exit if u (a ) < and stay if u (a ) > 0.
t t - ' t t

Let B. = {uVa^) < 0} and B. = {u^(a ) > 0}. Firm 1 will exit if Firm 2 exits
It t t ~ It t t

and a < h or if Firm 2 stays and a < h . That is,

^It " ^^2t ^ ^~ "' ^t^^^ '-' ^^2t ^ ^" "'
''t^^-

^^^^

Similarly,

®lt
" iB2^ri (hj\ »)} U (B2^r\(hJ, ")}. (3b)

Given the strategy of Firm 1, if Firm 2 does not exit at t, he will expect

-. (^a^) -H S^w^^^ (a^)) l^^^Ca^).

and 2's best response should satisfy

^2t" ^^it^^-" h^^]} U {B^^flC-", h^]} (4a)

^2t
'

^^It*^ ^''t^'"^^ U {B^t^(h^, »)} . (4b)

But, using (3a) and (3b) to expand the sets in (4b), we get

Bitn(hf. ») = {{B2,n (-», hj^]} u {B2t n(-», hj]}}n(h^\ «>

= B2^n (h^^, hj] since h^^ £ h^^^.
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Simllarly,

= .(hj, 00) \ (B^j. n (hj, h[]} since h^^ < h^^ < h^.

Using (4) and the above characterizations,

^2t' ^B2^n(h^\ hj]} U((h^. ")\{B2^n(h2, hj ]}}

' {B2t n (h^^, h^]} U (hj, ") since hj^ < h^ .

Thus B- is part of the equilibrium if and only if B^j^ satisfies

^2t " ^^2t'^ ^^V'' ^t^^ ^ ^^t'
"^^

The only possible solution is of the form

— 2 21 1

®2t
"

^t ^ ^^t'
°°^

'
^*^^^^ ^t ^^ ^ Borel subset of (h

,
h ].

Furthermore, B„ is just the complement of B„ , i.e.

,

^2t ' ^t*^
^^'

^t^'
"^^" Aj. = Z \ A^.

_ 21 1 2
If f2t^^^ = is r> (hj. , h^]} (J (h ,"), a mapping from a Borel set in Z to a

Borel set in Z, then B„ is an equilibrium strategy if and only if B is a

fixed point of f2t^*^' ^'^•'
^2t''^2t^

^
^2t*

By (3), our characterizations of B- and B„ give

^It ° ^^' ^\^^^ \' ^""^

^It " ^^t^' "^'^^ •
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Finally, note that since
^^^^.^^t^ - *'t+l^^t^ - ^'t+l^^t^ '

"^t *"^t^ - "t^^t^

£ u (a ), which implies w (a ) £ w (a ) £ w (a ) by Lemma 1.

We conclude the induction. Q.E.D,

The importance of Proposition 4 lies in the fact that it characterizes all

possible equilibria. In particular, it points out that we can obtain all

equilibria by varying A , a Borel subset contained in the interval

21 1
(h , h ], for every t. Among these are two extreme equilibria which give

upper and lower bounds on any equilibrium exit times (T , T„ ) . The first

of these, (T , T ) is obtained by letting A = for all t; then

11 22
B' = (- °°, h ], B* = (- °°, h ], almost surely for every t. In fact,

(T , T ) = ^-^ii* ^29^' 3°3logO"3 to the equilibrium of Fudenberg-Tirole and

Ghemawat-Nalebuff . This equilibrium is the one most preferred by Finn 1,

the stronger firm, because, as will be shown in Proposition 5, it gives Firm

1 the latest possible exit time.

The second extreme equilibrium, (T^^,T^) gives Firm 2, the weaker firm, the

1 12 *
latest possible exit time. It is obtained by setting h^_i = h ^^ for t - t ,

* oil l—OI
and then defining recursively for t < t, -1, A = (h ,h ], and h ,h , w ,,Ca^),^' ^ — il t t — t — t t —1+1 t

^t+l^^t^' -t^^t^' "t'-^t^
^^ ^°- Proposition 4, where B^^. = (- », h^"'" ] (J (h^^.hj]

and B" = (h ,h ] (J (h ,'") . The next proposition shows that this equilibrium

gives Firm 2 the longest possible time in the market.
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Proposltloa 5; Let (T^, T2) be an equilibrium. Then T^ 1 T^ < f^

and T2 1 T- 1 T2, almost surely.

Proof; Let B,
,
w (a ), u^^^t^' "t^^t^' ^t' ^t'

^°*^ ^t ^^t ' ^t^
correspond

to the equilibrium (T,, T-) in the usual way.

* 11 1 1 -2 2 22
Note that for t ^ t^^, w " w = w " and w = w = w = 0.

11 ^ 1 ^1 ^ -2 i 2 - 22 -,, , 11 ^ a ^ ^,1Assume w^^^ > w^.^^ > w^.^^ and w^^^ > w^^^ i w^^^. Then, h
j.

< h^ < h^.

Note that B^j. - (-», h^"^ ] C (-», h^"^ ] U A^. - B^^. ,

and Bj^^ C (^, h^l] (h^^, h^] C (->, h^l]
(j (h^^ hj] - b^ .

Also, B^^ = (h^^, «) C (hj, «) C A^ U (hj, ") - 82^, and

82^^ (hj\ h^] (J(h^, ") C (h^l, h^] U (hj, ») = B^^.

11 11 -2 2 21
It follows that u (a ) ^ u (a ) ^ u^(^^) ^^^ "^ (^r^ i ",.(^^) — " ^ ^*^^

for every a^. We just show Uj^(a ) ^ u (3 ) as an example.

* <VS> -^ Vtti's" h: ^\^ -4 <S>
•

2t
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Since w^^j^Caj.) i w^+i^^j.), ^21^^ ^2t ^^'^ ^2f^ ^"if Applying Lemma 1 again,

we have w^'^'Ca^) > w^(a^) > w^(a^) and w (a ) ^ w (a^) > w (a.). The Induction
t t — t t ~ —t t tt — tt~t t

la completed. As a result, B" 2 ^ir- ^W ^°*^
^2t — ^2t— ^2t ^"P^^ ^^^'

ll 1^1 1 Tj_ and 12 1 T^ 1 T^ . Q.E.D.

Since Firm 1 is assumed to be stronger than Firm 2, the first extreme case

(T,,, T22) iSj in some sense, the more appealing equilibrium. This

equilibrium is also simple in structure, i.e., a cut-off equilibrium. Ghemawat

and Nalebuff (1985) show that this is the unique subgame-perfect equilibrium

in their deterministic, continuous time model. Their result depends on their

assumption that industry demand declines continuously over time. An analogous

assumption, for our model, would be that, with probability one, a falls

1-2 21 1
into the interval (J}^>h ] before falling into (h >J},.)«

In this case, the unique

equilibrium has the weaker firm exiting first. (This is stated and proved

formally in Proposition 6.) Conversely, if Ghemawat and Nalebuff (or

Fudenberg and Tirole) were to allow jumps of sufficient magnitude into their

declining demand paths, they would lose uniqueness as our model does.

Proposition 6 ; Suppose Firm 1 is stronger than Firm 2. Then (T.., T22)

is the unique equilibrium if and only if P {a t (n\ h^]}''

t

for 1 < t < t- -1 where t„ = inf {t: P{ A {a e B" }} = O}.~ — I I ^_, s ^t
3=0

Proof: For t = t2-l, P{a^ e 82^.} = 0, or P{a^ e (h^-"", h^] U (h^, ")} = 0.

This implies that B' = B" a.s. and consequently B' = B" . Assume
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B* , = B" , , a. 8. It then follows that h^. = h^. which together with the

condition ?{a^ e (h^""-, h^]} = imply that B^^. = B'^^. a.s. for i'l.Z. The

sufficiency follows.

To prove the necessary conditions, let

t = sup (s: 1 < s < t„-l, P{a e (h^^, h"*"]} > 0}.— — Z 3 S —

S

Then,

'"^
- 21 1

P(T2 > 12) i P{ n (a^ c B'-g} {a^ e (h^\ hj]}}
s"0

= P{a^ e (h^^^, h^] I a . e B" J • P{ (a e B': }} >
t t — t t-1 2t-l rt s 233=0

t-1 _ t-1 _ 2T 1 -
since n B' C r\ B" and (h^"", h;^] = B" fl B' Q.E.D,

3=0 28 2s t -t 2t 2t .

The following example illustrates some comparative static results that can

be obtained with linear cost and demand functions. A Coumot duopoly faces a

stochastic linear inverse demand, p^ = a - bQ, where a are independent

and decreasing in t, and produces a homogeneous good at constant costs c. , i

= 1,2. Assume that c, ^ c~ so that Firm 1 is stronger than Firm 2.

Firm i's opportunity cost of staying in the market is k, . If both firms are

in the market, the equilibrium stage payoffs are

(a - 2c + c )2

— - k if a > 2c - c
9b '^1 ^ ^t ^^2 ^1

5B - h " =1 - ^t ^=2 " =1

- k, otherwise.
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(a^ - 2C2 + c,)'
- k« if a > 2c„ - c.

9b 2 t - 2 1

TT22(aj.)

^ otherwise.

If one finn is in the market alone, the monopoly stage profits are as derived in

Example 1, for i " 1,2,

,2

^1^^^

(a - c )

-4b ^i
'' \'- ^1

- k. otherwise.

It is easy to see that ^ji^a^^ — ^I2^*t^ ^°^ ^ " ^'^ ^^'^ every a and if c, £ c-,

k, " kj or c, = c-. k, £ k-, then Firm 1 is stronger, i.e., ""iJ-^J^ t. ^21^^t^
^°^

j " 1,2 and every a .

From the general results obtained earlier, we know that (T^
-i . ^22) is an

11 22
exit equilibrium. The functions h , h^ can be calculated as follows:

^t

^t

^1 ^ -/^bCk^ -
Q^.[l^)

if k^ > b/^1^

c. otherwise.

2C2 - c^ + /9b(k2 - B^w^^^) if k^ i 32V1'

2c„ - c, otherwise.
2 1

11 22
And h increases as c,, b, k^ increases or S. decreases, while h increases

as c-j b, k_ increases or c , I3„ decreases. Thus T increases almost surely as

Ci, b, k, decreases or S, increases and T22 increases almost surely as C2, b,

kj decreases or c,, B~ increases.
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We conclude this section by pointing out that the stopping time equilibria

and the subgame perfect equilibria of the exit game are equivalent. By way of

constructing a stopping time equilibrium in Proposition 4, it is clear that the

stopping time T. = inf {s: s ^ t, a e B. } constitute an equilibrium for the

remaining subgame, given the firms surviving until t. Conversely, if we analyze

the exit problem in an extensive form game assuming players have perfect recall

of the historic information but not the future, etc., then any subgame perfect

equilibrium is a stopping time equilibrium.

Proposition 7 . The stopping time equilibria are subgame perfect.

4. CONCLUSION

This paper illustrates how a stochastic dynamic game like exit can be

formulated as a stopping time problem, how a stopping time equilibrium can be

found by solving a sequence of fixed point problems, and how to derive the

properties that the stopping time equilibria possess. Furthermore it shows

how demand processes that are not continuous can give rise to multiple exit

time equilibria.

There are several interesting extensions or variations that might be

explored in the continuation of this work. A straightforward, but

notationally burdensome, generalization is the exit game for an n-firm

oligopoly. The equilibrium in which the stronger firms exit later always

exists if the firms are ordered by strength. A second direction for

generalizing the model is to incorporate entry decisions into the model to

study the firm's behavior over the life cycle of an Industry. Though we only
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discuas the exit problem for oligopoly here, the approach employed can be

applied to entry problems as well. Finally, other interesting extensions may

include stopping time equilibria in stochastic exit games with incomplete

information (as in Fudenberg and Tirole) and stochastic exit games in

contlnous time.





-25-

Figure 1. Single-firm stopping problem in the monopoly model
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t
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Figure 2. Four single-firm stopping problems in the duopoly model.
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